WO2020067742A1 - Real-time polymerase chain reaction fluorescence detection device - Google Patents

Real-time polymerase chain reaction fluorescence detection device Download PDF

Info

Publication number
WO2020067742A1
WO2020067742A1 PCT/KR2019/012544 KR2019012544W WO2020067742A1 WO 2020067742 A1 WO2020067742 A1 WO 2020067742A1 KR 2019012544 W KR2019012544 W KR 2019012544W WO 2020067742 A1 WO2020067742 A1 WO 2020067742A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence detection
filter
real
polymerase chain
chain reaction
Prior art date
Application number
PCT/KR2019/012544
Other languages
French (fr)
Korean (ko)
Inventor
김종대
황지수
Original Assignee
주식회사 바이오메듀스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오메듀스 filed Critical 주식회사 바이오메듀스
Publication of WO2020067742A1 publication Critical patent/WO2020067742A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6467Axial flow and illumination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6471Special filters, filter wheel

Definitions

  • the present disclosure relates to a real-time polymerase chain reaction fluorescence detection device, and more particularly, to a real-time polymerase chain reaction fluorescence detection device capable of miniaturizing the fluorescence detection device and reducing manufacturing cost.
  • the PCR method consists of three steps. After undergoing a heat denaturation process that separates two strands of DNA using heat, the temperature is lowered so that the primer is annealed to the end of the sequence to be amplified, and heat is slightly raised again to synthesize DNA.
  • the polymerization reaction (polymerization or extension) proceeds.
  • the heat denaturation process is a process in which hydrogen bonds of complementary bases of two strands of DNA are dropped to one strand by using heat at 95 ° C, and the binding reaction is complementary to a strand of DNA at about 55 to 65 ° C. It is the process of binding to the base sequence.
  • the polymerization reaction is followed by attaching the starter to one strand of DNA (template DNA) and then synthesizing the complementary base of the template DNA using DNA polymerase to extend the two strands of DNA.
  • the illumination unit may be arranged such that excitation light is irradiated on the PCR chip.
  • the optical lens and image sensor are camera modules for a smartphone, and the image sensor may be a complementary metal-oxide-semiconductor (CMOS) image sensor or a charge-coupled device (CCD) image sensor.
  • CMOS complementary metal-oxide-semiconductor
  • CCD charge-coupled device
  • the PCR chip includes: a housing, a black matt PCB substrate disposed over the housing, and a temperature sensor disposed under the black matt PCB substrate, a double-sided tape including a reaction chamber, and a temperature sensor disposed under the black matt PCB substrate, and It includes a cover film disposed on the double-sided tape, the reagent for fluorescence detection can be accommodated in the reaction chamber.
  • FIG. 3 is a view showing a fluorescence detection unit according to an embodiment of the present invention.
  • FIG. 5 is a block diagram showing a fluorescence detector according to an embodiment of the present invention.
  • FIG. 6 is a diagram of a 4-channel laten filter according to an embodiment of the present disclosure.
  • FIG. 7 is a view showing a real-time polymerase chain reaction fluorescence detection device according to an embodiment of the present invention.
  • FIG. 8 is a view showing the configuration of a PCR chip according to an embodiment of the present invention.
  • FIG. 9 is a view showing a cross-sectional view of the PCR chip shown in FIG. 8.
  • FIG. 10 is a view showing a real picture of a PCR chip according to an embodiment of the present invention.
  • FIG. 11 is a photograph of the real-time polymerase chain reaction fluorescence detection device of FIG. 7.
  • FIG. 12 is a view showing the results of fluorescence detection in real-time PCR using the real-time polymerase chain reaction fluorescence detection device of FIG.
  • FIG. 13 is a view showing the results of the same fluorescence detection using Roche's LightCycler 480 to confirm the fluorescence amplification performance of the real-time polymerase chain reaction fluorescence detection device (FIG. 11) of the present invention.
  • the real-time polymerase chain reaction fluorescence detection device 100 is within the illumination unit 110 configured to irradiate the PCR chip 140 with light, an excitation filter 120 attached to one end of the illumination unit, and the PCR chip 140 It may be configured to include a fluorescent detection unit 130 configured to detect a fluorescent material.
  • the lighting unit 110 may include various lights such as LEDs, lasers, and fibers connected to the LEDs, and may include at least one light source. In addition, for fluorescence detection, the illumination unit 110 may be arranged such that light is side illuminated.
  • the excitation filter 120 attached to one end of the lighting unit 110 is filtered to pass only a specific wavelength region (excitation wavelength region) of light emitted from a light source installed inside the lighting unit 110 so that the excitation light is transmitted to the PCR chip 140. It can be configured to investigate.
  • the fluorescent material in the PCR chip 140 may absorb excitation light provided from the illumination unit 110 and emit light (emission light) in a longer wavelength region (emission wavelength region).
  • the fluorescence detector 130 may be configured to detect emitted light emitted by the fluorescent material in the PCR chip 140. To this end, the fluorescence detector 130 may include an image sensor 132, an emission filter 134, and an optical lens 136.
  • the emission filter 134 may be configured to block excitation light and pass only the emission light emitted by the fluorescent material.
  • the excitation filter 120 may be a Ratten filter, and may be composed of a single channel or multiple channels.
  • the excitation filter 120 may be configured as a multi-channel laten filter, in which case, the illumination unit 110 is provided with the multi-channel excitation filter 120 ) May include a plurality of light sources.
  • the excitation filter 120 may be composed of a 2-channel or 4-channel laten filter.
  • the excitation filter 120 may be an interference filter, but is not limited thereto, and may be configured using various filters.
  • the emission filter 134 may be disposed on one side of the optical lens 136. That is, the optical lens 136 may be disposed between the emission filter 134 and the image sensor 132.
  • the emission filter 134 may be composed of a single channel or a single channel. When configured as a single channel, an interference filter or a laten filter can be used, and when configured as a multi-channel, a laten filter can be used.
  • an emission filter 134 may be disposed between the optical lens 136 and the image sensor 132.
  • the emission filter 134 may be composed of a single channel or multiple channels.
  • an interference filter or a laten filter can be used, and when configured as a multi-channel, a laten filter can be used.
  • the emitted light passing through the emission filter 134 may be transmitted to the image sensor 132.
  • the image sensor 132 may be configured to convert light into an electrical signal, and may be, for example, a Complementary Metal-Oxide-Semiconductor (CMOS) image sensor, a charge-coupled device (CCD) image sensor, and the like. No, any image sensor can be used. Since the emission filter 134 passes only the emitted light, the image sensor 132 may convert the emitted light into an electrical signal to detect a fluorescent material.
  • CMOS Complementary Metal-Oxide-Semiconductor
  • CCD charge-coupled device
  • the real-time polymerase chain reaction fluorescence detection device 200 is in a state where the control unit 210 is connected to the fluorescence detection unit 130 and the PCR chip 140.
  • the control unit 210 may be a terminal equipped with a computational processing device such as a laptop or desktop.
  • the temperature sensor 220 may measure the temperature of the PCR chip 140 and provide it to the control unit 210.
  • the control unit 210 may control the temperature of the PCR chip 140 by controlling the heater 230 and the fan 240 of the PCR chip 140 using PWM (Pulse Width Modulation) and FET (Field Effect Transistor). . Specifically, the controller 210 may calculate the PWM based on the Proportional-Integral-Derivative (PID) control mechanism based on the temperature value provided from the temperature sensor 220.
  • PWM Proportional-Integral-Derivative
  • the control unit 210 may provide not only temperature control, but also a GUI environment related to PCR protocol execution.
  • the lighting unit 110 may irradiate the excitation light diagonally toward the PCR chip 140, and it is also possible to illuminate using several lighting components in front of the PCR chip 140.
  • the image sensor 132 of the fluorescent detector 130 may detect the emitted light that has passed through the optical lens 136 and the emission filter 134, amplify the optical signal, and output the amplified signal to the control unit 210.
  • the control unit 210 may receive and store an optical signal transmitted by the image sensor 132.
  • the emission filter 320 is shown in FIG. 3 as a two-channel filter, the present invention is not limited thereto, and may be composed of two or more multi-channel filters.
  • the fluorescence detection unit 300 is illustrated in FIG. 3 as being capable of separating the image sensor 310 and the lens mount 330, an integrated camera module may be used.
  • the emission filter 320 may be fixed in front of the optical lens 340. In particular, when a short channel laten filter is used, such a configuration can be used.
  • a fluorescence detection unit can be formed in a small volume without using a filter wheel even when detecting fluorescence of several channels.
  • a camera module for a smartphone may be used to configure the fluorescence detector, and the image sensor 310 may be a CMOS image sensor, a CCD image sensor, or the like.
  • the emission filter 320 can be disposed between the image sensor 310 and the optical lens 340.
  • the emission filter 320 may be configured to block excitation light from light passing through the optical lens 340 and transmit only the emission light.
  • the emitted light passing through the emission filter 320 is converted into an electrical signal by the image sensor 310, so that a fluorescent material can be detected.
  • the fluorescence detector 500 includes an image sensor 510, a first laten filter 520, a second laten filter 530, a lens mount 540 and an optical lens 550.
  • the optical lens 550 is a lens for condensing emitted light, and the lens mount 540 may serve to fix the optical lens 550.
  • the first laten filter 520 and the second laten filter 530 may be configured to transmit light in wavelengths of different regions.
  • the first laten filter 520 and the second laten filter 530 may be disposed between the image sensor 510 and the optical lens 550. In another embodiment, the first laten filter 520 and the second laten filter 530 may be disposed at one end of the optical lens 550.
  • the image sensor 510 may acquire a fluorescence image corresponding to the pass band of each laten filter. Although two laten filters are shown in FIG. 5, the present invention is not limited thereto, and various filters such as an interference filter may be used.
  • the four channel laten filter 600 may include first to fourth laten filters 610, 620, 630, and 640 having different pass bands.
  • the light transmitted through the 4-channel laten filter 600 is converted into an electrical signal by an image sensor, and fluorescence is detected.
  • the first to fourth laten filters 610, 620, 630, and 640 may use a laten filter having a pass band corresponding to an image for a plurality of wavelength bands to be acquired.
  • a laten filter having a pass band corresponding to an image for a plurality of wavelength bands to be acquired For example, when it is desired to detect emitted light in the wavelength bands of a, b, c and d, four types of laten filters having pass bands of a, b, c and d can be used. According to such a configuration, it is possible to perform fluorescence detection of several channels without using a bulky filter wheel. In addition, since a thin laten filter with a thickness of about 100 ⁇ m is used, it is also possible to configure a filter with 4 or more channels. Since the filter wheel is not used, the configuration of the fluorescence detector is simplified and it is possible to downsize the entire system. Although four laten filters are shown in FIG. 6, the present invention is not limited thereto, and various filters such as an interference filter
  • Real-time polymerase chain reaction fluorescence detection device 700 includes an illumination unit 710, excitation filter 720, chip connector 730, PCR chip 732, camera module holder 740, camera module 750 and emission filter 760.
  • the camera module 750 may be a smartphone camera module, and the camera module holder 740 serves to fix the camera module 750.
  • the lighting unit 710 may include LED, optical fiber lighting, laser lighting, and the like.
  • An excitation filter 720 is attached to one end of the illumination unit 710 so that the excitation light is irradiated to the PCR chip 732 at an angle of 35 degrees.
  • a chip connector 730 may be connected to drive the PCR chip 732, and a fan (not shown) may be disposed near the PCR chip 732 to control the temperature of the PCR chip 732.
  • the excitation light is shown to be irradiated to the PCR chip 732 at an angle of 35 degrees, but is not limited thereto, and the illumination unit 710 is disposed so that the excitation light is side-illuminated to the PCR chip 732.
  • the emission filter 760 may be fixed to the front end of the camera module 750, and the camera module 750 may be disposed at a distance of 43 mm from the chip connector 730.
  • the emission filter 760 may be a multi-channel or short-channel laten filter, or may be an edge filter.
  • the light emitted from the illumination unit 710 passes through the excitation filter 720 and the excitation light is irradiated to the PCR chip 732.
  • the fluorescent material in the PCR chip 732 absorbs excitation light and emits emitted light.
  • the emission filter 760 transmits the emitted light emitted by the fluorescent material, and the camera module 750 converts the emitted light into an electrical signal to perform fluorescence detection.
  • a blue LED of 9600mcd is used as the illumination unit 710, an interference filter is used as the excitation filter 720, and an interference filter is used as the emission filter 760,
  • the entire system can be placed in the dark and fluorescence detection can be performed in real time.
  • real-time PCR can be performed according to the PCR protocol. Specifically, PCR was performed according to the procedures of Pre-incubation, Pre-Heating, Denaturation, and Annealing, respectively, for 2 minutes at 50 ° C, 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C for a total of 40 Cycle can be performed, and fluorescence detection can be performed in the section of 60 °C.
  • the reagent used for PCR is DNA (Chlamydia Trachomatis) 1ng / 5.4 ⁇ l, Master mix 18 ⁇ l, Primer mix (primer F, primer R, Probe) 10pM / 9 ⁇ l, distilled water 3.6 ⁇ l (total 36 ⁇ l) and experiment You can proceed.
  • 1 ng / ⁇ L concentration of CT (Chlamydia Trachomatis) DNA, Roche's Master mix, Primer mix, distilled water may be used as a reagent used in the fluorescence detection process.
  • the PCR process can be performed for 50 minutes at 50 ° C for a pre-incubation process for 2 minutes, a 95 ° C denaturation process for 30 seconds, and a 58 ° C annealing process for 50 seconds.
  • the PCR chip 800 is a heater pattern for transferring heat in the cover film 810, the first double-sided tape 820, the box tape 830, and the PCR chip 800 to accommodate a small amount of sample and reaction reagent.
  • the engraved printed circuit board (PCB) 840, the second double-sided tape 850, and the housing 860 may be included.
  • the cover film 810 is 200 ⁇ m
  • the first double-sided tape 820 is 400 ⁇ m
  • the box tape 830 is 50 ⁇ m
  • the PCB 840 is 200 ⁇ m
  • the second double-sided tape 850 is 200 ⁇ m. It may be configured to a thickness of ⁇ m.
  • the heater pattern for heating to the black matt PCB may be printed on the PCB 840 in a white silk legend, or may be coated with silver, gold, tin, or the like.
  • a box tape 830 may be attached to prevent DNA from being adsorbed on the PCB 840.
  • a channel serving as a micro-fluidic channel may be cut on the first double-sided tape 820 and used as a reaction chamber.
  • the cover film 810 it may be composed of a polycarbonate film.
  • the PCR chip 800 may include a sample inlet 910 having a passage through which samples and reagents can be introduced.
  • the sample inlet 910 may be formed in the housing 860.
  • Samples and reagents may be accommodated between the PCB 840 / box tape 830 and the cover film 810.
  • samples and reagents may be accommodated in a micro-fluidic channel or reaction chamber formed in the first double-sided tape 820.
  • a temperature sensor 920 for detecting the temperature of the sample and reagent may be disposed under the PCB 840.
  • the temperature of the heater pattern formed on the PCB 840 may be controlled based on the temperature measured by the temperature sensor 920.
  • the temperature sensor 920 is illustrated as being disposed under the PCB 840, but is not limited thereto, and may be disposed at any position capable of detecting the temperature of the sample and reagent.
  • the PCR chip 1000 may be connected to a chip connector, and the control unit may control heating through the heater pattern of the PCR chip 1000 and cooling through the pen based on the temperature measured by the temperature sensor in the PCR chip 1000. have. By controlling the heating and cooling of the PCR chip 1000, it is possible to proceed with the process of DNA denaturation, primer binding, and DNA synthesis in the PCR chip 1000.
  • FIG. 11 is a photograph of the real-time polymerase chain reaction fluorescence detection device 700 of FIG. 7.
  • a smartphone camera module is used, and a fluorescence detection unit is constructed by fixing an emission filter in front of the lens of the smartphone camera module. Since the fluorescence detection device using the smart phone camera module can only detect the intensity of brightness when detecting fluorescence with a photodiode when compared with a photodiode, singularities or problems that occur during the actual experimental process that cannot be measured with a photodiode Can be monitored for quick troubleshooting.
  • the camera module used in the smart phone is inexpensive and the use of the module is universal, the parts can be easily obtained and there is no difficulty in manufacturing.
  • the smartphone camera module is a compact and high-definition module, it is advantageous in terms of price and performance. Therefore, it is possible to downsize the entire system. In addition, it is possible to perform quantitative analysis by distribution of fluorescence rather than analyzing the average value of brightness.
  • FIG. 12 is a view showing the results of fluorescence detection in real-time PCR using the real-time polymerase chain reaction fluorescence detection device of FIG.
  • 1 ng / ⁇ L concentration of CT (Chlamydia Trachomatis) DNA was used.
  • FIG. 13 is a view showing the results of the same fluorescence detection using Roche's LightCycler 480 to confirm the fluorescence amplification performance of the real-time polymerase chain reaction fluorescence detection device (FIG. 11) of the present invention.
  • CT Ribonuclear Tumor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present disclosure provides a real-time polymerase chain reaction fluorescence detection device. This device comprises an illuminator for irradiating light, at least one excitation filter which is attached to one end of the illuminator to pass excitation light, and a fluorescence detector for detecting a fluorescent substance in a PCR chip. The fluorescence detector may include an optical lens, at least one emission filter for passing emission light emitted by the fluorescent substance that has absorbed the excitation light, and an image sensor for converting the light into an electrical signal.

Description

실시간 중합효소 연쇄반응 형광 검출 장치Real-time polymerase chain reaction fluorescence detection device
본 개시는 실시간 중합효소 연쇄반응 형광 검출 장치에 관한 것으로, 보다 상세하게는, 형광 검출 장치를 소형화하고 제조 비용을 절감하는 것이 가능한 실시간 중합효소 연쇄반응 형광 검출 장치에 관한 것이다.The present disclosure relates to a real-time polymerase chain reaction fluorescence detection device, and more particularly, to a real-time polymerase chain reaction fluorescence detection device capable of miniaturizing the fluorescence detection device and reducing manufacturing cost.
PCR(Polymerase Chain Reaction) 방법은 유전물질을 조작하여 실험하는 거의 모든 과정에 사용하고 있는 검사법으로, 검출을 원하는 특정 표적 유전물질을 증폭하는 방법이다. 중합효소 연쇄 반응에 의해, 소량의 유전물질로부터 염기 순서가 동일한 유전물질을 많은 양으로 증폭할 수 있으므로, 인간의 DNA를 증폭하여 여러 종류의 유전질환을 진단하는 데 사용된다. 또한 세균이나 바이러스, 진균의 DNA에 적용하여 감염성 질환의 진단 등에 사용되기도 한다.The PCR (Polymerase Chain Reaction) method is a test method used in almost all processes of manipulating genetic material and experimenting, and is a method of amplifying a specific target genetic material to be detected. It is possible to amplify a large amount of a genetic material having the same nucleotide sequence from a small amount of genetic material by a polymerase chain reaction, and thus is used to diagnose various types of genetic diseases by amplifying human DNA. It is also used in the diagnosis of infectious diseases by applying to DNA of bacteria, viruses, and fungi.
PCR 방법은 3단계로 이루어진다. 열을 이용하여 두 가닥의 DNA를 분리하는 열 변성 과정(denaturation)을 거친 후, 온도를 낮추어 시발체(primer)가 증폭을 원하는 서열 말단에 결합(annealing)하게 하고, 다시 열을 약간 올려서 DNA를 합성하는 중합 반응(polymerization or extension)이 진행된다. 열 변성 과정은 보통 95℃에서 열을 이용하여 2가닥의 DNA의 상보적인 염기의 수소결합을 1가닥으로 떨어뜨리는 과정이며, 결합 반응은 약 55~65℃에서 한 가닥의 DNA에 시발체가 상보적인 염기서열에 결합하는 과정이다. 마지막으로 중합 반응은 한 가닥의 DNA(주형 DNA)에 시발체가 붙은 다음의 염기에 DNA 중합효소(polymerase)를 이용하여 주형 DNA의 상보적인 염기를 합성하여 두 가닥의 DNA으로 연장시킨다.The PCR method consists of three steps. After undergoing a heat denaturation process that separates two strands of DNA using heat, the temperature is lowered so that the primer is annealed to the end of the sequence to be amplified, and heat is slightly raised again to synthesize DNA. The polymerization reaction (polymerization or extension) proceeds. The heat denaturation process is a process in which hydrogen bonds of complementary bases of two strands of DNA are dropped to one strand by using heat at 95 ° C, and the binding reaction is complementary to a strand of DNA at about 55 to 65 ° C. It is the process of binding to the base sequence. Finally, the polymerization reaction is followed by attaching the starter to one strand of DNA (template DNA) and then synthesizing the complementary base of the template DNA using DNA polymerase to extend the two strands of DNA.
현재 병원이나 대형 실험실에서 사용되고 있는 실시간 중합효소 연쇄반응 시스템의 경우, 형광 검출을 위한 센서로 주로 고성능의 CCD(Charge-Coupled device) 카메라 또는 광 다이오드를 사용한다. Roche사의 LightCycler 480는 실시간 PCR 기기에 렌즈 등을 사용하고 다채널의 형광 검출을 위한 필터 휠(Filter Wheel)을 사용하기 때문에 검출부의 크기가 매우 크다. 또한, 고가의 CCD 카메라를 사용하여 가격이 약 6,000만원 수준으로 높아, 가격면에서 불리하다.In the case of a real-time polymerase chain reaction system currently used in hospitals or large laboratories, a high-performance charge-coupled device (CCD) camera or photodiode is mainly used as a sensor for fluorescence detection. Roche's LightCycler 480 uses a lens for a real-time PCR device and a filter wheel for multi-channel fluorescence detection, so the size of the detection unit is very large. In addition, using an expensive CCD camera, the price is high, about 60 million won, which is disadvantageous in terms of price.
본 명세서에서 개시되는 실시예들은, 종래 PCR 장치의 형광 검출부의 문제점을 해결하기 위한 것으로 스마트폰 카메라 모듈과 라텐 필터(Wratten Filter) 등을 이용하여 형광 검출이 가능한 시스템을 제공하는 것이다. 본 발명은 검출 부분의 구성을 간단하게 하여 기존의 PCR 장치에 비하여 초소형의 검출 장치의 구성을 제공한다. 또한, 본 발명은 전체 시스템의 가격이 유리하도록 쉽게 구할 수 있는 저렴한 부품을 사용하여 구성한 시스템을 제공한다.The embodiments disclosed in the present specification are intended to solve the problem of the fluorescence detection unit of the conventional PCR device, and provide a system capable of fluorescence detection using a smart phone camera module and a ratten filter. The present invention simplifies the configuration of the detection portion and provides a configuration of a compact detection device compared to a conventional PCR device. In addition, the present invention provides a system constructed using inexpensive components that can be easily obtained so that the price of the entire system is advantageous.
상술한 본 발명의 목적을 달성하기 위한 수단으로, 본 발명에 따른 실시간 중합효소 연쇄반응 형광 검출 장치는, 광을 조사하도록 구성된 조명부, 조명부의 일단에 부착되어 여기 광을 통과시키는 적어도 하나의 여기 필터(excitation filter) 및 PCR 칩 내의 형광 물질을 검출하도록 구성된 형광 검출부를 포함하고, 형광 검출부는, 광학 렌즈, 형광 물질이 여기 광을 흡수하여 방출하는 방출 광을 통과시키는 적어도 하나 이상의 방출 필터(emission filter) 및 광을 전기적 신호로 변환하도록 구성된 이미지 센서를 포함할 수 있다.As a means for achieving the object of the present invention described above, the real-time polymerase chain reaction fluorescence detection device according to the present invention, an illumination unit configured to irradiate light, at least one excitation filter attached to one end of the illumination unit to pass excitation light (excitation filter) and a fluorescence detector configured to detect a fluorescent substance in the PCR chip, the fluorescence detector, an optical lens, at least one emission filter (emission filter) to pass the emitted light emitted by the fluorescent substance absorbs the excitation light ) And an image sensor configured to convert light into an electrical signal.
방출 필터는 단일 라텐 필터이고, 광학 렌즈는 방출 필터와 이미지 센서 사이에 배치될 수 있다.The emission filter is a single laten filter, and the optical lens can be disposed between the emission filter and the image sensor.
방출 필터는 다채널 라텐 필터이고, 방출 필터는 이미지 센서와 광학 렌즈 사이에 배치될 수 있다.The emission filter is a multi-channel laten filter, and the emission filter can be disposed between the image sensor and the optical lens.
다채널 라텐 필터는 동일 평면 상에 2개 이상의 서로 상이한 통과 대역을 가지는 라텐 필터가 배치될 수 있다.In the multi-channel laten filter, a laten filter having two or more different pass bands may be arranged on the same plane.
조명부는 PCR 칩에 여기 광이 측면 조사되도록 배치될 수 있다.The illumination unit may be arranged such that excitation light is irradiated on the PCR chip.
조명부는 PCR 칩에 여기 광이 35˚ 각도로 조사되도록 배치될 수 있다.The illumination unit may be arranged such that the excitation light is irradiated to the PCR chip at an angle of 35 degrees.
광학 렌즈 및 이미지 센서는 스마트폰용 카메라 모듈이고, 이미지 센서는 CMOS(Complementary Metal-Oxide-Semiconductor) 이미지 센서 또는 CCD(charge-coupled device) 이미지 센서일 수 있다.The optical lens and image sensor are camera modules for a smartphone, and the image sensor may be a complementary metal-oxide-semiconductor (CMOS) image sensor or a charge-coupled device (CCD) image sensor.
PCR 칩은, 하우징, 하우징 상부에 배치되고, 히터 패턴을 포함하는 검정 무광 PCB 기판, 검정 무광 PCB 기판 하부에 배치되는 온도 센서, 검정 무광 PCB 기판 상부에 배치되고, 반응챔버를 포함하는 양면 테이프 및 양면 테이프 상부에 배치되는 커버 필름을 포함하고, 형광 검출을 위한 시약은 반응챔버에 수용될 수 있다.The PCR chip includes: a housing, a black matt PCB substrate disposed over the housing, and a temperature sensor disposed under the black matt PCB substrate, a double-sided tape including a reaction chamber, and a temperature sensor disposed under the black matt PCB substrate, and It includes a cover film disposed on the double-sided tape, the reagent for fluorescence detection can be accommodated in the reaction chamber.
본 개시의 다양한 실시예들에 따르면, 밝기의 평균값을 분석하는 것이 아니라 형광의 분포에 의한 정량적 분석이 가능하다. 또한, 기존 장비로는 측정할 수 없는 실제 실험과정 중에 생기는 특이점이나 문제점을 카메라를 이용하여 모니터링할 수 있다. 또한, 초소형 고화질의 모듈을 사용하기 때문에 장비의 가격면, 성능면에서도 유리하다. 본 개시의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.According to various embodiments of the present disclosure, it is possible to quantitatively analyze the distribution of fluorescence rather than analyzing the average value of brightness. In addition, it is possible to monitor singularities or problems that occur during the actual experimental process that cannot be measured with existing equipment using a camera. In addition, since the use of an ultra-small high-definition module, it is advantageous in terms of price and performance of equipment. The effects of the present disclosure are not limited to the effects mentioned above, and other effects not mentioned will become apparent to those skilled in the art from the description of the claims.
본 개시의 실시예들은, 이하 설명하는 첨부 도면들을 참조하여 설명될 것이며, 여기서 유사한 참조 번호는 유사한 요소들을 나타내지만, 이에 한정되지는 않는다.Embodiments of the present disclosure will be described with reference to the accompanying drawings described below, where similar reference numerals indicate similar elements, but are not limited thereto.
도 1은 본 발명의 일 실시예에 따른 실시간 중합효소 연쇄반응 형광 검출 장치를 나타내는 도면이다.1 is a view showing a real-time polymerase chain reaction fluorescence detection device according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 실시간 중합효소 연쇄반응 형광 검출 장치를 나타내는 도면이다.2 is a view showing a real-time polymerase chain reaction fluorescence detection device according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 형광 검출부를 나타내는 도면이다.3 is a view showing a fluorescence detection unit according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 형광 검출부의 단면도이다.4 is a cross-sectional view of a fluorescent detection unit according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 형광 검출부를 나타내는 블록도이다.5 is a block diagram showing a fluorescence detector according to an embodiment of the present invention.
도 6은 본 개시의 일 실시예에 따른 4채널 라텐 필터의 도면이다.6 is a diagram of a 4-channel laten filter according to an embodiment of the present disclosure.
도 7은 본 발명의 일 실시예에 따른 실시간 중합효소 연쇄반응 형광 검출 장치를 나타내는 도면이다.7 is a view showing a real-time polymerase chain reaction fluorescence detection device according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 PCR 칩의 구성을 나타내는 도면이다.8 is a view showing the configuration of a PCR chip according to an embodiment of the present invention.
도 9는 도 8에 도시된 PCR 칩의 단면도를 나타내는 도면이다.9 is a view showing a cross-sectional view of the PCR chip shown in FIG. 8.
도 10은 본 발명의 일 실시예에 따른 PCR 칩의 실물 사진을 나타내는 도면이다.10 is a view showing a real picture of a PCR chip according to an embodiment of the present invention.
도 11은 도 7의 실시간 중합효소 연쇄반응 형광 검출 장치를 구현한 사진이다.FIG. 11 is a photograph of the real-time polymerase chain reaction fluorescence detection device of FIG. 7.
도 12는 도 11의 실시간 중합효소 연쇄반응 형광 검출 장치를 이용한 실시간 PCR의 형광 검출 결과를 나타내는 도면이다.12 is a view showing the results of fluorescence detection in real-time PCR using the real-time polymerase chain reaction fluorescence detection device of FIG.
도 13은 본 발명의 실시간 중합효소 연쇄반응 형광 검출 장치(도 11)의 형광 증폭 성능을 확인하기 위해 Roche사의 LightCycler 480으로 동일하게 형광 검출을 실시한 결과를 나타내는 도면이다.13 is a view showing the results of the same fluorescence detection using Roche's LightCycler 480 to confirm the fluorescence amplification performance of the real-time polymerase chain reaction fluorescence detection device (FIG. 11) of the present invention.
이하, 본 개시의 실시를 위한 구체적인 내용을 첨부된 도면을 참조하여 상세히 설명한다. 다만, 이하의 설명에서는 본 개시의 요지를 불필요하게 흐릴 우려가 있는 경우, 널리 알려진 기능이나 구성에 관한 구체적 설명은 생략하기로 한다.Hereinafter, with reference to the accompanying drawings, specific details for the practice of the present disclosure will be described in detail. However, in the following description, when there is a risk of unnecessarily obscuring the subject matter of the present disclosure, detailed descriptions of well-known functions or configurations will be omitted.
첨부된 도면에서, 동일하거나 대응하는 구성요소에는 동일한 참조부호가 부여되어 있다. 또한, 이하의 실시예들의 설명에 있어서, 동일하거나 대응하는 구성요소를 중복하여 기술하는 것이 생략될 수 있다. 그러나 구성요소에 관한 기술이 생략되어도, 그러한 구성요소가 어떤 실시예에 포함되지 않는 것으로 의도되지는 않는다.In the accompanying drawings, identical or corresponding elements are given the same reference numerals. In addition, in the following description of the embodiments, the same or corresponding elements may be omitted. However, although descriptions of components are omitted, it is not intended that such components are not included in any embodiment.
도 1은 본 발명의 일 실시예에 따른 실시간 중합효소 연쇄반응 형광 검출 장치(100)를 나타내는 도면이다. 실시간 중합효소 연쇄반응 형광 검출 장치(100)는 PCR 칩(140)에 광을 조사하도록 구성된 조명부(110), 조명부의 일단에 부착되는 여기 필터(excitation filter)(120) 및 PCR 칩(140) 내의 형광 물질을 검출하도록 구성된 형광 검출부(130)를 포함하도록 구성될 수 있다. 조명부(110)는 LED, laser, LED에 fiber를 연결하는 등의 다양한 조명을 포함할 수 있으며, 적어도 하나의 광원을 포함할 수 있다. 또한, 형광 검출을 위해 조명부(110)는 광이 측면 조사(side illumination)되도록 배치될 수 있다.1 is a view showing a real-time polymerase chain reaction fluorescence detection device 100 according to an embodiment of the present invention. The real-time polymerase chain reaction fluorescence detection device 100 is within the illumination unit 110 configured to irradiate the PCR chip 140 with light, an excitation filter 120 attached to one end of the illumination unit, and the PCR chip 140 It may be configured to include a fluorescent detection unit 130 configured to detect a fluorescent material. The lighting unit 110 may include various lights such as LEDs, lasers, and fibers connected to the LEDs, and may include at least one light source. In addition, for fluorescence detection, the illumination unit 110 may be arranged such that light is side illuminated.
조명부(110)의 일단에 부착되는 여기 필터(120)는 조명부(110)의 내부에 설치된 광원에서 방출되는 광의 특정 파장 영역(여기 파장 영역)만 통과하도록 필터링하여 PCR 칩(140)에 여기 광이 조사하도록 구성될 수 있다. PCR 칩(140) 내의 형광 물질은 조명부(110)로부터 제공되는 여기 광을 흡수하여 더 긴 파장 영역(방출 파장 영역)의 광(방출 광)을 방출할 수 있다. 형광 검출부(130)는 PCR 칩(140) 내의 형광 물질이 방출하는 방출 광을 검출하도록 구성될 수 있다. 이를 위해, 형광 검출부(130)는 이미지 센서(132), 방출 필터(emission filter)(134) 및 광학 렌즈(136)를 포함할 수 있다.The excitation filter 120 attached to one end of the lighting unit 110 is filtered to pass only a specific wavelength region (excitation wavelength region) of light emitted from a light source installed inside the lighting unit 110 so that the excitation light is transmitted to the PCR chip 140. It can be configured to investigate. The fluorescent material in the PCR chip 140 may absorb excitation light provided from the illumination unit 110 and emit light (emission light) in a longer wavelength region (emission wavelength region). The fluorescence detector 130 may be configured to detect emitted light emitted by the fluorescent material in the PCR chip 140. To this end, the fluorescence detector 130 may include an image sensor 132, an emission filter 134, and an optical lens 136.
방출 필터(134)는 여기 광을 차단하고 형광 물질이 방출하는 방출 광만을 통과시키도록 구성될 수 있다. 일 실시예에서, 여기 필터(120)는 라텐 필터(Wratten Filter)일 수 있으며, 단채널 또는 다채널로 구성될 수 있다. 실시간 중합효소 연쇄반응 형광 검출 장치(100)가 여러 채널의 형광 검출을 할 때는 여기 필터(120)가 다채널 라텐 필터로 구성될 수 있으며, 이 경우, 조명부(110)가 다채널 여기 필터(120)에 대응되는 복수의 광원을 포함할 수 있다. 예를 들어, 여기 필터(120)는 2 채널 또는 4 채널 라텐 필터로 구성될 수 있다. 다른 실시예에서, 여기 필터(120)는 간섭필터(interference filter)일 수 있으며, 이에 한정되지 않으며, 다양한 필터를 사용하여 구성될 수 있다.The emission filter 134 may be configured to block excitation light and pass only the emission light emitted by the fluorescent material. In one embodiment, the excitation filter 120 may be a Ratten filter, and may be composed of a single channel or multiple channels. When the real-time polymerase chain reaction fluorescence detection device 100 detects fluorescence of multiple channels, the excitation filter 120 may be configured as a multi-channel laten filter, in which case, the illumination unit 110 is provided with the multi-channel excitation filter 120 ) May include a plurality of light sources. For example, the excitation filter 120 may be composed of a 2-channel or 4-channel laten filter. In another embodiment, the excitation filter 120 may be an interference filter, but is not limited thereto, and may be configured using various filters.
일 실시예에서, 방출 필터(134)는 광학 렌즈(136)의 일측에 배치될 수 있다. 즉, 광학 렌즈(136)가 방출 필터(134)와 이미지 센서(132) 사이에 배치될 수 있다. 이 경우, 방출 필터(134)는 단채널 또는 단채널로 구성될 수 있다. 단채널로 구성할 경우, 간섭필터 또는 라텐 필터를 사용할 수 있으며, 다채널로 구성할 경우, 라텐 필터를 사용할 수 있다.In one embodiment, the emission filter 134 may be disposed on one side of the optical lens 136. That is, the optical lens 136 may be disposed between the emission filter 134 and the image sensor 132. In this case, the emission filter 134 may be composed of a single channel or a single channel. When configured as a single channel, an interference filter or a laten filter can be used, and when configured as a multi-channel, a laten filter can be used.
다른 실시예에서, 방출 필터(134)가 광학 렌즈(136)와 이미지 센서(132) 사이에 배치될 수 있다. 이 경우, 방출 필터(134)는 단채널 또는 다채널로 구성될 수 있다. 단채널로 구성할 경우, 간섭필터 또는 라텐 필터를 사용할 수 있으며, 다채널로 구성할 경우, 라텐 필터를 사용할 수 있다.In other embodiments, an emission filter 134 may be disposed between the optical lens 136 and the image sensor 132. In this case, the emission filter 134 may be composed of a single channel or multiple channels. When configured as a single channel, an interference filter or a laten filter can be used, and when configured as a multi-channel, a laten filter can be used.
방출 필터(134)를 통과하는 방출 광은 이미지 센서(132)에 전달될 수 있다. 이미지 센서(132)는 광을 전기적 신호로 변환하도록 구성될 수 있으며, 예를 들어, CMOS(Complementary Metal-Oxide-Semiconductor) 이미지 센서, CCD(charge-coupled device) 이미지 센서 등일 수 있으며, 이에 한정되지 않으며, 임의의 이미지 센서를 사용할 수 있다. 방출 필터(134)는 방출 광만을 통과시키므로, 이미지 센서(132)는 방출 광을 전기적 신호로 변환하여 형광 물질을 검출할 수 있다.The emitted light passing through the emission filter 134 may be transmitted to the image sensor 132. The image sensor 132 may be configured to convert light into an electrical signal, and may be, for example, a Complementary Metal-Oxide-Semiconductor (CMOS) image sensor, a charge-coupled device (CCD) image sensor, and the like. No, any image sensor can be used. Since the emission filter 134 passes only the emitted light, the image sensor 132 may convert the emitted light into an electrical signal to detect a fluorescent material.
도 2는 본 발명의 일 실시예에 따른 실시간 중합효소 연쇄반응 형광 검출 장치(200)를 나타내는 도면이다. 도 2에 도시된 바와 같이, 실시간 중합효소 연쇄반응 형광 검출 장치(200)는 제어부(210)가 형광 검출부(130)와 PCR 칩(140)에 연결된 상태이다. 예를 들어, 제어부(210)는 노트북, 데스크탑 등의 연산처리 장치를 탑재한 단말일 수 있다. 온도 센서(220)는 PCR 칩(140) 온도를 측정하여 제어부(210)에 제공할 수 있다.2 is a view showing a real-time polymerase chain reaction fluorescence detection apparatus 200 according to an embodiment of the present invention. As shown in FIG. 2, the real-time polymerase chain reaction fluorescence detection device 200 is in a state where the control unit 210 is connected to the fluorescence detection unit 130 and the PCR chip 140. For example, the control unit 210 may be a terminal equipped with a computational processing device such as a laptop or desktop. The temperature sensor 220 may measure the temperature of the PCR chip 140 and provide it to the control unit 210.
제어부(210)는 PWM(Pulse Width Modulation)과 FET(Field Effect Transistor)를 이용하여 PCR 칩(140)의 히터(230)와 팬(240)을 제어하여 PCR 칩(140)의 온도를 조절할 수 있다. 구체적으로, 제어부(210)는 온도 센서(220)로부터 제공받는 온도 값에 기초하여 Proportional-Integral-Derivative(PID) 제어 메커니즘을 기반으로 PWM을 계산할 수 있다. 제어부(210)는 온도 제어뿐만 아니라 PCR 프로토콜 수행에 관련된 GUI 환경도 제공할 수 있다.The control unit 210 may control the temperature of the PCR chip 140 by controlling the heater 230 and the fan 240 of the PCR chip 140 using PWM (Pulse Width Modulation) and FET (Field Effect Transistor). . Specifically, the controller 210 may calculate the PWM based on the Proportional-Integral-Derivative (PID) control mechanism based on the temperature value provided from the temperature sensor 220. The control unit 210 may provide not only temperature control, but also a GUI environment related to PCR protocol execution.
앞서 설명한 것과 같이, 조명부(110)에서 생성된 광은 여기 필터(120)를 거치면서 여기 광만이 PCR 칩(140)에 조사되며, PCR 칩(140) 내의 형광 물질은 여기 광을 흡수하여 방출 광을 방출할 수 있다. 조명부(110)는 PCR 칩(140)을 향해서 대각선으로 여기 광을 조사할 수 있고, PCR 칩(140)의 앞에서 여러 개의 조명 부품을 사용하여 조명하는 것도 가능하다. 형광 검출부(130)의 이미지 센서(132)는 광학 렌즈(136) 및 방출 필터(134)를 통과한 방출 광을 검출하고, 광 신호를 증폭하여 제어부(210)에 출력할 수 있다. 제어부(210)는 이미지 센서(132)가 전달하는 광 신호를 수신하여 저장할 수 있다.As described above, only the excitation light is irradiated to the PCR chip 140 while the light generated by the illumination unit 110 passes through the excitation filter 120, and the fluorescent material in the PCR chip 140 absorbs the excitation light and emits light. Can release. The lighting unit 110 may irradiate the excitation light diagonally toward the PCR chip 140, and it is also possible to illuminate using several lighting components in front of the PCR chip 140. The image sensor 132 of the fluorescent detector 130 may detect the emitted light that has passed through the optical lens 136 and the emission filter 134, amplify the optical signal, and output the amplified signal to the control unit 210. The control unit 210 may receive and store an optical signal transmitted by the image sensor 132.
도 3은 본 발명의 일 실시예에 따른 형광 검출부(300)를 나타내는 도면이다. 형광 검출부(300)는 이미지 센서(310), 광학 렌즈(340), 광학 렌즈(340)를 이미지 센서(310)에 고정하기 위한 렌즈 마운트(330) 및 이미지 센서(310)와 렌즈 마운트(330) 사이에 배치되는 방출 필터(320)를 포함할 수 있다. 도시된 것과 같이, 방출 필터(320)는 2 채널 라텐 필터로 구성될 수 잇다. 이 경우, 서로 상이한 통과 대역을 가지는 2개의 라텐 필터가 동일 평면 상에 배치될 수 있다. 예를 들어, 100μm 두께의 라텐 필터 2개를 나란히 배치하여 이미지 센서(310) 앞에 배치할 수 있다.3 is a view showing a fluorescence detection unit 300 according to an embodiment of the present invention. The fluorescence detector 300 includes an image sensor 310, an optical lens 340, a lens mount 330 for fixing the optical lens 340 to the image sensor 310, and an image sensor 310 and a lens mount 330 It may include an emission filter 320 disposed between. As shown, the emission filter 320 may consist of a two channel laten filter. In this case, two laten filters having different pass bands from each other may be disposed on the same plane. For example, two 100 μm-thick laten filters may be placed side by side to be placed in front of the image sensor 310.
도 3에서는 방출 필터(320)가 2채널 필터인 것으로 도시되어 있으나, 이에 한정되지 않으며, 2채널 이상의 다채널 필터로 구성될 수도 있다. 또한, 도 3에서는 형광 검출부(300)가 이미지 센서(310)와 렌즈 마운트(330)가 분리 가능한 것으로 도시되어 있으나, 일체형 카메라 모듈을 사용할 수도 있다. 이 경우, 방출 필터(320)를 광학 렌즈(340) 앞에 고정시킬 수 있다. 특히, 단채널 라텐 필터를 사용하는 경우, 이와 같은 구성을 사용할 수 있다.Although the emission filter 320 is shown in FIG. 3 as a two-channel filter, the present invention is not limited thereto, and may be composed of two or more multi-channel filters. In addition, although the fluorescence detection unit 300 is illustrated in FIG. 3 as being capable of separating the image sensor 310 and the lens mount 330, an integrated camera module may be used. In this case, the emission filter 320 may be fixed in front of the optical lens 340. In particular, when a short channel laten filter is used, such a configuration can be used.
이와 같이, 얇은 다채널 라텐 필터가 포함된 형광 검출부(300)를 사용함으로써, 여러 채널의 형광 검출을 할 때도 필터 휠(filter wheel)을 사용하지 않고, 작은 부피로 형광 검출부를 형성할 수 있다. 일 실시예에서, 형광 검출부를 구성하기 위해 스마트폰용 카메라 모듈을 사용할 수 있으며, 이미지 센서(310)는 CMOS 이미지 센서, CCD 이미지 센서 등일 수 있다.As described above, by using the fluorescence detection unit 300 including a thin multi-channel laten filter, a fluorescence detection unit can be formed in a small volume without using a filter wheel even when detecting fluorescence of several channels. In one embodiment, a camera module for a smartphone may be used to configure the fluorescence detector, and the image sensor 310 may be a CMOS image sensor, a CCD image sensor, or the like.
도 4는 본 발명의 일 실시예에 따른 형광 검출부(400)의 단면도이다. 도시된 바와 같이, 방출 필터(320)는 이미지 센서(310)와 광학 렌즈(340) 사이에 배치될 수 있다. 방출 필터(320)는 광학 렌즈(340)를 투과하는 광에서 여기 광을 차단하고 방출 광만을 투과하도록 구성될 수 있다. 방출 필터(320)를 투과하는 방출 광은 이미지 센서(310)에서 전기적 신호로 변환되어, 형광 물질이 검출될 수 있다.4 is a cross-sectional view of the fluorescence detector 400 according to an embodiment of the present invention. As shown, the emission filter 320 can be disposed between the image sensor 310 and the optical lens 340. The emission filter 320 may be configured to block excitation light from light passing through the optical lens 340 and transmit only the emission light. The emitted light passing through the emission filter 320 is converted into an electrical signal by the image sensor 310, so that a fluorescent material can be detected.
도 5는 본 발명의 일 실시예에 따른 형광 검출부(500)를 나타내는 블록도이다. 형광 검출부(500)는 이미지 센서(510), 제1 라텐 필터(520), 제2 라텐 필터(530), 렌즈 마운트(540) 및 광학 렌즈(550)를 포함한다. 광학 렌즈(550)는 방출 광을 집광하기 위한 렌즈이며, 렌즈 마운트(540)는 광학 렌즈(550)를 고정하기 위한 역할을 할 수 있다. 제1 라텐 필터(520) 및 제2 라텐 필터(530)는 서로 다른 영역의 파장대의 광을 투과시키도록 구성될 수 있다.5 is a block diagram showing a fluorescence detector 500 according to an embodiment of the present invention. The fluorescence detector 500 includes an image sensor 510, a first laten filter 520, a second laten filter 530, a lens mount 540 and an optical lens 550. The optical lens 550 is a lens for condensing emitted light, and the lens mount 540 may serve to fix the optical lens 550. The first laten filter 520 and the second laten filter 530 may be configured to transmit light in wavelengths of different regions.
일 실시예에서, 제1 라텐 필터(520) 및 제2 라텐 필터(530)는 이미지 센서(510)와 광학 렌즈(550) 사이에 배치될 수 있다. 다른 실시예에서, 제1 라텐 필터(520) 및 제2 라텐 필터(530)는 광학 렌즈(550)의 일단에 배치될 수 있다. 이미지 센서(510)는 각 라텐 필터의 통과 대역에 대응하는 형광 이미지를 획득할 수 있다. 도 5에는 2개의 라텐 필터가 도시되었으나, 이에 한정되지 않으며, 간섭필터(interference filter) 등의 다양한 필터들이 사용될 수 있다.In one embodiment, the first laten filter 520 and the second laten filter 530 may be disposed between the image sensor 510 and the optical lens 550. In another embodiment, the first laten filter 520 and the second laten filter 530 may be disposed at one end of the optical lens 550. The image sensor 510 may acquire a fluorescence image corresponding to the pass band of each laten filter. Although two laten filters are shown in FIG. 5, the present invention is not limited thereto, and various filters such as an interference filter may be used.
도 6은 본 개시의 일 실시예에 따른 4채널 라텐 필터(600)의 도면이다. 4채널로 구성된 라텐 필터(600)는 서로 다른 통과 대역을 가지는 제1 라텐 필터 내지 제4 라텐 필터(610, 620, 630, 640)를 포함할 수 있다. 4채널 라텐 필터(600)를 투과한 광은 이미지 센서에서 전기적 신호로 변환되어 형광 검출이 이루어진다.6 is a diagram of a four channel laten filter 600 in accordance with one embodiment of the present disclosure. The four channel laten filter 600 may include first to fourth laten filters 610, 620, 630, and 640 having different pass bands. The light transmitted through the 4-channel laten filter 600 is converted into an electrical signal by an image sensor, and fluorescence is detected.
일 실시예에서, 제1 라텐 필터 내지 제4 라텐 필터(610, 620, 630, 640)는 획득하고자 하는 복수의 파장대에 대한 이미지에 대응하는 통과 대역을 가지는 라텐 필터를 사용할 수 있다. 예를 들면, a, b, c 및 d의 파장대의 방출광을 검출하고자 하는 경우, 각각 a, b, c 및 d의 통과대역을 가지는 4 종류의 라텐 필터를 사용할 수 있다. 이와 같은 구성에 따르면, 부피가 큰 필터 휠을 사용하지 않고도 여러 채널의 형광 검출을 실시할 수 있다. 또한, 약 100μm 두께의 얇은 라텐 필터를 사용하므로 4채널 이상의 필터로 구성하는 것도 가능하다. 필터 휠을 사용하지 않으므로, 형광 검출부의 구성이 간단해지고 전체 시스템의 크기를 소형화하는 것이 가능하다. 도 6에는 4개의 라텐 필터가 도시되었으나, 이에 한정되지 않으며, 간섭필터(interference filter) 등의 다양한 필터들이 사용될 수 있다.In one embodiment, the first to fourth laten filters 610, 620, 630, and 640 may use a laten filter having a pass band corresponding to an image for a plurality of wavelength bands to be acquired. For example, when it is desired to detect emitted light in the wavelength bands of a, b, c and d, four types of laten filters having pass bands of a, b, c and d can be used. According to such a configuration, it is possible to perform fluorescence detection of several channels without using a bulky filter wheel. In addition, since a thin laten filter with a thickness of about 100 μm is used, it is also possible to configure a filter with 4 or more channels. Since the filter wheel is not used, the configuration of the fluorescence detector is simplified and it is possible to downsize the entire system. Although four laten filters are shown in FIG. 6, the present invention is not limited thereto, and various filters such as an interference filter may be used.
도 7은 본 발명의 일 실시예에 따른 실시간 중합효소 연쇄반응 형광 검출 장치(700)를 나타내는 도면이다. 실시간 중합효소 연쇄반응 형광 검출 장치(700)는 조명부(710), 여기 필터(720), 칩 커넥터(730), PCR 칩(732), 카메라 모듈 거치대(740), 카메라 모듈(750) 및 방출 필터(760)를 포함할 수 있다. 일 실시예에서, 카메라 모듈(750)은 스마트폰 카메라 모듈일 수 있으며, 카메라 모듈 거치대(740)는 카메라 모듈(750)을 고정시키는 역할을 한다.7 is a view showing a real-time polymerase chain reaction fluorescence detection apparatus 700 according to an embodiment of the present invention. Real-time polymerase chain reaction fluorescence detection device 700 includes an illumination unit 710, excitation filter 720, chip connector 730, PCR chip 732, camera module holder 740, camera module 750 and emission filter 760. In one embodiment, the camera module 750 may be a smartphone camera module, and the camera module holder 740 serves to fix the camera module 750.
조명부(710)는 LED, 광섬유 조명, 레이저 조명 등을 포함할 수 있다. 조명부(710) 일단에는 여기 필터(720)가 부착되어 PCR 칩(732)에 여기 광이 35도 각도로 조사되도록 배치될 수 있다. PCR 칩(732)을 구동하기 위하여 칩 커넥터(730)에 연결할 수 있으며, PCR 칩(732)의 온도를 조절하기 위해 팬(미도시)이 PCR 칩(732) 인근에 배치될 수 있다.The lighting unit 710 may include LED, optical fiber lighting, laser lighting, and the like. An excitation filter 720 is attached to one end of the illumination unit 710 so that the excitation light is irradiated to the PCR chip 732 at an angle of 35 degrees. A chip connector 730 may be connected to drive the PCR chip 732, and a fan (not shown) may be disposed near the PCR chip 732 to control the temperature of the PCR chip 732.
도 7에는 여기 광이 PCR 칩(732)에 35도 각도로 조사되는 것으로 도시되었으나, 이에 한정되지 않으며, 여기 광이 PCR 칩(732)에 측면 조사(side illumination)되도록 조명부(710)가 배치될 수 있다. 카메라 모듈(750)의 전단에는 방출 필터(760)가 고정될 수 있으며, 카메라 모듈(750)은 칩 커넥터 (730)로부터 43mm 이격되어 배치될 수 있다. 방출 필터(760)는 다채널 또는 단채널 라텐 필터일 수 있으며, 간선 필터일 수도 있다. 조명부(710)에서 방출되는 광은 여기 필터(720)를 거치면서 여기 광이 PCR 칩(732)에 조사된다.In FIG. 7, the excitation light is shown to be irradiated to the PCR chip 732 at an angle of 35 degrees, but is not limited thereto, and the illumination unit 710 is disposed so that the excitation light is side-illuminated to the PCR chip 732. You can. The emission filter 760 may be fixed to the front end of the camera module 750, and the camera module 750 may be disposed at a distance of 43 mm from the chip connector 730. The emission filter 760 may be a multi-channel or short-channel laten filter, or may be an edge filter. The light emitted from the illumination unit 710 passes through the excitation filter 720 and the excitation light is irradiated to the PCR chip 732.
PCR 칩(732) 내의 형광 물질은 여기 광을 흡수하여 방출 광을 방출하게 된다. 방출 필터(760)는 형광 물질이 방출한 방출 광을 투과시키며, 카메라 모듈(750)이 방출 광을 전기적 신호로 변환하여 형광 검출을 실시할 수 있다. 일 실시예에서, 조명부(710)로 9600mcd의 청색 LED를 사용하고, 여기 필터(720)로 간섭 필터(interference filter)를 사용하고, 방출 필터(760)로서 간섭 필터(interference filter)를 사용하여, 전체 시스템을 암실에 두고 실시간으로 형광 검출을 수행할 수 있다.The fluorescent material in the PCR chip 732 absorbs excitation light and emits emitted light. The emission filter 760 transmits the emitted light emitted by the fluorescent material, and the camera module 750 converts the emitted light into an electrical signal to perform fluorescence detection. In one embodiment, a blue LED of 9600mcd is used as the illumination unit 710, an interference filter is used as the excitation filter 720, and an interference filter is used as the emission filter 760, The entire system can be placed in the dark and fluorescence detection can be performed in real time.
일 실시예에서, PCR 프로토콜에 따라서 실시간 PCR을 수행할 수 있다. 구체적으로, PCR 과정인 Pre-incubation, Pre-Heating, Denaturation, Annealing의 과정에 따라서 수행하고, 각각 50℃에서 2분, 95℃에서 10분, 95℃에서 15초, 60℃에서 1분씩 총 40 cycle을 수행할 수 있으며, 60℃구간에서 형광 검출을 실시할 수 있다. PCR에 사용되는 시약은 DNA(Chlamydia Trachomatis)는 1ng/5.4㎕, Master mix 18㎕, Primer mix(primer F, primer R, Probe) 10pM/9㎕, 증류수를 3.6㎕ (총 36㎕) 넣고 실험을 진행할 수 있다.In one embodiment, real-time PCR can be performed according to the PCR protocol. Specifically, PCR was performed according to the procedures of Pre-incubation, Pre-Heating, Denaturation, and Annealing, respectively, for 2 minutes at 50 ° C, 10 minutes at 95 ° C, 15 seconds at 95 ° C, and 1 minute at 60 ° C for a total of 40 Cycle can be performed, and fluorescence detection can be performed in the section of 60 ℃. The reagent used for PCR is DNA (Chlamydia Trachomatis) 1ng / 5.4µl, Master mix 18µl, Primer mix (primer F, primer R, Probe) 10pM / 9µl, distilled water 3.6µl (total 36µl) and experiment You can proceed.
다른 실시예에서, 형광 검출 과정에서 사용되는 시약으로 1ng/μL 농도의 CT(Chlamydia Trachomatis) DNA, Roche의 Master mix, Primer mix, 증류수가 사용될 수 있다. 또한, PCR 수행 과정은 50℃의 Pre-incubation 과정을 2분, 95℃의 Denaturation 과정을 30초, 58℃의 Annealing 과정을 50초간 진행할 수 있다.In another embodiment, 1 ng / μL concentration of CT (Chlamydia Trachomatis) DNA, Roche's Master mix, Primer mix, distilled water may be used as a reagent used in the fluorescence detection process. In addition, the PCR process can be performed for 50 minutes at 50 ° C for a pre-incubation process for 2 minutes, a 95 ° C denaturation process for 30 seconds, and a 58 ° C annealing process for 50 seconds.
도 8은 본 발명의 일 실시예에 따른 PCR 칩(800)의 구성을 나타내는 도면이다. PCR 칩(800)은 미량의 시료와 반응 시약을 수용하기 위해, 커버 필름(810), 제1 양면 테이프(820), 박스 테이프(830), PCR 칩(800) 내에 열을 전달하기 위한 히터 패턴이 새겨진 PCB(Printed Circuit Board)(840), 제2 양면 테이프(850) 및 하우징(860)이 포함될 수 있다. 예를 들어, 커버 필름(810)은 200㎛, 제1 양면 테이프(820)는 400㎛, 박스 테이프(830)는 50㎛, PCB(840)는 200㎛, 제2 양면 테이프(850)는 200㎛의 두께로 구성될 수 있다.8 is a diagram showing the configuration of a PCR chip 800 according to an embodiment of the present invention. The PCR chip 800 is a heater pattern for transferring heat in the cover film 810, the first double-sided tape 820, the box tape 830, and the PCR chip 800 to accommodate a small amount of sample and reaction reagent. The engraved printed circuit board (PCB) 840, the second double-sided tape 850, and the housing 860 may be included. For example, the cover film 810 is 200 μm, the first double-sided tape 820 is 400 μm, the box tape 830 is 50 μm, the PCB 840 is 200 μm, and the second double-sided tape 850 is 200 μm. It may be configured to a thickness of μm.
일 실시예에서, PCB(840)에는 검정 무광 PCB에 가열을 위한 히터 패턴이 흰색 실크 범례로 프린트되거나, 은, 금, 주석 등으로 코팅될 수 있다. 또한, PCB(840)에 DNA가 흡착되는 것을 막기 위해 박스 테이프(830)가 부착될 수 있다. 제1 양면 테이프(820)에는 미세 유체 채널(micro-fluidic channel)의 역할을 하는 채널이 커팅되어 반응챔버로 사용될 수 있다. 커버 필름(810)의 경우, 폴리카보네이트 필름으로 구성될 수 있다.In one embodiment, the heater pattern for heating to the black matt PCB may be printed on the PCB 840 in a white silk legend, or may be coated with silver, gold, tin, or the like. In addition, a box tape 830 may be attached to prevent DNA from being adsorbed on the PCB 840. A channel serving as a micro-fluidic channel may be cut on the first double-sided tape 820 and used as a reaction chamber. In the case of the cover film 810, it may be composed of a polycarbonate film.
도 9는 도 8에 도시된 PCR 칩(800)의 단면도를 나타내는 도면이다. PCR 칩(800)은 시료 및 시약을 유입될 수 있는 통로가 형성된 시료 유입구(910)를 포함할 수 있다. 일 실시예에서, 시료 유입구(910)는 하우징(860)에 형성될 수 있다. 시료 및 시약은 PCB(840)/박스 테이프(830)와 커버 필름(810) 사이에 수용될 수 있다. 예를 들어, 시료 및 시약은 제1 양면 테이프(820)에 형성된 미세 유체 채널(micro-fluidic channel) 또는 반응챔버에 수용될 수 있다.9 is a view showing a cross-sectional view of the PCR chip 800 shown in FIG. 8. The PCR chip 800 may include a sample inlet 910 having a passage through which samples and reagents can be introduced. In one embodiment, the sample inlet 910 may be formed in the housing 860. Samples and reagents may be accommodated between the PCB 840 / box tape 830 and the cover film 810. For example, samples and reagents may be accommodated in a micro-fluidic channel or reaction chamber formed in the first double-sided tape 820.
일 실시예에서, 시료 및 시약의 온도를 검출하기 위한 온도 센서(920)가 PCB(840) 하부에 배치될 수 있다. PCB(840)에 형성된 히터 패턴의 온도는 온도 센서(920)에 의해 측정된 온도에 기초하여 제어될 수 있다. 도 9에는 온도 센서(920)가 PCB(840) 하부에 배치되는 것으로 도시되어 있으나, 이에 한정되지 않으며, 시료 및 시약의 온도를 검출할 수 있는 임의의 위치에 배치될 수 있다.In one embodiment, a temperature sensor 920 for detecting the temperature of the sample and reagent may be disposed under the PCB 840. The temperature of the heater pattern formed on the PCB 840 may be controlled based on the temperature measured by the temperature sensor 920. 9, the temperature sensor 920 is illustrated as being disposed under the PCB 840, but is not limited thereto, and may be disposed at any position capable of detecting the temperature of the sample and reagent.
도 10은 본 발명의 일 실시예에 따른 PCR 칩(1000)의 실물 사진을 나타내는 도면이다. PCR 칩(1000)은 칩 커넥터에 연결될 수 있으며, 제어부가 PCR 칩(1000) 내의 온도 센서가 측정한 온도에 기초하여 PCR 칩(1000)의 히터 패턴을 통한 히팅과 펜을 통한 냉각을 제어할 수 있다. PCR 칩(1000)의 히팅과 냉각을 제어함으로써, PCR 칩(1000) 내의 DNA 변성, 프라이머의 결합, DNA 합성의 과정을 진행할 수 있다.10 is a view showing a real picture of the PCR chip 1000 according to an embodiment of the present invention. The PCR chip 1000 may be connected to a chip connector, and the control unit may control heating through the heater pattern of the PCR chip 1000 and cooling through the pen based on the temperature measured by the temperature sensor in the PCR chip 1000. have. By controlling the heating and cooling of the PCR chip 1000, it is possible to proceed with the process of DNA denaturation, primer binding, and DNA synthesis in the PCR chip 1000.
도 11은 도 7의 실시간 중합효소 연쇄반응 형광 검출 장치(700)를 구현한 사진이다. 본 장치에서는 스마트폰 카메라 모듈을 사용하고, 스마트폰 카메라 모듈의 렌즈 앞 부분에 방출 필터를 고정하여 형광 검출부를 구성하였다. 스마트폰 카메라 모듈을 이용한 형광 검출 장치는 광 다이오드와 비교했을 때, 광 다이오드로는 형광 검출시 밝기의 강도만을 감지할 수 있기 때문에, 광 다이오드로는 측정할 수 없는 실제 실험과정 중 생기는 특이점이나 문제점을 모니터링할 수 있어 빠른 트러블슈팅(troubleshooting)이 가능하다.FIG. 11 is a photograph of the real-time polymerase chain reaction fluorescence detection device 700 of FIG. 7. In this device, a smartphone camera module is used, and a fluorescence detection unit is constructed by fixing an emission filter in front of the lens of the smartphone camera module. Since the fluorescence detection device using the smart phone camera module can only detect the intensity of brightness when detecting fluorescence with a photodiode when compared with a photodiode, singularities or problems that occur during the actual experimental process that cannot be measured with a photodiode Can be monitored for quick troubleshooting.
또한, 스마트폰에 사용되는 카메라 모듈이 저렴해지고 모듈 사용이 보편화됨으로써 부품을 쉽게 구할 수 있어 제작에 어려움이 없다는 장점이 있다. 추가로, 스마트폰 카메라 모듈은 초소형, 고화질 모듈이기 때문에 가격면과 성능면에서도 유리하다. 따라서, 전체 시스템의 소형화가 가능하다. 또한, 밝기의 평균값으로 분석하는 것이 아니라 형광의 분포에 의한 정량적 분석이 가능하다.In addition, since the camera module used in the smart phone is inexpensive and the use of the module is universal, the parts can be easily obtained and there is no difficulty in manufacturing. In addition, since the smartphone camera module is a compact and high-definition module, it is advantageous in terms of price and performance. Therefore, it is possible to downsize the entire system. In addition, it is possible to perform quantitative analysis by distribution of fluorescence rather than analyzing the average value of brightness.
도 12는 도 11의 실시간 중합효소 연쇄반응 형광 검출 장치를 이용한 실시간 PCR의 형광 검출 결과를 나타내는 도면이다. 여기서, 1ng/μL 농도의 CT(Chlamydia Trachomatis) DNA가 이용되었다.12 is a view showing the results of fluorescence detection in real-time PCR using the real-time polymerase chain reaction fluorescence detection device of FIG. Here, 1 ng / μL concentration of CT (Chlamydia Trachomatis) DNA was used.
도 13은 본 발명의 실시간 중합효소 연쇄반응 형광 검출 장치(도 11)의 형광 증폭 성능을 확인하기 위해 Roche사의 LightCycler 480으로 동일하게 형광 검출을 실시한 결과를 나타내는 도면이다. 여기서는 1ng/μL, 0.1ng/μL, 0.01ng/μL 농도의 CT(Circulating Tumor) DNA가 각각 이용되었다. 도 13에서 PCR 용액의 농도가 높을수록 증가하기 시작하는 주기가 줄어드는 것을 확인할 수 있다.13 is a view showing the results of the same fluorescence detection using Roche's LightCycler 480 to confirm the fluorescence amplification performance of the real-time polymerase chain reaction fluorescence detection device (FIG. 11) of the present invention. Here, CT (Circulating Tumor) DNAs at concentrations of 1 ng / μL, 0.1 ng / μL, and 0.01 ng / μL were used, respectively. It can be seen from FIG. 13 that the higher the concentration of the PCR solution, the shorter the cycle that starts to increase.
도 12와 도 13의 그래프를 비교해보면, 본 발명의 실시간 중합효소 연쇄반응 형광 검출 장치(도 11)와 Roche사의 LightCycler 480가 형광 밝기 변화가 유사한 경향을 보여주는 것을 확인할 수 있다. 따라서, 고가의 형광 검출 장치가 아닌 스마트폰 카메라 모듈로 구성한 실시간 중합효소 연쇄반응 형광 검출 장치로도 형광 검출이 가능하다는 것을 알 수 있다. 앞에서는 스마트폰 카메라 모듈을 사용하는 것으로 기재되었으나, 스마트폰 카메라 모듈 외에도 오픈 플랫폼용 저가 소형 카메라 모듈을 사용할 수도 있다.When comparing the graphs of FIGS. 12 and 13, it can be seen that the real-time polymerase chain reaction fluorescence detection device (FIG. 11) of the present invention and Roche's LightCycler 480 show a similar trend in fluorescence brightness change. Therefore, it can be seen that fluorescence detection is possible with a real-time polymerase chain reaction fluorescence detection device composed of a smartphone camera module rather than an expensive fluorescence detection device. Previously, it was described as using a smart phone camera module, but in addition to the smart phone camera module, a low-cost small camera module for an open platform can also be used.

Claims (8)

  1. 실시간 중합효소 연쇄반응 형광 검출 장치로서,Real-time polymerase chain reaction fluorescence detection device,
    광을 조사하도록 구성된 조명부;An illumination unit configured to irradiate light;
    상기 조명부의 일단에 부착되어 여기 광을 통과시키는 적어도 하나의 여기 필터(excitation filter); 및At least one excitation filter attached to one end of the illumination unit to pass excitation light; And
    PCR 칩 내의 형광 물질을 검출하도록 구성된 형광 검출부를 포함하고,A fluorescence detection unit configured to detect a fluorescent substance in the PCR chip,
    상기 형광 검출부는,The fluorescence detection unit,
    광학 렌즈;Optical lenses;
    상기 형광 물질이 여기 광을 흡수하여 방출하는 방출 광을 통과시키는 적어도 하나 이상의 방출 필터(emission filter); 및At least one emission filter for allowing the fluorescent material to pass through emitted light absorbing and emitting excitation light; And
    광을 전기적 신호로 변환하도록 구성된 이미지 센서Image sensor configured to convert light into electrical signals
    를 포함하는, 실시간 중합효소 연쇄반응 형광 검출 장치.Real-time polymerase chain reaction fluorescence detection device comprising a.
  2. 제1항에 있어서,According to claim 1,
    상기 방출 필터는 단일 라텐 필터이고,The emission filter is a single laten filter,
    상기 광학 렌즈는 상기 방출 필터와 상기 이미지 센서 사이에 배치되는, 실시간 중합효소 연쇄반응 형광 검출 장치.The optical lens is disposed between the emission filter and the image sensor, real-time polymerase chain reaction fluorescence detection device.
  3. 제1항에 있어서,According to claim 1,
    상기 방출 필터는 다채널 라텐 필터이고,The emission filter is a multi-channel laten filter,
    상기 방출 필터는 상기 이미지 센서와 상기 광학 렌즈 사이에 배치되는, 실시간 중합효소 연쇄반응 형광 검출 장치.The emission filter is disposed between the image sensor and the optical lens, real-time polymerase chain reaction fluorescence detection device.
  4. 제3항에 있어서,According to claim 3,
    상기 다채널 라텐 필터는 동일 평면 상에 2개 이상의 서로 상이한 통과 대역을 가지는 라텐 필터가 배치되는, 실시간 중합효소 연쇄반응 형광 검출 장치.The multi-channel laten filter is a real-time polymerase chain reaction fluorescence detection device in which a laten filter having two or more different pass bands is disposed on the same plane.
  5. 제1항에 있어서,According to claim 1,
    상기 조명부는 상기 PCR 칩에 여기 광이 측면 조사되도록 배치되는, 실시간 중합효소 연쇄반응 형광 검출 장치.The illumination portion is arranged so that the excitation light is irradiated to the PCR chip side, real-time polymerase chain reaction fluorescence detection device.
  6. 제5항에 있어서,The method of claim 5,
    상기 조명부는 상기 PCR 칩에 여기 광이 35° 각도로 조사되도록 배치되는, 실시간 중합효소 연쇄반응 형광 검출 장치.The illumination unit is arranged so that the excitation light is irradiated to the PCR chip at a 35 ° angle, a real-time polymerase chain reaction fluorescence detection device.
  7. 제1항에 있어서,According to claim 1,
    상기 광학 렌즈 및 상기 이미지 센서는 스마트폰용 카메라 모듈이고,The optical lens and the image sensor is a camera module for a smartphone,
    상기 이미지 센서는 CMOS(Complementary Metal-Oxide-Semiconductor) 이미지 센서 또는 CCD(charge-coupled device) 이미지 센서인, 실시간 중합효소 연쇄반응 형광 검출 장치.The image sensor is a Complementary Metal-Oxide-Semiconductor (CMOS) image sensor or a charge-coupled device (CCD) image sensor, a real-time polymerase chain reaction fluorescence detection device.
  8. 제1항에 있어서,According to claim 1,
    상기 PCR 칩은The PCR chip
    하우징;housing;
    상기 하우징 상부에 배치되고, 히터 패턴을 포함하는 검정 무광 PCB 기판; A black matt PCB substrate disposed on the housing and including a heater pattern ;
    상기 검정 무광 PCB 기판 하부에 배치되는 온도 센서;A temperature sensor disposed under the black matte PCB substrate;
    상기 검정 무광 PCB 기판 상부에 배치되고, 반응챔버를 포함하는 양면 테이프; 및A double-sided tape disposed on the black matte PCB substrate and including a reaction chamber; And
    상기 양면 테이프 상부에 배치되는 커버 필름Cover film disposed on the double-sided tape
    을 포함하고,Including,
    형광 검출을 위한 시약은 상기 반응챔버에 수용되는, 실시간 중합효소 연쇄반응 형광 검출 장치.The reagent for fluorescence detection is accommodated in the reaction chamber, a real-time polymerase chain reaction fluorescence detection device.
PCT/KR2019/012544 2018-09-28 2019-09-26 Real-time polymerase chain reaction fluorescence detection device WO2020067742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180116500A KR102261902B1 (en) 2018-09-28 2018-09-28 Real-time PCR Fluorescence detection device
KR10-2018-0116500 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067742A1 true WO2020067742A1 (en) 2020-04-02

Family

ID=69950613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/012544 WO2020067742A1 (en) 2018-09-28 2019-09-26 Real-time polymerase chain reaction fluorescence detection device

Country Status (2)

Country Link
KR (1) KR102261902B1 (en)
WO (1) WO2020067742A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624726A (en) * 2020-05-07 2021-11-09 纬创资通股份有限公司 Detection device, detection method and fluorescent real-time quantitative polymerase chain reaction system
CN114015550A (en) * 2021-10-29 2022-02-08 广州国睿科学仪器有限公司 Fluorescence quantitative PCR optical detection device
CN114480111A (en) * 2022-02-15 2022-05-13 深圳阿斯克医疗有限公司 Real-time fluorescence quantitative PCR instrument
WO2023178710A1 (en) * 2022-03-23 2023-09-28 无锡百泰克生物技术有限公司 Portable ultrafast real-time fluorescent quantitative pcr instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113862144B (en) * 2021-11-05 2023-11-17 中元汇吉生物技术股份有限公司 Full-automatic fluorescent quantitative PCR analyzer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020089658A1 (en) * 1997-03-07 2002-07-11 Mark Seville Fluorometric detection using visible light
JP2006333812A (en) * 2005-06-03 2006-12-14 Matsushita Electric Ind Co Ltd Method for metering microorganism and apparatus for metering microorganism
KR20130131408A (en) * 2010-12-21 2013-12-03 더 리전트 오브 더 유니버시티 오브 캘리포니아 Compact wide-field fluorescent imaging on a mobile device
US20140206412A1 (en) * 2013-01-18 2014-07-24 Biomeme Incorporated Analytic device
KR20170134359A (en) * 2015-02-06 2017-12-06 라이프 테크놀로지스 코포레이션 Methods and systems for biological equipment calibration

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7031084B2 (en) * 2003-07-23 2006-04-18 Eastman Kodak Company Imaging system using combined dichroic/high-pass filters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020089658A1 (en) * 1997-03-07 2002-07-11 Mark Seville Fluorometric detection using visible light
JP2006333812A (en) * 2005-06-03 2006-12-14 Matsushita Electric Ind Co Ltd Method for metering microorganism and apparatus for metering microorganism
KR20130131408A (en) * 2010-12-21 2013-12-03 더 리전트 오브 더 유니버시티 오브 캘리포니아 Compact wide-field fluorescent imaging on a mobile device
US20140206412A1 (en) * 2013-01-18 2014-07-24 Biomeme Incorporated Analytic device
KR20170134359A (en) * 2015-02-06 2017-12-06 라이프 테크놀로지스 코포레이션 Methods and systems for biological equipment calibration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624726A (en) * 2020-05-07 2021-11-09 纬创资通股份有限公司 Detection device, detection method and fluorescent real-time quantitative polymerase chain reaction system
CN114015550A (en) * 2021-10-29 2022-02-08 广州国睿科学仪器有限公司 Fluorescence quantitative PCR optical detection device
CN114480111A (en) * 2022-02-15 2022-05-13 深圳阿斯克医疗有限公司 Real-time fluorescence quantitative PCR instrument
WO2023178710A1 (en) * 2022-03-23 2023-09-28 无锡百泰克生物技术有限公司 Portable ultrafast real-time fluorescent quantitative pcr instrument

Also Published As

Publication number Publication date
KR20200037022A (en) 2020-04-08
KR102261902B1 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2020067742A1 (en) Real-time polymerase chain reaction fluorescence detection device
US7928408B2 (en) Multi-channel fluorescence measuring optical system and multi-channel fluorescence sample analyzer
US11994471B2 (en) Optical signal detection modules and methods
CN201837588U (en) Optical system for multiple reactions
GB2383127B (en) Device and method for investigating analytes in liquid suspension or solution
WO2009157695A2 (en) Thermal cycling reaction block and continuous real-time monitoring apparatus using the same
WO2009125974A2 (en) Multi-channel bio reactor with fluorescence detector and on-line monitoring apparatus of it
JP2003344290A (en) Fluorescence detector with temperature controller
WO2023013860A1 (en) Multispectrum endoscope and endoscope system comprising same
WO2023008709A1 (en) Multi-spectrum light irradiation apparatus and multi-spectrum fluorescence imaging system
WO2021201597A1 (en) Optical signal detection device
US7053397B1 (en) Fluorescent image reading apparatus
WO2016068374A1 (en) Apparatus and method for removing strands of hair from near-infrared spectroscope
US20120001095A1 (en) Light source apparatus for fluorescence photography
WO2023018055A1 (en) Multi-channel optical diagnostic device
WO2018155865A1 (en) Blood analysis strip
WO2018062595A1 (en) High-resolution implementation method of cell image stitching
WO2023048377A1 (en) Multi-channel isothermal amplification system
WO2022164176A1 (en) Optical signal detection device
WO2024075934A1 (en) Integrated optical measurement device
CN106770086A (en) The fluorescence detection method and system of a kind of real-time fluorescence quantitative PCR instrument
WO2022065908A1 (en) Optical signal detection device
CN219603575U (en) Heating assembly of fluorescent quantitative PCR instrument
TWI728885B (en) Light guide module and biological detection equipment using the light guide module
KR102376680B1 (en) Multi-channel fluorescence detection device using stained glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867524

Country of ref document: EP

Kind code of ref document: A1