WO2023048196A1 - Treatment method for chlorine gas - Google Patents

Treatment method for chlorine gas Download PDF

Info

Publication number
WO2023048196A1
WO2023048196A1 PCT/JP2022/035235 JP2022035235W WO2023048196A1 WO 2023048196 A1 WO2023048196 A1 WO 2023048196A1 JP 2022035235 W JP2022035235 W JP 2022035235W WO 2023048196 A1 WO2023048196 A1 WO 2023048196A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine gas
hydrochloric acid
aqueous solution
ferrous chloride
chloride
Prior art date
Application number
PCT/JP2022/035235
Other languages
French (fr)
Japanese (ja)
Inventor
慶太 山田
幸雄 佐久間
太郎 平岡
順 中澤
Original Assignee
株式会社アサカ理研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アサカ理研 filed Critical 株式会社アサカ理研
Priority to JP2023523065A priority Critical patent/JPWO2023048196A1/ja
Publication of WO2023048196A1 publication Critical patent/WO2023048196A1/en
Priority to JP2024029857A priority patent/JP2024055948A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a chlorine gas treatment method.
  • the waste lithium ion battery is heat-treated (roasted) or pulverized and classified without heat treatment.
  • Powder containing a valuable metal (hereinafter referred to as battery powder) is dissolved in hydrochloric acid, and the resulting leached solution is subjected to solvent extraction (for example, Patent Documents 1 and 2). reference).
  • the present invention provides a chlorine gas treatment method that eliminates such inconveniences and that can detoxify or effectively utilize the chlorine gas generated when the battery powder is dissolved in hydrochloric acid and the valuable metal is leached with hydrochloric acid. for the purpose.
  • the present inventors have conducted repeated studies, dissolving a powder containing a valuable metal obtained from a waste lithium ion battery in hydrochloric acid, and using chlorine gas generated when the valuable metal is leached with hydrochloric acid as a reducing agent. It has been found that by reacting with at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides, it can be detoxified or effectively utilized.
  • the present invention has been completed based on these findings.
  • the chlorine gas treatment method of the present invention dissolves powder containing valuable metals obtained from waste lithium ion batteries in hydrochloric acid, and removes chlorine generated when the valuable metals are leached out with hydrochloric acid.
  • a gas treatment method characterized by comprising a step of reacting the chlorine gas with at least one selected from the group consisting of reducing agents, alkali metal hydroxides, and alkaline earth metal hydroxides.
  • powder containing a valuable metal obtained from a waste lithium-ion battery is dissolved in hydrochloric acid, and the chlorine gas generated when the valuable metal is leached out with hydrochloric acid is treated as a reducing agent and alkali metal water. It can be rendered harmless or effectively utilized by reacting with at least one selected from the group consisting of oxides and alkaline earth metal hydroxides.
  • powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid, and the chlorine gas generated when the valuable metals are leached out with hydrochloric acid is treated with the first chloride.
  • Absorbing in an aqueous solution of ferrous chloride to produce a second aqueous solution of ferrous chloride containing ferric chloride having an increased concentration of ferric chloride relative to the first aqueous solution of ferrous chloride include.
  • the concentration of ferric chloride in the ferrous chloride aqueous solution is the ratio of ferric chloride to the total number of moles of ferrous chloride and ferric chloride contained in the ferrous chloride aqueous solution. means.
  • ferric chloride aqueous solution since the second ferrous chloride aqueous solution has a higher concentration of ferric chloride than the first ferrous chloride aqueous solution, it is hereinafter referred to as ferric chloride aqueous solution for convenience. I have something to do. Since the chlorine gas is fixed as ferric chloride by the above step, the chlorine gas can be rendered harmless.
  • the second aqueous ferrous chloride solution containing the ferric chloride is preferably produced by allowing the chlorine gas to be absorbed in the first aqueous ferrous chloride solution. is brought into contact with iron to reduce at least a portion of the ferric chloride contained in the second aqueous ferrous chloride solution, and the concentration of ferric chloride with respect to the second aqueous ferrous chloride solution is Further comprising producing a third ferrous chloride aqueous solution containing reduced ferric chloride.
  • the second ferrous chloride aqueous solution containing the ferric chloride is brought into contact with iron, so that at least part of the ferric chloride contained is reduced to become ferrous chloride, and the second chloride
  • a third aqueous solution of ferrous chloride containing ferric chloride having a reduced concentration of ferric chloride relative to the aqueous solution of ferrous chloride can be obtained.
  • the chlorine gas is effectively used. can.
  • the chlorine gas is purified before the step of reacting the chlorine gas with the hydrogen gas to generate the hydrogen chloride, and the oxygen contained in the chlorine gas is removed. Further comprising the step of removing.
  • oxygen contained in the chlorine gas By removing oxygen contained in the chlorine gas before the step of generating hydrogen chloride, hydrogen can be prevented from being consumed by oxygen when reacting the chlorine gas with the hydrogen gas.
  • At least part of the second hydrochloric acid is preferably used as the first hydrochloric acid for leaching the valuable metal.
  • chlorine gas is brought into contact with an alkaline absorbing liquid containing at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides, and hypochlorous acid It includes a hypochlorite generation step for generating salt.
  • the chlorine gas treatment method of the present invention including the hypochlorite generation step preferably further includes a hypochlorite reduction step of reacting hypochlorite with carbon or aluminum.
  • the chlorine gas treatment method of the present invention includes a carbon dioxide generation step of reacting chlorine gas with carbon and water to generate carbon dioxide.
  • the chlorine gas treatment method of the present invention includes an aluminum chloride production step of reacting chlorine gas with aluminum to produce aluminum chloride.
  • FIG. 1 is a flow chart showing a chlorine gas treatment method according to one embodiment of the present invention.
  • FIG. 1 is a system configuration diagram showing an example of an apparatus configuration used in a method for treating chlorine gas according to one embodiment of the present invention
  • 1 is a flow chart showing a chlorine gas treatment method according to one embodiment of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system configuration diagram showing an example of an apparatus configuration used in a method for treating chlorine gas according to one embodiment of the present invention;
  • the chlorine gas treatment method of the present invention dissolves powder containing valuable metals (battery powder) obtained from waste lithium ion batteries in hydrochloric acid, and is used to treat chlorine gas generated when the valuable metals are leached out with hydrochloric acid. can be used.
  • the waste lithium ion battery includes a used lithium ion battery whose life as a battery product has been exhausted, a lithium ion battery discarded as a defective product in the manufacturing process, and a It means the residual positive electrode material and the like used for commercialization.
  • the powder containing the valuable metal can be obtained, for example, as follows. First, the positive electrode foil (a current collector coated with a positive electrode mixture containing a positive electrode active material), which is the remaining positive electrode material used for commercialization in the manufacturing process of a lithium-ion battery, is placed in an electric furnace. Medium, for example, after heat treatment (roasting) at a temperature in the range of 100 to 450 ° C., or without heat treatment and pulverized with a crusher such as a hammer mill or jaw crusher, the casing constituting the waste lithium ion battery
  • the battery powder can be obtained as a powder containing a valuable metal by removing (classifying) the current collector and the like by sieving.
  • the waste lithium ion battery after discharge treatment or without heat treatment is pulverized with the pulverizer, the housing, current collector, etc. are removed by sieving, and then heat treatment is performed at a temperature in the above range to obtain the above Battery powder may be obtained.
  • the battery powder is leached with hydrochloric acid.
  • a leaching solution of the various valuable metals is obtained.
  • the chlorine gas treatment method of the present invention includes a step of reacting the chlorine gas with a reducing agent.
  • the reaction between chlorine gas and the reducing agent will be described in more detail below.
  • the waste lithium ion battery is pretreated in STEP 1 to obtain battery powder in STEP 2.
  • the battery powder is dissolved in hydrochloric acid, and the valuable metal is leached out with hydrochloric acid.
  • a leaching solution which is a hydrochloric acid solution of the valuable metal, can be obtained.
  • manganese, cobalt and nickel among the valuable metals are sequentially solvent-extracted.
  • an aqueous lithium salt solution can be obtained as an extraction residue.
  • Lithium carbonate can be obtained by reacting the lithium salt aqueous solution with carbon dioxide gas or a carbonate compound.
  • the method for treating chlorine gas of the first embodiment is a method for treating chlorine gas generated in STEP 7, and can be carried out, for example, by the chlorine gas treatment apparatus 1 shown in FIG.
  • the chlorine gas treatment device 1 includes a hydrochloric acid leaching tank 2 for dissolving battery powder obtained from waste lithium-ion batteries in hydrochloric acid, leaching valuable metals contained in the battery powder with hydrochloric acid, and chlorine generated in the hydrochloric acid leaching tank 2.
  • the gas is absorbed into the first ferrous chloride aqueous solution (hereinafter sometimes referred to as ferrous chloride aqueous solution for convenience) to produce a second ferrous chloride aqueous solution containing ferric chloride.
  • a reduction reactor 4 for reducing at least a portion of the ferrous chloride to ferrous chloride is provided.
  • the second ferrous chloride aqueous solution is produced by the first ferrous chloride aqueous solution absorbing chlorine gas in the reaction tower 3, and as a result, the first ferrous chloride aqueous solution has a ferrous chloride Since the concentration of ferric acid is increased, hereinafter, it may be referred to as an aqueous solution of ferric chloride for convenience.
  • ferrous chloride aqueous solution A third ferrous chloride aqueous solution containing ferric chloride (hereinafter, for convenience, may be referred to as a ferrous chloride aqueous solution) with a reduced concentration of ferric chloride is produced. .
  • the hydrochloric acid leaching tank 2 is provided with a hydrochloric acid supply conduit 21 for supplying hydrochloric acid, a battery powder supply means 22 for supplying battery powder, and a dilution air supply conduit 23 for supplying dilution air at the top.
  • a leachate extraction conduit 25 for extracting a leachate 24 obtained by leaching valuable metals with hydrochloric acid is provided at the bottom.
  • the hydrochloric acid leaching tank 2 is provided with a chlorine gas extraction conduit 26 in the upper part for extracting chlorine gas generated by the leaching reaction when the valuable metal is leached with hydrochloric acid, and the chlorine gas extraction conduit 26 is connected to the reaction tower 3.
  • a ferrous chloride aqueous solution 31 (first ferrous chloride aqueous solution) is stored in the bottom of the reaction tower 3, while a filler layer 32 filled with a filler is formed above the ferrous chloride aqueous solution 31. It is The reaction tower 3 is also provided with a circulation conduit 33 for taking out the ferrous chloride aqueous solution 31 stored at the bottom and supplying it from above the packing layer 32 .
  • the circulation conduit 33 has a first pump 34 in the middle and a first switching valve 35 downstream of the first pump 34 .
  • a ferric chloride aqueous solution supply conduit for supplying the ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) produced in the reaction tower 3 to the reduction reaction tank 4 36 is branched, and the ferric chloride aqueous solution supply conduit 36 is connected to the upper portion of the reduction reactor 4 .
  • the reaction tower 3 is equipped with an air release conduit 37 at the top of the tower above the packing material layer 32 for releasing air to the atmosphere, and the air release conduit 37 has a blower 38 along the way for sucking the air in the reaction tower 3. I have.
  • the reduction reaction tank 4 is equipped with a water supply conduit 41 for supplying concentration-adjusted water and an iron supply means 42 for supplying iron such as iron pieces in the upper part, while the ferric chloride aqueous solution supply conduit 36 supplies the ferric chloride solution.
  • the second ferrous chloride produced by reducing at least part of the ferric chloride contained in the ferrous aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) by reaction with iron
  • a ferrous chloride aqueous solution take-out conduit 44 is provided at the bottom for taking out a third ferrous chloride-containing aqueous ferrous chloride solution 43 in which the concentration of ferric chloride is reduced with respect to the aqueous solution.
  • the ferrous chloride aqueous solution extraction conduit 44 is connected to the bottom of the reaction tower 3 via a second pump 45 provided midway, and a second switching valve 46 is provided downstream of the second pump 45 . From the second switching valve 46, an increment take-out conduit 47 for taking out the increment of the ferrous chloride aqueous solution 43 branches off.
  • the chlorine gas treatment method of this embodiment using the chlorine gas treatment apparatus 1 will be described.
  • the battery powder obtained in STEP 2 is supplied from the battery powder supply means 22 to the hydrochloric acid leaching tank 2 , while hydrochloric acid is supplied to the hydrochloric acid leaching tank 2 from the hydrochloric acid supply conduit 21 .
  • the hydrochloric acid has a concentration of, for example, 3 to 12 mol/L, and is supplied in an amount of, for example, 3 to 15 L with respect to 1 kg of the battery powder.
  • the battery powder is dissolved in hydrochloric acid in the hydrochloric acid leaching tank 2, and the valuable metal is leached with hydrochloric acid (STEP 3), thereby obtaining a leaching solution 24, which is a hydrochloric acid solution of the valuable metal (STEP 4).
  • the exudate 24 is taken out through the exudate take-out conduit 25 and subjected to solvent extraction in STEP5.
  • the chlorine gas introduced into the reaction tower 3 through the chlorine gas take-out conduit 26 is sucked into the blower 38, and then flows upward in the reaction tower 3 together with the air flowing in from the dilution air supply conduit 23. to move.
  • the ferrous chloride aqueous solution 31 stored at the bottom of the reaction tower 3 is taken out from the reaction tower 3 by being sucked by the first pump 34 through the circulation conduit 33, and reacted from above the packing material layer 32. It is fed into column 3.
  • the concentration of ferric chloride in the ferrous chloride aqueous solution 31, that is, the ratio of ferric chloride to the total number of moles of ferrous chloride and ferric chloride contained in the ferrous chloride aqueous solution 31 is, in the initial state, , for example, in the range of 0.1 to 30 mol %.
  • the chlorine gas is absorbed by the ferrous chloride aqueous solution 31 while moving upward in the reaction tower 3 (STEP 8), and the amount of ferrous chloride contained in the ferrous chloride aqueous solution 31 is Part is oxidized to ferric chloride to produce a ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) (STEP 9).
  • the reaction in which the chlorine gas is absorbed by the ferrous chloride aqueous solution 31 is a gas-liquid reaction, which proceeds efficiently when the two come into contact with each other on the surface of the filler forming the filler layer 32 .
  • a mesh-like ring made of glass or synthetic resin for example, Rashihi Super Ring (registered trademark) manufactured by Rashihi Co., Ltd.
  • the concentration of ferric chloride contained in the ferrous chloride aqueous solution 31 stored at the bottom of the reaction tower 3 gradually increases.
  • the absorption efficiency of the chlorine gas gradually decreases. Therefore, in the chlorine gas treatment apparatus 1, a By operating the first switching valve 35, a portion of the ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) is supplied to the reduction reaction tank 4 through the ferric chloride aqueous solution supply conduit 36.
  • the ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) may be constantly supplied by adjusting the flow rate of the ferric chloride aqueous solution supply conduit 36 with the switching valve 35. , the switching valve 35 may be operated intermittently.
  • the ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) supplied from the ferric chloride aqueous solution supply conduit 36 is supplied with iron pieces from the iron supply means 42. and the like, and at least part of the ferric chloride contained in the ferric chloride aqueous solution is reduced to ferrous chloride by reaction with iron (STEP 10), thereby obtaining a ferrous chloride aqueous solution (Third ferrous chloride aqueous solution containing ferric chloride) 43 is produced (STEP 11).
  • the concentration-adjusted water supplied from the water supply conduit 41 reduces the concentration of ferric chloride contained in the generated ferrous chloride aqueous solution 43 to the chloride stored at the bottom of the reaction tower 3 . It can be in the range of 0.1 to 30 mol %, which is equivalent to the initial state of the ferrous iron aqueous solution 31 .
  • the third ferrous chloride aqueous solution 43 is sucked into the second pump 45 via the ferrous chloride aqueous solution extraction conduit 44, so that at least part of it is extracted from the reduction reactor 4 and sent to the reaction tower 3. It is refluxed and used as the first ferrous chloride aqueous solution 31 for absorbing the chlorine gas in STEP8.
  • the chlorine absorbed by the ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) is removed from the concentration-adjusted water supplied from the water supply conduit 41.
  • the amount of the aqueous ferrous chloride solution 43 produced is greater than the amount of the aqueous ferric chloride solution supplied. Therefore, by operating the switching valve 46 provided in the ferrous chloride aqueous solution extraction conduit 44 , the increased amount of the generated ferrous chloride aqueous solution 43 may be extracted from the increased amount extraction conduit 47 .
  • the ferrous chloride aqueous solution 43 for the increment taken out from the increment take-out conduit 47 is obtained by oxidizing the contained ferrous chloride separately with chlorine into ferric chloride, thereby substantially removing the ferrous chloride. It can be an aqueous ferric chloride solution that does not contain ferric chloride, and the aqueous ferric chloride solution can be used, for example, as an etching solution for copper in printed circuit boards.
  • the increased amount of the ferrous chloride aqueous solution 43 is taken out from the increased amount take-out conduit 47.
  • the increased amount may be overflowed, stored in a storage tank (not shown), and taken out from the storage tank.
  • the waste lithium ion battery is subjected to pretreatment in STEP 1 to obtain battery powder in STEP 2.
  • aqueous lithium salt solution can be obtained as an extraction residue.
  • Lithium carbonate can be obtained by reacting the lithium salt aqueous solution with carbon dioxide gas or a carbonate compound.
  • the method for treating chlorine gas of this embodiment is a method for treating chlorine gas generated in STEP 7, and can be carried out, for example, by the chlorine gas treatment apparatus 1a shown in FIG.
  • the chlorine gas treatment apparatus 1a includes a hydrochloric acid leaching tank 2 for dissolving battery powder obtained from waste lithium ion batteries in a first hydrochloric acid and leaching valuable metals contained in the battery powder with the first hydrochloric acid, and hydrochloric acid leaching.
  • a chlorine purification tower 3a for separating and removing oxygen-containing air and dust from the chlorine gas produced in the tank 2 to purify the chlorine gas
  • a hydrogen supply facility 4a for purifying hydrogen gas, and purified chlorine gas and hydrogen gas.
  • An absorbent supply tank 7 for supplying an absorbent is provided.
  • the hydrochloric acid leaching tank 2 has a hydrochloric acid supply conduit 21 for supplying first hydrochloric acid and a battery powder supply means 22 for supplying battery powder at the upper part thereof, while the valuable metal contained in the battery powder is leached by the first hydrochloric acid.
  • the bottom is provided with an exudate extraction conduit 24a for extracting the exudate 23a thus obtained.
  • the hydrochloric acid leaching tank 2 is provided with a chlorine gas extraction conduit 25a in its upper part for extracting chlorine gas produced by the leaching reaction when the valuable metal is leached with the first hydrochloric acid. It is connected to the.
  • the chlorine refining tower 3 a has a refined chlorine gas take-out conduit 31 a for taking out refined chlorine gas at its top, and the refined chlorine gas take-out conduit 31 a is connected to the chlorine burner 51 of the combustion tower 5 .
  • the hydrogen supply facility 4 a has a hydrogen gas extraction conduit 41 a at its top, and the hydrogen gas extraction conduit 41 a is connected to the chlorine burner 51 of the combustion tower 5 .
  • the combustion tower 5 is equipped with a chlorine burner 51 at the bottom for generating hydrogen chloride by combusting the chlorine gas supplied from the refined chlorine gas extraction conduit 31a and the hydrogen gas supplied from the hydrogen gas extraction conduit 41a.
  • a combustion tower cooling water jacket 52 for cooling the hydrogen chloride is provided on the outer periphery.
  • the combustion tower 5 also has a hydrogen chloride supply conduit 53 in its upper part for supplying the produced hydrogen chloride to the hydrochloric acid absorption tower 6 .
  • the combustion tower cooling water jacket 52 has a combustion tower cooling water supply conduit 54 for supplying cooling water at its lower part, and a combustion tower cooling water extraction conduit 55 for taking out cooling water at its upper part.
  • a sprinkling tank 56 for spraying cooling water for cooling hydrogen chloride is provided above the hydrogen chloride supply conduit 53, and a receiving tank 57 for containing the cooling water sprayed from the sprinkling tank 56 is provided below.
  • the sprinkler tank 56 has a sprinkler tank cooling water supply conduit 58 for supplying cooling water
  • the water tank 57 has a water tank cooling water extraction conduit 59 for taking out the cooling water.
  • the hydrochloric acid absorption tower 6 has a hydrochloric acid take-out conduit 61 at the bottom for taking out the second hydrochloric acid produced, and a hydrogen chloride take-out conduit 62 at the bottom for taking out unreacted hydrogen chloride. Further, the hydrochloric acid absorption tower 6 is provided with a first storage tank 63 directly below the top of the inside of the tower to which the absorbent is supplied from the absorbent supply tank 7, and an inner cylinder 64 is provided below the first storage tank 63. Prepare. The inner cylinder 64 has a second storage tank 65 on the outer peripheral side of the upper edge. Further, the hydrochloric acid absorption tower 6 is provided with a hydrochloric acid absorption tower cooling water jacket 66 for cooling the hydrogen chloride and the produced second hydrochloric acid at the outer peripheral portion.
  • the hydrochloric acid extraction conduit 61 is connected to the hydrochloric acid leaching tank 2 via a hydrochloric acid pump 61a provided midway.
  • the hydrogen chloride extraction conduit 62 is connected to the bottom of the absorbent supply tank 7 via a blower 62a provided midway.
  • the hydrochloric acid absorber cooling water jacket 66 has a hydrochloric acid absorber cooling water supply conduit 67 for supplying cooling water at its lower part, and a hydrochloric acid absorber cooling water take-out conduit 68 for taking out cooling water at its upper part.
  • the absorbent supply tank 7 is equipped with a water supply conduit 71 for supplying water and a gas release conduit 72 for releasing gas at its upper part.
  • An absorbent supply conduit 73 is provided at the bottom.
  • the gas release conduit 72 has a check valve 74 that opens when the internal pressure of the absorbent supply tank 7 exceeds a certain level.
  • the cooling water taken out from the hydrochloric acid absorption tower cooling water jacket 66 by the hydrochloric acid absorption tower cooling water extraction conduit 68 is passed through the sprinkling tank 56, the receiving tank 57 and the combustion tower cooling water jacket 52. It may be configured to be circulated to the hydrochloric acid absorption tower cooling water extraction conduit 68 .
  • the hydrochloric acid absorption tower cooling water take-out conduit 68 is connected to a sprinkler tank cooling water supply conduit 58 that supplies cooling water to the sprinkler tank 56 , and a water tank cooling water take-out conduit 59 takes out cooling water from the water tank 57 .
  • combustion tower cooling water supply conduit 54 that supplies cooling water to the combustion tower cooling water jacket 52
  • a combustion tower cooling water extraction conduit 55 that takes out cooling water from the combustion tower cooling water jacket 52 is connected to the hydrochloric acid absorption tower cooling water. It is connected to a hydrochloric acid absorption tower cooling water supply conduit 67 that supplies cooling water to the jacket 66 .
  • a heat exchanger 81 and a cooling water pump 82 may be provided between the combustion tower cooling water extraction conduit 55 and the hydrochloric acid absorption tower cooling water supply conduit 67 .
  • the chlorine gas treatment method of the second embodiment of the present invention by the chlorine gas treatment apparatus 1a will be described.
  • the battery powder obtained in STEP 2 is supplied from the battery powder supply means 22 to the hydrochloric acid leaching tank 2, and the first hydrochloric acid is supplied to the hydrochloric acid leaching tank 2 from the hydrochloric acid supply conduit 21.
  • the first hydrochloric acid has a concentration of, for example, 3 to 12 mol/L, and is supplied in an amount of, for example, 3 to 15 L with respect to 1 kg of the battery powder.
  • the battery powder is dissolved in the first hydrochloric acid in the hydrochloric acid leaching tank 2, and the valuable metal is leached by the first hydrochloric acid (STEP 3) to obtain a leaching solution 23a which is a hydrochloric acid solution of the valuable metal. (STEP 4).
  • the exudate 23a is taken out by the exudate take-out conduit 24a and subjected to solvent extraction in STEP5.
  • chlorine gas is generated due to the leaching reaction when the valuable metal is leached with the first hydrochloric acid (STEP 7).
  • the chlorine gas is taken out from the hydrochloric acid leaching tank 2 through a chlorine gas take-out conduit 25a by chlorine gas supply means (not shown) provided in the chlorine purification tower 3a and supplied to the chlorine purification tower 3a.
  • the chlorine gas introduced into the chlorine purification tower 3a through the chlorine gas extraction conduit 25a is separated into oxygen-containing air, dust, etc. by means of a wet scrubber filled with water, a membrane separation method, liquefaction of chlorine by pressurized cooling, or the like. - Removed and purified (STEP8).
  • the purified chlorine gas is taken out from the chlorine purification tower 3a by the chlorine gas supply means and supplied to the combustion tower 5 through the purified chlorine gas extraction conduit 31a.
  • the chlorine gas supplied to the combustion tower 5 is combusted by the chlorine burner 51 together with the hydrogen gas supplied by the hydrogen supply equipment 4a (STEP 9), and reacts at a high temperature to produce hydrogen chloride (STEP 10).
  • the produced hydrogen chloride is cooled by the combustion tower cooling water jacket 52, introduced into the hydrogen chloride supply conduit 53, further cooled by the cooling water sprinkled from the sprinkling tank 56 to the receiving tank 57, and introduced into the hydrochloric acid absorption tower 6. be.
  • the hydrogen chloride introduced into the hydrochloric acid absorption tower 6 is absorbed by the absorbent supplied from the absorbent supply tank 7 and flowing down (STEP 11) to produce the second hydrochloric acid (STEP 12).
  • the absorbent supplied from the absorbent supply tank 7 is temporarily stored in the first storage tank 63, and the absorbent overflowing from the first storage tank 63 is stored in the second storage tank 65, The absorbent overflowing from the second storage tank 65 flows down along the outer and inner surfaces of the inner cylinder 64 .
  • the absorbent flowing down along the outer surface of the inner cylinder 64 absorbs hydrogen chloride to produce the second hydrochloric acid, and the absorbing liquid flowing down along the inner surface of the inner cylinder 64 cooperates with the hydrochloric acid absorption tower cooling water jacket 66. to cool the second hydrochloric acid produced.
  • the concentration of the generated second hydrochloric acid is, for example, in the range of 1 to 37% by mass, and the second hydrochloric acid is supplied to the hydrochloric acid leaching tank 2 through the hydrochloric acid extraction conduit 61 by the hydrochloric acid pump 61a, and 1 hydrochloric acid can be reused for leaching the valuable metals.
  • the unreacted hydrogen chloride in the hydrochloric acid absorption tower 6 is introduced into the absorbent supply tank 7 via the hydrogen chloride extraction conduit 62 by being sucked into the blower 62a.
  • the hydrogen chloride introduced into the absorbent supply tank 7 is absorbed by the water supplied from the water supply conduit 71 to produce dilute hydrochloric acid.
  • the generated dilute hydrochloric acid is supplied to the hydrochloric acid absorption tower 6 as an absorbent via an absorbent supply conduit 73 .
  • the remaining gas after hydrogen chloride is absorbed in the absorbent supply tank 7 is discharged to the outside of the chlorine gas treatment apparatus 1a through a gas release conduit 72. As shown in FIG.
  • the hydrochloric acid absorption tower 6 is provided with a hydrochloric acid extraction conduit 61 at the bottom, and the hydrochloric acid extraction conduit 61 is connected to the hydrochloric acid leaching tank 2, so that the hydrochloric acid produced in the hydrochloric acid absorption tower 6 is
  • the second hydrochloric acid is reused as the first hydrochloric acid for leaching the valuable metals.
  • the hydrochloric acid extraction conduit 61 By connecting the hydrochloric acid extraction conduit 61 to a storage tank (not shown), the second hydrochloric acid is stored in the storage tank. and may be taken out.
  • chlorine gas is brought into contact with an alkaline absorbing liquid containing at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides. and a hypochlorite generation step for generating hypochlorite.
  • the alkali metal constituting the alkali metal hydroxide preferably contains at least one selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, and francium, more preferably lithium, sodium, and potassium. It contains at least one selected from the group, and more preferably contains at least one selected from the group consisting of sodium and potassium.
  • the alkaline earth metal constituting the alkaline earth metal hydroxide preferably contains at least one selected from the group consisting of beryllium, magnesium, calcium, strontium and barium, more preferably magnesium, calcium and barium. At least one selected from the group consisting of, more preferably at least one selected from the group consisting of magnesium and calcium.
  • the alkaline absorption liquid is preferably an aqueous solution or suspension containing at least one selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide.
  • the third embodiment of the method for treating chlorine gas of the present invention preferably further includes a first hypochlorite reduction step of reacting hypochlorite with carbon.
  • the alkaline absorbing liquid containing hypochlorite is brought into contact with carbon as a reducing agent to generate a chloride salt and carbon dioxide.
  • a reaction represented by the following formula (2) occurs in the first hypochlorite reduction step. 2NaClO+C ⁇ 2NaCl+CO 2 (2)
  • the third embodiment of the method for treating chlorine gas of the present invention preferably further includes a second hypochlorite reduction step of reacting hypochlorite with aluminum.
  • the alkaline absorbing liquid containing hypochlorite is brought into contact with aluminum as a reducing agent to produce aluminum oxide and a chloride salt.
  • a reaction represented by the following formula (3) occurs in the second hypochlorite reduction step. 3NaClO+2Al ⁇ 2Al 2 O 3 +3NaCl (3)
  • a fourth embodiment of the method for treating chlorine gas of the present invention includes a carbon dioxide generation step of reacting chlorine gas with carbon and water to generate carbon dioxide.
  • chlorine gas is bubbled directly into the carbon-filled column and water showering or steam introduction is performed.
  • a reaction represented by the following formula (4) occurs. 2Cl2 +C+ 2H2O ⁇ CO2 +4HCl (4)
  • a fifth embodiment of the method for treating chlorine gas of the present invention includes an aluminum chloride producing step of reacting chlorine gas with aluminum to produce aluminum chloride.
  • Chlorine gas can be passed directly through an aluminum packed column to cause a direct reduction reaction.
  • a reaction represented by the following formula (5) occurs in the aluminum chloride production step.
  • the aluminum packed column may be showered with water in order to dissolve the produced aluminum chloride. 2Al+3Cl 2 ⁇ 2AlCl 3 (5)
  • Leachate extraction conduit 26 Chlorine gas extraction conduit 31 Ferrous chloride aqueous solution 32 Filling material layer 33 Circulation conduit 34 First pump 35 First switching valve 36 Ferric chloride aqueous solution Supply conduit 37 Air release conduit 38 Blower 41 Water supply conduit 42 Iron supply means 43 Ferrous chloride aqueous solution 44 Ferrous chloride aqueous solution extraction conduit 45 Second pump 46 ...second switching valve 47...increase take-out conduit 1a...chlorine gas treatment device 3a...chlorine purification tower 4a...hydrogen supply apparatus 5...combustion tower 51...chlorine burner 6...hydrochloric acid absorption tower 7... Absorbent supply tank.

Abstract

Provided is a treatment method for chlorine gas whereby chlorine gas generated when a battery powder is dissolved in hydrochloric acid to leach a valuable metal using the hydrochloric acid can be rendered harmless or used effectively. This treatment method for chlorine gas generated when a battery powder containing a valuable metal obtained from a waste lithium ion battery is dissolved in hydrochloric acid to leach the valuable metal using the hydrochloric acid includes a step for reacting the chlorine gas with at least one substance selected from the group consisting of reducing agents, alkali metal hydroxides and alkaline earth metal hydroxides. Examples of the reducing agent include: a first aqueous ferrous chloride solution containing ferric chloride; and hydrogen gas.

Description

塩素ガスの処理方法Chlorine gas treatment method
 本発明は、塩素ガスの処理方法に関する。 The present invention relates to a chlorine gas treatment method.
 近年、リチウムイオン電池の普及に伴い、廃リチウムイオン電池からリチウム、マンガン、ニッケル、コバルト等の有価金属を回収し、前記リチウムイオン電池の正極活物質として再利用する方法が検討されている。 In recent years, with the spread of lithium-ion batteries, methods of recovering valuable metals such as lithium, manganese, nickel, and cobalt from waste lithium-ion batteries and reusing them as positive electrode active materials for the lithium-ion batteries are being studied.
 従来、前記廃リチウムイオン電池から前記有価金属を回収する際には、該廃リチウムイオン電池を加熱処理(焙焼)して、ないし加熱処理せずに粉砕、分級する等して得られた前記有価金属を含む粉末(以下、電池粉という)を塩酸に溶解し、該有価金属を塩酸により浸出して得られた浸出液を溶媒抽出に供することが行われている(例えば、特許文献1、2参照)。 Conventionally, when recovering the valuable metal from the waste lithium ion battery, the waste lithium ion battery is heat-treated (roasted) or pulverized and classified without heat treatment. Powder containing a valuable metal (hereinafter referred to as battery powder) is dissolved in hydrochloric acid, and the resulting leached solution is subjected to solvent extraction (for example, Patent Documents 1 and 2). reference).
特許第4388091号公報Japanese Patent No. 4388091 特許第4865745号公報Japanese Patent No. 4865745
 しかしながら、前記電池粉を塩酸に溶解し、前記有価金属を塩酸により浸出すると、浸出反応により発生する塩素ガスにより、装置が腐食されたり、作業環境が汚染されたりするという不都合がある。 However, when the battery powder is dissolved in hydrochloric acid and the valuable metal is leached with hydrochloric acid, chlorine gas generated by the leaching reaction corrodes the apparatus and contaminates the working environment.
 本発明は、かかる不都合を解消して、前記電池粉を塩酸に溶解し、前記有価金属を塩酸により浸出する際に発生する塩素ガスを無害化又は有効に活用できる塩素ガスの処理方法を提供することを目的とする。 The present invention provides a chlorine gas treatment method that eliminates such inconveniences and that can detoxify or effectively utilize the chlorine gas generated when the battery powder is dissolved in hydrochloric acid and the valuable metal is leached with hydrochloric acid. for the purpose.
 本発明者らは上記課題に鑑み検討を重ね、廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスを還元剤、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つと反応させ、無害化又は有効に活用できることを見出した。本発明はこれらの知見に基づき完成されるに至ったものである。 In view of the above problems, the present inventors have conducted repeated studies, dissolving a powder containing a valuable metal obtained from a waste lithium ion battery in hydrochloric acid, and using chlorine gas generated when the valuable metal is leached with hydrochloric acid as a reducing agent. It has been found that by reacting with at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides, it can be detoxified or effectively utilized. The present invention has been completed based on these findings.
 かかる目的を達成するために、本発明の塩素ガスの処理方法は、廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理方法であって、該塩素ガスを、還元剤、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つと反応させる工程を含むことを特徴とする。
 本発明の塩素ガスの処理方法は、廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスを還元剤、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つと反応させ、無害化又は有効に活用できる。
In order to achieve this object, the chlorine gas treatment method of the present invention dissolves powder containing valuable metals obtained from waste lithium ion batteries in hydrochloric acid, and removes chlorine generated when the valuable metals are leached out with hydrochloric acid. A gas treatment method, characterized by comprising a step of reacting the chlorine gas with at least one selected from the group consisting of reducing agents, alkali metal hydroxides, and alkaline earth metal hydroxides.
In the chlorine gas treatment method of the present invention, powder containing a valuable metal obtained from a waste lithium-ion battery is dissolved in hydrochloric acid, and the chlorine gas generated when the valuable metal is leached out with hydrochloric acid is treated as a reducing agent and alkali metal water. It can be rendered harmless or effectively utilized by reacting with at least one selected from the group consisting of oxides and alkaline earth metal hydroxides.
 本発明の塩素ガスの処理方法は、廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスを、第1の塩化第一鉄水溶液に吸収させて、該第1の塩化第一鉄水溶液に対して塩化第二鉄の濃度が増大した、塩化第二鉄を含有する第2の塩化第一鉄水溶液を生成させる工程を含む。
 尚、前記塩化第一鉄水溶液における前記塩化第二鉄の濃度とは、前記塩化第一鉄水溶液が含有する塩化第一鉄と塩化第二鉄との合計モル数に対する塩化第二鉄の割合を意味する。また、前記第2の塩化第一鉄水溶液は、前記第1の塩化第一鉄水溶液に対して塩化第二鉄の濃度が増大しているので、以下、便宜的に塩化第二鉄水溶液と記載することがある。
 前記工程により、前記塩素ガスが塩化第二鉄として固定化されるので、該塩素ガスを無害化できる。
In the chlorine gas treatment method of the present invention, powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid, and the chlorine gas generated when the valuable metals are leached out with hydrochloric acid is treated with the first chloride. Absorbing in an aqueous solution of ferrous chloride to produce a second aqueous solution of ferrous chloride containing ferric chloride having an increased concentration of ferric chloride relative to the first aqueous solution of ferrous chloride; include.
The concentration of ferric chloride in the ferrous chloride aqueous solution is the ratio of ferric chloride to the total number of moles of ferrous chloride and ferric chloride contained in the ferrous chloride aqueous solution. means. In addition, since the second ferrous chloride aqueous solution has a higher concentration of ferric chloride than the first ferrous chloride aqueous solution, it is hereinafter referred to as ferric chloride aqueous solution for convenience. I have something to do.
Since the chlorine gas is fixed as ferric chloride by the above step, the chlorine gas can be rendered harmless.
 本発明の塩素ガスの処理方法は、好ましくは、前記塩素ガスを、第1の塩化第一鉄水溶液に吸収させることにより生成した、前記塩化第二鉄を含有する第2の塩化第一鉄水溶液を、鉄と接触させて該第2の塩化第一鉄水溶液が含有する塩化第二鉄の少なくとも一部を還元し、該第2の塩化第一鉄水溶液に対して塩化第二鉄の濃度が低減した、塩化第二鉄を含有する第3の塩化第一鉄水溶液を生成させる工程を更に含む。
 前記塩化第二鉄を含有する第2の塩化第一鉄水溶液は、鉄と接触させることにより、含有する塩化第二鉄の少なくとも一部が還元されて塩化第一鉄となり、該第2の塩化第一鉄水溶液に対して塩化第二鉄の濃度が低減した、塩化第二鉄を含む第3の塩化第一鉄水溶液とできる。
In the chlorine gas treatment method of the present invention, the second aqueous ferrous chloride solution containing the ferric chloride is preferably produced by allowing the chlorine gas to be absorbed in the first aqueous ferrous chloride solution. is brought into contact with iron to reduce at least a portion of the ferric chloride contained in the second aqueous ferrous chloride solution, and the concentration of ferric chloride with respect to the second aqueous ferrous chloride solution is Further comprising producing a third ferrous chloride aqueous solution containing reduced ferric chloride.
The second ferrous chloride aqueous solution containing the ferric chloride is brought into contact with iron, so that at least part of the ferric chloride contained is reduced to become ferrous chloride, and the second chloride A third aqueous solution of ferrous chloride containing ferric chloride having a reduced concentration of ferric chloride relative to the aqueous solution of ferrous chloride can be obtained.
 前記塩化第二鉄を含む第3の塩化第一鉄水溶液の少なくとも一部を前記第1の塩化第一鉄水溶液として、前記塩素ガスの吸収に用いることができるので、前記塩素ガスを有効に活用できる。 Since at least part of the third ferrous chloride aqueous solution containing the ferric chloride can be used as the first ferrous chloride aqueous solution to absorb the chlorine gas, the chlorine gas is effectively used. can.
 本発明の塩素ガスの処理方法は、廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスを、水素ガスと反応させて、塩化水素を生成させる工程と、該塩化水素を水に吸収させて、第2の塩酸を生成させる工程とを含む。この結果、前記塩素ガスを塩酸にすることで、有効に活用できる。 In the chlorine gas treatment method of the present invention, powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid, and the chlorine gas generated when the valuable metals are leached out with hydrochloric acid is reacted with hydrogen gas. a step of producing hydrogen chloride; and a step of absorbing the hydrogen chloride in water to produce a second hydrochloric acid. As a result, by converting the chlorine gas into hydrochloric acid, it can be effectively utilized.
 本発明の塩素ガスの処理方法は、好ましくは、前記塩素ガスを前記水素ガスと反応させて、前記塩化水素を生成させる工程の前に該塩素ガスを精製し、該塩素ガスに含まれる酸素を除去する工程を更に含む。前記塩化水素を生成させる工程の前に該塩素ガスに含まれる酸素を除去することにより、該塩素ガスを前記水素ガスと反応させる際に、酸素によって水素が消費されることを防ぐことができる。 In the chlorine gas treatment method of the present invention, preferably, the chlorine gas is purified before the step of reacting the chlorine gas with the hydrogen gas to generate the hydrogen chloride, and the oxygen contained in the chlorine gas is removed. Further comprising the step of removing. By removing oxygen contained in the chlorine gas before the step of generating hydrogen chloride, hydrogen can be prevented from being consumed by oxygen when reacting the chlorine gas with the hydrogen gas.
 前記第2の塩酸の少なくとも一部を、好ましくは、前記第1の塩酸として、前記有価金属の浸出に用いる。 At least part of the second hydrochloric acid is preferably used as the first hydrochloric acid for leaching the valuable metal.
 本発明の塩素ガスの処理方法は、塩素ガスを、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つを含むアルカリ性吸収液と接触させ、次亜塩素酸塩を生成させる次亜塩素酸塩生成工程を含む。前記次亜塩素酸塩生成工程を含む本発明の塩素ガスの処理方法は、好ましくは、次亜塩素酸塩と炭素又はアルミニウムを反応させる次亜塩素酸塩の還元工程を更に含む。 In the chlorine gas treatment method of the present invention, chlorine gas is brought into contact with an alkaline absorbing liquid containing at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides, and hypochlorous acid It includes a hypochlorite generation step for generating salt. The chlorine gas treatment method of the present invention including the hypochlorite generation step preferably further includes a hypochlorite reduction step of reacting hypochlorite with carbon or aluminum.
 本発明の塩素ガスの処理方法は、塩素ガスを炭素及び水と反応させ、二酸化炭素を生成させる二酸化炭素生成工程を含む。 The chlorine gas treatment method of the present invention includes a carbon dioxide generation step of reacting chlorine gas with carbon and water to generate carbon dioxide.
 本発明の塩素ガスの処理方法は、塩素ガスをアルミニウムと反応させ、塩化アルミニウムを生成させる塩化アルミニウム生成工程を含む。 The chlorine gas treatment method of the present invention includes an aluminum chloride production step of reacting chlorine gas with aluminum to produce aluminum chloride.
本発明の1実施態様の塩素ガスの処理方法を示すフローチャート。1 is a flow chart showing a chlorine gas treatment method according to one embodiment of the present invention. 本発明の1実施態様の塩素ガスの処理方法に用いる装置構成の一例を示すシステム構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system configuration diagram showing an example of an apparatus configuration used in a method for treating chlorine gas according to one embodiment of the present invention; 本発明の1実施態様の塩素ガスの処理方法を示すフローチャート。1 is a flow chart showing a chlorine gas treatment method according to one embodiment of the present invention. 本発明の1実施態様の塩素ガスの処理方法に用いる装置構成の一例を示すシステム構成図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system configuration diagram showing an example of an apparatus configuration used in a method for treating chlorine gas according to one embodiment of the present invention;
 添付の図面を参照しながら本発明について更に詳細に説明する。
 本発明の塩素ガスの処理方法は、廃リチウムイオン電池から得られた有価金属を含む粉末(電池粉)を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理に用いることができる。
The present invention will be described in more detail with reference to the accompanying drawings.
The chlorine gas treatment method of the present invention dissolves powder containing valuable metals (battery powder) obtained from waste lithium ion batteries in hydrochloric acid, and is used to treat chlorine gas generated when the valuable metals are leached out with hydrochloric acid. can be used.
 本発明の塩素ガスの処理方法において、前記廃リチウムイオン電池とは、電池製品としての寿命が消尽した使用済みのリチウムイオン電池、製造工程で不良品等として廃棄されたリチウムイオン電池、製造工程において製品化に用いられた残余の正極材料等を意味する。 In the chlorine gas treatment method of the present invention, the waste lithium ion battery includes a used lithium ion battery whose life as a battery product has been exhausted, a lithium ion battery discarded as a defective product in the manufacturing process, and a It means the residual positive electrode material and the like used for commercialization.
 前記有価金属を含む粉末は、例えば、次のようにして得ることができる。まず、リチウムイオン電池の製造工程において製品化に用いられた残余の正極材料である正極箔(集電体であるアルミニウム箔に正極活物質を含む正極合剤が塗布されたもの)を、電気炉中、例えば100~450℃の範囲の温度で加熱処理(焙焼)した後、又は加熱処理せずにハンマーミル、ジョークラッシャー等の粉砕機で粉砕し、該廃リチウムイオン電池を構成する筐体、集電体等を篩分けにより除去(分級)して、有価金属を含む粉末として、電池粉を得ることができる。 The powder containing the valuable metal can be obtained, for example, as follows. First, the positive electrode foil (a current collector coated with a positive electrode mixture containing a positive electrode active material), which is the remaining positive electrode material used for commercialization in the manufacturing process of a lithium-ion battery, is placed in an electric furnace. Medium, for example, after heat treatment (roasting) at a temperature in the range of 100 to 450 ° C., or without heat treatment and pulverized with a crusher such as a hammer mill or jaw crusher, the casing constituting the waste lithium ion battery The battery powder can be obtained as a powder containing a valuable metal by removing (classifying) the current collector and the like by sieving.
 あるいは、放電処理後又は加熱処理していない廃リチウムイオン電池を前記粉砕機で粉砕し、筐体、集電体等を篩分けにより除去した後、前記範囲の温度で加熱処理することにより、前記電池粉を得るようにしてもよい。 Alternatively, the waste lithium ion battery after discharge treatment or without heat treatment is pulverized with the pulverizer, the housing, current collector, etc. are removed by sieving, and then heat treatment is performed at a temperature in the above range to obtain the above Battery powder may be obtained.
 本発明の塩素ガスの処理方法では、前記電池粉を塩酸により浸出する。この結果、前記各種有価金属の浸出液が得られる。 In the chlorine gas treatment method of the present invention, the battery powder is leached with hydrochloric acid. As a result, a leaching solution of the various valuable metals is obtained.
 本発明の塩素ガスの処理方法は、該塩素ガスを、還元剤と反応させる工程を含む。以下、塩素ガスと前記還元剤の反応について更に詳しく説明する。 The chlorine gas treatment method of the present invention includes a step of reacting the chlorine gas with a reducing agent. The reaction between chlorine gas and the reducing agent will be described in more detail below.
 本発明の塩素ガスの処理方法の第1の実施態様では、図1に示すように、前記廃リチウムイオン電池に対し、STEP1で前処理を行い、STEP2の電池粉を得ることができる。 In the first embodiment of the chlorine gas treatment method of the present invention, as shown in FIG. 1, the waste lithium ion battery is pretreated in STEP 1 to obtain battery powder in STEP 2.
 次に、STEP3で、前記電池粉を塩酸に溶解し、前記有価金属を塩酸により浸出する。この結果、STEP4で、前記有価金属の塩酸溶液である浸出液を得ることができる。
 前記浸出液は、STEP5の溶媒抽出で、中和された後、前記有価金属のうち、マンガン、コバルト、ニッケルが順次溶媒抽出される。そして、STEP6で、抽出残液としてリチウム塩水溶液を得ることができる。前記リチウム塩水溶液は、炭酸ガス又は炭酸化合物と反応させることにより、炭酸リチウムを得ることができる。
Next, in STEP 3, the battery powder is dissolved in hydrochloric acid, and the valuable metal is leached out with hydrochloric acid. As a result, in STEP 4, a leaching solution, which is a hydrochloric acid solution of the valuable metal, can be obtained.
After the leachate is neutralized in the solvent extraction in STEP 5, manganese, cobalt and nickel among the valuable metals are sequentially solvent-extracted. Then, in STEP 6, an aqueous lithium salt solution can be obtained as an extraction residue. Lithium carbonate can be obtained by reacting the lithium salt aqueous solution with carbon dioxide gas or a carbonate compound.
 一方、STEP3で、前記電池粉を塩酸に溶解すると、前記有価金属が塩酸に浸出される際の浸出反応により、STEP7で塩素ガスが発生する。第1の実施態様の塩素ガスの処理方法は、STEP7で発生する塩素ガスの処理方法であり、例えば、図2に示す塩素ガス処理装置1により実施することができる。 On the other hand, when the battery powder is dissolved in hydrochloric acid in STEP 3, chlorine gas is generated in STEP 7 due to the leaching reaction when the valuable metal is leached into hydrochloric acid. The method for treating chlorine gas of the first embodiment is a method for treating chlorine gas generated in STEP 7, and can be carried out, for example, by the chlorine gas treatment apparatus 1 shown in FIG.
 塩素ガス処理装置1は、廃リチウムイオン電池から得られた電池粉を塩酸に溶解し、該電池粉に含まれる有価金属を塩酸により浸出する塩酸浸出槽2と、塩酸浸出槽2で生成した塩素ガスを第1の塩化第一鉄水溶液(以下、便宜的に、塩化第一鉄水溶液と記載することがある)に吸収させ、塩化第二鉄を含有する第2の塩化第一鉄水溶液を生成させる反応塔3と、反応塔3で生成した塩化第二鉄を含有する第2の塩化第一鉄水溶液を鉄と接触させ、該第2の塩化第一鉄水溶液が含有する塩化第二鉄の少なくとも一部を還元して塩化第一鉄とする還元反応槽4とを備える。 The chlorine gas treatment device 1 includes a hydrochloric acid leaching tank 2 for dissolving battery powder obtained from waste lithium-ion batteries in hydrochloric acid, leaching valuable metals contained in the battery powder with hydrochloric acid, and chlorine generated in the hydrochloric acid leaching tank 2. The gas is absorbed into the first ferrous chloride aqueous solution (hereinafter sometimes referred to as ferrous chloride aqueous solution for convenience) to produce a second ferrous chloride aqueous solution containing ferric chloride. and the second ferrous chloride aqueous solution containing ferric chloride produced in the reaction tower 3 is brought into contact with iron, and the ferric chloride contained in the second ferrous chloride aqueous solution is A reduction reactor 4 for reducing at least a portion of the ferrous chloride to ferrous chloride is provided.
 前記第2の塩化第一鉄水溶液は、前記第1の塩化第一鉄水溶液が反応塔3で塩素ガスを吸収して生成された結果、該第1の塩化第一鉄水溶液に対して塩化第二鉄の濃度が増大しているので、以下、便宜的に、塩化第二鉄水溶液と記載することがある。また、前記還元反応槽4では、前記第2の塩化第一鉄水溶液が含有する塩化第二鉄の少なくとも一部が還元されて塩化第一鉄となるので、該第2の塩化第一鉄水溶液に対して塩化第二鉄の濃度が低減した、塩化第二鉄を含む第3の塩化第一鉄水溶液(以下、便宜的に、塩化第一鉄水溶液と記載することがある)が生成される。 The second ferrous chloride aqueous solution is produced by the first ferrous chloride aqueous solution absorbing chlorine gas in the reaction tower 3, and as a result, the first ferrous chloride aqueous solution has a ferrous chloride Since the concentration of ferric acid is increased, hereinafter, it may be referred to as an aqueous solution of ferric chloride for convenience. In addition, in the reduction reaction tank 4, at least part of the ferric chloride contained in the second ferrous chloride aqueous solution is reduced to become ferrous chloride, so that the second ferrous chloride aqueous solution A third ferrous chloride aqueous solution containing ferric chloride (hereinafter, for convenience, may be referred to as a ferrous chloride aqueous solution) with a reduced concentration of ferric chloride is produced. .
 塩酸浸出槽2は、塩酸を供給する塩酸供給導管21と、電池粉を供給する電池粉供給手段22と、希釈空気を供給する希釈空気供給導管23とを上部に備える一方、電池粉に含まれる有価金属を塩酸により浸出して得られた浸出液24を取り出す浸出液取出導管25を底部に備える。また、塩酸浸出槽2は、前記有価金属を塩酸により浸出する際の浸出反応により生成する塩素ガスを取り出す塩素ガス取出導管26を上部に備え、塩素ガス取出導管26は反応塔3に接続されている。 The hydrochloric acid leaching tank 2 is provided with a hydrochloric acid supply conduit 21 for supplying hydrochloric acid, a battery powder supply means 22 for supplying battery powder, and a dilution air supply conduit 23 for supplying dilution air at the top. A leachate extraction conduit 25 for extracting a leachate 24 obtained by leaching valuable metals with hydrochloric acid is provided at the bottom. In addition, the hydrochloric acid leaching tank 2 is provided with a chlorine gas extraction conduit 26 in the upper part for extracting chlorine gas generated by the leaching reaction when the valuable metal is leached with hydrochloric acid, and the chlorine gas extraction conduit 26 is connected to the reaction tower 3. there is
 反応塔3は、底部に塩化第一鉄水溶液31(第1の塩化第一鉄水溶液)が貯留される一方、塩化第一鉄水溶液31の上方に充填材が充填された充填材層32が形成されている。また、反応塔3は、底部に貯留されている塩化第一鉄水溶液31を取り出し、充填材層32の上方から供給する循環導管33を備える。循環導管33は、途中に第1ポンプ34を備える一方、第1ポンプ34の下流側に第1切換弁35を備える。第1切換弁35からは、反応塔3で生成した塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)を還元反応槽4に供給する塩化第二鉄水溶液供給導管36が分岐しており、塩化第二鉄水溶液供給導管36は還元反応槽4の上部に接続されている。さらに、反応塔3は、空気を大気に解放する空気解放導管37を充填材層32の上方の塔頂に備え、空気解放導管37は、途中に反応塔3内の空気を吸引するブロワー38を備えている。 A ferrous chloride aqueous solution 31 (first ferrous chloride aqueous solution) is stored in the bottom of the reaction tower 3, while a filler layer 32 filled with a filler is formed above the ferrous chloride aqueous solution 31. It is The reaction tower 3 is also provided with a circulation conduit 33 for taking out the ferrous chloride aqueous solution 31 stored at the bottom and supplying it from above the packing layer 32 . The circulation conduit 33 has a first pump 34 in the middle and a first switching valve 35 downstream of the first pump 34 . From the first switching valve 35, a ferric chloride aqueous solution supply conduit for supplying the ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) produced in the reaction tower 3 to the reduction reaction tank 4 36 is branched, and the ferric chloride aqueous solution supply conduit 36 is connected to the upper portion of the reduction reactor 4 . Furthermore, the reaction tower 3 is equipped with an air release conduit 37 at the top of the tower above the packing material layer 32 for releasing air to the atmosphere, and the air release conduit 37 has a blower 38 along the way for sucking the air in the reaction tower 3. I have.
 還元反応槽4は、濃度調整水を供給する水供給導管41と、鉄片等の鉄を供給する鉄供給手段42とを上部に備える一方、塩化第二鉄水溶液供給導管36により供給される塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)が含有する塩化第二鉄の少なくとも一部が鉄との反応により還元されて生成する、該第2の塩化第一鉄水溶液に対して塩化第二鉄の濃度が低減した、塩化第二鉄を含む第3の塩化第一鉄水溶液43を取り出す塩化第一鉄水溶液取出導管44を底部に備える。塩化第一鉄水溶液取出導管44は途中に設けられた第2ポンプ45を介して反応塔3の底部に接続される一方、第2ポンプ45の下流側に第2切換弁46を備える。第2切換弁46からは、塩化第一鉄水溶液43の増加分を取り出す増加分取出導管47が分岐している。 The reduction reaction tank 4 is equipped with a water supply conduit 41 for supplying concentration-adjusted water and an iron supply means 42 for supplying iron such as iron pieces in the upper part, while the ferric chloride aqueous solution supply conduit 36 supplies the ferric chloride solution. The second ferrous chloride produced by reducing at least part of the ferric chloride contained in the ferrous aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) by reaction with iron A ferrous chloride aqueous solution take-out conduit 44 is provided at the bottom for taking out a third ferrous chloride-containing aqueous ferrous chloride solution 43 in which the concentration of ferric chloride is reduced with respect to the aqueous solution. The ferrous chloride aqueous solution extraction conduit 44 is connected to the bottom of the reaction tower 3 via a second pump 45 provided midway, and a second switching valve 46 is provided downstream of the second pump 45 . From the second switching valve 46, an increment take-out conduit 47 for taking out the increment of the ferrous chloride aqueous solution 43 branches off.
 次に、塩素ガス処理装置1による本実施形態の塩素ガスの処理方法について説明する。
 塩素ガス処理装置1では、まず、電池粉供給手段22からSTEP2で得られた電池粉が塩酸浸出槽2に供給される一方、塩酸供給導管21から塩酸が塩酸浸出槽2に供給される。前記塩酸は、例えば、3~12モル/Lの濃度であり、前記電池粉1kgに対し、例えば3~15Lの量が供給される。この結果、塩酸浸出槽2内で前記電池粉が塩酸に溶解され、前記有価金属が塩酸により浸出されて(STEP3)、該有価金属の塩酸溶液である浸出液24を得ることができる(STEP4)。浸出液24は、浸出液取出導管25により取り出され、STEP5の溶媒抽出に供される。
Next, the chlorine gas treatment method of this embodiment using the chlorine gas treatment apparatus 1 will be described.
In the chlorine gas treatment apparatus 1 , first, the battery powder obtained in STEP 2 is supplied from the battery powder supply means 22 to the hydrochloric acid leaching tank 2 , while hydrochloric acid is supplied to the hydrochloric acid leaching tank 2 from the hydrochloric acid supply conduit 21 . The hydrochloric acid has a concentration of, for example, 3 to 12 mol/L, and is supplied in an amount of, for example, 3 to 15 L with respect to 1 kg of the battery powder. As a result, the battery powder is dissolved in hydrochloric acid in the hydrochloric acid leaching tank 2, and the valuable metal is leached with hydrochloric acid (STEP 3), thereby obtaining a leaching solution 24, which is a hydrochloric acid solution of the valuable metal (STEP 4). The exudate 24 is taken out through the exudate take-out conduit 25 and subjected to solvent extraction in STEP5.
 また、塩酸浸出槽2では、前記有価金属が塩酸により浸出される際の浸出反応により、塩素ガスが発生する(STEP7)。前記塩素ガスは、反応塔3の空気解放導管37に設けられたブロワー38により、塩素ガス取出導管26を介して吸引されることにより塩酸浸出槽2から取り出され、反応塔3に導入される。 Also, in the hydrochloric acid leaching tank 2, chlorine gas is generated due to the leaching reaction when the valuable metal is leached with hydrochloric acid (STEP 7). The chlorine gas is taken out from the hydrochloric acid leaching tank 2 and introduced into the reaction tower 3 by being sucked through the chlorine gas extraction conduit 26 by the blower 38 provided in the air release conduit 37 of the reaction tower 3 .
 塩素ガス取出導管26を介して反応塔3に導入された前記塩素ガスは、ブロワー38に吸引されることにより、希釈空気供給導管23から流入する空気と共に、反応塔3内を下方から上方に向かって移動する。一方、反応塔3の底部に貯留される塩化第一鉄水溶液31は、循環導管33を介して第1ポンプ34に吸引されることにより反応塔3から取り出され、充填材層32の上方から反応塔3内に供給される。 The chlorine gas introduced into the reaction tower 3 through the chlorine gas take-out conduit 26 is sucked into the blower 38, and then flows upward in the reaction tower 3 together with the air flowing in from the dilution air supply conduit 23. to move. On the other hand, the ferrous chloride aqueous solution 31 stored at the bottom of the reaction tower 3 is taken out from the reaction tower 3 by being sucked by the first pump 34 through the circulation conduit 33, and reacted from above the packing material layer 32. It is fed into column 3.
 塩化第一鉄水溶液31における塩化第二鉄の濃度、すなわち塩化第一鉄水溶液31が含有する塩化第一鉄と塩化第二鉄との合計モル数に対する塩化第二鉄の割合は、初期状態では、例えば、0.1~30モル%の範囲である。 The concentration of ferric chloride in the ferrous chloride aqueous solution 31, that is, the ratio of ferric chloride to the total number of moles of ferrous chloride and ferric chloride contained in the ferrous chloride aqueous solution 31 is, in the initial state, , for example, in the range of 0.1 to 30 mol %.
 そこで、前記塩素ガスは、反応塔3内を下方から上方に向かって移動する間に塩化第一鉄水溶液31に吸収され(STEP8)、塩化第一鉄水溶液31に含まれる塩化第一鉄の一部を塩化第二鉄に酸化し、塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)を生成する(STEP9)。前記塩素ガスが塩化第一鉄水溶液31に吸収される反応は気液反応であり、充填材層32を形成する充填材の表面で両者が接触することにより効率よく進行する。前記充填材としては、ガラス又は合成樹脂からなるメッシュ状リング(例えば、ラシヒ社製ラシヒスーパーリング(登録商標))等を用いることができる。 Therefore, the chlorine gas is absorbed by the ferrous chloride aqueous solution 31 while moving upward in the reaction tower 3 (STEP 8), and the amount of ferrous chloride contained in the ferrous chloride aqueous solution 31 is Part is oxidized to ferric chloride to produce a ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) (STEP 9). The reaction in which the chlorine gas is absorbed by the ferrous chloride aqueous solution 31 is a gas-liquid reaction, which proceeds efficiently when the two come into contact with each other on the surface of the filler forming the filler layer 32 . As the filler, a mesh-like ring made of glass or synthetic resin (for example, Rashihi Super Ring (registered trademark) manufactured by Rashihi Co., Ltd.) or the like can be used.
 また、前記塩素ガスと共に反応塔3に供給される空気は、塩化第一鉄水溶液31に吸収されることがないので、ブロワー38に吸引されて、空気解放導管37から大気中に解放される。 In addition, since the air supplied to the reaction tower 3 together with the chlorine gas is not absorbed by the ferrous chloride aqueous solution 31, it is sucked into the blower 38 and released into the atmosphere through the air release conduit 37.
 前記塩化第一鉄が酸化されて前記塩化第二鉄が生成すると、反応塔3の底部に貯留される塩化第一鉄水溶液31が含有する塩化第二鉄の濃度が次第に大きくなり、これに伴って前記塩素ガスの吸収効率が次第に低下する。そこで、塩素ガス処理装置1では、前記塩素ガスの吸収効率が低下する程度に塩化第一鉄水溶液31が含有する塩化第二鉄の濃度が大きくならないように、循環導管33の途中に設けられた第1切換弁35を操作し、塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)の一部を、塩化第二鉄水溶液供給導管36を介して還元反応槽4に供給する。前記塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)の供給は、切換弁35により塩化第二鉄水溶液供給導管36の流量を調整することにより常時行ってもよく、切換弁35を間欠的に操作することにより行ってもよい。 When the ferrous chloride is oxidized to produce the ferric chloride, the concentration of ferric chloride contained in the ferrous chloride aqueous solution 31 stored at the bottom of the reaction tower 3 gradually increases. As a result, the absorption efficiency of the chlorine gas gradually decreases. Therefore, in the chlorine gas treatment apparatus 1, a By operating the first switching valve 35, a portion of the ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) is supplied to the reduction reaction tank 4 through the ferric chloride aqueous solution supply conduit 36. supply to The ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) may be constantly supplied by adjusting the flow rate of the ferric chloride aqueous solution supply conduit 36 with the switching valve 35. , the switching valve 35 may be operated intermittently.
 還元反応槽4では、塩化第二鉄水溶液供給導管36から供給される前記塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)に対して、鉄供給手段42から鉄片等の鉄を供給し、該塩化第二鉄水溶液が含有する塩化第二鉄の少なくとも一部を鉄との反応により還元して塩化第一鉄とする(STEP10)ことにより、塩化第一鉄水溶液(塩化第二鉄を含む第3の塩化第一鉄水溶液)43を生成する(STEP11)。 In the reduction reaction tank 4, the ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) supplied from the ferric chloride aqueous solution supply conduit 36 is supplied with iron pieces from the iron supply means 42. and the like, and at least part of the ferric chloride contained in the ferric chloride aqueous solution is reduced to ferrous chloride by reaction with iron (STEP 10), thereby obtaining a ferrous chloride aqueous solution (Third ferrous chloride aqueous solution containing ferric chloride) 43 is produced (STEP 11).
 このとき、還元反応槽4では、水供給導管41から供給される濃度調整水により、生成する塩化第一鉄水溶液43が含有する塩化第二鉄の濃度を反応塔3の底部に貯留される塩化第一鉄水溶液31の初期状態と同等の0.1~30モル%の範囲とすることができる。 At this time, in the reduction reaction tank 4 , the concentration-adjusted water supplied from the water supply conduit 41 reduces the concentration of ferric chloride contained in the generated ferrous chloride aqueous solution 43 to the chloride stored at the bottom of the reaction tower 3 . It can be in the range of 0.1 to 30 mol %, which is equivalent to the initial state of the ferrous iron aqueous solution 31 .
 第3の塩化第一鉄水溶液43は、塩化第一鉄水溶液取出導管44を介して第2ポンプ45に吸引されることにより、少なくともその一部が還元反応槽4から取り出されて反応塔3に還流され、第1の塩化第一鉄水溶液31として、STEP8で前記塩素ガスの吸収に用いられる。 The third ferrous chloride aqueous solution 43 is sucked into the second pump 45 via the ferrous chloride aqueous solution extraction conduit 44, so that at least part of it is extracted from the reduction reactor 4 and sent to the reaction tower 3. It is refluxed and used as the first ferrous chloride aqueous solution 31 for absorbing the chlorine gas in STEP8.
 また、還元反応槽4では、水供給導管41から供給される濃度調整水により、前記塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)が吸収している前記塩素ガスの量に対応して、生成する塩化第一鉄水溶液43の量が供給される該塩化第二鉄水溶液の量よりも増加する。そこで、塩化第一鉄水溶液取出導管44に設けられた切換弁46を操作することにより、生成する塩化第一鉄水溶液43の増加分を増加分取出導管47から取り出してもよい。前記増加分取出導管47から取り出される増加分の塩化第一鉄水溶液43は、含有する塩化第一鉄を別途塩素により酸化して塩化第二鉄とすることにより、実質的に塩化第一鉄を含有しない塩化第二鉄水溶液とすることができ、該塩化第二鉄水溶液は、例えば、プリント基板における銅のエッチング液に使用することができる。 In addition, in the reduction reaction tank 4, the chlorine absorbed by the ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) is removed from the concentration-adjusted water supplied from the water supply conduit 41. Corresponding to the amount of gas, the amount of the aqueous ferrous chloride solution 43 produced is greater than the amount of the aqueous ferric chloride solution supplied. Therefore, by operating the switching valve 46 provided in the ferrous chloride aqueous solution extraction conduit 44 , the increased amount of the generated ferrous chloride aqueous solution 43 may be extracted from the increased amount extraction conduit 47 . The ferrous chloride aqueous solution 43 for the increment taken out from the increment take-out conduit 47 is obtained by oxidizing the contained ferrous chloride separately with chlorine into ferric chloride, thereby substantially removing the ferrous chloride. It can be an aqueous ferric chloride solution that does not contain ferric chloride, and the aqueous ferric chloride solution can be used, for example, as an etching solution for copper in printed circuit boards.
 尚、本実施形態では、切換弁46を操作することにより、塩化第一鉄水溶液43の増加分を増加分取出導管47から取り出すようにしているが、還元反応槽4をオーバーフロー型としておき、前記増加分をオーバーフローさせて図示しない貯留槽に貯留し、該貯留槽から取り出すようにしてもよい。 In this embodiment, by operating the switching valve 46, the increased amount of the ferrous chloride aqueous solution 43 is taken out from the increased amount take-out conduit 47. The increased amount may be overflowed, stored in a storage tank (not shown), and taken out from the storage tank.
 本発明の塩素ガスの処理方法の第2の実施態様では、図3に示すように、前記廃リチウムイオン電池に対し、STEP1で前処理を行い、STEP2の電池粉を得ることができる。 In the second embodiment of the chlorine gas treatment method of the present invention, as shown in FIG. 3, the waste lithium ion battery is subjected to pretreatment in STEP 1 to obtain battery powder in STEP 2.
 次に、STEP3で、前記電池粉を第1の塩酸に溶解し、前記有価金属を第1の塩酸により浸出する。この結果、STEP4で、前記有価金属の塩酸溶液である浸出液を得ることができる。 Next, in STEP 3, the battery powder is dissolved in the first hydrochloric acid, and the valuable metal is leached out with the first hydrochloric acid. As a result, in STEP 4, a leaching solution, which is a hydrochloric acid solution of the valuable metal, can be obtained.
 前記浸出液は、STEP5の溶媒抽出で、中和された後、前記有価金属のうち、マンガン、コバルト、ニッケルが順次溶媒抽出される。そして、STEP6で、抽出残液としてリチウム塩水溶液を得ることができる。前記リチウム塩水溶液は、炭酸ガス又は炭酸化合物と反応させることにより、炭酸リチウムを得ることができる。 After the leachate is neutralized in the solvent extraction in STEP 5, among the valuable metals, manganese, cobalt, and nickel are sequentially solvent-extracted. Then, in STEP 6, an aqueous lithium salt solution can be obtained as an extraction residue. Lithium carbonate can be obtained by reacting the lithium salt aqueous solution with carbon dioxide gas or a carbonate compound.
 一方、STEP3で、前記電池粉を第1の塩酸に溶解すると、前記有価金属が第1の塩酸に浸出される際の浸出反応により、STEP7で塩素ガスが発生する。本実施形態の塩素ガスの処理方法は、STEP7で発生する塩素ガスの処理方法であり、例えば、図4に示す塩素ガス処理装置1aにより実施することができる。 On the other hand, when the battery powder is dissolved in the first hydrochloric acid in STEP 3, chlorine gas is generated in STEP 7 due to the leaching reaction when the valuable metal is leached into the first hydrochloric acid. The method for treating chlorine gas of this embodiment is a method for treating chlorine gas generated in STEP 7, and can be carried out, for example, by the chlorine gas treatment apparatus 1a shown in FIG.
 塩素ガス処理装置1aは、廃リチウムイオン電池から得られた電池粉を第1の塩酸に溶解し、該電池粉に含まれる有価金属を第1の塩酸により浸出する塩酸浸出槽2と、塩酸浸出槽2で生成した塩素ガスから酸素を含む空気や粉塵などを分離・除去し、塩素ガスを精製する塩素精製塔3aと、水素ガスを精製する水素供給設備4aと、精製した塩素ガスと水素ガスとを高温下で反応させ、塩化水素を生成させる燃焼塔5と、燃焼塔5で生成した塩化水素を水に吸収させ、第2の塩酸を生成させる塩酸吸収塔6と、塩酸吸収塔6に吸収液を供給する吸収液供給槽7を備える。 The chlorine gas treatment apparatus 1a includes a hydrochloric acid leaching tank 2 for dissolving battery powder obtained from waste lithium ion batteries in a first hydrochloric acid and leaching valuable metals contained in the battery powder with the first hydrochloric acid, and hydrochloric acid leaching. A chlorine purification tower 3a for separating and removing oxygen-containing air and dust from the chlorine gas produced in the tank 2 to purify the chlorine gas, a hydrogen supply facility 4a for purifying hydrogen gas, and purified chlorine gas and hydrogen gas. at a high temperature to produce hydrogen chloride, a hydrochloric acid absorption tower 6 for absorbing the hydrogen chloride produced in the combustion tower 5 into water to produce the second hydrochloric acid, and the hydrochloric acid absorption tower 6 An absorbent supply tank 7 for supplying an absorbent is provided.
 塩酸浸出槽2は、第1の塩酸を供給する塩酸供給導管21と、電池粉を供給する電池粉供給手段22とを上部に備える一方、電池粉に含まれる有価金属を第1の塩酸により浸出して得られた浸出液23aを取り出す浸出液取出導管24aを底部に備える。また、塩酸浸出槽2は、前記有価金属を第1の塩酸により浸出する際の浸出反応により生成する塩素ガスを取り出す塩素ガス取出導管25aを上部に備え、塩素ガス取出導管25aは塩素精製塔3aに接続されている。 The hydrochloric acid leaching tank 2 has a hydrochloric acid supply conduit 21 for supplying first hydrochloric acid and a battery powder supply means 22 for supplying battery powder at the upper part thereof, while the valuable metal contained in the battery powder is leached by the first hydrochloric acid. The bottom is provided with an exudate extraction conduit 24a for extracting the exudate 23a thus obtained. In addition, the hydrochloric acid leaching tank 2 is provided with a chlorine gas extraction conduit 25a in its upper part for extracting chlorine gas produced by the leaching reaction when the valuable metal is leached with the first hydrochloric acid. It is connected to the.
 塩素精製塔3aは、精製した塩素ガスを取り出す精製塩素ガス取出導管31aを上部に備え、精製塩素ガス取出導管31aは燃焼塔5の塩素バーナ51に接続されている。 The chlorine refining tower 3 a has a refined chlorine gas take-out conduit 31 a for taking out refined chlorine gas at its top, and the refined chlorine gas take-out conduit 31 a is connected to the chlorine burner 51 of the combustion tower 5 .
 水素供給設備4aは水素ガス取出導管41aを上部に備え、水素ガス取出導管41aは燃焼塔5の塩素バーナ51に接続されている。 The hydrogen supply facility 4 a has a hydrogen gas extraction conduit 41 a at its top, and the hydrogen gas extraction conduit 41 a is connected to the chlorine burner 51 of the combustion tower 5 .
 燃焼塔5は、精製塩素ガス取出導管31aから供給される塩素ガスと、水素ガス取出導管41aから供給される水素ガスとを燃焼させて塩化水素を生成させる塩素バーナ51を底部に備える一方、生成した塩化水素を冷却する燃焼塔冷却水ジャケット52を外周部に備える。また、燃焼塔5は、生成した塩化水素を塩酸吸収塔6に供給する塩化水素供給導管53を上部に備える。燃焼塔冷却水ジャケット52は、下部に冷却水を供給する燃焼塔冷却水供給導管54を備え、上部に冷却水を取り出す燃焼塔冷却水取出導管55を備える。 The combustion tower 5 is equipped with a chlorine burner 51 at the bottom for generating hydrogen chloride by combusting the chlorine gas supplied from the refined chlorine gas extraction conduit 31a and the hydrogen gas supplied from the hydrogen gas extraction conduit 41a. A combustion tower cooling water jacket 52 for cooling the hydrogen chloride is provided on the outer periphery. The combustion tower 5 also has a hydrogen chloride supply conduit 53 in its upper part for supplying the produced hydrogen chloride to the hydrochloric acid absorption tower 6 . The combustion tower cooling water jacket 52 has a combustion tower cooling water supply conduit 54 for supplying cooling water at its lower part, and a combustion tower cooling water extraction conduit 55 for taking out cooling water at its upper part.
 塩化水素供給導管53の上方には、塩化水素を冷却する冷却水を散布する散水槽56が設けられ、下方には、散水槽56から散布された冷却水を収容する受水槽57が設けられている。散水槽56は冷却水を供給する散水槽冷却水供給導管58を備え、受水槽57は冷却水を取り出す受水槽冷却水取出導管59を備える。 A sprinkling tank 56 for spraying cooling water for cooling hydrogen chloride is provided above the hydrogen chloride supply conduit 53, and a receiving tank 57 for containing the cooling water sprayed from the sprinkling tank 56 is provided below. there is The sprinkler tank 56 has a sprinkler tank cooling water supply conduit 58 for supplying cooling water, and the water tank 57 has a water tank cooling water extraction conduit 59 for taking out the cooling water.
 塩酸吸収塔6は、生成した第2の塩酸を取り出す塩酸取出導管61を底部に備える一方、未反応の塩化水素を取り出す塩化水素取出導管62を下部に備える。また、塩酸吸収塔6は、内部の塔頂の直下に、吸収液供給槽7から吸収液が供給される第1の貯留槽63を備え、第1の貯留槽63の下方に内筒64を備える。内筒64は上端縁の外周側に第2の貯留槽65を備える。さらに、塩酸吸収塔6は塩化水素及び生成した第2の塩酸を冷却する塩酸吸収塔冷却水ジャケット66を外周部に備える。 The hydrochloric acid absorption tower 6 has a hydrochloric acid take-out conduit 61 at the bottom for taking out the second hydrochloric acid produced, and a hydrogen chloride take-out conduit 62 at the bottom for taking out unreacted hydrogen chloride. Further, the hydrochloric acid absorption tower 6 is provided with a first storage tank 63 directly below the top of the inside of the tower to which the absorbent is supplied from the absorbent supply tank 7, and an inner cylinder 64 is provided below the first storage tank 63. Prepare. The inner cylinder 64 has a second storage tank 65 on the outer peripheral side of the upper edge. Further, the hydrochloric acid absorption tower 6 is provided with a hydrochloric acid absorption tower cooling water jacket 66 for cooling the hydrogen chloride and the produced second hydrochloric acid at the outer peripheral portion.
 塩酸取出導管61は、途中に設けられた塩酸ポンプ61aを介して塩酸浸出槽2に接続されている。塩化水素取出導管62は途中で設けられたブロワー62aを介して吸収液供給槽7の底部に接続されている。塩酸吸収塔冷却水ジャケット66は、下部に冷却水を供給する塩酸吸収塔冷却水供給導管67を備え、上部に冷却水を取り出す塩酸吸収塔冷却水取出導管68を備える。 The hydrochloric acid extraction conduit 61 is connected to the hydrochloric acid leaching tank 2 via a hydrochloric acid pump 61a provided midway. The hydrogen chloride extraction conduit 62 is connected to the bottom of the absorbent supply tank 7 via a blower 62a provided midway. The hydrochloric acid absorber cooling water jacket 66 has a hydrochloric acid absorber cooling water supply conduit 67 for supplying cooling water at its lower part, and a hydrochloric acid absorber cooling water take-out conduit 68 for taking out cooling water at its upper part.
 吸収液供給槽7は、水を供給する水供給導管71と、ガスを解放するガス解放導管72とを上部に備え、塩化水素を吸収して希塩酸となった吸収液を塩酸吸収塔6の上部へ供給する吸収液供給導管73を下部に備える。ガス解放導管72は、吸収液供給槽7の内圧が一定以上になると開く逆止弁74を備える。 The absorbent supply tank 7 is equipped with a water supply conduit 71 for supplying water and a gas release conduit 72 for releasing gas at its upper part. An absorbent supply conduit 73 is provided at the bottom. The gas release conduit 72 has a check valve 74 that opens when the internal pressure of the absorbent supply tank 7 exceeds a certain level.
 また、塩素ガス処理装置1aは、塩酸吸収塔冷却水取出導管68により塩酸吸収塔冷却水ジャケット66から取り出された冷却水が、散水槽56、受水槽57及び燃焼塔冷却水ジャケット52を介して塩酸吸収塔冷却水取出導管68に循環されるように構成されていてもよい。この場合、例えば、塩酸吸収塔冷却水取出導管68は、散水槽56に冷却水を供給する散水槽冷却水供給導管58に接続され、受水槽57から冷却水を取り出す受水槽冷却水取出導管59は、燃焼塔冷却水ジャケット52に冷却水を供給する燃焼塔冷却水供給導管54に接続され、燃焼塔冷却水ジャケット52から冷却水を取り出す燃焼塔冷却水取出導管55は、塩酸吸収塔冷却水ジャケット66に冷却水を供給する塩酸吸収塔冷却水供給導管67に接続される。また、燃焼塔冷却水取出導管55と塩酸吸収塔冷却水供給導管67との途中に熱交換器81と冷却水ポンプ82とを設けてもよい。 In addition, in the chlorine gas treatment apparatus 1a, the cooling water taken out from the hydrochloric acid absorption tower cooling water jacket 66 by the hydrochloric acid absorption tower cooling water extraction conduit 68 is passed through the sprinkling tank 56, the receiving tank 57 and the combustion tower cooling water jacket 52. It may be configured to be circulated to the hydrochloric acid absorption tower cooling water extraction conduit 68 . In this case, for example, the hydrochloric acid absorption tower cooling water take-out conduit 68 is connected to a sprinkler tank cooling water supply conduit 58 that supplies cooling water to the sprinkler tank 56 , and a water tank cooling water take-out conduit 59 takes out cooling water from the water tank 57 . is connected to a combustion tower cooling water supply conduit 54 that supplies cooling water to the combustion tower cooling water jacket 52, and a combustion tower cooling water extraction conduit 55 that takes out cooling water from the combustion tower cooling water jacket 52 is connected to the hydrochloric acid absorption tower cooling water. It is connected to a hydrochloric acid absorption tower cooling water supply conduit 67 that supplies cooling water to the jacket 66 . A heat exchanger 81 and a cooling water pump 82 may be provided between the combustion tower cooling water extraction conduit 55 and the hydrochloric acid absorption tower cooling water supply conduit 67 .
 次に、塩素ガス処理装置1aによる本発明の第2の実施態様の塩素ガスの処理方法について説明する。
 塩素ガス処理装置1aでは、まず、電池粉供給手段22からSTEP2で得られた電池粉が塩酸浸出槽2に供給される一方、塩酸供給導管21から第1の塩酸が塩酸浸出槽2に供給される。前記第1の塩酸は、例えば、3~12モル/Lの濃度であり、前記電池粉1kgに対し、例えば3~15Lの量が供給される。この結果、塩酸浸出槽2内で前記電池粉が第1の塩酸に溶解され、前記有価金属が第1の塩酸により浸出されて(STEP3)、該有価金属の塩酸溶液である浸出液23aを得ることができる(STEP4)。浸出液23aは、浸出液取出導管24aにより取り出され、STEP5の溶媒抽出に供される。
Next, the chlorine gas treatment method of the second embodiment of the present invention by the chlorine gas treatment apparatus 1a will be described.
In the chlorine gas treatment apparatus 1a, first, the battery powder obtained in STEP 2 is supplied from the battery powder supply means 22 to the hydrochloric acid leaching tank 2, and the first hydrochloric acid is supplied to the hydrochloric acid leaching tank 2 from the hydrochloric acid supply conduit 21. be. The first hydrochloric acid has a concentration of, for example, 3 to 12 mol/L, and is supplied in an amount of, for example, 3 to 15 L with respect to 1 kg of the battery powder. As a result, the battery powder is dissolved in the first hydrochloric acid in the hydrochloric acid leaching tank 2, and the valuable metal is leached by the first hydrochloric acid (STEP 3) to obtain a leaching solution 23a which is a hydrochloric acid solution of the valuable metal. (STEP 4). The exudate 23a is taken out by the exudate take-out conduit 24a and subjected to solvent extraction in STEP5.
 また、塩酸浸出槽2では、前記有価金属が第1の塩酸により浸出される際の浸出反応により、塩素ガスが発生する(STEP7)。前記塩素ガスは、塩素精製塔3aに設けられた図示しない塩素ガス供給手段により塩素ガス取出導管25aを介して塩酸浸出槽2から取り出され、塩素精製塔3aに供給される。 Also, in the hydrochloric acid leaching tank 2, chlorine gas is generated due to the leaching reaction when the valuable metal is leached with the first hydrochloric acid (STEP 7). The chlorine gas is taken out from the hydrochloric acid leaching tank 2 through a chlorine gas take-out conduit 25a by chlorine gas supply means (not shown) provided in the chlorine purification tower 3a and supplied to the chlorine purification tower 3a.
 塩素ガス取出導管25aを介して塩素精製塔3aに導入された前記塩素ガスは、水を充填した湿式スクラバ、膜分離法、加圧冷却による塩素の液化等により酸素を含む空気や粉塵などを分離・除去され、精製される(STEP8)。精製された塩素ガスは前記塩素ガス供給手段により塩素精製塔3aから取り出され、精製塩素ガス取出導管31aを介して燃焼塔5に供給される。 The chlorine gas introduced into the chlorine purification tower 3a through the chlorine gas extraction conduit 25a is separated into oxygen-containing air, dust, etc. by means of a wet scrubber filled with water, a membrane separation method, liquefaction of chlorine by pressurized cooling, or the like. - Removed and purified (STEP8). The purified chlorine gas is taken out from the chlorine purification tower 3a by the chlorine gas supply means and supplied to the combustion tower 5 through the purified chlorine gas extraction conduit 31a.
 燃焼塔5に供給された前記塩素ガスは、水素供給設備4aにより供給された水素ガスと共に塩素バーナ51により燃焼され(STEP9)、高温下で反応して塩化水素を生成する(STEP10)。生成した塩化水素は、燃焼塔冷却水ジャケット52により冷却され、塩化水素供給導管53に導入され、さらに散水槽56から受水槽57に散水される冷却水により冷却され、塩酸吸収塔6に導入される。 The chlorine gas supplied to the combustion tower 5 is combusted by the chlorine burner 51 together with the hydrogen gas supplied by the hydrogen supply equipment 4a (STEP 9), and reacts at a high temperature to produce hydrogen chloride (STEP 10). The produced hydrogen chloride is cooled by the combustion tower cooling water jacket 52, introduced into the hydrogen chloride supply conduit 53, further cooled by the cooling water sprinkled from the sprinkling tank 56 to the receiving tank 57, and introduced into the hydrochloric acid absorption tower 6. be.
 塩酸吸収塔6に導入された前記塩化水素は、吸収液供給槽7から供給されて流下する吸収液に吸収されて(STEP11)、第2の塩酸を生成する(STEP12)。ここで、吸収液供給槽7から供給される吸収液は、一旦第1の貯留槽63に貯留され、第1の貯留槽63から溢流した吸収液は第2の貯留槽65に貯留され、第2の貯留槽65から溢流した吸収液は内筒64の外面及び内面に沿って流下する。内筒64の外面に沿って流下する吸収液は塩化水素を吸収して第2の塩酸を生成し、内筒64の内面に沿って流下する吸収液は塩酸吸収塔冷却水ジャケット66と協働して、生成した第2の塩酸を冷却する。生成された第2の塩酸の濃度は、例えば、1~37質量%の範囲であり、第2の塩酸は、塩酸ポンプ61aにより、塩酸取出導管61を介して塩酸浸出槽2に供給され、第1の塩酸として前記有価金属の浸出に再利用することができる。 The hydrogen chloride introduced into the hydrochloric acid absorption tower 6 is absorbed by the absorbent supplied from the absorbent supply tank 7 and flowing down (STEP 11) to produce the second hydrochloric acid (STEP 12). Here, the absorbent supplied from the absorbent supply tank 7 is temporarily stored in the first storage tank 63, and the absorbent overflowing from the first storage tank 63 is stored in the second storage tank 65, The absorbent overflowing from the second storage tank 65 flows down along the outer and inner surfaces of the inner cylinder 64 . The absorbent flowing down along the outer surface of the inner cylinder 64 absorbs hydrogen chloride to produce the second hydrochloric acid, and the absorbing liquid flowing down along the inner surface of the inner cylinder 64 cooperates with the hydrochloric acid absorption tower cooling water jacket 66. to cool the second hydrochloric acid produced. The concentration of the generated second hydrochloric acid is, for example, in the range of 1 to 37% by mass, and the second hydrochloric acid is supplied to the hydrochloric acid leaching tank 2 through the hydrochloric acid extraction conduit 61 by the hydrochloric acid pump 61a, and 1 hydrochloric acid can be reused for leaching the valuable metals.
 また、塩酸吸収塔6にて未反応の前記塩化水素は、ブロワー62aに吸引されることにより、塩化水素取出導管62を介して吸収液供給槽7に導入される。吸収液供給槽7に導入された前記塩化水素は、水供給導管71から供給された水に吸収され、希塩酸を生成する。生成した希塩酸は、吸収液供給導管73を介して、吸収液として塩酸吸収塔6に供給される。吸収液供給槽7において塩化水素が吸収された後の残余に気体は、ガス解放導管72を通じて塩素ガス処理装置1aの外部へ排出される。 In addition, the unreacted hydrogen chloride in the hydrochloric acid absorption tower 6 is introduced into the absorbent supply tank 7 via the hydrogen chloride extraction conduit 62 by being sucked into the blower 62a. The hydrogen chloride introduced into the absorbent supply tank 7 is absorbed by the water supplied from the water supply conduit 71 to produce dilute hydrochloric acid. The generated dilute hydrochloric acid is supplied to the hydrochloric acid absorption tower 6 as an absorbent via an absorbent supply conduit 73 . The remaining gas after hydrogen chloride is absorbed in the absorbent supply tank 7 is discharged to the outside of the chlorine gas treatment apparatus 1a through a gas release conduit 72. As shown in FIG.
 尚、本発明の第2の実施態様では、塩酸吸収塔6が底部に塩酸取出導管61を備え、塩酸取出導管61が塩酸浸出槽2に接続されていることにより、塩酸吸収塔6で生成された第2の塩酸を有価金属の浸出に用いる第1の塩酸として再利用するようにしているが、塩酸取出導管61を図示しない貯留槽に接続させることで第2の塩酸を該貯留槽に貯留し、取り出すようにしてもよい。 In the second embodiment of the present invention, the hydrochloric acid absorption tower 6 is provided with a hydrochloric acid extraction conduit 61 at the bottom, and the hydrochloric acid extraction conduit 61 is connected to the hydrochloric acid leaching tank 2, so that the hydrochloric acid produced in the hydrochloric acid absorption tower 6 is The second hydrochloric acid is reused as the first hydrochloric acid for leaching the valuable metals. By connecting the hydrochloric acid extraction conduit 61 to a storage tank (not shown), the second hydrochloric acid is stored in the storage tank. and may be taken out.
 本発明の塩素ガスの処理方法の第3の実施態様は、塩素ガスを、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つを含むアルカリ性吸収液と接触させ、次亜塩素酸塩を生成させる次亜塩素酸塩生成工程を含む。 In a third embodiment of the method for treating chlorine gas of the present invention, chlorine gas is brought into contact with an alkaline absorbing liquid containing at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides. and a hypochlorite generation step for generating hypochlorite.
 前記アルカリ金属水酸化物を構成するアルカリ金属は、好ましくはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、及びフランシウムからなる群から選ばれる少なくとも1つを含み、より好ましくはリチウム、ナトリウム、及びカリウムからなる群から選ばれる少なくとも1つを含み、更に好ましくはナトリウム、及びカリウムからなる群から選ばれる少なくとも1つを含む。前記アルカリ土類金属水酸化物を構成するアルカリ土類金属は、好ましくはベリリウム、マグネシウム、カルシウム、ストロンチウム、及びバリウムからなる群から選ばれる少なくとも1つを含み、より好ましくはマグネシウム、カルシウム、及びバリウムからなる群から選ばれる少なくとも1つを含み、更に好ましくはマグネシウム及びカルシウムからなる群から選ばれる少なくとも1つを含む。 The alkali metal constituting the alkali metal hydroxide preferably contains at least one selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, and francium, more preferably lithium, sodium, and potassium. It contains at least one selected from the group, and more preferably contains at least one selected from the group consisting of sodium and potassium. The alkaline earth metal constituting the alkaline earth metal hydroxide preferably contains at least one selected from the group consisting of beryllium, magnesium, calcium, strontium and barium, more preferably magnesium, calcium and barium. At least one selected from the group consisting of, more preferably at least one selected from the group consisting of magnesium and calcium.
 前記アルカリ性吸収液は、好ましくは水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、及び水酸化カルシウムからなる群から選ばれる少なくとも1つを含む水溶液または懸濁液である。 The alkaline absorption liquid is preferably an aqueous solution or suspension containing at least one selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide.
 例えば前記アルカリ性吸収液が水酸化ナトリウムを含む場合、前記次亜塩素酸塩生成工程では、下記式(1)で示される反応が起きる。
 2NaOH+Cl→NaClO+NaCl+HO  (1)
For example, when the alkaline absorbing liquid contains sodium hydroxide, a reaction represented by the following formula (1) occurs in the hypochlorite generation step.
2NaOH+ Cl2 →NaClO+NaCl+ H2O (1)
 本発明の塩素ガスの処理方法の第3の実施態様は、好ましくは、次亜塩素酸塩と炭素を反応させる第1の次亜塩素酸塩の還元工程を更に含む。次亜塩素酸塩を含有する前記アルカリ性吸収液と還元剤となる炭素を接触させ、塩化物塩と二酸化炭素を生成させる。例えば前記アルカリ性吸収液が水酸化ナトリウムを含む場合、前記第1の次亜塩素酸塩の還元工程では、下記式(2)で示される反応が起きる。
 2NaClO+C→2NaCl+CO  (2)
The third embodiment of the method for treating chlorine gas of the present invention preferably further includes a first hypochlorite reduction step of reacting hypochlorite with carbon. The alkaline absorbing liquid containing hypochlorite is brought into contact with carbon as a reducing agent to generate a chloride salt and carbon dioxide. For example, when the alkaline absorbing liquid contains sodium hydroxide, a reaction represented by the following formula (2) occurs in the first hypochlorite reduction step.
2NaClO+C→2NaCl+CO 2 (2)
 本発明の塩素ガスの処理方法の第3の実施態様は、好ましくは、次亜塩素酸塩とアルミニウムを反応させる第2の次亜塩素酸塩の還元工程を更に含む。次亜塩素酸塩を含有する前記アルカリ性吸収液と還元剤となるアルミニウムを接触させ、酸化アルミニウムと塩化物塩を生成させる。例えば前記アルカリ性吸収液が水酸化ナトリウムを含む場合、前記第2の次亜塩素酸塩の還元工程では、下記式(3)で示される反応が起きる。
 3NaClO+2Al→2Al+3NaCl  (3)
The third embodiment of the method for treating chlorine gas of the present invention preferably further includes a second hypochlorite reduction step of reacting hypochlorite with aluminum. The alkaline absorbing liquid containing hypochlorite is brought into contact with aluminum as a reducing agent to produce aluminum oxide and a chloride salt. For example, when the alkaline absorbing liquid contains sodium hydroxide, a reaction represented by the following formula (3) occurs in the second hypochlorite reduction step.
3NaClO+2Al→2Al 2 O 3 +3NaCl (3)
 本発明の塩素ガスの処理方法の第4の実施態様は、塩素ガスを炭素及び水と反応させ、二酸化炭素を生成させる二酸化炭素生成工程を含む。例えば塩素ガスを直接炭素充填塔に通気し、水のシャワーリングまたは水蒸気導入を実施する。前記二酸化炭素生成工程では、下記式(4)で示される反応が起きる。
 2Cl+C+2HO→CO+4HCl  (4)
A fourth embodiment of the method for treating chlorine gas of the present invention includes a carbon dioxide generation step of reacting chlorine gas with carbon and water to generate carbon dioxide. For example, chlorine gas is bubbled directly into the carbon-filled column and water showering or steam introduction is performed. In the carbon dioxide generation step, a reaction represented by the following formula (4) occurs.
2Cl2 +C+ 2H2OCO2 +4HCl (4)
 本発明の塩素ガスの処理方法の第5の実施態様は、塩素ガスをアルミニウムと反応させ、塩化アルミニウムを生成させる塩化アルミニウム生成工程を含む。塩素ガスを直接アルミニウム充填塔に通気して直接還元反応を起こせる。前記塩化アルミニウム生成工程では、下記式(5)で示される反応が起きる。生成した塩化アルミニウムを溶出させるためにアルミニウム充填塔に水のシャワーリングを実施してもよい。
 2Al+3Cl→2AlCl  (5)
A fifth embodiment of the method for treating chlorine gas of the present invention includes an aluminum chloride producing step of reacting chlorine gas with aluminum to produce aluminum chloride. Chlorine gas can be passed directly through an aluminum packed column to cause a direct reduction reaction. In the aluminum chloride production step, a reaction represented by the following formula (5) occurs. The aluminum packed column may be showered with water in order to dissolve the produced aluminum chloride.
2Al+3Cl 2 →2AlCl 3 (5)
 1…塩素ガス処理装置、 2…塩酸浸出槽、 3…反応塔、 4…還元反応槽、 21…塩酸供給導管、 22…電池粉供給手段、 23…希釈空気供給導管、 24…浸出液、 25…浸出液取出導管、 26…塩素ガス取出導管、 31…塩化第一鉄水溶液、 32…充填材層、 33…循環導管、 34…第1ポンプ、 35…第1切換弁、 36…塩化第二鉄水溶液供給導管、 37…空気解放導管、 38…ブロワー、 41…水供給導管、 42…鉄供給手段、 43…塩化第一鉄水溶液、 44…塩化第一鉄水溶液取出導管、 45…第2ポンプ、 46…第2切換弁、 47…増加分取出導管、 1a…塩素ガス処理装置、 3a…塩素精製塔、 4a…水素供給装置、 5…燃焼塔、 51…塩素バーナ、 6…塩酸吸収塔、 7…吸収液供給槽。 1... chlorine gas treatment device, 2... hydrochloric acid leaching tank, 3... reaction tower, 4... reduction reaction tank, 21... hydrochloric acid supply conduit, 22... battery powder supply means, 23... dilution air supply conduit, 24... leachate, 25... Leachate extraction conduit 26 Chlorine gas extraction conduit 31 Ferrous chloride aqueous solution 32 Filling material layer 33 Circulation conduit 34 First pump 35 First switching valve 36 Ferric chloride aqueous solution Supply conduit 37 Air release conduit 38 Blower 41 Water supply conduit 42 Iron supply means 43 Ferrous chloride aqueous solution 44 Ferrous chloride aqueous solution extraction conduit 45 Second pump 46 ...second switching valve 47...increase take-out conduit 1a...chlorine gas treatment device 3a...chlorine purification tower 4a...hydrogen supply apparatus 5...combustion tower 51...chlorine burner 6...hydrochloric acid absorption tower 7... Absorbent supply tank.

Claims (12)

  1.  廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理方法であって、
     該塩素ガスを、還元剤、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つと反応させる工程を含むことを特徴とする塩素ガスの処理方法。
    A method for treating chlorine gas generated when powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid and the valuable metals are leached out with hydrochloric acid,
    A method for treating chlorine gas, comprising a step of reacting the chlorine gas with at least one member selected from the group consisting of reducing agents, alkali metal hydroxides, and alkaline earth metal hydroxides.
  2.  廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理方法であって、
     該塩素ガスを、第1の塩化第一鉄水溶液に吸収させて、該第1の塩化第一鉄水溶液に対して塩化第二鉄の濃度が増大した、塩化第二鉄を含有する第2の塩化第一鉄水溶液を生成させる工程を含むことを特徴とする塩素ガスの処理方法。
    A method for treating chlorine gas generated when powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid and the valuable metals are leached out with hydrochloric acid,
    The chlorine gas is absorbed in the first ferrous chloride aqueous solution to provide a second ferric chloride-containing second ferric chloride solution having an increased concentration of ferric chloride relative to the first ferrous chloride aqueous solution. A method for treating chlorine gas, comprising a step of producing a ferrous chloride aqueous solution.
  3.  請求項2記載の塩素ガスの処理方法において、前記塩化第二鉄を含有する第2の塩化第一鉄水溶液を、鉄と接触させて該第2の塩化第一鉄水溶液が含有する塩化第二鉄の少なくとも一部を還元し、該第2の塩化第一鉄水溶液に対して塩化第二鉄の濃度が低減した、塩化第二鉄を含有する第3の塩化第一鉄水溶液を生成させる工程を更に含むことを特徴とする塩素ガスの処理方法。 In the method for treating chlorine gas according to claim 2, the second ferrous chloride aqueous solution containing ferric chloride is brought into contact with iron, and the ferrous chloride contained in the second ferrous chloride aqueous solution is reducing at least a portion of the iron to produce a third ferrous chloride-containing aqueous ferrous chloride solution having a reduced concentration of ferric chloride relative to the second aqueous ferrous chloride solution; A method for treating chlorine gas, further comprising:
  4.  請求項3記載の塩素ガスの処理方法において、前記第3の塩化第一鉄水溶液の少なくとも一部を前記第1の塩化第一鉄水溶液として、前記塩素ガスの吸収に用いることを特徴とする塩素ガスの処理方法。 4. The chlorine gas treatment method according to claim 3, wherein at least part of said third ferrous chloride aqueous solution is used as said first ferrous chloride aqueous solution for absorbing said chlorine gas. Gas treatment method.
  5.  廃リチウムイオン電池から得られた有価金属を含む粉末を第1の塩酸に溶解し、該有価金属を第1の塩酸により浸出する際に発生する塩素ガスの処理方法であって、
     該塩素ガスを、水素ガスと反応させて、塩化水素を生成させる工程と、
     該塩化水素を水に吸収させて、第2の塩酸を生成させる工程を含むことを特徴とする塩素ガスの処理方法。
    A method for treating chlorine gas generated when a powder containing a valuable metal obtained from a waste lithium ion battery is dissolved in a first hydrochloric acid and the valuable metal is leached out with the first hydrochloric acid,
    reacting the chlorine gas with hydrogen gas to produce hydrogen chloride;
    A method for treating chlorine gas, comprising a step of absorbing the hydrogen chloride in water to generate a second hydrochloric acid.
  6.  請求項5記載の塩素ガスの処理方法において、前記塩素ガスを前記水素ガスと反応させて、前記塩化水素を生成させる工程の前に該塩素ガスを精製し、該塩素ガスに含まれる酸素を除去する工程を更に含むことを特徴とする塩素ガスの処理方法。 6. The method for treating chlorine gas according to claim 5, wherein the chlorine gas is purified to remove oxygen contained in the chlorine gas before the step of reacting the chlorine gas with the hydrogen gas to generate the hydrogen chloride. A chlorine gas treatment method, further comprising the step of:
  7.  請求項5または6記載の塩素ガスの処理方法において、前記第2の塩酸の少なくとも一部を前記第1の塩酸として、前記有価金属の浸出に用いることを特徴とする塩素ガスの処理方法。 The method for treating chlorine gas according to claim 5 or 6, wherein at least part of said second hydrochloric acid is used as said first hydrochloric acid for leaching said valuable metal.
  8.  廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理方法であって、
     該塩素ガスを、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つを含むアルカリ性吸収液と接触させ、次亜塩素酸塩を生成させる次亜塩素酸塩生成工程を含むことを特徴とする塩素ガスの処理方法。
    A method for treating chlorine gas generated when powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid and the valuable metals are leached out with hydrochloric acid,
    Hypochlorite for producing hypochlorite by contacting the chlorine gas with an alkaline absorbing liquid containing at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides. A chlorine gas treatment method, comprising a generation step.
  9.  請求項8記載の塩素ガスの処理方法において、次亜塩素酸塩と炭素を反応させる第1の次亜塩素酸塩の還元工程を更に含むことを特徴とする塩素ガスの処理方法。 The chlorine gas treatment method according to claim 8, further comprising a first hypochlorite reduction step of reacting hypochlorite with carbon.
  10.  請求項8記載の塩素ガスの処理方法において、次亜塩素酸塩とアルミニウムを反応させる第2の次亜塩素酸塩の還元工程を更に含むことを特徴とする塩素ガスの処理方法。 The chlorine gas treatment method according to claim 8, further comprising a second hypochlorite reduction step of reacting hypochlorite with aluminum.
  11.  廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理方法であって、
     該塩素ガスを炭素及び水と反応させ、二酸化炭素を生成させる二酸化炭素生成工程を含むことを特徴とする塩素ガスの処理方法。
    A method for treating chlorine gas generated when powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid and the valuable metals are leached out with hydrochloric acid,
    A method for treating chlorine gas, comprising a step of producing carbon dioxide by reacting the chlorine gas with carbon and water to produce carbon dioxide.
  12.  廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理方法であって、
     該塩素ガスをアルミニウムと反応させ、塩化アルミニウムを生成させる塩化アルミニウム生成工程を含むことを特徴とする塩素ガスの処理方法。
    A method for treating chlorine gas generated when powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid and the valuable metals are leached out with hydrochloric acid,
    A method for treating chlorine gas, comprising a step of producing aluminum chloride by reacting the chlorine gas with aluminum to produce aluminum chloride.
PCT/JP2022/035235 2021-09-22 2022-09-21 Treatment method for chlorine gas WO2023048196A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023523065A JPWO2023048196A1 (en) 2021-09-22 2022-09-21
JP2024029857A JP2024055948A (en) 2021-09-22 2024-02-29 How to treat chlorine gas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021154003 2021-09-22
JP2021-154003 2021-09-22
JP2021-159036 2021-09-29
JP2021159036 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023048196A1 true WO2023048196A1 (en) 2023-03-30

Family

ID=85720761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035235 WO2023048196A1 (en) 2021-09-22 2022-09-21 Treatment method for chlorine gas

Country Status (2)

Country Link
JP (2) JPWO2023048196A1 (en)
WO (1) WO2023048196A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193552A (en) * 1975-02-14 1976-08-17 HAIGASUOYOBI HAISUINOSHORIHO
JPH11293356A (en) * 1998-04-14 1999-10-26 Hiroyuki Nakazawa Dissolution of cobaltic acid lithium
JP2000303084A (en) * 1999-04-21 2000-10-31 Shinsei Dental Laboratory:Kk Method for treating chlorine-containing plastic waste
JP2005052724A (en) * 2003-08-04 2005-03-03 Hideki Yamamoto Method and apparatus for detoxifying fluorine-based gas
JP2008110339A (en) * 2006-10-03 2008-05-15 Sumitomo Chemical Co Ltd Method for removal of chlorine gas
JP2010077399A (en) * 2008-08-25 2010-04-08 Kobe Steel Ltd Method of producing carbonized fuel and equipment therefor
JP2012046794A (en) * 2010-08-27 2012-03-08 Hitachi Ltd Metal recovery method and metal recovery device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193552A (en) * 1975-02-14 1976-08-17 HAIGASUOYOBI HAISUINOSHORIHO
JPH11293356A (en) * 1998-04-14 1999-10-26 Hiroyuki Nakazawa Dissolution of cobaltic acid lithium
JP2000303084A (en) * 1999-04-21 2000-10-31 Shinsei Dental Laboratory:Kk Method for treating chlorine-containing plastic waste
JP2005052724A (en) * 2003-08-04 2005-03-03 Hideki Yamamoto Method and apparatus for detoxifying fluorine-based gas
JP2008110339A (en) * 2006-10-03 2008-05-15 Sumitomo Chemical Co Ltd Method for removal of chlorine gas
JP2010077399A (en) * 2008-08-25 2010-04-08 Kobe Steel Ltd Method of producing carbonized fuel and equipment therefor
JP2012046794A (en) * 2010-08-27 2012-03-08 Hitachi Ltd Metal recovery method and metal recovery device

Also Published As

Publication number Publication date
JPWO2023048196A1 (en) 2023-03-30
JP2024055948A (en) 2024-04-19

Similar Documents

Publication Publication Date Title
CN104245091B (en) By the method and apparatus using electropositive metal reducing flue gas to implement energy-saving desulfuration and decarburization
US8540954B2 (en) CO2—capture in molten salts
CN105932351A (en) Resource recycling method for waste lithium batteries
JP2006137620A (en) Collection system for carbon dioxide in waste gas, and its collection method
EP1204998A1 (en) High efficiency process for treating mixed metal waste
WO2023048196A1 (en) Treatment method for chlorine gas
CA3054747C (en) Method for producing lithium hydroxide from lithium-containing ore by means of chlorination and chloroalkali process
CN106395750A (en) Chlorine treating process and device of system for recycling copper from acidic waste etching solution
US2726930A (en) Carbon dioxide recovery process
KR101778411B1 (en) Facility and method for the simultaneous production of sodium bicarbonate and chlorine dioxide
JP2017217606A (en) Manufacturing method of coagulant using aluminum-including waste as raw material
TWI448435B (en) Drainage treatment method
JP2009184837A (en) Method for producing iodine
JP2004255228A (en) Method for treating aqueous solution of halogen compound, acidic aqueous solution, or acidic gas, and its apparatus
JP4915095B2 (en) Carbon monoxide production method and phosgene production method
KR101225236B1 (en) Method and apparatus for treating cmalodorous substance of granulated slag equipment
JP4137052B2 (en) Method and apparatus for treating halogen compound aqueous solution, acidic aqueous solution or acidic gas
JP2010180461A (en) Apparatus for recovering zinc
JP3565419B2 (en) Method for removing hydrogen chloride from reducing gas
JP2024038783A (en) Method for producing anhydrous metal chloride
CN113840803A (en) Method for recovering carbon dioxide gas and other gases
JP2000218129A (en) Method and apparatus for suppressing generation of greenhouse effect gas
JPS6335297B2 (en)
TWM643162U (en) Sodium bicarbonate generation system
JP2004307229A (en) Method and apparatus for producing hydrogen from treatment residue

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023523065

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872947

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)