WO2023048377A1 - Multi-channel isothermal amplification system - Google Patents

Multi-channel isothermal amplification system Download PDF

Info

Publication number
WO2023048377A1
WO2023048377A1 PCT/KR2022/010737 KR2022010737W WO2023048377A1 WO 2023048377 A1 WO2023048377 A1 WO 2023048377A1 KR 2022010737 W KR2022010737 W KR 2022010737W WO 2023048377 A1 WO2023048377 A1 WO 2023048377A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating block
isothermal amplification
amplification system
sample
channel
Prior art date
Application number
PCT/KR2022/010737
Other languages
French (fr)
Korean (ko)
Inventor
김수경
구자령
남동훈
이동철
장성욱
정도현
Original Assignee
주식회사 나노바이오라이프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노바이오라이프 filed Critical 주식회사 나노바이오라이프
Publication of WO2023048377A1 publication Critical patent/WO2023048377A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to a multi-channel isothermal amplification system, and relates to a multi-channel isothermal amplification system capable of obtaining results more quickly and efficiently through detection through light of various wavelengths.
  • Nucleic acid amplification technology is a technique mainly used in the fields of molecular biology and biotechnology, and is a method capable of detecting and analyzing a small amount of nucleic acid.
  • PCR Polymerase Chain Reaction
  • Conventional PCR repeats the process of separating double-stranded DNA into single-stranded DNA under high temperature conditions, lowering the temperature, binding the primer to the single-strand, and elongating it into double-stranded DNA by Taq polymerase.
  • Real-time PCR is widely used in performing nucleic acid analysis because it enables real-time confirmation and quantitative analysis during a reaction cycle without performing electrophoresis on a nucleic acid amplified product on a gel.
  • the present invention has been devised to solve the above problems, and the multi-channel isothermal amplification system according to the present invention enables detection through light of various wavelengths through a multi-channel optical system for a plurality of sample tubes in a heating block. It is intended to be able to obtain accurate result values for multiple samples more quickly and efficiently.
  • the multi-channel isothermal amplification system arranges a light source module at the bottom of the heating block where the sample tube is located, and arranges a detection module for detecting the fluorescent signal of the sample on the side of the heating block, so that the light source module and It is intended to provide a multi-channel isothermal amplification system capable of more accurate measurement by preventing mutual interference of light between the detection modules.
  • the multi-channel isothermal amplification system according to the present invention is intended to further improve usability and portability by integrating a light source module and a detection module into a more compact configuration.
  • a multi-channel isothermal amplification system for solving the above problems includes a heating block in which holes into which a plurality of sample tubes are inserted are formed in a row; an optical system for detecting fluorescence signals of samples in the sample tubes by incident light of different wavelengths on each of the sample tubes inserted into the heating block; a heat sink dissipating heat from the heating block to the outside; and a peltier module disposed between the heating block and the heat sink to exchange heat between the heating block and the heat sink.
  • the optical system includes a light source module for incident light from the lower portion of the heating block toward the sample tube; and a detection module for detecting a fluorescent signal from the sample at a side of the heating block.
  • the heat dissipation plate may be disposed on the other side opposite to the side on which the detection module is disposed to emit heat from the heating block to the outside.
  • the light source module LED for irradiating light; an excitation filter filtering light emitted from the LED; and a first lens concentrating the light filtered by the excitation filter onto a sample in the sample tube.
  • the detection module includes an emission filter for receiving a fluorescence signal of the sample; a second lens that transmits the fluorescence signal filtered by the emission filter; and an optical sensor for receiving a fluorescence signal introduced through the second lens.
  • the heating block includes a first heating block region in which a plurality of the holes are formed in a line; and a second heating block area in which the plurality of holes are formed in a line and spaced apart from each other by a gap between the holes in the longitudinal direction of the first heating block area, and disposed in a line with the first heating block area.
  • a first heating block region in which a plurality of the holes are formed in a line
  • a second heating block area in which the plurality of holes are formed in a line and spaced apart from each other by a gap between the holes in the longitudinal direction of the first heating block area, and disposed in a line with the first heating block area.
  • each channel of the optical system moves in the longitudinal direction of the first heating block area and the second heating block area arranged in a line, and each of the optical systems moves in the first heating block area. and by sequentially incident light having a set wavelength to each of the sample tubes inserted into the holes of the second heating block region, the fluorescence signal of the sample in the sample tube may be detected.
  • the multi-channel isothermal amplification system enables detection through light of various wavelengths through a multi-channel optical system for a plurality of sample tubes in a heating block, so that accurate results for multiple samples can be obtained more quickly and efficiently. can be obtained
  • the multi-channel isothermal amplification system arranges a light source module at the bottom of the heating block where the sample tube is located, and arranges a detection module for detecting the fluorescent signal of the sample on the side of the heating block, so that the light source module and It is possible to provide a multi-channel isothermal amplification system capable of more accurate measurement by preventing mutual interference of light between the detection modules.
  • the multi-channel isothermal amplification system according to the present invention can further improve usability and portability by integrating a light source module and a detection module into a more compact configuration.
  • FIG. 1 is a diagram showing a multi-channel isothermal amplification system according to an embodiment of the present invention.
  • FIG. 2 is an internal perspective view of a multi-channel isothermal amplification system according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a heating block of a multi-channel isothermal amplification system according to an embodiment of the present invention.
  • FIG. 4 is a diagram for explaining in detail the configuration of a multi-channel isothermal amplification system according to an embodiment of the present invention.
  • FIG. 5 is a diagram for explaining an operating method of a multi-channel isothermal amplification system according to an embodiment of the present invention.
  • FIG. 6 is a block diagram of a multi-channel isothermal amplification system according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing a multi-channel isothermal amplification system according to an embodiment of the present invention
  • FIG. 2 is an internal perspective view of the multi-channel isothermal amplification system according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a heating block of a multi-channel isothermal amplification system according to an embodiment of the present invention
  • FIG. 4 describes the configuration of the multi-channel isothermal amplification system according to an embodiment of the present invention in more detail.
  • 5 is a diagram for explaining an operating method of a multi-channel isothermal amplification system according to an embodiment of the present invention.
  • a multi-channel isothermal amplification system includes a heating block 100, an optical system 200, a heat sink 300, and a Peltier module 400.
  • Holes 102 into which a plurality of sample tubes 101 are inserted are formed in the heating block 100, and the holes 102 are also referred to as wells. At this time, the holes 102 are formed in a line. That is, the holes 102 are formed in a line in one direction on the heating block 100, and sample tubes 101 accommodating samples may be disposed in the holes 102, respectively.
  • the heating block 100 may be divided into a first heating block area 100A and a second heating block area 100B.
  • the first heating block area 100A has a plurality of holes 102 formed in a line, and similarly, a plurality of holes 102 are formed in a line in the second heating block area 100B. 2
  • the heating block area 100B may be spaced apart from the first heating block area 100A by the distance between the hole 102 and the hole 102, and may be disposed in line with the first heating block area 100A. there is.
  • the optical system 200 injects light of each wavelength into the sample tubes 101 inserted into the heating block 100, and detects a fluorescence signal of the sample in the sample tubes 101.
  • the optical system 200 is configured to include four channels, and each channel incidents light of a different wavelength to the sample tube 101 inserted into the heating block 100, respectively. and detecting the fluorescence signal of the sample in the sample tube 101 and moving sequentially.
  • each channel of the optical system 200 may include a light source module 210 and a detection module 220 .
  • the light source module 210 injects light from the bottom of the heating block 100 toward the sample tube 101, and the detection module 220 emits a fluorescent signal from the sample at the side of the heating block 100. can be detected.
  • the light source module 210 includes an LED 211 for emitting light, an excitation filter 212 for filtering light emitted from the LED 211, and a filter filtered by the excitation filter 212. It may be configured to include a first lens 213 for concentrating light onto the sample in the sample tube 101.
  • the detection module 220 includes an emission filter 221 for receiving the fluorescence signal of the sample, a second lens 222 for transmitting the fluorescence signal filtered by the emission filter 221, and the second It may be configured to include an optical sensor 223 that receives a fluorescence signal introduced through the lens 222 .
  • the heat sink 300 dissipates heat from the heating block 100 to the outside.
  • the heat dissipation plate 300 is disposed on the other side opposite to the side where the detection module 220 is disposed, so that heat from the heating block 100 can be effectively discharged to the outside.
  • the heat sink 300 includes a first heat sink disposed to correspond to the first heating block area 110A of the heating block 100, and a second heating block area 110B of the heating block 100. It may be composed of a second heat dissipation plate disposed to correspond to.
  • the Peltier module 400 may be disposed between the heating block 100 and the heat sink 300 to exchange heat between the heating block 100 and the heat sink 300 .
  • the multi-channel isothermal amplification system effectively cools the heat from the heating block 100 through the Peltier module 400 and more effectively releases it through the heat sink 300 at the same time.
  • the optical system 200 composed of the four channels is the first heating block region 100A of the heating block 100 and moves in the longitudinal direction of the second heating block area 100B, and each channel of the optical system 200 is inserted into the holes of the first heating block area 100A and the second heating block area 100B.
  • a fluorescence signal of a sample in the sample tube 101 may be detected by sequentially incident light having a set wavelength to each of the sample tubes 101 .
  • the multi-channel isothermal amplification system can obtain accurate results more quickly and efficiently by detecting fluorescence signals through four channels for a plurality of sample tubes in the heating block.
  • an embodiment of an optical system including four channels has been described, but the number of channels of the optical system can be changed as needed to achieve more rapid and efficient detection.
  • the multi-channel isothermal amplification system arranges a light source module at the bottom of a heating block where a sample tube is located and a detection module for detecting a fluorescent signal of a sample on the side of the heating block, so that the light source It is possible to provide a multi-channel isothermal amplification system capable of more accurate measurement by preventing mutual interference of light between the module and the detection module.
  • FIG. 6 is a block diagram of a multi-channel isothermal amplification system according to an embodiment of the present invention.
  • the multi-channel isothermal amplification system is configured to include an LCD touch panel, and inputs a user's control command through the LCD touch panel and detects a sample signal. Information and related information can be displayed.
  • the multi-channel isothermal amplification system operates a main controller, a motor driver for operating a stepper motor, and an LED of an optical module.
  • LED driver for operating a stepper motor
  • LED of an optical module for detecting the heat of the heating block 100
  • Peltier control for controlling the Peltier module
  • top heater installed in the heating block ), including a heater control (Heater Control), a temperature sensor (Temperature Sensor) installed in the top heater, and a fan (Fan), and is controlled by the main controller.
  • the multi-channel isothermal amplification system according to the present invention can further improve usability and portability by integrating the light source module and the detection module into a more compact configuration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Biomedical Technology (AREA)

Abstract

The present invention relates to a multi-channel isothermal amplification system comprising: a heating block in which holes into which a plurality of sample tubes are inserted are formed in a row; an optical system for detecting fluorescence signals of samples in the sample tubes inserted in the heating block by shining light of a different wavelength onto each of the sample tubes; a heat sink for dissipating heat from the heating block to the outside; and a Peltier module which is disposed between the heating block and the heat sink and exchanges heat between the heating block and the heat sink.

Description

다채널 등온 증폭 시스템Multi-channel isothermal amplification system
본 발명은 다채널 등온 증폭 시스템에 관한 것으로, 다양한 파장의 광을 통한 검출을 통해 보다 신속하고 효율적으로 결과값을 획득할 수 있는 다채널 등온 증폭 시스템에 관한 것이다.The present invention relates to a multi-channel isothermal amplification system, and relates to a multi-channel isothermal amplification system capable of obtaining results more quickly and efficiently through detection through light of various wavelengths.
핵산 증폭 기술의 등장으로 세균, 바이러스 등을 검출하여 질환 진단 등을 하려는 연구가 활발히 진행되고 있다. 핵산 증폭 기술은 분자 생물학 및 생명공학 분야에서 주로 사용되는 기술로 소량의 핵산을 검출하고 분석할 수 있는 방법이다.With the advent of nucleic acid amplification technology, research to diagnose diseases by detecting bacteria and viruses has been actively conducted. Nucleic acid amplification technology is a technique mainly used in the fields of molecular biology and biotechnology, and is a method capable of detecting and analyzing a small amount of nucleic acid.
일반적으로, 핵산 증폭을 위해 열 안정 효소를 사용하여 DNA, RNA를 분석하는 PCR(Polymerase Chain Reaction) 기술이 널리 사용되고 있다.In general, PCR (Polymerase Chain Reaction) technology for analyzing DNA and RNA using heat stable enzymes for nucleic acid amplification is widely used.
기존의 PCR은 높은 온도 조건에서 이중 가닥의 DNA를 단일 가닥의 DNA로 분리시키고, 온도를 낮추어 단일 가닥에 primer(프라이머)가 결합하여 Taq polymerase가 이중 가닥의 DNA로 연장시키는 과정을 반복한다.Conventional PCR repeats the process of separating double-stranded DNA into single-stranded DNA under high temperature conditions, lowering the temperature, binding the primer to the single-strand, and elongating it into double-stranded DNA by Taq polymerase.
그러나, 기존의 PCR은 엔드 포인트(end-point)에서 겔 상에서의 전기 영동을 이용하여 증폭된 DNA의 정성적인 결과만을 보여주는 것으로서 정량적 검출의 정확성 등 여러 문제점을 가지고 있다.However, conventional PCR shows only qualitative results of amplified DNA using electrophoresis on a gel at the end-point, and has several problems such as the accuracy of quantitative detection.
이에, 증폭된 핵산의 농도에 비례하는 형광 신호의 세기를 실시간으로 검출함으로써 핵산의 정량 분석을 가능하게 하는 실시간(real-time) PCR이 개발되었다.Accordingly, real-time PCR has been developed that enables quantitative analysis of nucleic acids by detecting in real time the intensity of a fluorescence signal proportional to the concentration of amplified nucleic acids.
실시간 PCR은 핵산 증폭된 산물을 겔(gel) 상에서의 전기 영동을 수행하지 않고, 반응 사이클 동안 실시간으로 확인 및 정량 분석이 가능하여 핵산 분석 수행에 있어서 많이 활용되고 있다.Real-time PCR is widely used in performing nucleic acid analysis because it enables real-time confirmation and quantitative analysis during a reaction cycle without performing electrophoresis on a nucleic acid amplified product on a gel.
이와 같은 종래 기술을 개선하여, 보다 다수의 샘플에 대하여 더욱 효율적이고 정확한 진단이 가능한 기술에 대한 요구가 높아지고 있다.Demand for a technique capable of more efficient and accurate diagnosis for a greater number of samples by improving such conventional techniques is increasing.
본 발명은 전술한 문제를 해결하기 위해 안출된 것으로서, 본 발명에 따른 다채널 등온 증폭 시스템은 히팅 블록 내의 다수의 샘플 튜브에 대하여 다채널의 광학계를 통해 다양한 파장의 광을 통한 검출이 가능하도록 하여 보다 신속하고 효율적으로 여러 개의 샘플에 대한 정확한 결과값을 획득할 수 있도록 하고자 한다.The present invention has been devised to solve the above problems, and the multi-channel isothermal amplification system according to the present invention enables detection through light of various wavelengths through a multi-channel optical system for a plurality of sample tubes in a heating block. It is intended to be able to obtain accurate result values for multiple samples more quickly and efficiently.
또한, 본 발명에 따른 다채널 등온 증폭 시스템은 샘플 튜브가 위치하는 히팅 블록의 하단에 광원 모듈을 배치하고 상기 히팅 블록의 측면에 샘플의 형광 신호를 검출하는 검출 모듈을 배치하여, 상기 광원 모듈과 상기 검출 모듈 간에 광의 상호 간섭이 발생하지 않도록 하여, 보다 정확한 측정이 가능한 다채널 등온 증폭 시스템을 제공하고자 한다.In addition, the multi-channel isothermal amplification system according to the present invention arranges a light source module at the bottom of the heating block where the sample tube is located, and arranges a detection module for detecting the fluorescent signal of the sample on the side of the heating block, so that the light source module and It is intended to provide a multi-channel isothermal amplification system capable of more accurate measurement by preventing mutual interference of light between the detection modules.
또한, 본 발명에 따른 다채널 등온 증폭 시스템은 광원 모듈과 검출 모듈을 일체화하여 보다 컴팩트하게 구성함으로써 사용성과 휴대성을 더욱 향상시키고자 한다.In addition, the multi-channel isothermal amplification system according to the present invention is intended to further improve usability and portability by integrating a light source module and a detection module into a more compact configuration.
전술한 문제를 해결하기 위한 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템은 다수의 샘플 튜브들이 삽입되는 홀(hole)들이 일렬로 형성되는 히팅 블록; 상기 히팅 블록에 삽입된 샘플 튜브 들에 각각 상이한 파장의 광을 입사시켜 상기 샘플 튜브 내의 샘플의 형광 신호를 검출하는 광학계; 상기 히팅 블록으로부터의 열을 외부로 방출하는 방열판; 및 상기 히팅 블록과 상기 방열판 사이에 배치되어, 상기 히팅 블록과 상기 방열판 간의 열을 교환하는 펠티어 모듈;을 포함하여 구성된다.A multi-channel isothermal amplification system according to an embodiment of the present invention for solving the above problems includes a heating block in which holes into which a plurality of sample tubes are inserted are formed in a row; an optical system for detecting fluorescence signals of samples in the sample tubes by incident light of different wavelengths on each of the sample tubes inserted into the heating block; a heat sink dissipating heat from the heating block to the outside; and a peltier module disposed between the heating block and the heat sink to exchange heat between the heating block and the heat sink.
본 발명의 다른 일실시예에 따르면, 상기 광학계는 상기 히팅 블록의 하부에서 상기 샘플 튜브 측으로 광을 입사시키는 광원 모듈; 및 상기 히팅 블록의 측부에서 상기 샘플로부터의 형광 신호를 검출하는 검출 모듈;로 구성되는 4개의 채널을 포함하여 구성된다.According to another embodiment of the present invention, the optical system includes a light source module for incident light from the lower portion of the heating block toward the sample tube; and a detection module for detecting a fluorescent signal from the sample at a side of the heating block.
본 발명의 다른 일실시예에 따르면, 상기 방열판은 상기 검출 모듈이 배치되는 측부에 대향하는 타 측부에 배치되어 상기 히팅 블록으로부터의 열을 외부로 방출할 수 있다.According to another embodiment of the present invention, the heat dissipation plate may be disposed on the other side opposite to the side on which the detection module is disposed to emit heat from the heating block to the outside.
본 발명의 다른 일실시예에 따르면, 상기 광원 모듈은 광을 조사하는 LED; 상기 LED로부터 조사되는 광을 필터링 하는 여기 필터(excitation filter); 및 상기 여기 필터에서 필터링된 광을 상기 샘플 튜브 내의 샘플로 집중시키는 제1 렌즈;를 포함하여 구성될 수 있다.According to another embodiment of the present invention, the light source module LED for irradiating light; an excitation filter filtering light emitted from the LED; and a first lens concentrating the light filtered by the excitation filter onto a sample in the sample tube.
본 발명의 다른 일실시예에 따르면, 상기 검출 모듈은 상기 샘플의 형광 신호를 수신하는 방출 필터(emission filter); 상기 방출 필터에서 필터링된 형광 신호를 투과시키는 제2 렌즈; 및 상기 제2 렌즈를 통해 유입되는 형광 신호를 수신하는 광감지 센서;를 포함하여 구성될 수 있다.According to another embodiment of the present invention, the detection module includes an emission filter for receiving a fluorescence signal of the sample; a second lens that transmits the fluorescence signal filtered by the emission filter; and an optical sensor for receiving a fluorescence signal introduced through the second lens.
본 발명의 다른 일실시예에 따르면, 상기 히팅 블록은 복수개의 상기 홀이 일렬로 형성되는 제1 히팅 블록 영역; 및 복수개의 상기 홀이 일렬로 형성되고, 상기 제1 히팅 블록 영역의 길이 방향으로 상기 홀과 홀 사이의 간격만큼 이격되어, 상기 제1 히팅 블록 영역과 일렬로 배치되는 제2 히팅 블록 영역;을 포함하여 구성될 수 있다.According to another embodiment of the present invention, the heating block includes a first heating block region in which a plurality of the holes are formed in a line; and a second heating block area in which the plurality of holes are formed in a line and spaced apart from each other by a gap between the holes in the longitudinal direction of the first heating block area, and disposed in a line with the first heating block area. can be configured to include
본 발명의 다른 일실시예에 따르면, 상기 광학계의 각 채널은 일렬로 배치되는 상기 제1 히팅 블록 영역 및 상기 제2 히팅 블록 영역의 길이 방향으로 이동하며, 각 상기 광학계는 상기 제1 히팅 블록 영역 및 상기 제2 히팅 블록 영역의 홀에 삽입된 샘플 튜브 들에 각각 설정된 파장의 광을 순차적으로 입사시켜 상기 샘플 튜브 내의 샘플의 형광 신호를 검출할 수 있다.According to another embodiment of the present invention, each channel of the optical system moves in the longitudinal direction of the first heating block area and the second heating block area arranged in a line, and each of the optical systems moves in the first heating block area. and by sequentially incident light having a set wavelength to each of the sample tubes inserted into the holes of the second heating block region, the fluorescence signal of the sample in the sample tube may be detected.
본 발명에 따른 다채널 등온 증폭 시스템은 히팅 블록 내의 다수의 샘플 튜브에 대하여 다채널의 광학계를 통해 다양한 파장의 광을 통한 검출이 가능하도록 하여 보다 신속하고 효율적으로 여러 개의 샘플에 대한 정확한 결과값을 획득할 수 있다.The multi-channel isothermal amplification system according to the present invention enables detection through light of various wavelengths through a multi-channel optical system for a plurality of sample tubes in a heating block, so that accurate results for multiple samples can be obtained more quickly and efficiently. can be obtained
또한, 본 발명에 따른 다채널 등온 증폭 시스템은 샘플 튜브가 위치하는 히팅 블록의 하단에 광원 모듈을 배치하고 상기 히팅 블록의 측면에 샘플의 형광 신호를 검출하는 검출 모듈을 배치하여, 상기 광원 모듈과 상기 검출 모듈 간에 광의 상호 간섭이 발생하지 않도록 하여, 보다 정확한 측정이 가능한 다채널 등온 증폭 시스템을 제공할 수 있다.In addition, the multi-channel isothermal amplification system according to the present invention arranges a light source module at the bottom of the heating block where the sample tube is located, and arranges a detection module for detecting the fluorescent signal of the sample on the side of the heating block, so that the light source module and It is possible to provide a multi-channel isothermal amplification system capable of more accurate measurement by preventing mutual interference of light between the detection modules.
또한, 본 발명에 따른 다채널 등온 증폭 시스템은 광원 모듈과 검출 모듈을 일체화하여 보다 컴팩트하게 구성함으로써 사용성과 휴대성을 더욱 향상시킬 수 있다.In addition, the multi-channel isothermal amplification system according to the present invention can further improve usability and portability by integrating a light source module and a detection module into a more compact configuration.
도 1은 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템을 도시한 도면이다.1 is a diagram showing a multi-channel isothermal amplification system according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템의 내부 사시도이다.2 is an internal perspective view of a multi-channel isothermal amplification system according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템의 히팅 블록을 도시한 도면이다.3 is a diagram showing a heating block of a multi-channel isothermal amplification system according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템의 구성을 보다 상세하게 설명하기 위한 도면이다.4 is a diagram for explaining in detail the configuration of a multi-channel isothermal amplification system according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템의 동작 방법을 설명하기 위한 도면이다.5 is a diagram for explaining an operating method of a multi-channel isothermal amplification system according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템의 구성도이다.6 is a block diagram of a multi-channel isothermal amplification system according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 바람직한 본 발명의 일실시예에 대해서 상세히 설명한다. 다만, 실시형태를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 상세한 설명은 생략한다. 또한, 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of the present invention will be described in detail. However, in describing the embodiments, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, a detailed description thereof will be omitted. In addition, the size of each component in the drawings may be exaggerated for description, and does not mean a size that is actually applied.
이후부터는 도면을 참조하여 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템의 구성을 설명하기로 한다.Hereinafter, the configuration of a multi-channel isothermal amplification system according to an embodiment of the present invention will be described with reference to the drawings.
도 1은 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템을 도시한 도면이고, 도 2는 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템의 내부 사시도이다.1 is a diagram showing a multi-channel isothermal amplification system according to an embodiment of the present invention, and FIG. 2 is an internal perspective view of the multi-channel isothermal amplification system according to an embodiment of the present invention.
또한, 도 3은 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템의 히팅 블록을 도시한 도면이고, 도 4는 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템의 구성을 보다 상세하게 설명하기 위한 도면이며, 도 5는 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템의 동작 방법을 설명하기 위한 도면이다.3 is a diagram showing a heating block of a multi-channel isothermal amplification system according to an embodiment of the present invention, and FIG. 4 describes the configuration of the multi-channel isothermal amplification system according to an embodiment of the present invention in more detail. 5 is a diagram for explaining an operating method of a multi-channel isothermal amplification system according to an embodiment of the present invention.
본 발명의 일실시예에 따른 다채널 등온 증폭 시스템은 히팅 블록(100), 광학계(200), 방열판(300) 및 펠티어 모듈(400)을 포함하여 구성된다.A multi-channel isothermal amplification system according to an embodiment of the present invention includes a heating block 100, an optical system 200, a heat sink 300, and a Peltier module 400.
상기 히팅 블록(100)에는 다수의 샘플 튜브(101)들이 삽입되는 홀(hole: 102)들이 형성되는데, 상기 홀(102)은 웰(well)로 지칭되기도 한다. 이때, 상기 홀(102)들은 일렬로 형성된다. 즉, 상기 히팅 블록(100) 상에 상기 홀(102)들은 일방향으로 일렬로 형성되어 상기 홀(102)들에는 샘플이 수용되는 샘플 튜브(101)들이 각각 배치될 수 있다. Holes 102 into which a plurality of sample tubes 101 are inserted are formed in the heating block 100, and the holes 102 are also referred to as wells. At this time, the holes 102 are formed in a line. That is, the holes 102 are formed in a line in one direction on the heating block 100, and sample tubes 101 accommodating samples may be disposed in the holes 102, respectively.
보다 구체적으로, 상기 히팅 블록(100)은 제1 히팅 블록 영역(100A) 및 제2 히팅 블록 영역(100B)으로 구분될 수 있다.More specifically, the heating block 100 may be divided into a first heating block area 100A and a second heating block area 100B.
상기 제1 히팅 블록 영역(100A)은 복수개의 상기 홀(102)이 일렬로 형성되고, 마찬가지로 상기 제2 히팅 블록 영역(100B)에도 복수개의 상기 홀(102)이 일렬로 형성되며, 이때 상기 제2 히팅 블록 영역(100B)은 상기 제1 히팅 블록 영역(100A)과 상기 홀(102)과 홀(102) 사이의 간격만큼 이격되어, 상기 제1 히팅 블록 영역(100A)과 일렬로 배치될 수 있다.The first heating block area 100A has a plurality of holes 102 formed in a line, and similarly, a plurality of holes 102 are formed in a line in the second heating block area 100B. 2 The heating block area 100B may be spaced apart from the first heating block area 100A by the distance between the hole 102 and the hole 102, and may be disposed in line with the first heating block area 100A. there is.
광학계(200)는 상기 히팅 블록(100)에 삽입된 샘플 튜브(101)들에 각 파장의 광을 입사시켜, 상기 샘플 튜브(101) 내의 샘플의 형광 신호를 검출한다.The optical system 200 injects light of each wavelength into the sample tubes 101 inserted into the heating block 100, and detects a fluorescence signal of the sample in the sample tubes 101.
본 발명의 일실시예에 의하면 상기 광학계(200)는 4개의 채널을 포함하도록 구성되어, 각각의 채널이 서로 상이한 파장의 광을 상기 히팅 블록(100)에 삽입된 샘플 튜브(101)에 각각 입사시키고, 상기 샘플 튜브(101) 내의 샘플의 형광 신호를 검출하며 순차적으로 이동하도록 구성될 수 있다.According to one embodiment of the present invention, the optical system 200 is configured to include four channels, and each channel incidents light of a different wavelength to the sample tube 101 inserted into the heating block 100, respectively. and detecting the fluorescence signal of the sample in the sample tube 101 and moving sequentially.
보다 구체적으로, 상기 광학계(200)의 각 채널은 광원 모듈(210) 및 검출 모듈(220)로 구성될 수 있다.More specifically, each channel of the optical system 200 may include a light source module 210 and a detection module 220 .
상기 광원 모듈(210)은 상기 히팅 블록(100)의 하부에서 상기 샘플 튜브(101) 측으로 광을 입사시키고, 상기 검출 모듈(220)은 상기 히팅 블록(100)의 측부에서 상기 샘플로부터의 형광 신호를 검출할 수 있다.The light source module 210 injects light from the bottom of the heating block 100 toward the sample tube 101, and the detection module 220 emits a fluorescent signal from the sample at the side of the heating block 100. can be detected.
보다 구체적으로, 상기 광원 모듈(210)은 광을 조사하는 LED(211), 상기 LED(211)로부터 조사되는 광을 필터링 하는 여기 필터(excitation filter: 212) 및 상기 여기 필터(212)에서 필터링된 광을 상기 샘플 튜브(101) 내의 샘플로 집중시키는 제1 렌즈(213)를 포함하여 구성될 수 있다.More specifically, the light source module 210 includes an LED 211 for emitting light, an excitation filter 212 for filtering light emitted from the LED 211, and a filter filtered by the excitation filter 212. It may be configured to include a first lens 213 for concentrating light onto the sample in the sample tube 101.
또한, 상기 검출 모듈(220)은 상기 샘플의 형광 신호를 수신하는 방출 필터(emission filter: 221), 상기 방출 필터(221)에서 필터링된 형광 신호를 투과시키는 제2 렌즈(222) 및 상기 제2 렌즈(222)를 통해 유입되는 형광 신호를 수신하는 광감지 센서(223)를 포함하여 구성될 수 있다.In addition, the detection module 220 includes an emission filter 221 for receiving the fluorescence signal of the sample, a second lens 222 for transmitting the fluorescence signal filtered by the emission filter 221, and the second It may be configured to include an optical sensor 223 that receives a fluorescence signal introduced through the lens 222 .
한편, 상기 방열판(300)은 상기 히팅 블록(100)으로부터의 열을 외부로 방출시킨다.Meanwhile, the heat sink 300 dissipates heat from the heating block 100 to the outside.
이때, 상기 방열판(300)은 상기 검출 모듈(220)이 배치되는 측부에 대향하는 타 측부에 배치되어 상기 히팅 블록(100)으로부터의 열을 외부로 효과적으로 방출할 수 있다.At this time, the heat dissipation plate 300 is disposed on the other side opposite to the side where the detection module 220 is disposed, so that heat from the heating block 100 can be effectively discharged to the outside.
보다 구체적으로, 상기 방열판(300)은 상기 히팅 블록(100)의 제1 히팅 블록 영역(110A)에 대응되도록 배치되는 제1 방열판과, 상기 히팅 블록(100)의 제2 히팅 블록 영역(110B)에 대응되도록 배치되는 제2 방열판으로 구성될 수 있다.More specifically, the heat sink 300 includes a first heat sink disposed to correspond to the first heating block area 110A of the heating block 100, and a second heating block area 110B of the heating block 100. It may be composed of a second heat dissipation plate disposed to correspond to.
또한, 상기 펠티어 모듈(400)은 상기 히팅 블록(100)과 상기 방열판(300) 사이에 배치되어, 상기 히팅 블록(100)과 상기 방열판(300) 간의 열을 교환하도록 구성될 수 있다.In addition, the Peltier module 400 may be disposed between the heating block 100 and the heat sink 300 to exchange heat between the heating block 100 and the heat sink 300 .
이와 같이, 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템은 상기 펠티어 모듈(400)을 통해 상기 히팅 블록(100)으로부터의 열을 효과적으로 냉각시킴과 동시에 상기 방열판(300)을 통해 더욱 효과적으로 방출되도록 할 수 있다.As such, the multi-channel isothermal amplification system according to an embodiment of the present invention effectively cools the heat from the heating block 100 through the Peltier module 400 and more effectively releases it through the heat sink 300 at the same time. can be made
즉, 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템은 이와 같은 구성을 통해, 상기 4개의 채널로 구성되는 광학계(200)가 상기 히팅 블록(100)의 상기 제1 히팅 블록 영역(100A) 및 상기 제2 히팅 블록 영역(100B)의 길이 방향으로 이동하며, 각 상기 광학계(200)의 각 채널은 상기 제1 히팅 블록 영역(100A) 및 상기 제2 히팅 블록 영역(100B)의 홀에 삽입된 샘플 튜브(101) 들에 각각 설정된 파장의 광을 순차적으로 입사시켜 상기 샘플 튜브(101) 내의 샘플의 형광 신호를 검출할 수 있다.That is, in the multi-channel isothermal amplification system according to an embodiment of the present invention, through such a configuration, the optical system 200 composed of the four channels is the first heating block region 100A of the heating block 100 and moves in the longitudinal direction of the second heating block area 100B, and each channel of the optical system 200 is inserted into the holes of the first heating block area 100A and the second heating block area 100B. A fluorescence signal of a sample in the sample tube 101 may be detected by sequentially incident light having a set wavelength to each of the sample tubes 101 .
이와 같이, 본 발명에 따른 다채널 등온 증폭 시스템은 히팅 블록 내의 다수의 샘플 튜브에 대하여 4개의 채널을 통해 형광 신호를 검출하여 보다 신속하고 효율적으로 정확한 결과값을 획득할 수 있다.As such, the multi-channel isothermal amplification system according to the present invention can obtain accurate results more quickly and efficiently by detecting fluorescence signals through four channels for a plurality of sample tubes in the heating block.
또한, 본 발명의 실시예에서는 4개의 채널을 포함하여 구성되는 광학계의 실시예를 들어 설명하였으나, 필요에 따라 광학계의 채널의 수를 변경하여 보다 신속하고 효율적인 검출이 이루어지도록 할 수 있다.In addition, in the embodiment of the present invention, an embodiment of an optical system including four channels has been described, but the number of channels of the optical system can be changed as needed to achieve more rapid and efficient detection.
그 뿐만 아니라, 본 발명에 따른 다채널 등온 증폭 시스템은 샘플 튜브가 위치하는 히팅 블록의 하단에 광원 모듈을 배치하고 상기 히팅 블록의 측면에 샘플의 형광 신호를 검출하는 검출 모듈을 배치하여, 상기 광원 모듈과 상기 검출 모듈 간에 광의 상호 간섭이 발생하지 않도록 하여, 보다 정확한 측정이 가능한 다채널 등온 증폭 시스템을 제공할 수 있다.In addition, the multi-channel isothermal amplification system according to the present invention arranges a light source module at the bottom of a heating block where a sample tube is located and a detection module for detecting a fluorescent signal of a sample on the side of the heating block, so that the light source It is possible to provide a multi-channel isothermal amplification system capable of more accurate measurement by preventing mutual interference of light between the module and the detection module.
도 6은 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템의 구성도이다.6 is a block diagram of a multi-channel isothermal amplification system according to an embodiment of the present invention.
도 6을 참조하면, 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템은 LCD 터치 패널(LCD Touch Panel)을 포함하도록 구성되어 상기 LCD 터치 패널을 통해 사용자의 제어 명령을 입력하고 샘플 신호의 검출 정보 및 관련 정보를 표시할 수 있다.Referring to FIG. 6, the multi-channel isothermal amplification system according to an embodiment of the present invention is configured to include an LCD touch panel, and inputs a user's control command through the LCD touch panel and detects a sample signal. Information and related information can be displayed.
또한, 본 발명의 일실시예에 따른 다채널 등온 증폭 시스템은 메인 컨트롤러(Main Controller), 스텝퍼 모터(Stepper Motror)를 동작시키는 모터 드라이버(Motor Driver), 광학 모듈(Optic Module)의 LED를 동작시키는 LED 드라이버(LED Driver), 히팅 블록(100)의 열을 감지하는 온도 센서(Temperature Sensor), 펠티어 모듈(Peltier Module)을 제어하는 펠티어 컨트롤(Peltier Control), 히팅 블록에 설치되는 탑 히터(Top Heater)를 제어하는 히터 컨트롤(Heater Control), 탑 히터에 설치되는 온도 센서(Temperature Sensor), 팬(Fan)을 포함하여 구성되어, 상기 메인 컨트롤러에 의해 제어된다.In addition, the multi-channel isothermal amplification system according to an embodiment of the present invention operates a main controller, a motor driver for operating a stepper motor, and an LED of an optical module. LED driver, temperature sensor for detecting the heat of the heating block 100, Peltier control for controlling the Peltier module, top heater installed in the heating block ), including a heater control (Heater Control), a temperature sensor (Temperature Sensor) installed in the top heater, and a fan (Fan), and is controlled by the main controller.
이와 같이, 본 발명에 따른 다채널 등온 증폭 시스템은 광원 모듈과 검출 모듈을 일체화하여 보다 컴팩트하게 구성함으로써 사용성과 휴대성을 더욱 향상시킬 수 있다.As such, the multi-channel isothermal amplification system according to the present invention can further improve usability and portability by integrating the light source module and the detection module into a more compact configuration.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 전술한 실시예에 국한되어 정해져서는 안 되며, 청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.In the detailed description of the present invention as described above, specific embodiments have been described. However, various modifications are possible without departing from the scope of the present invention. The technical spirit of the present invention should not be limited to the above-described embodiments of the present invention and should not be defined, and should be defined by not only the claims but also those equivalent to these claims.

Claims (7)

  1. 다수의 샘플 튜브들이 삽입되는 홀(hole)들이 일렬로 형성되는 히팅 블록;a heating block in which holes into which a plurality of sample tubes are inserted are formed in a row;
    상기 히팅 블록에 삽입된 샘플 튜브 들에 각각 상이한 파장의 광을 입사시켜 상기 샘플 튜브 내의 샘플의 형광 신호를 검출하는 광학계;an optical system for detecting fluorescence signals of samples in the sample tubes by incident light of different wavelengths on each of the sample tubes inserted into the heating block;
    상기 히팅 블록으로부터의 열을 외부로 방출하는 방열판; 및a heat sink dissipating heat from the heating block to the outside; and
    상기 히팅 블록과 상기 방열판 사이에 배치되어, 상기 히팅 블록과 상기 방열판 간의 열을 교환하는 펠티어 모듈;a peltier module disposed between the heating block and the heat sink to exchange heat between the heating block and the heat sink;
    을 포함하는 다채널 등온 증폭 시스템.Multi-channel isothermal amplification system comprising a.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 광학계는,The optical system,
    상기 히팅 블록의 하부에서 상기 샘플 튜브 측으로 광을 입사시키는 광원 모듈; 및a light source module for incident light from a lower part of the heating block toward the sample tube; and
    상기 히팅 블록의 측부에서 상기 샘플로부터의 형광 신호를 검출하는 검출 모듈;a detection module for detecting a fluorescence signal from the sample at a side of the heating block;
    로 구성되는 4개의 채널을 포함하는 다채널 등온 증폭 시스템.Multi-channel isothermal amplification system including four channels consisting of.
  3. 청구항 2에 있어서,The method of claim 2,
    상기 방열판은,The heat sink is
    상기 검출 모듈이 배치되는 측부에 대향하는 타 측부에 배치되어 상기 히팅 블록으로부터의 열을 외부로 방출하는 다채널 등온 증폭 시스템.A multi-channel isothermal amplification system disposed on the other side opposite to the side on which the detection module is disposed to emit heat from the heating block to the outside.
  4. 청구항 2에 있어서,The method of claim 2,
    상기 광원 모듈은,The light source module,
    광을 조사하는 LED;LED irradiating light;
    상기 LED로부터 조사되는 광을 필터링 하는 여기 필터(excitation filter); 및an excitation filter filtering light emitted from the LED; and
    상기 여기 필터에서 필터링된 광을 상기 샘플 튜브 내의 샘플로 집중시키는 제1 렌즈;a first lens concentrating the light filtered by the excitation filter onto a sample in the sample tube;
    를 포함하는 다채널 등온 증폭 시스템.Multi-channel isothermal amplification system comprising a.
  5. 청구항 1에 있어서,The method of claim 1,
    상기 검출 모듈은,The detection module,
    상기 샘플의 형광 신호를 수신하는 방출 필터(emission filter);an emission filter for receiving a fluorescence signal of the sample;
    상기 방출 필터에서 필터링된 형광 신호를 투과시키는 제2 렌즈; 및a second lens that transmits the fluorescence signal filtered by the emission filter; and
    상기 제2 렌즈를 통해 유입되는 형광 신호를 수신하는 광감지 센서;an optical sensor receiving a fluorescence signal introduced through the second lens;
    를 포함하는 다채널 등온 증폭 시스템.Multi-channel isothermal amplification system comprising a.
  6. 청구항 1에 있어서,The method of claim 1,
    상기 히팅 블록은,The heating block,
    복수개의 상기 홀이 일렬로 형성되는 제1 히팅 블록 영역; 및a first heating block area in which a plurality of the holes are formed in a line; and
    복수개의 상기 홀이 일렬로 형성되고, 상기 제1 히팅 블록 영역의 길이 방향으로 상기 홀과 홀 사이의 간격만큼 이격되어, 상기 제1 히팅 블록 영역과 일렬로 배치되는 제2 히팅 블록 영역;a second heating block area in which the plurality of holes are formed in a line, spaced apart from each other by a gap between the holes in the longitudinal direction of the first heating block area, and arranged in a line with the first heating block area;
    을 포함하는 다채널 등온 증폭 시스템.Multi-channel isothermal amplification system comprising a.
  7. 청구항 6에 있어서,The method of claim 6,
    상기 광학계의 각 채널은,Each channel of the optical system,
    일렬로 배치되는 상기 제1 히팅 블록 영역 및 상기 제2 히팅 블록 영역의 길이 방향으로 이동하며, 각 상기 광학계는 상기 제1 히팅 블록 영역 및 상기 제2 히팅 블록 영역의 홀에 삽입된 샘플 튜브 들에 각각 설정된 파장의 광을 순차적으로 입사시켜 상기 샘플 튜브 내의 샘플의 형광 신호를 검출하는 다채널 등온 증폭 시스템.It moves in the longitudinal direction of the first heating block area and the second heating block area arranged in a row, and each of the optical systems is applied to the sample tubes inserted into the holes of the first heating block area and the second heating block area. A multi-channel isothermal amplification system for detecting the fluorescence signal of the sample in the sample tube by sequentially entering light of each set wavelength.
PCT/KR2022/010737 2021-09-24 2022-07-21 Multi-channel isothermal amplification system WO2023048377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0126305 2021-09-24
KR1020210126305A KR102666561B1 (en) 2021-09-24 2021-09-24 Multi channel isothermal amplification system

Publications (1)

Publication Number Publication Date
WO2023048377A1 true WO2023048377A1 (en) 2023-03-30

Family

ID=85720855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010737 WO2023048377A1 (en) 2021-09-24 2022-07-21 Multi-channel isothermal amplification system

Country Status (2)

Country Link
KR (1) KR102666561B1 (en)
WO (1) WO2023048377A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040048754A (en) * 2002-12-04 2004-06-10 뮤앤바이오 주식회사 Temperature controlled real time fluorescence detection apparatus
JP3776377B2 (en) * 2002-05-20 2006-05-17 アロカ株式会社 Sample testing equipment
KR20170074662A (en) * 2015-12-22 2017-06-30 조원창 Gene Diagnostic Apparatus
KR102126032B1 (en) * 2013-07-31 2020-07-08 삼성전자주식회사 Multi-channel fluorescence detecting module and nucleic acid analysis system having the same
KR20200143639A (en) * 2019-06-13 2020-12-24 크레도 다이어그노스틱스 바이오메디컬 피티이. 엘티디. Pcr apparatus for real-time detecting multiplex fluorescent signals

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100580639B1 (en) 2003-12-30 2006-05-16 삼성전자주식회사 Apparatus for detecting fluorescence flow
KR20210029449A (en) * 2019-09-06 2021-03-16 한국전자기술연구원 Small sized diagnostics system using isothermal amplification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3776377B2 (en) * 2002-05-20 2006-05-17 アロカ株式会社 Sample testing equipment
KR20040048754A (en) * 2002-12-04 2004-06-10 뮤앤바이오 주식회사 Temperature controlled real time fluorescence detection apparatus
KR102126032B1 (en) * 2013-07-31 2020-07-08 삼성전자주식회사 Multi-channel fluorescence detecting module and nucleic acid analysis system having the same
KR20170074662A (en) * 2015-12-22 2017-06-30 조원창 Gene Diagnostic Apparatus
KR20200143639A (en) * 2019-06-13 2020-12-24 크레도 다이어그노스틱스 바이오메디컬 피티이. 엘티디. Pcr apparatus for real-time detecting multiplex fluorescent signals

Also Published As

Publication number Publication date
KR102666561B1 (en) 2024-05-17
KR20230043438A (en) 2023-03-31

Similar Documents

Publication Publication Date Title
US10724084B2 (en) Systems and methods for fluorescence detection with a movable detection module
US10890720B2 (en) Method of measuring a time-varying signal emission
US6870165B2 (en) Multi-color multiplexed analysis in a bio-separation system
JP4240332B2 (en) Polymerase chain reaction DNA amplification and detection method
EP2630258A2 (en) Systems and methods for assessing biomolecule characteristics
CN103221529A (en) Apparatus and methods for integrated sample preparation, reaction and detection
KR20210002317A (en) Multiplex pcr apparatus
WO2009157695A2 (en) Thermal cycling reaction block and continuous real-time monitoring apparatus using the same
CN111808744A (en) Portable full-automatic nucleic acid constant temperature amplification detector
WO2020067742A1 (en) Real-time polymerase chain reaction fluorescence detection device
WO2016143995A1 (en) Multiplex pcr chip and multiplex pcr device comprising same
WO2023048377A1 (en) Multi-channel isothermal amplification system
EP4154981A1 (en) Multichannel isothermal amplification system and operation method
EP3344976A1 (en) Optical structure and optical light detection system
WO2022025381A1 (en) Multiplex pcr chip and multiplex pcr method using same
US6605813B1 (en) Benchtop fluorescence molecular beacons detector and reader
WO2003034044A2 (en) Multi-color multiplexed analysis in a bio-separation system
CN215931670U (en) Metal bath with fluorescence detection function
WO2022164176A1 (en) Optical signal detection device
WO2016017832A1 (en) Nucleic acid amplification device
AU2021211976B2 (en) Method of measuring a time-varying signal emission
CN113203715A (en) Portable fluorescence detection device and diagnostic method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22873083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE