WO2023048170A1 - Thermosetting resin composition - Google Patents

Thermosetting resin composition Download PDF

Info

Publication number
WO2023048170A1
WO2023048170A1 PCT/JP2022/035128 JP2022035128W WO2023048170A1 WO 2023048170 A1 WO2023048170 A1 WO 2023048170A1 JP 2022035128 W JP2022035128 W JP 2022035128W WO 2023048170 A1 WO2023048170 A1 WO 2023048170A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
resin composition
aliphatic hydrocarbon
unsaturated aliphatic
compound
Prior art date
Application number
PCT/JP2022/035128
Other languages
French (fr)
Japanese (ja)
Inventor
遼平 早坂
壮 宮田
幹広 樫尾
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2023048170A1 publication Critical patent/WO2023048170A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols

Definitions

  • the present invention relates to thermosetting resin compositions.
  • thermosetting resin composition containing an epoxy resin and a phenolic resin as its curing agent yields a cured product that is excellent in heat resistance, electrical insulation, adhesion and the like. It is used in various fields such as wiring boards, paints, and adhesives.
  • thermosetting resin compositions used in electronic components are required to have higher reliability than ever before.
  • the contact area between a conductor layer such as copper foil and an insulating layer becomes smaller, so adhesion with the conductor layer (hereinafter also referred to as “conductor adhesion”) is required more than before. be done.
  • Patent Document 1 describes epoxy resin (1-A) and phenol resin (1 -B), an active ester compound (1-C), and a rosin resin (1-D), and the content of the resin component (1) in the non-volatile components of the curable resin composition ( %) is M 1 and the content (% by mass) of the rosin resin (1-D) is M D , M D /M 1 is 0.001 to 0.05.
  • a curable resin composition is disclosed.
  • Patent Document 1 aims to improve conductor adhesiveness by blending a rosin-based resin as an adhesion imparting agent.
  • an adhesion imparting agent such as a rosin-based resin
  • problems such as bleed-out may occur. Therefore, in order to achieve further improvement in conductor adhesion, there is a demand for a technique for improving the conductor adhesion of cured products themselves formed from epoxy resins and phenol resins.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a thermosetting resin composition having excellent conductor adhesion.
  • thermosetting resin composition containing a specific polyfunctional phenol compound, an epoxy resin and a curing accelerator, and having a storage elastic modulus E' of the cured product satisfying specific requirements.
  • the present invention relates to the following [1] to [13].
  • [1] (A) (a1) a polyfunctional phenol compound obtained by copolymerizing a phenol compound having an unsaturated aliphatic hydrocarbon group and (a2) an unsaturated aliphatic hydrocarbon by oxidative polymerization; (B) an epoxy resin; (C) a thermosetting resin composition containing a curing accelerator, The cured product of the thermosetting resin composition has a storage elastic modulus E' (23°C) at 23°C of 20 to 2,500 MPa, The ratio of the storage elastic modulus E ' (23 ° C.) to the storage elastic modulus E ' (Tg + 50 ° C.) at the glass transition temperature + 50 ° C.
  • thermosetting resin composition of the cured product of the thermosetting resin composition [E ' (23 ° C.) / E '(Tg+50°C)] is 1 to 50, a thermosetting resin composition.
  • (a1) phenolic compound having an unsaturated aliphatic hydrocarbon group is one or more selected from compounds represented by the following general formula (A-1): A thermosetting resin composition.
  • the (a1) phenol compound having an unsaturated aliphatic hydrocarbon group is a compound in which in the general formula (A-1), X 1 , X 2 and X 3 are all hydrogen atoms, % or more, the thermosetting resin composition according to the above [2].
  • thermosetting resin composition [4] The above-mentioned [1] to [3], wherein the (a1) phenolic compound having an unsaturated aliphatic hydrocarbon group has an unsaturated aliphatic hydrocarbon group having 8 to 30 carbon atoms.
  • a thermosetting resin composition [5] The thermosetting resin composition according to any one of [1] to [4] above, wherein (a2) the unsaturated aliphatic hydrocarbon has 10 to 40 carbon atoms.
  • the unsaturated aliphatic hydrocarbon (a2) contains 3 to 9 aliphatic unsaturated bonds.
  • thermosetting resin composition according to any one of [1] to [6] above, wherein the (a2) unsaturated aliphatic hydrocarbon is squalene.
  • weight average molecular weight (Mw) of component (A) is 8,000 to 200,000.
  • thermosetting resin composition according to any one of the above [1] to [10], wherein the ratio [W A /W B ] to B ) is 0.1 to 20 in terms of molar ratio.
  • thermosetting resin composition with excellent conductor adhesion.
  • the number average molecular weight (Mn) and the mass average molecular weight (Mw) are values converted to standard polystyrene measured by gel permeation chromatography (GPC), specifically described in Examples. It is a value measured based on the method.
  • biomass means a renewable organic resource derived from living organisms, excluding fossil resources.
  • solid content refers to the components contained in the target composition, excluding diluent solvents such as water and organic solvents.
  • thermosetting resin composition is (A) A polyfunctional phenol compound (hereinafter referred to as "(A) (Also referred to as "polyfunctional phenol compound”), (B) an epoxy resin; (C) a thermosetting resin composition containing a curing accelerator,
  • the cured product of the thermosetting resin composition has a storage elastic modulus E' (23°C) at 23°C of 20 to 2,500 MPa,
  • the ratio of the storage elastic modulus E ' (23 ° C.) to the storage elastic modulus E ' (Tg + 50 ° C.) at the glass transition temperature + 50 ° C. of the cured product of the thermosetting resin composition [E ' (23 ° C.) / E '(Tg+50°C)] is 1 to 50, the thermosetting resin composition.
  • thermosetting resin composition of the present embodiment contains a unique branched structure possessed by a polyfunctional phenol compound, and has a storage elastic modulus E' at 23 ° C. (23 ° C. ) and the ratio of storage elastic modulus E′ [E′ (23° C.)/E′ (Tg+50° C.)] satisfies the above range. It is presumed that this is due to the fact that it has toughness, which makes it possible to follow deformation even though it has a crosslinked structure.
  • E′ storage elastic modulus
  • the polyfunctional phenol compound includes (a1) a phenol compound having an unsaturated aliphatic hydrocarbon group (hereinafter also simply referred to as "(a1) phenol compound"), (a2) an unsaturated aliphatic hydrocarbon, is a polyfunctional phenol compound obtained by copolymerizing by oxidative polymerization. (A) A polyfunctional phenol compound may be used individually by 1 type, and may use 2 or more types together.
  • the phenol compound is a raw material monomer for (A) the polyfunctional phenol compound and is a phenol compound having an unsaturated aliphatic hydrocarbon group.
  • the polyfunctional phenol compound is obtained by reacting the unsaturated aliphatic hydrocarbon group of the (a1) phenol compound to increase the molecular weight. The reaction is presumed to occur, for example, by a known reaction mechanism proposed as a mechanism for oxidizing unsaturated fatty acids.
  • the phenolic compound usually comprises one benzene ring, one or more phenolic hydroxyl groups directly bonded to the benzene ring, and one or more unsaturated aliphatic hydrocarbon groups directly bonded to the benzene ring. and have
  • the number of phenolic hydroxyl groups possessed by the phenolic compound is preferably 1 to 3, more preferably 1 or 2, still more preferably 1, from the viewpoint of conductor adhesion.
  • the number of unsaturated aliphatic hydrocarbon groups possessed by the phenolic compound is preferably 1 to 3, more preferably 1 or 2, from the viewpoint of conductor adhesion and gelation suppression during oxidative polymerization. One is preferable.
  • the number of aliphatic unsaturated bonds contained in the unsaturated aliphatic hydrocarbon group of the phenol compound is preferably 1 to 5, more preferably 1 to 4, and still more preferably 1 to 4, from the viewpoint of conductor adhesion. is 1 to 3.
  • the unsaturated aliphatic hydrocarbon group possessed by the phenolic compound may be linear or branched, but from the viewpoint of conductor adhesion, it is preferably linear. .
  • the number of carbon atoms in the unsaturated aliphatic hydrocarbon group of the phenol compound is preferably 8 to 30, more preferably 10 to 25, still more preferably 13 to 20, particularly preferably 15, from the viewpoint of conductor adhesion. ⁇ 17.
  • the unsaturated aliphatic hydrocarbon group is an unsaturated group represented by the above formula (R-1), the above formula (R-2), or the above formula (R-3) from the viewpoint of conductor adhesion. It is preferably an aliphatic hydrocarbon group.
  • the phenol compound is preferably one or more selected from compounds represented by the following general formula (A-1) from the viewpoint of conductor adhesion.
  • R is an unsaturated aliphatic hydrocarbon group containing 1 to 3 aliphatic unsaturated bonds
  • X 1 is a hydrogen atom or a hydroxy group
  • X 2 is a hydrogen atom or a 5 is an alkyl group
  • X 3 is a hydrogen atom, a hydroxy group or a carboxy group.
  • a description of a preferred embodiment of the unsaturated aliphatic hydrocarbon group represented by R in the general formula (A-1) is as described above for the unsaturated aliphatic hydrocarbon group of (a1) the phenol compound. is.
  • X 1 in the general formula (A-1) is a hydrogen atom or a hydroxy group, preferably a hydrogen atom from the viewpoint of availability.
  • X 2 in the general formula (A-1) is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably a hydrogen atom from the viewpoint of availability.
  • Examples of the alkyl group having 1 to 5 carbon atoms represented by X 2 include methyl group, ethyl group, propyl group, butyl group and pentyl group. Among these, a methyl group is preferred.
  • X 3 in the general formula (A-1) is a hydrogen atom, a hydroxy group or a carboxy group, preferably a hydrogen atom from the viewpoint of availability.
  • the phenol compound is a compound in which X 1 , X 2 and X 3 are all hydrogen atoms in the above general formula (A-1), that is, the following general formula (A-2 ) preferably contains a compound represented by
  • the content of the compound represented by the general formula (A-2) in the phenol compound is not particularly limited, but is preferably 90% by mass or more, more preferably 92% by mass or more, and still more preferably 94% by mass. % by mass or more.
  • the content of the compound represented by the general formula (A-2) in (a1) the phenol compound is not particularly limited, but is preferably 99% by mass or less, more preferably 98% by mass or less, and still more preferably is 96% by mass or less.
  • the phenol compound is a compound in which X 1 is a hydroxy group and both X 2 and X 3 are hydrogen atoms in the above general formula (A-1), i.e., the following general formula ( It may contain a compound represented by A-3).
  • the content of the compound represented by the general formula (A-3) in the phenol compound is not particularly limited, but is preferably 1% by mass or more, more preferably 2% by mass or more, and still more preferably 4% by mass. % by mass or more.
  • the content of the compound represented by the general formula (A-3) in (a1) the phenol compound is not particularly limited, but is preferably 10% by mass or less, more preferably 8% by mass or less, and even more preferably is 6% by mass or less.
  • the phenol compound is preferably a biomass-derived compound from the viewpoint of reducing environmental load.
  • biomass-derived (a1) phenolic compounds include cardanol, cardol, 2-methylcardol, and anacardic acid, which are phenolic compounds contained in CNSL extracted from cashew nut shells; Those contained in plant-derived phenolic compounds such as ol, thithiol, and laccol;
  • the plant-derived phenol compound is preferably cardanol, cardol, 2-methylcardol, or anacardic acid, more preferably cardanol or cardol, and still more preferably cardanol, from the viewpoint of effective utilization of waste resources and easy availability.
  • Cardanol has a structure represented by the following formula (A-4), cardol has a structure represented by the following formula (A-5), 2-methylcardol has a structure represented by the following formula (A-6), and anacardic acid has a structure represented by the following formula (A-7). includes.
  • R 1 is represented by the above formula (R-1), (R-2), (R-3) or (RC) is a group.
  • * is a site directly bonded to the benzene ring.
  • Cardanol, cardol, 2-methylcardol and anacardic acid are each a compound having a group represented by formula (R-1) as R 1 and a group represented by formula (R-2) as R 1 a compound having a group represented by formula (R-3) as R 1 , and a compound having a group represented by formula (R—C) as R 1 .
  • Cardanol, cardol, 2-methylcardol and anacardic acid each usually contain a compound having a group represented by the formula (R-1) as R 1 , although it varies depending on purification conditions and the like. 40 mol%, the content of the compound having the group represented by the formula (R- 2 ) as R 1 is 10 to 25 mol%, and the content of the compound having the group represented by the formula (R-3) as R 1 The amount is 40 to 60 mol %, and the content of the compound having the group represented by the formula (RC) as R 1 is 1 to 5 mol %.
  • ((a2) unsaturated aliphatic hydrocarbon) (A) Polyfunctional phenol compound is obtained by copolymerizing (a1) phenol compound and (a2) unsaturated aliphatic hydrocarbon by oxidative polymerization. (a2) Copolymerization of the unsaturated aliphatic hydrocarbon tends to improve the flexibility, elongation at break, stress relaxation rate, conductor adhesion, etc. of the cured product. (a2) The unsaturated aliphatic hydrocarbon is preferably a biomass-derived compound from the viewpoint of reducing the burden on the environment. (a2) Unsaturated aliphatic hydrocarbons may be used alone or in combination of two or more.
  • the number of carbon atoms in the unsaturated aliphatic hydrocarbon is preferably 10 to 40, more preferably 15 to 37, from the viewpoint of improving the flexibility, breaking elongation, stress relaxation rate and conductor adhesion of the cured product. , more preferably 20-35, particularly preferably 25-32.
  • the number of aliphatic unsaturated bonds contained in the unsaturated aliphatic hydrocarbon is preferably 3 to 9, more preferably 4 to 8, still more preferably 5, from the viewpoint of reactivity and availability. ⁇ 7.
  • the unsaturated aliphatic hydrocarbon may be linear or may have a structure having a side chain, but preferably has a structure having a side chain.
  • the unsaturated aliphatic hydrocarbon may have a substituent other than the aliphatic hydrocarbon, but preferably has no substituent other than the aliphatic hydrocarbon. That is, (a2) the unsaturated aliphatic hydrocarbon is preferably a compound consisting only of carbon atoms and hydrogen atoms.
  • Examples of unsaturated aliphatic hydrocarbons include squalene, botryococcene, farnesene, and myrcene. Although they can be chemically synthesized, they are all contained in plants or animals, and can also be produced from plants or animals. Among these, squalene is preferable from the viewpoint of reactivity and availability. Squalene is represented by the following formula (B-1) and is a compound contained in plants or animals, and is extracted from, for example, shark liver oil, microorganisms, and the like.
  • the ratio [W A /W B ] of the blending amount (W A ) of (a1) the phenolic compound and the blending amount (W B ) of (a2) the unsaturated aliphatic hydrocarbon when performing oxidative polymerization is particularly Although not limited, the molar ratio is preferably 0.1 to 20, more preferably 0.1 to 20, from the viewpoint of improving the balance of mechanical strength, flexibility, elongation at break, stress relaxation rate, conductor adhesion, etc. of the cured product. 0.3 to 15, more preferably 0.7 to 12.
  • the other raw material monomers are preferably biomass-derived compounds from the viewpoint of reducing environmental load.
  • the total content of (a1) the phenol compound and (a2) the unsaturated aliphatic hydrocarbon is preferably 90 to 100% by mass, more preferably 92 to 100% by mass. %, more preferably 95 to 100 mass %.
  • the content of the biomass-derived raw material in the raw material excluding oxygen of the polyfunctional phenol compound is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and still more preferably 98 to 100% by mass. .
  • the polyfunctional phenol compound is preferably solid at 23°C or has a viscosity at 23°C of more than 50,000 mPa ⁇ s.
  • solid state means a state of not having fluidity under an environment of 1 atmospheric pressure and 23°C.
  • non-fluid state means a state in which the temperature is below the melting point, and in the case of a compound without a melting point, it means a state in which the temperature is below the melting point. do.
  • the viscosity at 23 ° C. is more than 50,000 mPa s means that the viscosity is measurable under an environment of 1 atm and 23 ° C., and the viscosity is It means a state of exceeding 50,000 mPa ⁇ s.
  • thermosetting resin composition that is solid at room temperature can be formed.
  • Thermosetting resin compositions that are solid at room temperature are easy to handle and can be applied to a wider variety of uses than ever before.
  • the polyfunctional phenol compound has a viscosity of more than 50,000 mPa ⁇ s at 23° C., so that it can form a highly viscous thermosetting resin composition at room temperature.
  • a thermosetting resin composition having a high viscosity at room temperature can suppress dripping and the like, and is therefore excellent in handleability as a liquid thermosetting resin composition.
  • the viscosity of the polyfunctional phenol compound at 23°C can be measured according to JIS Z 8803 (2011).
  • the polyfunctional phenol compound may be solid at 23°C and may have a viscosity of more than 50,000 mPa s at 23°C, but can be applied to a wider variety of uses. and is preferably solid at 23° C. from the viewpoint of being effective in reducing environmental load.
  • the polyfunctional phenol compound has a viscosity of more than 50,000 mPa s at 23 ° C., the viscosity of (A) the polyfunctional phenol compound at 23 ° C.
  • (A) thickened by the polyfunctional phenol compound From the viewpoint of enhancing the effect, it is preferably 60,000 mPa ⁇ s or more, more preferably 70,000 mPa ⁇ s or more, and still more preferably 100,000 mPa ⁇ s or more.
  • the upper limit of the viscosity at 23° C. of (A) the polyfunctional phenol compound is not particularly limited, but may be, for example, 300,000 mPa ⁇ s or less, or 200,000 mPa ⁇ s or less.
  • the number average molecular weight (Mn) of the polyfunctional phenol compound is not particularly limited, but from the viewpoint of handleability, it is preferably 2,000 to 10,000, more preferably 2,500 to 8,000, and still more preferably is between 3,000 and 6,000.
  • the mass average molecular weight (Mw) of the polyfunctional phenol compound is not particularly limited, but from the viewpoint of handleability, preferably 8,000 to 200,000, more preferably 15,000 to 150,000, and even more preferably is between 20,000 and 100,000, even more preferably between 30,000 and 50,000.
  • a polyfunctional phenol compound can be produced by copolymerizing (a1) a phenol compound and (a2) an unsaturated aliphatic hydrocarbon by oxidation polymerization.
  • a method of oxidative polymerization a method of heating a raw material monomer containing (a1) a phenol compound and (a2) an unsaturated aliphatic hydrocarbon in the presence of an oxidizing agent while stirring is preferred.
  • the method of oxidative polymerization of (a1) the phenol compound and (a2) the unsaturated aliphatic hydrocarbon may be, for example, a bulk polymerization method or a solution polymerization method, depending on the state of these raw materials. .
  • (a1) The phenol compound and (a2) the unsaturated aliphatic hydrocarbon are usually liquid at the reaction temperature, and tend to be able to maintain good stirring efficiency even when the oxidation polymerization proceeds. , a bulk polymerization method is preferred.
  • organic solvents used for solution polymerization include alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Ether solvents such as tetrahydrofuran; Aromatic solvents such as toluene, xylene, and mesitylene; Nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone; Solvents containing sulfur atoms such as dimethyl sulfoxide; Examples thereof include ester solvents such as butyrolactone. Among these, nitrogen atom-containing solvents and sulfur atom-containing solvents are preferable, and dimethyl sulfoxide is more preferable, from the viewpoint of solubility in raw material monomers and products.
  • Oxygen is preferably supplied as a gas containing oxygen. That is, (A) a method for producing a polyfunctional phenol compound is a method in which oxidative polymerization is performed by heating (a1) a phenol compound and (a2) an unsaturated aliphatic hydrocarbon while supplying a gas containing oxygen.
  • the oxygen-containing gas may be oxygen gas itself, a mixed gas of oxygen and an inert gas such as nitrogen, or air. Air is preferable from the point of view.
  • the oxygen-containing gas may be, for example, purged into the reaction vessel, passed over the reaction solution, or bubbled into the reaction solution.
  • the method of bubbling in the reaction solution is preferable from the viewpoint of reactivity.
  • the pressure during the oxidation polymerization may be pressurized or normal pressure.
  • a reaction catalyst such as a metal catalyst may be used, but a reaction catalyst may not be used.
  • the reaction temperature of the oxidative polymerization is not particularly limited, but is preferably 100 to 250° C., more preferably 120° C., from the viewpoint of facilitating adjustment of the properties of (A) the polyfunctional phenol compound while obtaining an appropriate reaction rate. to 210°C, more preferably 140 to 180°C.
  • the reaction time of the oxidative polymerization is not particularly limited, and the time for obtaining the polyfunctional phenol compound (A) having desired properties may be determined as appropriate. More preferably 30 to 60 hours, still more preferably 36 to 54 hours.
  • the aliphatic unsaturated bonds that disappear by oxidative polymerization are preferably 20 to 75%, more preferably 30 to 65%, and still more preferably 35 to 60%.
  • the aliphatic unsaturated bond disappearance rate can be measured by the method described in Examples.
  • (A) polyfunctional phenol compound obtained by completing oxidative polymerization may be purified by known methods such as distillation, reprecipitation, centrifugation, and washing, if necessary.
  • Epoxy resins include, for example, bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin and bisphenol S type epoxy resin; novolac type epoxy resin such as phenol novolac type epoxy resin and cresol novolak type epoxy resin.
  • Resin epoxy resin having a dicyclopentadiene skeleton; epoxy resin having a biphenol skeleton; epoxy resin having an aralkyl skeleton; epoxy resin having a fluorene skeleton; Resin; glycidyl ester type epoxy resin; 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate, epsilon-caprolactone-modified-3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate , alicyclic epoxy resins such as bis-(3,4-epoxycyclohexyl) adipate; (B) Epoxy resins may be used alone or in combination of two or more.
  • Epoxy resin may be appropriately selected from the above options according to the purpose, but from the viewpoint of reducing environmental load, biomass-derived epoxy resin is preferable, and plant-derived epoxy resin is more preferable.
  • the epoxy resin is preferably an epoxy resin obtained by oxidative polymerization (hereinafter also referred to as “oxidatively polymerized epoxy resin”) from the viewpoint of reducing environmental load.
  • the oxidatively polymerized epoxy resin may be, for example, an epoxy resin obtained by oxidatively polymerizing a monomer having an epoxy group, or a phenolic resin obtained by oxidatively polymerizing a phenolic compound in which the phenolic hydroxyl group is glycidyl-etherified. There may be.
  • Examples of epoxy resins obtained by oxidatively polymerizing a monomer having an epoxy group include (a1) an epoxy resin obtained by oxidatively polymerizing an epoxidized monomer obtained by glycidyl-etherifying a phenolic hydroxyl group of a phenol compound (hereinafter referred to as "oxidation (Also referred to as "polymerized epoxy resin (EA)”), (a1) an epoxy resin obtained by oxidative polymerization of an epoxidized monomer obtained by glycidyl-etherifying a phenolic compound other than a phenolic compound, and oxidizing a monomer having an epoxy group other than glycidyl ether. Examples thereof include epoxy resins obtained by polymerization.
  • Examples of glycidyl-etherified phenolic hydroxyl groups of a phenol resin obtained by oxidative polymerization of a phenol compound include (a1) glycidyl-etherified phenolic hydroxyl groups of a polyfunctional phenol compound obtained by oxidative polymerization of a phenol compound; and (a1) an epoxy resin obtained by glycidyl-etherifying the phenolic hydroxyl group of a polyfunctional phenolic compound obtained by oxidative polymerization of a phenolic compound other than the phenolic compound.
  • the oxidatively polymerized epoxy resin (EA) is preferable as the oxidatively polymerized epoxy resin from the viewpoint of further reducing the environmental load. Next, the oxidatively polymerized epoxy resin (EA) will be described.
  • the oxidatively polymerized epoxy resin (EA) is an epoxy resin obtained by oxidatively polymerizing an epoxidized monomer (a1) obtained by glycidyl-etherifying a phenolic hydroxyl group of a phenol compound.
  • a1 As a method for glycidyl-etherifying a phenolic hydroxyl group of a phenolic compound, a known method can be applied. For example, (a1) a method of reacting a phenolic compound with epihalohydrin in the presence of a basic compound. is mentioned. The reaction is preferably carried out in an organic solvent from the viewpoint of homogeneous progress of the reaction. Examples of the organic solvent include the same organic solvents as those exemplified in (A) the method for producing a polyfunctional phenol compound, and preferred embodiments are also the same.
  • Epihalohydrin includes, for example, epichlorohydrin, epibromohydrin, epiiodohydrin, and the like. Among these, epichlorohydrin is preferable from the viewpoint of reactivity.
  • the amount of epihalohydrin to be used is not particularly limited, but is preferably 1 to 6 mol, more preferably 1.5 to 5 mol, still more preferably 2 to 4 mol, per 1 mol of phenolic hydroxyl group.
  • Preferred examples of basic compounds include alkaline earth metal hydroxides, alkali metal carbonates, alkali metal hydroxides, and the like. Among these, alkali metal hydroxides are preferable from the viewpoint of reactivity. As the alkali metal hydroxide, sodium hydroxide and potassium hydroxide are preferred, and potassium hydroxide is more preferred.
  • the amount of the basic compound to be used is not particularly limited, but is preferably 1.2 to 5 mol, more preferably 1.5 to 4 mol, still more preferably 1.8 to 3 mol, per 1 mol of epihalohydrin. .
  • reaction conditions are not particularly limited, and for example, the reaction may be carried out at 15 to 40° C. for 0.5 to 4 hours.
  • the reaction conditions of the phenol compound and epihalohydrin are not particularly limited, and the reaction may be carried out at 15 to 40° C. for 1 to 8 hours, for example.
  • the obtained reaction product may be purified by known methods such as distillation, reprecipitation, centrifugation, and washing, if necessary.
  • the method and conditions for oxidative polymerization of the resulting epoxidized monomer are the same as the oxidative polymerization in (A) the method for producing a polyfunctional phenol compound, and the preferred aspects thereof are also the same.
  • the mass average molecular weight (Mw) of the oxidatively polymerized epoxy resin (EA) is not particularly limited, it is preferably 6,000 to 300,000, more preferably 12,000 to 100,000, still more preferably 12,000 to 100,000, from the viewpoint of handleability. is between 18,000 and 30,000.
  • the oxidatively polymerized epoxy resin (EA) may be liquid or solid at 23°C, but is preferably liquid at 23°C from the viewpoint of ease of handling.
  • the mass ratio [(B) epoxy resin/(A) polyfunctional phenol compound] of (B) epoxy resin and (A) polyfunctional phenol compound in the thermosetting resin composition of the present embodiment is not particularly limited, preferably 0.7 to 1.5, more preferably 0.8 to 1.3, still more preferably 0.9 to 1.2, from the viewpoint of suppressing characteristic fluctuations due to residual unreacted functional groups. .
  • the thermosetting resin composition of the present embodiment may contain a phenol-based curing agent other than (A) the polyfunctional phenol compound as (B) the epoxy resin curing agent.
  • the blending ratio of the (B) epoxy resin and the phenol-based curing agent is the mass ratio of (B) the epoxy resin and (A) all the phenol-based curing agents containing the polyfunctional phenol compound [epoxy group/phenol functional hydroxyl group] is preferably within the above range.
  • Curing accelerators include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris(dimethylaminomethyl)phenol; 2-methylimidazole, 2-phenylimidazole, imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole; tributylphosphine, diphenylphosphine, triphenylphosphine and the like organic phosphines; phosphonium salts such as tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, tributyl(methyl)phosphonium dimethylphosphate; and the like.
  • tertiary amines such as triethylenediamine, benzyldimethyl
  • a hardening accelerator may be used individually by 1 type, and may use 2 or more types together.
  • phosphonium salts are preferred from the viewpoint of compatibility and reactivity, and tributyl(methyl)phosphonium dimethyl phosphate is more preferred.
  • the content of the (C) curing accelerator in the thermosetting resin composition of the present embodiment is not particularly limited, but from the viewpoint of storage stability and curability, (B) per 100 parts by mass of the epoxy resin, It is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, and still more preferably 0.7 to 3 parts by mass.
  • thermosetting resin composition of the present embodiment includes, for example, resin components such as thermosetting resins and thermoplastic resins other than the above components; fillers such as inorganic fillers and organic fillers a coupling agent such as a silane coupling agent; a flame retardant; a thickener; a coloring agent; an antioxidant; Each of these other components may be used alone or in combination of two or more.
  • the total content of components (A), (B) and (C) in the thermosetting resin composition of the present embodiment is not particularly limited, but the solid content of the thermosetting resin composition of the present embodiment It is preferably 30 to 100% by mass, more preferably 40 to 100% by mass, still more preferably 50 to 100% by mass relative to the total amount (100% by mass).
  • thermosetting resin composition of this embodiment can be produced by mixing the components described above.
  • Mixing of each component may be, for example, a method of melt-kneading each component under heating using a heating kneader, a heating roll, etc., or a method of dissolving or dispersing each component in an organic solvent and mixing.
  • the organic solvent include the same organic solvents as exemplified in (A) the method for producing a polyfunctional phenol compound.
  • the amount of the organic solvent used is preferably 10 to 70% by mass, more preferably 20 to 60% by mass, and more preferably 20 to 60% by mass.
  • the amount is preferably 30 to 50% by mass.
  • Conditions such as the order of mixing raw materials, mixing temperature, and mixing time are not particularly limited, and may be arbitrarily set according to the type of raw materials.
  • the form of the thermosetting resin composition of the present embodiment at 23° C. is not particularly limited, and may be solid or liquid.
  • the thermosetting resin composition of the present embodiment may contain an organic solvent, or does not contain an organic solvent. may be As the organic solvent, the same one as that used in the method of dissolving or dispersing and mixing the above components can be used, and the suitable usage amount is also the same.
  • thermosetting resin composition of the present embodiment are not particularly limited, and may be appropriately adjusted according to the types of components (A) to (C). .5 to 24 hours.
  • the cured product of the thermosetting resin composition of the present embodiment has a storage elastic modulus E' (23°C) at 23°C of 20 to 2,500 MPa, preferably 24 to 2,000 MPa, from the viewpoint of conductor adhesion. , more preferably 27 to 1,500 MPa, still more preferably 30 to 1,200 MPa.
  • the storage elastic modulus E' (23°C) of the cured product can be measured by the method described in Examples.
  • the cured product of the thermosetting resin composition of the present embodiment has a storage elastic modulus E' (Tg + 50 ° C.) at a glass transition temperature + 50 ° C., from the viewpoint of conductor adhesion and heat resistance, preferably 3 to 2,000 MPa, more It is preferably 5 to 1,500 MPa, more preferably 10 to 1,000 MPa, particularly preferably 15 to 500 MPa.
  • the storage elastic modulus E′ (Tg+50° C.) of the cured product can be measured by the method described in Examples.
  • the ratio [E'(23°C)/E'(Tg+50°C)] of the storage elastic modulus E' of the cured product can be measured by the method described in Examples.
  • the storage elastic modulus E′ (23° C.) of the cured product at 23° C., the storage elastic modulus E′ (Tg+50° C.) and the ratio [E′ (23° C.)/E′ (Tg+50° C.)] are, for example, (A) multi The number of carbon atoms in (a1) the phenol compound and (a2) unsaturated aliphatic hydrocarbon, the number of aliphatic unsaturated bonds, and the compounding ratio of these raw materials, which are raw materials of the functional phenol compound, can be adjusted.
  • the glass transition temperature of the cured product of the thermosetting resin composition of the present embodiment is preferably 5 to 60°C, more preferably 10 to 50°C, and still more preferably 15 to 40°C from the viewpoint of conductor adhesion. be.
  • the glass transition temperature of the cured product can be measured by the method described in Examples.
  • the breaking elongation of the cured product of the thermosetting resin composition of the present embodiment is preferably 5 to 300%, more preferably 15 to 200%, and still more preferably 30 to 130% from the viewpoint of conductor adhesion. .
  • the breaking elongation of the cured product can be measured by the method described in Examples.
  • the biomass degree of the cured product of the thermosetting resin composition of the present embodiment is preferably 20 to 98%, more preferably 30 to 96%, and still more preferably 40%, from the viewpoint of reducing environmental load and ease of production. ⁇ 94%.
  • the biomass degree of the cured product can be calculated by the method described in Examples.
  • thermosetting resin composition of the present embodiment has excellent conductor adhesion, so it can be Suitable for substrate applications.
  • the cured product of the thermosetting resin composition of the present embodiment has excellent conductor adhesiveness, flexibility, breaking elongation and stress relaxation rate, so it is particularly suitable for flexible printed circuits (FPC). etc.
  • Production example 1 (Production of oxidized copolymer CNSL1) As the plant-derived (a1) phenol compound, CNSL containing 95% by mass of cardanol and 5% by mass of cardol (hereinafter also referred to as “raw material CNSL”) was prepared. The composition of cardanol determined by 1 H-NMR is shown in Table 1.
  • a total of 100 parts by mass of the above raw material CNSL at a blending ratio of 90 mol% and 10 mol% of squalene as the unsaturated aliphatic hydrocarbon (a2) was put into a glass reaction vessel and mixed. was used as the reaction solution. Then, while bubbling air into the reaction solution, the reaction solution was subjected to oxidative polymerization by bulk polymerization for 48 hours while stirring at 160° C. to obtain a reaction product before purification. Next, the obtained reactant before purification was diluted with 300 parts by mass of acetone, and reprecipitated by dropping into 2,000 parts by mass of methanol under stirring at 23° C. at a rate of 20 parts by mass/minute.
  • the resulting precipitate was washed with methanol three times and then dried in an evaporator at 40°C for 120 minutes to obtain (A) polyfunctional phenol compound oxidative copolymer CNSL1 that was solid at 23°C. .
  • the oxidized copolymer CNSL1 obtained above had a number average molecular weight (Mn) of 3,400 and a weight average molecular weight (Mw) of 32,600. Moreover, the aliphatic unsaturated bond disappearance rate by oxidative polymerization was 41%.
  • Production example 2 (Production of oxidized copolymer CNSL2) Solid oxidative copolymer CNSL2 was obtained at 23°C in the same manner as in Example 1, except that the blending ratio of raw material CNSL was changed to 50 mol% and the blending ratio of squalene was changed to 50 mol%. rice field.
  • the oxidized copolymer CNSL2 obtained above had a number average molecular weight (Mn) of 5,000 and a weight average molecular weight (Mw) of 37,100. Moreover, the aliphatic unsaturated bond disappearance rate by oxidative polymerization was 55%.
  • (A) the polyfunctional phenol compound was a solid compound at 23°C. Moreover, the rate of disappearance of aliphatic unsaturated bonds suggests that the aliphatic unsaturated bonds of the raw material CNSL and squalene are undergoing polymerization.
  • Production example 3 (Production of oxidative polymerization epoxidized CNSL) 100 parts by mass of the raw material CNSL, 44 parts by mass of potassium hydroxide and 55 parts by mass of dimethyl sulfoxide were charged into a glass reaction vessel and reacted for 120 minutes with stirring at 23 ° C., followed by 92.5 parts of epichlorohydrin. A part by mass was put into a reaction vessel and reacted for 240 minutes. After that, it was extracted three times with 500 parts by mass of hexane, and then washed three times with 500 parts by mass of saturated brine.
  • the liquid epoxidized monomer obtained by the above reaction is used as a reaction solution for oxidative polymerization, and is oxidized by a bulk polymerization method for 24 hours with stirring at a temperature of 160° C. while bubbling air into the reaction solution.
  • Polymerization was performed to obtain a reaction product before purification.
  • the obtained reaction product before purification was diluted with 300 parts by mass of acetone, and reprecipitated by dropping into 2,000 parts by mass of methanol under stirring at 23° C. at a rate of 20 parts by mass/minute.
  • oxidatively polymerized epoxidized CNSL which is an oxidatively polymerized epoxy resin (EA) liquid at 23°C. rice field.
  • EA oxidatively polymerized epoxy resin
  • Mw weight average molecular weight
  • thermosetting resin composition A polyfunctional phenol compound shown in Table 2, (B) epoxy resin and (C) tributyl (methyl) phosphonium dimethyl phosphate as a curing accelerator, and toluene as an organic solvent are blended to give a solid content concentration of 40 mass. % of the thermosetting resin composition was prepared.
  • the compounding ratio of the polyfunctional phenol compound and the (B) epoxy resin is such that the mass ratio of the (B) epoxy resin to the polyfunctional phenol compound [(B) epoxy resin/polyfunctional phenol compound] is 1.0. ratio.
  • the amount of the curing accelerator (C) to be blended was such that the content of the curing accelerator (C) was 1 part by mass with respect to 100 parts by mass of the epoxy resin (B).
  • Comparative Example 1 Details of the materials used in Comparative Example 1 are as follows. ⁇ Bisphenol type epoxy resin: 2,2-bis(4-glycidyloxyphenyl)propane ⁇ Cresol novolac resin: manufactured by DIC Corporation, trade name “KA-1160”
  • thermosetting resin composition (Production of cured product of thermosetting resin composition)
  • the solution of the thermosetting resin composition obtained above is applied to the process film 1 (manufactured by Lintec Corporation, product name “SP-PET382150”, polyethylene terephthalate film coated with silicone release agent, thickness 38 ⁇ m).
  • process film 2 manufactured by Lintec Corporation, product name “SP-PET381031”
  • a polyethylene terephthalate film coated with a silicone-based release agent (thickness: 38 ⁇ m).
  • Comparative example 2 As a comparative adhesive, a general-purpose adhesive "Super X Hyper Wide” manufactured by Cemedine Co., Ltd. was prepared.
  • the temperature showing the peak of tan ⁇ in the above measurement range is the glass transition temperature (Tg), the storage elastic modulus E' at 23 ° C. (23 ° C.), and the storage elastic modulus E' at a temperature 50 ° C. lower than Tg (Tg-50 ° C.) , and the storage modulus E′ (Tg+50° C.) at a temperature 50° C. higher than Tg.
  • Table 2 shows the measurement results.
  • thermosetting resin composition obtained in each example was applied to process film 1 (manufactured by Lintec Corporation, product name “SP-PET382150”, polyethylene terephthalate film with silicone Coated with a release agent, thickness 38 ⁇ m), coated so that the thickness of the cured product obtained after drying and curing is 70 ⁇ m, dried at 80 ° C. for 3 minutes, and then processed film 2 (manufactured by Lintec Corporation, product name “SP-PET381031”, polyethylene terephthalate film coated with a silicone release agent, thickness 38 ⁇ m) was laminated to obtain a sheet for peel strength measurement.
  • process film 1 manufactured by Lintec Corporation, product name “SP-PET382150”, polyethylene terephthalate film with silicone Coated with a release agent, thickness 38 ⁇ m
  • processed film 2 manufactured by Lintec Corporation, product name “SP-PET381031”, polyethylene terephthalate film coated with a silicone release agent, thickness 38 ⁇ m
  • the process film 2 was removed from the resulting sheet, and it was laminated to a copper plate (manufactured by Yukou Co., Ltd., product name “C1220P”, thickness 400 ⁇ m), and a laminating device (manufactured by Nikko Materials Co., Ltd. “V-130”). , ultimate pressure: 2.0 hPa, temperature of 100° C., pressure of 0.5 MPa, pressure bonding time of 30 seconds).
  • a copper foil manufactured by Yukou Shokai Co., Ltd., product name “C1100P”, size: long side 50 mm ⁇ short side 10 mm ⁇ thickness 150 ⁇ m
  • 10 mm of the long side was left as a non-adhered region, and cured at 150° C. for 2 hours to obtain an evaluation sample for copper foil peel strength measurement.
  • thermosetting resin composition of Comparative Example 1 was subjected to removal of the organic solvent by an evaporator, and a copper foil (manufactured by Yuko Co., Ltd., product name “C1100P”, Size: long side 50 mm x short side 10 mm x thickness 150 ⁇ m), leaving a long side 10 mm as a region where the copper foil that will be the grip part of the chuck is not adhered, and the thickness after curing is 70 ⁇ m.
  • thermosetting resin composition was applied to The area of the copper foil coated with the thermosetting resin composition is attached to a copper plate (manufactured by Yukou Shokai, product name “C1220P”, thickness 400 ⁇ m), and the copper foil is cured at 150 ° C. for 2 hours. It was used as an evaluation sample for peel strength measurement.
  • thermosetting resin compositions of Examples 1 to 3 of the present embodiment have excellent copper foil peel strength.
  • Comparative Example 1 using a polyfunctional phenol compound other than component (A) and Comparative Example 2 using a general-purpose adhesive had low copper foil peel strength.

Abstract

The present invention relates to a thermosetting resin composition containing a multifunctional phenolic compound (A) obtained using oxidative polymerization to copolymerize a phenolic compound (a1) having an unsaturated aliphatic hydrocarbon group and an unsaturated aliphatic hydrocarbon (a2), an epoxy resin (B), and a curing accelerator (C), wherein: the storage modulus E'(23°C) at 23°C of a cured product of the thermosetting resin composition is 20-2,500 MPa; and a ratio [E'(23°C)/E'(Tg+50°C)] of the storage modulus E'(23°C) to the storage modulus E'(Tg+50°C) at the glass transition temperature + 50°C of the cured product of the thermosetting resin composition is 1-50.

Description

熱硬化性樹脂組成物Thermosetting resin composition
 本発明は、熱硬化性樹脂組成物に関する。 The present invention relates to thermosetting resin compositions.
 従来より、エポキシ樹脂と、その硬化剤としてのフェノール樹脂とを含む熱硬化性樹脂組成物は、耐熱性、電気絶縁性、密着性等に優れる硬化物が得られるため、半導体封止材、プリント配線板、塗料、接着剤等の様々な分野で用いられている。 Conventionally, a thermosetting resin composition containing an epoxy resin and a phenolic resin as its curing agent yields a cured product that is excellent in heat resistance, electrical insulation, adhesion and the like. It is used in various fields such as wiring boards, paints, and adhesives.
 近年、電子部品の小型化、薄型化及び微細化が進展しつつあり、それに伴い、電子部品に用いられる熱硬化性樹脂組成物に対しては、従来よりも高い信頼性が要求されている。特に、微細化された回路においては、銅箔等の導体層と絶縁層との接地面積が小さくなるため、従来よりも導体層との接着性(以下、「導体接着性」ともいう)が要求される。 In recent years, electronic components have become smaller, thinner, and finer, and along with this, thermosetting resin compositions used in electronic components are required to have higher reliability than ever before. In particular, in miniaturized circuits, the contact area between a conductor layer such as copper foil and an insulating layer becomes smaller, so adhesion with the conductor layer (hereinafter also referred to as "conductor adhesion") is required more than before. be done.
 例えば、特許文献1には、導体層との接着性が良好な絶縁層を形成可能な硬化性樹脂組成物として、樹脂成分(1)として、エポキシ樹脂(1-A)と、フェノール樹脂(1-B)と、活性エステル化合物(1-C)と、ロジン系樹脂(1-D)と、を含み、前記硬化性樹脂組成物の不揮発成分中における、前記樹脂成分(1)の含有量(質量%)をMとし、前記ロジン系樹脂(1-D)の含有量(質量%)をMとした場合に、M/Mが0.001~0.05であることを特徴とする、硬化性樹脂組成物が開示されている。 For example, Patent Document 1 describes epoxy resin (1-A) and phenol resin (1 -B), an active ester compound (1-C), and a rosin resin (1-D), and the content of the resin component (1) in the non-volatile components of the curable resin composition ( %) is M 1 and the content (% by mass) of the rosin resin (1-D) is M D , M D /M 1 is 0.001 to 0.05. A curable resin composition is disclosed.
特開2020-145242号公報JP 2020-145242 A
 特許文献1の技術は、密着性付与剤としてロジン系樹脂を配合することによって、導体接着性の向上を図るものである。しかしながら、ロジン系樹脂のような密着性付与剤は、多量に添加するとブリードアウト等の問題が生じ得るため、密着性付与剤の添加による導体接着性の向上には限界がある。そのため、更なる導体接着性の向上を達成するためには、エポキシ樹脂及びフェノール樹脂から形成される硬化物そのものの導体接着性を向上させる技術が望まれている。 The technique of Patent Document 1 aims to improve conductor adhesiveness by blending a rosin-based resin as an adhesion imparting agent. However, if an adhesion imparting agent such as a rosin-based resin is added in a large amount, problems such as bleed-out may occur. Therefore, in order to achieve further improvement in conductor adhesion, there is a demand for a technique for improving the conductor adhesion of cured products themselves formed from epoxy resins and phenol resins.
 本発明は、上記の問題点に鑑みてなされたものであって、導体接着性に優れる熱硬化性樹脂組成物を提供することを課題とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a thermosetting resin composition having excellent conductor adhesion.
 本発明者等は、特定の多官能フェノール化合物、エポキシ樹脂及び硬化促進剤を含有し、硬化物の貯蔵弾性率E’が特定の要件を充足する熱硬化性樹脂組成物によって、上記課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors have solved the above problems with a thermosetting resin composition containing a specific polyfunctional phenol compound, an epoxy resin and a curing accelerator, and having a storage elastic modulus E' of the cured product satisfying specific requirements. We have found that it is possible, and have completed the present invention.
 すなわち、本発明は、下記[1]~[13]に関する。
[1](A)(a1)不飽和脂肪族炭化水素基を有するフェノール化合物と、(a2)不飽和脂肪族炭化水素と、を酸化重合によって共重合させてなる多官能フェノール化合物と、
 (B)エポキシ樹脂と、
 (C)硬化促進剤と、を含有する熱硬化性樹脂組成物であって、
 前記熱硬化性樹脂組成物の硬化物の、23℃における貯蔵弾性率E’(23℃)が、20~2,500MPaであり、
 前記熱硬化性樹脂組成物の硬化物の、ガラス転移温度+50℃における貯蔵弾性率E’(Tg+50℃)に対する、前記貯蔵弾性率E’(23℃)の比[E’(23℃)/E’(Tg+50℃)]が、1~50である、熱硬化性樹脂組成物。
[2]前記(a1)不飽和脂肪族炭化水素基を有するフェノール化合物が、下記一般式(A-1)で表される化合物から選択される1種以上である、上記[1]に記載の熱硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000002

(式中、Rは、脂肪族不飽和結合を1~3個含む不飽和脂肪族炭化水素基であり、Xは、水素原子又はヒドロキシ基であり、Xは水素原子又は炭素数1~5のアルキル基であり、Xは、水素原子、ヒドロキシ基又はカルボキシ基である。)
[3]前記(a1)不飽和脂肪族炭化水素基を有するフェノール化合物が、前記一般式(A-1)において、X、X及びXがいずれも水素原子である化合物を、90質量%以上含有する、上記[2]に記載の熱硬化性樹脂組成物。
[4]前記(a1)不飽和脂肪族炭化水素基を有するフェノール化合物が、炭素数8~30の不飽和脂肪族炭化水素基を有する、上記[1]~[3]のいずれかに記載の熱硬化性樹脂組成物。
[5]前記(a2)不飽和脂肪族炭化水素の炭素数が、10~40である、上記[1]~[4]のいずれかに記載の熱硬化性樹脂組成物。
[6]前記(a2)不飽和脂肪族炭化水素が、脂肪族不飽和結合を3~9個含む、上記[1]~[5]のいずれかに記載の熱硬化性樹脂組成物。
[7]前記(a2)不飽和脂肪族炭化水素が、スクアレンである、上記[1]~[6]のいずれかに記載の熱硬化性樹脂組成物。
[8]前記(a1)不飽和脂肪族炭化水素基を有するフェノール化合物が、バイオマス由来の化合物である、上記[1]~[7]のいずれかに記載の熱硬化性樹脂組成物。
[9]前記(a2)不飽和脂肪族炭化水素が、バイオマス由来の化合物である、上記[1]~[8]のいずれかに記載の熱硬化性樹脂組成物。
[10]前記(A)成分の質量平均分子量(Mw)が、8,000~200,000である、上記[1]~[9]のいずれかに記載の熱硬化性樹脂組成物。
[11]前記酸化重合を行う際における、前記(a1)不飽和脂肪族炭化水素基を有するフェノール化合物の配合量(W)と、前記(a2)不飽和脂肪族炭化水素の配合量(W)との比〔W/W〕が、モル比で、0.1~20である、上記[1]~[10]のいずれかに記載の熱硬化性樹脂組成物。
[12]硬化物のガラス転移温度が、5~60℃である、上記[1]~[11]のいずれかに記載の熱硬化性樹脂組成物。
[13]硬化物の破断伸度が、15~200%である、上記[1]~[12]のいずれかに記載の熱硬化性樹脂組成物。
That is, the present invention relates to the following [1] to [13].
[1] (A) (a1) a polyfunctional phenol compound obtained by copolymerizing a phenol compound having an unsaturated aliphatic hydrocarbon group and (a2) an unsaturated aliphatic hydrocarbon by oxidative polymerization;
(B) an epoxy resin;
(C) a thermosetting resin composition containing a curing accelerator,
The cured product of the thermosetting resin composition has a storage elastic modulus E' (23°C) at 23°C of 20 to 2,500 MPa,
The ratio of the storage elastic modulus E ' (23 ° C.) to the storage elastic modulus E ' (Tg + 50 ° C.) at the glass transition temperature + 50 ° C. of the cured product of the thermosetting resin composition [E ' (23 ° C.) / E '(Tg+50°C)] is 1 to 50, a thermosetting resin composition.
[2] The above-mentioned [1], wherein the (a1) phenolic compound having an unsaturated aliphatic hydrocarbon group is one or more selected from compounds represented by the following general formula (A-1): A thermosetting resin composition.
Figure JPOXMLDOC01-appb-C000002

(wherein R is an unsaturated aliphatic hydrocarbon group containing 1 to 3 aliphatic unsaturated bonds, X 1 is a hydrogen atom or a hydroxy group, and X 2 is a hydrogen atom or a 5 is an alkyl group, and X 3 is a hydrogen atom, a hydroxy group or a carboxy group.)
[3] The (a1) phenol compound having an unsaturated aliphatic hydrocarbon group is a compound in which in the general formula (A-1), X 1 , X 2 and X 3 are all hydrogen atoms, % or more, the thermosetting resin composition according to the above [2].
[4] The above-mentioned [1] to [3], wherein the (a1) phenolic compound having an unsaturated aliphatic hydrocarbon group has an unsaturated aliphatic hydrocarbon group having 8 to 30 carbon atoms. A thermosetting resin composition.
[5] The thermosetting resin composition according to any one of [1] to [4] above, wherein (a2) the unsaturated aliphatic hydrocarbon has 10 to 40 carbon atoms.
[6] The thermosetting resin composition according to any one of [1] to [5] above, wherein the unsaturated aliphatic hydrocarbon (a2) contains 3 to 9 aliphatic unsaturated bonds.
[7] The thermosetting resin composition according to any one of [1] to [6] above, wherein the (a2) unsaturated aliphatic hydrocarbon is squalene.
[8] The thermosetting resin composition according to any one of [1] to [7] above, wherein the (a1) phenolic compound having an unsaturated aliphatic hydrocarbon group is a biomass-derived compound.
[9] The thermosetting resin composition according to any one of [1] to [8] above, wherein the (a2) unsaturated aliphatic hydrocarbon is a biomass-derived compound.
[10] The thermosetting resin composition according to any one of [1] to [9] above, wherein the weight average molecular weight (Mw) of component (A) is 8,000 to 200,000.
[11] When performing the oxidative polymerization, the (a1) blending amount (W A ) of the phenol compound having an unsaturated aliphatic hydrocarbon group and the (a2) blending amount (W The thermosetting resin composition according to any one of the above [1] to [10], wherein the ratio [W A /W B ] to B ) is 0.1 to 20 in terms of molar ratio.
[12] The thermosetting resin composition according to any one of [1] to [11] above, wherein the cured product has a glass transition temperature of 5 to 60°C.
[13] The thermosetting resin composition according to any one of [1] to [12] above, wherein the cured product has a breaking elongation of 15 to 200%.
 本発明によると、導体接着性に優れる熱硬化性樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a thermosetting resin composition with excellent conductor adhesion.
 本明細書において、数平均分子量(Mn)及び質量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定される標準ポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。 In the present specification, the number average molecular weight (Mn) and the mass average molecular weight (Mw) are values converted to standard polystyrene measured by gel permeation chromatography (GPC), specifically described in Examples. It is a value measured based on the method.
 本明細書において、好ましい数値範囲(例えば、含有量等の範囲)について、段階的に記載された下限値及び上限値は、それぞれ独立して組み合わせることができる。例えば、「好ましくは10~90、より好ましくは30~60」という記載から、「好ましい下限値(10)」と「より好ましい上限値(60)」とを組み合わせて、「10~60」とすることもできる。 In this specification, the lower and upper limits described stepwise for preferable numerical ranges (for example, ranges of contents, etc.) can be independently combined. For example, from the statement "preferably 10 to 90, more preferably 30 to 60", combining "preferred lower limit (10)" and "more preferred upper limit (60)" to "10 to 60" can also
 本明細書中、「バイオマス」とは、再生可能な、生物由来の有機性資源であって、化石資源を除いたものを意味する。 As used herein, "biomass" means a renewable organic resource derived from living organisms, excluding fossil resources.
 本明細書において、「固形分」とは、対象となる組成物に含まれる成分のうち、水、有機溶媒等の希釈溶媒を除いた成分を指す。 As used herein, the term "solid content" refers to the components contained in the target composition, excluding diluent solvents such as water and organic solvents.
 本明細書に記載されている作用機序は推測であって、本発明の効果を奏する機序を限定するものではない。 The mechanism of action described in this specification is speculation, and does not limit the mechanism of the effects of the present invention.
[熱硬化性樹脂組成物]
 本実施形態の熱硬化性樹脂組成物は、
 (A)(a1)不飽和脂肪族炭化水素基を有するフェノール化合物と、(a2)不飽和脂肪族炭化水素と、を酸化重合によって共重合させてなる多官能フェノール化合物(以下、「(A)多官能フェノール化合物」ともいう)と、
 (B)エポキシ樹脂と、
 (C)硬化促進剤と、を含有する熱硬化性樹脂組成物であって、
 前記熱硬化性樹脂組成物の硬化物の、23℃における貯蔵弾性率E’(23℃)が、20~2,500MPaであり、
 前記熱硬化性樹脂組成物の硬化物の、ガラス転移温度+50℃における貯蔵弾性率E’(Tg+50℃)に対する、前記貯蔵弾性率E’(23℃)の比[E’(23℃)/E’(Tg+50℃)]が、1~50である、熱硬化性樹脂組成物である。
[Thermosetting resin composition]
The thermosetting resin composition of this embodiment is
(A) A polyfunctional phenol compound (hereinafter referred to as "(A) (Also referred to as "polyfunctional phenol compound"),
(B) an epoxy resin;
(C) a thermosetting resin composition containing a curing accelerator,
The cured product of the thermosetting resin composition has a storage elastic modulus E' (23°C) at 23°C of 20 to 2,500 MPa,
The ratio of the storage elastic modulus E ' (23 ° C.) to the storage elastic modulus E ' (Tg + 50 ° C.) at the glass transition temperature + 50 ° C. of the cured product of the thermosetting resin composition [E ' (23 ° C.) / E '(Tg+50°C)] is 1 to 50, the thermosetting resin composition.
 本実施形態の熱硬化性樹脂組成物が導体接着性に優れる理由は定かではないが、(A)多官能フェノール化合物が有する特有の分岐構造を含み、23℃における貯蔵弾性率E’(23℃)及び貯蔵弾性率E’の比[E’(23℃)/E’(Tg+50℃)]が上記範囲を充足する本実施形態の熱硬化性樹脂組成物の硬化物は、高い破断伸度と靭性を有しており、これによって架橋構造を有しながらも変形に対して追従できるようになったことが要因であると推測される。
 以下、本実施形態の熱硬化性樹脂組成物が含有する各成分について説明する。
The reason why the thermosetting resin composition of the present embodiment is excellent in conductor adhesion is not clear, but (A) contains a unique branched structure possessed by a polyfunctional phenol compound, and has a storage elastic modulus E' at 23 ° C. (23 ° C. ) and the ratio of storage elastic modulus E′ [E′ (23° C.)/E′ (Tg+50° C.)] satisfies the above range. It is presumed that this is due to the fact that it has toughness, which makes it possible to follow deformation even though it has a crosslinked structure.
Each component contained in the thermosetting resin composition of the present embodiment will be described below.
<(A)多官能フェノール化合物>
 (A)多官能フェノール化合物は、(a1)不飽和脂肪族炭化水素基を有するフェノール化合物(以下、単に「(a1)フェノール化合物」ともいう)と、(a2)不飽和脂肪族炭化水素と、を酸化重合によって共重合させてなる多官能フェノール化合物である。
 (A)多官能フェノール化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。
<(A) Polyfunctional phenol compound>
(A) The polyfunctional phenol compound includes (a1) a phenol compound having an unsaturated aliphatic hydrocarbon group (hereinafter also simply referred to as "(a1) phenol compound"), (a2) an unsaturated aliphatic hydrocarbon, is a polyfunctional phenol compound obtained by copolymerizing by oxidative polymerization.
(A) A polyfunctional phenol compound may be used individually by 1 type, and may use 2 or more types together.
((a1)フェノール化合物)
 (a1)フェノール化合物は、(A)多官能フェノール化合物の原料モノマーであって、不飽和脂肪族炭化水素基を有するフェノール化合物である。
 (A)多官能フェノール化合物は、(a1)フェノール化合物が有する不飽和脂肪族炭化水素基が反応することによって高分子量化したものである。当該反応は、例えば、不飽和脂肪酸の酸化機構として提唱されている公知の反応機構によって生じていると推測される。
((a1) phenol compound)
(a1) The phenol compound is a raw material monomer for (A) the polyfunctional phenol compound and is a phenol compound having an unsaturated aliphatic hydrocarbon group.
(A) The polyfunctional phenol compound is obtained by reacting the unsaturated aliphatic hydrocarbon group of the (a1) phenol compound to increase the molecular weight. The reaction is presumed to occur, for example, by a known reaction mechanism proposed as a mechanism for oxidizing unsaturated fatty acids.
 (a1)フェノール化合物は、通常、1個のベンゼン環と、該ベンゼン環に直接結合する1個以上のフェノール性水酸基と、該ベンゼン環に直接結合する1個以上の不飽和脂肪族炭化水素基と、を有する。 (a1) The phenolic compound usually comprises one benzene ring, one or more phenolic hydroxyl groups directly bonded to the benzene ring, and one or more unsaturated aliphatic hydrocarbon groups directly bonded to the benzene ring. and have
 (a1)フェノール化合物が有するフェノール性水酸基の数は、導体接着性の観点から、好ましくは1~3個、より好ましくは1個又は2個、さらに好ましくは1個である。 (a1) The number of phenolic hydroxyl groups possessed by the phenolic compound is preferably 1 to 3, more preferably 1 or 2, still more preferably 1, from the viewpoint of conductor adhesion.
 (a1)フェノール化合物が有する不飽和脂肪族炭化水素基の数は、導体接着性及び酸化重合中におけるゲル化抑制の観点から、好ましくは1~3個、より好ましくは1個又は2個、さらに好ましくは1個である。
 (a1)フェノール化合物が有する不飽和脂肪族炭化水素基に含まれる脂肪族不飽和結合の数は、導体接着性の観点から、好ましくは1~5個、より好ましくは1~4個、さらに好ましくは1~3個である。
 (a1)フェノール化合物が有する不飽和脂肪族炭化水素基は、直鎖状であってもよく、分岐鎖状であってもよいが、導体接着性の観点から、直鎖状であることが好ましい。
(a1) The number of unsaturated aliphatic hydrocarbon groups possessed by the phenolic compound is preferably 1 to 3, more preferably 1 or 2, from the viewpoint of conductor adhesion and gelation suppression during oxidative polymerization. One is preferable.
(a1) The number of aliphatic unsaturated bonds contained in the unsaturated aliphatic hydrocarbon group of the phenol compound is preferably 1 to 5, more preferably 1 to 4, and still more preferably 1 to 4, from the viewpoint of conductor adhesion. is 1 to 3.
(a1) The unsaturated aliphatic hydrocarbon group possessed by the phenolic compound may be linear or branched, but from the viewpoint of conductor adhesion, it is preferably linear. .
 (a1)フェノール化合物が有する不飽和脂肪族炭化水素基の炭素数は、導体接着性の観点から、好ましくは8~30、より好ましくは10~25、さらに好ましくは13~20、特に好ましくは15~17である。 (a1) The number of carbon atoms in the unsaturated aliphatic hydrocarbon group of the phenol compound is preferably 8 to 30, more preferably 10 to 25, still more preferably 13 to 20, particularly preferably 15, from the viewpoint of conductor adhesion. ~17.
 (a1)フェノール化合物が有する不飽和脂肪族炭化水素基としては、下記式(R-1)~(R-14)で表される不飽和脂肪族炭化水素基が好ましい。 (a1) As the unsaturated aliphatic hydrocarbon group possessed by the phenol compound, unsaturated aliphatic hydrocarbon groups represented by the following formulas (R-1) to (R-14) are preferable.
Figure JPOXMLDOC01-appb-C000003

(式中、*はベンゼン環に直接結合する部位である。)
Figure JPOXMLDOC01-appb-C000003

(In the formula, * is a site directly bonded to the benzene ring.)
 不飽和脂肪族炭化水素基は、上記選択肢の中でも、導体接着性の観点から、上記式(R-1)、上記式(R-2)又は上記式(R-3)で表される不飽和脂肪族炭化水素基であることが好ましい。 Among the above options, the unsaturated aliphatic hydrocarbon group is an unsaturated group represented by the above formula (R-1), the above formula (R-2), or the above formula (R-3) from the viewpoint of conductor adhesion. It is preferably an aliphatic hydrocarbon group.
 (a1)フェノール化合物は、導体接着性の観点から、下記一般式(A-1)で表される化合物から選択される1種以上であることが好ましい。 (a1) The phenol compound is preferably one or more selected from compounds represented by the following general formula (A-1) from the viewpoint of conductor adhesion.
Figure JPOXMLDOC01-appb-C000004

(式中、Rは、脂肪族不飽和結合を1~3個含む不飽和脂肪族炭化水素基であり、Xは、水素原子又はヒドロキシ基であり、Xは水素原子又は炭素数1~5のアルキル基であり、Xは、水素原子、ヒドロキシ基又はカルボキシ基である。)
Figure JPOXMLDOC01-appb-C000004

(wherein R is an unsaturated aliphatic hydrocarbon group containing 1 to 3 aliphatic unsaturated bonds, X 1 is a hydrogen atom or a hydroxy group, and X 2 is a hydrogen atom or a 5 is an alkyl group, and X 3 is a hydrogen atom, a hydroxy group or a carboxy group.)
 上記一般式(A-1)中のRで表される不飽和脂肪族炭化水素基の好適な態様の説明は、(a1)フェノール化合物が有する不飽和脂肪族炭化水素基として上記で説明した通りである。 A description of a preferred embodiment of the unsaturated aliphatic hydrocarbon group represented by R in the general formula (A-1) is as described above for the unsaturated aliphatic hydrocarbon group of (a1) the phenol compound. is.
 上記一般式(A-1)中のXは、水素原子又はヒドロキシ基であり、入手容易性の観点から、水素原子であることが好ましい。
 上記一般式(A-1)中のXは、水素原子又は炭素数1~5のアルキル基であり、入手容易性の観点から、水素原子であることが好ましい。Xで表される炭素数1~5のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられる。これらの中でも、メチル基が好ましい。
 上記一般式(A-1)中のXは、水素原子、ヒドロキシ基又はカルボキシ基であり、入手容易性の観点から、水素原子であることが好ましい。
X 1 in the general formula (A-1) is a hydrogen atom or a hydroxy group, preferably a hydrogen atom from the viewpoint of availability.
X 2 in the general formula (A-1) is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, preferably a hydrogen atom from the viewpoint of availability. Examples of the alkyl group having 1 to 5 carbon atoms represented by X 2 include methyl group, ethyl group, propyl group, butyl group and pentyl group. Among these, a methyl group is preferred.
X 3 in the general formula (A-1) is a hydrogen atom, a hydroxy group or a carboxy group, preferably a hydrogen atom from the viewpoint of availability.
 (a1)フェノール化合物は、入手容易性の観点から、上記一般式(A-1)において、X、X及びXがいずれも水素原子である化合物、すなわち、下記一般式(A-2)で表される化合物を含有することが好ましい。 (a1) The phenol compound is a compound in which X 1 , X 2 and X 3 are all hydrogen atoms in the above general formula (A-1), that is, the following general formula (A-2 ) preferably contains a compound represented by
Figure JPOXMLDOC01-appb-C000005

(式中、Rは、上記一般式(A-1)におけるRと同じである。)
Figure JPOXMLDOC01-appb-C000005

(Wherein, R is the same as R in the above general formula (A-1).)
 (a1)フェノール化合物中における、上記一般式(A-2)で表される化合物の含有量は、特に限定されないが、好ましくは90質量%以上、より好ましくは92質量%以上、さらに好ましくは94質量%以上である。また、(a1)フェノール化合物中における、上記一般式(A-2)で表される化合物の含有量は、特に限定されないが、好ましくは99質量%以下、より好ましくは98質量%以下、さらに好ましくは96質量%以下である。 (a1) The content of the compound represented by the general formula (A-2) in the phenol compound is not particularly limited, but is preferably 90% by mass or more, more preferably 92% by mass or more, and still more preferably 94% by mass. % by mass or more. In addition, the content of the compound represented by the general formula (A-2) in (a1) the phenol compound is not particularly limited, but is preferably 99% by mass or less, more preferably 98% by mass or less, and still more preferably is 96% by mass or less.
 (a1)フェノール化合物は、入手容易性の観点から、上記一般式(A-1)において、Xがヒドロキシ基、X及びXがいずれも水素原子である化合物、すなわち、下記一般式(A-3)で表される化合物を含有していてもよい。 (a1) The phenol compound is a compound in which X 1 is a hydroxy group and both X 2 and X 3 are hydrogen atoms in the above general formula (A-1), i.e., the following general formula ( It may contain a compound represented by A-3).
Figure JPOXMLDOC01-appb-C000006

(式中、Rは、上記一般式(A-1)におけるRと同じである。)
Figure JPOXMLDOC01-appb-C000006

(Wherein, R is the same as R in the above general formula (A-1).)
 (a1)フェノール化合物中における、上記一般式(A-3)で表される化合物の含有量は、特に限定されないが、好ましくは1質量%以上、より好ましくは2質量%以上、さらに好ましくは4質量%以上である。また、(a1)フェノール化合物中における、上記一般式(A-3)で表される化合物の含有量は、特に限定されないが、好ましくは10質量%以下、より好ましくは8質量%以下、さらに好ましくは6質量%以下である。 (a1) The content of the compound represented by the general formula (A-3) in the phenol compound is not particularly limited, but is preferably 1% by mass or more, more preferably 2% by mass or more, and still more preferably 4% by mass. % by mass or more. The content of the compound represented by the general formula (A-3) in (a1) the phenol compound is not particularly limited, but is preferably 10% by mass or less, more preferably 8% by mass or less, and even more preferably is 6% by mass or less.
 (a1)フェノール化合物は、環境負荷低減の観点から、バイオマス由来の化合物であることが好ましい。
 バイオマス由来の(a1)フェノール化合物としては、例えば、カシューナッツの殻から抽出されるCNSLに含まれるフェノール化合物であるカルダノール、カルドール、2-メチルカルドール及びアナカルド酸;漆に含まれるフェノール化合物であるウルシオール、チチオール及びラッコ―ル;等の植物由来のフェノール化合物に含まれるものが挙げられる。該植物由来のフェノール化合物としては、廃棄資源の有効活用及び入手容易性の観点から、カルダノール、カルドール、2-メチルカルドール、アナカルド酸が好ましく、カルダノール、カルドールがより好ましく、カルダノールがさらに好ましい。
(a1) The phenol compound is preferably a biomass-derived compound from the viewpoint of reducing environmental load.
Examples of biomass-derived (a1) phenolic compounds include cardanol, cardol, 2-methylcardol, and anacardic acid, which are phenolic compounds contained in CNSL extracted from cashew nut shells; Those contained in plant-derived phenolic compounds such as ol, thithiol, and laccol; The plant-derived phenol compound is preferably cardanol, cardol, 2-methylcardol, or anacardic acid, more preferably cardanol or cardol, and still more preferably cardanol, from the viewpoint of effective utilization of waste resources and easy availability.
 カルダノールは下記式(A-4)、カルドールは下記式(A-5)、2-メチルカルドールは下記式(A-6)、アナカルド酸は下記式(A-7)で表される構造を含むものである。 Cardanol has a structure represented by the following formula (A-4), cardol has a structure represented by the following formula (A-5), 2-methylcardol has a structure represented by the following formula (A-6), and anacardic acid has a structure represented by the following formula (A-7). includes.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(A-4)~(A-7)の各式において、Rは、上記式(R-1)、(R-2)、(R-3)又は(R-C)で表される基である。また、上記式(R-1)、(R-2)、(R-3)又は(R-C)において、*はベンゼン環に直接結合する部位である。
 カルダノール、カルドール、2-メチルカルドール及びアナカルド酸は、各々において、Rとして式(R-1)で表される基を有する化合物、Rとして式(R-2)で表される基を有する化合物、Rとして式(R-3)で表される基を有する化合物、及びRとして式(R-C)で表される基を有する化合物を含有する混合物である。
 精製条件等によっても異なるが、カルダノール、カルドール、2-メチルカルドール及びアナカルド酸は、各々において、通常、Rとして式(R-1)で表される基を有する化合物の含有量が25~40モル%、Rとして式(R-2)で表される基を有する化合物の含有量が10~25モル%、Rとして式(R-3)で表される基を有する化合物の含有量が40~60モル%、Rとして式(R-C)で表される基を有する化合物の含有量が1~5モル%である。
In each of the above formulas (A-4) to (A-7), R 1 is represented by the above formula (R-1), (R-2), (R-3) or (RC) is a group. In the above formulas (R-1), (R-2), (R-3) or (R-C), * is a site directly bonded to the benzene ring.
Cardanol, cardol, 2-methylcardol and anacardic acid are each a compound having a group represented by formula (R-1) as R 1 and a group represented by formula (R-2) as R 1 a compound having a group represented by formula (R-3) as R 1 , and a compound having a group represented by formula (R—C) as R 1 .
Cardanol, cardol, 2-methylcardol and anacardic acid each usually contain a compound having a group represented by the formula (R-1) as R 1 , although it varies depending on purification conditions and the like. 40 mol%, the content of the compound having the group represented by the formula (R- 2 ) as R 1 is 10 to 25 mol%, and the content of the compound having the group represented by the formula (R-3) as R 1 The amount is 40 to 60 mol %, and the content of the compound having the group represented by the formula (RC) as R 1 is 1 to 5 mol %.
((a2)不飽和脂肪族炭化水素)
 (A)多官能フェノール化合物は、(a1)フェノール化合物に加えて、(a2)不飽和脂肪族炭化水素を用いて、これらを酸化重合によって共重合させてなるものである。(a2)不飽和脂肪族炭化水素を共重合させることによって、硬化物の柔軟性、破断伸度、応力緩和率、導体接着性等が向上する傾向にある。
 (a2)不飽和脂肪族炭化水素は、環境負荷低減の観点から、バイオマス由来の化合物であることが好ましい。
 (a2)不飽和脂肪族炭化水素は、1種を単独で用いてもよく、2種以上を用いてもよい。
((a2) unsaturated aliphatic hydrocarbon)
(A) Polyfunctional phenol compound is obtained by copolymerizing (a1) phenol compound and (a2) unsaturated aliphatic hydrocarbon by oxidative polymerization. (a2) Copolymerization of the unsaturated aliphatic hydrocarbon tends to improve the flexibility, elongation at break, stress relaxation rate, conductor adhesion, etc. of the cured product.
(a2) The unsaturated aliphatic hydrocarbon is preferably a biomass-derived compound from the viewpoint of reducing the burden on the environment.
(a2) Unsaturated aliphatic hydrocarbons may be used alone or in combination of two or more.
 (a2)不飽和脂肪族炭化水素の炭素数は、硬化物の柔軟性、破断伸度、応力緩和率及び導体接着性を向上させるという観点から、好ましくは10~40、より好ましくは15~37、さらに好ましくは20~35、特に好ましくは25~32である。 (a2) The number of carbon atoms in the unsaturated aliphatic hydrocarbon is preferably 10 to 40, more preferably 15 to 37, from the viewpoint of improving the flexibility, breaking elongation, stress relaxation rate and conductor adhesion of the cured product. , more preferably 20-35, particularly preferably 25-32.
 (a2)不飽和脂肪族炭化水素に含まれる脂肪族不飽和結合の数は、反応性及び入手容易性の観点から、好ましくは3~9個、より好ましくは4~8個、さらに好ましくは5~7個である。 (a2) The number of aliphatic unsaturated bonds contained in the unsaturated aliphatic hydrocarbon is preferably 3 to 9, more preferably 4 to 8, still more preferably 5, from the viewpoint of reactivity and availability. ~7.
 (a2)不飽和脂肪族炭化水素は、直鎖状であってもよく、側鎖を有する構造であってもよいが、側鎖を有する構造であることが好ましい。
 (a2)不飽和脂肪族炭化水素は、脂肪族炭化水素以外の置換基を有していてもよいが、脂肪族炭化水素以外の置換基を有さないものであることが好ましい。すなわち、(a2)不飽和脂肪族炭化水素は炭素原子と水素原子のみからなる化合物であることが好ましい。
(a2) The unsaturated aliphatic hydrocarbon may be linear or may have a structure having a side chain, but preferably has a structure having a side chain.
(a2) The unsaturated aliphatic hydrocarbon may have a substituent other than the aliphatic hydrocarbon, but preferably has no substituent other than the aliphatic hydrocarbon. That is, (a2) the unsaturated aliphatic hydrocarbon is preferably a compound consisting only of carbon atoms and hydrogen atoms.
 (a2)不飽和脂肪族炭化水素としては、例えば、スクアレン、ボトリオコッセン、ファルネセン、ミルセン等が挙げられる。これらは、化学的に合成も可能であるが、いずれも植物又は動物に含まれており、植物又は動物からの産出も可能である。これらの中でも、反応性及び入手容易性の観点から、スクアレンが好ましい。スクアレンは、下記式(B-1)で表され、植物又は動物に含まれる化合物であり、例えば、鮫の肝油、微生物等から抽出されるものである。 (a2) Examples of unsaturated aliphatic hydrocarbons include squalene, botryococcene, farnesene, and myrcene. Although they can be chemically synthesized, they are all contained in plants or animals, and can also be produced from plants or animals. Among these, squalene is preferable from the viewpoint of reactivity and availability. Squalene is represented by the following formula (B-1) and is a compound contained in plants or animals, and is extracted from, for example, shark liver oil, microorganisms, and the like.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
〔(a1)フェノール化合物と(a2)不飽和脂肪族炭化水素の配合比〕
 酸化重合を行う際における、(a1)フェノール化合物の配合量(W)と、(a2)不飽和脂肪族炭化水素の配合量(W)との比〔W/W〕は、特に限定されないが、硬化物の機械強度、柔軟性、破断伸度、応力緩和率、導体接着性等のバランスを良好にするという観点から、モル比で、好ましくは0.1~20、より好ましくは0.3~15、さらに好ましくは0.7~12である。
[Blending ratio of (a1) phenolic compound and (a2) unsaturated aliphatic hydrocarbon]
The ratio [W A /W B ] of the blending amount (W A ) of (a1) the phenolic compound and the blending amount (W B ) of (a2) the unsaturated aliphatic hydrocarbon when performing oxidative polymerization is particularly Although not limited, the molar ratio is preferably 0.1 to 20, more preferably 0.1 to 20, from the viewpoint of improving the balance of mechanical strength, flexibility, elongation at break, stress relaxation rate, conductor adhesion, etc. of the cured product. 0.3 to 15, more preferably 0.7 to 12.
〔(a1)フェノール化合物及び(a2)不飽和脂肪族炭化水素以外の原料モノマー〕
 (A)多官能フェノール化合物は、(a1)フェノール化合物及び(a2)不飽和脂肪族炭化水素と共に、(a1)フェノール化合物及び(a2)不飽和脂肪族炭化水素以外のその他の原料モノマーを酸化重合させてなるものであってもよく、(a1)フェノール化合物及び(a2)不飽和脂肪族炭化水素のみを酸化重合させてなるものであってもよい。その他の原料モノマーを用いる場合、環境負荷低減の観点から、その他の原料モノマーはバイオマス由来の化合物であることが好ましい。
 (A)多官能フェノール化合物の原料モノマーの総量中、(a1)フェノール化合物及び(a2)不飽和脂肪族炭化水素の合計含有量は、好ましくは90~100質量%、より好ましくは92~100質量%、さらに好ましくは95~100質量%である。
 (A)多官能フェノール化合物の酸素を除く原料中、バイオマス由来の原料の含有量は、好ましくは90~100質量%、より好ましくは95~100質量%、さらに好ましくは98~100質量%である。
[(a1) Phenol Compound and (a2) Raw Material Monomers Other than Unsaturated Aliphatic Hydrocarbons]
(A) a polyfunctional phenol compound, together with (a1) a phenol compound and (a2) an unsaturated aliphatic hydrocarbon, oxidatively polymerizes other raw material monomers other than (a1) a phenol compound and (a2) an unsaturated aliphatic hydrocarbon. It may be obtained by oxidative polymerization of (a1) the phenol compound and (a2) the unsaturated aliphatic hydrocarbon alone. When other raw material monomers are used, the other raw material monomers are preferably biomass-derived compounds from the viewpoint of reducing environmental load.
(A) In the total amount of raw material monomers for the polyfunctional phenol compound, the total content of (a1) the phenol compound and (a2) the unsaturated aliphatic hydrocarbon is preferably 90 to 100% by mass, more preferably 92 to 100% by mass. %, more preferably 95 to 100 mass %.
(A) The content of the biomass-derived raw material in the raw material excluding oxygen of the polyfunctional phenol compound is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and still more preferably 98 to 100% by mass. .
〔(A)多官能フェノール化合物の性状〕
 (A)多官能フェノール化合物は、23℃で固体状又は23℃における粘度が50,000mPa・s超であることが好ましい。
 なお、本実施形態において、「固体状」とは、1気圧下、23℃の環境下において、流動性を有していない状態を意味する。「流動性を有していない状態」とは、融点を有する化合物においては融点未満の温度条件にある状態を意味し、融点を有さない化合物においては溶融点未満の温度条件にある状態を意味する。
 また、本実施形態において、「23℃における粘度が50,000mPa・s超である」とは、1気圧下、23℃の環境下において、粘度を測定可能な流動性を有し、当該粘度が50,000mPa・s超である状態を意味する。
[(A) Properties of polyfunctional phenol compound]
(A) The polyfunctional phenol compound is preferably solid at 23°C or has a viscosity at 23°C of more than 50,000 mPa·s.
In the present embodiment, the term “solid state” means a state of not having fluidity under an environment of 1 atmospheric pressure and 23°C. In the case of a compound having a melting point, the term "non-fluid state" means a state in which the temperature is below the melting point, and in the case of a compound without a melting point, it means a state in which the temperature is below the melting point. do.
Further, in the present embodiment, "the viscosity at 23 ° C. is more than 50,000 mPa s" means that the viscosity is measurable under an environment of 1 atm and 23 ° C., and the viscosity is It means a state of exceeding 50,000 mPa·s.
 (A)多官能フェノール化合物が23℃で固体状であることによって、室温で固形の熱硬化性樹脂組成物を形成することができる。室温で固形の熱硬化性樹脂組成物は取り扱い易く、従来よりも多様な用途に適用することが可能になる。
 一方、(A)多官能フェノール化合物は、23℃における粘度が50,000mPa・s超であることによって、室温で高粘度の熱硬化性樹脂組成物を形成することができる。室温で高粘度の熱硬化性樹脂組成物は、液垂れ等を抑制できるため、液状の熱硬化性樹脂組成物としての取り扱い性に優れる。
 (A)多官能フェノール化合物の23℃における粘度は、JIS Z 8803(2011)に準拠して測定することができる。
(A) Since the polyfunctional phenol compound is solid at 23° C., a thermosetting resin composition that is solid at room temperature can be formed. Thermosetting resin compositions that are solid at room temperature are easy to handle and can be applied to a wider variety of uses than ever before.
On the other hand, (A) the polyfunctional phenol compound has a viscosity of more than 50,000 mPa·s at 23° C., so that it can form a highly viscous thermosetting resin composition at room temperature. A thermosetting resin composition having a high viscosity at room temperature can suppress dripping and the like, and is therefore excellent in handleability as a liquid thermosetting resin composition.
(A) The viscosity of the polyfunctional phenol compound at 23°C can be measured according to JIS Z 8803 (2011).
 上記の通り、(A)多官能フェノール化合物は、23℃で固体状であってもよく、23℃における粘度が50,000mPa・s超であってもよいが、より多様な用途に適用が可能であり、環境負荷の低減に効果的であるという観点からは、23℃で固体状であることが好ましい。
 一方、(A)多官能フェノール化合物が、23℃における粘度が50,000mPa・s超である場合、(A)多官能フェノール化合物の23℃における粘度は、(A)多官能フェノール化合物による増粘効果を高めるという観点から、好ましくは60,000mPa・s以上、より好ましくは70,000mPa・s以上、さらに好ましくは100,000mPa・s以上である。(A)多官能フェノール化合物の23℃における粘度の上限値は、特に限定されないが、例えば、300,000mPa・s以下であってもよく、200,000mPa・s以下であってもよい。
As described above, (A) the polyfunctional phenol compound may be solid at 23°C and may have a viscosity of more than 50,000 mPa s at 23°C, but can be applied to a wider variety of uses. and is preferably solid at 23° C. from the viewpoint of being effective in reducing environmental load.
On the other hand, when (A) the polyfunctional phenol compound has a viscosity of more than 50,000 mPa s at 23 ° C., the viscosity of (A) the polyfunctional phenol compound at 23 ° C. is (A) thickened by the polyfunctional phenol compound From the viewpoint of enhancing the effect, it is preferably 60,000 mPa·s or more, more preferably 70,000 mPa·s or more, and still more preferably 100,000 mPa·s or more. The upper limit of the viscosity at 23° C. of (A) the polyfunctional phenol compound is not particularly limited, but may be, for example, 300,000 mPa·s or less, or 200,000 mPa·s or less.
〔(A)多官能フェノール化合物の数平均分子量(Mn)〕
 (A)多官能フェノール化合物の数平均分子量(Mn)は、特に限定されないが、取り扱い性の観点から、好ましくは2,000~10,000、より好ましくは2,500~8,000、さらに好ましくは3,000~6,000である。
[(A) Number average molecular weight (Mn) of polyfunctional phenol compound]
(A) The number average molecular weight (Mn) of the polyfunctional phenol compound is not particularly limited, but from the viewpoint of handleability, it is preferably 2,000 to 10,000, more preferably 2,500 to 8,000, and still more preferably is between 3,000 and 6,000.
〔(A)多官能フェノール化合物の質量平均分子量(Mw)〕
 (A)多官能フェノール化合物の質量平均分子量(Mw)は、特に限定されないが、取り扱い性の観点から、好ましくは8,000~200,000、より好ましくは15,000~150,000、さらに好ましくは20,000~100,000、よりさらに好ましくは30,000~50,000である。
[(A) Mass average molecular weight (Mw) of polyfunctional phenol compound]
(A) The mass average molecular weight (Mw) of the polyfunctional phenol compound is not particularly limited, but from the viewpoint of handleability, preferably 8,000 to 200,000, more preferably 15,000 to 150,000, and even more preferably is between 20,000 and 100,000, even more preferably between 30,000 and 50,000.
((A)多官能フェノール化合物の製造方法)
 (A)多官能フェノール化合物は、(a1)フェノール化合物と、(a2)不飽和脂肪族炭化水素と、を酸化重合によって共重合させることによって製造することができる。
((A) Method for producing a polyfunctional phenol compound)
(A) A polyfunctional phenol compound can be produced by copolymerizing (a1) a phenol compound and (a2) an unsaturated aliphatic hydrocarbon by oxidation polymerization.
 酸化重合の方法としては、(a1)フェノール化合物及び(a2)不飽和脂肪族炭化水素を含有する原料モノマーを、例えば、酸化剤の存在下で、撹拌しながら加熱する方法が好ましい。
 (a1)フェノール化合物及び(a2)不飽和脂肪族炭化水素の酸化重合の方法は、これらの原料の状態に応じて、例えば、塊状重合法であってもよく、溶液重合法であってもよい。
 (a1)フェノール化合物及び(a2)不飽和脂肪族炭化水素は通常、反応温度で液状であり、酸化重合が進行しても撹拌効率を良好に維持できる傾向にあるため、反応性の観点からは、塊状重合法が好ましい。
As a method of oxidative polymerization, a method of heating a raw material monomer containing (a1) a phenol compound and (a2) an unsaturated aliphatic hydrocarbon in the presence of an oxidizing agent while stirring is preferred.
The method of oxidative polymerization of (a1) the phenol compound and (a2) the unsaturated aliphatic hydrocarbon may be, for example, a bulk polymerization method or a solution polymerization method, depending on the state of these raw materials. .
(a1) The phenol compound and (a2) the unsaturated aliphatic hydrocarbon are usually liquid at the reaction temperature, and tend to be able to maintain good stirring efficiency even when the oxidation polymerization proceeds. , a bulk polymerization method is preferred.
 溶液重合法を行う場合に用いる有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶媒;ジメチルスルホキシド等の硫黄原子含有溶媒;γ-ブチロラクトン等のエステル系溶媒などが挙げられる。これらの中でも、原料モノマー及び生成物に対する溶解性の観点から、窒素原子含有溶媒、硫黄原子含有溶媒が好ましく、ジメチルスルホキシドがより好ましい。 Examples of organic solvents used for solution polymerization include alcohol solvents such as methanol, ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Ether solvents such as tetrahydrofuran; Aromatic solvents such as toluene, xylene, and mesitylene; Nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone; Solvents containing sulfur atoms such as dimethyl sulfoxide; Examples thereof include ester solvents such as butyrolactone. Among these, nitrogen atom-containing solvents and sulfur atom-containing solvents are preferable, and dimethyl sulfoxide is more preferable, from the viewpoint of solubility in raw material monomers and products.
 酸化剤としては、例えば、酸素;過酸化水素、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、過酢酸、過安息香酸等のパーオキサイド;等が挙げられる。これらの中でも、生産性の観点から、酸素が好ましい。
 酸素は、酸素を含むガスとして供給されることが好ましい。すなわち、(A)多官能フェノール化合物の製造方法は、酸化重合を、酸素を含むガスを供給しながら、(a1)フェノール化合物及び(a2)不飽和脂肪族炭化水素を加熱することによって行う方法であることが好ましい。
 酸素を含むガスは、酸素ガスそのものであってもよいし、酸素と窒素等の不活性ガスとを混合したガスであってもよく、空気であってもよいが、環境負荷低減及び経済性の観点から、空気が好ましい。
Examples of oxidizing agents include oxygen; hydrogen peroxide, t-butyl hydroperoxide, di-t-butyl peroxide, cumene hydroperoxide, dicumyl peroxide, peracetic acid, perbenzoic acid and other peroxides; is mentioned. Among these, oxygen is preferable from the viewpoint of productivity.
Oxygen is preferably supplied as a gas containing oxygen. That is, (A) a method for producing a polyfunctional phenol compound is a method in which oxidative polymerization is performed by heating (a1) a phenol compound and (a2) an unsaturated aliphatic hydrocarbon while supplying a gas containing oxygen. Preferably.
The oxygen-containing gas may be oxygen gas itself, a mixed gas of oxygen and an inert gas such as nitrogen, or air. Air is preferable from the point of view.
 酸素を含むガスは、例えば、反応容器中にパージしてもよいし、反応液の上方を流通させてもよいし、反応液中にバブリングさせてもよい。これらの中でも、反応性の観点から、反応液中にバブリングさせる方法が好ましい。
 なお、酸化重合を行う際の圧力は、加圧であってもよく、常圧であってもよい。
 また、酸化反応を行う際には、例えば、金属触媒等の反応触媒を用いてもよいが、反応触媒を用いなくてもよい。
The oxygen-containing gas may be, for example, purged into the reaction vessel, passed over the reaction solution, or bubbled into the reaction solution. Among these, the method of bubbling in the reaction solution is preferable from the viewpoint of reactivity.
The pressure during the oxidation polymerization may be pressurized or normal pressure.
Further, when performing the oxidation reaction, for example, a reaction catalyst such as a metal catalyst may be used, but a reaction catalyst may not be used.
 酸化重合の反応温度は、特に限定されないが、適度な反応速度が得られながらも、(A)多官能フェノール化合物の性状を調整し易いという観点から、好ましくは100~250℃、より好ましくは120~210℃、さらに好ましくは140~180℃である。
 酸化重合の反応時間は、特に限定されず、所望する性状を有する(A)多官能フェノール化合物が得られる時間を適宜決定すればよいが、生産性の観点からは、好ましくは20~72時間、より好ましくは30~60時間、さらに好ましくは36~54時間である。
The reaction temperature of the oxidative polymerization is not particularly limited, but is preferably 100 to 250° C., more preferably 120° C., from the viewpoint of facilitating adjustment of the properties of (A) the polyfunctional phenol compound while obtaining an appropriate reaction rate. to 210°C, more preferably 140 to 180°C.
The reaction time of the oxidative polymerization is not particularly limited, and the time for obtaining the polyfunctional phenol compound (A) having desired properties may be determined as appropriate. More preferably 30 to 60 hours, still more preferably 36 to 54 hours.
 本実施形態の製造方法において、酸化重合前の(a1)フェノール化合物及び(a2)不飽和脂肪族炭化水素に含まれる脂肪族不飽和結合の総量のうち、酸化重合によって消失する脂肪族不飽和結合の比率を表す脂肪族不飽和結合消失率は、特に限定されないが、好ましくは20~75%、より好ましくは30~65%、さらに好ましくは35~60%である。
 なお、脂肪族不飽和結合消失率は、実施例に記載の方法によって測定することができる。
In the production method of the present embodiment, of the total amount of aliphatic unsaturated bonds contained in (a1) the phenol compound and (a2) unsaturated aliphatic hydrocarbon before oxidative polymerization, the aliphatic unsaturated bonds that disappear by oxidative polymerization Although the aliphatic unsaturated bond disappearance ratio, which represents the ratio of is not particularly limited, it is preferably 20 to 75%, more preferably 30 to 65%, and still more preferably 35 to 60%.
The aliphatic unsaturated bond disappearance rate can be measured by the method described in Examples.
 酸化重合を終了して得られた(A)多官能フェノール化合物は、必要に応じて、蒸留、再沈殿、遠心分離、洗浄等の公知の方法によって精製してもよい。 (A) polyfunctional phenol compound obtained by completing oxidative polymerization may be purified by known methods such as distillation, reprecipitation, centrifugation, and washing, if necessary.
<(B)エポキシ樹脂>
 (B)エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ジシクロペンタジエン骨格を有するエポキシ樹脂;ビフェノール骨格を有するエポキシ樹脂;アラルキル骨格を有するエポキシ樹脂;フルオレン骨格を有するエポキシ樹脂;ナフタレン骨格を有するエポキシ樹脂等のグリシジルエーテル型エポキシ樹脂;グリシジルアミン型エポキシ樹脂;グリシジルエステル型エポキシ樹脂;3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、イプシロン-カプロラクトン変性-3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、ビス-(3,4-エポキシシクロヘキシル)アジペート等の脂環式エポキシ樹脂;等が挙げられる。
 (B)エポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
<(B) Epoxy resin>
(B) Epoxy resins include, for example, bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin and bisphenol S type epoxy resin; novolac type epoxy resin such as phenol novolac type epoxy resin and cresol novolak type epoxy resin. Resin; epoxy resin having a dicyclopentadiene skeleton; epoxy resin having a biphenol skeleton; epoxy resin having an aralkyl skeleton; epoxy resin having a fluorene skeleton; Resin; glycidyl ester type epoxy resin; 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate, epsilon-caprolactone-modified-3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate , alicyclic epoxy resins such as bis-(3,4-epoxycyclohexyl) adipate;
(B) Epoxy resins may be used alone or in combination of two or more.
 (B)エポキシ樹脂は、例えば、上記選択肢の中から目的に応じて適宜選択すればよいが、環境負荷低減の観点からは、バイオマス由来のエポキシ樹脂が好ましく、植物由来のエポキシ樹脂がより好ましい。 (B) Epoxy resin may be appropriately selected from the above options according to the purpose, but from the viewpoint of reducing environmental load, biomass-derived epoxy resin is preferable, and plant-derived epoxy resin is more preferable.
 また、(B)エポキシ樹脂は、環境負荷低減の観点から、酸化重合によって得られるエポキシ樹脂(以下、「酸化重合エポキシ樹脂」ともいう)が好ましい。
 酸化重合エポキシ樹脂としては、例えば、エポキシ基を有するモノマーを酸化重合させてなるエポキシ樹脂であってもよいし、フェノール化合物を酸化重合させてなるフェノール樹脂のフェノール性水酸基をグリシジルエーテル化したものであってもよい。
 エポキシ基を有するモノマーを酸化重合させてなるエポキシ樹脂としては、例えば、(a1)フェノール化合物のフェノール性水酸基をグリシジルエーテル化してなるエポキシ化モノマーを酸化重合させて得られるエポキシ樹脂(以下、「酸化重合エポキシ樹脂(EA)」ともいう)、(a1)フェノール化合物以外のフェノール化合物をグリシジルエーテル化してなるエポキシ化モノマーを酸化重合させて得られるエポキシ樹脂、グリシジルエーテル以外のエポキシ基を有するモノマーを酸化重合させて得られるエポキシ樹脂等が挙げられる。
 フェノール化合物を酸化重合させてなるフェノール樹脂のフェノール性水酸基をグリシジルエーテル化したものとしては、例えば、(a1)フェノール化合物を酸化重合させて得られる多官能フェノール化合物のフェノール性水酸基をグリシジルエーテル化してなるエポキシ樹脂、(a1)フェノール化合物以外のフェノール化合物を酸化重合させて得られる多官能フェノール化合物のフェノール性水酸基をグリシジルエーテル化してなるエポキシ樹脂等が挙げられる。
 これらの中でも、酸化重合エポキシ樹脂としては、より環境負荷を低減できるという観点から、酸化重合エポキシ樹脂(EA)が好ましい。
 次に、酸化重合エポキシ樹脂(EA)について説明する。
In addition, (B) the epoxy resin is preferably an epoxy resin obtained by oxidative polymerization (hereinafter also referred to as “oxidatively polymerized epoxy resin”) from the viewpoint of reducing environmental load.
The oxidatively polymerized epoxy resin may be, for example, an epoxy resin obtained by oxidatively polymerizing a monomer having an epoxy group, or a phenolic resin obtained by oxidatively polymerizing a phenolic compound in which the phenolic hydroxyl group is glycidyl-etherified. There may be.
Examples of epoxy resins obtained by oxidatively polymerizing a monomer having an epoxy group include (a1) an epoxy resin obtained by oxidatively polymerizing an epoxidized monomer obtained by glycidyl-etherifying a phenolic hydroxyl group of a phenol compound (hereinafter referred to as "oxidation (Also referred to as "polymerized epoxy resin (EA)"), (a1) an epoxy resin obtained by oxidative polymerization of an epoxidized monomer obtained by glycidyl-etherifying a phenolic compound other than a phenolic compound, and oxidizing a monomer having an epoxy group other than glycidyl ether. Examples thereof include epoxy resins obtained by polymerization.
Examples of glycidyl-etherified phenolic hydroxyl groups of a phenol resin obtained by oxidative polymerization of a phenol compound include (a1) glycidyl-etherified phenolic hydroxyl groups of a polyfunctional phenol compound obtained by oxidative polymerization of a phenol compound; and (a1) an epoxy resin obtained by glycidyl-etherifying the phenolic hydroxyl group of a polyfunctional phenolic compound obtained by oxidative polymerization of a phenolic compound other than the phenolic compound.
Among these, the oxidatively polymerized epoxy resin (EA) is preferable as the oxidatively polymerized epoxy resin from the viewpoint of further reducing the environmental load.
Next, the oxidatively polymerized epoxy resin (EA) will be described.
〔酸化重合エポキシ樹脂(EA)〕
 酸化重合エポキシ樹脂(EA)は、(a1)フェノール化合物のフェノール性水酸基をグリシジルエーテル化してなるエポキシ化モノマーを酸化重合させて得られるエポキシ樹脂である。
 (a1)フェノール化合物のフェノール性水酸基をグリシジルエーテル化する方法としては、公知の方法を適用することができ、例えば、塩基性化合物の存在下で、(a1)フェノール化合物とエピハロヒドリンとを反応させる方法が挙げられる。
 当該反応は、反応を均質に進行させる観点から、有機溶媒中で行うことが好ましい。有機溶媒としては、(A)多官能フェノール化合物の製造方法で例示した有機溶媒と同じものが挙げられ、好ましい態様も同様である。
[Oxidative polymerization epoxy resin (EA)]
The oxidatively polymerized epoxy resin (EA) is an epoxy resin obtained by oxidatively polymerizing an epoxidized monomer (a1) obtained by glycidyl-etherifying a phenolic hydroxyl group of a phenol compound.
(a1) As a method for glycidyl-etherifying a phenolic hydroxyl group of a phenolic compound, a known method can be applied. For example, (a1) a method of reacting a phenolic compound with epihalohydrin in the presence of a basic compound. is mentioned.
The reaction is preferably carried out in an organic solvent from the viewpoint of homogeneous progress of the reaction. Examples of the organic solvent include the same organic solvents as those exemplified in (A) the method for producing a polyfunctional phenol compound, and preferred embodiments are also the same.
 エピハロヒドリンとしては、例えば、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン等が挙げられる。これらの中でも、反応性の観点から、エピクロロヒドリンが好ましい。エピハロヒドリンの使用量は、特に限定されないが、フェノール性水酸基1モルに対して、好ましくは1~6モル、より好ましくは1.5~5モル、さらに好ましくは2~4モルである。 Epihalohydrin includes, for example, epichlorohydrin, epibromohydrin, epiiodohydrin, and the like. Among these, epichlorohydrin is preferable from the viewpoint of reactivity. The amount of epihalohydrin to be used is not particularly limited, but is preferably 1 to 6 mol, more preferably 1.5 to 5 mol, still more preferably 2 to 4 mol, per 1 mol of phenolic hydroxyl group.
 塩基性化合物としては、例えば、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ金属水酸化物等が好ましく挙げられる。これらの中でも、反応性の観点から、アルカリ金属水酸化物が好ましい。アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウムが好ましく、水酸化カリウムがより好ましい。
 塩基性化合物の使用量は、特に限定されないが、エピハロヒドリン1モルに対して、好ましくは1.2~5モル、より好ましくは1.5~4モル、さらに好ましくは1.8~3モルである。
Preferred examples of basic compounds include alkaline earth metal hydroxides, alkali metal carbonates, alkali metal hydroxides, and the like. Among these, alkali metal hydroxides are preferable from the viewpoint of reactivity. As the alkali metal hydroxide, sodium hydroxide and potassium hydroxide are preferred, and potassium hydroxide is more preferred.
The amount of the basic compound to be used is not particularly limited, but is preferably 1.2 to 5 mol, more preferably 1.5 to 4 mol, still more preferably 1.8 to 3 mol, per 1 mol of epihalohydrin. .
 (a1)フェノール化合物とエピハロヒドリンとの反応を開始する前に、(a1)フェノール化合物と塩基性化合物とを反応させておくことが好ましい。当該反応の条件は、特に限定されず、例えば、15~40℃で0.5~4時間反応させればよい。
 (a1)フェノール化合物とエピハロヒドリンとの反応条件は、特に限定されず、例えば、15~40℃で1~8時間反応させればよい。
 得られた反応物は、必要に応じて、蒸留、再沈殿、遠心分離、洗浄等の公知の方法によって精製してもよい。
(a1) It is preferable to allow the phenol compound and the basic compound to react before starting the reaction of the phenol compound and epihalohydrin. The reaction conditions are not particularly limited, and for example, the reaction may be carried out at 15 to 40° C. for 0.5 to 4 hours.
(a1) The reaction conditions of the phenol compound and epihalohydrin are not particularly limited, and the reaction may be carried out at 15 to 40° C. for 1 to 8 hours, for example.
The obtained reaction product may be purified by known methods such as distillation, reprecipitation, centrifugation, and washing, if necessary.
 得られたエポキシ化モノマーを酸化重合させる方法及び条件は、(A)多官能フェノール化合物の製造方法における酸化重合と同様であり、その好適な態様も同様である。 The method and conditions for oxidative polymerization of the resulting epoxidized monomer are the same as the oxidative polymerization in (A) the method for producing a polyfunctional phenol compound, and the preferred aspects thereof are also the same.
 酸化重合エポキシ樹脂(EA)の質量平均分子量(Mw)は、特に限定されないが、取り扱い性の観点から、好ましくは6,000~300,000、より好ましくは12,000~100,000、さらに好ましくは18,000~30,000である。 Although the mass average molecular weight (Mw) of the oxidatively polymerized epoxy resin (EA) is not particularly limited, it is preferably 6,000 to 300,000, more preferably 12,000 to 100,000, still more preferably 12,000 to 100,000, from the viewpoint of handleability. is between 18,000 and 30,000.
 酸化重合エポキシ樹脂(EA)は、23℃において、液体状であってもよく、固体状であってもよいが、取り扱い性の観点から、23℃で液体状であることが好ましい。 The oxidatively polymerized epoxy resin (EA) may be liquid or solid at 23°C, but is preferably liquid at 23°C from the viewpoint of ease of handling.
 本実施形態の熱硬化性樹脂組成物中における(B)エポキシ樹脂と(A)多官能フェノール化合物との質量比[(B)エポキシ樹脂/(A)多官能フェノール化合物]は、特に限定されないが、未反応官能基の残存による特性変動を抑制するという観点から、好ましくは0.7~1.5、より好ましくは0.8~1.3、さらに好ましくは0.9~1.2である。 Although the mass ratio [(B) epoxy resin/(A) polyfunctional phenol compound] of (B) epoxy resin and (A) polyfunctional phenol compound in the thermosetting resin composition of the present embodiment is not particularly limited, , preferably 0.7 to 1.5, more preferably 0.8 to 1.3, still more preferably 0.9 to 1.2, from the viewpoint of suppressing characteristic fluctuations due to residual unreacted functional groups. .
 本実施形態の熱硬化性樹脂組成物は、(B)エポキシ樹脂の硬化剤として、(A)多官能フェノール化合物以外のフェノール系硬化剤を含有していてもよい。その場合における、(B)エポキシ樹脂とフェノール系硬化剤との配合比は、(B)エポキシ樹脂と、(A)多官能フェノール化合物を含む全てのフェノール系硬化剤の質量比[エポキシ基/フェノール性水酸基]が、上記範囲になることが好ましい。 The thermosetting resin composition of the present embodiment may contain a phenol-based curing agent other than (A) the polyfunctional phenol compound as (B) the epoxy resin curing agent. In that case, the blending ratio of the (B) epoxy resin and the phenol-based curing agent is the mass ratio of (B) the epoxy resin and (A) all the phenol-based curing agents containing the polyfunctional phenol compound [epoxy group/phenol functional hydroxyl group] is preferably within the above range.
<(C)硬化促進剤>
 (C)硬化促進剤としては、例えば、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の第3級アミン;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類;トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィン等の有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、トリブチル(メチル)ホスホニウムジメチルホスファート等のホスホニウム塩;等が挙げられる。
 (C)硬化促進剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、相溶性と反応性の観点からホスホニウム塩が好ましく、トリブチル(メチル)ホスホニウムジメチルホスファートがより好ましい。
<(C) Curing accelerator>
(C) Curing accelerators include, for example, tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris(dimethylaminomethyl)phenol; 2-methylimidazole, 2-phenylimidazole, imidazoles such as 2-phenyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole; tributylphosphine, diphenylphosphine, triphenylphosphine and the like organic phosphines; phosphonium salts such as tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, tributyl(methyl)phosphonium dimethylphosphate; and the like.
(C) A hardening accelerator may be used individually by 1 type, and may use 2 or more types together.
Among these, phosphonium salts are preferred from the viewpoint of compatibility and reactivity, and tributyl(methyl)phosphonium dimethyl phosphate is more preferred.
 本実施形態の熱硬化性樹脂組成物中における(C)硬化促進剤の含有量は、特に限定されないが、保存安定性及び硬化性の観点から、(B)エポキシ樹脂100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.5~5質量部、さらに好ましくは0.7~3質量部である。 The content of the (C) curing accelerator in the thermosetting resin composition of the present embodiment is not particularly limited, but from the viewpoint of storage stability and curability, (B) per 100 parts by mass of the epoxy resin, It is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, and still more preferably 0.7 to 3 parts by mass.
<その他の成分>
 本実施形態の熱硬化性樹脂組成物は、上記各成分以外にも、例えば、上記各成分以外の熱硬化性樹脂、熱可塑性樹脂等の樹脂成分;無機充填材、有機充填材等の充填材;シランカップリング剤等のカップリング剤;難燃剤;増粘剤;着色剤;酸化防止剤;帯電防止剤等を含有していてもよい。
 これらのその他の成分は、各々について、1種を単独で用いてもよく、2種以上を併用してもよい。
<Other ingredients>
In addition to the above components, the thermosetting resin composition of the present embodiment includes, for example, resin components such as thermosetting resins and thermoplastic resins other than the above components; fillers such as inorganic fillers and organic fillers a coupling agent such as a silane coupling agent; a flame retardant; a thickener; a coloring agent; an antioxidant;
Each of these other components may be used alone or in combination of two or more.
 本実施形態の熱硬化性樹脂組成物中における(A)成分、(B)成分及び(C)成分の総含有量は、特に限定されないが、本実施形態の熱硬化性樹脂組成物の固形分全量(100質量%)に対して、好ましくは30~100質量%、より好ましくは40~100質量%、さらに好ましくは50~100質量%である。 The total content of components (A), (B) and (C) in the thermosetting resin composition of the present embodiment is not particularly limited, but the solid content of the thermosetting resin composition of the present embodiment It is preferably 30 to 100% by mass, more preferably 40 to 100% by mass, still more preferably 50 to 100% by mass relative to the total amount (100% by mass).
<熱硬化性樹脂組成物の製造方法>
 本実施形態の熱硬化性樹脂組成物は、上記各成分を混合することによって製造することができる。
 各成分の混合は、例えば、加熱ニーダー、加熱ロール等を用いて各成分を加熱下で溶融混練する方法であってもよく、有機溶媒中に各成分を溶解又は分散させて混合する方法であってもよい。有機溶媒としては、(A)多官能フェノール化合物の製造方法で例示した有機溶媒と同じものが挙げられる。有機溶媒中に各成分を溶解又は分散させて混合する方法を行う場合、有機溶媒の使用量は、固形分の濃度が、好ましくは10~70質量%、より好ましくは20~60質量%、さらに好ましくは30~50質量%になる量である。
 原料を混合する順序、混合温度、混合時間等の条件は、特に限定されず、原料の種類等に応じて任意に設定すればよい。
 本実施形態の熱硬化性樹脂組成物の23℃における形態は特に限定されず、固体状であってもよく、液体状であってもよい。本実施形態の熱硬化性樹脂組成物が23℃で液体状である場合、本実施形態の熱硬化性樹脂組成物は、有機溶媒を含有するものであってもよく、有機溶媒を含有しないものであってもよい。
 有機溶媒としては、上記各成分を溶解又は分散させて混合する方法に用いられるものと同じものを使用することができ、好適な使用量も同じである。
<Method for producing thermosetting resin composition>
The thermosetting resin composition of this embodiment can be produced by mixing the components described above.
Mixing of each component may be, for example, a method of melt-kneading each component under heating using a heating kneader, a heating roll, etc., or a method of dissolving or dispersing each component in an organic solvent and mixing. may Examples of the organic solvent include the same organic solvents as exemplified in (A) the method for producing a polyfunctional phenol compound. When performing a method of dissolving or dispersing each component in an organic solvent and mixing, the amount of the organic solvent used is preferably 10 to 70% by mass, more preferably 20 to 60% by mass, and more preferably 20 to 60% by mass. The amount is preferably 30 to 50% by mass.
Conditions such as the order of mixing raw materials, mixing temperature, and mixing time are not particularly limited, and may be arbitrarily set according to the type of raw materials.
The form of the thermosetting resin composition of the present embodiment at 23° C. is not particularly limited, and may be solid or liquid. When the thermosetting resin composition of the present embodiment is liquid at 23° C., the thermosetting resin composition of the present embodiment may contain an organic solvent, or does not contain an organic solvent. may be
As the organic solvent, the same one as that used in the method of dissolving or dispersing and mixing the above components can be used, and the suitable usage amount is also the same.
 本実施形態の熱硬化性樹脂組成物の硬化条件は、特に限定されず、(A)~(C)成分の種類等に応じて適宜調整すればよいが、例えば、50~250℃で、0.5~24時間の条件とすることができる。 The curing conditions of the thermosetting resin composition of the present embodiment are not particularly limited, and may be appropriately adjusted according to the types of components (A) to (C). .5 to 24 hours.
<硬化物の23℃における貯蔵弾性率E’(23℃)>
 本実施形態の熱硬化性樹脂組成物の硬化物の23℃における貯蔵弾性率E’(23℃)は、導体接着性の観点から、20~2,500MPaであり、好ましくは24~2,000MPa、より好ましくは27~1,500MPa、さらに好ましくは30~1,200MPaである。
 硬化物の貯蔵弾性率E’(23℃)は、実施例に記載の方法によって測定することができる。
<Storage elastic modulus E' (23°C) of cured product at 23°C>
The cured product of the thermosetting resin composition of the present embodiment has a storage elastic modulus E' (23°C) at 23°C of 20 to 2,500 MPa, preferably 24 to 2,000 MPa, from the viewpoint of conductor adhesion. , more preferably 27 to 1,500 MPa, still more preferably 30 to 1,200 MPa.
The storage elastic modulus E' (23°C) of the cured product can be measured by the method described in Examples.
<硬化物のガラス転移温度+50℃における貯蔵弾性率E’(Tg+50℃)>
 本実施形態の熱硬化性樹脂組成物の硬化物のガラス転移温度+50℃における貯蔵弾性率E’(Tg+50℃)は、導体接着性及び耐熱性の観点から、好ましくは3~2,000MPa、より好ましくは5~1,500MPa、さらに好ましくは10~1,000MPa、特に好ましくは15~500MPaである。
 硬化物の貯蔵弾性率E’(Tg+50℃)は、実施例に記載の方法によって測定することができる。
<Storage elastic modulus E' at glass transition temperature +50°C of cured product (Tg + 50°C)>
The cured product of the thermosetting resin composition of the present embodiment has a storage elastic modulus E' (Tg + 50 ° C.) at a glass transition temperature + 50 ° C., from the viewpoint of conductor adhesion and heat resistance, preferably 3 to 2,000 MPa, more It is preferably 5 to 1,500 MPa, more preferably 10 to 1,000 MPa, particularly preferably 15 to 500 MPa.
The storage elastic modulus E′ (Tg+50° C.) of the cured product can be measured by the method described in Examples.
<硬化物の貯蔵弾性率E’の比[E’(23℃)/E’(Tg+50℃)]>
 本実施形態の熱硬化性樹脂組成物の硬化物の、ガラス転移温度+50℃における貯蔵弾性率E’(Tg+50℃)に対する、貯蔵弾性率E’(23℃)の比[E’(23℃)/E’(Tg+50℃)]は、導体接着性及び耐熱性の観点から、1~50であり、好ましくは1.2~20、より好ましくは1.4~10、さらに好ましくは1.5~5である。
 硬化物の貯蔵弾性率E’の比[E’(23℃)/E’(Tg+50℃)]は、実施例に記載の方法によって測定することができる。
<Ratio of storage elastic modulus E′ of cured product [E′ (23° C.)/E′ (Tg+50° C.)]>
Ratio of storage elastic modulus E ' (23 ° C.) to storage elastic modulus E ' (Tg + 50 ° C.) at the glass transition temperature + 50 ° C. of the cured product of the thermosetting resin composition of the present embodiment [E ' (23 ° C.) /E' (Tg + 50 ° C.)] is 1 to 50, preferably 1.2 to 20, more preferably 1.4 to 10, more preferably 1.5 to 1.5 from the viewpoint of conductor adhesion and heat resistance. 5.
The ratio [E'(23°C)/E'(Tg+50°C)] of the storage elastic modulus E' of the cured product can be measured by the method described in Examples.
 硬化物の23℃における貯蔵弾性率E’(23℃)、貯蔵弾性率E’(Tg+50℃)及び比[E’(23℃)/E’(Tg+50℃)]は、例えば、(A)多官能フェノール化合物の原料である(a1)フェノール化合物及び(a2)不飽和脂肪族炭化水素の炭素数、脂肪族不飽和結合の数、これら原料の配合比等によって調整することができる。 The storage elastic modulus E′ (23° C.) of the cured product at 23° C., the storage elastic modulus E′ (Tg+50° C.) and the ratio [E′ (23° C.)/E′ (Tg+50° C.)] are, for example, (A) multi The number of carbon atoms in (a1) the phenol compound and (a2) unsaturated aliphatic hydrocarbon, the number of aliphatic unsaturated bonds, and the compounding ratio of these raw materials, which are raw materials of the functional phenol compound, can be adjusted.
<硬化物のガラス転移温度>
 本実施形態の熱硬化性樹脂組成物の硬化物の、ガラス転移温度は、導体接着性の観点から、好ましくは5~60℃、より好ましくは10~50℃、さらに好ましくは15~40℃である。
 硬化物のガラス転移温度は、実施例に記載の方法によって測定することができる。
<Glass transition temperature of cured product>
The glass transition temperature of the cured product of the thermosetting resin composition of the present embodiment is preferably 5 to 60°C, more preferably 10 to 50°C, and still more preferably 15 to 40°C from the viewpoint of conductor adhesion. be.
The glass transition temperature of the cured product can be measured by the method described in Examples.
<硬化物の破断伸度>
 本実施形態の熱硬化性樹脂組成物の硬化物の破断伸度は、導体接着性の観点から、好ましくは5~300%、より好ましくは15~200%、さらに好ましくは30~130%である。
 硬化物の破断伸度は、実施例に記載の方法によって測定することができる。
<Breaking elongation of cured product>
The breaking elongation of the cured product of the thermosetting resin composition of the present embodiment is preferably 5 to 300%, more preferably 15 to 200%, and still more preferably 30 to 130% from the viewpoint of conductor adhesion. .
The breaking elongation of the cured product can be measured by the method described in Examples.
<硬化物のバイオマス度>
 本実施形態の熱硬化性樹脂組成物の硬化物のバイオマス度は、環境負荷低減の観点及び製造容易性の観点から、好ましくは20~98%、より好ましくは30~96%、さらに好ましくは40~94%である。
 硬化物のバイオマス度は、実施例に記載の方法によって計算することができる。
<Biomass degree of cured product>
The biomass degree of the cured product of the thermosetting resin composition of the present embodiment is preferably 20 to 98%, more preferably 30 to 96%, and still more preferably 40%, from the viewpoint of reducing environmental load and ease of production. ~94%.
The biomass degree of the cured product can be calculated by the method described in Examples.
<熱硬化性樹脂組成物の用途>
 本実施形態の熱硬化性樹脂組成物の適用分野は、特に限定されないが、本実施形態の熱硬化性樹脂組成物の硬化物は、導体接着性に優れるものであるため、プリント配線板用の基板用途に好適である。また、本実施形態の熱硬化性樹脂組成物の硬化物は、優れた導体接着性に加え、柔軟性、破断伸度及び応力緩和率に優れるため、特にフレキシブル回路基板(FPC:Flexible printed circuits)等に好適である。
<Application of thermosetting resin composition>
The field of application of the thermosetting resin composition of the present embodiment is not particularly limited, but the cured product of the thermosetting resin composition of the present embodiment has excellent conductor adhesion, so it can be Suitable for substrate applications. In addition, the cured product of the thermosetting resin composition of the present embodiment has excellent conductor adhesiveness, flexibility, breaking elongation and stress relaxation rate, so it is particularly suitable for flexible printed circuits (FPC). etc.
 本発明について、以下の実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be specifically described by the following examples, but the present invention is not limited to the following examples.
[数平均分子量(Mn)、質量平均分子量(Mw)]
 生成物の数平均分子量(Mn)及び質量平均分子量(Mw)は、ゲル浸透クロマトグラフ装置(東ソー株式会社製、製品名「HLC-8020」)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した。
(測定条件)
・カラム:「TSK guard column SuperH-H」「TSK gel SuperHM-H」「TSK gel SuperHM-H」「TSK gel SuperH2000」(いずれも東ソー株式会社製)を順次連結したもの
・カラム温度:40℃
・展開溶媒:テトラヒドロフラン
・注入量:20μl
・流速:1.0mL/min
・検出器:示差屈折計
[Number average molecular weight (Mn), mass average molecular weight (Mw)]
The number average molecular weight (Mn) and mass average molecular weight (Mw) of the product are measured using a gel permeation chromatograph (manufactured by Tosoh Corporation, product name "HLC-8020") under the following conditions, and converted to standard polystyrene. Measured at
(Measurement condition)
・ Column: “TSK guard column SuperH-H”, “TSK gel SuperHM-H”, “TSK gel SuperHM-H”, “TSK gel SuperH2000” (both manufactured by Tosoh Corporation) are sequentially connected ・Column temperature: 40 ° C.
・Developing solvent: Tetrahydrofuran ・Injection volume: 20 μl
・Flow rate: 1.0 mL/min
・Detector: Differential refractometer
H-NMR測定]
 原料及び生成物の分析におけるH-NMR測定は、下記の条件で行った。
 装置:ブルカー・バイオスピン社製、商品名「AV-500」
   H-NMR共鳴周波数:500MHz
   プローブ:5mmφ溶液プローブ
 重溶媒:重アセトン
 内部標準物質:TMS(テトラメチルシラン)
 サンプル量:20~50mg
 測定温度:25℃
 積算回数:16回
H-NMR測定試料作製方法〉
 測定サンプルを、測定サンプル濃度が3質量%となるように、内部標準としてTMSを含む重アセトンに溶解させたものをH-NMR測定試料とした。
[ 1 H-NMR measurement]
1 H-NMR measurements in the analysis of starting materials and products were carried out under the following conditions.
Apparatus: manufactured by Bruker Biospin, trade name "AV-500"
1 H-NMR resonance frequency: 500 MHz
Probe: 5 mmφ solution probe Deuterated solvent: Deuterated acetone Internal standard substance: TMS (tetramethylsilane)
Sample amount: 20-50mg
Measurement temperature: 25°C
Number of times of integration: 16 times <Method for preparing sample for 1 H-NMR measurement>
A 1 H-NMR measurement sample was prepared by dissolving a measurement sample in deuterated acetone containing TMS as an internal standard so that the concentration of the measurement sample was 3% by mass.
[酸化重合による脂肪族不飽和結合消失率]
 酸化重合による脂肪族不飽和結合消失率は、H-NMRによって算出された、原料成分に含まれる脂肪族不飽和結合の総モル数(MA1)と、生成物に含まれる脂肪族不飽和結合の総モル数(MA2)とから、下記式(1)によって算出した。
 脂肪族不飽和結合消失率(%)=100×(MA1-MA2)/MA1   (1)
[Aliphatic Unsaturated Bond Disappearance Rate by Oxidative Polymerization]
The rate of disappearance of aliphatic unsaturation due to oxidative polymerization is determined by the total mole number (M A1 ) of aliphatic unsaturated bonds contained in the raw material components, calculated by 1 H-NMR, and the aliphatic unsaturation contained in the product. It was calculated by the following formula (1) from the total number of moles of binding (M A2 ).
Aliphatic unsaturated bond disappearance rate (%) = 100 × (M A1 -M A2 )/M A1 (1)
製造例1
(酸化共重合CNSL1の製造)
 植物由来の(a1)フェノール化合物として、カルダノールを95質量%、カルドールを5質量%含有するCNSL(以下、「原料CNSL」ともいう)を準備した。なお、H-NMRによって定量したカルダノールの組成は表1に示す通りである。
Production example 1
(Production of oxidized copolymer CNSL1)
As the plant-derived (a1) phenol compound, CNSL containing 95% by mass of cardanol and 5% by mass of cardol (hereinafter also referred to as “raw material CNSL”) was prepared. The composition of cardanol determined by 1 H-NMR is shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記の原料CNSLが90モル%、(a2)不飽和脂肪族炭化水素としてのスクアレンが10モル%となる配合比率で両者の合計100質量部をガラス製の反応容器に投入して、混合したものを反応液とした。次いで、空気を反応液中にバブリングさせながら、反応液を160℃の条件下で撹拌しながら48時間、塊状重合法によって酸化重合させて、精製前の反応物を得た。
 次に、得られた精製前の反応物をアセトン300質量部に希釈し、23℃で、撹拌下のメタノール2,000質量部に20質量部/分の速度で滴下して再沈殿させた。得られた沈殿物を、メタノールで3回洗浄した後、エバポレータ中、40℃で120分間乾燥することによって、23℃で固体状の(A)多官能フェノール化合物である酸化共重合CNSL1を得た。
 上記で得られた酸化共重合CNSL1は、数平均分子量(Mn)が3,400、質量平均分子量(Mw)が32,600であった。また、酸化重合による脂肪族不飽和結合消失率は41%であった。
A total of 100 parts by mass of the above raw material CNSL at a blending ratio of 90 mol% and 10 mol% of squalene as the unsaturated aliphatic hydrocarbon (a2) was put into a glass reaction vessel and mixed. was used as the reaction solution. Then, while bubbling air into the reaction solution, the reaction solution was subjected to oxidative polymerization by bulk polymerization for 48 hours while stirring at 160° C. to obtain a reaction product before purification.
Next, the obtained reactant before purification was diluted with 300 parts by mass of acetone, and reprecipitated by dropping into 2,000 parts by mass of methanol under stirring at 23° C. at a rate of 20 parts by mass/minute. The resulting precipitate was washed with methanol three times and then dried in an evaporator at 40°C for 120 minutes to obtain (A) polyfunctional phenol compound oxidative copolymer CNSL1 that was solid at 23°C. .
The oxidized copolymer CNSL1 obtained above had a number average molecular weight (Mn) of 3,400 and a weight average molecular weight (Mw) of 32,600. Moreover, the aliphatic unsaturated bond disappearance rate by oxidative polymerization was 41%.
製造例2
(酸化共重合CNSL2の製造)
 実施例1において、原料CNSLの配合比率を50モル%、スクアレンの配合比率を50モル%に変更したこと以外は、実施例1と同様にして、23℃で固体状の酸化共重合CNSL2を得た。
 上記で得られた酸化共重合CNSL2は、数平均分子量(Mn)が5,000、質量平均分子量(Mw)が37,100であった。また、酸化重合による脂肪族不飽和結合消失率は55%であった。
Production example 2
(Production of oxidized copolymer CNSL2)
Solid oxidative copolymer CNSL2 was obtained at 23°C in the same manner as in Example 1, except that the blending ratio of raw material CNSL was changed to 50 mol% and the blending ratio of squalene was changed to 50 mol%. rice field.
The oxidized copolymer CNSL2 obtained above had a number average molecular weight (Mn) of 5,000 and a weight average molecular weight (Mw) of 37,100. Moreover, the aliphatic unsaturated bond disappearance rate by oxidative polymerization was 55%.
 上記の通り、(A)多官能フェノール化合物は、23℃で固体状の化合物であった。
 また、脂肪族不飽和結合消失率から、原料CNSL及びスクアレンが有する脂肪族不飽和結合において重合が進行していることが示唆される。
As described above, (A) the polyfunctional phenol compound was a solid compound at 23°C.
Moreover, the rate of disappearance of aliphatic unsaturated bonds suggests that the aliphatic unsaturated bonds of the raw material CNSL and squalene are undergoing polymerization.
製造例3
(酸化重合エポキシ化CNSLの製造)
 上記の原料CNSL100質量部、水酸化カリウム44質量部及びジメチルスルホキシド55質量部をガラス製の反応容器に投入して、23℃で撹拌しながら120分間反応させた後に、エピクロロヒドリン92.5質量部を反応容器に投入して、240分間反応させた。その後、ヘキサン500質量部で3回抽出した後、飽和食塩水500質量部で3回洗浄した。その後、シリカゲルでろ過し、原料CNSLに含まれるフェノール性水酸基をグリシジルエーテル化してなる液状のエポキシ化モノマーを得た。
 次に、上記反応によって得られた液状のエポキシ化モノマーを酸化重合の反応液として、空気を反応液中にバブリングさせながら、温度160℃の条件下で撹拌しながら24時間、塊状重合法によって酸化重合させて、精製前の反応物を得た。
 次に、得られた精製前の反応物をアセトン300質量部で希釈し、23℃で、撹拌下のメタノール2,000質量部に20質量部/分の速度で滴下して再沈殿させた。得られた沈殿物を、メタノールで3回洗浄した後、エバポレータ中、40℃で120分間乾燥することによって、23℃で液体状の酸化重合エポキシ樹脂(EA)である酸化重合エポキシ化CNSLを得た。
 酸化重合エポキシ化CNSLの質量平均分子量(Mw)は、22,000であった。
Production example 3
(Production of oxidative polymerization epoxidized CNSL)
100 parts by mass of the raw material CNSL, 44 parts by mass of potassium hydroxide and 55 parts by mass of dimethyl sulfoxide were charged into a glass reaction vessel and reacted for 120 minutes with stirring at 23 ° C., followed by 92.5 parts of epichlorohydrin. A part by mass was put into a reaction vessel and reacted for 240 minutes. After that, it was extracted three times with 500 parts by mass of hexane, and then washed three times with 500 parts by mass of saturated brine. Then, it was filtered through silica gel to obtain a liquid epoxidized monomer obtained by glycidyl-etherifying the phenolic hydroxyl groups contained in the raw material CNSL.
Next, the liquid epoxidized monomer obtained by the above reaction is used as a reaction solution for oxidative polymerization, and is oxidized by a bulk polymerization method for 24 hours with stirring at a temperature of 160° C. while bubbling air into the reaction solution. Polymerization was performed to obtain a reaction product before purification.
Next, the obtained reaction product before purification was diluted with 300 parts by mass of acetone, and reprecipitated by dropping into 2,000 parts by mass of methanol under stirring at 23° C. at a rate of 20 parts by mass/minute. The resulting precipitate was washed with methanol three times and then dried in an evaporator at 40°C for 120 minutes to obtain oxidatively polymerized epoxidized CNSL, which is an oxidatively polymerized epoxy resin (EA) liquid at 23°C. rice field.
The weight average molecular weight (Mw) of the oxidatively polymerized epoxidized CNSL was 22,000.
実施例1~3、比較例1
(熱硬化性樹脂組成物の製造)
 表2に示す多官能フェノール化合物、(B)エポキシ樹脂及び(C)硬化促進剤としてのトリブチル(メチル)ホスホニウムジメチルホスファート、並びに、有機溶媒としてのトルエンを配合して、固形分濃度が40質量%である熱硬化性樹脂組成物の溶液を調製した。
 なお、多官能フェノール化合物と(B)エポキシ樹脂との配合比は、多官能フェノール化合物に対する(B)エポキシ樹脂の質量比[(B)エポキシ樹脂/多官能フェノール化合物]が1.0となる配合比とした。また、(C)硬化促進剤の配合量は、(B)エポキシ樹脂100質量部に対して、(C)硬化促進剤の含有量が1質量部になる量とした。
Examples 1 to 3, Comparative Example 1
(Manufacture of thermosetting resin composition)
A polyfunctional phenol compound shown in Table 2, (B) epoxy resin and (C) tributyl (methyl) phosphonium dimethyl phosphate as a curing accelerator, and toluene as an organic solvent are blended to give a solid content concentration of 40 mass. % of the thermosetting resin composition was prepared.
The compounding ratio of the polyfunctional phenol compound and the (B) epoxy resin is such that the mass ratio of the (B) epoxy resin to the polyfunctional phenol compound [(B) epoxy resin/polyfunctional phenol compound] is 1.0. ratio. The amount of the curing accelerator (C) to be blended was such that the content of the curing accelerator (C) was 1 part by mass with respect to 100 parts by mass of the epoxy resin (B).
 なお、比較例1で用いた材料の詳細は、以下の通りである。
 ・ビスフェノール型エポキシ樹脂:2,2-ビス(4-グリシジルオキシフェニル)プロパン
 ・クレゾールノボラック樹脂:DIC株式会社製、商品名「KA-1160」
Details of the materials used in Comparative Example 1 are as follows.
・Bisphenol type epoxy resin: 2,2-bis(4-glycidyloxyphenyl)propane ・Cresol novolac resin: manufactured by DIC Corporation, trade name “KA-1160”
(熱硬化性樹脂組成物の硬化物の製造)
 上記で得た熱硬化性樹脂組成物の溶液を、工程フィルム1(リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレートフィルムにシリコーン系剥離剤を塗布したもの、厚さ38μm)の剥離処理面上に、乾燥及び硬化後に得られる硬化物の厚さが70μmになるように塗布し、80℃で3分間乾燥した後、工程フィルム2(リンテック株式会社製、製品名「SP-PET381031」、ポリエチレンテレフタレートフィルムにシリコーン系剥離剤を塗布したもの、厚さ38μm)の剥離処理面を貼り合わせた。その後、150℃で2時間硬化させて、2枚の工程フィルムに挟持された熱硬化性樹脂組成物の硬化物を得た。
(Production of cured product of thermosetting resin composition)
The solution of the thermosetting resin composition obtained above is applied to the process film 1 (manufactured by Lintec Corporation, product name “SP-PET382150”, polyethylene terephthalate film coated with silicone release agent, thickness 38 μm). On the treated surface, apply so that the thickness of the cured product obtained after drying and curing is 70 μm, dry at 80 ° C. for 3 minutes, process film 2 (manufactured by Lintec Corporation, product name “SP-PET381031” , and a polyethylene terephthalate film coated with a silicone-based release agent (thickness: 38 μm). Then, it was cured at 150° C. for 2 hours to obtain a cured product of the thermosetting resin composition sandwiched between two process films.
比較例2
 対比用接着剤として、汎用接着剤であるセメダイン株式会社製の商品名「スーパーXハイパーワイド」を準備した。
Comparative example 2
As a comparative adhesive, a general-purpose adhesive "Super X Hyper Wide" manufactured by Cemedine Co., Ltd. was prepared.
[硬化物のガラス転移温度及び貯蔵弾性率E’の測定]
 各例で得た硬化物から2枚の工程フィルムを剥離除去し、5mm×20mmに裁断したものを試験片とした。この試験片を、熱機械分析装置(NETZSCH社製、商品名「DMA242E」)にチャック間距離15mmで取り付け、周波数10Hzの歪みを与えながら、昇温速度5℃/分で、-100℃から200℃まで昇温させて、貯蔵弾性率E’及びtanδを測定した。
 上記測定範囲におけるtanδのピークを示す温度をガラス転移温度(Tg)として、23℃における貯蔵弾性率E’(23℃)、Tgより50℃低い温度の貯蔵弾性率E’(Tg-50℃)、Tgより50℃高い温度の貯蔵弾性率E’(Tg+50℃)を求めた。測定結果を表2に示す。
[Measurement of glass transition temperature and storage elastic modulus E′ of cured product]
Two process films were peeled off from the cured product obtained in each example, and a test piece was cut into a size of 5 mm×20 mm. This test piece was attached to a thermomechanical analyzer (manufactured by NETZSCH, trade name "DMA242E") at a distance between chucks of 15 mm, and while applying strain at a frequency of 10 Hz, the temperature was increased from -100 ° C. to 200 ° C. at a rate of 5 ° C./min. The temperature was raised to ° C., and the storage elastic modulus E' and tan δ were measured.
The temperature showing the peak of tan δ in the above measurement range is the glass transition temperature (Tg), the storage elastic modulus E' at 23 ° C. (23 ° C.), and the storage elastic modulus E' at a temperature 50 ° C. lower than Tg (Tg-50 ° C.) , and the storage modulus E′ (Tg+50° C.) at a temperature 50° C. higher than Tg. Table 2 shows the measurement results.
[硬化物のバイオマス度]
 硬化物のバイオマス度は、硬化物の総質量に対して、硬化物を製造する際に使用したバイオマス由来の原料の質量割合であり、下記計算式によって算出した。測定結果を表2に示す。
 硬化物のバイオマス度(質量%)=100×[バイオマス由来の原料の質量(g)]/[硬化物の総質量(g)]
[Biomass degree of cured product]
The degree of biomass of the cured product is the mass ratio of the biomass-derived raw material used when producing the cured product to the total mass of the cured product, and was calculated by the following formula. Table 2 shows the measurement results.
Biomass degree of cured product (% by mass) = 100 × [mass of biomass-derived raw material (g)] / [total mass of cured product (g)]
[硬化物の応力緩和率の測定]
 各例で得た硬化物から工程フィルムを剥離除去し、10mm×70mmに裁断したものを試験片とした。この試験片を、引張試験機(株式会社島津製作所製、商品名「オートグラフ AG-Xplus」)にチャック間距離50mmで取り付け、23℃、引張速度200mm/分で10%伸張したときの応力F(N/m)、及び伸張停止から100秒後の応力F(N/m)の値を用いて、下記式から応力緩和率を求めた。測定結果を表2に示す。但し、比較例1の硬化物は上記の条件で伸張できなかったため、応力緩和率を測定することができなかった。
 応力緩和率(%)=(F-F)/F×100(%)
[Measurement of stress relaxation rate of cured product]
The process film was peeled off from the cured product obtained in each example, and a test piece was cut into a size of 10 mm×70 mm. This test piece was attached to a tensile tester (manufactured by Shimadzu Corporation, trade name "Autograph AG-Xplus") at a distance between chucks of 50 mm, and the stress F when stretched 10% at 23 ° C. and a tensile speed of 200 mm / min. 1 (N/m 2 ) and stress F 2 (N/m 2 ) 100 seconds after the extension was stopped, the stress relaxation rate was obtained from the following equation. Table 2 shows the measurement results. However, since the cured product of Comparative Example 1 could not be stretched under the above conditions, the stress relaxation rate could not be measured.
Stress relaxation rate (%) = (F 1 - F 2 )/F 1 × 100 (%)
[硬化物の破断伸度の測定]
 各例で得た硬化物から工程フィルムを剥離除去し、10mm×70mmに裁断したものを試験片とした。この試験片を、引張試験機(株式会社島津製作所製、商品名「オートグラフ AG-Xplus」)にチャック間距離50mmで取り付け、23℃、引張速度200mm/分の条件で測定したときの破断伸度を測定した。測定結果を表2に示す。
[Measurement of breaking elongation of cured product]
The process film was peeled off from the cured product obtained in each example, and a test piece was cut into a size of 10 mm×70 mm. This test piece was attached to a tensile tester (manufactured by Shimadzu Corporation, trade name "Autograph AG-Xplus") at a distance between chucks of 50 mm, and the elongation at break was measured under the conditions of 23 ° C. and a tensile speed of 200 mm / min. degree was measured. Table 2 shows the measurement results.
[硬化物の銅箔ピール強度の測定]
(1)実施例1~3の評価サンプル作製方法
 各例で得た熱硬化性樹脂組成物の溶液を、工程フィルム1(リンテック株式会社製、製品名「SP-PET382150」、ポリエチレンテレフタレートフィルムにシリコーン系剥離剤を塗布したもの、厚さ38μm)の剥離処理面上に、乾燥及び硬化後に得られる硬化物の厚さが70μmになるように塗布し、80℃で3分間乾燥した後、工程フィルム2(リンテック株式会社製、製品名「SP-PET381031」、ポリエチレンテレフタレートフィルムにシリコーン系剥離剤を塗布したもの、厚さ38μm)の剥離処理面を貼り合わせてピール強度測定用シートを得た。
 得られたシートから工程フィルム2を除去し、銅板(株式会社ユーコウ商会製、製品名「C1220P」、厚さ400μm)に貼り合わせて、ラミネート装置(ニッコー・マテリアルズ株式会社製「V-130」、到達圧力:2.0hPa、温度100℃、加圧力0.5MPa、圧着時間30秒間)にて減圧圧着した。
 その後、工程フィルム1を除去し、銅箔(株式会社ユーコウ商会製、製品名「C1100P」、大きさ:長辺50mm×短辺10mm×厚さ150μm)をチャックのつかみ部分となるように銅箔の接着させていない領域として長辺を10mm残した状態で貼り合わせて、150℃で2時間硬化させたものを銅箔ピール強度測定用の評価サンプルとした。
[Measurement of copper foil peel strength of cured product]
(1) Evaluation sample preparation method of Examples 1 to 3 The solution of the thermosetting resin composition obtained in each example was applied to process film 1 (manufactured by Lintec Corporation, product name “SP-PET382150”, polyethylene terephthalate film with silicone Coated with a release agent, thickness 38 μm), coated so that the thickness of the cured product obtained after drying and curing is 70 μm, dried at 80 ° C. for 3 minutes, and then processed film 2 (manufactured by Lintec Corporation, product name “SP-PET381031”, polyethylene terephthalate film coated with a silicone release agent, thickness 38 μm) was laminated to obtain a sheet for peel strength measurement.
The process film 2 was removed from the resulting sheet, and it was laminated to a copper plate (manufactured by Yukou Co., Ltd., product name “C1220P”, thickness 400 μm), and a laminating device (manufactured by Nikko Materials Co., Ltd. “V-130”). , ultimate pressure: 2.0 hPa, temperature of 100° C., pressure of 0.5 MPa, pressure bonding time of 30 seconds).
After that, the process film 1 is removed, and a copper foil (manufactured by Yukou Shokai Co., Ltd., product name “C1100P”, size: long side 50 mm × short side 10 mm × thickness 150 μm) is used as a grip part of the chuck. 10 mm of the long side was left as a non-adhered region, and cured at 150° C. for 2 hours to obtain an evaluation sample for copper foil peel strength measurement.
(2)比較例1の評価サンプル作製方法
 比較例1の熱硬化性樹脂組成物の溶液からエバポレータにて有機溶媒を除去したものを、銅箔(株式会社ユーコウ商会製、製品名「C1100P」、大きさ:長辺50mm×短辺10mm×厚さ150μm)上に、チャックのつかみ部となる銅箔の接着させていない領域として長辺10mmを残して、硬化後の厚さが70μmとなるように塗布した。該銅箔の熱硬化性樹脂組成物を塗布した領域を銅板(株式会社ユーコウ商会製、製品名「C1220P」、厚さ400μm)に貼り合わせて、150℃で2時間硬化させたものを銅箔ピール強度測定用の評価サンプルとした。
(2) Evaluation sample preparation method of Comparative Example 1 The solution of the thermosetting resin composition of Comparative Example 1 was subjected to removal of the organic solvent by an evaporator, and a copper foil (manufactured by Yuko Co., Ltd., product name “C1100P”, Size: long side 50 mm x short side 10 mm x thickness 150 μm), leaving a long side 10 mm as a region where the copper foil that will be the grip part of the chuck is not adhered, and the thickness after curing is 70 μm. was applied to The area of the copper foil coated with the thermosetting resin composition is attached to a copper plate (manufactured by Yukou Shokai, product name “C1220P”, thickness 400 μm), and the copper foil is cured at 150 ° C. for 2 hours. It was used as an evaluation sample for peel strength measurement.
(3)比較例2の評価サンプル作製方法
 比較例2の対比用接着剤を、銅箔(株式会社ユーコウ商会製、製品名「C1100P」、大きさ:長辺50mm×短辺10mm×厚さ150μm)上に、チャックのつかみ部となる銅箔の接着させていない領域として長辺10mmを残して、硬化後の厚さが70μmとなるように塗布し、大気中で8分間硬化させた。その後、銅箔の対比用接着剤を塗布した領域を、銅板(株式会社ユーコウ商会製、製品名「C1220P」、厚さ400μm)に貼り合わせて、23℃で24時間硬化させたものを銅箔ピール強度測定用の評価サンプルとした。
(3) Evaluation sample preparation method of Comparative Example 2 The adhesive for comparison of Comparative Example 2 was coated with a copper foil (manufactured by Yuko Shokai Co., Ltd., product name “C1100P”, size: long side 50 mm × short side 10 mm × thickness 150 μm ), leaving a long side of 10 mm as a non-adhered area of the copper foil that will be the gripping portion of the chuck. After that, the area of the copper foil coated with the adhesive for comparison is attached to a copper plate (manufactured by Yukou Shokai, product name “C1220P”, thickness 400 μm), and the copper foil is cured at 23 ° C. for 24 hours. It was used as an evaluation sample for peel strength measurement.
(4)銅箔ピール強度の測定方法
 上記で作製した評価サンプルを、引張試験機(株式会社島津製作所製、商品名「オートグラフ AG-Xplus」)に取り付け、銅箔の接着させていない領域を掴み具で把持し、引き剥がし速度50mm/分の条件で90°方向に引き剥がすことによって銅箔ピール強度を測定した。測定結果を表2に示す。
(4) Measurement method of copper foil peel strength The evaluation sample prepared above was attached to a tensile tester (manufactured by Shimadzu Corporation, trade name “Autograph AG-Xplus”), and the area where the copper foil was not adhered was measured. The peel strength of the copper foil was measured by holding it with a gripper and peeling it off in a 90° direction at a peeling speed of 50 mm/min. Table 2 shows the measurement results.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表2から、本実施形態の実施例1~3の熱硬化性樹脂組成物は、優れた銅箔ピール強度を有していることが分かる。一方、(A)成分以外の多官能フェノール化合物を用いた比較例1、及び汎用接着剤を用いた比較例2は、銅箔ピール強度が低かった。 From Table 2, it can be seen that the thermosetting resin compositions of Examples 1 to 3 of the present embodiment have excellent copper foil peel strength. On the other hand, Comparative Example 1 using a polyfunctional phenol compound other than component (A) and Comparative Example 2 using a general-purpose adhesive had low copper foil peel strength.

Claims (13)

  1.  (A)(a1)不飽和脂肪族炭化水素基を有するフェノール化合物と、(a2)不飽和脂肪族炭化水素と、を酸化重合によって共重合させてなる多官能フェノール化合物と、
     (B)エポキシ樹脂と、
     (C)硬化促進剤と、を含有する熱硬化性樹脂組成物であって、
     前記熱硬化性樹脂組成物の硬化物の、23℃における貯蔵弾性率E’(23℃)が、20~2,500MPaであり、
     前記熱硬化性樹脂組成物の硬化物の、ガラス転移温度+50℃における貯蔵弾性率E’(Tg+50℃)に対する、前記貯蔵弾性率E’(23℃)の比[E’(23℃)/E’(Tg+50℃)]が、1~50である、熱硬化性樹脂組成物。
    (A) a polyfunctional phenol compound obtained by copolymerizing (a1) a phenol compound having an unsaturated aliphatic hydrocarbon group and (a2) an unsaturated aliphatic hydrocarbon by oxidative polymerization;
    (B) an epoxy resin;
    (C) a thermosetting resin composition containing a curing accelerator,
    The cured product of the thermosetting resin composition has a storage elastic modulus E' (23°C) at 23°C of 20 to 2,500 MPa,
    The ratio of the storage elastic modulus E ' (23 ° C.) to the storage elastic modulus E ' (Tg + 50 ° C.) at the glass transition temperature + 50 ° C. of the cured product of the thermosetting resin composition [E ' (23 ° C.) / E '(Tg+50°C)] is 1 to 50, a thermosetting resin composition.
  2.  前記(a1)不飽和脂肪族炭化水素基を有するフェノール化合物が、下記一般式(A-1)で表される化合物から選択される1種以上である、請求項1に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは、脂肪族不飽和結合を1~3個含む不飽和脂肪族炭化水素基であり、Xは、水素原子又はヒドロキシ基であり、Xは水素原子又は炭素数1~5のアルキル基であり、Xは、水素原子、ヒドロキシ基又はカルボキシ基である。)
    The thermosetting resin according to claim 1, wherein the (a1) phenolic compound having an unsaturated aliphatic hydrocarbon group is one or more selected from compounds represented by the following general formula (A-1): Composition.
    Figure JPOXMLDOC01-appb-C000001

    (wherein R is an unsaturated aliphatic hydrocarbon group containing 1 to 3 aliphatic unsaturated bonds, X 1 is a hydrogen atom or a hydroxy group, and X 2 is a hydrogen atom or a 5 is an alkyl group, and X 3 is a hydrogen atom, a hydroxy group or a carboxy group.)
  3.  前記(a1)不飽和脂肪族炭化水素基を有するフェノール化合物が、前記一般式(A-1)において、X、X及びXがいずれも水素原子である化合物を、90質量%以上含有する、請求項2に記載の熱硬化性樹脂組成物。 The (a1) phenol compound having an unsaturated aliphatic hydrocarbon group contains 90% by mass or more of a compound in which X 1 , X 2 and X 3 are all hydrogen atoms in the general formula (A-1). The thermosetting resin composition according to claim 2, wherein
  4.  前記(a1)不飽和脂肪族炭化水素基を有するフェノール化合物が、炭素数8~30の不飽和脂肪族炭化水素基を有する、請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin according to any one of claims 1 to 3, wherein the (a1) phenolic compound having an unsaturated aliphatic hydrocarbon group has an unsaturated aliphatic hydrocarbon group having 8 to 30 carbon atoms. Composition.
  5.  前記(a2)不飽和脂肪族炭化水素の炭素数が、10~40である、請求項1~3のいずれかの1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 3, wherein (a2) the unsaturated aliphatic hydrocarbon has 10 to 40 carbon atoms.
  6.  前記(a2)不飽和脂肪族炭化水素が、脂肪族不飽和結合を3~9個含む、請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 3, wherein the (a2) unsaturated aliphatic hydrocarbon contains 3 to 9 aliphatic unsaturated bonds.
  7.  前記(a2)不飽和脂肪族炭化水素が、スクアレンである、請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 3, wherein the (a2) unsaturated aliphatic hydrocarbon is squalene.
  8.  前記(a1)不飽和脂肪族炭化水素基を有するフェノール化合物が、バイオマス由来の化合物である、請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 3, wherein the (a1) phenolic compound having an unsaturated aliphatic hydrocarbon group is a biomass-derived compound.
  9.  前記(a2)不飽和脂肪族炭化水素が、バイオマス由来の化合物である、請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 3, wherein the (a2) unsaturated aliphatic hydrocarbon is a biomass-derived compound.
  10.  前記(A)成分の質量平均分子量(Mw)が、8,000~200,000である、請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 3, wherein the weight average molecular weight (Mw) of component (A) is 8,000 to 200,000.
  11.  前記酸化重合を行う際における、前記(a1)不飽和脂肪族炭化水素基を有するフェノール化合物の配合量(W)と、前記(a2)不飽和脂肪族炭化水素の配合量(W)との比〔W/W〕が、モル比で、0.1~20である、請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。 When performing the oxidative polymerization, the blending amount (W A ) of the (a1) phenol compound having an unsaturated aliphatic hydrocarbon group and the blending amount (W B ) of the (a2) unsaturated aliphatic hydrocarbon The thermosetting resin composition according to any one of claims 1 to 3, wherein the ratio [W A /W B ] in terms of molar ratio is 0.1 to 20.
  12.  硬化物のガラス転移温度が、5~60℃である、請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 3, wherein the cured product has a glass transition temperature of 5 to 60°C.
  13.  硬化物の破断伸度が、15~200%である、請求項1~3のいずれか1項に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to any one of claims 1 to 3, wherein the cured product has a breaking elongation of 15 to 200%.
PCT/JP2022/035128 2021-09-24 2022-09-21 Thermosetting resin composition WO2023048170A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-155684 2021-09-24
JP2021-155681 2021-09-24
JP2021155681 2021-09-24
JP2021155684 2021-09-24
JP2022039412 2022-03-14
JP2022-039412 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023048170A1 true WO2023048170A1 (en) 2023-03-30

Family

ID=85720716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035128 WO2023048170A1 (en) 2021-09-24 2022-09-21 Thermosetting resin composition

Country Status (1)

Country Link
WO (1) WO2023048170A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019653A (en) * 1999-07-05 2001-01-23 Nippon Kayaku Co Ltd Allylphenol-based compound, curing agent for epoxy resin and hardenable epoxy resin composition
JP2010535152A (en) * 2007-05-03 2010-11-18 カードライト コーポレイション Cardanol-based dimers and their use
CN103421163A (en) * 2013-08-20 2013-12-04 上海美东生物材料有限公司 Method for preparing epoxy resin by heavy-phase materials in cardanol production
JP2015510958A (en) * 2012-03-20 2015-04-13 ダウ グローバル テクノロジーズ エルエルシー Modified epoxy resin composition used for high solid coating
JP2021070738A (en) * 2019-10-30 2021-05-06 東洋インキScホールディングス株式会社 Active energy ray-curable ink composition and printed materials thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019653A (en) * 1999-07-05 2001-01-23 Nippon Kayaku Co Ltd Allylphenol-based compound, curing agent for epoxy resin and hardenable epoxy resin composition
JP2010535152A (en) * 2007-05-03 2010-11-18 カードライト コーポレイション Cardanol-based dimers and their use
JP2015510958A (en) * 2012-03-20 2015-04-13 ダウ グローバル テクノロジーズ エルエルシー Modified epoxy resin composition used for high solid coating
CN103421163A (en) * 2013-08-20 2013-12-04 上海美东生物材料有限公司 Method for preparing epoxy resin by heavy-phase materials in cardanol production
JP2021070738A (en) * 2019-10-30 2021-05-06 東洋インキScホールディングス株式会社 Active energy ray-curable ink composition and printed materials thereof

Similar Documents

Publication Publication Date Title
EP2104721B1 (en) High strength epoxy adhesive and use thereof
KR102217397B1 (en) Flexible epoxy resin composition
EP3135722A1 (en) Heat-curable resin composition
EP3127933B1 (en) Heat-curable epoxy resin composition
KR101385696B1 (en) Water-dispersible epoxy resin, aqueous epoxy resin composition and cured article thereof
JP4952866B2 (en) Cationic polymerization initiator and thermosetting epoxy resin composition
KR101521044B1 (en) Curable resin composition
JP2019035087A (en) Epoxy resin, epoxy resin composition and cured product
KR102585184B1 (en) Adhesive films, tapes and methods comprising a (meth)acrylate matrix comprising a curable epoxy/thiol resin composition
KR20140022912A (en) Curable resin composition
KR20160132062A (en) Photocurable epoxy resin systems
TWI586728B (en) Curable resin composition
JP7338479B2 (en) Modified epoxy resin, epoxy resin composition, cured product, and laminate for electric/electronic circuit
JP2006036801A (en) High-molecular weight epoxy resin composition, film obtained using the same and cured product of the same
EP3257898B1 (en) Epoxy resin composition
WO2018110550A1 (en) Thermosetting resin composition, photocurable resin composition, cured product and heat resistance improving agent
WO2023048170A1 (en) Thermosetting resin composition
JP2017214529A (en) Epoxy resin, epoxy resin composition, and cured product
WO2023048164A1 (en) Multifunctional phenolic compound and production method therefor
TWI586729B (en) Curable resin composition
WO2023048163A1 (en) Multifunctional phenolic compound and production method therefor
JP5356763B2 (en) Resin composition and semiconductor device
JP4894395B2 (en) Liquid resin composition and semiconductor device produced using liquid resin composition
US20030158350A1 (en) Heat resistant resin composition and adhesive film
WO2016114268A1 (en) Curable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872922

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549717

Country of ref document: JP