WO2022217448A1 - 一种上行控制信息的复用方法及其装置 - Google Patents

一种上行控制信息的复用方法及其装置 Download PDF

Info

Publication number
WO2022217448A1
WO2022217448A1 PCT/CN2021/086735 CN2021086735W WO2022217448A1 WO 2022217448 A1 WO2022217448 A1 WO 2022217448A1 CN 2021086735 W CN2021086735 W CN 2021086735W WO 2022217448 A1 WO2022217448 A1 WO 2022217448A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
ack
multiplexing
pusch
indication parameter
Prior art date
Application number
PCT/CN2021/086735
Other languages
English (en)
French (fr)
Inventor
付婷
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to BR112023021181A priority Critical patent/BR112023021181A2/pt
Priority to PCT/CN2021/086735 priority patent/WO2022217448A1/zh
Priority to CN202180001014.3A priority patent/CN115474447A/zh
Priority to JP2023562781A priority patent/JP2024517397A/ja
Priority to EP21936343.9A priority patent/EP4325756A4/en
Priority to KR1020237038954A priority patent/KR20230170733A/ko
Publication of WO2022217448A1 publication Critical patent/WO2022217448A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1664Details of the supervisory signal the supervisory signal being transmitted together with payload signals; piggybacking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and apparatus for multiplexing uplink control information (Uplink Control Information, UCI).
  • UCI Uplink Control Information
  • the ultra-reliable and low-latency communication (Ultra reliable and low latency communication, URLLC) service has high requirements on transmission reliability.
  • CG-PUSCH configuration grant-Physical Uplink Share CHannel
  • the embodiment of the present application proposes a method and device for multiplexing uplink control information, which are applied to the scenario where the time domain overlaps between the CG-PUSCH and the HARQ-ACK carried on the PUCCH on the unlicensed frequency band.
  • the priority of ACK realize the multiplexing transmission of CG-PUSCH and HARQ-ACK in the unlicensed frequency band, which can ensure the transmission delay and reliability of UCI in the URLLC service.
  • an embodiment of the present application proposes a method for multiplexing uplink control information, which is applied to a terminal device.
  • the method includes: in response to configuring the authorized physical uplink shared channel CG-PUSCH and a hybrid automatic repeater carried on the physical uplink control channel.
  • the transmission request response information HARQ-ACK overlaps in the time domain, and based on the priority of the CG-PUSCH and the HARQ-ACK, determine the configuration authorization uplink control information CG-UCI carried on the CG-PUSCH and the HARQ- Multiplexing mode of ACK; transmitting information to the network device based on the multiplexing mode, wherein the transmitted information includes the CG-UCI and/or the HARQ-ACK.
  • the embodiment of the present application provides a method for multiplexing uplink control information.
  • the CG In response to the time domain overlap of the HARQ-ACK carried on the CG-PUSCH and the PUCCH, the CG can be determined based on the priorities of the CG-PUSCH and the HARQ-ACK.
  • - Multiplexing mode of CG-UCI and HARQ-ACK carried on PUSCH based on the multiplexing mode, transmit CG-UCI and/or HARQ-ACK to network equipment.
  • This application is applied to the scenario where the time domain overlaps between the CG-PUSCH and the HARQ-ACK carried on the PUCCH on the unlicensed frequency band, and can implement the CG-PUSCH and HARQ in the unlicensed frequency band according to the priority of the CG-PUSCH and the HARQ-ACK.
  • the multiplexed transmission of ACK can further ensure the transmission delay and reliability of UCI in the URLLC service.
  • the method for multiplexing uplink control information further includes: in response to different priorities of the CG-PUSCH and the HARQ-ACK, discarding or delaying the transmission with a high priority Information with a low transmission priority is determined as the multiplexing mode.
  • the method for multiplexing uplink control information further includes: receiving a multiplexing indication parameter sent by the network device; based on the state of the multiplexing indication parameter and/or the CG- The priority of the PUSCH and the HARQ-ACK determines the multiplexing mode, wherein the states of the multiplexing indication parameter include an enabled state and a disabled state.
  • the multiplexing indication parameter includes a first multiplexing indication parameter carried in higher layer signaling, and the multiplexing indication parameter is based on the state of the multiplexing indication parameter and/or the CG-PUSCH and the The priority of the HARQ-ACK, and determining the multiplexing mode includes: in response to the first multiplexing indication parameter being in an enabled state, performing joint coding on the CG-UCI and the HARQ-ACK and determining as the and the multiplexing mode is determined according to the priority of the CG-PUSCH and the HARQ-ACK in response to the first multiplexing indication parameter being in a disabled state.
  • the multiplexing indication parameter includes a first multiplexing indication parameter and a second multiplexing indication parameter carried in high-layer signaling, and the multiplexing indication parameter is based on the state of the multiplexing indication parameter and/or the The priority of the CG-PUSCH and the HARQ-ACK, and determining the multiplexing mode includes: in response to the second multiplexing indication parameter being in an enabled state, pairing the CG-UCI with the HARQ-ACK ACK performs joint coding to determine the multiplexing mode; in response to the second multiplexing indication parameter being in a disabled state, determine the state of the first multiplexing indication parameter; in response to the first multiplexing indication parameter In the enabled state, joint coding of the CG-UCI and the HARQ-ACK is determined as the multiplexing mode; in response to the first multiplexing indication parameter being in the disabled state, according to the CG-UCI The priority of the PUSCH and the HARQ-ACK determines the multiplexing mode.
  • the determining the multiplexing mode according to the priorities of the CG-PUSCH and the HARQ-ACK includes: responding to the priorities of the CG-PUSCH and the HARQ-ACK
  • the multiplexing mode is determined by transmitting the HARQ-ACK and discarding or delaying the transmission of the CG-UCI; in response to the different priorities of the CG-PUSCH and the HARQ-ACK, the transmission priority is Information with high priority and discarded or delayed transmission is determined as the multiplexing mode.
  • an embodiment of the present application further proposes a method for multiplexing uplink control information.
  • the method is executed by a network device, and includes: sending a multiplexing indication parameter to a terminal device, where the multiplexing indication parameter is used to indicate when When the time domains of CG-PUSCH and HARQ-ACK overlap, the terminal device determines based on the state of the multiplexing indication parameter and/or the priority of the CG-UCI carried on the CG-PUSCH and the HARQ-ACK multiplexing mode, wherein the state includes an enabled state and a disabled state; receiving information transmitted by the terminal device based on the determined multiplexing mode, wherein the transmitted information includes the CG-UCI and /or the HARQ-ACK.
  • the method for multiplexing uplink control information further includes: sending the multiplexing indication parameter to the terminal device through high layer signaling, wherein the multiplexing indication parameter includes the The first multiplexing indication parameter carried in the high-layer signaling.
  • the method for multiplexing uplink control information further includes: sending the multiplexing indication parameter to the terminal device through high layer signaling, wherein the multiplexing indication parameter includes the The first multiplexing indication parameter and the second multiplexing indication parameter carried in the high layer signaling.
  • the method for multiplexing uplink control information further includes: in response to the multiplexing mode being that the CG-UCI and the HARQ-ACK are jointly encoded, the received The information is decoded to obtain the CG-UCI and the HARQ-ACK.
  • an embodiment of the present application proposes a communication device, which has part or all of the functions of the terminal device in the method described in the first aspect above.
  • the function of the communication device may have some or all of the functions of the present application.
  • the functions in the examples may also have the functions of independently implementing any one of the embodiments of the present application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform the corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module for coupling with the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • an embodiment of the present application provides a communication device, which has part or all of the functions of the network device in the method described in the second aspect above.
  • the function of the communication device may have some or all of the functions of the present application.
  • the functions in the examples may also have the functions of independently implementing any one of the embodiments of the present application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the apparatus for multiplexing the uplink control information may include a transceiver module and a processing module, and the processing module is configured to support the communication apparatus to perform the corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module for coupling with the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor calls a computer program in a memory, the method described in the first aspect is executed.
  • an embodiment of the present application provides a communication device, the communication device includes a processor, and when the processor invokes a computer program in a memory, the method described in the second aspect above is executed.
  • an embodiment of the present application provides a communication device, the device includes a processor and a memory, where a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The apparatus performs the method described in the first aspect above.
  • an embodiment of the present application provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The apparatus performs the method described in the second aspect above.
  • an embodiment of the present application provides a communication device, including: a processor and an interface circuit; the interface circuit is configured to receive code instructions and transmit them to the processor; the processor is configured to run the Code instructions to perform the method described in the first aspect above.
  • the present application provides a communication device, comprising: a processor and an interface circuit; the interface circuit is configured to receive a code instruction and transmit it to the processor; the processor is configured to execute the code instruction to perform the method described in the second aspect above.
  • an embodiment of the present application provides a communication system, where the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device of the sixth aspect, or the system includes the communication device of the seventh aspect and the communication device of the eighth aspect, or the system includes the communication device of the ninth aspect and the tenth aspect. the communication device described.
  • an embodiment of the present application provides a computer-readable storage medium for storing instructions, and when the instructions are executed, the method described in the first aspect above is implemented.
  • an embodiment of the present application provides a computer-readable storage medium for storing instructions, and when the instructions are executed, the method described in the second aspect above is implemented.
  • the present application further provides a computer program product comprising a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect.
  • the present application further provides a computer program product comprising a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface for supporting a terminal device to implement the functions involved in the first aspect, for example, determining or processing data involved in the above method and at least one of information.
  • the chip system further includes a memory for storing necessary computer programs and data of the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface for supporting a network device to implement the functions involved in the second aspect, for example, determining or processing data involved in the above method and at least one of information.
  • the chip system further includes a memory for storing necessary computer programs and data of the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when executed on a computer, causes the computer to execute the method described in the first aspect.
  • the present application provides a computer program that, when executed on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic diagram of the architecture of a communication system proposed by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for multiplexing uplink control information according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for multiplexing uplink control information according to another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for multiplexing uplink control information according to another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for multiplexing uplink control information according to another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for multiplexing uplink control information according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for multiplexing uplink control information according to another embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a method for multiplexing uplink control information according to another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for multiplexing uplink control information according to another embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method for multiplexing uplink control information according to another embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a method for multiplexing uplink control information according to another embodiment of the present application.
  • FIG. 12 is a schematic flowchart of an apparatus for multiplexing uplink control information according to an embodiment of the present application
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • UCI Uplink Control Information
  • UCI contains information related to the current terminal equipment status, such as whether the current terminal equipment needs to request uplink resources, the downlink quality detected by the current terminal equipment, and the number of transport layers that the terminal equipment can distinguish.
  • RRC Radio Resource Control
  • RRC also known as Radio Resource Management (RRM) or Radio Resource Allocation (RRA) refers to the management, control and scheduling of radio resources through certain strategies and means. , make full use of limited wireless network resources as much as possible, ensure that the planned coverage area is reached, and improve service capacity and resource utilization as much as possible.
  • RRM Radio Resource Management
  • RRA Radio Resource Allocation
  • PUCCH Physical Uplink Control Channel
  • the PUCCH is used by the terminal equipment to send information related to uplink scheduling to the base station, such as scheduling request and channel status information.
  • PUSCH Physical Uplink Shared Channel
  • the PUSCH is used to carry uplink services related to long-term evolution users and upper-layer signaling data.
  • Hybrid Automatic Repeat Request ACK (HARQ-ACK) HARQ-ACK
  • HARQ is a combination of forward error correction code (Forward Error Correction, FEC) and automatic repeat request (Automatic Repeat-reQuest, ARQ), which is called hybrid automatic repeat request.
  • FEC Forward Error Correction
  • ARQ Automatic Repeat-reQuest
  • HARQ-ACK is HARQ acknowledgment or feedback information.
  • FIG. 1 is a schematic structural diagram of a communication system proposed by an embodiment of the present application.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and shape of the devices shown in FIG. 1 are only for examples and do not constitute limitations to the embodiments of the present application. In practical applications, two or more devices may be included. network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes a network device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5G fifth generation
  • NR 5G new radio
  • the network device 101 in this embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • WiFi wireless fidelity
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided in this embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), where the CU may also be referred to as a control unit (control unit), and a CU-DU is used.
  • the structure can separate the protocol layers of network devices, such as base stations, and the functions of some protocol layers are centrally controlled by the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in this embodiment of the present application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • a terminal device may also be referred to as a terminal device (terminal), a user equipment (UE), a mobile station (mobile station, MS), a mobile terminal device (mobile terminal, MT), and the like.
  • the terminal device can be a car with a communication function, a smart car, a mobile phone (mobile phone), a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid), wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a method for multiplexing uplink control information according to an embodiment of the present application. The method is applied to a terminal device. As shown in FIG. 2 , the method includes:
  • the terminal device transmits uplink information or data with the network device through the physical uplink channel.
  • the physical uplink channel includes PUCCH and PUSCH.
  • the terminal device may carry the UCI in the PUCCH for transmission, or may carry the UCI in the PUSCH for transmission.
  • the UCI may include HARQ-ACK and/or configure grant-Uplink Control Information (CG-UCI).
  • CG-UCI grant-Uplink Control Information
  • the HARQ-ACK may be transmitted to the network device through the PUCCH
  • the CG-UCI may be transmitted to the network device through the CG-PUSCH.
  • the CG-PUSCH is a periodic time-frequency resource configured for the terminal by the network device through high-layer signaling, and can be used to transmit uplink data.
  • the high-layer signaling is RRC signaling or other signaling, which is not limited this time.
  • NRU New Radio Unlicensed
  • both PUCCH and CG-PUSCH can work in the unlicensed frequency band. When both PUCCH and CG-PUSCH work in the unlicensed frequency band, the time domain of CG-PUSCH and PUCCH will appear. overlapping.
  • the CG-PUSCH may carry CG-UCI information, which is used to indicate uplink control information related to the current CG-PUSCH transmission.
  • the CG-UCI information may include a hybrid automatic repeat request identity document (Hybrid Automatic Repeat Request Identity document, HARQ-ID), a new data indication (New data indication, NDI), channel sharing information (ChannelOccupationTime sharing information, COT sharing information), etc.
  • the network device can also directly configure the priority of the CG-PUSCH through high-layer signaling. In general, it can be considered that if the network device schedules the transmission of the URLLC service on the CG-PUSCH, the CG-PUSCH is generally configured as a high priority.
  • the multiplexing mode may be joint coding of CG-UCI and HARQ-ACK.
  • the multiplexing mode can be one of CG-UCI and HARQ-ACK transmission, for example, CG-UCI can be transmitted, and HARQ-ACK can be discarded or delayed to transmit, and for example, HARQ-ACK can be transmitted, discarded or Delayed transmission of CG-UCI.
  • S202 transmit information to the network device based on the multiplexing mode, where the transmitted information includes CG-UCI and/or HARQ-ACK.
  • Different multiplexing modes in implementation may transmit different information, and corresponding channels for transmitting the information may be different. Therefore, a corresponding transmission channel can be determined based on the above-determined multiplexing mode, and then the information corresponding to the multiplexing mode is transmitted to the network device based on the transmission channel.
  • the transmission channel is CG-PUSCH.
  • the jointly encoded information of the CG-UCI and the HARQ-ACK is carried on the CG-PUSCH, and the jointly encoded information is transmitted to the network device.
  • the transmission channel is CG-PUSCH.
  • the CG-UCI is carried by the CG-PUSCH, and the CG-UCI is transmitted to the network device.
  • the transmission channel is PUCCH.
  • the HARQ-ACK is carried by the PUCCH, and the HARQ-ACK is transmitted to the network device.
  • the embodiment of the present application provides a method for multiplexing uplink control information.
  • the CG In response to the time domain overlap of the HARQ-ACK carried on the CG-PUSCH and the PUCCH, the CG can be determined based on the priorities of the CG-PUSCH and the HARQ-ACK.
  • - Multiplexing mode of CG-UCI and HARQ-ACK carried on PUSCH based on the multiplexing mode, transmit CG-UCI and/or HARQ-ACK to network equipment.
  • This application is applied to the scenario where the time domain overlaps between the CG-PUSCH and the HARQ-ACK carried on the PUCCH on the unlicensed frequency band, and can implement the CG-PUSCH and HARQ in the unlicensed frequency band according to the priority of the CG-PUSCH and the HARQ-ACK.
  • the multiplexed transmission of ACK can further ensure the transmission delay and reliability of UCI in the URLLC service.
  • FIG. 3 is a schematic flowchart of a method for multiplexing uplink control information according to an embodiment of the present application. The method is applied to a terminal device. As shown in FIG. 3 , the method further includes:
  • step S301 the implementation manner in any embodiment of the present application may be adopted, which will not be repeated here.
  • the priority of the CG-UCI may be considered to be equal to the priority of the CG-PUSCH that transmits the CG-UCI.
  • the priorities of CG-UCI and HARQ-ACK include any of the following:
  • the priority of CG-UCI is equal to the priority of HARQ-ACK;
  • the priority of CG-UCI is higher than that of HARQ-ACK;
  • the priority of HARQ-ACK is higher than that of CG-UCI.
  • CG-UCI and HARQ-ACK are different, optionally, if the priority of CG-UCI is higher than the priority of HARQ-ACK, since the transmission of CG-UCI and HARQ-ACK overlap, they cannot be transmitted at the same time.
  • CG-UCI and HARQ-ACK and in order to ensure that information with higher priority can be transmitted first, optionally, HARQ-ACK with lower priority can be discarded, and only CG-UCI with higher priority can be transmitted.
  • the HARQ-ACK with lower priority may be transmitted with a delay, and the CG-UCI with higher priority may be transmitted preferentially.
  • the priority of HARQ-ACK is higher than the priority of CG-UCI, since CG-UCI and HARQ-ACK transmission overlap, CG-UCI and HARQ-ACK cannot be transmitted at the same time, and in order to ensure high priority
  • the information can be preferentially transmitted, optionally, the CG-UCI of lower priority can be discarded, and only the HARQ-ACK of higher priority can be transmitted.
  • the transmission of the CG-UCI with a lower priority may be delayed, and the HARQ-ACK with a higher priority may be preferentially transmitted.
  • step S303 the implementation manner in any embodiment of the present application may be adopted, and details are not described herein again.
  • FIG. 4 is a schematic flowchart of a method for multiplexing uplink control information according to an embodiment of the present application. The method is applied to a terminal device. As shown in FIG. 4 , the method further includes:
  • step 401 the implementation manner in any embodiment of the present application may be adopted, and details are not described herein again.
  • S402 Receive the multiplexing indication parameter sent by the network device.
  • the multiplexing indication parameter is used to indicate whether multiplexing of CG-UCI and HARQ-ACK with different priorities is allowed. If the multiplexing indication parameter is configured as the enabled state, the configuration allows multiplexing of CG-UCI and HARQ-ACK with different priorities, then CG-UCI and HARQ-ACK of the same priority or different priorities are jointly encoded. and is carried on the CG-PUSCH; if the multiplexing indication parameter is configured to be disabled, that is, the configuration does not allow multiplexing of CG-UCI and HARQ-ACK with different priorities, then for CG-UCI and HARQ-ACK with different priorities , to transmit high priority first.
  • the terminal device can receive the high-level signaling sent by the network device, and send the multiplexing indication parameter to the terminal device through the high-level signaling.
  • an existing parameter in the high-layer signaling is used as the multiplexing indication parameter, and in other implementations, a new parameter may be added in the high-layer signaling as the multiplexing indication parameter.
  • two and two parameters in the higher layer signaling are combined as multiplexing indication parameters. For example, two or two parameters may be existing parameters or newly added parameters, or may be partially existing parameters and partially newly added parameters.
  • the high-layer signaling may be RRC signaling, which may be used as the multiplexing indication parameter through the grant-Uplink Control Information Multiplexing (configure grant-Uplink Control Information Multiplexing, CG-UCI Multiplexing) parameter in the RRC signaling.
  • RRC signaling may be used as the multiplexing indication parameter through the grant-Uplink Control Information Multiplexing (configure grant-Uplink Control Information Multiplexing, CG-UCI Multiplexing) parameter in the RRC signaling.
  • S403 Determine a multiplexing mode based on the state of the multiplexing indication parameter and/or the priorities of the CG-PUSCH and HARQ-ACK, where the state of the multiplexing indication parameter includes an enabled state and a disabled state.
  • the states of the multiplexing indication parameter include an enable state and an unenable state.
  • the multiplexing mode is determined according to the state of the multiplexing indication parameter and/or the priority of the CG-PUSCH and HARQ-ACK.
  • the priorities of CG-UCI and HARQ-ACK include any of the following:
  • the priority of CG-UCI is equal to the priority of HARQ-ACK;
  • the priority of CG-UCI is higher than that of HARQ-ACK;
  • the priority of HARQ-ACK is higher than that of CG-UCI.
  • the state and priority of the multiplexing indication parameter are combined, and there are a total of 6 combined states, including any of the following:
  • the multiplexing indication parameter is enabled, and the priority of CG-UCI is equal to the priority of HARQ-ACK;
  • the multiplexing indication parameter is enabled, and the priority of CG-UCI is higher than that of HARQ-ACK;
  • the multiplexing indication parameter is enabled, and the priority of HARQ-ACK is higher than that of CG-UCI;
  • the multiplexing indication parameter is in the disabled state, and the priority of CG-UCI is equal to the priority of HARQ-ACK;
  • the multiplexing indication parameter is in the disabled state, and the priority of CG-UCI is higher than that of HARQ-ACK;
  • the multiplexing indication parameter is disabled, and the priority of HARQ-ACK is higher than that of CG-UCI.
  • each combination state has its corresponding multiplexing mode, and the multiplexing mode can be determined according to the combination state of CG-PUSCH and HARQ-ACK.
  • the transmission of CG-UCI and/or HARQ-ACK on the CG-PUSCH resource may be instructed by the network device, agreed by a protocol, or independently selected by the terminal, which is not further limited herein.
  • step S404 the implementation manner in any embodiment of the present application may be adopted, and details are not described herein again.
  • This application is applied to the scenario where the time domain overlaps between the CG-PUSCH and the HARQ-ACK carried on the PUCCH on the unlicensed frequency band, and can implement the CG-PUSCH and HARQ in the unlicensed frequency band according to the priority of the CG-PUSCH and the HARQ-ACK.
  • - ACK multiplexing transmission and based on the multiplexing indication parameter and the priority of the HARQ-ACK carried on the /CG-PUSCH and PUCCH, the appropriate multiplexing mode can be determined, so that the UCI transmission delay in the URLLC service can be guaranteed. and reliability.
  • FIG. 5 is a schematic flowchart of a method for multiplexing uplink control information according to an embodiment of the present application. The method is applied to a terminal device, and the method includes:
  • step S501 the implementation manner in any embodiment of the present application may be adopted, and details are not described herein again.
  • S502 Receive the multiplexing indication parameter sent by the network device.
  • the multiplexing indication parameter is used to indicate whether multiplexing of CG-UCI and HARQ-ACK with different priorities is allowed.
  • the multiplexing indication parameter includes a first multiplexing indication parameter in the high-level signaling, and the first multiplexing indication parameter may be an existing parameter in the high-level signaling, or may be a newly added parameter in the high-level signaling. a parameter of .
  • the high-layer signaling is RRC signaling, wherein the CG-UCI Multiplexing parameter carried in the RRC signaling is used as the first multiplexing indication parameter.
  • the CG-UCI and the HARQ-ACK are jointly encoded and carried by the CG-PUSCH, and the CG-UCI and the HARQ-ACK are transmitted. That is, when the first multiplexing indication parameter is in the enabled state, regardless of whether the priorities of the CG-UCI and the HARQ-ACK are the same, they are jointly encoded.
  • S504 transmit information to the network device based on the multiplexing mode, where the transmitted information includes CG-UCI and/or HARQ-ACK.
  • step S504 the implementation manner in any embodiment of the present application may be adopted, and details are not described herein again.
  • This application is applied to the scenario where the time domain overlaps between the CG-PUSCH and the HARQ-ACK carried on the PUCCH on the unlicensed frequency band, and can implement the CG-PUSCH and HARQ in the unlicensed frequency band according to the priority of the CG-PUSCH and the HARQ-ACK.
  • - ACK multiplexing transmission and based on the multiplexing indication parameter and the priority of the HARQ-ACK carried on the /CG-PUSCH and PUCCH, the appropriate multiplexing mode can be determined, so that the UCI transmission delay in the URLLC service can be guaranteed. and reliability.
  • FIG. 6 is a schematic flowchart of a method for multiplexing uplink control information according to an embodiment of the present application. The method is applied to a terminal device, and the method includes:
  • step S601 the implementation manner in any embodiment of the present application may be adopted, and details are not described herein again.
  • S602 Receive the multiplexing indication parameter sent by the network device.
  • step S602 the implementation manner in any embodiment of the present application may be adopted, and details are not described herein again.
  • the first multiplexing indication parameter When the first multiplexing indication parameter is in the disabled state, it indicates that multiplexing of CG-UCI and HARQ-ACK with different priorities is not allowed, and further, the multiplexing mode can be determined according to the priorities of CG-PUSCH and HARQ-ACK.
  • the HARQ-ACK may be transmitted through the PUCCH bearer, and the CG-UCI will be discarded or delayed.
  • the priorities of CG-PUSCH and HARQ-ACK are compared, and if the priority of HARQ-ACK is high, HARQ-ACK will be transmitted, and CG-UCI will be discarded or delayed to transmit as multiplexing mode. If the priority of the CG-UCI is high, the CG-UCI is transmitted, and the HARQ-ACK is discarded or delayed to transmit as a multiplexing mode.
  • S606 transmit information to the network device based on the multiplexing mode, where the transmitted information includes CG-UCI and/or HARQ-ACK.
  • step S606 the implementation manner in any embodiment of the present application may be adopted, and details are not described herein again.
  • This application is applied to the scenario where the time domain overlaps between the CG-PUSCH and the HARQ-ACK carried on the PUCCH on the unlicensed frequency band, and can implement the CG-PUSCH and HARQ in the unlicensed frequency band according to the priority of the CG-PUSCH and the HARQ-ACK.
  • - ACK multiplexing transmission and based on the multiplexing indication parameter and the priority of the HARQ-ACK carried on the /CG-PUSCH and PUCCH, the appropriate multiplexing mode can be determined, so that the UCI transmission delay in the URLLC service can be guaranteed. and reliability.
  • FIG. 7 is a schematic flowchart of a method for multiplexing uplink control information according to an embodiment of the present application. The method is applied to a network device, and the method includes:
  • step S701 has been introduced in the above embodiments, and will not be repeated here.
  • S702 Receive the multiplexing indication parameter sent by the network device.
  • the multiplexing indication parameter includes a first multiplexing indication parameter and a second multiplexing indication parameter.
  • the first multiplexing indication parameter has been introduced in the above-mentioned embodiment, and a new parameter is added to the high-level signaling as the second multiplexing indication parameter.
  • Indicate parameters For example, the higher layer signaling is RRC signaling, wherein the CG-UCI Multiplexing parameter carried in the RRC signaling is used as the first multiplexing indication parameter, and further, a parameter is added in the RRC signaling as the second multiplexing indication parameter.
  • the second multiplexing indication parameter is used to indicate whether multiplexing of CG-UCI and HARQ-ACK with different priorities is allowed.
  • the CG-UCI and the HARQ-ACK are jointly encoded and carried by the CG-PUSCH, and the CG-UCI and the HARQ-ACK are transmitted. That is to say, when the second multiplexing indication parameter is in the enabled state, regardless of whether the priorities of the CG-UCI and the HARQ-ACK are the same, they are jointly encoded.
  • S704 Transmit information to the network device based on the multiplexing mode, where the transmitted information includes CG-UCI and/or HARQ-ACK.
  • step S704 the implementation manner in any embodiment of the present application may be adopted, and details are not described herein again.
  • This application is applied to the scenario where the time domain overlaps between the CG-PUSCH and the HARQ-ACK carried on the PUCCH on the unlicensed frequency band, and can implement the CG-PUSCH and HARQ in the unlicensed frequency band according to the priority of the CG-PUSCH and the HARQ-ACK.
  • the multiplexed transmission of ACK can further ensure the transmission delay and reliability of UCI in the URLLC service.
  • FIG. 8 is a schematic flowchart of a method for multiplexing uplink control information according to an embodiment of the present application. The method is applied to a network device, and the method includes:
  • step S801 has been introduced in the above-mentioned embodiment, and will not be repeated here.
  • S802 Receive the multiplexing indication parameter sent by the network device.
  • step S802 has been introduced in the above embodiments, and will not be repeated here.
  • the multiplexing mode of CG-UCI and HARQ-ACK cannot be determined only by the state of the second multiplexing indication parameter.
  • the state of the first multiplexing indication parameter needs to be determined.
  • the state of the first multiplexing indication parameter includes an enabled state and a disabled state.
  • S808 transmit information to the network device based on the multiplexing mode, where the transmitted information includes CG-UCI and/or HARQ-ACK.
  • This application is applied to the scenario where the time domain overlaps between the CG-PUSCH and the HARQ-ACK carried on the PUCCH on the unlicensed frequency band, and can implement the CG-PUSCH and HARQ in the unlicensed frequency band according to the priority of the CG-PUSCH and the HARQ-ACK.
  • the multiplexed transmission of ACK can further ensure the transmission delay and reliability of UCI in the URLLC service.
  • FIG. 9 is a schematic flowchart of a method for multiplexing uplink control information according to an embodiment of the present application. The method is applied to a network device. As shown in FIG. 9 , the method includes:
  • S901 Send a multiplexing indication parameter to a terminal device, where the multiplexing indication parameter is used to indicate that when the time domain overlaps between the CG-PUSCH and the HARQ-ACK, the terminal device is based on the state of the multiplexing indication parameter and/or on the CG-PUSCH
  • the priority of the CG-UCI and HARQ-ACK carried by the bearer determines the multiplexing mode, wherein the state includes an enabled state and a disabled state.
  • step S901 For the specific introduction of step S901, you can refer to the description of the relevant content in the above-mentioned embodiment, which will not be repeated here.
  • S902 Receive information transmitted by the terminal device based on the determined multiplexing mode, where the transmitted information includes CG-UCI and/or HARQ-ACK.
  • step S902 reference may be made to the description of the relevant content in the above-mentioned embodiment, which will not be repeated this time.
  • the received information is decoded to obtain the CG-UCI and the HARQ-ACK.
  • the terminal device After the CG-UCI and HARQ-ACK are jointly encoded, they are carried on the CG-PUSCH for transmission.
  • the terminal device receives the joint encoding, it can decode the encoding to obtain the original CG-UCI and HARQ-ACK. ACK information.
  • This application is applied to the scenario where the time domain overlaps between the CG-PUSCH and the HARQ-ACK carried on the PUCCH on the unlicensed frequency band, and can implement the CG-PUSCH and HARQ in the unlicensed frequency band according to the priority of the CG-PUSCH and the HARQ-ACK.
  • the multiplexed transmission of ACK can further ensure the transmission delay and reliability of UCI in the URLLC service.
  • FIG. 10 is a schematic flowchart of a method for multiplexing uplink control information according to an embodiment of the present application. The method is applied to a network device. As shown in FIG. 10 , the method includes:
  • step S801 For the specific introduction of step S801, you can refer to the description of the relevant content in the above-mentioned embodiment, which will not be repeated this time.
  • S1002 Send a multiplexing indication parameter to a terminal device through high-layer signaling, where the multiplexing indication parameter includes a first multiplexing indication parameter carried in the high-layer signaling.
  • step S802 For the specific introduction of step S802, reference may be made to the description of the relevant content in the above-mentioned embodiment, which will not be repeated this time.
  • This application is applied to the scenario where the time domain overlaps between the CG-PUSCH and the HARQ-ACK carried on the PUCCH on the unlicensed frequency band, and can implement the CG-PUSCH and HARQ in the unlicensed frequency band according to the priority of the CG-PUSCH and the HARQ-ACK.
  • the multiplexed transmission of ACK can further ensure the transmission delay and reliability of UCI in the URLLC service.
  • FIG. 11 is a schematic flowchart of a method for multiplexing uplink control information according to an embodiment of the present application. The method is applied to a network device. As shown in FIG. 11 , the method includes:
  • step S1101 For the specific introduction of step S1101, you can refer to the description of the relevant content in the above-mentioned embodiment, which will not be repeated here.
  • S1102 Send a multiplexing indication parameter to a terminal device through high-layer signaling, where the multiplexing indication parameter includes a first multiplexing indication parameter and a second multiplexing indication parameter carried in the high-layer signaling.
  • step S1102 For the specific introduction of step S1102, reference may be made to the description of the relevant content in the above-mentioned embodiment, which will not be repeated this time.
  • This application is applied to the scenario where the time domain overlaps between the CG-PUSCH and the HARQ-ACK carried on the PUCCH on the unlicensed frequency band, and can implement the CG-PUSCH and HARQ in the unlicensed frequency band according to the priority of the CG-PUSCH and the HARQ-ACK.
  • the multiplexed transmission of ACK can further ensure the transmission delay and reliability of UCI in the URLLC service.
  • the methods for implementing the proposed application in this application are respectively introduced from the perspectives of network equipment and terminal equipment.
  • the network device and the terminal device may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • Embodiments of the present application further provide a communication device, which may be a terminal device (such as the terminal device in the foregoing method embodiments), a device in a terminal device, or a device that can be matched with the terminal device. device.
  • the communication device may be a network device, a device in the network device, or a device that can be used in matching with the network device.
  • FIG. 12 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication apparatus 1200 may include: a transceiver module 1201 and a processing module 1202.
  • the transceiver module 1201 can be configured to overlap the time domain of the hybrid automatic repeat request response information HARQ-ACK carried on the configuration authorized physical uplink shared channel CG-PUSCH and the physical uplink control channel, based on the priority of CG-PUSCH and HARQ-ACK. level, determine the multiplexing mode of the configuration grant uplink control information CG-UCI and HARQ-ACK carried on the CG-PUSCH.
  • the processing module 1202 can be configured to transmit information to the network device based on the multiplexing mode, wherein the transmitted information includes CG-UCI and/or HARQ-ACK.
  • the transceiver module 1201 is further configured to, in response to different priorities of the CG-PUSCH and HARQ-ACK, determine the information with high transmission priority and discard or delay transmission priority as the multiplexing mode.
  • the transceiver module 1201 is further configured to receive the multiplexing indication parameter sent by the network device; based on the state of the multiplexing indication parameter and/or the priority of the CG-PUSCH and HARQ-ACK, the multiplexing mode is determined, wherein the multiplexing indication parameter is The states include an enabled state and a disabled state.
  • the transceiver module 1201 is further configured to perform joint coding on CG-UCI and HARQ-ACK as a multiplexing mode in response to the first multiplexing indication parameter being in an enabled state; in response to the first multiplexing indication parameter In the disabled state, the multiplexing mode is determined according to the priorities of CG-PUSCH and HARQ-ACK.
  • the transceiver module 1201 is further configured to perform joint coding on CG-UCI and HARQ-ACK as a multiplexing mode in response to the second multiplexing indication parameter being in an enabled state; in response to the second multiplexing indication parameter In the disabled state, the state of the first multiplexing indication parameter is determined; in response to the first multiplexing indication parameter being in the enabled state, the joint encoding of the CG-UCI and the HARQ-ACK is determined as the multiplexing mode; in response to the first A multiplexing indication parameter is in a disabled state, and the multiplexing mode is determined according to the priorities of CG-PUSCH and HARQ-ACK.
  • the transceiver module 1201 is further configured to, in response to the CG-PUSCH having the same priority as the HARQ-ACK, determine to transmit the HARQ-ACK and discard or delay the transmission of the CG-UCI as a multiplexing mode; in response to the CG-PUSCH Different from the priority of HARQ-ACK, the information with high transmission priority and discarded or delayed transmission of low priority is determined as a multiplexing mode.
  • the appropriate multiplexing mode is determined according to the different priorities of CG-PUSCH and HARQ-ACK, which can ensure the transmission delay and reliability of UCI in the URLLC service.
  • the communication apparatus 1200 When the communication apparatus 1200 is a network device, it includes:
  • the transceiver module 1201 can be configured to overlap the time domain of the hybrid automatic repeat request response information HARQ-ACK carried on the configuration authorized physical uplink shared channel CG-PUSCH and the physical uplink control channel, based on the priority of CG-PUSCH and HARQ-ACK. level, determine the multiplexing mode of the configuration grant uplink control information CG-UCI and HARQ-ACK carried on the CG-PUSCH.
  • the processing module 1202 can be configured to transmit information to the network device based on the multiplexing mode, wherein the transmitted information includes CG-UCI and/or HARQ-ACK.
  • the transceiver module 1201 is further configured to send the multiplexing indication parameter to the terminal device through high-layer signaling, where the multiplexing indication parameter includes the first multiplexing indication parameter carried in the high-layer signaling.
  • the transceiver module 1201 is further configured to send the multiplexing indication parameter to the terminal device through high-layer signaling, wherein the multiplexing indication parameter includes the first multiplexing indication parameter and the second multiplexing indication parameter carried in the high-layer signaling .
  • the processing module 1202 is further configured to decode the received information to obtain the CG-UCI and the HARQ-ACK in response to the multiplexing mode being that the CG-UCI and the HARQ-ACK are jointly encoded.
  • the appropriate multiplexing mode is determined according to the different priorities of CG-PUSCH and HARQ-ACK, which can ensure the transmission delay and reliability of UCI in the URLLC service.
  • FIG. 13 is a schematic structural diagram of another communication apparatus 1300 provided by an embodiment of the present application.
  • the communication apparatus 1300 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the apparatus can be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
  • the Communication apparatus 1300 may include one or more processors 1301 .
  • the processor 1301 may be a general-purpose processor or a special-purpose processor, or the like.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.), execute computer programs, etc. , which processes data from computer programs.
  • the communication apparatus 1300 may further include one or more memories 1302, which may store a computer program 1304, and the processor 1301 executes the computer program 1304, so that the communication apparatus 1300 executes the methods described in the above method embodiments.
  • data may also be stored in the memory 1302 .
  • the communication device 1300 and the memory 1302 can be provided separately or integrated together.
  • the communication apparatus 1300 may further include a transceiver 1305 and an antenna 1306 .
  • the transceiver 1305 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1305 may include a receiver and a transmitter, the receiver may be called a receiver or a receiving circuit, etc., for implementing a receiving function; the transmitter may be called a transmitter or a transmitting circuit, etc., for implementing a transmitting function.
  • the communication apparatus 1300 may further include one or more interface circuits 1307 .
  • the interface circuit 1307 is used to receive code instructions and transmit them to the processor 1301 .
  • the processor 1301 executes the code instructions to cause the communication device 1300 to perform the methods described in the above method embodiments.
  • the communication apparatus 1300 is a terminal device: the processor 1301 is used to perform step S901 in FIG. 9 , step S1001 in FIG. 10 , step S1101 in FIG. 11 , etc.; 3, step S303 in FIG. 4, step S404 in FIG. 4, and step S505 in FIG. 5, etc.
  • the communication apparatus 1300 is a network device: the transceiver 1305 is used to perform step S202 in FIG. 2 , step S303 in FIG. 3 , step S404 in FIG. 4 , etc.; Step S301 in 3 and step S401 in FIG. 4 and so on.
  • the processor 1301 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 1301 may store a computer program 1303, and the computer program 1303 runs on the processor 1301 to enable the communication device 1300 to execute the methods described in the above method embodiments.
  • the computer program 1303 may be embodied in the processor 1301, in which case the processor 1301 may be implemented by hardware.
  • the communication apparatus 1300 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiments), but the scope of the communication device described in this application is not limited to this, and the structure of the communication device may be Not limited by FIG. 13 .
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the communication means may be:
  • the IC set can also include a storage component for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 14 includes a processor 1401 and an interface 1402 .
  • the number of processors 1401 may be one or more, and the number of interfaces 1402 may be multiple.
  • the interface 1402 is used to execute step S901 in FIG. 9 , step S1001 in FIG. 10 , step S1101 in FIG. 11 and so on.
  • the interface 1402 is used to execute step S202 in FIG. 2 , step S303 in FIG. 3 , step S404 in FIG. 4 and so on.
  • the chip further includes a memory 1403 for storing necessary computer programs and data.
  • An embodiment of the present application further provides a system for adjusting the maximum number of transmission layers, and the system includes the communication device as a terminal device (such as the terminal device in the foregoing method embodiment) in the foregoing embodiment of FIG. 12 and a communication device as a network device, Alternatively, the system includes the communication apparatus as a terminal device (such as the terminal device in the foregoing method embodiment) in the foregoing embodiment of FIG. 12 and a communication apparatus as a network device.
  • the present application further provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, implement the functions of any of the foregoing method embodiments.
  • the present application further provides a computer program product, which implements the functions of any of the above method embodiments when the computer program product is executed by a computer.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer programs. When the computer program is loaded and executed on the computer, the flow or function according to the embodiments of the present application is generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program may be stored on or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program may be transferred from a website site, computer, server, or data center via wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more of the available mediums integrated.
  • Useful media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, high-density digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)) )Wait.
  • At least one in this application may also be described as one or more, and the multiple may be two, three, four or more, which is not limited in this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” described technical features in no order or order of magnitude.
  • the corresponding relationships shown in each table in this application may be configured or predefined.
  • the values of the information in each table are only examples, and can be configured with other values, which are not limited in this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the headings in the above tables may also adopt other names that can be understood by the communication device, and the values or representations of the parameters may also be other values or representations that the communication device can understand.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • Predefined in this application may be understood as defining, predefining, storing, pre-storing, pre-negotiating, pre-configuring, curing, or pre-firing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种上行控制信息的复用方法及其装置。其中,本申请实施例提供了一种上行控制信息的复用方法,通过响应于CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠,可以基于CG-PUSCH和HARQ-ACK的优先级,确定CG-PUSCH上承载的CG-UCI与HARQ-ACK的复用模式,基于复用模式,将CG-UCI和/或HARQ-ACK传输至网络设备。本申请应用于非授权频段上CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠的场景下,能够根据CG-PUSCH和HARQ-ACK的优先级,在非授权频段实现CG-PUSCH和HARQ-ACK的复用传输,进而可以能够保证URLLC业务中UCI的传输时延和可靠性。

Description

一种上行控制信息的复用方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种上行控制信息(Uplink Control Information,UCI)的复用方法及其装置。
背景技术
超高可靠低时延通信(Ultra reliable and low latency communication,URLLC)业务对传输可靠性具有较高要求。为了实现URLLC业务在非授权频段(unlicensed band)上的增强,需要实现URLLC业务的配置授权物理上行共享信道(configure grant-Physical Uplink Share CHannel,CG-PUSCH)在unlicensed band上的传输。
发明内容
本申请实施例提出一种上行控制信息的复用方法及其装置,应用于非授权频段上CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠的场景下,能够根据CG-PUSCH和HARQ-ACK的优先级,在非授权频段实现CG-PUSCH和HARQ-ACK的复用传输,进而可以能够保证URLLC业务中UCI的传输时延和可靠性。
第一方面,本申请实施例提出一种上行控制信息的复用方法,应用于终端设备,该方法包括:响应于配置授权物理上行共享信道CG-PUSCH与物理上行控制信道上承载的混合自动重传请求应答信息HARQ-ACK发生时域重叠,基于所述CG-PUSCH和所述HARQ-ACK的优先级,确定所述CG-PUSCH上承载的配置授权上行控制信息CG-UCI与所述HARQ-ACK的复用模式;基于所述复用模式向网络设备传输信息,其中,传输的所述信息包括所述CG-UCI和/或所述HARQ-ACK。
本申请实施例提供了一种上行控制信息的复用方法,通过响应于CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠,可以基于CG-PUSCH和HARQ-ACK的优先级,确定CG-PUSCH上承载的CG-UCI与HARQ-ACK的复用模式,基于复用模式,将CG-UCI和/或HARQ-ACK传输至网络设备。本申请应用于非授权频段上CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠的场景下,能够根据CG-PUSCH和HARQ-ACK的优先级,在非授权频段实现CG-PUSCH和HARQ-ACK的复用传输,进而可以能够保证URLLC业务中UCI的传输时延和可靠性。
在一种实现方式中,所述一种上行控制信息的复用方法,还包括:响应于所述CG-PUSCH与所述HARQ-ACK的优先级不同,将传输优先级高并丢弃或延时传输优先级低的信息确定为所述复用模式。
在一种实现方式中,所述一种上行控制信息的复用方法,还包括:接收所述网络设备发送的复用指示参数;基于所述复用指示参数的状态和/或所述CG-PUSCH与所述HARQ-ACK的优先级,确定所述复用模式,其中,所述复用指示参数的状态包括使能状态和去使能状态。
在一种实现方式中,所述复用指示参数包括携带在高层信令中的第一复用指示参数,所述基于所述复用指示参数的状态和/或所述CG-PUSCH与所述HARQ-ACK的优先级,确定所述复用模式,包括:响应于所述第一复用指示参数处于使能状态,将对所述CG-UCI与所述HARQ-ACK进行联合编码确定为所述复用模式;响应于所述第一复用指示参数处于去使能状态,根据所述CG-PUSCH与所述HARQ-ACK的优先级,确定所述复用模式。
在一种实现方式中,所述复用指示参数包括携带在高层信令中的第一复用指示参数和第二复用指示参数,所述基于所述复用指示参数的状态和/或所述CG-PUSCH与所述HARQ-ACK的优先级,确定所述复用模式,包括:响应于所述第二复用指示参数处于使能状态,将对所述CG-UCI与所述HARQ-ACK进行联合编码确定为所述复用模式;响应于所述第二复用指示参数处于去使能状态,确定所述第一复用指示参数的状态;响应于所述第一复用指示参数处于使能状态,将对所述CG-UCI与所述HARQ-ACK进行联合编码确定为所述复用模式;响应于所述第一复用指示参数处于去使能状态,根据所述CG-PUSCH与所述HARQ-ACK的优先级,确定所述复用模式。
在一种实现方式中,所述根据所述CG-PUSCH与所述HARQ-ACK的优先级,确定所述复用模式,包括:响应于所述CG-PUSCH与所述HARQ-ACK的优先级相同,将传输所述HARQ-ACK并丢弃或延时传输所述CG-UCI确定为所述复用模式;响应于所述CG-PUSCH与所述HARQ-ACK的优先级不同,将传输优先级高并丢弃或延时传输优先级低的信息确定为所述复用模式。
第二方面,本申请实施例还提出一种上行控制信息的复用方法,该方法由网络设备执行,包括:向终端设备发送复用指示参数,其中,所述复用指示参数用于指示当CG-PUSCH与HARQ-ACK发生时域重叠时,所述终端设备基于所述复用指示参数的状态和/或所述CG-PUSCH上承载的CG-UCI与所述HARQ-ACK的优先级确定复用模式,其中,所述状态包括使能状态和去使能状态;接收所述终端设备基于确定的所述复用模式传输的信息,其中,传输的所述信息包括所述CG-UCI和/或所述HARQ-ACK。
在一种实现方式中,所述一种上行控制信息的复用方法,还包括:通过高层信令向所述终端设备发送所述复用指示参数,其中,所述复用指示参数包括所述高层信令中携带的第一复用指示参数。
在一种实现方式中,所述一种上行控制信息的复用方法,还包括:通过高层信令向所述终端设备发送所述复用指示参数,其中,所述复用指示参数包括所述高层信令中携带的第一复用指示参数和第二复用指示参数。
在一种实现方式中,所述一种上行控制信息的复用方法,还包括:响应于所述复用模式为对所述CG-UCI与所述HARQ-ACK进行联合编码,对接收到的所述信息进行解码,得到所述CG-UCI与所述HARQ-ACK。
第三方面,本申请实施例提出一种通信装置,该装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提出一种通信装置,该装置具有实现上述第二方面所述的方法中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该上行控制信息的复用装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提出一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第一方面所述的方法。
第八方面,本申请实施例提出一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第二方面所述的方法。
第九方面,本申请实施例提出一种通信装置,包括:处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器,用于运行所述代码指令以执行上述第一方面所述的方法。
第十方面,本申请提出一种通信装置,包括:处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器,用于运行所述代码指令以执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本申请实施例提出一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第一方面所述的方法被实现。
第十三方面,本申请实施例提出一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第二方面所述的方法被实现。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一 种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提出的一种通信系统的架构示意图;
图2是本申请一实施例的上行控制信息的复用方法的流程示意图;
图3是本申请另一实施例的上行控制信息的复用方法的流程示意图;
图4是本申请另一实施例的上行控制信息的复用方法的流程示意图;
图5是本申请另一实施例的上行控制信息的复用方法的流程示意图;
图6是本申请另一实施例的上行控制信息的复用方法的流程示意图;
图7是本申请另一实施例的上行控制信息的复用方法的流程示意图;
图8是本申请另一实施例的上行控制信息的复用方法的流程示意图;
图9是本申请另一实施例的上行控制信息的复用方法的流程示意图;
图10是本申请另一实施例的上行控制信息的复用方法的流程示意图;
图11是本申请另一实施例的上行控制信息的复用方法的流程示意图;
图12是本申请一实施例的上行控制信息的复用装置的流程示意图;
图13是本申请一实施例的通信装置的结构示意图;
图14是本申请一实施例的芯片的结构示意图。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
为了便于理解,首先介绍本申请涉及的术语。
1、上行控制信息(Uplink Control Information,UCI)
UCI包含的内容都是与当前终端设备状态相关的信息,例如当前终端设备是否需要请求上行资源、当前终端设备检测到的下行链路质量,终端设备能够区分出来的传输层个数等信息。
2、无线资源控制(Radio Resource Control,RRC)
RRC又称为无线资源管理(Radio Resource Management,RRM)或者无线资源分配(Radio Resource Allocation,RRA),是指通过一定的策略和手段进行无线资源管理、控制和调度,在满足服务质量的要求下,尽可能地充分利用有限的无线网络资源,确保到达规划的覆盖区域,尽可能地提高业务容量和资源利用率。
3、物理上行控制信道(Physical Uplink Control Channel,PUCCH)
PUCCH用于终端设备向基站发送与上行调度相关的信息,如调度请求、信道状况信息等。
4、物理下行共享信道(Physical Uplink Shared Channel,PUSCH)
PUSCH用于承载长期演进用户相关的上行业务以及上层信令数据。作为物理层主要的上行数据承载信道,可以调度传输上行数据,也可以承载控制信息。5、混合自动重传请求应答信息(Hybrid Automatic Repeat Request ACK,HARQ-ACK)
HARQ是将前向纠错码(Forward Error Correction,FEC)与自动重传请求(Automatic Repeat-reQuest,ARQ)结合起来使用,称为混合自动重传请求。HARQ-ACK为HARQ的应答或反馈信息。
为了更好的理解本申请实施例提出的一种上行控制信息的复用方法,下面首先对本申请实施例使用的通信系统进行描述。
如图1所示,图1为本申请实施例提出的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributedunit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提出的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提出的技术方案对于类似的技术问题,同样适用。
可以理解的是,本申请实施例中的多个方案,既可以单独被实施,也可以组合在一起被实施,本申请并不对此作出限定。
下面结合附图对本申请所提出的一种上行控制信息的复用方法及其装置进行详细的介绍。
图2为本申请一实施例的上行控制信息的复用方法的流程示意图,该方法应用于终端设备,如图2所示,该方法包括:
S201,响应于配置授权物理上行共享信道CG-PUSCH与物理上行控制信道PUCCH上承载的混合自动重传请求应答信息HARQ-ACK发生时域重叠,基于CG-PUSCH和HARQ-ACK的优先级,确定CG-PUSCH上承载的配置授权上行控制信息CG-UCI与HARQ-ACK的复用模式。
终端设备通过物理上行信道与网络设备传输上行信息或数据。其中,物理上行信道包括PUCCH和PUSCH。实现中终端设备可以将UCI携带在PUCCH中传输,也可以携带在PUSCH中传输。
在一些实现中,UCI可以包括HARQ-ACK和/或配置授权上行控制信息(configure grant-Uplink Control Information,CG-UCI)。可选地,HARQ-ACK可以通过PUCCH传输给网络设备,而CG-UCI可以通过CG-PUSCH传输给网络设备。CG-PUSCH是由网络设备通过高层信令为终端配置的周期的时频资源,可用于传输上行数据。其中,高层信令为RRC信令或者其他信令,此次不做限定。在新空口非授权(New  Radio Unlicensed,NRU)中,PUCCH和CG-PUSCH都可以工作在非授权频段,当PUCCH和CG-PUSCH都工作在非授权频段时,会出现CG-PUSCH与PUCCH时域重叠。
当CG-PUSCH在非授权频段上传输时,CG-PUSCH上可以携带CG-UCI信息,用于指示本次CG-PUSCH传输相关的上行控制信息。可选地,CG-UCI信息可以包括混合自动重传请求身份标识(Hybrid Automatic Repeat Request Identity document,HARQ-ID)、新数据指示(New data indication,NDI),信道共享信息(ChannelOccupationTime sharing information,COT sharing information)等。
实现中网络设备还可以通过高层信令直接配置CG-PUSCH的优先级。一般情况下,可以认为,如果网络设备调度了URLLC业务在CG-PUSCH上传输,一般会配置CG-PUSCH为高优先级。
当配置授权物理上行共享信道CG-PUSCH上承载的配置授权上行控制信息CG-UCI与物理上行控制信道上承载的混合自动重传请求应答信息HARQ-ACK发生时域重叠时,根据CG-PUSCH和HARQ-ACK的优先级不同,CG-PUSCH上承载CG-UCI与HARQ-ACK具有不同的复用模式,确定其最合适的复用模式,以便于更好的传输信息。
可选地,复用模式可以为将CG-UCI与HARQ-ACK联合编码。
可选地,复用模式可以为传输CG-UCI与HARQ-ACK的其中一种,例如,可以传输CG-UCI,丢弃或者延时传输HARQ-ACK,再例如,可以传输HARQ-ACK,丢弃或者延时传输CG-UCI。
S202,基于复用模式向网络设备传输信息,其中,传输的信息包括CG-UCI和/或HARQ-ACK。
实现中不同的复用模式,可能传输的信息不同,相应传输该信息的信道可能不同。因此可以基于上述所确定的复用模式,确定出相应的传输信道,然后基于该传输信道将复用模式对应的信息传输给网络设备。
作为一种可能的实现方式,响应于复用模式为将CG-UCI与HARQ-ACK联合编码,可确定传输信道为CG-PUSCH。在CG-PUSCH承载CG-UCI与HARQ-ACK的联合编码后的信息,将该联合编码后的信息传输给网络设备。
作为另一种可能的实现方式,响应于复用模式为只传输CG-UCI,可确定传输信道为CG-PUSCH。由CG-PUSCH承载CG-UCI,将该CG-UCI传输给网络设备。
作为另一种可能的实现方式,响应于复用模式为只传输HARQ-ACK,可确定传输信道为PUCCH。由PUCCH承载HARQ-ACK,将该HARQ-ACK传输给网络设备。
本申请实施例提供了一种上行控制信息的复用方法,通过响应于CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠,可以基于CG-PUSCH和HARQ-ACK的优先级,确定CG-PUSCH上承载的CG-UCI与HARQ-ACK的复用模式,基于复用模式,将CG-UCI和/或HARQ-ACK传输至网络设备。本申请应用于非授权频段上CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠的场景下,能够根据CG-PUSCH和HARQ-ACK的优先级,在非授权频段实现CG-PUSCH和HARQ-ACK的复用传输,进而可以能够保证URLLC业务中UCI的传输时延和可靠性。
图3为本申请一实施例的上行控制信息的复用方法的流程示意图,该方法应用于终端设备,如图3所示,该方法还包括:
S301,确定CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠。
关于步骤S301的具体实现方式,可采用本申请任一实施例中的实现方式,在此不再进行赘述。
S302,响应于CG-PUSCH与HARQ-ACK的优先级不同,将传输优先级高并丢弃或延时传输优先级低的 信息确定为复用模式。
本申请实施例中,可认为CG-UCI的优先级等同于传输该CG-UCI的CG-PUSCH的优先级。
可选地,CG-UCI与HARQ-ACK的优先级包括以下任意一种:
CG-UCI的优先级等于HARQ-ACK的优先级;
CG-UCI的优先级高于HARQ-ACK的优先级;
HARQ-ACK的优先级高于CG-UCI的优先级。
当CG-PUSCH与HARQ-ACK的优先级不同时,可选地,若CG-UCI的优先级高于HARQ-ACK的优先级,由于CG-UCI与HARQ-ACK传输存在重叠时,无法同时传输CG-UCI与HARQ-ACK,而为了保证优先级高的信息能优先传输,可选地,可以丢弃较低优先级的HARQ-ACK,只传输更高优先级的CG-UCI。可选地,可以延时传输较低优先级的HARQ-ACK,优先传输更高优先级的CG-UCI。
可选地,若HARQ-ACK的优先级高于CG-UCI的优先级,由于CG-UCI与HARQ-ACK传输存在重叠时,无法同时传输CG-UCI与HARQ-ACK,而为了保证优先级高的信息能优先传输,可选地,可以丢弃较低优先级的CG-UCI,只传输更高优先级的HARQ-ACK。可选地,可以延时传输较低优先级的CG-UCI,优先传输更高优先级的HARQ-ACK。
S303,基于复用模式向网络设备传输信息,其中,传输的信息包括CG-UCI和/或HARQ-ACK。
关于步骤S303的具体实现方式,可采用本申请任一实施例中的实现方式,在此不再进行赘述。
本申请实施例应用于非授权频段传输时,在CG-PUSCH和HARQ-ACK的优先级的不同时,能够保证优先级高的信息优先发送。
图4为本申请一实施例的上行控制信息的复用方法的流程示意图,该方法应用于终端设备,如图4所示,该方法还包括:
S401,确定CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠。
关于步骤401的具体实现方式,可采用本申请任一实施例中的实现方式,在此不再进行赘述。
S402,接收网络设备发送的复用指示参数。
其中,复用指示参数用于指示是否允许不同优先级的CG-UCI与HARQ-ACK复用。若复用指示参数配置为使能状态,则配置允许不同优先级的CG-UCI与HARQ-ACK复用,则对于同优先级或者不同优先级的CG-UCI与HARQ-ACK,都联合编码,并承载在CG-PUSCH上;若复用指示参数配置为去使能,即配置不允许不同优先级的CG-UCI与HARQ-ACK复用,则对于不同优先级的CG-UCI与HARQ-ACK,优先传输高优先级。
终端设备可以接收网络设备发送的高层信令,通过该高层信令将复用指示参数发送该终端设备。在一些实现中,高层信令中的现有的参数作为复用指示参数,在另一些实现中,高层信令中可以增加新的参数作为复用指示参数。在又一些实现中,高层信令中的两个及两个参数联合作为复用指示参数。例如,两个及两个参数可以为现有的参数,也可以为新增的参数,也可以为部分为现有的参数,部分为新增的参数。
举例说明,高层信令可以为RRC信令,可以通过RRC信令中的授权上行控制信息多路复用(configure grant-Uplink Control Information Multiplexing,CG-UCI Multiplexing)参数,作为复用指示参数。
S403,基于复用指示参数的状态和/或CG-PUSCH与HARQ-ACK的优先级,确定复用模式,其中,复用指示参数的状态包括使能状态和去使能状态。
其中,复用指示参数的状态包括使能(enable)状态和去使能(unenable)状态。根据复用指示参数的状态和/或CG-PUSCH与HARQ-ACK的优先级,确定复用模式。
可选地,CG-UCI与HARQ-ACK的优先级包括以下任意一种:
CG-UCI的优先级等于HARQ-ACK的优先级;
CG-UCI的优先级高于HARQ-ACK的优先级;
HARQ-ACK的优先级高于CG-UCI的优先级。
也就是说,将复用指示参数的状态与优先级进行组合,一共包含6种组合状态,包括以下任意一种:
复用指示参数为使能状态,CG-UCI的优先级等于HARQ-ACK的优先级;
复用指示参数为使能状态,CG-UCI的优先级高于HARQ-ACK的优先级;
复用指示参数为使能状态,HARQ-ACK的优先级高于CG-UCI的优先级;
复用指示参数为去使能状态,CG-UCI的优先级等于HARQ-ACK的优先级;
复用指示参数为去使能状态,CG-UCI的优先级高于HARQ-ACK的优先级;
复用指示参数为去使能状态,HARQ-ACK的优先级高于CG-UCI的优先级。
需要说明的是,每个组合状态都有其对应的复用模式,根据CG-PUSCH与HARQ-ACK的组合状态,便可确定其复用模式。
本申请实施例中,在CG-PUSCH资源上传输CG-UCI和/或HARQ-ACK,可以由网络设备指示,也可以由协议约定,还可以是终端自主选择,在此不做进一步的限定。
S404,基于复用模式向网络设备传输信息,其中,传输的信息包括CG-UCI和/或HARQ-ACK。
关于步骤S404的具体实现方式,可采用本申请任一实施例中的实现方式,在此不再进行赘述。
本申请应用于非授权频段上CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠的场景下,能够根据CG-PUSCH和HARQ-ACK的优先级,在非授权频段实现CG-PUSCH和HARQ-ACK的复用传输,并且可以基于复用指示参数和/CG-PUSCH与PUCCH上承载的HARQ-ACK的优先级,确定合适的复用模式,从而可以能够保证URLLC业务中UCI的传输时延和可靠性。
图5为本申请一实施例的上行控制信息的复用方法的流程示意图,该方法应用于终端设备,该方法包括:
S501,确定CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠。
关于步骤S501的具体实现方式,可采用本申请任一实施例中的实现方式,在此不再进行赘述。
S502,接收网络设备发送的复用指示参数。
其中,复用指示参数用于指示是否允许不同优先级的CG-UCI与HARQ-ACK复用。可选地,复用指示参数包括高层信令中的第一复用指示参数,该第一复用指示参数可以为高层信令中现有的某个参数,也可以为高层信令中新增加的一个参数。例如,高层信令为RRC信令,其中RRC信令中携带的CG-UCI Multiplexing参数作为第一复用指示参数。
S503,响应于第一复用指示参数处于使能状态,将对CG-UCI与HARQ-ACK进行联合编码确定为复用模式。
第一复用指示参数处于使能状态,则对CG-UCI与HARQ-ACK进行联合编码并经CG-PUSCH承载,将CG-UCI与HARQ-ACK进行传输。也就是说,在第一复用指示参数处于使能状态时,无论CG-UCI与HARQ-ACK的优先级是否相同,都对其进行联合编码。
S504,基于复用模式向网络设备传输信息,其中,传输的信息包括CG-UCI和/或HARQ-ACK。
关于步骤S504的具体实现方式,可采用本申请任一实施例中的实现方式,在此不再进行赘述。
本申请应用于非授权频段上CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠的场景下,能够根据CG-PUSCH和HARQ-ACK的优先级,在非授权频段实现CG-PUSCH和HARQ-ACK的复用传输,并且可以基于复用指示参数和/CG-PUSCH与PUCCH上承载的HARQ-ACK的优先级,确定合适的复用模式,从而可以能够保证URLLC业务中UCI的传输时延和可靠性。
图6为本申请一实施例的上行控制信息的复用方法的流程示意图,该方法应用于终端设备,该方法包括:
S601,确定CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠。
关于步骤S601的具体实现方式,可采用本申请任一实施例中的实现方式,在此不再进行赘述。
S602,接收网络设备发送的复用指示参数。
关于步骤S602的具体实现方式,可采用本申请任一实施例中的实现方式,在此不再进行赘述。
S603,响应于第一复用指示参数处于去使能状态,根据CG-PUSCH与HARQ-ACK的优先级,确定复用模式。
当第一复用指示参数处于去使能状态,表明不允许不同优先级的CG-UCI与HARQ-ACK复用,进一步地可以根据CG-PUSCH与HARQ-ACK的优先级,确定复用模式。
S604,响应于CG-PUSCH与HARQ-ACK的优先级相同,将传输HARQ-ACK并丢弃或延时传输CG-UCI确定为复用模式。
本申请实施例中,在CG-PUSCH与HARQ-ACK的优先级相同的情况下,可以通过PUCCH承载传输HARQ-ACK,将丢弃或延时传输CG-UCI。
S605,响应于CG-PUSCH与HARQ-ACK的优先级不同,将传输优先级高并丢弃或延时传输优先级低的信息确定为复用模式。
可选地,对CG-PUSCH与HARQ-ACK的优先级高低进行比较,若HARQ-ACK的优先级高,则将传输HARQ-ACK,并丢弃或者延时传输CG-UCI作为复用模式。若CG-UCI的优先级高,则传输CG-UCI,并丢弃或者延时传输HARQ-ACK作为复用模式。
S606,基于复用模式向网络设备传输信息,其中,传输的信息包括CG-UCI和/或HARQ-ACK。
关于步骤S606的具体实现方式,可采用本申请任一实施例中的实现方式,在此不再进行赘述。
本申请应用于非授权频段上CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠的场景下,能够根据CG-PUSCH和HARQ-ACK的优先级,在非授权频段实现CG-PUSCH和HARQ-ACK的复用传输,并且可以基于复用指示参数和/CG-PUSCH与PUCCH上承载的HARQ-ACK的优先级,确定合适的复用模式,从而可以能够保证URLLC业务中UCI的传输时延和可靠性。
图7为本申请一实施例的上行控制信息的复用方法的流程示意图,该方法应用于网络设备,该方法包括:
S701,确定CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠。
关于步骤S701,已在上述实施例进行介绍,在此不再进行赘述。
S702,接收网络设备发送的复用指示参数。
其中,复用指示参数包括第一复用指示参数和第二复用指示参数,第一复用指示参数在上述实施例 已介绍,在高层信令中增加一个新的参数,作为第二复用指示参数。例如,高层信令为RRC信令,其中RRC信令中携带的CG-UCI Multiplexing参数作为第一复用指示参数,进一步地,在RRC信令中新增一个参数作为第二复用指示参数。其中,第二复用指示参数,用于指示是否允许不同优先级的CG-UCI与HARQ-ACK复用。
S703,响应于第二复用指示参数处于使能状态,将对CG-UCI与HARQ-ACK进行联合编码确定为复用模式。
第二复用指示参数处于使能状态,则对CG-UCI与HARQ-ACK进行联合编码并经CG-PUSCH承载,将CG-UCI与HARQ-ACK进行传输。也就是说,在第二复用指示参数处于使能状态时,无论CG-UCI与HARQ-ACK的优先级是否相同,都对其进行联合编码。
S704,基于复用模式向网络设备传输信息,其中,传输的信息包括CG-UCI和/或HARQ-ACK。
关于步骤S704的具体实现方式,可采用本申请任一实施例中的实现方式,在此不再进行赘述。
本申请应用于非授权频段上CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠的场景下,能够根据CG-PUSCH和HARQ-ACK的优先级,在非授权频段实现CG-PUSCH和HARQ-ACK的复用传输,进而可以能够保证URLLC业务中UCI的传输时延和可靠性。
图8为本申请一实施例的上行控制信息的复用方法的流程示意图,该方法应用于网络设备,该方法包括:
S801,确定CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠。
关于步骤S801,已在上述实施例进行介绍,在此不再进行赘述。
S802,接收网络设备发送的复用指示参数。
关于步骤S802,已在上述实施例进行介绍,在此不再进行赘述。
S803,响应于第二复用指示参数处于去使能状态,确定第一复用指示参数的状态。
其中,若第二复用指示参数处于去使能状态,此时只通过第二复用指示参数的状态并不能确定CG-UCI与HARQ-ACK的复用模式。此时,需要确定第一复用指示参数的状态。其中,第一复用指示参数的状态包括使能状态和去使能状态。
S804,响应于第一复用指示参数处于使能状态,将对CG-UCI与HARQ-ACK进行联合编码确定为复用模式。
S805,响应于第一复用指示参数处于去使能状态,根据CG-PUSCH与HARQ-ACK的优先级,确定复用模式。
S806,响应于CG-PUSCH与HARQ-ACK的优先级相同,将传输HARQ-ACK并丢弃或延时传输CG-UCI确定为复用模式。
S807,响应于CG-PUSCH与HARQ-ACK的优先级不同,将传输优先级高并丢弃或延时传输优先级低的信息确定为复用模式。
S808,基于复用模式向网络设备传输信息,其中,传输的信息包括CG-UCI和/或HARQ-ACK。
关于步骤S804~S808的具体实现方式,可采用本申请任一实施例中的实现方式,在此不再进行赘述。
本申请应用于非授权频段上CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠的场景下,能够根据CG-PUSCH和HARQ-ACK的优先级,在非授权频段实现CG-PUSCH和HARQ-ACK的复用传输,进而可以能够保证URLLC业务中UCI的传输时延和可靠性。
图9为本申请一实施例的上行控制信息的复用方法的流程示意图,该方法应用于网络设备,如图9所示,该方法包括:
S901,向终端设备发送复用指示参数,其中,复用指示参数用于指示当CG-PUSCH与HARQ-ACK发生时域重叠时,终端设备基于复用指示参数的状态和/或CG-PUSCH上承载的CG-UCI与HARQ-ACK的优先级确定复用模式,其中,状态包括使能状态和去使能状态。
关于步骤S901的具体介绍,可参加上述实施例中相关内容的记载,此次不再赘述。
S902,接收终端设备基于确定的复用模式传输的信息,其中,传输的信息包括CG-UCI和/或HARQ-ACK。
关于步骤S902的具体介绍,可参加上述实施例中相关内容的记载,此次不再赘述。
可选地,响应于复用模式为对CG-UCI与HARQ-ACK进行联合编码,对接收到的信息进行解码,得到CG-UCI与HARQ-ACK。
其中,CG-UCI与HARQ-ACK进行联合编码后,承载在CG-PUSCH上进行传输,当终端设备接收到该联合编码后,可对该编码进行解码,从而得到原始的CG-UCI与HARQ-ACK信息。
本申请应用于非授权频段上CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠的场景下,能够根据CG-PUSCH和HARQ-ACK的优先级,在非授权频段实现CG-PUSCH和HARQ-ACK的复用传输,进而可以能够保证URLLC业务中UCI的传输时延和可靠性。
图10为本申请一实施例的上行控制信息的复用方法的流程示意图,该方法应用于网络设备,如图10所示,该方法包括:
S1001,确定CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠。
关于步骤S801的具体介绍,可参加上述实施例中相关内容的记载,此次不再赘述。
S1002,通过高层信令向终端设备发送复用指示参数,其中,复用指示参数包括高层信令中携带的第一复用指示参数。
关于步骤S802的具体介绍,可参加上述实施例中相关内容的记载,此次不再赘述。
本申请应用于非授权频段上CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠的场景下,能够根据CG-PUSCH和HARQ-ACK的优先级,在非授权频段实现CG-PUSCH和HARQ-ACK的复用传输,进而可以能够保证URLLC业务中UCI的传输时延和可靠性。
图11为本申请一实施例的上行控制信息的复用方法的流程示意图,该方法应用于网络设备,如图11所示,该方法包括:
S1101,确定CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠。
关于步骤S1101的具体介绍,可参加上述实施例中相关内容的记载,此次不再赘述。
S1102,通过高层信令向终端设备发送复用指示参数,其中,复用指示参数包括高层信令中携带的第一复用指示参数和第二复用指示参数。
关于步骤S1102的具体介绍,可参加上述实施例中相关内容的记载,此次不再赘述。
本申请应用于非授权频段上CG-PUSCH与PUCCH上承载的HARQ-ACK发生时域重叠的场景下,能够根据CG-PUSCH和HARQ-ACK的优先级,在非授权频段实现CG-PUSCH和HARQ-ACK的复用传输,进而可以能够保证URLLC业务中UCI的传输时延和可靠性。
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施提出的方法进行了介绍。为了实现上述本申请实施例提出的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本申请实施例还提供了一种通信装置,该通信装置可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
如图12所示,图12为本申请一实施例的通信装置的结构示意图,该通信装置1200可以包括:收 发模块1201和处理模块1202。
收发模块1201,可用于响应于配置授权物理上行共享信道CG-PUSCH与物理上行控制信道上承载的混合自动重传请求应答信息HARQ-ACK发生时域重叠,基于CG-PUSCH和HARQ-ACK的优先级,确定CG-PUSCH上承载的配置授权上行控制信息CG-UCI与HARQ-ACK的复用模式。
处理模块1202,可用于基于复用模式向网络设备传输信息,其中,传输的信息包括CG-UCI和/或HARQ-ACK。
收发模块1201,还用于响应于CG-PUSCH与HARQ-ACK的优先级不同,将传输优先级高并丢弃或延时传输优先级低的信息确定为复用模式。
收发模块1201,还用于接收网络设备发送的复用指示参数;基于复用指示参数的状态和/或CG-PUSCH与HARQ-ACK的优先级,确定复用模式,其中,复用指示参数的状态包括使能状态和去使能状态。
可选地,收发模块1201,还用于响应于第一复用指示参数处于使能状态,将对CG-UCI与HARQ-ACK进行联合编码确定为复用模式;响应于第一复用指示参数处于去使能状态,根据CG-PUSCH与HARQ-ACK的优先级,确定复用模式。
可选地,收发模块1201,还用于响应于第二复用指示参数处于使能状态,将对CG-UCI与HARQ-ACK进行联合编码确定为复用模式;响应于第二复用指示参数处于去使能状态,确定第一复用指示参数的状态;响应于第一复用指示参数处于使能状态,将对CG-UCI与HARQ-ACK进行联合编码确定为复用模式;响应于第一复用指示参数处于去使能状态,根据CG-PUSCH与HARQ-ACK的优先级,确定复用模式。
可选地,收发模块1201,还用于响应于CG-PUSCH与HARQ-ACK的优先级相同,将传输HARQ-ACK并丢弃或延时传输CG-UCI确定为复用模式;响应于CG-PUSCH与HARQ-ACK的优先级不同,将传输优先级高并丢弃或延时传输优先级低的信息确定为复用模式。
本申请应用于非授权频段传输时,根据CG-PUSCH和HARQ-ACK的优先级的不同,确定合适的复用模式,能够保证URLLC业务中UCI的传输时延和可靠性。
通信装置1200,为网络设备时,包括:
收发模块1201,可用于响应于配置授权物理上行共享信道CG-PUSCH与物理上行控制信道上承载的混合自动重传请求应答信息HARQ-ACK发生时域重叠,基于CG-PUSCH和HARQ-ACK的优先级,确定CG-PUSCH上承载的配置授权上行控制信息CG-UCI与HARQ-ACK的复用模式。
处理模块1202,可用于基于复用模式向网络设备传输信息,其中,传输的信息包括CG-UCI和/或HARQ-ACK。
可选地,收发模块1201,还用于通过高层信令向终端设备发送复用指示参数,其中,复用指示参数包括高层信令中携带的第一复用指示参数。
可选地,收发模块1201,还用于通过高层信令向终端设备发送复用指示参数,其中,复用指示参数包括高层信令中携带的第一复用指示参数和第二复用指示参数。
可选地,处理模块1202,还用于响应于复用模式为对CG-UCI与HARQ-ACK进行联合编码,对接收到的信息进行解码,得到CG-UCI与HARQ-ACK。
本申请应用于非授权频段传输时,根据CG-PUSCH和HARQ-ACK的优先级的不同,确定合适的复用模式,能够保证URLLC业务中UCI的传输时延和可靠性。
图13是本申请实施例提供的另一种通信装置1300的结构示意图。通信装置1300可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1300可以包括一个或多个处理器1301。处理器1301可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1300中还可以包括一个或多个存储器1302,其上可以存有计算机程序1304,处理器1301执行计算机程序1304,以使得通信装置1300执行上述方法实施例中描述的方法。可选的,存储器1302中还可以存储有数据。通信装置1300和存储器1302可以单独设置,也可以集成在一起。
可选的,通信装置1300还可以包括收发器1305、天线1306。收发器1305可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1305可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1300中还可以包括一个或多个接口电路1307。接口电路1307用于接收代码指令并传输至处理器1301。处理器1301运行代码指令以使通信装置1300执行上述方法实施例中描述的方法。
通信装置1300为终端设备:处理器1301用于执行图9中的步骤S901、图10中的步骤S1001以及图11中的步骤S1101等等;收发器1305用于执行图2中的步骤S202、图3中的步骤S303、图4中的步骤S404以及图5中的步骤S505等。
通信装置1300为网络设备:收发器1305用于执行图2中的步骤S202、图3中的步骤S303、图4中的步骤S404等等;处理器1301用于执行图2中的步骤S201、图3中的步骤S301以及图4中的步骤S401等等。
在一种实现方式中,处理器1301中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1301可以存有计算机程序1303,计算机程序1303在处理器1301上运行,可使得通信装置1300执行上述方法实施例中描述的方法。计算机程序1303可能固化在处理器1301中,该种情况下,处理器1301可能由硬件实现。
在一种实现方式中,通信装置1300可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、 双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的第一终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图13的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图14所示的芯片的结构示意图。图14所示的芯片包括处理器1401和接口1402。其中,处理器1401的数量可以是一个或多个,接口1402的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
接口1402,用于执行图9中的步骤S901、图10中的步骤S1001以及图11中的步骤S1101等等。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
接口1402,用于执行图2中的步骤S202、图3中的步骤S303、图4中的步骤S404等等。
可选的,芯片还包括存储器1403,存储器1403用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种最大传输层数的调整系统,该系统包括前述图12实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括前述图12实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital  subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种上行控制信息的复用方法,其特征在于,适用于非授权频段传输,所述方法由终端设备执行,所述方法包括:
    响应于配置授权物理上行共享信道CG-PUSCH与物理上行控制信道PUCCH上承载的混合自动重传请求应答信息HARQ-ACK发生时域重叠,基于所述CG-PUSCH和所述HARQ-ACK的优先级,确定所述CG-PUSCH上承载的配置授权上行控制信息CG-UCI与所述HARQ-ACK的复用模式;
    基于所述复用模式向网络设备传输信息,其中,传输的所述信息包括所述CG-UCI和/或所述HARQ-ACK。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    响应于所述CG-PUSCH与所述HARQ-ACK的优先级不同,将传输优先级高并丢弃或延时传输优先级低的信息确定为所述复用模式。
  3. 根据权利要求1所述的方法,其特征在于,还包括:
    接收所述网络设备发送的复用指示参数;
    基于所述复用指示参数的状态和/或所述CG-PUSCH与所述HARQ-ACK的优先级,确定所述复用模式,其中,所述复用指示参数的状态包括使能状态和去使能状态。
  4. 根据权利要求3所述的方法,其特征在于,所述复用指示参数包括携带在高层信令中的第一复用指示参数,所述基于所述复用指示参数的状态和/或所述CG-PUSCH与所述HARQ-ACK的优先级,确定所述复用模式,包括:
    响应于所述第一复用指示参数处于使能状态,将对所述CG-UCI与所述HARQ-ACK进行联合编码确定为所述复用模式;
    响应于所述第一复用指示参数处于去使能状态,根据所述CG-PUSCH与所述HARQ-ACK的优先级,确定所述复用模式。
  5. 根据权利要求3所述的方法,其特征在于,所述复用指示参数包括携带在高层信令中的第一复用指示参数和第二复用指示参数,所述基于所述复用指示参数的状态和/或所述CG-PUSCH与所述HARQ-ACK的优先级,确定所述复用模式,包括:
    响应于所述第二复用指示参数处于使能状态,将对所述CG-UCI与所述HARQ-ACK进行联合编码确定为所述复用模式;
    响应于所述第二复用指示参数处于去使能状态,确定所述第一复用指示参数的状态;
    响应于所述第一复用指示参数处于使能状态,将对所述CG-UCI与所述HARQ-ACK进行联合编码确定为所述复用模式;
    响应于所述第一复用指示参数处于去使能状态,根据所述CG-PUSCH与所述HARQ-ACK的优先级,确定所述复用模式。
  6. 根据权利要求4或5所述的方法,其特征在于,所述根据所述CG-PUSCH与所述HARQ-ACK的优先级,确定所述复用模式,包括:
    响应于所述CG-PUSCH与所述HARQ-ACK的优先级相同,将传输所述HARQ-ACK并丢弃或延时传输所述CG-UCI确定为所述复用模式;
    响应于所述CG-PUSCH与所述HARQ-ACK的优先级不同,将传输优先级高并丢弃或延时传输优先级低的信息确定为所述复用模式。
  7. 一种上行控制信息的复用方法,其特征在于,适用于非授权频段传输,所述方法由网络设备执行,所述方法包括:
    向终端设备发送复用指示参数,其中,所述复用指示参数用于指示当CG-PUSCH与HARQ-ACK发生时域重叠时,所述终端设备基于所述复用指示参数的状态和/或所述CG-PUSCH上承载的CG-UCI与所述HARQ-ACK的优先级确定复用模式,其中,所述状态包括使能状态和去使能状态;
    接收所述终端设备基于确定的所述复用模式传输的信息,其中,传输的所述信息包括所述CG-UCI和/或所述HARQ-ACK。
  8. 根据权利要求7所述的方法,其特征在于,还包括:
    通过高层信令向所述终端设备发送所述复用指示参数,其中,所述复用指示参数包括所述高层信令中携带的第一复用指示参数。
  9. 根据权利要求7所述的方法,其特征在于,还包括:
    通过高层信令向所述终端设备发送所述复用指示参数,其中,所述复用指示参数包括所述高层信令中携带的第一复用指示参数和第二复用指示参数。
  10. 根据权利要求7所述的方法,其特征在于,还包括:
    响应于所述复用模式为对所述CG-UCI与所述HARQ-ACK进行联合编码,对接收到的所述信息进行解码,得到所述CG-UCI与所述HARQ-ACK。
  11. 一种通信装置,其特征在于,包括:
    收发模块,用于响应于配置授权物理上行共享信道CG-PUSCH与物理上行控制信道PUCCH上承载的混合自动重传请求应答信息HARQ-ACK发生时域重叠,基于所述CG-PUSCH和所述HARQ-ACK的优先级,确定所述CG-PUSCH上承载的配置授权上行控制信息CG-UCI与所述HARQ-ACK的复用模式;
    处理模块,用于基于所述复用模式向网络设备传输信息,其中,传输的所述信息包括所述CG-UCI和/或所述HARQ-ACK。
  12. 一种通信装置,其特征在于,包括:
    收发模块,用于响应于配置授权物理上行共享信道CG-PUSCH与物理上行控制信道上承载的混合自动重传请求应答信息HARQ-ACK发生时域重叠,基于所述CG-PUSCH和所述HARQ-ACK的优先级,确定所述CG-PUSCH上承载的配置授权上行控制信息CG-UCI与所述HARQ-ACK的复用模式;
    处理模块,用于基于所述复用模式向网络设备传输信息,其中,传输的所述信息包括所述CG-UCI和/或所述HARQ-ACK。
  13. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至6中任一项所述的方法。
  14. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求7至10所述的方法。
  15. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至6中任一项所述的方法。
  16. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求7至10所述的方法。
  17. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至6中任一项所述的方法被实现。
  18. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求7至10所述的方法被实现。
PCT/CN2021/086735 2021-04-12 2021-04-12 一种上行控制信息的复用方法及其装置 WO2022217448A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112023021181A BR112023021181A2 (pt) 2021-04-12 2021-04-12 Método para multiplexar informações de controle de enlace ascendente, dispositivo terminal, dispositivos de rede, de comunicação e para receber informações de realimentação de solicitação de repetição automática híbrida, e, meio de armazenamento legível por computador não transitório
PCT/CN2021/086735 WO2022217448A1 (zh) 2021-04-12 2021-04-12 一种上行控制信息的复用方法及其装置
CN202180001014.3A CN115474447A (zh) 2021-04-12 2021-04-12 一种上行控制信息的复用方法及其装置
JP2023562781A JP2024517397A (ja) 2021-04-12 2021-04-12 アップリンク制御情報の多重化方法及びその装置
EP21936343.9A EP4325756A4 (en) 2021-04-12 2021-04-12 METHOD AND APPARATUS FOR MULTIPLEXING UPLINK CONTROL INFORMATION
KR1020237038954A KR20230170733A (ko) 2021-04-12 2021-04-12 업링크 제어 정보의 다중화 방법 및 그의 장치(uplink control information multiplexing method and apparatus)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/086735 WO2022217448A1 (zh) 2021-04-12 2021-04-12 一种上行控制信息的复用方法及其装置

Publications (1)

Publication Number Publication Date
WO2022217448A1 true WO2022217448A1 (zh) 2022-10-20

Family

ID=83639380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086735 WO2022217448A1 (zh) 2021-04-12 2021-04-12 一种上行控制信息的复用方法及其装置

Country Status (6)

Country Link
EP (1) EP4325756A4 (zh)
JP (1) JP2024517397A (zh)
KR (1) KR20230170733A (zh)
CN (1) CN115474447A (zh)
BR (1) BR112023021181A2 (zh)
WO (1) WO2022217448A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111836310A (zh) * 2019-08-29 2020-10-27 维沃移动通信有限公司 Uci传输方法、终端和网络设备
WO2020223658A1 (en) * 2019-05-02 2020-11-05 Apple, Inc. Multiplexing configured grant (cg) transmissions in new radio (nr) systems operating on unlicensed spectrum
WO2020226549A1 (en) * 2019-05-03 2020-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Configured grant uplink control information (uci) mapping rules
US20210100024A1 (en) * 2019-09-27 2021-04-01 Samsung Electronics Co., Ltd. Method and device for transmitting/receiving uplink control information in wireless communication system
CN113271179A (zh) * 2020-02-14 2021-08-17 华为技术有限公司 混合自动重传请求确认码本的反馈方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020223658A1 (en) * 2019-05-02 2020-11-05 Apple, Inc. Multiplexing configured grant (cg) transmissions in new radio (nr) systems operating on unlicensed spectrum
WO2020226549A1 (en) * 2019-05-03 2020-11-12 Telefonaktiebolaget Lm Ericsson (Publ) Configured grant uplink control information (uci) mapping rules
CN111836310A (zh) * 2019-08-29 2020-10-27 维沃移动通信有限公司 Uci传输方法、终端和网络设备
US20210100024A1 (en) * 2019-09-27 2021-04-01 Samsung Electronics Co., Ltd. Method and device for transmitting/receiving uplink control information in wireless communication system
CN113271179A (zh) * 2020-02-14 2021-08-17 华为技术有限公司 混合自动重传请求确认码本的反馈方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORP.: "Enhancements to configured grants for NR-unlicensed", 3GPP TSG RAN WG1 MEETING #99, R1- 1912200, 22 November 2019 (2019-11-22), XP051823277 *
See also references of EP4325756A4 *
ZTE ET AL.: "Remaining issues on configured grant for NR-U", 3GPP TSG RAN WG1 MEETING #99, R1-1911825, 22 December 2019 (2019-12-22), XP051823019 *

Also Published As

Publication number Publication date
KR20230170733A (ko) 2023-12-19
EP4325756A4 (en) 2024-05-29
CN115474447A (zh) 2022-12-13
BR112023021181A2 (pt) 2023-12-19
JP2024517397A (ja) 2024-04-22
EP4325756A1 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
US11595159B2 (en) HARQ design for wireless communications
WO2019233398A1 (zh) 数据传输方法、通信装置及存储介质
WO2022213294A1 (zh) 一种时域资源分配的方法及装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
CN115004617A (zh) 一种终端设备调度方法及其装置
WO2022213295A1 (zh) 一种跳频方法及装置
CN115004835A (zh) 一种终端设备调度方法及其装置
WO2023164952A1 (zh) 一种智能中继的控制方法及其装置
WO2023231035A1 (zh) 一种非授权频段下传输资源的确定方法及装置
WO2022198413A1 (zh) 一种上行控制信息uci的资源映射方法及其装置
WO2022217448A1 (zh) 一种上行控制信息的复用方法及其装置
RU2820054C2 (ru) Способ и устройство для мультиплексирования управляющей информации восходящей линии связи
WO2023050211A1 (zh) 一种混合自动重传请求进程号的确定方法及其装置
WO2023050212A1 (zh) 一种cg资源的harq反馈的方法及其装置
WO2023010474A1 (zh) 一种多播广播服务mbs的半持续调度方法及其装置
WO2022217425A1 (zh) 确定harq反馈信息的定时方法及其装置
WO2023050061A1 (zh) 一种确定tb的起始传输位置的方法及其装置
WO2023044804A1 (zh) 载波切换方法及装置
WO2022205005A1 (zh) 一种数据接收的处理方法及其装置
WO2023097630A1 (zh) 混合自动重传的时隙偏移的确定、指示方法及装置
WO2023050277A1 (zh) 通信方法及通信装置
CN113395766B (zh) 一种跨载波调度方法及通信装置
WO2024000201A1 (zh) 一种指示方法及装置
EP4383654A1 (en) Semi-persistent scheduling method and apparatus for multicast broadcast service (mbs)
WO2023050392A1 (zh) 混合自动重传请求harq的发送方法、接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936343

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023562781

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023021181

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237038954

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237038954

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023129041

Country of ref document: RU

Ref document number: 2021936343

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021936343

Country of ref document: EP

Effective date: 20231113

ENP Entry into the national phase

Ref document number: 112023021181

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231011