WO2023050061A1 - 一种确定tb的起始传输位置的方法及其装置 - Google Patents

一种确定tb的起始传输位置的方法及其装置 Download PDF

Info

Publication number
WO2023050061A1
WO2023050061A1 PCT/CN2021/121309 CN2021121309W WO2023050061A1 WO 2023050061 A1 WO2023050061 A1 WO 2023050061A1 CN 2021121309 W CN2021121309 W CN 2021121309W WO 2023050061 A1 WO2023050061 A1 WO 2023050061A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
transmission
time slots
time slot
initial transmission
Prior art date
Application number
PCT/CN2021/121309
Other languages
English (en)
French (fr)
Inventor
乔雪梅
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/121309 priority Critical patent/WO2023050061A1/zh
Priority to CN202180002832.5A priority patent/CN114026942A/zh
Priority to EP21958660.9A priority patent/EP4412343A1/en
Publication of WO2023050061A1 publication Critical patent/WO2023050061A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of communication technologies, and in particular to a method and device for determining the initial transmission position of a TB.
  • TB processing over multipleslots refers to a transport block (Transport Block, TB) that uses multiple time slots (slots) for transmission, and each slot only transmits part of the encoded TB data. If TBoMS transmission (repetition) is performed in the way of configured grant (CG), since one TB occupies multiple slots for transmission, in this case, it is necessary to determine the slot position that can be used to initiate transmission.
  • Transport Block Transport Block
  • Embodiments of the present application provide a method and device for determining the initial transmission position of a TB. By determining the initial transmission position of a TB transmission in multiple time slots used to transmit the same TB, the generated data can be transmitted in time, shortening The data transmission delay is reduced, and the reliability of data transmission is improved.
  • the embodiment of the present application provides a method for determining the starting transmission position of a TB, which is executed by a terminal device, and the method includes: determining the redundancy version RV sequence of multiple time slots used to transmit the same TB in a CG cycle ; Determine at least one initial transmission position of the TBoMS from the plurality of time slots corresponding to the RV sequence.
  • the initial transmission position of TB transmission can be determined from multiple time slots, and the data generated by the terminal device can be transmitted in time, which shortens the data transmission delay and improves the reliability of data transmission.
  • the TB is repeatedly transmitted within the CG period.
  • the determining at least one starting transmission position of the TB transmission from the plurality of time slots corresponding to the RV sequence includes: determining the first RV in the RV sequence; Each TB transmission corresponding to the first RV uses multiple time slots, and at least one time slot is determined as the initial transmission position.
  • determining at least one time slot as the initial transmission position from among multiple time slots used for each TB transmission corresponding to the first RV includes: corresponding to the first RV The first time slot of is determined as the starting transmission position.
  • determining at least one time slot as the initial transmission position from the plurality of time slots used for each TB transmission corresponding to the first RV includes: setting the last time slot in the RV sequence The first time slot corresponding to each of the remaining first RVs other than the first RV is determined as the initial transmission position, wherein the RV sequence only includes the first RV; or, determining the first time slot corresponding to the at least one first RV as the initial transmission position, and the RV sequence includes at least one first RV and at least one other RV.
  • the method further includes: based on the number of time slots occupied by each TB transmission and/or modulation and coding MCS parameters, determining at least one of the first RV used as the starting transmission position a time slot.
  • the method further includes: determining a position determination scaling factor according to the MCS parameter; determining the scaling factor according to the number of time slots occupied by each TB transmission and the position, and determining the At least one slot of the starting transmission position.
  • the MCS parameter is negatively correlated with the location determination scaling factor.
  • the method further includes: when the MCS parameter is less than a set threshold, determining that the position determination scaling factor is a first value; or when the MCS parameter is greater than or equal to the set threshold When the threshold is met, it is determined that the position determination scaling factor is a second value, wherein the second value is smaller than the first value.
  • the method further includes: receiving indication information sent by a network device; and determining at least one time slot in the first RV used as the initial transmission position according to the indication information.
  • the method further includes: acquiring enabling signaling; determining the number of time slots used as the initial transmission position in the first RV according to the enabling signaling, wherein, The enabling signaling is used to indicate that the number is 1 or more.
  • the method further includes: determining the coded data of the data to be transmitted on each time slot in the first RV; starting from the coded data corresponding to the time slot where the initial transmission position is located , sending the remaining encoded data to the network device.
  • the embodiment of the present application provides another method for determining the initial transmission position of a TB, which is performed by a network device, and the method includes: determining a redundant version RV sequence corresponding to multiple transmissions of the same TB in a CG cycle; From the plurality of time slots corresponding to the RV sequence, at least one initial transmission position of the TB transmission is determined.
  • the initial transmission position of TB transmission can be determined from multiple time slots, so that the network device can send or receive the data generated by the terminal device in time, shorten the data transmission delay, and improve the efficiency of data transmission reliability.
  • the TB is repeatedly transmitted within the CG period.
  • the determining at least one starting transmission position of the TB transmission from the plurality of time slots corresponding to the RV sequence includes: determining the first RV in the RV sequence; Among the multiple time slots used for each TB transmission corresponding to the first RV, at least one time slot is determined as the initial transmission position.
  • determining at least one time slot as the initial transmission position from among multiple time slots used for each TB transmission corresponding to the first RV includes: corresponding to the first RV The first time slot of is determined as the starting transmission position.
  • determining at least one time slot as the initial transmission position from the plurality of time slots used for each TB transmission corresponding to the first RV includes: setting the last time slot in the RV sequence The first time slot corresponding to each of the remaining first RVs other than the first RV is determined as the initial transmission position, wherein the RV sequence only includes the first RV; or, determining the first time slot corresponding to the at least one first RV as the initial transmission position, and the RV sequence includes at least one first RV and at least one other RV.
  • the method further includes: based on the number of time slots occupied by each TB transmission and/or modulation and coding MCS parameters, determining the corresponding start transmission position in the first RV at least one time slot of .
  • the method further includes: determining a position determination scaling factor according to the MCS parameter; determining the scaling factor according to the number of time slots occupied by each TB transmission and the position, and determining the At least one slot of the starting transmission position.
  • the MCS parameter is negatively correlated with the location determination scaling factor.
  • the method further includes: when the MCS parameter is less than a set threshold, determining that the position determination scaling factor is a first value; or when the MCS parameter is greater than or equal to the set threshold When the threshold is met, it is determined that the position determination scaling factor is a second value, wherein the first value is smaller than the second value.
  • the method further includes: sending indication information to the terminal device, where the indication information is used to indicate at least one time slot in the first RV used as the initial transmission position.
  • the method further includes: sending enabling signaling to the terminal device, where the enabling signaling is used to indicate a time slot in the first RV used as the initial transmission position The number is 1 or more.
  • the method further includes: receiving, at the initial transmission position, encoded data corresponding to the initial transmission position sent by the terminal device.
  • the embodiment of this application provides a communication device, which has some or all functions of the terminal equipment in the method described in the first aspect above, for example, the functions of the communication device may have part or all of the functions in this application
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present application.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other equipment.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the transceiver module is used to determine the redundancy version RV sequence used to transmit multiple time slots of the same TB in the CG cycle.
  • a processing module configured to determine at least one initial transmission position of the TB transmission from the plurality of time slots corresponding to the RV sequence.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the embodiment of the present application provides another communication device, which can implement some or all of the functions of the network equipment in the method example described in the second aspect above, for example, the functions of the communication device can have some of the functions in this application Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present application alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the transceiver module is used to determine the redundancy version RV sequence used to transmit multiple time slots of the same TB in the CG cycle.
  • a processing module configured to determine at least one initial transmission position of the TB transmission from the plurality of time slots corresponding to the RV sequence.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the embodiment of the present application provides a communication device, the communication device includes a processor, and when the processor calls the computer program in the memory, it executes the method described in the first aspect above.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • the embodiment of the present application provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • the embodiment of the present invention provides a computer-readable storage medium, which is used to store instructions used by the above-mentioned terminal equipment, and when the instructions are executed, the terminal equipment executes the above-mentioned first aspect. method.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the method described in the above-mentioned second aspect .
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to realize the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to realize the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a method for determining the initial transmission position of a TB provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of another method for determining the initial transmission position of a TB provided by an embodiment of the present application
  • Fig. 4 is a schematic diagram of determining at least one initial transmission position of a TB provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of determining the initial transmission position of a TB provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of determining multiple time slots as initial transmission positions provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of repeated transmission of a TB provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of encoded data from a starting transmission position provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of encoded data at a starting transmission position provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a method for determining the initial transmission position of a TB provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of determining at least one initial transmission position of a TB provided by an embodiment of the present application.
  • Fig. 12 is another schematic diagram of determining at least one initial transmission position of a TB provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of determining the initial transmission position of a TB provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a network device receiving encoded data sent by a terminal device according to an embodiment of the present application
  • FIG. 15 is a schematic diagram of repeated transmission of TB provided by an embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • RV Redundancy Version
  • IR incremental redundancy
  • HARQ Hybrid Automatic Repeat reQuest
  • MCS Modulation and Coding Scheme
  • MCS regards the factors that affect the communication rate as the columns of the table, and uses the MCS index as the row to form a rate table. Each MCS index actually corresponds to the physical transmission rate under a set of parameters.
  • CG Configure authorized CG
  • Semi-persistent scheduling means that the base station configures a certain resource period for the terminal through RRC signaling, and has the same time-frequency domain resources for data transmission in each period. This method can complete each data transmission without dynamic scheduling, can reduce scheduling signaling overhead, and is beneficial to reduce transmission delay.
  • the optional range of CG cycle includes: 1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 256, 320, 512, 640, 1024, 1280, 2560, 5120 time slot (slot).
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiment of the application. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 101 and one terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 101 in the embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), using CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a method for determining the initial transmission position of a TB provided by an embodiment of the present application, which is executed by a terminal device. As shown in FIG. 2, the method may include but not limited to the following steps:
  • the terminal device may receive scheduling of transmissions performed by the network device for various terminal devices.
  • terminal devices and network devices can communicate in time slots corresponding to certain time and frequency resources of a channel, and each time slot can include multiple symbol periods and corresponds to a bandwidth.
  • Each slot may include a control channel for transmitting control information and a shared data channel for transmitting uplink and/or downlink data.
  • the network device may send a scheduling grant on the control channel of the time slot, which allocates some or all of the shared data channels of the time slot to the terminal device.
  • the terminal device can use the shared data channel to send or receive data according to the scheduling grant.
  • the terminal device After the terminal device receives the radio resource control (Radio Resource Control, RRC) signaling sent by the network device, it can parse out the configuration authorization information, and determine the configuration parameters related to the configuration authorization according to the configuration authorization information, and when the terminal device is in Configuration parameters are used when working in multi-subband mode.
  • the configuration authorization information may include configuration scheduling wireless network temporary identifier, downlink configuration authorization configuration and/or uplink configuration authorization configuration.
  • the configuration scheduling wireless network temporary ID is the ID used to configure the authorized scheduling mode
  • the downlink configuration authorization configuration is used to configure the downlink transmission using the configuration authorization mode
  • the uplink configuration authorization configuration is used to configure the uplink transmission using the configuration authorization mode.
  • the configuration grant (configured grant, CG) can support multi-slot transmission of the same TB block, namely (TB processing over multipleslots, TBoMS), that is to say, combine CG with multi-slot transmission.
  • the terminal device can receive the redundancy version (Redundancy Version, RV) sequence used to transmit multiple time slots of the same TB block in the CG cycle sent by the network device, or the terminal device can determine based on the agreement that the CG cycle is used to transmit the same TB block RV sequence for multiple slots.
  • RV redundancy Version
  • the RV sequence may be the sequence in which at least one redundancy version of the transport block is sent.
  • TB is the data delivered by the Medium Access Control (MAC) layer to the physical layer to be transmitted.
  • the terminal device uses multiple time slots (slots) to transmit the TB, and each slot only transmits part of the code of the TB. post data.
  • the RV sequence corresponds to multiple time slots. Multiple time slots can use the same redundancy version or different redundancy versions. It can be determined based on the configuration of the network device or agreed by the agreement. Sure. Exemplarily, the RV sequence can be ⁇ RV#0, RV#0, RV#0, RV#0 ⁇ , or ⁇ RV#0, RV#3, RV#0, RV#3 ⁇ , or ⁇ RV#0 , RV#2, RV#3, RV#1 ⁇ and so on. The RV sequence here is only an example and cannot be used as a condition to limit the application.
  • each time slot occupies the same time domain resource
  • the length of the frequency domain resource is equal, and the location of the frequency domain resource may be the same or different.
  • the positions of the frequency domain resources are different; when the frequency hopping is not enabled, the positions of the frequency domain resources are the same.
  • the terminal device when the terminal device generates data, in order to be able to transmit data in time and shorten the transmission delay, the terminal device can start retransmitting data on a non-first time slot, and the time slot that can start data transmission is called the initial time slot.
  • the transmission position in the embodiment of the present application, at least one initial transmission position of TB transmission may be determined from multiple time slots corresponding to the RV sequence.
  • the initial transmission position corresponding to the TB transmission may be one or multiple; in some implementations, the initial transmission position corresponding to the TB transmission may be the first or not the first; In some implementations, the starting transmission position corresponding to TB transmission may be a time slot included in a specific redundancy version, or may be a time slot included in each redundancy version. Wherein, when there are multiple initial transmission positions corresponding to the TB transmission, they may be the first few or the last few.
  • the embodiment of the present application proposes a method for determining the initial transmission position of a TB, by determining the redundant version RV sequence used to transmit multiple time slots of the same TB in the CG period in the scenario where the authorized CG is configured to support TBoMS transmission , determine at least one initial transmission position of TB transmission from the plurality of time slots corresponding to the RV sequence.
  • the data generated by the terminal device can be transmitted in time, shortening the data transmission delay and improving the efficiency of data transmission. reliability.
  • Fig. 3 is a schematic flowchart of a method for determining the initial transmission position of a TB provided by an embodiment of the present application, which is executed by a terminal device, as shown in Fig. 3 , and may include the following steps:
  • step S301 the implementation manners in the various embodiments in this application may be adopted, and details are not repeated here.
  • any redundancy version is determined as the first RV.
  • the version of RV#0 in the RV sequence may be used as the first RV.
  • other redundant versions in the RV sequence may also be used as the first RV.
  • At least one time slot is determined as the initial transmission position from the multiple time slots used by each TB transmission corresponding to the first RV in the RV sequence.
  • RV#0 when it is determined that RV#0 is the first RV, RV#0 may correspond to 4 time slots, and the first time slot among the 4 time slots of RV#0 may be determined as the initial transmission position; or, The first 2 time slots among the 4 time slots of RV#0 may be determined as initial transmission positions; or, all 4 time slots among the 4 time slots of RV#0 may be determined as initial transmission positions. That is to say, in the TBoMS scenario of CG, each slot corresponding to each RV#0 in the RV sequence can be used as the initial transmission slot.
  • the terminal device may receive indication information sent by the network device, and determine a time slot used as a starting transmission position in the first RV according to the indication information.
  • the terminal device can receive the indication information sent by the network device, and the indication information can directly indicate the time slot used as the starting transmission position.
  • the indication information can directly indicate that the first RV#0 corresponding to the first RV in the RV sequence One slot is used as the starting transmission position.
  • the terminal device may receive indication information sent by the network device, and determine a plurality of time slots used as initial transmission positions in the first RV according to the indication information.
  • the terminal device can receive the indication information sent by the network device, and the indication information can directly indicate the time slot used as the starting transmission position.
  • the indication information can directly indicate that the first RV#0 in the RV sequence corresponds to Three slots are used as the starting transmission position.
  • the data generated by the terminal device can be transmitted in time, which shortens the data transmission delay and improves the reliability of the data transmission.
  • Fig. 4 is a schematic flowchart of a method for determining the initial transmission position of a TB provided by an embodiment of the present application, which is executed by a terminal device.
  • determining a starting transmission position of the TBoMS may include the following steps:
  • step S401 the implementation manners in the embodiments of the present application may be adopted, and details are not repeated here.
  • S402. Determine the first time slot corresponding to each first RV other than the last first RV in the RV sequence as a starting transmission position, where the RV sequence only includes the first RV.
  • the terminal device can only initiate transmission on the first time slot corresponding to the first three RV#0 in the RV sequence, but cannot initiate transmission on all the time slots corresponding to the last RV#0 in the RV sequence, that is, in the RV sequence
  • the first time slot corresponding to each first RV other than the last first RV is determined as the initial transmission position.
  • the version of RV#0 in the RV sequence can be used as the first RV, and when the obtained RV sequence includes not only the first RV but also other RVs, the The slot is determined as the initial transmission position. Wherein, there may be one or more first RVs.
  • the terminal The device can only initiate transmission on the first time slot corresponding to RV#0, that is, determine the first time slot corresponding to RV#0 as the initial transmission position.
  • RV sequence ⁇ RV#0, RV#3, RV#0, RV#3 ⁇ , when the data is generated before the second time slot corresponding to the first RV#0, the second The first time slot corresponding to RV#0 is determined as the initial transmission position, and the data transmission starts in the first time slot corresponding to the second RV#0.
  • the terminal device can only initiate transmission on the first time slot corresponding to the first RV#0, that is, determine the first time slot corresponding to the first RV#0 as the initial transmission position.
  • the initial transmission position of TB transmission is determined from the multiple time slots corresponding to the RV sequence, and the data generated by the terminal device can be transmitted in time, which shortens the data transmission delay and improves the reliability of data transmission .
  • Fig. 6 is a schematic flowchart of a method for determining the initial transmission position of a TB provided by an embodiment of the present application, which is executed by a terminal device, as shown in Fig. 6, and may include the following steps:
  • step S601 the foregoing embodiments have already been described in detail, and will not be repeated here.
  • the position to determine the scaling factor determines the scaling factor according to the number and position of time slots occupied by each TB transmission, and determine at least one time slot used as the initial transmission position .
  • Modulation and Coding Scheme regards the factors that affect the communication rate as the columns of the table, and uses the MCS index as the row to form a rate table. Each MCS index actually corresponds to the physical data under a set of parameters. Transmission rate.
  • the MCS parameter is determined based on a network instruction or a protocol agreement, and a location determination scaling factor may be determined based on the MCS parameter, where the location determination scaling factor is recorded as 1/P.
  • the MCS parameter is negatively correlated with the location determination scaling factor, that is, the larger the MCS parameter is, the smaller the location determination scaling factor is.
  • the location-determining scaling factor is denoted as P, then the MCS is positively correlated with the location-determining scaling factor.
  • a threshold is set for the MCS parameter, and when the MCS parameter is smaller than the set threshold, the position determination scaling factor is determined to be the first value; when the MCS parameter is greater than or equal to the set threshold, the position determination scaling factor is determined is the second value.
  • the position determination scaling factor is determined to be the first value; when the MCS parameter is greater than or equal to the set threshold, the position determination scaling factor is determined is the second value. For example, based on the formula: when determining the initial transmission position in the 1st to N*1/P time slots, it should be noted that if there is a position to determine the scaling factor as P, since the MCS is positively correlated with P, the first value at this time less than the second value. If there is a position determination scaling factor of 1/P, since the MCS is negatively correlated with 1/P, the first value is greater than the second value at this time.
  • the location determination scaling factor is P
  • the set threshold is set to k
  • the first value is set to 4
  • the second value is set to 8.
  • a threshold is set for the MCS parameter, and when the MCS parameter is smaller than the set threshold, the position determination scaling factor is determined to be the first value; when the MCS parameter is greater than or equal to the set threshold, the position determination scaling is not started factor, directly use the first time slot corresponding to the first RV as the initial transmission position.
  • the set threshold may be set as k, and the first value may be set as 4.
  • the MCS parameter is less than k, determine that the location determination scaling factor is 4; when the MCS parameter is greater than or equal to k, then do not start the location determination scaling factor, and directly use the first time slot corresponding to the first RV as the initial transmission position .
  • the mapping relationship between the MCS parameter and the location determination scaling factor may be preset, and after the MCS parameter is acquired, the mapping relationship may be queried to determine the location determination scaling factor.
  • the location determination scaling factor may also be determined directly based on a network instruction or a protocol agreement.
  • the protocol may agree that the location determination scaling factor is 4.
  • the number of time slots occupied by each TB transmission is obtained, and the number of time slots occupied by each TB transmission is recorded as N.
  • the data generated by the terminal device can be transmitted in time, shortening the data transmission time.
  • Delay increases the transmission redundancy and improves the reliability of data transmission.
  • FIG. 7 is a schematic flowchart of a method for determining the initial transmission position of a TB provided by an embodiment of the present application, which is executed by a terminal device. As shown in FIG. 7 , the following steps may be included:
  • the authorized CG In the scenario where the authorized CG is configured to support TBoMS, it can also support repeated transmission of TB.
  • the TB after determining the initial transmission position of the TB transmission, the TB can be repeatedly transmitted within the CG period. For example, if the number of retransmissions is 8 times, the TB can be repeatedly transmitted within the CG period. 8 times, each transmission starts based on the determined initial transmission position.
  • the initial transmission position of TB transmission is determined from the multiple time slots corresponding to the RV sequence, and the data generated by the terminal device can be transmitted in time, which shortens the data transmission delay and improves the reliability of data transmission . And based on the repeated transmission mechanism, the problem of TB loss during transmission can be solved, and the security and integrity of data transmission can be provided.
  • Fig. 8 is a schematic flowchart of a method for determining the initial transmission position of a TB provided by an embodiment of the present application, which is executed by a terminal device. As shown in Fig. 8, the method may further include the following steps:
  • the coded data of the data to be transmitted on each time slot in the first RV is obtained, that is, the coded data of the data to be transmitted is allocated to The transmission is performed on multiple time slots, that is, each time slot corresponds to a part of coded data of the data to be transmitted.
  • Fig. 9 is a schematic diagram of a terminal device sending coded data to a network device.
  • the terminal device can send coded data in the second time slot in the first RV
  • the transmission is started, and the encoded data corresponding to the position of the time slot is still transmitted in the second time slot.
  • the encoded data of the data to be transmitted generated by the terminal device on each time slot in the first RV is 12, 34, 56, and 78 respectively
  • the terminal device starts to transmit data on the second time slot in the first RV.
  • directly transmit 34, 56, and 78 in sequence of time slots instead of transmitting 12 corresponding to the first time slot in the first RV.
  • the method for determining the initial transmission position of the TB provided in the embodiments of the present application may further include the following steps:
  • the terminal device can also obtain enabling signaling, and directly determine the number of time slots used as the initial transmission position in the first RV in the RV sequence through the enabling signaling, wherein the enabling signaling is used to determine the initial transmission position
  • the number of time slots can be 1 or more.
  • the enable signaling can set a 1-bit indication parameter. When the enable signaling indicates "1", it means that multiple time slots can be used as the initial transmission position. When the enable signaling indicates "0", it means Only one slot can be used as the starting transmission position.
  • Fig. 10 is a schematic flowchart of a method for determining the initial transmission position of a TB provided by an embodiment of the present application, which is executed by a network device. As shown in Fig. 10, the method may include but not limited to the following steps:
  • the network device can configure the RV sequence used to transmit multiple time slots of the same TB in the CG cycle, or determine the RV sequence in the CG cycle based on the agreement.
  • the RV sequence may be the sequence in which at least one redundancy version of the transport block is sent.
  • the network device can send it to the terminal device, so that the terminal device can determine the TB from the multiple time slots corresponding to the RV sequence The starting transfer location for the transfer.
  • the RV sequence corresponds to multiple time slots. Multiple time slots can use the same redundancy version or different redundancy versions. It can be determined based on the configuration of the network device or agreed by the agreement. Sure. Exemplarily, the RV sequence can be ⁇ RV#0, RV#0, RV#0, RV#0 ⁇ , or ⁇ RV#0, RV#3, RV#0, RV#3 ⁇ , or ⁇ RV#0 , RV#2, RV#3, RV#1 ⁇ and so on. The RV sequence here is only an example and cannot be used as a condition to limit the application.
  • each time slot occupies the same time-domain resource, the length of the frequency-domain resources is equal, and the positions of the frequency-domain resources may be the same or different.
  • the positions of the frequency domain resources are different; when the frequency hopping is not enabled, the positions of the frequency domain resources are the same.
  • the network device needs to receive the data sent by the terminal device.
  • the terminal device When the terminal device generates data, in order to transmit data in time and shorten the transmission delay, the terminal device can start data replay in the non-first time slot.
  • the time slot that can start data transmission is called the initial transmission position.
  • at least one initial transmission position of TB transmission can be determined from multiple time slots corresponding to the RV sequence.
  • the initial transmission position corresponding to the TB transmission may be one or multiple; in some implementations, the initial transmission position corresponding to the TB transmission may be the first or not the first; In some implementations, the starting transmission position corresponding to TB transmission may be a time slot included in a specific redundancy version, or may be a time slot included in each redundancy version. Wherein, when there are multiple initial transmission positions corresponding to the TB transmission, they may be the first few or the last few.
  • the embodiment of this application proposes a method for determining the initial transmission position of a TB.
  • determine the redundant version RV sequence in the CG cycle determine the TBoMS from the multiple timeslots corresponding to the RV sequence At least one starting transfer location for .
  • the network device can send or receive the data generated by the terminal device in time, which shortens the data transmission delay and improves the reliability of the data transmission.
  • Fig. 11 is a schematic flowchart of a method for determining the initial transmission location of a TB provided by an embodiment of the present application, which is executed by a network device. As shown in Fig. 11, the method may include but not limited to the following steps:
  • step S1101 the implementation manners in the embodiments of the present application may be adopted, and details are not repeated here.
  • S1102. Determine the first RV in the RV sequence.
  • any redundancy version is determined as the first RV.
  • the version of RV#0 in the RV sequence may be used as the first RV.
  • other redundant versions in the RV sequence may also be used as the first RV.
  • S1103. Determine at least one time slot from the multiple time slots used by each TB transmission corresponding to the first RV as a starting transmission position.
  • At least one time slot is determined as the initial transmission position from the multiple time slots used by each TB transmission corresponding to the first RV in the RV sequence.
  • RV#0 may correspond to 4 time slots, and the first time slot among the 4 time slots of RV#0 may be determined as the initial transmission position; or, The first 2 time slots among the 4 time slots of RV#0 may be determined as initial transmission positions; or, all 4 time slots among the 4 time slots of RV#0 may be determined as initial transmission positions.
  • the network device may send indication information to the terminal device, and according to the indication information, determine a time slot in the first RV used as a starting transmission position.
  • the network device can send indication information to the terminal equipment, and the indication information can directly indicate the time slot used as the starting transmission position.
  • the indication information can directly indicate that the first RV#0 in the RV sequence corresponds to the first time slots as the initial transmission position.
  • the network device may send indication information to the terminal device, and according to the indication information, determine a plurality of time slots used as initial transmission positions in the first RV.
  • the network device can send indication information to the terminal equipment, and the indication information can directly indicate the time slot used as the starting transmission position.
  • the indication information can directly indicate that the first three slots corresponding to the first RV#0 in the RV sequence time slots as the initial transmission position.
  • the network equipment can receive the data generated by the terminal equipment in time, which shortens the data transmission delay and improves the reliability of data transmission.
  • Fig. 12 is a schematic flowchart of a method for determining the initial transmission position of a TB provided by an embodiment of the present application, which is executed by a network device. As shown in Fig. 12, the method may include but not limited to the following steps:
  • step S1201 the implementation manners in the embodiments in this application may be adopted, and details are not repeated here.
  • S1202. Determine the first time slot corresponding to each first RV other than the last first RV in the RV sequence as a starting transmission position, where the RV sequence only includes the first RV.
  • the network device can accept that the terminal device initiates transmission on the first time slot corresponding to the first three RV#0 in the RV sequence, and the terminal device cannot initiate transmission on all the time slots corresponding to the last RV#0 in the RV sequence, that is The first time slot corresponding to each first RV other than the last first RV in the RV sequence is determined as the initial transmission position.
  • S1203. Determine the first time slot corresponding to the at least one first RV as a starting transmission position, and the RV sequence includes at least one first RV and at least one other RV.
  • the version of RV#0 in the RV sequence can be used as the first RV, and when the obtained RV sequence includes not only the first RV but also other RVs, the The slot is determined as the initial transmission position. Wherein, there may be one or more first RVs.
  • the network The device can receive that the terminal device initiates transmission on the first time slot corresponding to RV#0, that is, the first time slot corresponding to RV#0 is determined as the initial transmission position.
  • the network device may receive the transmission initiated by the terminal device on the first time slot corresponding to the first RV#0, that is, determine the first time slot corresponding to the first RV#0 as the initial transmission position.
  • the network equipment can receive the data generated by the terminal equipment in time, which shortens the data transmission delay and improves the reliability of data transmission.
  • Fig. 13 is a schematic flowchart of a method for determining the initial transmission location of a TB provided by an embodiment of the present application, which is executed by a network device. As shown in Fig. 13, the method may include but not limited to the following steps:
  • step S1301 the implementation manners in the embodiments in this application may be adopted, and details are not repeated here.
  • the scaling factor is determined according to the modulation and coding MCS parameters, and the scaling factor is determined according to the number and position of time slots occupied by one TBoMS transmission, and at least one time slot used as the initial transmission position is determined.
  • Modulation and Coding Scheme regards the factors that affect the communication rate as the columns of the table, and uses the MCS index as the row to form a rate table. Each MCS index actually corresponds to the physical data under a set of parameters. Transmission rate.
  • the MCS parameter is determined based on a network instruction or a protocol agreement, and a location determination scaling factor may be determined based on the MCS parameter, where the location determination scaling factor is recorded as 1/P.
  • the MCS parameter is negatively correlated with the location determination scaling factor, that is, the larger the MCS parameter is, the smaller the location determination scaling factor is.
  • the location-determining scaling factor is denoted as P, then the MCS is positively correlated with the location-determining scaling factor.
  • a threshold is set for the MCS parameter, and when the MCS parameter is smaller than the set threshold, the position determination scaling factor is determined to be the first value; when the MCS parameter is greater than or equal to the set threshold, the position determination scaling factor is determined is the second value.
  • the position determination scaling factor is determined to be the first value; when the MCS parameter is greater than or equal to the set threshold, the position determination scaling factor is determined is the second value. For example, based on the formula: when determining the initial transmission position in the 1st to N*1/P time slots, it should be noted that if there is a position to determine the scaling factor as P, since the MCS is positively correlated with P, the first value at this time less than the second value. If there is a position determination scaling factor of 1/P, since the MCS is negatively correlated with 1/P, the first value is greater than the second value at this time.
  • the location determination scaling factor is P
  • the set threshold is set to k
  • the first value is set to 4
  • the second value is set to 8.
  • a threshold is set for the MCS parameter, and when the MCS parameter is smaller than the set threshold, the position determination scaling factor is determined to be the first value; when the MCS parameter is greater than or equal to the set threshold, the position determination scaling is not started factor, directly use the first time slot corresponding to the first RV as the initial transmission position.
  • the set threshold may be set as k, and the first value may be set as 4.
  • the MCS parameter is less than k, determine that the location determination scaling factor is 4; when the MCS parameter is greater than or equal to k, then do not start the location determination scaling factor, and directly use the first time slot corresponding to the first RV as the initial transmission position .
  • the mapping relationship between the MCS parameter and the location determination scaling factor may be preset, and after the MCS parameter is acquired, the mapping relationship may be queried to determine the location determination scaling factor.
  • the location determination scaling factor may also be determined directly based on a network instruction or a protocol agreement.
  • the protocol may agree that the location determination scaling factor is 4.
  • the number of time slots occupied by each TB transmission is obtained, and the number of time slots occupied by each TB transmission is recorded as N.
  • the network device by determining the scaling factor according to the number of time slots occupied by one TBoMS transmission and the MCS parameters, at least one time slot used as the initial transmission position is determined, and the network device can receive the data generated by the terminal device in time, shortening the data transmission delay, improving the reliability of data transmission.
  • Fig. 14 is a schematic flowchart of a method for determining the initial transmission position of a TB provided by an embodiment of the present application, which is executed by a network device. As shown in Fig. 14, the method may include but not limited to the following steps:
  • S1402. Determine at least one initial transmission position of TB transmission from the plurality of time slots corresponding to the RV sequence.
  • the encoded data of the data to be transmitted generated by the terminal device on each time slot in the first RV is determined.
  • the network device can receive the data that the terminal device starts to transmit on the second time slot in the first RV, and the transmission in the second time slot is still the same
  • the encoded data corresponding to the time slot position For example, if the encoded data of the data to be transmitted generated by the terminal device on each time slot in the first RV is 12, 34, 56, and 78 respectively, the terminal device starts to transmit data on the second time slot in the first RV.
  • transmit 34, 56, and 78 directly in the order of time slots, instead of transmitting 12 corresponding to the first time slot in the first RV, and the network device can receive the terminal device to start on the second time slot in the first RV.
  • 34, 56, and 78 are transmitted in the order of time slots during transmission.
  • the network device in order to avoid confusing the data received by the network device, can receive the data generated by the terminal device in a timely manner, shorten the data transmission delay, increase transmission redundancy, and improve the reliability of data transmission.
  • the method for determining the initial transmission position of the TB provided in the embodiments of the present application may further include the following steps:
  • the network device can also send enabling signaling to the terminal device, the enabling signaling directly indicates the number of time slots used as the initial transmission position in the first RV in the RV sequence, wherein the enabling signaling is used to indicate the initial transmission position
  • the number of time slots for a location can be one or more.
  • the enable signaling can set a 1-bit indication parameter. When the enable signaling indicates "1", it means that multiple time slots can be used as the initial transmission position. When the enable signaling indicates "0", it means Only one slot can be used as the starting transmission position.
  • Fig. 15 is a schematic flowchart of a method for determining the initial transmission position of a TB provided by an embodiment of the present application, which is executed by a terminal device. As shown in Fig. 15, the method may include but not limited to the following steps:
  • S1502. Determine at least one initial transmission position of TB transmission from the plurality of time slots corresponding to the RV sequence.
  • the authorized CG In the scenario where the authorized CG is configured to support TBoMS, it can also support repeated transmission of TB.
  • the TB after determining the initial transmission position of the TB transmission, the TB can be repeatedly transmitted within the CG period. For example, if the number of retransmissions is 8 times, the TB can be repeatedly transmitted within the CG period. 8 times, each transmission starts based on the determined initial transmission position.
  • the initial transmission position of TB transmission is determined from multiple time slots corresponding to the RV sequence, and the data can be transmitted in time, which shortens the data transmission delay and improves the reliability of the data transmission. And based on the repeated transmission mechanism, the problem of TB loss during transmission can be solved, and the security and integrity of data transmission can be provided.
  • the methods provided in the embodiments of the present application are introduced from the perspectives of the terminal device and the network device respectively.
  • the terminal equipment and the network equipment may include a hardware structure and a software module, and implement the above various functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 16 is a schematic structural diagram of a communication device 1600 provided in an embodiment of the present application.
  • the communication device 1600 shown in FIG. 16 may include a transceiver module 1601 and a processing module 1602 .
  • the transceiver module 1601 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 1601 can realize the sending function and/or the receiving function.
  • the communication device 1600 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device 1600 may be a network device, a device in the network device, or a device that can be matched with the network device.
  • the communication device 1600 may include a transceiver module 1601 and a processing module 1602 . in:
  • the transceiver module 1601 is configured to determine the redundancy version RV sequence used to transmit multiple time slots of the same TB within the authorized CG cycle.
  • the processing module 1602 is configured to determine at least one initial transmission position of the TBoMS from the plurality of time slots corresponding to the RV sequence.
  • processing module 1602 is further configured to: based on the determined initial transmission position, perform repeated transmission on the TB within the CG cycle.
  • processing module 1602 is further configured to: determine the first RV in the RV sequence; and determine at least one time slot from the multiple time slots used for each TB transmission corresponding to the first RV as the initial transmission position.
  • processing module 1602 is further configured to: determine the first time slot used by each TB transmission corresponding to the first RV as the starting position.
  • the processing module 1602 is also configured to: determine the first time slot corresponding to each first RV remaining in the RV sequence except the last first RV as the starting transmission position, wherein the RV sequence only includes The first RV; or, determining the first time slot corresponding to the at least one first RV as the initial transmission position, and the RV sequence includes at least one first RV and at least one other RV.
  • processing module 1602 is further configured to: determine at least one corresponding time slot used as a starting transmission position in the first RV based on the number of time slots occupied by each TB transmission and/or modulation and coding MCS parameters.
  • processing module 1602 is also configured to: determine the position according to the MCS parameter and determine the scaling factor; determine the scaling factor according to the number of time slots and positions occupied by each TB transmission, and determine at least one time slot used as the initial transmission position .
  • processing module 1602 is further configured to: the MCS parameter is negatively correlated with the location determination scaling factor.
  • processing module 1602 is further configured to: when the MCS parameter is smaller than the set threshold, determine that the position determination scaling factor is a first value; or when the MCS parameter is greater than or equal to the set threshold, then determine that the position determination scaling factor is A second value, wherein the second value is smaller than the first value.
  • the transceiver module 1601 is further configured to: receive indication information sent by the network device; determine at least one time slot used as a starting transmission position in the first RV according to the indication information.
  • the transceiver module 1601 is further configured to: obtain enabling signaling; and determine the number of time slots used as initial transmission positions in the first RV according to the enabling signaling.
  • the transceiver module 1601 is also configured to: determine the coded data on each time slot of the data to be transmitted in the first RV; start from the coded data corresponding to the time slot where the initial transmission position is located, and send the remaining coded data to the network device data.
  • the communication device 1600 is a network device: the communication device 1600 may include a transceiver module 1601 and a processing module 1602 . in:
  • the transceiver module 1601 is configured to determine the redundancy version RV sequence used to transmit multiple time slots of the same TB within the authorized CG cycle.
  • the processing module 1602 is configured to determine at least one initial transmission position of TB transmission from the plurality of time slots corresponding to the RV sequence.
  • processing module 1602 is further configured to: based on the determined initial transmission position, perform repeated transmission on the TB within the CG period.
  • processing module 1602 is further configured to: determine the first RV in the RV sequence; and determine at least one time slot as the initial transmission position from the multiple time slots used by each TB transmission corresponding to the first RV.
  • processing module 1602 is further configured to: determine the first time slot used by each TB transmission corresponding to the first RV as the initial transmission position.
  • the processing module 1602 is also configured to: determine the first time slot corresponding to each first RV remaining in the RV sequence except the last first RV as the starting transmission position, wherein the RV sequence only includes The first RV; or, determining the first time slot corresponding to the at least one first RV as the initial transmission position, and the RV sequence includes at least one first RV and at least one other RV.
  • processing module 1602 is further configured to: determine at least one corresponding time slot used as a starting transmission position in the first RV based on the number of time slots occupied by each transmission of the TB and/or the modulation and coding MCS parameters.
  • processing module 1602 is also configured to: determine the position according to the MCS parameter and determine the scaling factor; determine the scaling factor according to the number of time slots and positions occupied by each transmission of the TB, and determine at least one time slot used as the initial transmission position .
  • processing module 1602 is further configured to: the MCS parameter is negatively correlated with the location determination scaling factor.
  • processing module 1602 is further configured to: when the MCS parameter is smaller than the set threshold, determine that the position determination scaling factor is a first value; or when the MCS parameter is greater than or equal to the set threshold, then determine that the position determination scaling factor is A second value, wherein the second value is smaller than the first value.
  • the transceiver module 1601 is further configured to: send indication information to the terminal device, where the indication information is used to indicate at least one time slot in the first RV used as a starting transmission position.
  • the transceiver module 1601 is also configured to: send enabling signaling to the terminal device, wherein the enabling signaling is used to determine that the number of time slots used as the initial transmission position in the first RV is one or more .
  • the transceiving module 1601 is further configured to: receive the coded data corresponding to the initial transmission position at the initial transmission position.
  • FIG. 17 is a schematic structural diagram of another communication device 1700 provided in an embodiment of the present application.
  • the communication device 1700 may be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 1700 may include one or more processors 1701 .
  • the processor 1701 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 1700 may further include one or more memories 1702, on which a computer program 1704 may be stored, and the processor 1701 executes the computer program 1704, so that the communication device 1700 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory 1702 .
  • the communication device 1700 and the memory 1702 can be set separately or integrated together.
  • the communication device 1700 may further include a transceiver 1705 and an antenna 1706 .
  • the transceiver 1705 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1705 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1700 may further include one or more interface circuits 1707 .
  • the interface circuit 1707 is used to receive code instructions and transmit them to the processor 1701 .
  • the processor 1701 runs code instructions to enable the communication device 1700 to execute the methods described in the foregoing method embodiments.
  • the communication device 1700 is a terminal device: the processor 1701 is configured to execute step S202 in FIG. 2 ; execute step S303 in FIG. 3 ; and step S402 in FIG. 4 .
  • the transceiver 1705 is used to execute step S601 in FIG. 6 .
  • the communication device 1700 is a network device: the transceiver 1705 is used to execute step S1002 in FIG. 10 ; and execute step S1103 in FIG. 11 .
  • the processor 1701 is configured to execute step S1201 in FIG. 12 .
  • the processor 1701 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 1701 may store a computer program 1703 , and the computer program 1703 runs on the processor 1701 to enable the communication device 1700 to execute the methods described in the foregoing method embodiments.
  • the computer program 1703 may be solidified in the processor 1701, and in this case, the processor 1701 may be implemented by hardware.
  • the communication device 1700 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiments), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device can be Not limited by Figure 17.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 18 includes a processor 1801 and an interface 1802 .
  • the number of processors 1801 may be one or more, and the number of interfaces 1802 may be more than one.
  • the chip further includes a memory 1803, which is used to store necessary computer programs and data.
  • the embodiment of the present application also provides a system for determining the initial transmission position of a TB.
  • the system includes the communication device as the terminal device and the communication device as the network device in the embodiment in FIG.
  • a communication device as a terminal device and a communication device as a network device are examples of the communication device.
  • the present application also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • the corresponding relationships shown in the tables in this application can be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefined in this application can be understood as defining, predefining, storing, prestoring, prenegotiating, preconfiguring, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种确定TB的起始位置的方法及其装置,可以应用于通信技术领域中,该方法包括:确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列,从RV序列对应多个时隙中,确定TB传输的至少一个起始位置。本申请通过确定起始传输位置,可以将终端设备产生的数据及时传输,缩短了数据传输时延,提高了数据传输的可靠性。

Description

一种确定TB的起始传输位置的方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种确定TB的起始传输位置的方法及其装置。
背景技术
相关技术中,多时隙传输块(TB processing over multipleslots,TBoMS),是指一个传输块(Transport Block,TB)用多个时隙(slot)进行传输,每个slot只传输该TB的部分编码后数据。如果使用配置授权(configured grant,CG)这种方式进行TBoMS传输(repetition),由于一个TB占用多个slot进行传输,这种情况下,需要确定可以用于发起传输的时隙位置。
发明内容
本申请实施例提供一种确定TB的起始传输位置的方法及其装置,通过用于传输同一TB的多个时隙中确定TB传输的起始传输位置,可以将产生的数据及时传输,缩短了数据传输时延,提高了数据传输的可靠性。
第一方面,本申请实施例提供一种确定TB的起始传输位置的方法,由终端设备执行,该方法包括:确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列;从所述RV序列对应多个时隙中,确定所述TBoMS的至少一个起始传输位置。
本申请实施例,可以从多个时隙中确定出TB传输的起始传输位置,可以将终端设备产生的数据及时传输,缩短了数据传输时延,提高了数据传输的可靠性。
在一种实现方式中,基于确定的所述起始传输位置,在所述CG周期内对所述TB进行重复传输。
在一种实现方式中,所述从所述RV序列对应多个时隙中,确定所述TB传输的至少一个起始传输位置,包括:确定所述RV序列中的第一RV;从所述第一RV对应的每次TB传输使用多个时隙中,确定至少一个时隙作为所述起始传输位置。
在一种实现方式中,所述从所述第一RV对应的每次TB传输使用多个时隙中,确定至少一个时隙作为所述起始传输位置,包括:将所述第一RV对应的第一个时隙,确定为所述起始传输位置。
在一种实现方式中,所述从所述第一RV对应的每次TB传输使用多个时隙中,确定至少一个时隙作为所述起始传输位置,包括:将所述RV序列中最后一个所述第一RV之外剩余的每个所述第一RV对应的第一个时隙,确定为所述起始传输位置,其中,所述RV序列仅包括所述第一RV;或者,将所述至少一个第一RV对应的第一个时隙,确定为所述起始传输位置,所述RV序列包括至少一个第一RV和至少一个其他RV。
在一种实现方式中,所述方法还包括:基于每次TB传输占用的时隙个数和/或调制与编码MCS参数,确定所述第一RV中用作所述起始传输位置的至少一个时隙。
在一种实现方式中,所述方法还包括:根据所述MCS参数,确定位置确定缩放因子;根据所述每次TB传输占用的时隙个数和所述位置确定缩放因子,确定用作所述起始传输位 置的至少一个时隙。
在一种实现方式中,所述MCS参数与所述位置确定缩放因子负相关。
在一种实现方式中,所述方法还包括:在所述MCS参数小于设定阈值时,则确定所述位置确定缩放因子为第一数值;或者在所述MCS参数大于或者等于所述设定阈值时,则确定所述位置确定缩放因子为第二数值,其中,所述第二数值小于所述第一数值。
在一种实现方式中,所述方法还包括:接收网络设备发送的指示信息;根据所述指示信息,确定所述第一RV中用作所述起始传输位置的至少一个时隙。
在一种实现方式中,所述方法还包括:获取使能信令;根据所述使能信令,确定所述第一RV中用作所述起始传输位置的时隙个数,其中,所述使能信令用于指示所述个数为1个或多个。
在一种实现方式中,所述方法还包括:确定待传输数据在所述第一RV中每个时隙上的编码数据;从所述起始传输位置所在时隙对应的所述编码数据开始,向网络设备发送剩余的所述编码数据。
第二方面,本申请实施例提供另一种确定TB的起始传输位置的方法,由网络设备执行,该方法包括:确定CG周期内用于同一TB多次传输对应的冗余版本RV序列;从所述RV序列对应多个时隙中,确定所述TB传输的至少一个起始传输位置。
本申请实施例,可以从多个时隙中确定出TB传输的起始传输位置,从而可以使得网络设备可以及时发送或接收终端设备产生的数据,缩短了数据传输时延,提高了数据传输的可靠性。
在一种实现方式中,基于确定的所述起始传输位置,在所述CG周期内对所述TB进行重复传输。
在一种实现方式中,所述从所述RV序列对应多个时隙中,确定所述TB传输的至少一个起始传输位置,包括:确定所述RV序列中的第一RV;从所述第一RV对应的每次TB传输使用的多个时隙中,确定至少一个时隙作为所述起始传输位置。
在一种实现方式中,所述从所述第一RV对应的每次TB传输使用多个时隙中,确定至少一个时隙作为所述起始传输位置,包括:将所述第一RV对应的第一个时隙,确定为所述起始传输位置。
在一种实现方式中,所述从所述第一RV对应的每次TB传输使用多个时隙中,确定至少一个时隙作为所述起始传输位置,包括:将所述RV序列中最后一个所述第一RV之外剩余的每个所述第一RV对应的第一个时隙,确定为所述起始传输位置,其中,所述RV序列仅包括所述第一RV;或者,将所述至少一个第一RV对应的第一个时隙,确定为所述起始传输位置,所述RV序列包括至少一个第一RV和至少一个其他RV。
在一种实现方式中,所述方法还包括:基于每次TB传输占用的时隙个数和/或调制与编码MCS参数,确定所述第一RV中对应的用作所述起始传输位置的至少一个时隙。
在一种实现方式中,所述方法还包括:根据所述MCS参数,确定位置确定缩放因子;根据所述每次TB传输占用的时隙个数和所述位置确定缩放因子,确定用作所述起始传输位置的至少一个时隙。
在一种实现方式中,所述MCS参数与所述位置确定缩放因子负相关。
在一种实现方式中,所述方法还包括:在所述MCS参数小于设定阈值时,则确定所述位置确定缩放因子为第一数值;或者在所述MCS参数大于或者等于所述设定阈值时,则确定所述位置确定缩放因子为第二数值,其中,所述第一数值小于所述第二数值。
在一种实现方式中,所述方法还包括:向终端设备发送指示信息,其中,所述指示信息用于指示所述第一RV中用作所述起始传输位置的至少一个时隙。
在一种实现方式中,所述方法还包括:向终端设备发送使能信令,其中,所述使能信令用于指示所述第一RV中用作所述起始传输位置的时隙个数为1个或多个。
在一种实现方式中,所述方法还包括:在所述起始传输位置上接收所述终端设备发送的与所述起始传输位置对应的编码数据。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
收发模块,用于确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
处理模块,用于从所述RV序列对应多个时隙中,确定所述TB传输的至少一个起始传输位置。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
收发模块,用于确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
处理模块,用于从所述RV序列对应多个时隙中,确定所述TB传输的至少一个起始传输位置。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调 用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行 上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种确定TB的起始传输位置的方法的示意图;
图3是本申请实施例提供的另一种确定TB的起始传输位置的方法的示意图;
图4是本申请实施例提供的一种确定TB的至少一个起始传输位置的示意图;
图5是本申请实施例提供的一种确定TB的起始传输位置的的示意图;
图6是本申请实施例提供的一种确定多个时隙作为起始传输位置的示意图;
图7是本申请实施例提供的一种对TB进行重复传输的示意图;
图8是本申请实施例提供的一种从起始传输位置的编码数据的示意图;
图9是本申请实施例提供的一种起始传输位置的编码数据的示意图;
图10是本申请实施例提供的一种确定TB的起始传输位置的方法的示意图;
图11是本申请实施例提供的一种确定TB的至少一个起始传输位置的示意图;
图12是本申请实施例提供的另一种确定TB的至少一个起始传输位置的示意图;
图13是本申请实施例提供的一种确定TB的起始传输位置的的示意图;
图14是本申请实施例提供的一种网络设备接收终端设备发送的编码数据的示意图;
图15是本申请实施例提供的一种对TB进行重复传输的示意图;
图16是本申请实施例提供的一种通信装置的结构示意图;
图17是本申请实施例提供的另一种通信装置的结构示意图;
图18是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本申请涉及的术语。
1、RV(Redundancy Version),即冗余版本,用于实现增量冗余(Incremental redundancy,IR)混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)传输,即将编码器生成的冗余比特分成若干组,每个RV定义一个传输开始点,首次传送和各次HARQ重传分别使用不同的RV,以实现冗余比特的逐步积累,完成增量冗余HARQ操作。
2、MCS(Modulation and Coding Scheme),即调制与编码。MCS将所关注的影响通讯速率的因素作为表的列,将MCS索引作为行,形成一张速率表,每一个MCS索引其实对应了一组参数下的物理传输速率。
3、配置授权CG(configured grant,CG),为半静态调度。半静态调度是指:基站通过RRC信令为终端配置一定的资源周期,并在每个周期内有相同的时频域资源用于数据传 输。该方式无需动态调度即可完成每次数据传输,可以降低调度信令开销,有利于降低传输时延。CG周期的可选范围包括:1、2、4、5、8、10、16、20、32、40、64、80、160、256、320、512、640、1024、1280、2560、5120个时隙(slot)。
为了更好的理解本申请实施例公开的一种确定TB的起始传输位置的方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
可以理解的是,本申请实施例中的多个方案,既可以单独被实施,也可以组合在一起被实施,本申请并不对此作限定。
下面结合附图对本申请所提供的一种确定TB的起始传输位置的方法及其装置进行详 细地介绍。
请参见图2,图2是本申请实施例提供的一种确定TB的起始传输位置的方法的流程示意图,由终端设备执行,如图2所示,该方法可以包括但不限于如下步骤:
S201,确定CG周期内用于传输同一TB块多个时隙的冗余版本RV序列。
为了避免通信系统中各种终端设备的传输之间发生冲突,终端设备可以接收网络设备对各种终端设备进行的传输的调度。在通信系统中,终端设备和网络设备可以在与信道的某些时间和频率资源相对应的时隙中进行通信,每个时隙可以包括多个符号周期并且与带宽相对应。每个时隙可以包括用于传输控制信息的控制信道和用于发送上行链路和/或下行链路数据的共享数据信道。网络设备可以在时隙的控制信道上发送调度授权,调度授权将时隙的一些或全部共享数据信道分配给终端设备。终端设备可以根据调度授权,使用共享数据信道来发送或接收数据。
当终端设备接收到网络设备发送的无线资源控制(Radio Resource Control,RRC)信令之后,可以从中解析出配置授权信息,根据该配置授权信息确定与配置授权相关的配置参数,并在终端设备处于多子带工作模式时使用配置参数。其中,配置授权信息中可以包括配置调度无线网络临时标识、下行配置授权配置和/或上行配置授权配置。配置调度无线网络临时标识是用于配置授权调度方式的标识,下行配置授权配置是用于配置采用配置授权方式的下行传输,上行配置授权配置是用于配置采用配置授权方式的上行传输。
配置授权(configured grant,CG)可以支持多时隙传输同一个TB块,即(TB processing over multipleslots,TBoMS),也就是说将CG与多时隙传输相结合。终端设备可以接收网络设备发送的CG周期内用于传输同一TB块多个时隙的冗余版本(Redundancy Version,RV)序列,或者终端设备可以基于协议约定确定CG周期内用于传输同一TB块多个时隙的RV序列。
其中,RV序列可以是发送传输块的至少一个冗余版本的顺序。其中,TB是媒体介质访问控制(Medium Access Control,MAC)层交付到物理层待传的数据,终端设备对TB用多个时隙(slot)进行传输,每个slot只传输该TB的部分编码后数据。
S202,从RV序列对应多个时隙中,确定TB传输的至少一个起始传输位置。
在一个半静态传输周期内,RV序列对应多个时隙,多个时隙可以用相同的冗余版本,也可以用不同的冗余版本,可以基于网络设备的配置确定,也可以通过协议约定确定。示例性的,RV序列可以是{RV#0,RV#0,RV#0,RV#0},或者{RV#0,RV#3,RV#0,RV#3},或者{RV#0,RV#2,RV#3,RV#1}等。此处RV序列仅为示例,不能作为限制本申请的条件。
需要说明的是,在用多个时隙传输同一TB即TBoMS的场景下,每个时隙占用相同的时域资源,频域资源长度相等,频域资源位置可能相同或不同。其中,当开启跳频时,频域资源位置不同;当不开启跳频时,频域资源位置相同。
进一步的,当终端设备有数据产生时,为了能够及时进行数据传输,缩短传输时延,终端设备可以在非第1个时隙上开始进行数据重传,可以开启数据传输的时隙被成为初始传输位置,本申请实施例中可以从RV序列对应多个时隙中,确定TB传输的至少一个起始传输位置。在一些实现中,TB传输对应的起始传输位置可以为一个,也可以为多个;在一 些实现中,TB传输对应的起始传输位置可以为第一个,也可以为非第一个;在一些实现中,TB传输对应的起始传输位置可以为特定冗余版本包括的时隙,也可以为每个冗余版本包括的时隙。其中,当TB传输对应的起始传输位置为多个时,可以为前几个,也可以为后几个。
本申请实施例提出了一种确定TB的起始传输位置的方法,通过在配置授权CG支持TBoMS传输的场景下,确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列,从RV序列对应多个时隙中,确定TB传输的至少一个起始传输位置。本申请实施例,在用于传输同一TB的多个时隙中通过确定出TB传输的起始传输位置,可以将终端设备产生的数据及时传输,缩短了数据传输时延,提高了数据传输的可靠性。
图3是本申请实施例提供的一种确定TB的起始传输位置的方法的流程示意图,由终端设备执行,如图3所示,可以包括以下步骤:
S301,确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
关于步骤S301的实现方式,可采用本申请中各实施例中的实现方式,在此不再进行赘述。
S302,确定RV序列中的第一RV。
根据上述获取的RV序列,确定任一冗余版本为第一RV。示例性的,可将RV序列中RV#0的版本作为第一RV。可选地,也可将RV序列中其他冗余版本作为第一RV。
S303,从第一RV对应的每次TB传输使用多个时隙中,确定至少一个时隙作为起始传输位置。
作为一种可实现的方式,从RV序列中第一RV对应的每次TB传输使用多个时隙中,确定至少一个时隙作为起始传输位置。例如当确定RV#0为第一RV时,RV#0对应的可以为4个时隙,可以将RV#0的4个时隙中的第1个时隙确定为起始传输位置;或者,可以将RV#0的4个时隙中的前2个时隙确定为起始传输位置;或者,可以将RV#0的4个时隙中的4个时隙全部确定为起始传输位置。也就是说,在CG的TBoMS场景下,RV序列中每个RV#0对应的每个slot都可以作为起始传输时隙。
作为另一种可实现的方式,终端设备可以接收网络设备发送的指示信息,根据指示信息,确定第一RV中用作起始传输位置的一个时隙。举例说明,终端设备可以接收网络设备发送的指示信息,指示信息中可以直接指示用作起始传输位置的时隙,比如说指示信息可直接指示将RV序列中第一个RV#0对应的第一个时隙作为起始传输位置。
作为另一种可实现的方式,终端设备可以接收网络设备发送的指示信息,根据指示信息,确定第一RV中用作起始传输位置的多个时隙。举例说明,终端设备可以接收网络设备发送的指示信息,指示信息中可以直接指示用作起始传输位置的时隙,比如说指示信息可直接指示将RV序列中第一个RV#0对应的前三个时隙作为起始传输位置。
本申请实施例通过确定起始传输位置,可以将终端设备产生的数据及时传输,缩短了数据传输时延,提高了数据传输的可靠性。
图4是本申请实施例提供的一种确定TB的起始传输位置的方法的流程示意图,由终端设备执行,如图4所示,当确定一个时隙作为起始传输位置时,从RV序列对应多个时隙中,确定TBoMS的一个起始传输位置,可以包括以下步骤:
S401,确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
关于步骤S401的实现方式,可采用本申请中各实施例中的实现方式,在此不再进行赘述。
S402,将RV序列中最后一个第一RV之外剩余的每个第一RV对应的第一个时隙,确定为起始传输位置,其中,RV序列仅包括第一RV。
示例性的,可将RV序列中RV#0的版本作为第一RV,响应于RV序列为仅包括第一RV,即RV序列={RV#0,RV#0,RV#0,RV#0},即RV序列中所有的RV都为RV#0时,将RV序列中最后一个RV#0除外,剩余的每个RV#0对应的第一个时隙,确定为起始传输位置。即终端设备只可以在RV序列中前三个RV#0对应的第一个时隙上发起传输,而不能在RV序列中最后一个RV#0对应的所有时隙上发起传输,即RV序列中最后一个第一RV之外剩余的每个第一RV对应的第一个时隙,确定为起始传输位置。
S403,将至少一个第一RV对应的第一个时隙,确定为起始传输位置,RV序列包括至少一个第一RV和至少一个其他RV。
示例性的,可将RV序列中RV#0的版本作为第一RV,响应于获得的RV序列中不仅包括第一RV,还包括其他RV时,将每个第一RV对应的第一个时隙,确定为起始传输位置。其中,第一RV可以为一个或多个。
作为一种可实现的方式,若RV序列={RV#0,RV#3,RV#0,RV#3}时,即RV序列中不仅包括多个第一RV,还包括其他RV时,终端设备只可以在RV#0对应的第一个时隙上发起传输,即将RV#0对应的第一个时隙确定为起始传输位置。如图5所示,RV序列={RV#0,RV#3,RV#0,RV#3},当在第一个RV#0对应的第二个时隙之前数据生成,将第二个RV#0对应的第一个时隙确定为起始传输位置,在第二个RV#0对应的第一个时隙开始数据传输。
作为另一种可实现的方式,若RV序列={RV#0,RV#2,RV#3,RV#1}时,即RV序列中不仅包括一个第一RV,还包括多个其他RV时,终端设备只可以在第一个RV#0对应的第一个时隙上发起传输,即将第一个RV#0对应的第一个时隙确定为起始传输位置。
本申请实施例,从RV序列对应的多个时隙中,确定出TB传输的起始传输位置,可以将终端设备产生的数据及时传输,缩短了数据传输时延,提高了数据传输的可靠性。
图6是本申请实施例提供的一种确定TB的起始传输位置的方法的流程示意图,由终端设备执行,如图6所示,可以包括以下步骤:
S601,确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
关于步骤S601,上述实施例已做具体介绍,在此不再进行赘述。
S602,基于每次TB传输占用的时隙个数和/或调制与编码MCS参数,确定第一RV中用作起始传输位置的至少一个时隙。
作为一种可能的实现方式,根据调制与编码MCS参数,确定位置确定缩放因子,根据每次TB传输占用的时隙个数和位置确定缩放因子,确定用作起始传输位置的至少一个时隙。
调制与编码(Modulation and Coding Scheme,MCS)将所关注的影响通讯速率的因素作为表的列,将MCS索引作为行,形成一张速率表,每一个MCS索引其实对应了一组参数下的物理传输速率。
可选地,基于网络指示或者协议约定确定MCS参数,可以基于该MCS参数确定位置确定缩放因子,其中,将位置确定缩放因子记为1/P。其中,MCS参数与位置确定缩放因子负相关,即MCS参数越大,位置确定缩放因子越小。需要说明的是,若位置确定缩放因子记为P,此时MCS与位置确定缩放因子正相关。
在一些实现中,对MCS参数设定一个阈值,当MCS参数小于设定阈值时,则确定位置确定缩放因子为第一数值;在MCS参数大于或者等于设定阈值时,则确定位置确定缩放因子为第二数值。举例说明,基于公式:第1~N*1/P个时隙确定起始传输位置时,需要说明的是,若存在位置确定缩放因子为P,由于MCS与P正相关,此时第一数值小于第二数值。若存在位置确定缩放因子为1/P,由于MCS与1/P负相关,此时第一数值大于第二数值。
举例说明,在上述公式的基础上,位置确定缩放因子为P,设定阈值设置为k,第一数值设定为4,第二数值设定为8。当MCS参数小于k时,则确定位置确定缩放因子为4;在MCS参数大于或者等于k时,则确定位置确定缩放因子为8。
在一些实现中,对MCS参数设定一个阈值,当MCS参数小于设定阈值时,则确定位置确定缩放因子为第一数值;在MCS参数大于或者等于设定阈值时,则不启动位置确定缩放因子,直接将第一RV对应的第一个时隙作为起始传输位置。举例说明,可将设定阈值设置为k,第一数值设定为4。当MCS参数小于k时,则确定位置确定缩放因子为4;在MCS参数大于或者等于k时,则不启动位置确定缩放因子,直接将第一RV对应的第一个时隙作为起始传输位置。
在一些实现中,可以预先设置MCS参数与位置确定缩放因子之间的映射关系,在获取到MCS参数后,可以查询该映射关系,确定出位置确定缩放因子。
除上述根据MCS参数确定位置确定缩放因子之外,还可以直接基于网络指示或者协议约定确定位置确定缩放因子。比如说,协议可约定位置确定缩放因子为4。
获取每次TB传输占用的时隙个数,将每次TB传输占用的时隙个数记为N。根据每次TB传输占用的时隙个数和位置确定缩放因子,确定用作起始传输位置的一个时隙。举例说明,可设定起始传输位置为第1~N*1/P+1个时隙,若位置确定缩放因子P=4,TBoMS一次传输占用的时隙个数N=4时,起始传输位置为第1~2个时隙;若位置确定缩放因子P=4,TB一次传输占用的时隙个数N=8时,起始传输位置为第1~3个时隙。可以想到的是,当缩放因子P大于一次TB传输占用的slot个数N时,不启用缩放因子,直接将第一RV对应的第一个slot作为起始传输位置。
本申请实施例通过根据TB一次传输占用的时隙个数和MCS参数确定缩放因子,确定用作起始传输位置的至少一个时隙,可以将终端设备产生的数据及时传输,缩短了数据传输时延,增加了传输冗余,提高了数据传输的可靠性。
图7是本申请实施例提供的一种确定TB的起始传输位置的方法的流程示意图,由终端设备执行,如图7所示,可以包括以下步骤:
S701,确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
S702,从RV序列对应多个时隙中,确定TB传输的至少一个起始传输位置。
关于步骤S701~S702的实现方式,可采用本申请中各实施例中的实现方式,在此不再进行赘述。
S703,基于确定出的起始传输位置,在CG周期内对TB进行重复传输。
在配置授权CG支持TBoMS的场景下,还可以支持对TB的重复传输。本申请实施例中,在确定出TB传输的起始传输位置后,可以在CG周期内对该TB进行多次重复传输,例如,重传次数为8次,则CG周期内对该TB重复传输8次,每次传输时都是基于确定的起始传输位置开始传输。
本申请实施例,从RV序列对应的多个时隙中,确定出TB传输的起始传输位置,可以将终端设备产生的数据及时传输,缩短了数据传输时延,提高了数据传输的可靠性。并且基于重复传输机制,可以解决TB在传输中出现丢失的问题,提供数据传输的安全性和完整性。
图8是本申请实施例提供的一种确定TB的起始传输位置的方法的流程示意图,由终端设备执行,如图8所示,该方法还可以包括以下步骤:
S801,确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
S802,从RV序列对应多个时隙中,确定TB传输的至少一个起始传输位置。
关于步骤S801~S802的实现方式,可采用本申请中各实施例中的实现方式,在此不再进行赘述。
S803,确定待传输数据在第一RV中每个时隙上的编码数据。
示例性的,若TB传输每次占用第一RV中4个时隙,获取待传输数据在第一RV中每个时隙上的编码数据,也就是说,待传输数据的编码数据被分配到多个时隙上进行传输,即每个时隙对应待传输数据的部分编码数据。
S804,从起始传输位置所在时隙对应的编码数据开始,向网络设备发送剩余的编码数据。
图9为终端设备向网络设备发送编码数据的示意图,如图9所示,若在第一RV中第一个时隙中编码数据生成,终端设备可在第一RV中第二个时隙上开始进行传输,第二个时隙传输的也仍然是与其时隙位置对应的编码后数据。举例说明,若终端设备所生成的待传输数据在第一RV中每个时隙上的编码数据分别为12、34、56、78,终端设备在第一RV中第二个时隙上开始进行传输时,直接按照时隙顺序传输34、56、78,而不传输第一RV中第一个时隙对应的12。
本申请实施例为了避免给网络设备接收数据造成混淆,且缩短了数据传输时延,增加了传输冗余,提高了数据传输的可靠性。
在上述实施例的基础之上,本申请实施例中提供的确定TB的起始传输位置的方法还可以包括以下步骤:
终端设备还可以获取使能信令,通过该使能信令直接确定RV序列中第一RV中用作起始传输位置的时隙个数,其中,使能信令用于确定起始传输位置的时隙个数可以为1个或多个。比如说,使能信令可以设置1比特指示参数,当使能信令指示“1”时,表示可以使用多个时隙作为起始传输位置,当使能信令指示“0“时,表示只能使用一个时隙作为起始传输位置。
图10是本申请实施例提供的一种确定TB的起始传输位置的方法的流程示意图,由网络设备执行,如图10所示,该方法可以包括但不限于如下步骤:
S1001,确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
在CG支持TBoMS传输的场景下,网络设备可以配置CG周期内用于传输同一TB的多个时隙的RV序列,或者基于协议约定确定CG周期内的RV序列。其中,RV序列可以是发送传输块的至少一个冗余版本的顺序。可选地,网络设备配置CG周期内用于传输同一TB的多个时隙的RV序列后,可以发给终端设备,以使得终端设备可以从RV序列对应的多个时隙中,确定出TB传输的起始传输位置。
S1002,从RV序列对应多个时隙中,确定TB传输的至少一个起始传输位置。
在一个半静态传输周期内,RV序列对应多个时隙,多个时隙可以用相同的冗余版本,也可以用不同的冗余版本,可以基于网络设备的配置确定,也可以通过协议约定确定。示例性的,RV序列可以是{RV#0,RV#0,RV#0,RV#0},或者{RV#0,RV#3,RV#0,RV#3},或者{RV#0,RV#2,RV#3,RV#1}等。此处RV序列仅为示例,不能作为限制本申请的条件。
需要说明的是,在TBoMS用于盲重传的时隙上,每个时隙占用相同的时域资源,频域资源长度相等,频域资源位置可能相同或不同。其中,当开启跳频时,频域资源位置不同;当不开启跳频时,频域资源位置相同。
进一步的,网络设备需要接收终端设备所发送过来的数据,当终端设备有数据产生时,为了能够及时进行数据传输,缩短传输时延,终端设备可以在非第1个时隙上开始进行数据重传,可以开启数据传输的时隙被成为初始传输位置,本申请实施例中可以从RV序列对应多个时隙中,确定TB传输的至少一个起始传输位置。在一些实现中,TB传输对应的起始传输位置可以为一个,也可以为多个;在一些实现中,TB传输对应的起始传输位置可以为第一个,也可以为非第一个;在一些实现中,TB传输对应的起始传输位置可以为特定冗余版本包括的时隙,也可以为每个冗余版本包括的时隙。其中,当TB传输对应的起始传输位置为多个时,可以为前几个,也可以为后几个。
本申请实施例提出了一种确定TB的起始传输位置的方法,在CG支持TBoMS传输的场景下,确定CG周期内的冗余版本RV序列,从RV序列对应多个时隙中,确定TBoMS的至少一个起始传输位置。本申请实施例通过确定起始传输位置,网络设备可及时发送或接收终端设备产生的数据,缩短了数据传输时延,提高了数据传输的可靠性。
图11是本申请实施例提供的一种确定TB的起始传输位置的方法的流程示意图,由网络设备执行,如图11所示,该方法可以包括但不限于如下步骤:
S1101,确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
关于步骤S1101的实现方式,可采用本申请中各实施例中的实现方式,在此不再进行赘述。
S1102,确定RV序列中的第一RV。
根据上述获取的RV序列,确定任一冗余版本为第一RV。示例性的,可将RV序列中RV#0的版本作为第一RV。可选地,也可将RV序列中其他冗余版本作为第一RV。
S1103,从第一RV对应的每次TB传输使用多个时隙中,确定至少一个时隙作为起始传输位置。
作为一种可实现的方式,从RV序列中第一RV对应的每次TB传输使用多个时隙中, 确定至少一个时隙作为起始传输位置。例如当确定RV#0为第一RV时,RV#0对应的可以为4个时隙,可以将RV#0的4个时隙中的第1个时隙确定为起始传输位置;或者,可以将RV#0的4个时隙中的前2个时隙确定为起始传输位置;或者,可以将RV#0的4个时隙中的4个时隙全部确定为起始传输位置。
作为另一种可实现的方式,网络设备可以向终端设备发送指示信息,根据指示信息,确定第一RV中用作起始传输位置的一个时隙。举例说明,网络设备可以向终端设备发送指示信息,指示信息中可以直接指示用作起始传输位置的时隙,比如说指示信息可直接指示将RV序列中第一个RV#0对应的第一个时隙作为起始传输位置。
作为另一种可实现的方式,网络设备可以向终端设备发送指示信息,根据指示信息,确定第一RV中用作起始传输位置的多个时隙。举例说明,网络设备可以向终端设备发送指示信息,指示信息中可以直接指示用作起始传输位置的时隙,比如说指示信息可直接指示将RV序列中第一个RV#0对应的前三个时隙作为起始传输位置。
本申请实施例通过确定起始传输位置,网络设备可及时接收终端设备产生的数据,缩短了数据传输时延,提高了数据传输的可靠性。
图12是本申请实施例提供的一种确定TB的起始传输位置的方法的流程示意图,由网络设备执行,如图12所示,该方法可以包括但不限于如下步骤:
S1201,确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
关于步骤S1201的实现方式,可采用本申请中各实施例中的实现方式,在此不再进行赘述。
S1202,将RV序列中最后一个第一RV之外剩余的每个第一RV对应的第一个时隙,确定为起始传输位置,其中,RV序列仅包括第一RV。
示例性的,可将RV序列中RV#0的版本作为第一RV,响应于RV序列为仅包括第一RV,即RV序列={RV#0,RV#0,RV#0,RV#0},即RV序列中所有的RV都为RV#0时,将RV序列中最后一个RV#0除外,剩余的每个RV#0对应的第一个时隙,确定为起始传输位置。即网络设备可接收终端设备在RV序列中前三个RV#0对应的第一个时隙上发起传输,终端设备不能在RV序列中最后一个RV#0对应的所有时隙上发起传输,即RV序列中最后一个第一RV之外剩余的每个第一RV对应的第一个时隙,确定为起始传输位置。
S1203,将至少一个第一RV对应的第一个时隙,确定为起始传输位置,RV序列包括至少一个第一RV和至少一个其他RV。
示例性的,可将RV序列中RV#0的版本作为第一RV,响应于获得的RV序列中不仅包括第一RV,还包括其他RV时,将每个第一RV对应的第一个时隙,确定为起始传输位置。其中,第一RV可以为一个或多个。
作为一种可实现的方式,若RV序列={RV#0,RV#3,RV#0,RV#3}时,即RV序列中不仅包括多个第一RV,还包括其他RV时,网络设备可接收终端设备在RV#0对应的第一个时隙上发起传输,即将RV#0对应的第一个时隙确定为起始传输位置。
作为另一种可实现的方式,若RV序列={RV#0,RV#2,RV#3,RV#1}时,即RV序列中不仅包括一个第一RV,还包括多个其他RV时,网络设备可接收终端设备在第一个RV#0对应的第一个时隙上发起传输,即将第一个RV#0对应的第一个时隙确定为起始传输位置。
本申请实施例通过确定起始传输位置,网络设备可及时接收终端设备产生的数据,缩短了数据传输时延,提高了数据传输的可靠性。
图13是本申请实施例提供的一种确定TB的起始传输位置的方法的流程示意图,由网络设备执行,如图13所示,该方法可以包括但不限于如下步骤:
S1301,确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
关于步骤S1301的实现方式,可采用本申请中各实施例中的实现方式,在此不再进行赘述。
S1302,基于每次TB传输占用的时隙个数和/或调制与编码MCS参数,确定第一RV中用作起始传输位置的至少一个时隙。
作为一种可能的实现方式,根据调制与编码MCS参数,确定位置确定缩放因子,根据TBoMS一次传输占用的时隙个数和位置确定缩放因子,确定用作起始传输位置的至少一个时隙。
调制与编码(Modulation and Coding Scheme,MCS)将所关注的影响通讯速率的因素作为表的列,将MCS索引作为行,形成一张速率表,每一个MCS索引其实对应了一组参数下的物理传输速率。
可选地,基于网络指示或者协议约定确定MCS参数,可以基于该MCS参数确定位置确定缩放因子,其中,将位置确定缩放因子记为1/P。其中,MCS参数与位置确定缩放因子负相关,即MCS参数越大,位置确定缩放因子越小。需要说明的是,若位置确定缩放因子记为P,此时MCS与位置确定缩放因子正相关。
在一些实现中,对MCS参数设定一个阈值,当MCS参数小于设定阈值时,则确定位置确定缩放因子为第一数值;在MCS参数大于或者等于设定阈值时,则确定位置确定缩放因子为第二数值。举例说明,基于公式:第1~N*1/P个时隙确定起始传输位置时,需要说明的是,若存在位置确定缩放因子为P,由于MCS与P正相关,此时第一数值小于第二数值。若存在位置确定缩放因子为1/P,由于MCS与1/P负相关,此时第一数值大于第二数值。
举例说明,在上述公式的基础上,位置确定缩放因子为P,设定阈值设置为k,第一数值设定为4,第二数值设定为8。当MCS参数小于k时,则确定位置确定缩放因子为4;在MCS参数大于或者等于k时,则确定位置确定缩放因子为8。
在一些实现中,对MCS参数设定一个阈值,当MCS参数小于设定阈值时,则确定位置确定缩放因子为第一数值;在MCS参数大于或者等于设定阈值时,则不启动位置确定缩放因子,直接将第一RV对应的第一个时隙作为起始传输位置。举例说明,可将设定阈值设置为k,第一数值设定为4。当MCS参数小于k时,则确定位置确定缩放因子为4;在MCS参数大于或者等于k时,则不启动位置确定缩放因子,直接将第一RV对应的第一个时隙作为起始传输位置。
在一些实现中,可以预先设置MCS参数与位置确定缩放因子之间的映射关系,在获取到MCS参数后,可以查询该映射关系,确定出位置确定缩放因子。
除上述根据MCS参数确定位置确定缩放因子之外,还可以直接基于网络指示或者协议约定确定位置确定缩放因子。比如说,协议可约定位置确定缩放因子为4。
获取每次TB传输占用的时隙个数,将每次TB传输占用的时隙个数记为N。根据每次 TB传输占用的时隙个数和位置确定缩放因子,确定用作起始传输位置的一个时隙。举例说明,可设定起始传输位置为第1~N*1/P+1个时隙,若位置确定缩放因子P=4,每次TB传输占用的时隙个数N=4时,起始传输位置为第1~2个时隙;若位置确定缩放因子P=4,每次TB传输占用的时隙个数N=8时,起始传输位置为第1~3个时隙。可以想到的是,当缩放因子P大于一次TB传输占用的时隙个数N时,不启用缩放因子,直接将第一RV对应的第一个时隙作为起始传输位置。
本申请实施例通过根据TBoMS一次传输占用的时隙个数和MCS参数确定缩放因子,确定用作起始传输位置的至少一个时隙,网络设备可及时接收终端设备产生的数据,缩短了数据传输时延,提高了数据传输的可靠性。
图14是本申请实施例提供的一种确定TB的起始传输位置的方法的流程示意图,由网络设备执行,如图14所示,该方法可以包括但不限于如下步骤:
S1401,确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
S1402,从RV序列对应多个时隙中,确定TB传输的至少一个起始传输位置。
关于步骤S1401~S1402的实现方式,可采用本申请中各实施例中的实现方式,在此不再进行赘述。
S1403,在起始传输位置上接收与起始传输位置对应的编码数据。
示例性的,若TBoMS传输每次占用第一RV中4个时隙,确定终端设备所生成的待传输数据在第一RV中每个时隙上的编码数据。
若在第一RV中第一个时隙中编码数据生成,网络设备可接收终端设备在第一RV中第二个时隙上开始进行传输的数据,第二个时隙传输的也仍然是与其时隙位置对应的编码后数据。举例说明,若终端设备所生成的待传输数据在第一RV中每个时隙上的编码数据分别为12、34、56、78,终端设备在第一RV中第二个时隙上开始进行传输时,直接按照时隙顺序传输34、56、78,而不传输第一RV中第一个时隙对应的12,网络设备可接收终端设备在第一RV中第二个时隙上开始进行传输时按照时隙顺序传输的34、56、78。
本申请实施例为了避免给网络设备接收数据造成混淆,网络设备可及时接收终端设备产生的数据,且缩短了数据传输时延,增加了传输冗余,提高了数据传输的可靠性。
在上述实施例的基础之上,本申请实施例中提供的确定TB的起始传输位置的方法还可以包括以下步骤:
网络设备还可以向终端设备发送使能信令,使能信令直接指示RV序列中第一RV中用作起始传输位置的时隙个数,其中,使能信令用于指示起始传输位置的时隙个数可以为1个或多个。比如说,使能信令可以设置1比特指示参数,当使能信令指示“1”时,表示可以使用多个时隙作为起始传输位置,当使能信令指示“0“时,表示只能使用一个时隙作为起始传输位置。
图15是本申请实施例提供的一种确定TB的起始传输位置的方法的流程示意图,由终端设备执行,如图15所示,该方法可以包括但不限于如下步骤:
S1501,确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
S1502,从RV序列对应多个时隙中,确定TB传输的至少一个起始传输位置。
关于步骤S1501~S1502的实现方式,可采用本申请中各实施例中的实现方式,在此不 再进行赘述。
S1503,基于确定出的起始传输位置,在CG周期内对TB进行重复传输。
在配置授权CG支持TBoMS的场景下,还可以支持对TB的重复传输。本申请实施例中,在确定出TB传输的起始传输位置后,可以在CG周期内对该TB进行多次重复传输,例如,重传次数为8次,则CG周期内对该TB重复传输8次,每次传输时都是基于确定的起始传输位置开始传输。
本申请实施例,从RV序列对应的多个时隙中,确定出TB传输的起始传输位置,可以将数据及时传输,缩短了数据传输时延,提高了数据传输的可靠性。并且基于重复传输机制,可以解决TB在传输中出现丢失的问题,提供数据传输的安全性和完整性。
上述本申请提供的实施例中,分别从终端设备、网络设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备、网络设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图16,为本申请实施例提供的一种通信装置1600的结构示意图。图16所示的通信装置1600可包括收发模块1601和处理模块1602。收发模块1601可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1601可以实现发送功能和/或接收功能。
通信装置1600可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置1600可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置1600为终端设备时,通信装置1600可包括收发模块1601和处理模块1602。其中:
收发模块1601,用于确定配置授权CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
处理模块1602,用于从RV序列对应多个时隙中,确定TBoMS的至少一个起始传输位置。
进一步地,处理模块1602,还用于:基于确定的起始传输位置,在CG周期内对TB进行重复传输。
进一步地,处理模块1602,还用于:确定RV序列中的第一RV;从第一RV对应的每次TB传输使用的多个时隙中,确定至少一个时隙作为起始传输位置。
进一步地,处理模块1602,还用于:将第一RV对应的每次TB传输使用的第一个时隙,确定为起始位置。
进一步地,处理模块1602,还用于:将RV序列中最后一个第一RV之外剩余的每个第一RV对应的第一个时隙,确定为起始传输位置,其中,RV序列仅包括第一RV;或者,将至少一个第一RV对应的第一个时隙,确定为起始传输位置,RV序列包括至少一个第一RV和至少一个其他RV。
进一步地,处理模块1602,还用于:基于每次TB传输占用的时隙个数和/或调制与编码MCS参数,确定第一RV中对应的用作起始传输位置的至少一个时隙。
进一步地,处理模块1602,还用于:根据MCS参数,确定位置确定缩放因子;根据每次TB传输占用的时隙个数和位置确定缩放因子,确定用作起始传输位置的至少一个时隙。
进一步地,处理模块1602,还用于:MCS参数与位置确定缩放因子负相关。
进一步地,处理模块1602,还用于:在MCS参数小于设定阈值时,则确定位置确定缩放因子为第一数值;或者在MCS参数大于或者等于设定阈值时,则确定位置确定缩放因子为第二数值,其中,第二数值小于第一数值。
进一步地,收发模块1601,还用于:接收网络设备发送的指示信息;根据指示信息,确定第一RV中用作起始传输位置的至少一个时隙。
进一步地,收发模块1601,还用于:获取使能信令;根据使能信令,确定第一RV中用作起始传输位置的时隙个数。
进一步地,收发模块1601,还用于:确定待传输数据在第一RV中每个时隙上的编码数据;从起始传输位置所在时隙对应的编码数据开始,向网络设备发送剩余的编码数据。
通信装置1600为网络设备:通信装置1600可包括收发模块1601和处理模块1602。其中:
收发模块1601,用于确定配置授权CG周期内用于传输同一TB的多个时隙的冗余版本RV序列。
处理模块1602,用于从RV序列对应多个时隙中,确定TB传输的至少一个起始传输位置。
进一步地,处理模块1602,还用于:基于确定的起始传输位置,在CG周期内对TB进行重复传输。
进一步地,处理模块1602,还用于:确定RV序列中的第一RV;从第一RV对应的每次TB传输使用多个时隙中,确定至少一个时隙作为起始传输位置。
进一步地,处理模块1602,还用于:将第一RV对应的每次TB传输使用的第一个时隙,确定为起始传输位置。
进一步地,处理模块1602,还用于:将RV序列中最后一个第一RV之外剩余的每个第一RV对应的第一个时隙,确定为起始传输位置,其中,RV序列仅包括第一RV;或者,将至少一个第一RV对应的第一个时隙,确定为起始传输位置,RV序列包括至少一个第一RV和至少一个其他RV。
进一步地,处理模块1602,还用于:基于TB每次传输占用的时隙个数和/或调制与编码MCS参数,确定第一RV中对应的用作起始传输位置的至少一个时隙。
进一步地,处理模块1602,还用于:根据MCS参数,确定位置确定缩放因子;根据TB每次传输占用的时隙个数和位置确定缩放因子,确定用作起始传输位置的至少一个时隙。
进一步地,处理模块1602,还用于:MCS参数与位置确定缩放因子负相关。
进一步地,处理模块1602,还用于:在MCS参数小于设定阈值时,则确定位置确定缩放因子为第一数值;或者在MCS参数大于或者等于设定阈值时,则确定位置确定缩放因子为第二数值,其中,第二数值小于第一数值。
进一步地,收发模块1601,还用于:向终端设备发送指示信息,其中,指示信息用于指示第一RV中用作起始传输位置的至少一个时隙。
进一步地,收发模块1601,还用于:向终端设备发送使能信令,其中,使能信令用于确定第一RV中用作起始传输位置的时隙个数为1个或多个。
进一步地,收发模块1601,还用于:在起始传输位置上接收与起始传输位置对应的编码数据。
请参见图17,图17是本申请实施例提供的另一种通信装置1700的结构示意图。通信装置1700可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1700可以包括一个或多个处理器1701。处理器1701可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1700中还可以包括一个或多个存储器1702,其上可以存有计算机程序1704,处理器1701执行计算机程序1704,以使得通信装置1700执行上述方法实施例中描述的方法。可选的,存储器1702中还可以存储有数据。通信装置1700和存储器1702可以单独设置,也可以集成在一起。
可选的,通信装置1700还可以包括收发器1705、天线1706。收发器1705可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1705可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1700中还可以包括一个或多个接口电路1707。接口电路1707用于接收代码指令并传输至处理器1701。处理器1701运行代码指令以使通信装置1700执行上述方法实施例中描述的方法。
通信装置1700为终端设备:处理器1701用于执行图2中的步骤S202;执行图3中的步骤S303;图4中的步骤S402。收发器1705用于执行图6中的步骤S601。
通信装置1700为网络设备:收发器1705用于执行图10中的步骤S1002;执行图11中的步骤S1103。处理器1701用于执行图12中的步骤S1201。
在一种实现方式中,处理器1701中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1701可以存有计算机程序1703,计算机程序1703在处理器1701上运行,可使得通信装置1700执行上述方法实施例中描述的方法。计算机程序1703可能固化在处理器1701中,该种情况下,处理器1701可能由硬件实现。
在一种实现方式中,通信装置1700可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路 (integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的第一终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图17的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图18所示的芯片的结构示意图。图18所示的芯片包括处理器1801和接口1802。其中,处理器1801的数量可以是一个或多个,接口1802的数量可以是多个。
可选的,芯片还包括存储器1803,存储器1803用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种确定TB的起始传输位置的的系统,该系统包括前述图16实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该系统包括前述图17实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地 产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种确定传输块TB的起始传输位置的方法,其特征在于,由终端设备执行,所述方法包括:
    确定配置授权CG周期内用于传输同一TB的多个时隙的冗余版本RV序列;
    从所述RV序列对应多个时隙中,确定所述TB的至少一个起始传输位置。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    基于确定的所述起始传输位置,在所述CG周期内对所述TB进行重复传输。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定所述RV序列中的第一RV;
    从所述第一RV对应的每次TB传输使用的多个时隙中,确定至少一个时隙作为所述起始传输位置。
  4. 根据权利要求3所述的方法,其特征在于,从所述第一RV对应的每次TB传输使用的多个时隙中,确定至少一个时隙作为所述起始位置,包括:
    将所述第一RV对应的每次TB传输使用的第一个时隙,确定为所述起始位置。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    将所述RV序列中最后一个所述第一RV之外剩余的每个所述第一RV对应的第一个时隙,确定为所述起始位置,其中,所述RV序列仅包括所述第一RV;或者,
    将所述至少一个第一RV对应的第一个时隙,确定为所述起始位置,所述RV序列包括至少一个第一RV和至少一个其他RV。
  6. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    基于每次TB传输占用的时隙个数和/或调制与编码MCS参数,确定所述第一RV中对应的用作所述起始位置的至少一个时隙。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    根据所述MCS参数,确定位置确定缩放因子;
    根据所述每次TB传输占用的时隙个数和所述位置确定缩放因子,确定用作所述起始位置的至少一个时隙。
  8. 根据权利要求7所述的方法,其特征在于,所述MCS参数与所述位置确定缩放因子负相关。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    在所述MCS参数小于设定阈值时,则确定所述位置确定缩放因子为第一数值;或者
    在所述MCS参数大于或者等于所述设定阈值时,则确定所述位置确定缩放因子为第二数值,其中,所述第二数值小于所述第一数值。
  10. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    接收网络设备发送的指示信息;
    根据所述指示信息,确定所述第一RV中用作所述起始传输位置的至少一个时隙。
  11. 根据权利要求3-9任一项所述的方法,其特征在于,所述方法还包括:
    获取使能信令;
    根据所述使能信令,确定所述第一RV中用作所述起始传输位置的时隙个数。
  12. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    确定待传输数据在所述第一RV中每个时隙上的编码数据;
    从所述起始传输位置所在时隙对应的所述编码数据开始,向网络设备发送剩余的所述编码数据。
  13. 一种传输块TB的起始位置的确定方法,其特征在于,由网络设备执行,所述方法包括:
    确定配置授权CG周期内用于传输同一TB的多个时隙的冗余版本RV序列;
    从所述RV序列对应多个时隙中,确定所述TB传输的至少一个起始位置。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    基于确定的所述起始传输位置,在所述CG周期内对所述TB进行重复传输。
  15. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    确定所述RV序列中的第一RV;
    从所述第一RV对应的每次TB传输使用的多个时隙中,确定至少一个时隙作为所述起始位置。
  16. 根据权利要求15所述的方法,其特征在于,从所述第一RV对应的每次TB传输使用的多个时隙中,确定至少一个时隙作为所述起始位置,包括:
    将所述第一RV对应的每次TB传输使用的第一个时隙,确定为所述起始位置。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    将所述RV序列中最后一个所述第一RV之外剩余的每个所述第一RV对应的第一个时隙,确定为所述起始位置,其中,所述RV序列仅包括所述第一RV;或者,
    将所述至少一个第一RV对应的第一个时隙,确定为所述起始位置,所述RV序列包括 至少一个第一RV和至少一个其他RV。
  18. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    基于TB每次传输占用的时隙个数和/或调制与编码MCS参数,确定所述第一RV中对应的用作所述起始位置的至少一个时隙。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    根据所述MCS参数,确定位置确定缩放因子;
    根据所述TB每次传输占用的时隙个数和所述位置确定缩放因子,确定用作所述起始位置的至少一个时隙。
  20. 根据权利要求19所述的方法,其特征在于,所述MCS参数与所述位置确定缩放因子负相关。
  21. 根据权利要求19所述的方法,其特征在于,所述方法还包括:
    在所述MCS参数小于设定阈值时,则确定所述位置确定缩放因子为第一数值;或者
    在所述MCS参数大于或者等于所述设定阈值时,则确定所述位置确定缩放因子为第二数值,其中,所述第二数值小于所述第一数值。
  22. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    向终端设备发送指示信息,其中,所述指示信息用于指示所述第一RV中用作所述起始传输位置的至少一个时隙。
  23. 根据权利要求15-22任一项所述的方法,其特征在于,所述方法还包括:
    向终端设备发送使能信令,其中,所述使能信令用于确定所述第一RV中用作所述起始传输位置的时隙个数为1个或多个。
  24. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    在所述起始位置上接收与所述起始位置对应的编码数据。
  25. 一种通信装置,其特征在于,包括:
    收发模块,用于确定配置授权CG周期内用于传输同一TB的多个时隙的冗余版本RV序列;
    处理模块,用于从所述RV序列对应多个时隙中,确定所述TB传输的至少一个起始位置。
  26. 一种通信装置,其特征在于,包括:
    收发模块,用于确定CG周期内用于传输同一TB的多个时隙的冗余版本RV序列;
    处理模块,用于从所述RV序列对应多个时隙中,确定所述TB传输的至少一个起始传输位置。
  27. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1~12中任一项所述的方法。
  28. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13~24中任一项所述的方法。
  29. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1~12中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求13~24中任一项所述的方法。
  31. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1~12中任一项所述的方法被实现。
  32. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求13~24中任一项所述的方法被实现。
PCT/CN2021/121309 2021-09-28 2021-09-28 一种确定tb的起始传输位置的方法及其装置 WO2023050061A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/121309 WO2023050061A1 (zh) 2021-09-28 2021-09-28 一种确定tb的起始传输位置的方法及其装置
CN202180002832.5A CN114026942A (zh) 2021-09-28 2021-09-28 一种确定tb的起始传输位置的方法及其装置
EP21958660.9A EP4412343A1 (en) 2021-09-28 2021-09-28 Method and apparatus for determining initial transmission position of tb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/121309 WO2023050061A1 (zh) 2021-09-28 2021-09-28 一种确定tb的起始传输位置的方法及其装置

Publications (1)

Publication Number Publication Date
WO2023050061A1 true WO2023050061A1 (zh) 2023-04-06

Family

ID=80069886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121309 WO2023050061A1 (zh) 2021-09-28 2021-09-28 一种确定tb的起始传输位置的方法及其装置

Country Status (3)

Country Link
EP (1) EP4412343A1 (zh)
CN (1) CN114026942A (zh)
WO (1) WO2023050061A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020063764A1 (zh) * 2018-09-27 2020-04-02 中兴通讯股份有限公司 数据发送、接收方法、装置、通信设备、系统及存储介质
CN111344977A (zh) * 2017-11-16 2020-06-26 高通股份有限公司 使用对具有不同冗余版本的传输块的重复传输的多时隙调度
US20210051672A1 (en) * 2019-08-14 2021-02-18 Comcast Cable Communications, Llc Access Procedure Resource Configuration
CN112789818A (zh) * 2018-09-28 2021-05-11 创新技术实验室株式会社 用于在nr v2x系统中执行harq的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111344977A (zh) * 2017-11-16 2020-06-26 高通股份有限公司 使用对具有不同冗余版本的传输块的重复传输的多时隙调度
WO2020063764A1 (zh) * 2018-09-27 2020-04-02 中兴通讯股份有限公司 数据发送、接收方法、装置、通信设备、系统及存储介质
CN112789818A (zh) * 2018-09-28 2021-05-11 创新技术实验室株式会社 用于在nr v2x系统中执行harq的方法和装置
US20210051672A1 (en) * 2019-08-14 2021-02-18 Comcast Cable Communications, Llc Access Procedure Resource Configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Remaining details of UL data transmission procedures in NR", 3GPP DRAFT; R1-1720097 INTEL - UL_GB_GF, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051369778 *

Also Published As

Publication number Publication date
EP4412343A1 (en) 2024-08-07
CN114026942A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2022213294A1 (zh) 一种时域资源分配的方法及装置
CN115004835A (zh) 一种终端设备调度方法及其装置
WO2022213295A1 (zh) 一种跳频方法及装置
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
WO2023231035A1 (zh) 一种非授权频段下传输资源的确定方法及装置
WO2023050212A1 (zh) 一种cg资源的harq反馈的方法及其装置
CN114008964B (zh) Mbs业务中sps对应hpn的确定方法及其装置
WO2023050061A1 (zh) 一种确定tb的起始传输位置的方法及其装置
WO2022217448A1 (zh) 一种上行控制信息的复用方法及其装置
WO2022205005A1 (zh) 一种数据接收的处理方法及其装置
CN115004809A (zh) 一种确定侧链路时长的方法及其装置
WO2023004796A1 (zh) 混合自动重传请求反馈方法及装置
WO2023050211A1 (zh) 一种混合自动重传请求进程号的确定方法及其装置
WO2023123476A1 (zh) 一种时域资源传输位置的确定方法和装置
WO2023065251A1 (zh) 混合自动重传请求harq进程分配方法及装置
WO2023010474A1 (zh) 一种多播广播服务mbs的半持续调度方法及其装置
WO2023029058A1 (zh) 一种时间偏移量的确定方法及其装置
WO2024098430A1 (zh) 一种处理时延的确定方法、装置、设备及存储介质
WO2024168758A1 (zh) 一种多物理随机接入信道prach传输的方法及其装置
WO2024207518A1 (zh) 混合自动重传请求进程号的确定方法和装置
RU2820054C2 (ru) Способ и устройство для мультиплексирования управляющей информации восходящей линии связи
WO2023070585A1 (zh) 一种动态选择传输接收点trp的方法及其装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2022266926A1 (zh) 一种定时关系调整方法及其装置
WO2023115578A1 (zh) 一种混合自动重传请求状态增强方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958660

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202447032946

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021958660

Country of ref document: EP

Effective date: 20240429