WO2023018055A1 - Multi-channel optical diagnostic device - Google Patents

Multi-channel optical diagnostic device Download PDF

Info

Publication number
WO2023018055A1
WO2023018055A1 PCT/KR2022/010736 KR2022010736W WO2023018055A1 WO 2023018055 A1 WO2023018055 A1 WO 2023018055A1 KR 2022010736 W KR2022010736 W KR 2022010736W WO 2023018055 A1 WO2023018055 A1 WO 2023018055A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
laser
channel optical
pinhole
diagnostic device
Prior art date
Application number
PCT/KR2022/010736
Other languages
French (fr)
Korean (ko)
Inventor
김수경
구자령
이형재
Original Assignee
주식회사 나노바이오라이프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나노바이오라이프 filed Critical 주식회사 나노바이오라이프
Publication of WO2023018055A1 publication Critical patent/WO2023018055A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • G01N21/6404Atomic fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • G01N2021/392Measuring reradiation, e.g. fluorescence, backscatter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • G01N2021/637Lasing effect used for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/064Stray light conditioning
    • G01N2201/0648Shutters

Definitions

  • the present invention relates to a multi-channel optical diagnostic device, and more particularly, to enable the use of various laser light sources and increase the amplification effect and focusing speed of the optical detection spectrum and total light amount during confocal multi-channel fluorescence detection. It relates to a multi-channel optical diagnostic device using focusing optical technology.
  • Techniques that can simultaneously measure the total number and viability without damaging microorganisms include methods for measuring the permittivity and auto-fluorescence of microorganisms.
  • Clean Trace is widely used for on-site inspection, but since microorganisms must be lysed, measurement values vary depending on surrounding contaminants such as food. cannot be measured either.
  • autofluorescence refers to light naturally emitted when biological structures such as mitochondria and lysosomes in microorganisms absorb light, and the most commonly observed autofluorescence molecules are NADH and flavin, which are representative intracellular biological substances.
  • the present invention has been made to solve the above problems, and the multi-channel optical diagnostic device according to the present invention is highly sensitive fluorescence that can measure autofluorescence generated by metabolism of microorganisms in real time in the field. It aims to provide scanning technology and devices.
  • the multi-channel optical diagnostic device according to the present invention is a field-type microorganism inspection device without such a culture process, and can label and dissolve It is not necessary (no label, no lysis), viability sorting is possible, and point-of-care test (POCT) is possible at low cost.
  • the multi-channel optical diagnosis device is intended to enable the use of various laser light sources according to the characteristics of the fluorescent dye used in the sample to be diagnosed.
  • the multi-channel optical diagnosis device allows the required laser light source among various laser light sources to pass through a simple structure of attaching a piezo film to a pinhole substrate on which a pinhole is formed, thereby making the optical diagnosis more compact.
  • it is intended to enable more precise selection of transmission for each wavelength of laser light.
  • the multi-channel optical diagnosis device uses an LCD shutter to pass laser light for a certain amount of time initially and blocks it after a certain amount of time to reduce background noise flowing into the sensing unit. .
  • a multi-channel optical diagnosis device for solving the above problems includes a laser light source unit emitting laser light of various wavelengths; a condensing lens condensing the emitted laser light of various wavelengths toward the analysis sample; a pinhole substrate through which laser light selected from among the emitted laser lights of various wavelengths passing through the condensing lens is transmitted through a pinhole; a controller for moving the pinhole substrate in a focal direction of the condensing lens; and a sensing unit configured to receive laser light from the analysis sample passing through the pinhole.
  • the pinhole substrate includes a support substrate on which the pinhole is formed; and a piezo film for moving the support substrate within the control range of the controller by the supplied power.
  • control unit by the control of the control unit, to pass the laser light emitted from the laser light source unit for a certain time range at the beginning of the emission, and to block the laser light after a certain time range It may be configured to further include; LCD shutter.
  • the LCD shutter operates with each CW laser and A range of an initial predetermined time for passing the laser light may be adjusted and controlled to correspond to the characteristics of the pulse laser.
  • a driving unit controlling a distance between the condensing lens and the diagnostic kit in which the analysis sample is disposed under the control of the control unit may be further included.
  • the multi-channel optical diagnostic device can provide a high-sensitivity fluorescence scanning technology and device that can measure autofluorescence generated by the metabolism of microorganisms in real time in situ.
  • the multi-channel optical diagnostic device according to the present invention is a field-type microorganism inspection device without such a culture process, and can label and dissolve It is not necessary (no label, no lysis), viability sorting is possible, and low cost point-of-care test (POCT) is possible.
  • the multi-channel optical diagnosis apparatus may use various laser light sources according to the characteristics of the fluorescent dye used in the sample to be diagnosed.
  • the multi-channel optical diagnosis device allows the required laser light source among various laser light sources to pass through a simple structure of attaching a piezo film to a pinhole substrate on which a pinhole is formed, thereby making the optical diagnosis more compact.
  • the multi-channel optical diagnosis device allows the laser light to pass for a certain amount of time initially using an LCD shutter and blocks it after a certain amount of time to reduce background noise flowing into the sensing unit. .
  • FIG. 1 is a diagram illustrating a multi-channel optical diagnosis apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the configuration of a multi-channel optical diagnosis apparatus according to an embodiment of the present invention.
  • 3 to 7 are diagrams for explaining the configuration and operation method of a multi-channel optical diagnosis apparatus according to an embodiment of the present invention.
  • FIG. 8 is a configuration diagram of a multi-channel optical diagnosis apparatus 100 according to another embodiment of the present invention.
  • FIG. 1 is a diagram showing a multi-channel optical diagnosis device according to an embodiment of the present invention
  • FIG. 2 is a diagram for explaining the configuration of the multi-channel optical diagnosis device according to an embodiment of the present invention.
  • 3 to 7 are diagrams for explaining the configuration and operation method of a multi-channel optical diagnosis apparatus according to an embodiment of the present invention.
  • the multi-channel optical diagnosis device 100 includes a laser light source unit 110, a condensing lens 120, a pinhole substrate 130, a control unit 140, and a detection unit 150. .
  • the laser light source unit 110 is composed of LD (Laser Diode) and emits laser light of various wavelengths.
  • LD Laser Diode
  • the multi-channel optical diagnosis device 100 uses various laser light sources according to the characteristics of the fluorescent dye used in the sample 101, and more specifically, the laser emitted from the laser light source unit 110.
  • the light may be composed of B (Blue), G (Green), and R (Red) laser lights.
  • the laser light source unit 110 may be composed of 4-channel LEDs 111, and may include a collimating lens 112 for emitting light from the 4-channel LEDs 111 in parallel. .
  • the laser light source unit 110 is installed on the rear surface of the 4-channel LED 111 through the housing 113 so that heat generated from the 4-channel LED 111 can be easily discharged to the outside. It may be configured to further include a heat dissipation unit 114 .
  • the light emitted from the laser light source unit 110 is reflected by the mirror 115 and introduced into the condensing lens 120, and the condensing lens 120 condenses the emitted laser light of various wavelengths toward the analysis sample 101. let it
  • the pinhole substrate 130 transmits the laser light selected from the emitted laser light of various wavelengths passing through the condensing lens 120 through the pinhole 13 .
  • the condensing lens 120 When the condensing lens 120 is used as a single lens (one lens), the focal length varies according to the wavelength of the laser light. By adjusting the position of 131, one laser light can be obtained.
  • the pinhole substrate 130 is moved to select laser light to pass through, and at this time, the pinhole substrate 130 is moved to the condensing lens under the control of the control unit 140. It can be moved in the focal direction of (120).
  • the pinhole substrate 130 may include a support substrate on which pinholes are formed and a piezo film formed on the support substrate.
  • a piezo film is a piezoelectric element made of polyvinylidene fluoride (PVDF), a plastic having a piezoelectric effect, that has good processability and is easy to thin on a large area.
  • PVDF polyvinylidene fluoride
  • the pinhole substrate 130 can be accurately moved in the focal direction of the condensing lens 120 by using the pinhole substrate 130 .
  • the support substrate can be moved within the control range of the controller 140, and through this, the pinhole substrate 130 can be moved.
  • a smaller optical diagnosis device can be configured, and transmission selection for each wavelength of laser light is more precisely achieved. This is possible
  • the required laser light is condensed onto the analysis sample 101 through a multi confocal method in which only the selected laser light is transmitted by moving the pinhole substrate 130 as described above, and ,
  • the sensing unit 150 may receive laser light from the analysis sample 101 passing through the pinhole.
  • the multi-channel optical diagnosis apparatus 100 may further include an LCD shutter 160.
  • the LCD shutter 160 may block laser light under the control of the controller 140 .
  • the LCD shutter 160 passes the laser light emitted from the laser light source unit 110 for a certain time range at the beginning of emission under the control of the control unit 140, and after a certain time range. may block the laser light.
  • only laser light within an initial period of 0.04 to 0.1 ms may pass through light blocking using the LCD shutter 160, and subsequent laser light may be blocked.
  • the laser light source unit 110 when the laser light source unit 110 emits laser light, it is possible to optimize the light blocking reaction time depending on whether the laser light is a CW laser (Continuous Wave Laser) or a pulse laser.
  • CW laser Continuous Wave Laser
  • the LCD shutter 160 controls each CW laser by the control of the control unit 140. And the range of the initial predetermined time for passing the laser light to correspond to the characteristics of the pulse laser can be adjusted and controlled.
  • the multi-channel optical diagnosis device uses a piezo film on the pinhole substrate where the pinhole is formed so that various laser light sources can be used according to the characteristics of the fluorescent dye used in the sample to be diagnosed.
  • a required laser light source among various laser light sources can be transmitted through a simple structure of attaching.
  • the multi-channel optical diagnosis device allows the laser light to pass for a certain amount of time initially using an LCD shutter and blocks it after a certain amount of time to reduce background noise flowing into the sensing unit. .
  • FIG. 8 is a configuration diagram of a multi-channel optical diagnosis apparatus 100 according to another embodiment of the present invention.
  • the control system 290 of the multi-channel optical diagnosis apparatus 200 includes an input unit 291, an output unit 292, a control unit ( MCU, 293), a laser diode power supply (LD Power, 294), an amplifier 295, an analog-to-digital converter (ADC, 296), and a motor driving unit (Moter driver, 297).
  • MCU control unit
  • LD Power laser diode power supply
  • ADC analog-to-digital converter
  • Moter driver motor driver
  • the control unit 293 may operate to extract photodiode data at regular intervals by decomposing a unit reference signal into 4096 steps at 12-bit resolution, for example.
  • control unit 293 may set the frequency of the digital signal through pulse width modulation (PWM) control, and adjust the intensity of the laser diode by adjusting the pulse width or duty cycle of the signal amplitude.
  • PWM pulse width modulation
  • the conversion speed can be greatly improved in an analog-to-digital conversion system compared to a control unit with 4-bit or 8-bit resolution.
  • the controller 293 may be referred to as a main control unit, a central processing unit, or the like, and may be implemented as a microprocessor, a microcomputer, or the like.
  • controller 293 may store an analysis program for noise reduction and acquisition of valid information in a memory, and execute the analysis program through the controller 293 connected to the memory.
  • the analysis program may include a scanning schedule algorithm, a photodiode (PD) detection voltage accumulation and analysis algorithm, and the like.
  • PD photodiode
  • control unit 293 controls the laser diode power supply (LD Power, 294) so that the laser light source unit (LD) emits laser light of various wavelengths, and the laser light source unit 110 controls B (Blue), G ( Green) and R (Red) laser light can be controlled to emit.
  • LD Power laser diode power supply
  • the emitted laser light is focused toward the analysis sample, and at this time, the controller 283 controls a motor driver 297 to move the pinhole substrate.
  • control unit 293 can control the transmission of one of the plurality of laser lights by adjusting the position of the pinhole substrate on which the pinhole is formed.
  • the control unit 293 controls to supply power to the piezo film to move the support substrate, thereby moving the entire pinhole substrate. can be moved.
  • the required laser light is condensed onto the analysis sample through a multi-confocal method in which only the selected laser light is transmitted by moving the pinhole substrate, and the sensing unit transmits the pinhole. Laser light from the analysis sample passing through may be received.
  • it is configured to further include an LCD shutter and, under the control of the control unit 293, the laser light emitted from the laser light source unit is emitted within a certain initial period of time. pass for a period of time, and after a certain time range, the laser light may be blocked.
  • the laser oscillation of the laser light source unit LD passes only the laser light within an initial period of 0.04 to 0.1 ms through light blocking using an LCD shutter and blocks subsequent laser light, background noise introduced into the sensing unit (Background noise) ) can be reduced.
  • Background noise background noise introduced into the sensing unit
  • the light blocking reaction time may be optimized depending on whether the laser light is a CW laser (Continuous Wave Laser) or a pulse laser.
  • the LCD shutter controls each CW laser and pulse laser by the control of the controller 293.
  • a range of an initial predetermined time for passing the laser light may be adjusted and controlled to correspond to the characteristics.
  • the multi-channel optical diagnosis device uses a piezo film on the pinhole substrate where the pinhole is formed so that various laser light sources can be used according to the characteristics of the fluorescent dye used in the sample to be diagnosed.
  • a required laser light source among various laser light sources can be transmitted through a simple structure of attaching.
  • the multi-channel optical diagnosis device allows the laser light to pass for a certain amount of time initially using an LCD shutter and blocks it after a certain amount of time to reduce background noise flowing into the sensing unit. .

Abstract

The present invention relates to a multi-channel optical diagnostic device, comprising: a laser light source unit which emits laser beams of various wavelengths; a condensing lens which concentrates the emitted laser beams of various wavelengths towards a sample under analysis; a pinhole substrate which allows laser beams, selected among the emitted laser beams of various wavelengths that pass through the condensing lens, to pass therethrough via pinholes; a control unit which moves the pinhole substrate in the direction of the focal point of the condensing lens; and a detection unit which receives the laser beams, coming from the sample under analysis, that have passed through the pinholes.

Description

다채널 광학 진단 장치Multi-channel optical diagnostic device
본 발명은 다채널 광학 진단 장치에 관한 것으로, 보다 상세하게는 다양한 레이저 광원의 사용이 가능하고 공초점 방식의 다채널 형광 검출시 광학 검출 스펙트럼과 총 광량의 증폭효과와 집속도를 높일 수 있도록 형광 집속 광학 기술을 적용한 다채널 광학 진단 장치에 관한 것이다.The present invention relates to a multi-channel optical diagnostic device, and more particularly, to enable the use of various laser light sources and increase the amplification effect and focusing speed of the optical detection spectrum and total light amount during confocal multi-channel fluorescence detection. It relates to a multi-channel optical diagnostic device using focusing optical technology.
미생물에 손상을 주지 않고 총수와 생존력(viability)을 동시에 잴 수 있는 기술은 미생물의 유전율(permittivity), 자가형광(auto-fluorescence)을 측정하는 방식이 있다.Techniques that can simultaneously measure the total number and viability without damaging microorganisms include methods for measuring the permittivity and auto-fluorescence of microorganisms.
이와 관련된 종래 기술에 따르면 Clean Trace가 현장 검사에 많이 이용되고 있으나, 미생물을 용해(lysis) 해야 하므로 음식물 등 주변 오염원에 의해 측정값이 달라지는 문제가 발생하여 정확한 미생물 총수 측정만이 아니라 생존력(viability)의 측정도 할 수 없다.According to the prior art related to this, Clean Trace is widely used for on-site inspection, but since microorganisms must be lysed, measurement values vary depending on surrounding contaminants such as food. cannot be measured either.
미생물 배양 시 배양조 내의 모든 위치에서 동일 조건을 유지하려 교반기(stirrer)를 이용 배양액을 회전시켜 고루 섞는 공정이 있는데, 이때 발생하는 마이크로 버블(micro-bubble)이 유전율에 왜곡을 초래하며 일정 밀도 범위를 벗어나면 그 현상이 심해져 측정이 어려워지는 단점이 있다.When culturing microorganisms, there is a process of rotating the culture solution using a stirrer to mix it evenly to maintain the same conditions at all locations in the culture tank. If it is out of the range, the phenomenon gets worse and measurement becomes difficult.
한편, 자가형광은 미생물내의 미토콘드리아 및 리소좀과 같은 생물학적 구조가 빛을 흡수할 때 자연적으로 방출하는 빛을 말하여, 가장 일반적으로 관찰되는 자가형광 분자는 NADH와 플라빈이 대표적인 세포내 생물학적 물질이다.On the other hand, autofluorescence refers to light naturally emitted when biological structures such as mitochondria and lysosomes in microorganisms absorb light, and the most commonly observed autofluorescence molecules are NADH and flavin, which are representative intracellular biological substances.
그러나, 자가형광은 형광 강도가 약해 현재까지는 PMT(Photomultiplier Tube Module)를 이용하여 측정하는 관계로 장비가 대형화되고 고가인 단점이 있다.However, autofluorescence is weak in fluorescence intensity and has been measured using a photomultiplier tube module (PMT), which has disadvantages in that the equipment is large and expensive.
따라서, PMT를 사용하지 않으면서도 자가 형광 신호를 획득할 수 있는 보다 소형화된 현장형 분석 기기가 필요하다.Therefore, there is a need for a more miniaturized on-site analysis device capable of acquiring an autofluorescence signal without using a PMT.
본 발명은 전술한 문제를 해결하기 위해 안출된 것으로서, 본 발명에 따른 다채널 광학 진단 장치는 미생물의 대사작용으로 인해 발생되는 자가형광(autofluorescence)을 현장에서 실시간으로 측정할 수 있는 고민감도의 형광스캔 기술 및 장치를 제공하고자 한다.The present invention has been made to solve the above problems, and the multi-channel optical diagnostic device according to the present invention is highly sensitive fluorescence that can measure autofluorescence generated by metabolism of microorganisms in real time in the field. It aims to provide scanning technology and devices.
또한, 종래 기술에 따르면 미생물을 탐지하기 위해서는 실험실에서 3 ~ 4일 정도의 배양과정을 거치게 되는데 반하여, 본 발명에 따른 다채널 광학 진단 장치는 이러한 배양 과정 없이 현장형 미생물 검사 장치로서 라벨과 용해가 필요 없으면서도(no label, no lysis), 생존성 분류(viability sorting)가 가능하고 저 비용(low cost)이면서도 현장검사(point-of-care test, POCT)가 가능하도록 하고자 한다.In addition, according to the prior art, in order to detect microorganisms, a culture process of about 3 to 4 days is required in a laboratory, whereas the multi-channel optical diagnostic device according to the present invention is a field-type microorganism inspection device without such a culture process, and can label and dissolve It is not necessary (no label, no lysis), viability sorting is possible, and point-of-care test (POCT) is possible at low cost.
또한, 본 발명에 따른 다채널 광학 진단 장치는 진단하고자 하는 시료에 사용되는 형광 염료의 특성에 따라 다양한 레이저 광원을 사용하도록 할 수 있도록 하고자 한다.In addition, the multi-channel optical diagnosis device according to the present invention is intended to enable the use of various laser light sources according to the characteristics of the fluorescent dye used in the sample to be diagnosed.
또한, 본 발명에 따른 다채널 광학 진단 장치는 핀홀이 형성되는 핀홀 기판에 피에조 필름(Piezo Film)을 부착하는 간단한 구조를 통해 다양한 레이저 광원 중에서 필요로 하는 레이저 광원이 투과되도록 하여 보다 소형화된 광학 진단 장치를 구성할 수 있을 뿐만 아니라, 보다 정밀하게 레이저 광의 파장별 투과 선택이 가능하도록 하고자 한다.In addition, the multi-channel optical diagnosis device according to the present invention allows the required laser light source among various laser light sources to pass through a simple structure of attaching a piezo film to a pinhole substrate on which a pinhole is formed, thereby making the optical diagnosis more compact. In addition to being able to configure the device, it is intended to enable more precise selection of transmission for each wavelength of laser light.
또한, 본 발명에 따른 다채널 광학 진단 장치는 LCD 셔터(LCD Shutter)를 이용해 레이저 광을 초기의 일정 동안 통과시키고, 일정 시간 이후에는 차단하여 감지부로 유입되는 백그라운드 노이즈(Background noise)를 줄이고자 한다.In addition, the multi-channel optical diagnosis device according to the present invention uses an LCD shutter to pass laser light for a certain amount of time initially and blocks it after a certain amount of time to reduce background noise flowing into the sensing unit. .
전술한 문제를 해결하기 위한 본 발명의 일실시예에 따른 다채널 광학 진단 장치는 다양한 파장의 레이저 광을 방출하는 레이저 광원부; 상기 방출된 다양한 파장의 레이저 광을 분석 시료 측으로 집광시키는 집광 렌즈; 상기 집광 렌즈를 투과하는 상기 방출된 다양한 파장의 레이저 광 중에서 선택되는 레이저 광을 핀홀을 통해 투과시키는 핀홀 기판; 상기 핀홀 기판을 상기 집광 렌즈의 초점 방향으로 이동시키는 제어부; 및 상기 핀홀을 통과한 상기 분석 시료로부터의 레이저 광을 수신하는 감지부;를 포함하여 구성된다.A multi-channel optical diagnosis device according to an embodiment of the present invention for solving the above problems includes a laser light source unit emitting laser light of various wavelengths; a condensing lens condensing the emitted laser light of various wavelengths toward the analysis sample; a pinhole substrate through which laser light selected from among the emitted laser lights of various wavelengths passing through the condensing lens is transmitted through a pinhole; a controller for moving the pinhole substrate in a focal direction of the condensing lens; and a sensing unit configured to receive laser light from the analysis sample passing through the pinhole.
본 발명의 다른 일실시예에 따르면, 상기 핀홀 기판은 상기 핀홀이 형성되는 지지기판; 및 공급되는 전원에 의해 상기 제어부의 제어 범위로 상기 지지기판을 이동시키는 피에조 필름;을 포함하여 구성될 수 있다.According to another embodiment of the present invention, the pinhole substrate includes a support substrate on which the pinhole is formed; and a piezo film for moving the support substrate within the control range of the controller by the supplied power.
본 발명의 다른 일실시예에 따르면, 상기 제어부의 제어에 의해, 상기 레이저 광원부로부터 방출되는 레이저 광을 방출 초기의 일정 시간의 범위 동안 통과시키고, 일정 시간의 범위의 이후에는 상기 레이저 광을 차단하는 LCD 셔터;를 더 포함하여 구성될 수 있다.According to another embodiment of the present invention, by the control of the control unit, to pass the laser light emitted from the laser light source unit for a certain time range at the beginning of the emission, and to block the laser light after a certain time range It may be configured to further include; LCD shutter.
본 발명의 다른 일실시예에 따르면, 상기 LCD 셔터는 상기 레이저 광원부로부터 방출되는 레이저 광이 CW 레이저(Continuous Wave Laser) 또는 펄스 레이저(Pulse Laser)인 경우, 상기 제어부의 제어에 의해 각 CW 레이저와 펄스 레이저의 특성에 상응하도록 상기 레이저 광을 통과시키는 초기 일정 시간의 범위가 조절되어 제어될 수 있다.According to another embodiment of the present invention, when the laser light emitted from the laser light source unit is a CW laser (Continuous Wave Laser) or a pulse laser, the LCD shutter operates with each CW laser and A range of an initial predetermined time for passing the laser light may be adjusted and controlled to correspond to the characteristics of the pulse laser.
본 발명의 다른 일실시예에 따르면, 상기 제어부의 제어에 의해 상기 집광 렌즈와 상기 분석 시료가 배치되는 진단 키트 간의 거리를 제어하는 구동 유닛;을 더 포함하여 구성될 수 있다.According to another embodiment of the present invention, a driving unit controlling a distance between the condensing lens and the diagnostic kit in which the analysis sample is disposed under the control of the control unit may be further included.
본 발명에 따른 다채널 광학 진단 장치는 미생물의 대사작용으로 인해 발생되는 자가형광(autofluorescence)을 현장에서 실시간으로 측정할 수 있는 고민감도의 형광스캔 기술 및 장치를 제공할 수 있다.The multi-channel optical diagnostic device according to the present invention can provide a high-sensitivity fluorescence scanning technology and device that can measure autofluorescence generated by the metabolism of microorganisms in real time in situ.
또한, 종래 기술에 따르면 미생물을 탐지하기 위해서는 실험실에서 3 ~ 4일 정도의 배양과정을 거치게 되는데 반하여, 본 발명에 따른 다채널 광학 진단 장치는 이러한 배양 과정 없이 현장형 미생물 검사 장치로서 라벨과 용해가 필요 없으면서도(no label, no lysis), 생존성 분류(viability sorting)가 가능하고 저 비용(low cost)이면서도 현장검사(point-of-care test, POCT)가 가능하다.In addition, according to the prior art, in order to detect microorganisms, a culture process of about 3 to 4 days is required in a laboratory, whereas the multi-channel optical diagnostic device according to the present invention is a field-type microorganism inspection device without such a culture process, and can label and dissolve It is not necessary (no label, no lysis), viability sorting is possible, and low cost point-of-care test (POCT) is possible.
또한, 본 발명에 따른 다채널 광학 진단 장치는 진단하고자 하는 시료에 사용되는 형광 염료의 특성에 따라 다양한 레이저 광원을 사용하도록 할 수 있다.In addition, the multi-channel optical diagnosis apparatus according to the present invention may use various laser light sources according to the characteristics of the fluorescent dye used in the sample to be diagnosed.
또한, 본 발명에 따른 다채널 광학 진단 장치는 핀홀이 형성되는 핀홀 기판에 피에조 필름(Piezo Film)을 부착하는 간단한 구조를 통해 다양한 레이저 광원 중에서 필요로 하는 레이저 광원이 투과되도록 하여 보다 소형화된 광학 진단 장치를 구성할 수 있을 뿐만 아니라, 보다 정밀하게 레이저 광의 파장별 투과 선택이 가능하다.In addition, the multi-channel optical diagnosis device according to the present invention allows the required laser light source among various laser light sources to pass through a simple structure of attaching a piezo film to a pinhole substrate on which a pinhole is formed, thereby making the optical diagnosis more compact. In addition to being able to configure the device, it is possible to more precisely select the transmission of laser light for each wavelength.
또한, 본 발명에 따른 다채널 광학 진단 장치는 LCD 셔터(LCD Shutter)를 이용해 레이저 광을 초기의 일정 동안 통과시키고, 일정 시간 이후에는 차단하여 감지부로 유입되는 백그라운드 노이즈(Background noise)를 줄일 수 있다.In addition, the multi-channel optical diagnosis device according to the present invention allows the laser light to pass for a certain amount of time initially using an LCD shutter and blocks it after a certain amount of time to reduce background noise flowing into the sensing unit. .
도 1은 본 발명의 일실시예에 따른 다채널 광학 진단 장치를 도시한 도면이다.1 is a diagram illustrating a multi-channel optical diagnosis apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 다채널 광학 진단 장치의 구성을 설명하기 위한 도면이다.2 is a diagram for explaining the configuration of a multi-channel optical diagnosis apparatus according to an embodiment of the present invention.
도 3 내지 도 7은 본 발명의 일실시예에 따른 다채널 광학 진단 장치의 구성과 동작 방법을 설명하기 위한 도면이다.3 to 7 are diagrams for explaining the configuration and operation method of a multi-channel optical diagnosis apparatus according to an embodiment of the present invention.
도 8은 본 발명의 다른 일실시예에 따른 다채널 광학 진단 장치(100)의 구성도이다.8 is a configuration diagram of a multi-channel optical diagnosis apparatus 100 according to another embodiment of the present invention.
이하에서는 첨부한 도면을 참조하여 바람직한 본 발명의 일실시예에 대해서 상세히 설명한다. 다만, 실시형태를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그에 대한 상세한 설명은 생략한다. 또한, 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of the present invention will be described in detail. However, in describing the embodiments, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, a detailed description thereof will be omitted. In addition, the size of each component in the drawings may be exaggerated for description, and does not mean a size that is actually applied.
도 1은 본 발명의 일실시예에 따른 다채널 광학 진단 장치를 도시한 도면이고, 도 2는 본 발명의 일실시예에 따른 다채널 광학 진단 장치의 구성을 설명하기 위한 도면이다.1 is a diagram showing a multi-channel optical diagnosis device according to an embodiment of the present invention, and FIG. 2 is a diagram for explaining the configuration of the multi-channel optical diagnosis device according to an embodiment of the present invention.
또한, 도 3 내지 도 7은 본 발명의 일실시예에 따른 다채널 광학 진단 장치의 구성과 동작 방법을 설명하기 위한 도면이다.3 to 7 are diagrams for explaining the configuration and operation method of a multi-channel optical diagnosis apparatus according to an embodiment of the present invention.
이후부터는 도 1 내지 도 7을 참조하여 본 발명의 일실시예에 따른 다채널 광학 진단 장치의 구성과 동작 방법을 설명하기로 한다.Hereinafter, the configuration and operation method of the multi-channel optical diagnosis apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 to 7 .
본 발명의 일실시예에 따른 다채널 광학 진단 장치(100)는 레이저 광원부(110), 집광 렌즈(120), 핀홀 기판(130), 제어부(140) 및 감지부(150)를 포함하여 구성된다.The multi-channel optical diagnosis device 100 according to an embodiment of the present invention includes a laser light source unit 110, a condensing lens 120, a pinhole substrate 130, a control unit 140, and a detection unit 150. .
레이저 광원부(110)는 LD(Laser Diode)로 구성되어 다양한 파장의 레이저 광을 방출한다. The laser light source unit 110 is composed of LD (Laser Diode) and emits laser light of various wavelengths.
본 발명의 일실시예에 따른 다채널 광학 진단 장치(100)는 시료(101)에 사용되는 형광 염료의 특성에 따라 다양한 레이저 광원을 사용하며, 보다 구체적으로 상기 레이저 광원부(110)로부터 방출되는 레이저 광은 B(Blue), G(Green), R(Red)의 레이저 광으로 구성될 수 있다.The multi-channel optical diagnosis device 100 according to an embodiment of the present invention uses various laser light sources according to the characteristics of the fluorescent dye used in the sample 101, and more specifically, the laser emitted from the laser light source unit 110. The light may be composed of B (Blue), G (Green), and R (Red) laser lights.
또한, 상기 레이저 광원부(110)는 4 채널의 LED(111)로 구성될 수 있으며, 상기 4 채널의 LED(111)로부터의 광을 평행하게 출사시키는 시준 렌즈(112)를 포함하여 구성될 수 있다.In addition, the laser light source unit 110 may be composed of 4-channel LEDs 111, and may include a collimating lens 112 for emitting light from the 4-channel LEDs 111 in parallel. .
이때, 상기 레이저 광원부(110)에는 상기 4 채널의 LED(111)에서 발생하는 열을 용이하게 외부로 용이하게 배출할 수 있도록, 하우징(113)을 통해 상기 4 채널의 LED(111)의 배면에 방열부(114)를 더 포함하도록 구성될 수 있다.At this time, the laser light source unit 110 is installed on the rear surface of the 4-channel LED 111 through the housing 113 so that heat generated from the 4-channel LED 111 can be easily discharged to the outside. It may be configured to further include a heat dissipation unit 114 .
이와 같이 레이저 광원부(110)로부터 방출된 광은 미러(115)에 반사되어 집광 렌즈(120)로 유입되며, 집광 렌즈(120)는 상기 방출된 다양한 파장의 레이저 광을 분석 시료(101) 측으로 집광시킨다.The light emitted from the laser light source unit 110 is reflected by the mirror 115 and introduced into the condensing lens 120, and the condensing lens 120 condenses the emitted laser light of various wavelengths toward the analysis sample 101. let it
이때, 핀홀 기판(130)은 상기 집광 렌즈(120)를 투과하는 상기 방출된 다양한 파장의 레이저 광 중에서 선택되는 레이저 광을 핀홀(13)을 통해 투과시킨다.At this time, the pinhole substrate 130 transmits the laser light selected from the emitted laser light of various wavelengths passing through the condensing lens 120 through the pinhole 13 .
단렌즈(하나의 렌즈)로서 집광 렌즈(120)를 사용하는 경우 상기 레이저 광의 파장에 따라 초점 거리가 다르게 되는데, 본 발명의 일실시예에 의하면 공초점을 구현하기 위하여 핀홀 기판(130)의 핀홀(131)의 위치를 조절하여 하나의 레이저 광을 획득하도록 할 수 있다.When the condensing lens 120 is used as a single lens (one lens), the focal length varies according to the wavelength of the laser light. By adjusting the position of 131, one laser light can be obtained.
본 발명의 일실시예에 따르면, 이와 같이 통과시키고자 하는 레이저 광을 선택하기 위하여 상기 핀홀 기판(130)을 이동시키며, 이때 제어부(140)의 제어에 의해 상기 핀홀 기판(130)을 상기 집광 렌즈(120)의 초점 방향으로 이동시킬 수 있다.According to one embodiment of the present invention, the pinhole substrate 130 is moved to select laser light to pass through, and at this time, the pinhole substrate 130 is moved to the condensing lens under the control of the control unit 140. It can be moved in the focal direction of (120).
보다 구체적으로 설명하면, 상기 핀홀 기판(130)은 핀홀이 형성되는 지지기판과, 상기 지지기판에 형성되는 피에조 필름(Piezo Film)으로 구성될 수 있다.More specifically, the pinhole substrate 130 may include a support substrate on which pinholes are formed and a piezo film formed on the support substrate.
피에조 필름(Piezo Film)은 압전 효과가 있는 플라스틱 PVDF(Polyvinylidene Fluoride)로 만들어진 가공성이 양호하고 대면적으로 박막화가 용이한 압전소자로서, 본 발명의 실시예에서는 상기 핀홀 기판(130)에 피에조 필름을 사용하여 상기 핀홀 기판(130)을 상기 집광 렌즈(120)의 초점 방향으로 정밀하게 이동시킬 수 있다.A piezo film is a piezoelectric element made of polyvinylidene fluoride (PVDF), a plastic having a piezoelectric effect, that has good processability and is easy to thin on a large area. The pinhole substrate 130 can be accurately moved in the focal direction of the condensing lens 120 by using the pinhole substrate 130 .
즉, 상기 피에조 필름에 전원을 공급하여 상기 제어부(140)의 제어 범위로 상기 지지기판을 이동시킬 수 있으며, 이를 통해 핀홀 기판(130)을 이동시킬 수 있다.That is, by supplying power to the piezo film, the support substrate can be moved within the control range of the controller 140, and through this, the pinhole substrate 130 can be moved.
이와 같이 본 발명의 일실시예에 따르면, 피에조 필름을 이용하여 핀홀 기판(130)의 이동을 제어함으로써, 보다 소형화된 광학 진단 장치를 구성할 수 있을 뿐만 아니라, 보다 정밀하게 레이저 광의 파장별 투과 선택이 가능하다.As described above, according to an embodiment of the present invention, by controlling the movement of the pinhole substrate 130 using a piezo film, a smaller optical diagnosis device can be configured, and transmission selection for each wavelength of laser light is more precisely achieved. this is possible
본 발명의 일실시예에 따르면, 이와 같이 핀홀 기판(130)을 이동시켜 선택되는 레이저 광만을 투과시키는 다중 공초점 방식(Multi Confocal Method)을 통해 필요한 레이저 광을 분석 시료(101) 상에 집광하고, 감지부(150)는 상기 상기 핀홀을 통과한 상기 분석 시료(101)로부터의 레이저 광을 수신할 수 있다.According to one embodiment of the present invention, the required laser light is condensed onto the analysis sample 101 through a multi confocal method in which only the selected laser light is transmitted by moving the pinhole substrate 130 as described above, and , The sensing unit 150 may receive laser light from the analysis sample 101 passing through the pinhole.
또한, 본 발명의 일실시예에 따른 다채널 광학 진단 장치(100)는 LCD 셔터(LCD Shutter: 160)를 더 포함하여 구성될 수 있다.In addition, the multi-channel optical diagnosis apparatus 100 according to an embodiment of the present invention may further include an LCD shutter 160.
상기 LCD 셔터(160)는 제어부(140)의 제어에 의해 레이저 광을 차단할 수 있다.The LCD shutter 160 may block laser light under the control of the controller 140 .
보다 구체적으로, 상기 LCD 셔터(160)는 상기 제어부(140)의 제어에 의해, 상기 레이저 광원부(110)로부터 방출되는 레이저 광을 방출 초기의 일정 시간의 범위 동안 통과시키고, 일정 시간의 범위의 이후에는 상기 레이저 광을 차단할 수 있다.More specifically, the LCD shutter 160 passes the laser light emitted from the laser light source unit 110 for a certain time range at the beginning of emission under the control of the control unit 140, and after a certain time range. may block the laser light.
예를 들어, 레이저 광원부(110)의 레이저 발진시 LCD 셔터(160)를 이용한 차광을 통해 초기 0.04 ~ 0.1ms 이내의 레이저 광만을 통과시키고, 이후의 레이저 광은 차단할 수 있다.For example, during laser oscillation of the laser light source unit 110, only laser light within an initial period of 0.04 to 0.1 ms may pass through light blocking using the LCD shutter 160, and subsequent laser light may be blocked.
이를 통해, 감지부(150)로 유입되는 백그라운드 노이즈(Background noise)를 줄일 수 있다.Through this, background noise flowing into the sensing unit 150 may be reduced.
그 뿐만 아니라, 본 발명의 일실시예에 따르면 레이저 광원부(110)의 레이저 발진 시 레이저 광이 CW 레이저(Continuous Wave Laser) 또는 펄스 레이저(Pulse Laser)인지에 따라 차광 반응 시간을 최적화할 수 있다.In addition, according to an embodiment of the present invention, when the laser light source unit 110 emits laser light, it is possible to optimize the light blocking reaction time depending on whether the laser light is a CW laser (Continuous Wave Laser) or a pulse laser.
즉, 상기 LCD 셔터(160)는 상기 레이저 광원부(110)로부터 방출되는 레이저 광이 CW 레이저(Continuous Wave Laser) 또는 펄스 레이저(Pulse Laser)인 경우, 상기 제어부(140)의 제어에 의해 각 CW 레이저와 펄스 레이저의 특성에 상응하도록 상기 레이저 광을 통과시키는 초기 일정 시간의 범위가 조절되어 제어할 수 있다.That is, when the laser light emitted from the laser light source unit 110 is a CW laser (Continuous Wave Laser) or a pulse laser, the LCD shutter 160 controls each CW laser by the control of the control unit 140. And the range of the initial predetermined time for passing the laser light to correspond to the characteristics of the pulse laser can be adjusted and controlled.
이와 같이 본 발명에 따른 다채널 광학 진단 장치는 진단하고자 하는 시료에 사용되는 형광 염료의 특성에 따라 다양한 레이저 광원을 사용하도록 할 수 있도록 하기 위하여, 핀홀이 형성되는 핀홀 기판에 피에조 필름(Piezo Film)을 부착하는 간단한 구조를 통해 다양한 레이저 광원 중에서 필요로 하는 레이저 광원이 투과되도록 할 수 있다.In this way, the multi-channel optical diagnosis device according to the present invention uses a piezo film on the pinhole substrate where the pinhole is formed so that various laser light sources can be used according to the characteristics of the fluorescent dye used in the sample to be diagnosed. A required laser light source among various laser light sources can be transmitted through a simple structure of attaching.
또한, 본 발명에 따른 다채널 광학 진단 장치는 LCD 셔터(LCD Shutter)를 이용해 레이저 광을 초기의 일정 동안 통과시키고, 일정 시간 이후에는 차단하여 감지부로 유입되는 백그라운드 노이즈(Background noise)를 줄일 수 있다.In addition, the multi-channel optical diagnosis device according to the present invention allows the laser light to pass for a certain amount of time initially using an LCD shutter and blocks it after a certain amount of time to reduce background noise flowing into the sensing unit. .
도 8은 본 발명의 다른 일실시예에 따른 다채널 광학 진단 장치(100)의 구성도이다.8 is a configuration diagram of a multi-channel optical diagnosis apparatus 100 according to another embodiment of the present invention.
도 8을 참조하면, 본 발명의 다른 일실시예에 따른 다채널 광학 진단 장치(200)의 제어 시스템(290)은 입력(input) 유닛(291), 출력(Output) 유닛(292), 제어부(MCU, 293), 레이저 다이오드 전원공급장치(LD Power, 294), 증폭기(295), 아날로그 디지털 컨버터(ADC, 296), 및 모터 구동유닛(Moter driver, 297)을 포함하여 구성될 수 있다.Referring to FIG. 8 , the control system 290 of the multi-channel optical diagnosis apparatus 200 according to another embodiment of the present invention includes an input unit 291, an output unit 292, a control unit ( MCU, 293), a laser diode power supply (LD Power, 294), an amplifier 295, an analog-to-digital converter (ADC, 296), and a motor driving unit (Moter driver, 297).
제어부(293)는 예를 들어 12비트 해상도에서 단위 기준신호를 4096 단계로 분해하여 일정한 간격으로 포토 다이오드의 데이터를 추출하도록 동작할 수 있다.The control unit 293 may operate to extract photodiode data at regular intervals by decomposing a unit reference signal into 4096 steps at 12-bit resolution, for example.
또한, 제어부(293)는 펄스폭 변조(pulse width modulation, PWM) 제어를 통해 디지털 신호에 대하여 주파수를 설정하고, 펄스폭 또는 듀티 사이클은 신호의 진폭을 조정하여 레이저 다이오드의 세기를 조절할 수 있다. In addition, the control unit 293 may set the frequency of the digital signal through pulse width modulation (PWM) control, and adjust the intensity of the laser diode by adjusting the pulse width or duty cycle of the signal amplitude.
이러한 구성에 의하면, 4비트나 8비트 해상도의 컨트롤 유닛에 비해 아날로그 디지탈 변환 체계에서 변환 속도를 크게 향상시킬 수 있다.According to this configuration, the conversion speed can be greatly improved in an analog-to-digital conversion system compared to a control unit with 4-bit or 8-bit resolution.
제어부(293)는 메인 제어 유닛, 중앙처리장치 등으로 지칭될 수 있고, 마이크로프로세서, 마이컴 등으로 구현될 수 있다.The controller 293 may be referred to as a main control unit, a central processing unit, or the like, and may be implemented as a microprocessor, a microcomputer, or the like.
또한, 제어부(293)는 노이즈 저감 및 유효 정보 획득을 위한 분석 프로그램을 메모리에 저장하고, 메모리에 연결되는 제어부(293)를 통해 분석 프로그램을 수행할 수 있다.In addition, the controller 293 may store an analysis program for noise reduction and acquisition of valid information in a memory, and execute the analysis program through the controller 293 connected to the memory.
분석 프로그램은 스캐닝 스케줄 알고리즘, 포토 다이오드(PD) 검출 전압 누적과 분석 알고리즘 등을 포함할 수 있다.The analysis program may include a scanning schedule algorithm, a photodiode (PD) detection voltage accumulation and analysis algorithm, and the like.
즉, 제어부(293)는 레이저 다이오드 전원공급장치(LD Power, 294)를 제어하여 레이저 광원부(LD)가 다양한 파장의 레이저 광을 방출하도록 하며, 레이저 광원부(110)가 B(Blue), G(Green), R(Red)의 레이저 광을 방출하도록 제어할 수 있다.That is, the control unit 293 controls the laser diode power supply (LD Power, 294) so that the laser light source unit (LD) emits laser light of various wavelengths, and the laser light source unit 110 controls B (Blue), G ( Green) and R (Red) laser light can be controlled to emit.
이와 같이 방출된 레이저 광은 분석 시료 측으로 집광되며, 이때 상기 제어부(283)는 모터 구동유닛(Moter driver, 297)을 제어하여 핀홀 기판을 이동시킨다.The emitted laser light is focused toward the analysis sample, and at this time, the controller 283 controls a motor driver 297 to move the pinhole substrate.
이를 통해, 제어부(293)가 핀홀이 형성된 핀홀 기판의 위치를 조절하여 상기 다수의 레이저 광 중에서 하나의 광이 투과되도록 제어할 수 있다.Through this, the control unit 293 can control the transmission of one of the plurality of laser lights by adjusting the position of the pinhole substrate on which the pinhole is formed.
이때, 핀홀 기판은 핀홀이 형성되는 지지기판과, 상기 지지기판에 형성되는 피에조 필름으로 구성되므로, 제어부(293)가 피에조 필름에 전원을 공급하도록 제어하여 지지기판을 이동되도록 하여 이를 통해 핀홀 기판 전체를 이동시킬 수 있다.At this time, since the pinhole substrate is composed of a support substrate on which pinholes are formed and a piezo film formed on the support substrate, the control unit 293 controls to supply power to the piezo film to move the support substrate, thereby moving the entire pinhole substrate. can be moved.
이와 같이, 피에조 필름을 이용하여 핀홀 기판의 이동을 제어함으로써, 보다 소형화된 광학 진단 장치를 구성할 수 있을 뿐만 아니라, 보다 정밀하게 레이저 광의 파장별 투과 선택이 가능하다.In this way, by controlling the movement of the pinhole substrate using the piezo film, it is possible to configure a smaller optical diagnosis device and more accurately select transmission of laser light for each wavelength.
본 발명의 다른 일실시예에 따르면, 이와 같이 핀홀 기판을 이동시켜 선택되는 레이저 광만을 투과시키는 다중 공초점 방식(Multi Confocal Method)을 통해 필요한 레이저 광을 분석 시료 상에 집광하고, 감지부가 상기 핀홀을 통과한 상기 분석 시료로부터의 레이저 광을 수신할 수 있다.According to another embodiment of the present invention, the required laser light is condensed onto the analysis sample through a multi-confocal method in which only the selected laser light is transmitted by moving the pinhole substrate, and the sensing unit transmits the pinhole. Laser light from the analysis sample passing through may be received.
그 뿐만 아니라, 본 발명의 다른 일실시예에 따르면 LCD 셔터(LCD Shutter)를 더 포함하여 구성되어, 제어부(293)의 제어에 의해, 레이저 광원부로부터 방출되는 레이저 광을 방출 초기의 일정 시간의 범위 동안 통과시키고, 일정 시간의 범위의 이후에는 상기 레이저 광을 차단할 수 있다.In addition, according to another embodiment of the present invention, it is configured to further include an LCD shutter and, under the control of the control unit 293, the laser light emitted from the laser light source unit is emitted within a certain initial period of time. pass for a period of time, and after a certain time range, the laser light may be blocked.
예를 들어, 레이저 광원부(LD)의 레이저 발진시 LCD 셔터를 이용한 차광을 통해 초기 0.04 ~ 0.1ms 이내의 레이저 광만을 통과시키고, 이후의 레이저 광은 차단함으로써, 감지부로 유입되는 백그라운드 노이즈(Background noise)를 줄일 수 있다.For example, when the laser oscillation of the laser light source unit LD passes only the laser light within an initial period of 0.04 to 0.1 ms through light blocking using an LCD shutter and blocks subsequent laser light, background noise introduced into the sensing unit (Background noise) ) can be reduced.
그 뿐만 아니라, 본 발명의 일실시예에 따르면 레이저 광원부(LD)의 레이저 발진 시 레이저 광이 CW 레이저(Continuous Wave Laser) 또는 펄스 레이저(Pulse Laser)인지에 따라 차광 반응 시간을 최적화할 수 있다.In addition, according to an embodiment of the present invention, when laser oscillation of the laser light source unit LD, the light blocking reaction time may be optimized depending on whether the laser light is a CW laser (Continuous Wave Laser) or a pulse laser.
즉, 상기 LCD 셔터는 상기 레이저 광원부(LD)로부터 방출되는 레이저 광이 CW 레이저(Continuous Wave Laser) 또는 펄스 레이저(Pulse Laser)인 경우, 제어부(293)의 제어에 의해 각 CW 레이저와 펄스 레이저의 특성에 상응하도록 상기 레이저 광을 통과시키는 초기 일정 시간의 범위가 조절되어 제어할 수 있다.That is, when the laser light emitted from the laser light source unit LD is a CW laser (Continuous Wave Laser) or a pulse laser, the LCD shutter controls each CW laser and pulse laser by the control of the controller 293. A range of an initial predetermined time for passing the laser light may be adjusted and controlled to correspond to the characteristics.
이와 같이 본 발명에 따른 다채널 광학 진단 장치는 진단하고자 하는 시료에 사용되는 형광 염료의 특성에 따라 다양한 레이저 광원을 사용하도록 할 수 있도록 하기 위하여, 핀홀이 형성되는 핀홀 기판에 피에조 필름(Piezo Film)을 부착하는 간단한 구조를 통해 다양한 레이저 광원 중에서 필요로 하는 레이저 광원이 투과되도록 할 수 있다.In this way, the multi-channel optical diagnosis device according to the present invention uses a piezo film on the pinhole substrate where the pinhole is formed so that various laser light sources can be used according to the characteristics of the fluorescent dye used in the sample to be diagnosed. A required laser light source among various laser light sources can be transmitted through a simple structure of attaching.
또한, 본 발명에 따른 다채널 광학 진단 장치는 LCD 셔터(LCD Shutter)를 이용해 레이저 광을 초기의 일정 동안 통과시키고, 일정 시간 이후에는 차단하여 감지부로 유입되는 백그라운드 노이즈(Background noise)를 줄일 수 있다.In addition, the multi-channel optical diagnosis device according to the present invention allows the laser light to pass for a certain amount of time initially using an LCD shutter and blocks it after a certain amount of time to reduce background noise flowing into the sensing unit. .
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 전술한 실시예에 국한되어 정해져서는 안 되며, 청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.In the detailed description of the present invention as described above, specific embodiments have been described. However, various modifications are possible without departing from the scope of the present invention. The technical spirit of the present invention should not be limited to the above-described embodiments of the present invention and should not be defined, and should be defined by not only the claims but also those equivalent to these claims.

Claims (5)

  1. 다양한 파장의 레이저 광을 방출하는 레이저 광원부;A laser light source unit that emits laser light of various wavelengths;
    상기 방출된 다양한 파장의 레이저 광을 분석 시료 측으로 집광시키는 집광 렌즈;a condensing lens condensing the emitted laser light of various wavelengths toward the analysis sample;
    상기 집광 렌즈를 투과하는 상기 방출된 다양한 파장의 레이저 광 중에서 선택되는 레이저 광을 핀홀을 통해 투과시키는 핀홀 기판;a pinhole substrate through which laser light selected from among the emitted laser lights of various wavelengths passing through the condensing lens is transmitted through a pinhole;
    상기 핀홀 기판을 상기 집광 렌즈의 초점 방향으로 이동시키는 제어부; 및a controller for moving the pinhole substrate in a focal direction of the condensing lens; and
    상기 핀홀을 통과한 상기 분석 시료로부터의 레이저 광을 수신하는 감지부;a detector receiving laser light from the analysis sample passing through the pinhole;
    를 포함하는 다채널 광학 진단 장치.Multi-channel optical diagnostic device comprising a.
  2. 청구항 1에 있어서,The method of claim 1,
    상기 핀홀 기판은,The pinhole substrate,
    상기 핀홀이 형성되는 지지기판; 및a support substrate on which the pinhole is formed; and
    공급되는 전원에 의해 상기 제어부의 제어 범위로 상기 지지기판을 이동시키는 피에조 필름;a piezo film that moves the support substrate within the control range of the controller by the supplied power;
    을 포함하는 다채널 광학 진단 장치.Multi-channel optical diagnostic device comprising a.
  3. 청구항 1에 있어서,The method of claim 1,
    상기 제어부의 제어에 의해, 상기 레이저 광원부로부터 방출되는 레이저 광을 방출 초기의 일정 시간의 범위 동안 통과시키고, 일정 시간의 범위의 이후에는 상기 레이저 광을 차단하는 LCD 셔터;Under the control of the control unit, an LCD shutter for passing the laser light emitted from the laser light source unit for a certain period of time at an initial stage of emission and blocking the laser light after a certain period of time range;
    를 더 포함하는 다채널 광학 진단 장치.Multi-channel optical diagnostic device further comprising a.
  4. 청구항 3에 있어서,The method of claim 3,
    상기 LCD 셔터는,The LCD shutter,
    상기 레이저 광원부로부터 방출되는 레이저 광이 CW 레이저(Continuous Wave Laser) 또는 펄스 레이저(Pulse Laser)인 경우, 상기 제어부의 제어에 의해 각 CW 레이저와 펄스 레이저의 특성에 상응하도록 상기 레이저 광을 통과시키는 초기 일정 시간의 범위가 조절되어 제어되는 다채널 광학 진단 장치.When the laser light emitted from the laser light source unit is a CW laser (Continuous Wave Laser) or a pulse laser, the control unit initially passes the laser light to correspond to the characteristics of each CW laser and pulse laser. A multi-channel optical diagnostic device controlled by adjusting a certain time range.
  5. 청구항 1에 있어서,The method of claim 1,
    상기 제어부의 제어에 의해 상기 집광 렌즈와 상기 분석 시료가 배치되는 진단 키트 간의 거리를 제어하는 구동 유닛;a driving unit controlling a distance between the condensing lens and the diagnostic kit in which the analysis sample is disposed under the control of the control unit;
    을 더 포함하는 다채널 광학 진단 장치.Multi-channel optical diagnostic device further comprising a.
PCT/KR2022/010736 2021-08-11 2022-07-21 Multi-channel optical diagnostic device WO2023018055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0105913 2021-08-11
KR1020210105913A KR102576472B1 (en) 2021-08-11 2021-08-11 Multi channel optical diagnostic device

Publications (1)

Publication Number Publication Date
WO2023018055A1 true WO2023018055A1 (en) 2023-02-16

Family

ID=85200258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010736 WO2023018055A1 (en) 2021-08-11 2022-07-21 Multi-channel optical diagnostic device

Country Status (2)

Country Link
KR (1) KR102576472B1 (en)
WO (1) WO2023018055A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495374B1 (en) * 2002-01-16 2005-06-14 가부시키가이샤 히다치 하이테크놀로지즈 Fluorescence, phosphorescence measuring apparatus
JP2007033381A (en) * 2005-07-29 2007-02-08 Tokyo Seimitsu Co Ltd Optical inspection apparatus and its lighting method
JP2008232742A (en) * 2007-03-19 2008-10-02 Fujifilm Corp Measuring instrument
KR101577355B1 (en) * 2014-09-11 2015-12-14 경북대학교 산학협력단 Automatic changing device of pinhole, automatic changing device of spatial filter, confocal microscope and manufacturing method thereof
KR101965803B1 (en) * 2018-10-30 2019-04-05 나노스코프시스템즈 주식회사 Raman spectroscopy having laser power control apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0618057D0 (en) 2006-09-14 2006-10-25 Perkinelmer Ltd Improvements in and relating to scanning confocal microscopy
KR20110121497A (en) * 2010-04-30 2011-11-07 경북대학교 산학협력단 Confocal microscopy system usning of pzt stage and scan method
JP6635052B2 (en) 2015-02-05 2020-01-22 株式会社ニコン Structured illumination microscope and observation method
KR20190000056A (en) * 2017-06-22 2019-01-02 (주)노스트 Laser scanning fluorescence confocal microscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495374B1 (en) * 2002-01-16 2005-06-14 가부시키가이샤 히다치 하이테크놀로지즈 Fluorescence, phosphorescence measuring apparatus
JP2007033381A (en) * 2005-07-29 2007-02-08 Tokyo Seimitsu Co Ltd Optical inspection apparatus and its lighting method
JP2008232742A (en) * 2007-03-19 2008-10-02 Fujifilm Corp Measuring instrument
KR101577355B1 (en) * 2014-09-11 2015-12-14 경북대학교 산학협력단 Automatic changing device of pinhole, automatic changing device of spatial filter, confocal microscope and manufacturing method thereof
KR101965803B1 (en) * 2018-10-30 2019-04-05 나노스코프시스템즈 주식회사 Raman spectroscopy having laser power control apparatus

Also Published As

Publication number Publication date
KR20230023968A (en) 2023-02-20
KR102576472B1 (en) 2023-09-11

Similar Documents

Publication Publication Date Title
US20230358682A1 (en) Optical signal detection modules and methods
US7928408B2 (en) Multi-channel fluorescence measuring optical system and multi-channel fluorescence sample analyzer
EP2376896B1 (en) Optical system for chemical and/or biochemical reactions
AU2013202788B2 (en) Indexing signal detection module
US5337139A (en) Multichannel optical measuring system
EA013886B1 (en) Fluorescence detection system
ATE244882T1 (en) OPTICAL MEASURING SYSTEM FOR DETECTING LUMINESCENCE OR FLUORESCENCE SIGNALS
ATE472099T1 (en) MULTIPLEX FLUORESCENCE DETECTION DEVICE WITH REMOVABLE OPTICAL MODULES
WO2020067742A1 (en) Real-time polymerase chain reaction fluorescence detection device
CN106085842A (en) A kind of high flux micro-fluidic chip nucleic acid amplification assays detecting system
EP3218696B1 (en) A portable in-vitro diagnostic detector and apparatus
WO2009125974A2 (en) Multi-channel bio reactor with fluorescence detector and on-line monitoring apparatus of it
WO2023018055A1 (en) Multi-channel optical diagnostic device
WO2013015483A1 (en) Reader for urine analysis
WO2014088249A1 (en) Device for monitoring biofilm
WO2018097458A1 (en) Optical analysis device using multi-light source structure and method therefor
WO2024075934A1 (en) Integrated optical measurement device
CN219670501U (en) Detection module of fluorescent quantitative PCR instrument
WO2021201597A1 (en) Optical signal detection device
Klotchenko et al. A Scanning Hardware Analyzer for Recording and Processing Fluorescent Biochip Images
CN114276912A (en) Fluorescence detection system, method and PCR amplification analysis device
CN114965263A (en) Integrated QPCR fluorescence detection system and method
AU2015275317A1 (en) Indexing signal detection module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22856055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE