JPH11293356A - Dissolution of cobaltic acid lithium - Google Patents

Dissolution of cobaltic acid lithium

Info

Publication number
JPH11293356A
JPH11293356A JP13909298A JP13909298A JPH11293356A JP H11293356 A JPH11293356 A JP H11293356A JP 13909298 A JP13909298 A JP 13909298A JP 13909298 A JP13909298 A JP 13909298A JP H11293356 A JPH11293356 A JP H11293356A
Authority
JP
Japan
Prior art keywords
reducing agent
hydrochloric acid
acid
lithium
cobaltic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13909298A
Other languages
Japanese (ja)
Inventor
Noboru Ebihara
昇 海老原
Hiroyuki Nakazawa
博幸 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13909298A priority Critical patent/JPH11293356A/en
Publication of JPH11293356A publication Critical patent/JPH11293356A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To completely prevent the generation of chlorine gas by previously dissolving a reducing agent in hydrochloric acid and repeating a process of alternately adding the equivalent quantity of the reducing agent and cobaltic acid lithium corresponding to the chemical reaction formula. SOLUTION: At the time of dissolving cobaltic acid lithium wasted in a lithium cell production process or in a waste lithium ion cell with hydrochloric acid, the reducing agent is previously dissolved in hydrochloric acid. As the reducing agent, oxalic acid or formic acid is used. Cobaltic acid lithium is dissolved in hydrochloric acid by dividedly and alternately adding the reducing agent and cobaltic acid lithium so that the reducing agent in hydrochloric acid is equivalent to cobaltic acid lithium corresponding to the chemical reaction formula. Because the reducing agent is previously dissolved in hydrochloric acid, a vigorous reaction in the reaction of cobaltic acid lithium with hydrochloric acid is suppressed and the generated chlorine gas forms hydrochloric acid by the reaction with the reducing agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はリチウムイオン電池行程
より廃棄されるコバルト酸リチウムや,廃リチウムイオ
ン電池中のコバルト酸リチウムの溶解方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dissolving lithium cobaltate discarded in a lithium ion battery process and a method for dissolving lithium cobaltate in a waste lithium ion battery.

【0002】[0002]

【従来の技術】リチウムイオン電池製造工程より廃棄さ
れるコバルト酸リチウムや廃リチウムイオン電池中のコ
バルト酸リチウムの溶解方法として,従来から希硝酸,
希硫酸,塩酸を使用して溶解させた後,中和反応を行
い,コバルト塩を製造している。しかしながらコバルト
酸リチウムは硝酸,塩酸に対しては反応性が低く,また
塩酸に対しての反応性は良好であるが反応時に塩素ガス
が発生し安全性に問題がある。
2. Description of the Related Art As a method for dissolving lithium cobalt oxide discarded in a lithium ion battery manufacturing process or lithium cobalt oxide in a waste lithium ion battery, dilute nitric acid,
After dissolving using dilute sulfuric acid and hydrochloric acid, a neutralization reaction is performed to produce a cobalt salt. However, lithium cobaltate has low reactivity with nitric acid and hydrochloric acid, and has good reactivity with hydrochloric acid. However, chlorine gas is generated during the reaction, and there is a problem in safety.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記欠点を解
決するものであり,塩酸による溶解反応にさいし,塩素
ガスが発生することなくコバルト酸リチウムを溶解する
方法を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks, and has as its object to provide a method for dissolving lithium cobaltate in a dissolution reaction with hydrochloric acid without generating chlorine gas. Things.

【0004】[0004]

【問題を解決するための手段】上記目的を達成する本発
明の特徴のひとつ,塩素でコバルト酸リチウムを溶解す
るさいに,あらかじめ還元剤を塩酸に溶解させておくこ
とにより,コバルト酸リチウムが塩酸と反応するさいに
発生する塩素ガスが還元剤と反応して塩酸を生成するこ
とにより,塩素ガスの発生を防止するだけでなく,生成
する塩素をコバルト酸リチウムの溶解に利用できること
にある。
[Means for Solving the Problems] One of the features of the present invention that achieves the above object is to dissolve lithium cobaltate with chlorine by dissolving the reducing agent in hydrochloric acid in advance. The chlorine gas generated during the reaction with the reducing agent reacts with the reducing agent to generate hydrochloric acid, thereby not only preventing the generation of the chlorine gas but also using the generated chlorine for dissolving the lithium cobalt oxide.

【0005】また還元剤とコバルト酸リチウムを交互に
分添することにより,塩素ガスと還元剤との激しい反応
を抑制することができる。
[0005] By alternately dispensing the reducing agent and lithium cobalt oxide, a vigorous reaction between the chlorine gas and the reducing agent can be suppressed.

【0006】[0006]

【実施例】以下本発明の方法を実施例にもとづいてさら
に説明する。
EXAMPLES The method of the present invention will be further described below with reference to examples.

【0007】実施例1 容量200mlの2口コルベンに塩酸100mlを入
れ,一方の口をオルソトルイジンを添加した塩素吸収液
20mlの入ったガス捕集ビンに接続しておく。もう一
方の口よりシュウ酸0.4gを加えた後,コバルト酸リ
チウム0.8gを添加する。本操作を4回繰り返し,コ
バルト酸リチウムを合計3.2gとシュウ酸を合計1.
6g交互に分添し溶解をおこなった。本溶解操作により
コバルト酸リチウムは100%溶解し,かつ捕集ビンの
吸収液は無色透明であったことから塩素の発生を完全に
防止できることを確認した。
EXAMPLE 1 100 ml of hydrochloric acid was placed in a 200 ml two-necked corbane, and one of the two ports was connected to a gas collecting bottle containing 20 ml of a chlorine absorbing solution to which orthotoluidine was added. After adding 0.4 g of oxalic acid from the other port, 0.8 g of lithium cobaltate is added. This operation was repeated four times, and a total of 3.2 g of lithium cobalt oxide and a total of 1.0 g of oxalic acid were obtained.
6 g was alternately dispensed and dissolved. By this dissolving operation, lithium cobalt oxide was dissolved 100%, and the absorbing solution in the collecting bottle was colorless and transparent, so it was confirmed that generation of chlorine could be completely prevented.

【0008】実施例2 容量200mlの2口コルベンに塩酸100mlを入
れ,一方の口をオルソトルイジンを添加した塩素吸収液
20mlの入ったガス捕集ビンに接続しておく。もう一
方の口よりギ酸0.2gを加えた後,コバルト酸リチウ
ム0.8gを添加する。本操作を4回繰り返し,コバル
ト酸リチウムを合計3.2gとギ酸を合計0.8g交互
に分添し溶解をおこなった。本溶解操作によりコバルト
酸リチウムは100%溶解し,かつ捕集ビンの吸収液は
無色透明であったことから塩素の発生を完全に防止でき
ることを確認した。
Example 2 100 ml of hydrochloric acid is placed in a 200 ml 2-port corbane, and one of the ports is connected to a gas collecting bottle containing 20 ml of a chlorine absorbing solution containing orthotoluidine. After 0.2 g of formic acid is added from the other mouth, 0.8 g of lithium cobaltate is added. This operation was repeated four times, and dissolution was performed by alternately dispensing 3.2 g of lithium cobaltate and 0.8 g of formic acid in total. By this dissolving operation, lithium cobalt oxide was dissolved 100%, and the absorbing solution in the collecting bottle was colorless and transparent, so it was confirmed that generation of chlorine could be completely prevented.

【0009】[0009]

【発明の効果】上記実施例で示されるように,本発明の
方法によれば塩酸によるコバルト酸リチウムの溶解にさ
いし,塩素を発生することなく溶解できるばかりでな
く,還元剤の働きにより発生する塩素は塩酸に変換され
る。また交互に分添することにより,溶解反応は穏やか
に振興するので,安全性に優れかつ塩酸の使用量も低減
できる経済的に優れた効果が得られる。
As shown in the above examples, according to the method of the present invention, when dissolving lithium cobaltate with hydrochloric acid, not only can it be dissolved without generating chlorine, but also it can be generated by the action of a reducing agent. Chlorine is converted to hydrochloric acid. Also, by alternately dispensing, the dissolution reaction is gently promoted, so that an excellent economical effect is obtained in which the safety is excellent and the amount of hydrochloric acid used can be reduced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コバルト酸リチウムの溶解方法であっ
て,塩酸にあらかじめ還元剤を溶解させた後,化学反応
式より導き出された等量の還元剤とコバルト酸リチウム
を添加する溶解行程を,交互に繰り返すことを特徴とす
るコバルト酸リチウムの溶解方法。
1. A method for dissolving lithium cobaltate, comprising: dissolving a reducing agent in hydrochloric acid in advance, and alternately adding an equal amount of the reducing agent and lithium cobaltate derived from a chemical reaction formula. A method for dissolving lithium cobaltate, wherein the method is repeated.
【請求項2】 コバルト酸リチウムの溶解方法であっ
て,還元剤の種類がシュウ酸,ギ酸である請求項1に記
載のコバルト酸リチウムの溶解方法。
2. The method for dissolving lithium cobaltate according to claim 1, wherein the type of the reducing agent is oxalic acid or formic acid.
JP13909298A 1998-04-14 1998-04-14 Dissolution of cobaltic acid lithium Pending JPH11293356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13909298A JPH11293356A (en) 1998-04-14 1998-04-14 Dissolution of cobaltic acid lithium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13909298A JPH11293356A (en) 1998-04-14 1998-04-14 Dissolution of cobaltic acid lithium

Publications (1)

Publication Number Publication Date
JPH11293356A true JPH11293356A (en) 1999-10-26

Family

ID=15237314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13909298A Pending JPH11293356A (en) 1998-04-14 1998-04-14 Dissolution of cobaltic acid lithium

Country Status (1)

Country Link
JP (1) JPH11293356A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124921A1 (en) * 2004-06-21 2005-12-29 Toyota Jidosha Kabushiki Kaisha Method of disposing of lithium battery
CN110668506A (en) * 2019-09-29 2020-01-10 昆明理工大学 Method for recycling and regenerating lithium cobaltate from waste lithium ion battery
JPWO2023048196A1 (en) * 2021-09-22 2023-03-30

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124921A1 (en) * 2004-06-21 2005-12-29 Toyota Jidosha Kabushiki Kaisha Method of disposing of lithium battery
JP2006004883A (en) * 2004-06-21 2006-01-05 Toyota Motor Corp Lithium battery treating method
KR100832900B1 (en) 2004-06-21 2008-05-28 도요다 지도샤 가부시끼가이샤 Method of disposing of lithium battery
JP4492222B2 (en) * 2004-06-21 2010-06-30 トヨタ自動車株式会社 Lithium battery treatment method
CN110668506A (en) * 2019-09-29 2020-01-10 昆明理工大学 Method for recycling and regenerating lithium cobaltate from waste lithium ion battery
JPWO2023048196A1 (en) * 2021-09-22 2023-03-30
WO2023048196A1 (en) * 2021-09-22 2023-03-30 株式会社アサカ理研 Treatment method for chlorine gas

Similar Documents

Publication Publication Date Title
CN104538673B (en) A kind of lithium-ion battery electrolytes for removing water deacidification
Asprey et al. Preparation and properties of aqueous tetravalent americium
CN103917672B (en) The recovery method of rare earth element
CN106058243B (en) The nickel cobalt lithium aluminate cathode material of nickel cobalt aluminium presoma of Fluorin doped and preparation method thereof and the Fluorin doped prepared
CN110240200B (en) Method for extracting tungsten from tungsten ore
EP4317130A1 (en) System and method for efficiently preparing taurine
WO2024001059A1 (en) Method for preparing iron phosphate from iron phosphorus slag, iron phosphate and application of iron phosphate
JPH11293356A (en) Dissolution of cobaltic acid lithium
CA2442128A1 (en) Process for producing basic metal nitrate
CN107934988B (en) Preparation method of ammonium bifluoride
CN102963937B (en) A kind of refining method of by-product Manganse Dioxide
US3726650A (en) Process for recovery of uranium values by precipitation of ammonium diuranate
CN109609760A (en) The method of comprehensive utilization of water in a kind of recycling of ferric phosphate lithium cell
JPH11293357A (en) Selective recovery of cobalt compound
CN107285292A (en) The method that reaction of high order prepares battery-grade iron phosphate
Peacock 263. The quadrivalent fluororhenates
Bunton et al. Fluoride ion catalyzed hydrolysis of carboxylic anhydrides
Balakrishnan et al. Observations on the action of hydrogen peroxide on trivalent and tetravalent plutonium solutions
Weidig et al. Kinetics and mechanism of trimethylamine-fluoroborane hydrolysis
CN109232063A (en) A kind of production of sulfur-based compound fertilizer method of no by-product hydrochloric acid
Turrentine Action of ammonium persulphate on metals
CN108277494A (en) Application and its pickling iron and steel agent of the expired water soluble vitamin piece in pickling iron and steel
Balasubramanian et al. Electron transfer. 72. Reductions of oxyhalogens by vitamin B12S (cob (I) alamin)
CN1098079A (en) A kind of method of producing potassium-ammonium sulfate compound fertilizer
JPH09231972A (en) Manufacture of nickel positive electrode active material for alkaline battery