WO2023048134A1 - Vehicle drive device - Google Patents

Vehicle drive device Download PDF

Info

Publication number
WO2023048134A1
WO2023048134A1 PCT/JP2022/034962 JP2022034962W WO2023048134A1 WO 2023048134 A1 WO2023048134 A1 WO 2023048134A1 JP 2022034962 W JP2022034962 W JP 2022034962W WO 2023048134 A1 WO2023048134 A1 WO 2023048134A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
input
idler
vehicle drive
drive device
Prior art date
Application number
PCT/JP2022/034962
Other languages
French (fr)
Japanese (ja)
Inventor
磯野宏
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2023048134A1 publication Critical patent/WO2023048134A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/12Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of electric gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • F16H48/11Differential gearings with gears having orbital motion with orbital spur gears having intermeshing planet gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to a vehicular drive system that includes an input gear provided on an input shaft that rotates integrally with a rotor of a rotating electric machine, and an output gear that is drivingly connected to wheels.
  • Japanese Patent Application Laid-Open No. 9-226394 discloses a vehicle driving device for an electric vehicle (hereinafter, reference numerals in parentheses in the background art refer to documents).
  • This vehicle drive device uses a rotating electrical machine (1) as a driving force source for wheels, and includes a gear section (9) for transmitting rotation of a rotor shaft (2) of the rotating electrical machine (1) to the wheels.
  • the gear portion (9) includes a counter gear mechanism as a reduction gear mechanism and a differential gear mechanism so as to reduce the rotation of the rotor shaft (2) and amplify the torque to transmit it to the wheels.
  • the counter gear mechanism includes a relatively large diameter gear (92) fixed to one end of the counter shaft and a relatively small diameter gear (94) fixed to the other end.
  • the differential gear mechanism includes a differential gear having bevel gears, a differential case (96) housing the differential gear, and a small diameter gear (94) fixed to the differential case (96) of the counter gear mechanism. and a ring gear (95) that meshes with.
  • the counter gear mechanism as the speed reduction mechanism includes large-diameter and small-diameter gears fixed to one end side and the other end side of the counter shaft, respectively. Therefore, the axial length of the vehicle drive device tends to increase in accordance with the length of the countershaft.
  • the distance between the shaft on which the input gear that is drivingly connected to the rotor shaft and meshing with the gear of the counter gear mechanism is arranged and the shaft on which the differential gear mechanism is arranged becomes long. There is a risk that the drive device will become large in the radial direction. For example, if the diameter of the input gear is reduced in order to increase the reduction ratio, it is difficult to secure sufficient mechanical strength to the shaft member when a bending moment generated by meshing of the gears acts on the shaft member. .
  • a vehicle drive device includes a rotating electric machine having a rotor, an input shaft that rotates integrally with the rotor, and an input gear arranged coaxially with the input shaft and drivingly connected to the input shaft.
  • a first output member drivingly connected to a first wheel
  • a second output member drivingly connected to a second wheel
  • a vehicle drive device comprising a differential gear mechanism distributed to the second output member, and a first idler gear and a second idler gear, wherein the input gear and the output gear are on different axes parallel to each other
  • the first idler gear and the second idler gear have the same diameter and the same number of teeth, and the first idler gear meshes with the input gear and the output gear.
  • a second idler gear meshes with the input gear at a position different from the first idler gear in the circumferential direction of the input gear, and meshes with the output gear at a position different from the first idler gear in the circumferential direction of the output gear. are engaged.
  • the first idler gear and the second idler gear mesh with the input gear and the output gear, and the length of the vehicle drive device in the direction along the input shaft can be suppressed.
  • the first idler gear and the second idler gear mesh with each other at different positions in the circumferential direction of the input gear the bending moment acting on the input gear and the shaft member on which the input gear is arranged can be kept small. Therefore, it is easy to reduce the diameter of the input gear and the shaft member.
  • By making it possible to reduce the size of the input gear and the shaft member it is possible to reduce the diameter of the output gear while setting a large reduction ratio between the input gear and the output gear. That is, according to this configuration, it is possible to provide a compact vehicle drive device that includes a reduction gear mechanism with a reduced axial length while ensuring a required reduction ratio.
  • FIG. 4 is a diagram schematically showing the arrangement of gears of the first vehicle drive device as viewed in the axial direction;
  • Schematic II-II cross-sectional view in FIG. FIG. 4 is a diagram schematically showing the arrangement of gears of the second vehicle drive device as viewed in the axial direction;
  • FIG. 6 is a diagram schematically showing the arrangement of gears of the third vehicle drive device as viewed in the axial direction;
  • FIG. 2 is a diagram schematically showing the configuration of a vehicle drive system of a comparative example;
  • FIG. 11 is a diagram schematically showing the arrangement of gears of the fourth vehicle drive device as viewed in the axial direction;
  • a vehicle drive system will be described below based on the drawings.
  • a first vehicle drive system 100A will be described with reference to FIGS. 6, the third vehicle drive device 100C will be described as an example. 8 and 9, even in a form that does not have the differential gear mechanism DF, it is possible to provide a feature relating to the power transmission path from the input gear 1G to the output gear 2G.
  • the fourth vehicle drive device 100D (first drive device 100a, second drive device 100b) will be described as an example. When there is no particular need to distinguish between them, they will simply be referred to as the vehicle drive device 100 for explanation.
  • each member in the following description represents the direction when the vehicle drive device 100 is assembled in the vehicle (vehicle mounted state).
  • Terms relating to the dimensions, arrangement direction, arrangement position, etc. of each member are concepts that include the state of having differences due to errors (errors to the extent allowable in manufacturing).
  • the direction along the rotation axis of the vehicle drive device 100 in this embodiment, each axis (for example, the first axis A1 and the second axis A2, which will be described later in detail) that are separate axes parallel to each other). It will be referred to as an axial direction L.
  • a direction orthogonal to each of the above axes will be referred to as a "radial direction" with respect to each axis.
  • overlapping in a particular direction view means that when a virtual straight line parallel to the viewing direction is moved in each direction orthogonal to the virtual straight line, It means that there is at least a part of the area where the virtual straight line intersects both of the two members.
  • the axial arrangement regions overlap means that the axial arrangement region of one member includes at least the axial arrangement region of the other member. It means that part is included.
  • the term “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit a driving force (synonymous with torque), and the two rotating elements are connected so as to rotate integrally. or a state in which the two rotating elements are connected to each other via one or more transmission members (shafts, gears, etc.) so as to be able to transmit driving force.
  • the electric member may include an engagement device (for example, a friction engagement device, a mesh type engagement device, etc.) that selectively transmits rotation and driving force.
  • the vehicle drive device 100 of this embodiment includes a rotating electric machine MG as a driving force source for the wheels W.
  • rotary electric machine is used as a concept including motors (electric motors), generators (generators), and motor generators that function as both motors and generators as necessary.
  • the first vehicle drive device 100A which is one aspect of the vehicle drive device 100, includes a rotary electric machine MG having a rotor RT and an input shaft rotating integrally with the rotor RT. 1, an input gear 1G arranged coaxially with the input shaft 1 and drivingly connected to the input shaft 1, an output gear 2G drivingly connected to the wheels W, and an idler gear 3G.
  • the idler gear 3G of the first vehicle drive device 100A includes a first idler gear 31G and a second idler gear 32G.
  • the first idler gear 31G and the second idler gear 32G are gears having the same diameter and the same number of teeth.
  • the input gear 1G is provided on the input shaft 1 in the first vehicle drive device 100A.
  • the input gear 1G and the output gear 2G are arranged on different shafts parallel to each other.
  • the input gear 1G is arranged on the first axis A1 and the output gear 2G is arranged on the second axis A2.
  • the first idler gear 31G is meshed with the input gear 1G and the output gear 2G
  • the second idler gear 32G is also meshed with the input gear 1G and the output gear 2G.
  • the second idler gear 32G meshes with the input gear 1G at a position different from the first idler gear 31G in the circumferential direction of the input gear 1G, and outputs at a position different from the first idler gear 31G in the circumferential direction of the output gear 2G. It meshes with gear 2G.
  • the length of the vehicle drive device 100 in the axial direction L can be reduced, as shown in FIG.
  • the first idler gear 31G and the second idler gear 32G mesh with each other at different positions in the circumferential direction of the input gear 1G, the bending moment acting on the input gear 1G and the input shaft 1 can be kept small. That is, the diameters of the input gear 1G and the input shaft 1 can be reduced to increase the speed reduction ratio between the idler gear 3G and the input gear 1G, thereby reducing the need for increasing the speed reduction ratio between the idler gear 3G and the output gear 2G. , the diameter of the output gear 2G can be reduced.
  • the meshing position between the first idler gear 31G and the input gear 1G and the meshing position between the second idler gear 32G and the input gear 1G are positioned on the first axis, which is the rotational axis of the input gear 1G. They are arranged on opposite sides with A1 interposed therebetween. In other words, the meshing position between the first idler gear 31G and the input gear 1G and the meshing position between the second idler gear 32G and the input gear 1G are arranged at equal intervals in the circumferential direction of the input gear 1G.
  • the input gear 1G Since the meshing positions of the two idler gears 3G with the input gear 1G are arranged at equal intervals in the circumferential direction of the input gear 1G, the input gear 1G is positioned at the meshing portion between the idler gears 3G and the input gear 1G.
  • the loads received from the 3G can act in directions that cancel each other out. Therefore, the bending moment acting on the input shaft 1 and the input gear 1G can be kept small.
  • the meshing positions of the two idler gears 3G and the input gear 1G are arranged on opposite sides of the first axis A1. , the loads that the input gear 1G receives from the idler gear 3G act in opposite directions. Therefore, the effect of suppressing the bending moment acting on the input shaft 1 and the input gear 1G is large.
  • the wheels W driven by the first vehicle drive device 100A include a first wheel W1 and a second wheel W2, and the first vehicle drive device 100A drives these two wheels W.
  • the first vehicle drive device 100A includes a first output member 41 drivingly connected to the first wheel W1 and a second output member 42 drivingly connected to the second wheel W2.
  • a planetary gear type differential gear mechanism DF differential gear mechanism DF by the planetary gear mechanism PS
  • I have.
  • an input gear 1G, a first idler gear 31G, a second idler gear 32G (not shown in FIG. 2), an output gear 2G, and a differential gear mechanism DF (planetary gear mechanism PS). are overlapped with each other in the axial direction L.
  • the differential gear mechanism DF in the first vehicle drive device 100A includes a planetary gear mechanism PS including a sun gear SG, a carrier CA, and a ring gear RG.
  • the ring gear RG is formed radially inside the output gear 2G so as to rotate integrally with the output gear 2G.
  • a carrier CA is connected to the first output member 41 and a sun gear SG is connected to the second output member 42 .
  • the carrier CA supports the first pinion gear PG1 and the second pinion gear PG2 via the pinion shaft PA.
  • the first pinion gear PG1 meshes with the ring gear RG
  • the second pinion gear PG2 meshes with the sun gear SG.
  • two second pinion gears PG2 mesh with one first pinion gear PG1.
  • FIG. 1 illustrates a configuration in which the entire first idler gear 31G and the entire second idler gear 32G are arranged so as to overlap the rotor RT when viewed in the axial direction. It is sufficient that it overlaps with the entire rotating electrical machine MG that is included when viewed in the axial direction.
  • a second vehicle drive device 100B which is another aspect of the vehicle drive device 100, also includes a rotary electric machine MG having a rotor RT and an input shaft rotating integrally with the rotor RT. 1, an input gear 1G arranged coaxially with the input shaft 1 and drivingly connected to the input shaft 1, an output gear 2G drivingly connected to the wheels W, and an idler gear 3G.
  • the idler gear 3G of the second vehicle drive device 100B includes a third idler gear 33G in addition to the first idler gear 31G and the second idler gear 32G.
  • the first idler gear 31G, the second idler gear 32G, and the third idler gear 33G are gears having the same diameter and the same number of teeth.
  • the input gear 1G is provided on the input shaft 1 also in the second vehicle drive device 100B.
  • the input gear 1G and the output gear 2G are arranged on different axes parallel to each other. That is, the input gear 1G is arranged on the first axis A1, and the output gear 2G is arranged on the second axis A2. Also, in the second vehicle drive device 100B, as in the first vehicle drive device 100A, the first idler gear 31G is meshed with the input gear 1G and the output gear 2G. , meshes with the input gear 1G and also meshes with the output gear 2G.
  • the second idler gear 32G meshes with the input gear 1G at a position different from that of the first idler gear 31G in the circumferential direction of the input gear 1G. It meshes with the output gear 2G at a position different from that of the idler gear 31G.
  • the third idler gear 33G meshes with the input gear 1G, and also meshes with the connection gear 5 (first connection gear 51G, second connection gear 52G). connected for synchronous rotation.
  • the first idler gear 31G meshes with the input gear 1G, the output gear 2G, and the first connection gear 51G
  • the second idler gear 32G meshes with the input gear 1G, the output gear 2G, and the second connection gear 52G
  • the third idler gear 33G does not mesh with the input gear 1G and the output gear 2G, but meshes with the first connection gear 51G and the second connection gear 52G.
  • the first idler gear 31G and the second idler gear 32G each have an idler driven gear 3a that meshes with the input gear 1G and an idler drive gear 3b that meshes with the output gear 2G.
  • the first idler gear 31G includes a first idler driven gear 31Ga meshing with the input gear 1G and a first idler drive gear 31Gb meshing with the output gear 2G.
  • the second idler gear 32G as shown in FIG. 3, includes a second idler driven gear 32Ga meshing with the input gear 1G and a second idler drive gear 32Gb meshing with the output gear 2G. Since the third idler gear 33G does not mesh with the output gear 2G, as shown in FIG.
  • the third idler gear 33G may be provided with the idler drive gear 3b in a state where it does not mesh with anything.
  • the meshing position between the first idler gear 31G and the input gear 1G, the meshing position between the second idler gear 32G and the input gear 1G, and the meshing position between the third idler gear 33G and the input gear 1G are arranged at equal intervals in the circumferential direction of the input gear 1G.
  • the meshing positions of the three idler gears 3G with the input gear 1G are arranged at equal intervals in the circumferential direction of the input gear 1G, input The loads that the gear 1G receives from the idler gear 3G can act in directions that cancel each other out. Therefore, the bending moment acting on the input shaft 1 and the input gear 1G can be kept small.
  • the wheels W driven by the second vehicle drive device 100B also include a first wheel W1 and a second wheel W2, and the second vehicle drive device 100B drives these two wheels W.
  • the second vehicle drive device 100B like the first vehicle drive device 100A, the second vehicle drive device 100B also includes a first output member 41 drivingly connected to the first wheel W1 and a second wheel W2. and a planetary gear type differential gear mechanism DF (planetary gear mechanism and a differential gear mechanism DF) by PS.
  • DF planetary gear mechanism and a differential gear mechanism DF
  • the arrangement areas in the axial direction L with DF overlap each other.
  • the differential gear mechanism DF of the second vehicle drive device 100B includes the same planetary gear mechanism PS as the differential gear mechanism DF of the first vehicle drive device 100A. Since they have the same configuration, detailed description is omitted.
  • the entire first idler gear 31G and the entire second idler gear 32G are aligned with the rotary electric machine MG (rotor RT in this case) when viewed in the axial direction L. ) are arranged so as to overlap with the entire third idler gear 33G in the second vehicle drive device 100B, the entire third idler gear 33G is also arranged so as to overlap the rotary electric machine MG when viewed in the axial direction. Accordingly, as described above, it is possible to suppress an increase in the radial dimension of the vehicle drive device 100 .
  • FIG. 3 illustrates a configuration in which each idler gear 3G as a whole is arranged so as to overlap the rotor RT when viewed in the axial direction. and overlap in the axial view.
  • FIG. 5 and 6 illustrate a third vehicle drive device 100C, which is another aspect of the vehicle drive device 100.
  • the input gear 1G is provided on the input shaft 1 as an example.
  • the input gear 1G is disposed on the intermediate shaft 6 coaxially disposed with the input shaft 1, and is drivingly connected to the input shaft 1 via the transmission 7.
  • the third vehicle drive device 100 ⁇ /b>C is provided coaxially with the input shaft 1 and includes a transmission 7 that changes the speed of rotation of the input shaft 1 and outputs the speed to the intermediate shaft 6 .
  • the present embodiment exemplifies the transmission 7 capable of forming two gear stages.
  • the input gear 1G is provided so as to rotate integrally with the intermediate shaft 6. As shown in FIG.
  • the transmission 7 includes a second planetary gear mechanism 70 and a first engagement device CL1.
  • the second planetary gear mechanism 70 and the first engagement device CL1 are arranged on the first axis A1 together with the input shaft 1, the intermediate shaft 6 and the input gear 1G.
  • the intermediate shaft 6 is a hollow cylindrical member, and the input shaft 1 passes through the radially inner side of the intermediate shaft 6 to connect the rotor RT, the second sun gear SG2 of the second planetary gear mechanism 70, and the first engagement device CL1. and the first engagement rotary member RM1.
  • the second planetary gear mechanism 70 is a single pinion type planetary gear mechanism including a second sun gear SG2, a second carrier CA2, and a second ring gear RG2.
  • the second sun gear SG2 is a speed change input element and is connected to the input shaft 1 so as to rotate integrally therewith.
  • the second carrier CA2 is a transmission output element and is connected to the intermediate shaft 6 so as to rotate integrally with the input gear 1G.
  • the second carrier CA2 also rotatably supports a third pinion gear PG3 that meshes with the second sun gear SG2 and the second ring gear RG2.
  • the third pinion gear PG3 rotates (revolves) around its axis, and rotates (revolves) around the second sun gear SG2 together with the second carrier CA2.
  • a plurality of third pinion gears PG3 are provided at intervals along the orbit of the revolution.
  • the first engagement device CL1 is configured to switch the speed reduction ratio of the transmission 7 according to the state of engagement.
  • the first engagement device CL1 includes a clutch mechanism CM and a brake mechanism BM.
  • the first engagement device CL1 is configured such that when one of the clutch mechanism CM and the brake mechanism BM is in the engaged state, the other is in the released state.
  • the first engaging device CL1 includes a second engaging rotating member RM2 that rotates integrally with the second ring gear RG2 of the second planetary gear mechanism 70.
  • the clutch mechanism CM is configured to selectively engage the first engagement rotary member RM1 and the second engagement rotary member RM2.
  • the brake mechanism BM is configured to selectively engage the second engaging rotary member RM2 and the case 90, which is a non-rotating member.
  • each of the clutch mechanism CM and the brake mechanism BM is a friction engagement device having a friction engagement element.
  • the first engagement device CL1 includes a first pressing member PM1 that presses the respective frictional engagement elements of the clutch mechanism CM and the brake mechanism BM, and a first pressing member PM1 (not shown) that drives the first pressing member PM1. and an engagement drive device.
  • the first pressing member PM1 is arranged between the frictional engagement element of the clutch mechanism CM and the frictional engagement element of the brake mechanism BM in the axial direction L.
  • the engagement driving device is a motor
  • the rotational driving force of the engaging driving device is converted into the driving force in the axial direction L by the ball screw mechanism and transmitted to the first pressing member PM1.
  • the first pressing member PM1 moves in the axial direction L and presses either the friction engagement element of the clutch mechanism CM or the friction engagement element of the brake mechanism BM.
  • the clutch mechanism CM When the clutch mechanism CM is in the engaged state and the brake mechanism BM is in the disengaged state, the clutch mechanism CM causes the first engagement rotating member RM1 that rotates integrally with the input shaft 1 and the second sun gear SG2, The second engagement rotating member RM2 that rotates integrally with the 2-ring gear RG2 is engaged and rotates integrally. As a result, the second sun gear SG2, the second ring gear RG2, and the second carrier CA2 connected to the input gear 1G rotate integrally. That is, the rotation of the input shaft 1 (rotor RT) is transmitted as it is to the input gear 1G without being decelerated.
  • the third vehicle drive device 100C also includes an input gear 1G, an output gear 2G drivingly connected to the wheels W, and an idler gear 3G. ing.
  • the idler gear 3G of the third vehicle drive device 100C includes a first idler gear 31G and a second idler gear 32G, similar to the first vehicle drive device 100A.
  • 32G is a gear with the same diameter and the same number of teeth.
  • the input gear 1G and the output gear 2G are arranged on different axes parallel to each other, similar to the first vehicle drive device 100A.
  • the input gear 1G is arranged on the first axis A1 and the output gear 2G is arranged on the second axis A2.
  • the first idler gear 31G is meshed with the input gear 1G and the output gear 2G
  • the second idler gear 32G is also meshed with the input gear 1G and the output gear 2G.
  • the second idler gear 32G meshes with the input gear 1G at a position different from the first idler gear 31G in the circumferential direction of the input gear 1G, and outputs at a position different from the first idler gear 31G in the circumferential direction of the output gear 2G. It meshes with gear 2G.
  • the length of the vehicle drive device 100 in the axial direction L can be suppressed, as shown in FIG.
  • the first idler gear 31G and the second idler gear 32G mesh with each other at different positions in the circumferential direction of the input gear 1G, they act on the intermediate shaft 6, which is a shaft member on which the input gear 1G and the input gear 1G are arranged. Bending moment can be kept small.
  • the diameters of the input gear 1G and the intermediate shaft 6 can be reduced to increase the speed reduction ratio between the idler gear 3G and the input gear 1G, thereby reducing the need for increasing the speed reduction ratio between the idler gear 3G and the output gear 2G.
  • the diameter of the output gear 2G can be reduced.
  • the meshing position between the first idler gear 31G and the input gear 1G and the meshing position between the second idler gear 32G and the input gear 1G are arranged on the first axis, which is the rotational axis of the input gear 1G. They are arranged on opposite sides with A1 interposed therebetween. In other words, the meshing position between the first idler gear 31G and the input gear 1G and the meshing position between the second idler gear 32G and the input gear 1G are arranged at equal intervals in the circumferential direction of the input gear 1G.
  • the input gear 1G Since the meshing positions of the two idler gears 3G with the input gear 1G are arranged at equal intervals in the circumferential direction of the input gear 1G, the input gear 1G is positioned at the meshing portion between the idler gears 3G and the input gear 1G.
  • the loads received from the 3G can act in directions that cancel each other out. Therefore, the bending moment acting on the intermediate shaft 6 and the input gear 1G can be kept small.
  • the meshing positions of the two idler gears 3G and the input gear 1G are arranged on opposite sides of the first axis A1. , the loads that the input gear 1G receives from the idler gear 3G act in opposite directions. Therefore, the effect of suppressing the bending moment acting on the intermediate shaft 6 and the input gear 1G, which are shaft members on which the input gear 1G is arranged, is large.
  • the number and arrangement of the idler gears 3G described above are not limited to this, and for example, the structure of the second vehicle drive device 100B described above with reference to FIGS. 3 and 4 can also be applied.
  • the wheels W driven by the third vehicle drive device 100C also include a first wheel W1 and a second wheel W2, and the third vehicle drive device 100C drives these two wheels W.
  • the third vehicle drive device 100C includes a first output member 41 drivingly connected to the first wheel W1 and a second output member 42 drivingly connected to the second wheel W2. , and a planetary gear type differential gear mechanism DF for distributing the driving force transmitted to the output gear 2G to the first output member 41 and the second output member 42 .
  • the arrangement areas in the axial direction L with the gear mechanism DF overlap each other.
  • the output gear 2G is a differential input gear for inputting driving force to the differential gear mechanism DF, like the first vehicle drive device 100A and the second vehicle drive device 100B.
  • the differential gear mechanism DF is configured by the planetary gear mechanism PS similar to the first vehicle drive device 100A and the second vehicle drive device 100B. can be done.
  • the differential gear mechanism DF is configured by the planetary gear mechanism PS, it does not preclude the configuration from being different from that of the first vehicle drive device 100A and the second vehicle drive device 100B. .
  • the entire first idler gear 31G and the entire second idler gear 32G overlap the rotary electric machine MG when viewed in the axial direction L. are placed in That is, the first idler gear 31G and the second idler gear 32G are arranged so as not to protrude from the rotary electric machine MG when viewed in the axial direction. Accordingly, it is possible to suppress an increase in the radial dimension of the vehicle drive device 100 .
  • FIG. 5 illustrates a configuration in which the entire first idler gear 31G and the entire second idler gear 32G are arranged so as to overlap the rotor RT when viewed in the axial direction. ) as long as it overlaps with the entire rotary electric machine MG in an axial view.
  • the third vehicle drive device 100C has a torque vectoring function for differentiating the torque transmitted to the first output member 41 and the second output member 42, an LSD function (limited slip differential function, differential A torque control device 9 having a limiting function) and a second engagement device CL2 are provided.
  • the second engagement device CL2 is configured by removing the clutch mechanism CM from the above-described first engagement device CL1 and including only the brake mechanism BM.
  • the method of driving the brake mechanism BM using an engagement drive device such as a motor is the same as that of the first engagement device CL1.
  • a torque vectoring function can be realized by applying torque to the torque control device 9 from a drive device such as a motor (not shown).
  • the LSD function can be realized by restricting the rotation by the brake mechanism BM of the second engagement device CL2.
  • vehicle drive system 100 of the present embodiment will be described below as vehicle drive systems of comparative examples (drive system 101 of the first comparative example, drive system 102 of the second comparative example, third A description will be given in comparison with the driving device 103) of the comparative example.
  • the drive device 101 (two-stage speed reduction type) of the first comparative example includes a counter gear mechanism CG as the reduction gear mechanism 30 .
  • the counter gear mechanism CG includes a large-diameter counter driven gear CG1 and a small-diameter counter drive gear CG2 coaxially arranged. Therefore, the length of the driving device in the axial direction L tends to increase.
  • the rotary shaft (second axis A2) of the differential gear mechanism DF (output member, wheel W) and the rotor The space between the RT and the rotation axis (first axis A1) may be restricted.
  • the drive device 102 (single-speed reduction type) of the second comparative example includes a spur gear as the reduction gear mechanism 30 instead of the counter gear mechanism CG.
  • the length in the axial direction L (the second axial length H2) can be made shorter than the length in the axial direction L (the first axial length H1) of the driving device 101 of the first comparative example. can be done.
  • the diameter of the input gear 1G is increased in order to secure strength, the diameter of the output gear 2G must also be increased in order to secure the same reduction ratio, and the drive device becomes radially large. Therefore, it may be difficult to mount the device on a vehicle. Further, similarly to the driving device 101 of the first comparative example, in order to secure the arrangement space of the differential gear mechanism DF, the rotation axis (second axis A2) of the differential gear mechanism DF (output member, wheel W) and , the interval between the rotor RT and the rotation axis (first axis A1) may be restricted.
  • the driving device 103 (coaxial reduction type) of the third comparative example includes, for example, a planetary gear mechanism PS as the reduction gear mechanism 30, and the rotor RT, the input gear 1G, and the output gear 2G are coaxial (first axis A1 or second axis A1). Axis A2). As shown in FIG. 7, the driving device 103 of the third comparative example has a smaller radial size than the other two comparative examples. However, since the differential gear mechanism DF is also arranged coaxially with the rotor RT, the input gear 1G, and the output gear 2G, the length in the axial direction L (the third axial length H3) is It becomes significantly larger than the two comparative examples. In addition, the minimum ground clearance MGL restricts the output of the rotary electric machine MG, which may hinder the increase in output.
  • the bending moment of the input gear 1G and the shaft member on which the input gear 1G is arranged is suppressed as described above.
  • the diameter of the output gear 2G can be reduced, and a required reduction ratio can be secured without increasing the diameter of the output gear 2G.
  • the idler gear 3G by configuring the idler gear 3G with a relatively large-diameter idler driven gear 3a and a relatively small-diameter idler drive gear 3b, a two-stage speed reduction system can be achieved. Structures can also be incorporated to achieve higher reduction ratios.
  • the differential gear mechanism DF can be arranged so as to overlap with the rotary electric machine MG when viewed in the axial direction.
  • the inter-axis distance between the rotation axis of the rotor RT (first axis A1) and the rotation axis of the wheel W (second axis A2) can be shortened. That is, the vehicle drive system 100 is less susceptible to the minimum ground clearance MGL and can be arranged with a higher degree of freedom.
  • the input gear 1G and the output gear 2G It is possible to apply a technique of arranging the idler gear 3G so as to allow the diameter of the output gear 2G to be reduced while setting a large reduction ratio between the .
  • a vehicle drive system 100 will also be exemplified.
  • the wheels W to be driven include the first wheel W1 and the second wheel W2.
  • a differential gear mechanism DF that distributes the driving force transmitted to the output gear 2G to a first output member 41 drivingly connected to the first wheel W1 and a second output member 42 drivingly connected to the second wheel W2.
  • a fourth vehicle driving device 100D described below is composed of a first driving device 100a and a second driving device 100b having the same structure.
  • a second wheel W2 is driven by 100b.
  • the fourth vehicle drive device 100D (the first drive device 100a, the second drive device 100b) does not distribute the driving force transmitted to the output gear 2G, and therefore does not have a differential gear mechanism DF.
  • the first drive device 100a (and the second drive device 100b) that constitute the fourth vehicle drive device 100D includes a rotary electric machine MG provided with a rotor RT, and a rotary electric machine MG that is integral with the rotor RT.
  • an input gear 1G arranged coaxially with the input shaft 1 and drivingly connected to the input shaft 1
  • an output gear 2G drivingly connected to a wheel W
  • an idler gear 3G Like the first vehicle drive device 100A, the second vehicle drive device 100B and the third vehicle drive device 100C, the idler gear 3G includes a first idler gear 31G and a second idler gear 32G.
  • the first idler gear 31G and the second idler gear 32G are gears having the same diameter and the same number of teeth.
  • the input gear 1G is provided on the input shaft 1 in the fourth vehicle drive device 100D.
  • the input gear 1G is arranged on the first axis A1
  • the output gear 2G is arranged on the first axis A1.
  • the first idler gear 31G is meshed with the input gear 1G and the output gear 2G
  • the second idler gear 32G is also meshed with the input gear 1G and the output gear 2G.
  • the second idler gear 32G meshes with the input gear 1G at a position different from the first idler gear 31G in the circumferential direction of the input gear 1G, and at a position different from the first idler gear 31G in the circumferential direction of the output gear 2G. is meshing with
  • the length of the vehicle drive device 100 in the axial direction L can be suppressed, as shown in FIG.
  • the first idler gear 31G and the second idler gear 32G mesh with each other at different positions in the circumferential direction of the input gear 1G, the bending moment acting on the input gear 1G and the input shaft 1 can be kept small.
  • the meshing position between the first idler gear 31G and the input gear 1G and the meshing position between the second idler gear 32G and the input gear 1G are aligned with the rotational axis of the input gear 1G.
  • the input gear 1G is the idler gear at the meshing portion between the two idler gears 3G and the input gear 1G.
  • the loads received from the 3G can act in directions that cancel each other out.
  • the first drive device 100a and the second drive device 100b) that constitute the fourth vehicle drive device 100D each include a planetary gear mechanism PS that includes a sun gear SG, a carrier CA, and a ring gear RG.
  • the carrier CA of the planetary gear mechanism PS of the first driving device 100a is connected to the first output member 41
  • the carrier CA of the planetary gear mechanism PS of the second driving device 100b is connected to the second output member 42, respectively.
  • the first output member 41 and the second output member 42 are drivingly connected to independent planetary gear mechanisms PS. That is, the fourth vehicle drive device 100D is configured without the differential gear mechanism DF.
  • carrier CA supports pinion gear PG via pinion shaft PA.
  • the pinion gear PG meshes with the ring gear RG and the sun gear SG.
  • the ring gear RG is connected to rotate integrally with the output gear 2G.
  • the ring gear RG is arranged radially inside the output gear 2G so as to overlap the output gear 2G when viewed in the radial direction.
  • the sun gear SG is fixed to the case 90 .
  • the rotation transmitted to the output gear 2G is decelerated via the ring gear RG and the carrier CA and transmitted to the first output member 41.
  • the rotation transmitted to the output gear 2G is decelerated via the ring gear RG and the carrier CA and transmitted to the second output member 42. That is, the planetary gear mechanism PS functions as a speed reducer.
  • the axial directions of the input gear 1G, the first idler gear 31G, the second idler gear 32G, the output gear 2G, and the planetary gear mechanism PS overlap each other.
  • first drive device 100a and the second drive device 100b of the fourth vehicle drive device 100D as shown in FIG. It is arranged so as to overlap with the rotary electric machine MG when viewed in the axial direction along. That is, since the first idler gear 31G and the second idler gear 32G are arranged so as not to protrude from the rotary electric machine MG when viewed in the axial direction, it is possible to suppress an increase in the radial dimension of the vehicle drive device 100.
  • the configuration in which the input gear 1G is integrally formed with the input shaft 1 is exemplified in both the first vehicle drive device 100A and the second vehicle drive device 100B.
  • the input gear 1G may be formed separately from the input shaft 1 and connected to rotate integrally.
  • the first idler gear 31G and the second idler gear 32G mesh with the input gear 1G at intervals of 180 degrees.
  • the two idler gears 3G are exemplified as being in mesh with the input gear 1G evenly at a pitch of 180°.
  • the form in which the three idler gears 3G are meshed with each other at intervals of 120° is exemplified.
  • the three idler gears 3G are exemplified as meshing with the input gear 1G evenly at a pitch of 120°.
  • the plurality of idler gears 3G do not mesh with the input gear 1G at such strictly uniform intervals, it is sufficient if they mesh with the input gear 1G at approximately uniform intervals.
  • the two idler gears 3G may be arranged on opposite sides of the input gear 1G. Further, in the second vehicle drive device 100B, they may be arranged around the input gear 1G at approximately equal intervals. That is, it is sufficient that the plurality of idler gears 3G mesh with the input gear 1G at different positions in the circumferential direction of the input gear 1G. For example, even if the intervals are not uniform, if the second idler gear 32G meshes with the input gear 1G at a position different from that of the first idler gear 31G in the circumferential direction of the input gear 1G, it acts on the input gear 1G at the meshing portion. The load can be reduced. For example, two idler gears may be arranged to mesh with the input gear 1G at an interval of 120°, and the other side may mesh at an interval of 240°.
  • the planetary gear mechanism PS was illustrated as the differential gear mechanism DF, but it may be a bevel gear mechanism.
  • the planetary gear mechanism PS as the differential gear mechanism DF illustrated a structure in which two second pinion gears PG2 mesh with one first pinion gear PG1.
  • the planetary gear mechanism PS may have a structure in which one second pinion gear PG2 meshes with one first pinion gear PG1.
  • the vehicle drive device (100) includes a rotating electric machine (MG) having a rotor (RT), an input shaft (1) that rotates integrally with the rotor (RT), and the input shaft ( 1) coaxially arranged and drivingly connected to the input shaft (1), an input gear (1G), a first output member (41) drivingly connected to the first wheel (W1), and a second wheel ( W2), and the driving force transmitted from the input shaft (1) side to the output gear (2G) is transferred between the first output member (41) and the second output member (42).
  • MG rotating electric machine
  • a vehicle drive system (100) comprising a differential gear mechanism (DF) distributed to a member (42), a first idler gear (31G) and a second idler gear (32G), wherein the input gear ( 1G) and the output gear (2G) are arranged on different shafts parallel to each other, the first idler gear (31G) and the second idler gear (32G) have the same diameter and the same number of teeth, and the The first idler gear (31G) is in mesh with the input gear (1G) and the output gear (2G), and the second idler gear (32G) is in mesh with the input gear (1G) in the circumferential direction. It meshes with the input gear (1G) at a position different from the first idler gear (31G), and at a position different from the first idler gear (31G) in the circumferential direction of the output gear (2G). 2G).
  • DF differential gear mechanism
  • the first idler gear (31G) and the second idler gear (32G) mesh with the input gear (1G) and the output gear (2G), and the input shaft (1) in the vehicle drive device (100) can suppress the length in the direction (L) along the .
  • the input gear such as the input gear (1G) and the input shaft (1)
  • the bending moment acting on the shaft members (1, 6) on which (1G) is arranged can be kept small. Therefore, it is easy to reduce the diameter of the input gear (1G) and the shaft members (1, 6).
  • the vehicle drive system (100) has a meshing position between the first idler gear (31G) and the input gear (1G) and a meshing position between the second idler gear (32G) and the input gear (1G). are arranged opposite to each other across the rotation axis (A1) of the input gear (1G).
  • the meshing positions of the two idler gears (3G) with the input gear (1G) are arranged at equal intervals in the circumferential direction of the input gear (1G), each idler gear (3G) and the input gear (1G) , the loads that the input gear (1G) receives from the idler gear (3G) act in directions that cancel each other out. Therefore, the bending moment acting on the input gear (1G) and the shaft members (1, 6) on which the input gear (1G) such as the input shaft (1) is arranged can be kept small. Further, according to this configuration, the meshing positions of the two idler gears (3G) with the input gear (1G) are arranged on opposite sides of the rotation axis (A1) of the input gear (1G).
  • the load that the input gear (1G) receives from the idler gear (3G) acts in opposite directions at the meshing portion between the two idler gears (3G) and the input gear (1G). Therefore, the effect of suppressing the bending moment acting on the input gear (1G) and the shaft members (1, 6) on which the input gear (1G) such as the input shaft 1 is arranged is large.
  • the vehicle drive device (100) is configured such that the input gear (1G) and the first idler gear (31G) are arranged such that the direction parallel to the rotation axis (A1) of the input gear (1G) is defined as an axial direction (L). , the second idler gear (32G), the output gear (2G), and the differential gear mechanism (DF) in the axial direction (L).
  • the vehicle drive device (100) is configured such that the entire first idler gear (31G) and the second idler gear (31G) are arranged in an axial direction (L) parallel to the rotational axis (A1) of the input gear (1G).
  • (32G) is preferably arranged so as to overlap with the rotating electric machine (MG) when viewed in the axial direction (L).
  • the first idler gear (31G) and the second idler gear (32G) are arranged so as not to protrude from the outline of the rotating electric machine (MG) when viewed in the axial direction.
  • overlapping with the rotating electric machine (MG) in the axial direction is not limited to overlapping with the rotor (RT), but overlaps with the entire rotating electric machine (MG) including the stator when viewed in the axial direction. including doing
  • the differential gear mechanism (DF) includes a planetary gear mechanism (PS) including a sun gear (SG), a carrier (CA), and a ring gear (RG), and the carrier (CA) includes a first pinion gear (PG1) that meshes with the ring gear (RG) and a second pinion gear (PG2) that meshes with the sun gear (SG). It is preferable that two second pinion gears (PG2) are meshed with each other.
  • the vehicle drive system (100) includes a transmission (7) arranged coaxially with the input shaft (1) for changing the speed of rotation of the input shaft (1) and outputting it to an intermediate shaft (6). Further, it is preferable that the input gear (1G) is provided so as to rotate integrally with the intermediate shaft (6).
  • the first gear (1G) is driven to the input shaft (1) via the transmission (7), not limited to the case where the first gear (1G) is connected to the input shaft (1). Even when they are coupled, the bending moment acting on the shaft member (6) on which the input gear (1G) is arranged and the input gear (1G) can be kept small. Specifically, the bending moment acting on the intermediate shaft (6) on which the input gear (1G) is arranged and the input gear (1G) can be kept small.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Retarders (AREA)

Abstract

A vehicle drive device (100) comprises: an input gear (1G) drivably connected to an input shaft (1) rotated integrally with a rotor (RT) of a rotary electrical machine (MG); a differential mechanism (DF) for distributing, to a pair of output members (41, 42), a drive force transmitted to an output gear (2G) disposed on another shaft parallel to the input gear (1G); and a first idler gear (31G) and a second idler gear (32G) having the same diameter and the same number of teeth. The first idler gear (31G) is engaged with the input gear (1G) and the output gear (2G). The second idler gear (32G) is engaged with the input gear (1G) at a position different from that of the first idler gear (31G) in the circumferential direction of the input gear (1G), and is engaged with the output gear (2G) at a position different from that of the first idler gear (31G) in the circumferential direction of the output gear (2G).

Description

車両用駆動装置Vehicle drive system
 本発明は、回転電機のロータ一体的に回転する入力軸に設けられた入力ギヤと、車輪に駆動連結された出力ギヤとを備えた車両用駆動装置に関する。 The present invention relates to a vehicular drive system that includes an input gear provided on an input shaft that rotates integrally with a rotor of a rotating electric machine, and an output gear that is drivingly connected to wheels.
 特開平9-226394号公報には、電気自動車用の車両用駆動装置が開示されている(以下、背景技術において括弧内の符号は参照する文献のもの)。この車両用駆動装置は、回転電機(1)を車輪の駆動力源とし、回転電機(1)のロータシャフト(2)の回転を車輪に伝達するギヤ部(9)を備えている。ギヤ部(9)には、ロータシャフト(2)の回転を減速すると共にトルクを増幅して車輪に伝達するように、減速ギヤ機構としてのカウンタギヤ機構と、差動歯車機構とを備えている。カウンタギヤ機構は、カウンタシャフトの一端側に固定された相対的に大径のギヤ(92)と、他端側に固定された相対的に小径のギヤ(94)とを備えている。差動歯車機構は、傘歯車を有した差動ギヤと、差動ギヤを収容する差動ケース(96)と、差動ケース(96)に固定されてカウンタギヤ機構の小径のギヤ(94)と噛み合うリングギヤ(95)とを備えている。 Japanese Patent Application Laid-Open No. 9-226394 discloses a vehicle driving device for an electric vehicle (hereinafter, reference numerals in parentheses in the background art refer to documents). This vehicle drive device uses a rotating electrical machine (1) as a driving force source for wheels, and includes a gear section (9) for transmitting rotation of a rotor shaft (2) of the rotating electrical machine (1) to the wheels. The gear portion (9) includes a counter gear mechanism as a reduction gear mechanism and a differential gear mechanism so as to reduce the rotation of the rotor shaft (2) and amplify the torque to transmit it to the wheels. . The counter gear mechanism includes a relatively large diameter gear (92) fixed to one end of the counter shaft and a relatively small diameter gear (94) fixed to the other end. The differential gear mechanism includes a differential gear having bevel gears, a differential case (96) housing the differential gear, and a small diameter gear (94) fixed to the differential case (96) of the counter gear mechanism. and a ring gear (95) that meshes with.
特開平9-226394号公報JP-A-9-226394
 上記の車両用駆動装置では、減速機構としてのカウンタギヤ機構がカウンタシャフトの一端側及び他端側にそれぞれ固定された大径及び小径のギヤを備えて構成されている。このため、カウンタシャフトの長さに応じて、車両用駆動装置の軸方向の長さが長くなる傾向がある。ここで、カウンタギヤ機構を用いることなく減速比を確保するためには、差動歯車機構への入力ギヤである差動入力ギヤの径を大きくする必要がある。しかし、この場合には、ロータシャフトに駆動連結されてカウンタギヤ機構のギヤと噛み合う入力ギヤが配置された軸と、差動歯車機構が配置された軸との軸間距離が長くなり、車両用駆動装置が径方向に大型化するおそれがある。例えば、減速比を大きくするために当該入力ギヤの径を小さくすると、ギヤの噛み合いにより発生する曲げモーメントが軸部材に作用した場合、当該軸部材に充分な機械的な強度を確保することが難しい。 In the vehicle drive device described above, the counter gear mechanism as the speed reduction mechanism includes large-diameter and small-diameter gears fixed to one end side and the other end side of the counter shaft, respectively. Therefore, the axial length of the vehicle drive device tends to increase in accordance with the length of the countershaft. Here, in order to secure the reduction ratio without using the counter gear mechanism, it is necessary to increase the diameter of the differential input gear, which is the input gear to the differential gear mechanism. However, in this case, the distance between the shaft on which the input gear that is drivingly connected to the rotor shaft and meshing with the gear of the counter gear mechanism is arranged and the shaft on which the differential gear mechanism is arranged becomes long. There is a risk that the drive device will become large in the radial direction. For example, if the diameter of the input gear is reduced in order to increase the reduction ratio, it is difficult to secure sufficient mechanical strength to the shaft member when a bending moment generated by meshing of the gears acts on the shaft member. .
 上記背景に鑑みて、必要な減速比を確保しつつ、軸方向長さが抑制された減速ギヤ機構を備え、小型化が可能な車両用駆動装置の提供が望まれる。 In view of the above background, it is desirable to provide a vehicle drive system that is equipped with a reduction gear mechanism whose axial length is suppressed while ensuring the necessary reduction ratio, and which can be made smaller.
 上記に鑑みた車両用駆動装置は、ロータを備えた回転電機と、前記ロータと一体的に回転する入力軸と、前記入力軸と同軸に配置され、前記入力軸に駆動連結された入力ギヤと、第1輪に駆動連結される第1出力部材と、第2輪に駆動連結される第2出力部材と、前記入力軸の側から出力ギヤに伝達された駆動力を前記第1出力部材と前記第2出力部材とに分配する差動歯車機構と、第1アイドラギヤ及び第2アイドラギヤと、を備えた車両用駆動装置であって、前記入力ギヤと前記出力ギヤとは互いに平行な別軸上に配置され、前記第1アイドラギヤと前記第2アイドラギヤとは、同径且つ同じ歯数であり、前記第1アイドラギヤは、前記入力ギヤと噛み合っていると共に、前記出力ギヤと噛み合っており、前記第2アイドラギヤは、前記入力ギヤの周方向における前記第1アイドラギヤとは異なる位置で前記入力ギヤと噛み合っていると共に、前記出力ギヤの前記周方向における前記第1アイドラギヤとは異なる位置で前記出力ギヤと噛み合っている。 In view of the above, a vehicle drive device includes a rotating electric machine having a rotor, an input shaft that rotates integrally with the rotor, and an input gear arranged coaxially with the input shaft and drivingly connected to the input shaft. a first output member drivingly connected to a first wheel; a second output member drivingly connected to a second wheel; A vehicle drive device comprising a differential gear mechanism distributed to the second output member, and a first idler gear and a second idler gear, wherein the input gear and the output gear are on different axes parallel to each other The first idler gear and the second idler gear have the same diameter and the same number of teeth, and the first idler gear meshes with the input gear and the output gear. A second idler gear meshes with the input gear at a position different from the first idler gear in the circumferential direction of the input gear, and meshes with the output gear at a position different from the first idler gear in the circumferential direction of the output gear. are engaged.
 この構成によれば、第1アイドラギヤ及び第2アイドラギヤが、入力ギヤ及び出力ギヤに噛み合っており、車両用駆動装置における入力軸に沿った方向の長さを抑制することができる。また、第1アイドラギヤ及び第2アイドラギヤが、入力ギヤの周方向において互いに異なる位置で噛み合っているため、入力ギヤ及び入力ギヤが配置された軸部材に作用する曲げモーメントを小さく抑えることができる。従って、入力ギヤ及び当該軸部材を小径化し易い。入力ギヤ及び当該軸部材の小型化が可能となることで、入力ギヤと、出力ギヤとの間で大きな減速比を設定しつつ、出力ギヤの径の小型化も可能となる。即ち、本構成によれば、必要な減速比を確保しつつ、軸方向長さが抑制された減速ギヤ機構を備え、小型化が可能な車両用駆動装置を提供することができる。 According to this configuration, the first idler gear and the second idler gear mesh with the input gear and the output gear, and the length of the vehicle drive device in the direction along the input shaft can be suppressed. In addition, since the first idler gear and the second idler gear mesh with each other at different positions in the circumferential direction of the input gear, the bending moment acting on the input gear and the shaft member on which the input gear is arranged can be kept small. Therefore, it is easy to reduce the diameter of the input gear and the shaft member. By making it possible to reduce the size of the input gear and the shaft member, it is possible to reduce the diameter of the output gear while setting a large reduction ratio between the input gear and the output gear. That is, according to this configuration, it is possible to provide a compact vehicle drive device that includes a reduction gear mechanism with a reduced axial length while ensuring a required reduction ratio.
 車両用駆動装置のさらなる特徴と利点は、図面を参照して説明する例示的且つ非限定的な実施形態についての以下の記載から明確となる。 Further features and advantages of the vehicle drive will become clear from the following description of exemplary and non-limiting embodiments, which are explained with reference to the drawings.
軸方向視で第1車両用駆動装置のギヤの配置を模式的に示す図FIG. 4 is a diagram schematically showing the arrangement of gears of the first vehicle drive device as viewed in the axial direction; 図1における模式的なII-II断面図Schematic II-II cross-sectional view in FIG. 軸方向視で第2車両用駆動装置のギヤの配置を模式的に示す図FIG. 4 is a diagram schematically showing the arrangement of gears of the second vehicle drive device as viewed in the axial direction; 図3における模式的なIV-IV断面図Schematic IV-IV cross-sectional view in FIG. 軸方向視で第3車両用駆動装置のギヤの配置を模式的に示す図FIG. 6 is a diagram schematically showing the arrangement of gears of the third vehicle drive device as viewed in the axial direction; 図5における模式的なVI-VI断面図Schematic VI-VI cross-sectional view in FIG. 比較例の車両用駆動装置の構成を模式的に示す図FIG. 2 is a diagram schematically showing the configuration of a vehicle drive system of a comparative example; 軸方向視で第4車両用駆動装置のギヤの配置を模式的に示す図FIG. 11 is a diagram schematically showing the arrangement of gears of the fourth vehicle drive device as viewed in the axial direction; 図7における模式的なIX-IX断面図Schematic IX-IX cross-sectional view in FIG.
 以下、車両用駆動装置の実施形態を図面に基づいて説明する。以下、車両用駆動装置100の実施形態として、図1及び図2を参照して第1車両用駆動装置100A、図3及び図4を参照して第2車両用駆動装置100B、図5及び図6を参照して第3車両用駆動装置100Cを例示して説明する。また、差動歯車機構DFを有さない形態であっても、入力ギヤ1Gから出力ギヤ2Gまでの動力伝達経路に関する特徴を備えることが可能な形態して、図8及び図9を参照して第4車両用駆動装置100D(第1駆動装置100a、第2駆動装置100b)を例示して説明する。特にこれらを区別する必要がない場合は、単に車両用駆動装置100と称して説明する。 An embodiment of a vehicle drive system will be described below based on the drawings. Hereinafter, as embodiments of the vehicle drive system 100, a first vehicle drive system 100A will be described with reference to FIGS. 6, the third vehicle drive device 100C will be described as an example. 8 and 9, even in a form that does not have the differential gear mechanism DF, it is possible to provide a feature relating to the power transmission path from the input gear 1G to the output gear 2G. The fourth vehicle drive device 100D (first drive device 100a, second drive device 100b) will be described as an example. When there is no particular need to distinguish between them, they will simply be referred to as the vehicle drive device 100 for explanation.
 尚、以下の説明における各部材についての方向は、車両用駆動装置100が車両に組み付けられた状態(車両搭載状態)での方向を表す。また、各部材についての寸法、配置方向、配置位置等に関する用語は、誤差(製造上許容され得る程度の誤差)による差異を有する状態を含む概念である。車両搭載状態において、車両用駆動装置100の回転軸(本実施形態では互いに平行な別軸である各軸(例えば、第1軸A1、第2軸A2、詳細は後述する)に沿った方向を軸方向Lと称する。また、上記の各軸のそれぞれに直交する方向を、各軸を基準とした「径方向」とする。 The direction of each member in the following description represents the direction when the vehicle drive device 100 is assembled in the vehicle (vehicle mounted state). Terms relating to the dimensions, arrangement direction, arrangement position, etc. of each member are concepts that include the state of having differences due to errors (errors to the extent allowable in manufacturing). In the vehicle-mounted state, the direction along the rotation axis of the vehicle drive device 100 (in this embodiment, each axis (for example, the first axis A1 and the second axis A2, which will be described later in detail) that are separate axes parallel to each other). It will be referred to as an axial direction L. A direction orthogonal to each of the above axes will be referred to as a "radial direction" with respect to each axis.
 また、本明細書では、2つの部材の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線に直交する各方向に移動させた場合に、当該仮想直線が2つの部材の双方に交わる領域が少なくとも一部に存在することを意味する。また、本明細書では、2つの部材の配置に関して、「軸方向の配置領域が重複する」とは、一方の部材の軸方向の配置領域内に、他方の部材の軸方向の配置領域の少なくとも一部が含まれることを意味する。 Further, in this specification, regarding the arrangement of two members, "overlapping in a particular direction view" means that when a virtual straight line parallel to the viewing direction is moved in each direction orthogonal to the virtual straight line, It means that there is at least a part of the area where the virtual straight line intersects both of the two members. In addition, in this specification, with respect to the arrangement of two members, “the axial arrangement regions overlap” means that the axial arrangement region of one member includes at least the axial arrangement region of the other member. It means that part is included.
 本明細書では、「駆動連結」とは、2つの回転要素が駆動力(トルクと同義)を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が1つ又は2つ以上の伝動部材(軸、ギヤなど)を介して駆動力を伝達可能に連結された状態を含む。尚、電動部材には、回転及び駆動力を選択的に伝達する係合装置(例えば、摩擦係合装置、噛み合い式係合装置等)が含まれていてもよい。 In this specification, the term “driving connection” refers to a state in which two rotating elements are connected so as to be able to transmit a driving force (synonymous with torque), and the two rotating elements are connected so as to rotate integrally. or a state in which the two rotating elements are connected to each other via one or more transmission members (shafts, gears, etc.) so as to be able to transmit driving force. Incidentally, the electric member may include an engagement device (for example, a friction engagement device, a mesh type engagement device, etc.) that selectively transmits rotation and driving force.
 本実施形態の車両用駆動装置100は、車輪Wの駆動力源として回転電機MGを備えている。本明細書では、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。図1及び図2に示すように、車両用駆動装置100の1つの態様である第1車両用駆動装置100Aは、ロータRTを備えた回転電機MGと、ロータRTと一体的に回転する入力軸1と、入力軸1と同軸に配置されて入力軸1に駆動連結された入力ギヤ1Gと、車輪Wに駆動連結される出力ギヤ2Gと、アイドラギヤ3Gとを備えている。第1車両用駆動装置100Aのアイドラギヤ3Gは、第1アイドラギヤ31G及び第2アイドラギヤ32Gを含む。第1アイドラギヤ31Gと第2アイドラギヤ32Gとは、同径且つ同じ歯数のギヤである。尚、第1車両用駆動装置100Aでは、入力ギヤ1Gは入力軸1に設けられている。 The vehicle drive device 100 of this embodiment includes a rotating electric machine MG as a driving force source for the wheels W. In this specification, the term "rotary electric machine" is used as a concept including motors (electric motors), generators (generators), and motor generators that function as both motors and generators as necessary. As shown in FIGS. 1 and 2, the first vehicle drive device 100A, which is one aspect of the vehicle drive device 100, includes a rotary electric machine MG having a rotor RT and an input shaft rotating integrally with the rotor RT. 1, an input gear 1G arranged coaxially with the input shaft 1 and drivingly connected to the input shaft 1, an output gear 2G drivingly connected to the wheels W, and an idler gear 3G. The idler gear 3G of the first vehicle drive device 100A includes a first idler gear 31G and a second idler gear 32G. The first idler gear 31G and the second idler gear 32G are gears having the same diameter and the same number of teeth. The input gear 1G is provided on the input shaft 1 in the first vehicle drive device 100A.
 図2に示すように、入力ギヤ1Gと出力ギヤ2Gとは互いに平行な別軸上に配置されている。ここでは、入力ギヤ1Gが第1軸A1上に配置され、出力ギヤ2Gが第2軸A2上に配置されている。また、第1アイドラギヤ31Gは、入力ギヤ1Gと噛み合っていると共に出力ギヤ2Gと噛み合っており、第2アイドラギヤ32Gも、入力ギヤ1Gと噛み合っていると共に出力ギヤ2Gと噛み合っている。但し、第2アイドラギヤ32Gは、入力ギヤ1Gの周方向における第1アイドラギヤ31Gとは異なる位置で入力ギヤ1Gと噛み合っていると共に、出力ギヤ2Gの周方向における第1アイドラギヤ31Gとは異なる位置で出力ギヤ2Gと噛み合っている。 As shown in FIG. 2, the input gear 1G and the output gear 2G are arranged on different shafts parallel to each other. Here, the input gear 1G is arranged on the first axis A1 and the output gear 2G is arranged on the second axis A2. The first idler gear 31G is meshed with the input gear 1G and the output gear 2G, and the second idler gear 32G is also meshed with the input gear 1G and the output gear 2G. However, the second idler gear 32G meshes with the input gear 1G at a position different from the first idler gear 31G in the circumferential direction of the input gear 1G, and outputs at a position different from the first idler gear 31G in the circumferential direction of the output gear 2G. It meshes with gear 2G.
 第1アイドラギヤ31G及び第2アイドラギヤ32Gが、入力ギヤ1G及び出力ギヤ2Gに噛み合っているため、図2に示すように、車両用駆動装置100における軸方向Lの長さを抑制することができる。また、第1アイドラギヤ31G及び第2アイドラギヤ32Gが、入力ギヤ1Gの周方向において互いに異なる位置で噛み合っているため、入力ギヤ1G及び入力軸1に作用する曲げモーメントを小さく抑えることができる。つまり、入力ギヤ1G及び入力軸1を小径化して、アイドラギヤ3Gと入力ギヤ1Gとによる減速比を大きくすることができるので、アイドラギヤ3Gと出力ギヤ2Gとによる減速比を大きくする必要性が低下し、出力ギヤ2Gを小径化することができる。 Since the first idler gear 31G and the second idler gear 32G mesh with the input gear 1G and the output gear 2G, the length of the vehicle drive device 100 in the axial direction L can be reduced, as shown in FIG. In addition, since the first idler gear 31G and the second idler gear 32G mesh with each other at different positions in the circumferential direction of the input gear 1G, the bending moment acting on the input gear 1G and the input shaft 1 can be kept small. That is, the diameters of the input gear 1G and the input shaft 1 can be reduced to increase the speed reduction ratio between the idler gear 3G and the input gear 1G, thereby reducing the need for increasing the speed reduction ratio between the idler gear 3G and the output gear 2G. , the diameter of the output gear 2G can be reduced.
 第1車両用駆動装置100Aでは、第1アイドラギヤ31Gと入力ギヤ1Gとの噛み合い位置と、第2アイドラギヤ32Gと入力ギヤ1Gとの噛み合い位置とが、入力ギヤ1Gの回転軸心である第1軸A1を挟んで互いに反対側に配置されている。換言すれば、第1アイドラギヤ31Gと入力ギヤ1Gとの噛み合い位置と、第2アイドラギヤ32Gと入力ギヤ1Gとの噛み合い位置とが、入力ギヤ1Gの周方向に均等な間隔で配置されている。 In the first vehicle drive device 100A, the meshing position between the first idler gear 31G and the input gear 1G and the meshing position between the second idler gear 32G and the input gear 1G are positioned on the first axis, which is the rotational axis of the input gear 1G. They are arranged on opposite sides with A1 interposed therebetween. In other words, the meshing position between the first idler gear 31G and the input gear 1G and the meshing position between the second idler gear 32G and the input gear 1G are arranged at equal intervals in the circumferential direction of the input gear 1G.
 2つのアイドラギヤ3Gの入力ギヤ1Gとの噛み合い位置が、入力ギヤ1Gの周方向において均等な間隔で配置されているため、それぞれのアイドラギヤ3Gと入力ギヤ1Gとの噛み合い部において、入力ギヤ1Gがアイドラギヤ3Gから受ける荷重が互いに打ち消しあう方向に作用するようにできる。このため、入力軸1及び入力ギヤ1Gに作用する曲げモーメントを小さく抑えることができる。また、本例では、2つのアイドラギヤ3Gの入力ギヤ1Gとの噛み合い位置が、第1軸A1を挟んで互いに反対側に配置されているので、2つのアイドラギヤ3Gと入力ギヤ1Gとの噛み合い部において、入力ギヤ1Gがアイドラギヤ3Gから受ける荷重が互いに反対向きに作用するようにできる。従って、入力軸1及び入力ギヤ1Gに作用する曲げモーメントの抑制効果が大きい。 Since the meshing positions of the two idler gears 3G with the input gear 1G are arranged at equal intervals in the circumferential direction of the input gear 1G, the input gear 1G is positioned at the meshing portion between the idler gears 3G and the input gear 1G. The loads received from the 3G can act in directions that cancel each other out. Therefore, the bending moment acting on the input shaft 1 and the input gear 1G can be kept small. In addition, in this example, the meshing positions of the two idler gears 3G and the input gear 1G are arranged on opposite sides of the first axis A1. , the loads that the input gear 1G receives from the idler gear 3G act in opposite directions. Therefore, the effect of suppressing the bending moment acting on the input shaft 1 and the input gear 1G is large.
 第1車両用駆動装置100Aが駆動する車輪Wは、第1輪W1と第2輪W2とを含み、第1車両用駆動装置100Aは、これら2つの車輪Wを駆動する。図1及び図2に示すように、第1車両用駆動装置100Aは、第1輪W1に駆動連結される第1出力部材41と、第2輪W2に駆動連結される第2出力部材42と、出力ギヤ2Gに伝達された駆動力を第1出力部材41と第2出力部材42とに分配する遊星歯車式の差動歯車機構DF(遊星歯車機構PSによる差動歯車機構DF)とをさらに備えている。そして、図2に示すように、入力ギヤ1Gと、第1アイドラギヤ31Gと、第2アイドラギヤ32G(図2では不図示)と、出力ギヤ2Gと、差動歯車機構DF(遊星歯車機構PS)との軸方向Lの配置領域が互いに重複している。 The wheels W driven by the first vehicle drive device 100A include a first wheel W1 and a second wheel W2, and the first vehicle drive device 100A drives these two wheels W. As shown in FIGS. 1 and 2, the first vehicle drive device 100A includes a first output member 41 drivingly connected to the first wheel W1 and a second output member 42 drivingly connected to the second wheel W2. , a planetary gear type differential gear mechanism DF (differential gear mechanism DF by the planetary gear mechanism PS) that distributes the driving force transmitted to the output gear 2G to the first output member 41 and the second output member 42. I have. Then, as shown in FIG. 2, an input gear 1G, a first idler gear 31G, a second idler gear 32G (not shown in FIG. 2), an output gear 2G, and a differential gear mechanism DF (planetary gear mechanism PS). are overlapped with each other in the axial direction L.
 このように、入力ギヤ1Gから差動歯車機構DF(遊星歯車機構PS)までの動力伝達経路を構成する全てのギヤの軸方向Lの配置領域を互いに重複させて配置することにより、これらのギヤの軸方向Lの配置スペースの小型化を図ることができる。これにより、車両用駆動装置100の軸方向Lの寸法の小型化を図ることができる。 In this way, by arranging the arrangement areas in the axial direction L of all the gears forming the power transmission path from the input gear 1G to the differential gear mechanism DF (planetary gear mechanism PS) so as to overlap each other, these gears The arrangement space in the axial direction L can be reduced in size. As a result, the size of the vehicle drive device 100 in the axial direction L can be reduced.
 第1車両用駆動装置100Aにおける差動歯車機構DFは、サンギヤSGとキャリヤCAとリングギヤRGとを備えた遊星歯車機構PSを備えている。図2に示すように、リングギヤRGは出力ギヤ2Gと一体回転するように、出力ギヤ2Gの径方向内側に形成されている。キャリヤCAが第1出力部材41に連結され、サンギヤSGが第2出力部材42に連結されている。図1及び図2に示すように、キャリヤCAは、ピニオン軸PAを介して第1ピニオンギヤPG1及び第2ピニオンギヤPG2を支持している。第1ピニオンギヤPG1は、リングギヤRGに噛み合い、第2ピニオンギヤPG2はサンギヤSGに噛み合う。また、図1に示すように、1つの第1ピニオンギヤPG1に対して2つの第2ピニオンギヤPG2が噛み合っている。このような第1ピニオンギヤPG1と第2ピニオンギヤPG2とを備えることにより、サンギヤSGの軸に作用する曲げモーメントを小さく抑えることができる。 The differential gear mechanism DF in the first vehicle drive device 100A includes a planetary gear mechanism PS including a sun gear SG, a carrier CA, and a ring gear RG. As shown in FIG. 2, the ring gear RG is formed radially inside the output gear 2G so as to rotate integrally with the output gear 2G. A carrier CA is connected to the first output member 41 and a sun gear SG is connected to the second output member 42 . As shown in FIGS. 1 and 2, the carrier CA supports the first pinion gear PG1 and the second pinion gear PG2 via the pinion shaft PA. The first pinion gear PG1 meshes with the ring gear RG, and the second pinion gear PG2 meshes with the sun gear SG. Further, as shown in FIG. 1, two second pinion gears PG2 mesh with one first pinion gear PG1. By providing the first pinion gear PG1 and the second pinion gear PG2, the bending moment acting on the shaft of the sun gear SG can be kept small.
 また、第1車両用駆動装置100Aでは、図1に示すように、第1アイドラギヤ31Gの全体及び第2アイドラギヤ32Gの全体が、軸方向Lに沿う軸方向視で回転電機MGと重複するように配置されている。つまり、第1アイドラギヤ31G及び第2アイドラギヤ32Gが、軸方向視で回転電機MGからはみ出さないように配置されている。これにより、車両用駆動装置100の径方向寸法の大型化を抑制できる。尚、図1では、第1アイドラギヤ31Gの全体及び第2アイドラギヤ32Gの全体が、軸方向視でロータRTと重複するように配置されている形態を例示しているが、ステータ(不図示)を含めた回転電機MGの全体と軸方向視で重複していればよい。 In addition, in the first vehicle drive device 100A, as shown in FIG. 1, the entire first idler gear 31G and the entire second idler gear 32G overlap the rotary electric machine MG when viewed in the axial direction L. are placed. That is, the first idler gear 31G and the second idler gear 32G are arranged so as not to protrude from the rotary electric machine MG when viewed in the axial direction. Accordingly, it is possible to suppress an increase in the radial dimension of the vehicle drive device 100 . Note that FIG. 1 illustrates a configuration in which the entire first idler gear 31G and the entire second idler gear 32G are arranged so as to overlap the rotor RT when viewed in the axial direction. It is sufficient that it overlaps with the entire rotating electrical machine MG that is included when viewed in the axial direction.
 図3及び図4に示すように、車両用駆動装置100の別の態様である第2車両用駆動装置100Bも、ロータRTを備えた回転電機MGと、ロータRTと一体的に回転する入力軸1と、入力軸1と同軸に配置されて入力軸1に駆動連結された入力ギヤ1Gと、車輪Wに駆動連結される出力ギヤ2Gと、アイドラギヤ3Gとを備えている。第2車両用駆動装置100Bのアイドラギヤ3Gは、第1アイドラギヤ31G及び第2アイドラギヤ32Gに加えて、第3アイドラギヤ33Gを含む。第1アイドラギヤ31G、第2アイドラギヤ32G、及び第3アイドラギヤ33Gは、同径且つ同じ歯数のギヤである。尚、第2車両用駆動装置100Bでも、入力ギヤ1Gは入力軸1に設けられている。 As shown in FIGS. 3 and 4, a second vehicle drive device 100B, which is another aspect of the vehicle drive device 100, also includes a rotary electric machine MG having a rotor RT and an input shaft rotating integrally with the rotor RT. 1, an input gear 1G arranged coaxially with the input shaft 1 and drivingly connected to the input shaft 1, an output gear 2G drivingly connected to the wheels W, and an idler gear 3G. The idler gear 3G of the second vehicle drive device 100B includes a third idler gear 33G in addition to the first idler gear 31G and the second idler gear 32G. The first idler gear 31G, the second idler gear 32G, and the third idler gear 33G are gears having the same diameter and the same number of teeth. The input gear 1G is provided on the input shaft 1 also in the second vehicle drive device 100B.
 第1車両用駆動装置100Aと同様に、第2車両用駆動装置100Bにおいても、図4に示すように、入力ギヤ1Gと出力ギヤ2Gとは互いに平行な別軸上に配置されている。即ち、入力ギヤ1Gが第1軸A1上に配置され、出力ギヤ2Gが第2軸A2上に配置されている。また、第1車両用駆動装置100Aと同様に、第2車両用駆動装置100Bにおいても、第1アイドラギヤ31Gは、入力ギヤ1Gと噛み合っていると共に出力ギヤ2Gと噛み合っており、第2アイドラギヤ32Gも、入力ギヤ1Gと噛み合っていると共に出力ギヤ2Gと噛み合っている。第2車両用駆動装置100Bにおいても、第2アイドラギヤ32Gは、入力ギヤ1Gの周方向における第1アイドラギヤ31Gとは異なる位置で入力ギヤ1Gと噛み合っていると共に、出力ギヤ2Gの周方向における第1アイドラギヤ31Gとは異なる位置で出力ギヤ2Gと噛み合っている。 As in the first vehicle drive device 100A, also in the second vehicle drive device 100B, as shown in FIG. 4, the input gear 1G and the output gear 2G are arranged on different axes parallel to each other. That is, the input gear 1G is arranged on the first axis A1, and the output gear 2G is arranged on the second axis A2. Also, in the second vehicle drive device 100B, as in the first vehicle drive device 100A, the first idler gear 31G is meshed with the input gear 1G and the output gear 2G. , meshes with the input gear 1G and also meshes with the output gear 2G. Also in the second vehicle drive device 100B, the second idler gear 32G meshes with the input gear 1G at a position different from that of the first idler gear 31G in the circumferential direction of the input gear 1G. It meshes with the output gear 2G at a position different from that of the idler gear 31G.
 第3アイドラギヤ33Gは、入力ギヤ1Gと噛み合っていると共に、連結ギヤ5(第1連結ギヤ51G、第2連結ギヤ52G)に噛み合い、連結ギヤ5を介して第1アイドラギヤ31G及び第2アイドラギヤ32Gと同期回転するように連結されている。第1アイドラギヤ31Gは、入力ギヤ1G、出力ギヤ2G、及び第1連結ギヤ51Gと噛み合い、第2アイドラギヤ32Gは、入力ギヤ1G、出力ギヤ2G、及び第2連結ギヤ52Gと噛み合い、第3アイドラギヤ33Gは、入力ギヤ1G及び出力ギヤ2Gとは噛み合わず、第1連結ギヤ51G及び第2連結ギヤ52Gと噛み合っている。 The third idler gear 33G meshes with the input gear 1G, and also meshes with the connection gear 5 (first connection gear 51G, second connection gear 52G). connected for synchronous rotation. The first idler gear 31G meshes with the input gear 1G, the output gear 2G, and the first connection gear 51G, the second idler gear 32G meshes with the input gear 1G, the output gear 2G, and the second connection gear 52G, and the third idler gear 33G. does not mesh with the input gear 1G and the output gear 2G, but meshes with the first connection gear 51G and the second connection gear 52G.
 第1アイドラギヤ31G及び第2アイドラギヤ32Gは、それぞれ入力ギヤ1Gに噛み合うアイドラドリブンギヤ3aと、出力ギヤ2Gに噛み合うアイドラドライブギヤ3bとを備えている。即ち、第1アイドラギヤ31Gは、図3及び図4に示すように、入力ギヤ1Gに噛み合う第1アイドラドリブンギヤ31Gaと、出力ギヤ2Gに噛み合う第1アイドラドライブギヤ31Gbとを備えている。同様に、第2アイドラギヤ32Gは、図3に示すように、入力ギヤ1Gに噛み合う第2アイドラドリブンギヤ32Gaと、出力ギヤ2Gに噛み合う第2アイドラドライブギヤ32Gbとを備えている。第3アイドラギヤ33Gは、出力ギヤ2Gとは噛み合わないため、図3に示すように、アイドラドリブンギヤ3aに相当するギヤのみを備えて構成されている。尚、第1アイドラギヤ31G及び第2アイドラギヤ32Gと部品を共通化するために、第3アイドラギヤ33Gが、どこにも噛み合わない状態でアイドラドライブギヤ3bを備えていてもよい。 The first idler gear 31G and the second idler gear 32G each have an idler driven gear 3a that meshes with the input gear 1G and an idler drive gear 3b that meshes with the output gear 2G. 3 and 4, the first idler gear 31G includes a first idler driven gear 31Ga meshing with the input gear 1G and a first idler drive gear 31Gb meshing with the output gear 2G. Similarly, the second idler gear 32G, as shown in FIG. 3, includes a second idler driven gear 32Ga meshing with the input gear 1G and a second idler drive gear 32Gb meshing with the output gear 2G. Since the third idler gear 33G does not mesh with the output gear 2G, as shown in FIG. 3, only a gear corresponding to the idler driven gear 3a is provided. In order to share parts with the first idler gear 31G and the second idler gear 32G, the third idler gear 33G may be provided with the idler drive gear 3b in a state where it does not mesh with anything.
 また、第2車両用駆動装置100Bでも、第1アイドラギヤ31Gと入力ギヤ1Gとの噛み合い位置と、第2アイドラギヤ32Gと入力ギヤ1Gとの噛み合い位置と、第3アイドラギヤ33Gと入力ギヤ1Gとの噛み合い位置とが、入力ギヤ1Gの周方向に均等な間隔で配置されている。このように、3つのアイドラギヤ3Gの入力ギヤ1Gとの噛み合い位置が、入力ギヤ1Gの周方向に均等な間隔で配置されているため、それぞれのアイドラギヤ3Gと入力ギヤ1Gとの噛み合い部において、入力ギヤ1Gがアイドラギヤ3Gから受ける荷重が互いに打ち消しあう方向に作用するようにできる。このため、入力軸1及び入力ギヤ1Gに作用する曲げモーメントを小さく抑えることができる。 Further, in the second vehicle drive device 100B as well, the meshing position between the first idler gear 31G and the input gear 1G, the meshing position between the second idler gear 32G and the input gear 1G, and the meshing position between the third idler gear 33G and the input gear 1G are arranged at equal intervals in the circumferential direction of the input gear 1G. In this manner, since the meshing positions of the three idler gears 3G with the input gear 1G are arranged at equal intervals in the circumferential direction of the input gear 1G, input The loads that the gear 1G receives from the idler gear 3G can act in directions that cancel each other out. Therefore, the bending moment acting on the input shaft 1 and the input gear 1G can be kept small.
 第2車両用駆動装置100Bが駆動する車輪Wも、第1輪W1と第2輪W2とを含み、第2車両用駆動装置100Bは、これら2つの車輪Wを駆動する。図3及び図4に示すように、第1車両用駆動装置100Aと同様に、第2車両用駆動装置100Bも、第1輪W1に駆動連結される第1出力部材41と、第2輪W2に駆動連結される第2出力部材42と、出力ギヤ2Gに伝達された駆動力を第1出力部材41と第2出力部材42とに分配する遊星歯車式の差動歯車機構DF(遊星歯車機構PSによる差動歯車機構DF)とをさらに備えている。第2車両用駆動装置100Bにおいても、図4に示すように、入力ギヤ1Gと、第1アイドラギヤ31Gと、第2アイドラギヤ32G(図4では不図示)と、出力ギヤ2Gと、差動歯車機構DFとの軸方向Lの配置領域が互いに重複している。 The wheels W driven by the second vehicle drive device 100B also include a first wheel W1 and a second wheel W2, and the second vehicle drive device 100B drives these two wheels W. As shown in FIGS. 3 and 4, like the first vehicle drive device 100A, the second vehicle drive device 100B also includes a first output member 41 drivingly connected to the first wheel W1 and a second wheel W2. and a planetary gear type differential gear mechanism DF (planetary gear mechanism and a differential gear mechanism DF) by PS. Also in the second vehicle drive device 100B, as shown in FIG. 4, there are an input gear 1G, a first idler gear 31G, a second idler gear 32G (not shown in FIG. 4), an output gear 2G, and a differential gear mechanism. The arrangement areas in the axial direction L with DF overlap each other.
 第2車両用駆動装置100Bの差動歯車機構DFは、第1車両用駆動装置100Aの差動歯車機構DFと同じ遊星歯車機構PSを備えている。同一の構成であるので、詳細な説明は省略する。 The differential gear mechanism DF of the second vehicle drive device 100B includes the same planetary gear mechanism PS as the differential gear mechanism DF of the first vehicle drive device 100A. Since they have the same configuration, detailed description is omitted.
 また、第2車両用駆動装置100Bでも、図3に示すように、第1アイドラギヤ31Gの全体及び第2アイドラギヤ32Gの全体が、軸方向Lに沿う軸方向視で回転電機MG(ここではロータRT)と重複するように配置されている。第2車両用駆動装置100Bでは、さらに第3アイドラギヤ33Gの全体も、軸方向視で回転電機MGと重複するように配置されている。これにより、上述したように、車両用駆動装置100の径方向寸法の大型化を抑制できる。尚、図3では、各アイドラギヤ3Gの全体が、軸方向視でロータRTと重複するように配置されている形態を例示しているが、上述したように、ステータを含めた回転電機MGの全体と軸方向視で重複していればよい。 Also, in the second vehicle drive device 100B as well, as shown in FIG. 3, the entire first idler gear 31G and the entire second idler gear 32G are aligned with the rotary electric machine MG (rotor RT in this case) when viewed in the axial direction L. ) are arranged so as to overlap with In the second vehicle drive device 100B, the entire third idler gear 33G is also arranged so as to overlap the rotary electric machine MG when viewed in the axial direction. Accordingly, as described above, it is possible to suppress an increase in the radial dimension of the vehicle drive device 100 . Note that FIG. 3 illustrates a configuration in which each idler gear 3G as a whole is arranged so as to overlap the rotor RT when viewed in the axial direction. and overlap in the axial view.
 図5及び図6は、車両用駆動装置100の別の態様である第3車両用駆動装置100Cを例示している。第1車両用駆動装置100A及び第2車両用駆動装置100Bでは、入力ギヤ1Gが入力軸1に設けられている形態を例示した。第3車両用駆動装置100Cでは、入力ギヤ1Gが、入力軸1と同軸に配置された中間軸6に配置されて、変速機7を介して入力軸1に駆動連結されている形態を例示している。即ち、第3車両用駆動装置100Cは、入力軸1と同軸上に配置され、入力軸1の回転を変速して中間軸6に出力する変速機7を備えている。後述するように、本実施形態では、2段の変速段を形成することができる変速機7を例示している。また、入力ギヤ1Gは、中間軸6と一体的に回転するように設けられている。 5 and 6 illustrate a third vehicle drive device 100C, which is another aspect of the vehicle drive device 100. FIG. In the first vehicle drive device 100A and the second vehicle drive device 100B, the input gear 1G is provided on the input shaft 1 as an example. In the third vehicle drive device 100C, the input gear 1G is disposed on the intermediate shaft 6 coaxially disposed with the input shaft 1, and is drivingly connected to the input shaft 1 via the transmission 7. ing. That is, the third vehicle drive device 100</b>C is provided coaxially with the input shaft 1 and includes a transmission 7 that changes the speed of rotation of the input shaft 1 and outputs the speed to the intermediate shaft 6 . As will be described later, the present embodiment exemplifies the transmission 7 capable of forming two gear stages. Further, the input gear 1G is provided so as to rotate integrally with the intermediate shaft 6. As shown in FIG.
 図6に示すように、変速機7は、第2遊星歯車機構70、第1係合装置CL1を備えている。第2遊星歯車機構70、第1係合装置CL1は、入力軸1、中間軸6、入力ギヤ1Gと共に、第1軸A1上に配置されている。軸方向Lに沿って、回転電機MGのRT、入力ギヤ1G、第2遊星歯車機構70、第1係合装置CL1の順に配置されている。中間軸6は中空筒状部材であり、入力軸1は中間軸6の径方向内側を貫通して、ロータRTと、第2遊星歯車機構70の第2サンギヤSG2と、第1係合装置CL1の第1係合回転部材RM1とを連結するように配置されている。 As shown in FIG. 6, the transmission 7 includes a second planetary gear mechanism 70 and a first engagement device CL1. The second planetary gear mechanism 70 and the first engagement device CL1 are arranged on the first axis A1 together with the input shaft 1, the intermediate shaft 6 and the input gear 1G. Along the axial direction L, RT of the rotary electric machine MG, the input gear 1G, the second planetary gear mechanism 70, and the first engagement device CL1 are arranged in this order. The intermediate shaft 6 is a hollow cylindrical member, and the input shaft 1 passes through the radially inner side of the intermediate shaft 6 to connect the rotor RT, the second sun gear SG2 of the second planetary gear mechanism 70, and the first engagement device CL1. and the first engagement rotary member RM1.
 第2遊星歯車機構70は、第2サンギヤSG2、第2キャリヤCA2、及び第2リングギヤRG2を備えたシングルピニオン型の遊星歯車機構である。第2サンギヤSG2は、変速入力要素であり入力軸1と一体的に回転するように入力軸1に連結されている。第2キャリヤCA2は、変速出力要素であり、入力ギヤ1Gと一体的に回転するように中間軸6に連結されている。また、第2キャリヤCA2は、第2サンギヤSG2及び第2リングギヤRG2に噛み合う第3ピニオンギヤPG3を回転自在に支持している。第3ピニオンギヤPG3は、その軸心回りに回転(自転)すると共に、第2キャリヤCA2と共に第2サンギヤSG2を中心として回転(公転)する。第3ピニオンギヤPG3は、その公転軌跡に沿って、互いに間隔を空けて複数設けられている。 The second planetary gear mechanism 70 is a single pinion type planetary gear mechanism including a second sun gear SG2, a second carrier CA2, and a second ring gear RG2. The second sun gear SG2 is a speed change input element and is connected to the input shaft 1 so as to rotate integrally therewith. The second carrier CA2 is a transmission output element and is connected to the intermediate shaft 6 so as to rotate integrally with the input gear 1G. The second carrier CA2 also rotatably supports a third pinion gear PG3 that meshes with the second sun gear SG2 and the second ring gear RG2. The third pinion gear PG3 rotates (revolves) around its axis, and rotates (revolves) around the second sun gear SG2 together with the second carrier CA2. A plurality of third pinion gears PG3 are provided at intervals along the orbit of the revolution.
 第1係合装置CL1は、係合の状態に応じて変速機7の減速比を切り替えるように構成されている。本実施形態では、第1係合装置CL1は、クラッチ機構CMと、ブレーキ機構BMとを備えている。そして、第1係合装置CL1は、クラッチ機構CM及びブレーキ機構BMの一方が係合状態となった場合には、他方が解放状態となるように構成されている。 The first engagement device CL1 is configured to switch the speed reduction ratio of the transmission 7 according to the state of engagement. In this embodiment, the first engagement device CL1 includes a clutch mechanism CM and a brake mechanism BM. The first engagement device CL1 is configured such that when one of the clutch mechanism CM and the brake mechanism BM is in the engaged state, the other is in the released state.
 第1係合装置CL1は、第2遊星歯車機構70の第2リングギヤRG2と一体的に回転する第2係合回転部材RM2を備えている。クラッチ機構CMは、第1係合回転部材RM1と第2係合回転部材RM2とを選択的に係合するように構成されている。ブレーキ機構BMは、第2係合回転部材RM2と非回転部材であるケース90とを選択的に係合するように構成されている。 The first engaging device CL1 includes a second engaging rotating member RM2 that rotates integrally with the second ring gear RG2 of the second planetary gear mechanism 70. The clutch mechanism CM is configured to selectively engage the first engagement rotary member RM1 and the second engagement rotary member RM2. The brake mechanism BM is configured to selectively engage the second engaging rotary member RM2 and the case 90, which is a non-rotating member.
 本実施形態では、クラッチ機構CM及びブレーキ機構BMのそれぞれは、摩擦係合要素を備えた摩擦係合装置である。また、本実施形態では、第1係合装置CL1は、クラッチ機構CM及びブレーキ機構BMのそれぞれの摩擦係合要素を押圧する第1押圧部材PM1と、当該第1押圧部材PM1を駆動させる不図示の係合駆動装置とを備えている。本例では、第1押圧部材PM1は、クラッチ機構CMの摩擦係合要素とブレーキ機構BMの摩擦係合要素との軸方向Lの間に配置されている。例えば、係合駆動装置がモータの場合、係合駆動装置の回転駆動力が、ボールねじ機構により、軸方向Lの駆動力に変換されて第1押圧部材PM1に伝達される。その結果、第1押圧部材PM1が軸方向Lに移動し、クラッチ機構CMの摩擦係合要素及びブレーキ機構BMの摩擦係合要素の何れか一方を押圧する。 In this embodiment, each of the clutch mechanism CM and the brake mechanism BM is a friction engagement device having a friction engagement element. Further, in the present embodiment, the first engagement device CL1 includes a first pressing member PM1 that presses the respective frictional engagement elements of the clutch mechanism CM and the brake mechanism BM, and a first pressing member PM1 (not shown) that drives the first pressing member PM1. and an engagement drive device. In this example, the first pressing member PM1 is arranged between the frictional engagement element of the clutch mechanism CM and the frictional engagement element of the brake mechanism BM in the axial direction L. For example, when the engagement driving device is a motor, the rotational driving force of the engaging driving device is converted into the driving force in the axial direction L by the ball screw mechanism and transmitted to the first pressing member PM1. As a result, the first pressing member PM1 moves in the axial direction L and presses either the friction engagement element of the clutch mechanism CM or the friction engagement element of the brake mechanism BM.
 クラッチ機構CMが係合状態であって、ブレーキ機構BMが解放状態である場合、クラッチ機構CMにより、入力軸1及び第2サンギヤSG2と一体的に回転する第1係合回転部材RM1と、第2リングギヤRG2と一体的に回転する第2係合回転部材RM2とが係合されて一体的に回転する。その結果、第2サンギヤSG2と、第2リングギヤRG2と、入力ギヤ1Gに連結された第2キャリヤCA2とが一体的に回転する。即ち、入力軸1(ロータRT)の回転が減速されずに、そのまま入力ギヤ1Gに伝達される。 When the clutch mechanism CM is in the engaged state and the brake mechanism BM is in the disengaged state, the clutch mechanism CM causes the first engagement rotating member RM1 that rotates integrally with the input shaft 1 and the second sun gear SG2, The second engagement rotating member RM2 that rotates integrally with the 2-ring gear RG2 is engaged and rotates integrally. As a result, the second sun gear SG2, the second ring gear RG2, and the second carrier CA2 connected to the input gear 1G rotate integrally. That is, the rotation of the input shaft 1 (rotor RT) is transmitted as it is to the input gear 1G without being decelerated.
 一方、クラッチ機構CMが解放状態であって、ブレーキ機構BMが係合状態である場合は、第2係合回転部材RM2が固定され、第2係合回転部材RM2に連結された第2リングギヤRG2も固定される。その結果、第2リングギヤRG2と、入力ギヤ1Gに連結された第2キャリヤCA2と、入力軸1に連結された第2サンギヤSG2とが、互いに相対回転する。入力軸1から第2サンギヤSG2に伝達されたロータRTの回転は、第2遊星歯車機構70により減速されて第2キャリヤCA2から入力ギヤ1Gに伝達される。 On the other hand, when the clutch mechanism CM is in the disengaged state and the brake mechanism BM is in the engaged state, the second engagement rotary member RM2 is fixed and the second ring gear RG2 connected to the second engagement rotary member RM2 is also fixed. As a result, the second ring gear RG2, the second carrier CA2 connected to the input gear 1G, and the second sun gear SG2 connected to the input shaft 1 rotate relative to each other. The rotation of the rotor RT transmitted from the input shaft 1 to the second sun gear SG2 is decelerated by the second planetary gear mechanism 70 and transmitted from the second carrier CA2 to the input gear 1G.
 第1車両用駆動装置100A及び第2車両用駆動装置100Bと同様に、第3車両用駆動装置100Cも、入力ギヤ1Gと、車輪Wに駆動連結される出力ギヤ2Gと、アイドラギヤ3Gとを備えている。図5に示すように、第3車両用駆動装置100Cのアイドラギヤ3Gは、第1車両用駆動装置100Aと同様に、第1アイドラギヤ31G及び第2アイドラギヤ32Gを含み、第1アイドラギヤ31G及び第2アイドラギヤ32Gは、同径且つ同じ歯数のギヤである。 Like the first vehicle drive device 100A and the second vehicle drive device 100B, the third vehicle drive device 100C also includes an input gear 1G, an output gear 2G drivingly connected to the wheels W, and an idler gear 3G. ing. As shown in FIG. 5, the idler gear 3G of the third vehicle drive device 100C includes a first idler gear 31G and a second idler gear 32G, similar to the first vehicle drive device 100A. 32G is a gear with the same diameter and the same number of teeth.
 また、図6に示すように、第1車両用駆動装置100Aと同様に、入力ギヤ1Gと出力ギヤ2Gとは互いに平行な別軸上に配置されている。ここでは、入力ギヤ1Gが第1軸A1上に配置され、出力ギヤ2Gが第2軸A2上に配置されている。また、第1アイドラギヤ31Gは、入力ギヤ1Gと噛み合っていると共に出力ギヤ2Gと噛み合っており、第2アイドラギヤ32Gも、入力ギヤ1Gと噛み合っていると共に出力ギヤ2Gと噛み合っている。但し、第2アイドラギヤ32Gは、入力ギヤ1Gの周方向における第1アイドラギヤ31Gとは異なる位置で入力ギヤ1Gと噛み合っていると共に、出力ギヤ2Gの周方向における第1アイドラギヤ31Gとは異なる位置で出力ギヤ2Gと噛み合っている。 Further, as shown in FIG. 6, the input gear 1G and the output gear 2G are arranged on different axes parallel to each other, similar to the first vehicle drive device 100A. Here, the input gear 1G is arranged on the first axis A1 and the output gear 2G is arranged on the second axis A2. The first idler gear 31G is meshed with the input gear 1G and the output gear 2G, and the second idler gear 32G is also meshed with the input gear 1G and the output gear 2G. However, the second idler gear 32G meshes with the input gear 1G at a position different from the first idler gear 31G in the circumferential direction of the input gear 1G, and outputs at a position different from the first idler gear 31G in the circumferential direction of the output gear 2G. It meshes with gear 2G.
 第1アイドラギヤ31G及び第2アイドラギヤ32Gが、入力ギヤ1G及び出力ギヤ2Gに噛み合っているため、図6に示すように、車両用駆動装置100における軸方向Lの長さを抑制することができる。また、第1アイドラギヤ31G及び第2アイドラギヤ32Gが、入力ギヤ1Gの周方向において互いに異なる位置で噛み合っているため、入力ギヤ1G及び入力ギヤ1Gが配置された軸部材である中間軸6に作用する曲げモーメントを小さく抑えることができる。つまり、入力ギヤ1G及び中間軸6を小径化して、アイドラギヤ3Gと入力ギヤ1Gとによる減速比を大きくすることができるので、アイドラギヤ3Gと出力ギヤ2Gとによる減速比を大きくする必要性が低下し、出力ギヤ2Gを小径化することができる。 Since the first idler gear 31G and the second idler gear 32G mesh with the input gear 1G and the output gear 2G, the length of the vehicle drive device 100 in the axial direction L can be suppressed, as shown in FIG. In addition, since the first idler gear 31G and the second idler gear 32G mesh with each other at different positions in the circumferential direction of the input gear 1G, they act on the intermediate shaft 6, which is a shaft member on which the input gear 1G and the input gear 1G are arranged. Bending moment can be kept small. That is, the diameters of the input gear 1G and the intermediate shaft 6 can be reduced to increase the speed reduction ratio between the idler gear 3G and the input gear 1G, thereby reducing the need for increasing the speed reduction ratio between the idler gear 3G and the output gear 2G. , the diameter of the output gear 2G can be reduced.
 第3車両用駆動装置100Cでも、第1アイドラギヤ31Gと入力ギヤ1Gとの噛み合い位置と、第2アイドラギヤ32Gと入力ギヤ1Gとの噛み合い位置とが、入力ギヤ1Gの回転軸心である第1軸A1を挟んで互いに反対側に配置されている。換言すれば、第1アイドラギヤ31Gと入力ギヤ1Gとの噛み合い位置と、第2アイドラギヤ32Gと入力ギヤ1Gとの噛み合い位置とが、入力ギヤ1Gの周方向に均等な間隔で配置されている。 In the third vehicle drive device 100C as well, the meshing position between the first idler gear 31G and the input gear 1G and the meshing position between the second idler gear 32G and the input gear 1G are arranged on the first axis, which is the rotational axis of the input gear 1G. They are arranged on opposite sides with A1 interposed therebetween. In other words, the meshing position between the first idler gear 31G and the input gear 1G and the meshing position between the second idler gear 32G and the input gear 1G are arranged at equal intervals in the circumferential direction of the input gear 1G.
 2つのアイドラギヤ3Gの入力ギヤ1Gとの噛み合い位置が、入力ギヤ1Gの周方向において均等な間隔で配置されているため、それぞれのアイドラギヤ3Gと入力ギヤ1Gとの噛み合い部において、入力ギヤ1Gがアイドラギヤ3Gから受ける荷重が互いに打ち消しあう方向に作用するようにできる。このため、中間軸6及び入力ギヤ1Gに作用する曲げモーメントを小さく抑えることができる。また、本例では、2つのアイドラギヤ3Gの入力ギヤ1Gとの噛み合い位置が、第1軸A1を挟んで互いに反対側に配置されているので、2つのアイドラギヤ3Gと入力ギヤ1Gとの噛み合い部において、入力ギヤ1Gがアイドラギヤ3Gから受ける荷重が互いに反対向きに作用するようにできる。従って、入力ギヤ1Gが配置された軸部材である中間軸6及び入力ギヤ1Gに作用する曲げモーメントの抑制効果が大きい。 Since the meshing positions of the two idler gears 3G with the input gear 1G are arranged at equal intervals in the circumferential direction of the input gear 1G, the input gear 1G is positioned at the meshing portion between the idler gears 3G and the input gear 1G. The loads received from the 3G can act in directions that cancel each other out. Therefore, the bending moment acting on the intermediate shaft 6 and the input gear 1G can be kept small. In addition, in this example, the meshing positions of the two idler gears 3G and the input gear 1G are arranged on opposite sides of the first axis A1. , the loads that the input gear 1G receives from the idler gear 3G act in opposite directions. Therefore, the effect of suppressing the bending moment acting on the intermediate shaft 6 and the input gear 1G, which are shaft members on which the input gear 1G is arranged, is large.
 尚、上述したアイドラギヤ3Gの数や配置については、この限りではなく、例えば、図3及び図4を参照して上述した第2車両用駆動装置100Bの構造を適用することもできる。 Note that the number and arrangement of the idler gears 3G described above are not limited to this, and for example, the structure of the second vehicle drive device 100B described above with reference to FIGS. 3 and 4 can also be applied.
 第3車両用駆動装置100Cが駆動する車輪Wも、第1輪W1と第2輪W2とを含み、第3車両用駆動装置100Cは、これら2つの車輪Wを駆動する。図5及び図6に示すように、第3車両用駆動装置100Cは、第1輪W1に駆動連結される第1出力部材41と、第2輪W2に駆動連結される第2出力部材42と、出力ギヤ2Gに伝達された駆動力を第1出力部材41と第2出力部材42とに分配する遊星歯車式の差動歯車機構DFとを備えている。また、第3車両用駆動装置100Cにおいても、図6に示すように、入力ギヤ1Gと、第1アイドラギヤ31G(図6では不図示)と、第2アイドラギヤ32Gと、出力ギヤ2Gと、差動歯車機構DFとの軸方向Lの配置領域が互いに重複している。 The wheels W driven by the third vehicle drive device 100C also include a first wheel W1 and a second wheel W2, and the third vehicle drive device 100C drives these two wheels W. As shown in FIGS. 5 and 6, the third vehicle drive device 100C includes a first output member 41 drivingly connected to the first wheel W1 and a second output member 42 drivingly connected to the second wheel W2. , and a planetary gear type differential gear mechanism DF for distributing the driving force transmitted to the output gear 2G to the first output member 41 and the second output member 42 . Also in the third vehicle drive device 100C, as shown in FIG. 6, an input gear 1G, a first idler gear 31G (not shown in FIG. 6), a second idler gear 32G, an output gear 2G, a differential The arrangement areas in the axial direction L with the gear mechanism DF overlap each other.
 このように、入力ギヤ1Gから差動歯車機構DFまでの動力伝達経路を構成する全てのギヤの軸方向Lの配置領域を互いに重複させて配置することにより、これらのギヤの軸方向Lの配置スペースの小型化を図ることができる。これにより、車両用駆動装置100の軸方向Lの寸法の小型化を図ることができる。 In this way, by arranging the arrangement areas in the axial direction L of all the gears forming the power transmission path from the input gear 1G to the differential gear mechanism DF so as to overlap each other, the arrangement of these gears in the axial direction L is Space can be reduced. As a result, the size of the vehicle drive device 100 in the axial direction L can be reduced.
 出力ギヤ2Gは、第1車両用駆動装置100A及び第2車両用駆動装置100Bと同様に、差動歯車機構DFへ駆動力を入力するための差動入力ギヤである。詳細な説明は省略するが、第3車両用駆動装置100Cにおいても、第1車両用駆動装置100A及び第2車両用駆動装置100Bと同様の遊星歯車機構PSにより差動歯車機構DFを構成することができる。当然ながら、遊星歯車機構PSによって差動歯車機構DFが構成される場合であっても、第1車両用駆動装置100A及び第2車両用駆動装置100Bとは異なる構成であることを妨げるものではない。 The output gear 2G is a differential input gear for inputting driving force to the differential gear mechanism DF, like the first vehicle drive device 100A and the second vehicle drive device 100B. Although detailed description is omitted, in the third vehicle drive device 100C as well, the differential gear mechanism DF is configured by the planetary gear mechanism PS similar to the first vehicle drive device 100A and the second vehicle drive device 100B. can be done. Of course, even if the differential gear mechanism DF is configured by the planetary gear mechanism PS, it does not preclude the configuration from being different from that of the first vehicle drive device 100A and the second vehicle drive device 100B. .
 また、第3車両用駆動装置100Cにおいても、図5に示すように、第1アイドラギヤ31Gの全体及び第2アイドラギヤ32Gの全体が、軸方向Lに沿う軸方向視で回転電機MGと重複するように配置されている。つまり、第1アイドラギヤ31G及び第2アイドラギヤ32Gが、軸方向視で回転電機MGからはみ出さないように配置されている。これにより、車両用駆動装置100の径方向寸法の大型化を抑制できる。尚、図5では、第1アイドラギヤ31Gの全体及び第2アイドラギヤ32Gの全体が、軸方向視でロータRTと重複するように配置されている形態を例示しているが、ステータST(図6参照)を含めた回転電機MGの全体と軸方向視で重複していればよい。 Also in the third vehicle drive device 100C, as shown in FIG. 5, the entire first idler gear 31G and the entire second idler gear 32G overlap the rotary electric machine MG when viewed in the axial direction L. are placed in That is, the first idler gear 31G and the second idler gear 32G are arranged so as not to protrude from the rotary electric machine MG when viewed in the axial direction. Accordingly, it is possible to suppress an increase in the radial dimension of the vehicle drive device 100 . Note that FIG. 5 illustrates a configuration in which the entire first idler gear 31G and the entire second idler gear 32G are arranged so as to overlap the rotor RT when viewed in the axial direction. ) as long as it overlaps with the entire rotary electric machine MG in an axial view.
 尚、第3車両用駆動装置100Cは、第1出力部材41及び第2出力部材42に伝達されるトルクを異ならせるためのトルクベクタリング機能や、LSD機能(リミテッド・スリップ・デファレンシャル機能、差動制限機能)を有したトルク制御装置9、及び第2係合装置CL2が備えられている。第2係合装置CL2は、上述した第1係合装置CL1からクラッチ機構CMを除き、ブレーキ機構BMのみを備えて構成されている。モータなどの係合駆動装置を用いたブレーキ機構BMの駆動方法についても第1係合装置CL1と同様である。 The third vehicle drive device 100C has a torque vectoring function for differentiating the torque transmitted to the first output member 41 and the second output member 42, an LSD function (limited slip differential function, differential A torque control device 9 having a limiting function) and a second engagement device CL2 are provided. The second engagement device CL2 is configured by removing the clutch mechanism CM from the above-described first engagement device CL1 and including only the brake mechanism BM. The method of driving the brake mechanism BM using an engagement drive device such as a motor is the same as that of the first engagement device CL1.
 トルク制御装置9についての詳細な説明は省略するが、トルク制御装置9に対して、不図示のモータなどの駆動装置からトルクを与えることで、トルクベクタリング機能を実現することができる。また、第2係合装置CL2のブレーキ機構BMにより回転を制限することで、LSD機能が実現できる。 Although a detailed description of the torque control device 9 is omitted, a torque vectoring function can be realized by applying torque to the torque control device 9 from a drive device such as a motor (not shown). In addition, the LSD function can be realized by restricting the rotation by the brake mechanism BM of the second engagement device CL2.
 以下、図7を参照して、本実施形態の車両用駆動装置100の利点について、比較例の車両用駆動装置(第1比較例の駆動装置101、第2比較例の駆動装置102、第3比較例の駆動装置103)と比較して説明する。 7, the advantages of the vehicle drive system 100 of the present embodiment will be described below as vehicle drive systems of comparative examples (drive system 101 of the first comparative example, drive system 102 of the second comparative example, third A description will be given in comparison with the driving device 103) of the comparative example.
 第1比較例の駆動装置101(2段減速方式)は、減速ギヤ機構30としてカウンタギヤ機構CGを備えている。よく知られているように、カウンタギヤ機構CGは、同軸上に配置された大径のカウンタドリブンギヤCG1と小径のカウンタドライブギヤCG2とを備える。このため、駆動装置の軸方向Lの長さが長くなる傾向がある。また、2つの車輪Wに駆動力を分配する差動歯車機構DFの配置スペースを確保するために、差動歯車機構DF(出力部材、車輪W)の回転軸(第2軸A2)と、ロータRTの回転軸(第1軸A1)との間隔が制約を受ける場合がある。 The drive device 101 (two-stage speed reduction type) of the first comparative example includes a counter gear mechanism CG as the reduction gear mechanism 30 . As is well known, the counter gear mechanism CG includes a large-diameter counter driven gear CG1 and a small-diameter counter drive gear CG2 coaxially arranged. Therefore, the length of the driving device in the axial direction L tends to increase. In addition, in order to secure the arrangement space of the differential gear mechanism DF that distributes the driving force to the two wheels W, the rotary shaft (second axis A2) of the differential gear mechanism DF (output member, wheel W) and the rotor The space between the RT and the rotation axis (first axis A1) may be restricted.
 第2比較例の駆動装置102(1段減速方式)は、減速ギヤ機構30としてカウンタギヤ機構CGではなく、平歯車を備えている。これにより、第1比較例の駆動装置101の軸方向Lの長さ(第1軸方向長さH1)に比べて、軸方向Lの長さ(第2軸方向長さH2)を短くすることができる。但し、減速比を確保するために、入力ギヤ1Gを第1比較例の駆動装置101よりも小径化する必要があり、入力軸1などの入力ギヤ1Gが配置される軸部材や入力ギヤ1Gのねじり強度や曲げ強度の確保が課題となる。強度を確保するために入力ギヤ1Gを大径化すると、同じ減速比を確保するためには出力ギヤ2Gも大径化する必要が生じ、駆動装置が径方向に大きくなる。そのため、車両への搭載が困難となる可能性がある。また、第1比較例の駆動装置101と同様に、差動歯車機構DFの配置スペースを確保するために、差動歯車機構DF(出力部材、車輪W)の回転軸(第2軸A2)と、ロータRTの回転軸(第1軸A1)との間隔が制約を受ける場合がある。 The drive device 102 (single-speed reduction type) of the second comparative example includes a spur gear as the reduction gear mechanism 30 instead of the counter gear mechanism CG. As a result, the length in the axial direction L (the second axial length H2) can be made shorter than the length in the axial direction L (the first axial length H1) of the driving device 101 of the first comparative example. can be done. However, in order to secure a reduction ratio, it is necessary to make the diameter of the input gear 1G smaller than that of the driving device 101 of the first comparative example. Securing torsional strength and bending strength is an issue. If the diameter of the input gear 1G is increased in order to secure strength, the diameter of the output gear 2G must also be increased in order to secure the same reduction ratio, and the drive device becomes radially large. Therefore, it may be difficult to mount the device on a vehicle. Further, similarly to the driving device 101 of the first comparative example, in order to secure the arrangement space of the differential gear mechanism DF, the rotation axis (second axis A2) of the differential gear mechanism DF (output member, wheel W) and , the interval between the rotor RT and the rotation axis (first axis A1) may be restricted.
 第3比較例の駆動装置103(同軸減速方式)は、減速ギヤ機構30として、例えば遊星歯車機構PSを備え、ロータRT、入力ギヤ1G、出力ギヤ2Gが同軸上(第1軸A1又は第2軸A2)に配置されている。図7に示すように、第3比較例の駆動装置103は、他の2つの比較例に比べて、径方向の大きさが抑制される。しかし、差動歯車機構DFも、ロータRT、入力ギヤ1G、出力ギヤ2Gと同軸上に配置されることになるため、軸方向Lの長さ(第3軸方向長さH3)が、他の2つの比較例よりも大幅に大きくなる。また、最低地上高MGLの制約より、回転電機MGの出力に制約がかかり、高出力化の妨げとなる可能性がある。 The driving device 103 (coaxial reduction type) of the third comparative example includes, for example, a planetary gear mechanism PS as the reduction gear mechanism 30, and the rotor RT, the input gear 1G, and the output gear 2G are coaxial (first axis A1 or second axis A1). Axis A2). As shown in FIG. 7, the driving device 103 of the third comparative example has a smaller radial size than the other two comparative examples. However, since the differential gear mechanism DF is also arranged coaxially with the rotor RT, the input gear 1G, and the output gear 2G, the length in the axial direction L (the third axial length H3) is It becomes significantly larger than the two comparative examples. In addition, the minimum ground clearance MGL restricts the output of the rotary electric machine MG, which may hinder the increase in output.
 上述したような問題に対して、本実施形態の車両用駆動装置100では、上述したように入力ギヤ1Gが配置される軸部材及び入力ギヤ1Gの曲げモーメントが抑制されるため、入力ギヤ1Gの小径化が可能であり、出力ギヤ2Gを大径化することなく、必要な減速比を確保することができる。例えば、第2比較例の駆動装置102のような1段減速方式を取り入れつつ、径方向に駆動装置が拡大することを抑制することができる。 With respect to the above-described problem, in the vehicle drive system 100 of the present embodiment, the bending moment of the input gear 1G and the shaft member on which the input gear 1G is arranged is suppressed as described above. The diameter of the output gear 2G can be reduced, and a required reduction ratio can be secured without increasing the diameter of the output gear 2G. For example, it is possible to suppress radial expansion of the drive device while adopting a one-stage speed reduction system like the drive device 102 of the second comparative example.
 また、例えば、第2車両用駆動装置100Bのように、アイドラギヤ3Gを相対的に大径のアイドラドリブンギヤ3aと、相対的に小径のアイドラドライブギヤ3bとにより構成することによって、2段減速方式の構造も取り入れて、より高い減速比を実現することもできる。 Further, for example, as in the second vehicle drive device 100B, by configuring the idler gear 3G with a relatively large-diameter idler driven gear 3a and a relatively small-diameter idler drive gear 3b, a two-stage speed reduction system can be achieved. Structures can also be incorporated to achieve higher reduction ratios.
 また、出力ギヤ2Gの径方向内側に、差動歯車機構DFを内蔵することで、軸方向視で回転電機MGと重複するように差動歯車機構DFを配置することができる。これによりロータRTの回転軸(第1軸A1)と、車輪Wの回転軸(第2軸A2)との軸間距離を短縮することもできる。つまり、最低地上高MGLの影響を受けにくく、車両用駆動装置100の配置の自由度を高くすることができる。 In addition, by incorporating the differential gear mechanism DF inside the output gear 2G in the radial direction, the differential gear mechanism DF can be arranged so as to overlap with the rotary electric machine MG when viewed in the axial direction. As a result, the inter-axis distance between the rotation axis of the rotor RT (first axis A1) and the rotation axis of the wheel W (second axis A2) can be shortened. That is, the vehicle drive system 100 is less susceptible to the minimum ground clearance MGL and can be arranged with a higher degree of freedom.
 尚、第1車両用駆動装置100A、第2車両用駆動装置100B、第3車両用駆動装置100Cとは異なり、差動歯車機構を有していない構造においても、入力ギヤ1Gと、出力ギヤ2Gとの間で大きな減速比を設定しつつ、出力ギヤ2Gの径の小型化を可能とするようにアイドラギヤ3Gを配置する技術を適用することができる。以下、そのような車両用駆動装置100についても例示する。 Note that unlike the first vehicle drive device 100A, the second vehicle drive device 100B, and the third vehicle drive device 100C, even in a structure that does not have a differential gear mechanism, the input gear 1G and the output gear 2G It is possible to apply a technique of arranging the idler gear 3G so as to allow the diameter of the output gear 2G to be reduced while setting a large reduction ratio between the . Hereinafter, such a vehicle drive system 100 will also be exemplified.
 上述したように、第1車両用駆動装置100A、第2車両用駆動装置100B及び第3車両用駆動装置100Cは、駆動対象の車輪Wが第1輪W1と第2輪W2とを含んでおり、出力ギヤ2Gに伝達された駆動力を、第1輪W1に駆動連結される第1出力部材41と第2輪W2に駆動連結される第2出力部材42とに分配する差動歯車機構DFを備えていた。以下に説明する第4車両用駆動装置100Dは、同一構造の第1駆動装置100aと第2駆動装置100bとにより構成され、第1駆動装置100aにより第1輪W1が駆動され、第2駆動装置100bにより第2輪W2が駆動される。第4車両用駆動装置100D(第1駆動装置100a、第2駆動装置100b)は、出力ギヤ2Gに伝達された駆動力を分配しないため、差動歯車機構DFは備えていない。 As described above, in the first vehicle drive device 100A, the second vehicle drive device 100B, and the third vehicle drive device 100C, the wheels W to be driven include the first wheel W1 and the second wheel W2. , a differential gear mechanism DF that distributes the driving force transmitted to the output gear 2G to a first output member 41 drivingly connected to the first wheel W1 and a second output member 42 drivingly connected to the second wheel W2. was equipped with A fourth vehicle driving device 100D described below is composed of a first driving device 100a and a second driving device 100b having the same structure. A second wheel W2 is driven by 100b. The fourth vehicle drive device 100D (the first drive device 100a, the second drive device 100b) does not distribute the driving force transmitted to the output gear 2G, and therefore does not have a differential gear mechanism DF.
 図8及び図9に示すように、第4車両用駆動装置100Dを構成する第1駆動装置100a(及び第2駆動装置100b)は、ロータRTを備えた回転電機MGと、ロータRTと一体的に回転する入力軸1と、入力軸1と同軸に配置されて入力軸1に駆動連結された入力ギヤ1Gと、車輪Wに駆動連結される出力ギヤ2Gと、アイドラギヤ3Gとを備えている。第1車両用駆動装置100A、第2車両用駆動装置100B及び第3車両用駆動装置100Cと同様に、アイドラギヤ3Gは、第1アイドラギヤ31G及び第2アイドラギヤ32Gを備えている。第1アイドラギヤ31Gと第2アイドラギヤ32Gとは、同径且つ同じ歯数のギヤである。尚、第4車両用駆動装置100Dでは、入力ギヤ1Gは入力軸1に設けられている。 As shown in FIGS. 8 and 9, the first drive device 100a (and the second drive device 100b) that constitute the fourth vehicle drive device 100D includes a rotary electric machine MG provided with a rotor RT, and a rotary electric machine MG that is integral with the rotor RT. , an input gear 1G arranged coaxially with the input shaft 1 and drivingly connected to the input shaft 1, an output gear 2G drivingly connected to a wheel W, and an idler gear 3G. Like the first vehicle drive device 100A, the second vehicle drive device 100B and the third vehicle drive device 100C, the idler gear 3G includes a first idler gear 31G and a second idler gear 32G. The first idler gear 31G and the second idler gear 32G are gears having the same diameter and the same number of teeth. The input gear 1G is provided on the input shaft 1 in the fourth vehicle drive device 100D.
 また、第1車両用駆動装置100A、第2車両用駆動装置100B及び第3車両用駆動装置100Cと同様に、入力ギヤ1Gが第1軸A1上に配置され、出力ギヤ2Gが第1軸A1に平行な別軸である第2軸A2上に配置されている。また、第1アイドラギヤ31Gは、入力ギヤ1Gと噛み合っていると共に出力ギヤ2Gと噛み合っており、第2アイドラギヤ32Gも、入力ギヤ1Gと噛み合っていると共に出力ギヤ2Gと噛み合っている。第2アイドラギヤ32Gは、入力ギヤ1Gの周方向における第1アイドラギヤ31Gとは異なる位置で入力ギヤ1Gと噛み合っていると共に、出力ギヤ2Gの周方向における第1アイドラギヤ31Gとは異なる位置で出力ギヤ2Gと噛み合っている。 Further, similarly to the first vehicle drive device 100A, the second vehicle drive device 100B, and the third vehicle drive device 100C, the input gear 1G is arranged on the first axis A1, and the output gear 2G is arranged on the first axis A1. is arranged on a second axis A2, which is another axis parallel to . The first idler gear 31G is meshed with the input gear 1G and the output gear 2G, and the second idler gear 32G is also meshed with the input gear 1G and the output gear 2G. The second idler gear 32G meshes with the input gear 1G at a position different from the first idler gear 31G in the circumferential direction of the input gear 1G, and at a position different from the first idler gear 31G in the circumferential direction of the output gear 2G. is meshing with
 第1アイドラギヤ31G及び第2アイドラギヤ32Gが、入力ギヤ1G及び出力ギヤ2Gに噛み合っているため、図9に示すように、車両用駆動装置100における軸方向Lの長さを抑制することができる。また、第1アイドラギヤ31G及び第2アイドラギヤ32Gが、入力ギヤ1Gの周方向において互いに異なる位置で噛み合っているため、入力ギヤ1G及び入力軸1に作用する曲げモーメントを小さく抑えることができる。また、第1車両用駆動装置100Aと同様に、第1アイドラギヤ31Gと入力ギヤ1Gとの噛み合い位置と、第2アイドラギヤ32Gと入力ギヤ1Gとの噛み合い位置とが、入力ギヤ1Gの回転軸心である第1軸A1を挟んで互いに反対側に配置されている。2つのアイドラギヤ3Gの入力ギヤ1Gとの噛み合い位置が、第1軸A1を挟んで互いに反対側に配置されているので、2つのアイドラギヤ3Gと入力ギヤ1Gとの噛み合い部において、入力ギヤ1Gがアイドラギヤ3Gから受ける荷重が互いに打ち消しあう方向に作用するようにできる。 Since the first idler gear 31G and the second idler gear 32G mesh with the input gear 1G and the output gear 2G, the length of the vehicle drive device 100 in the axial direction L can be suppressed, as shown in FIG. In addition, since the first idler gear 31G and the second idler gear 32G mesh with each other at different positions in the circumferential direction of the input gear 1G, the bending moment acting on the input gear 1G and the input shaft 1 can be kept small. Further, similarly to the first vehicle drive device 100A, the meshing position between the first idler gear 31G and the input gear 1G and the meshing position between the second idler gear 32G and the input gear 1G are aligned with the rotational axis of the input gear 1G. They are arranged on opposite sides of each other with a certain first axis A1 interposed therebetween. Since the meshing positions of the two idler gears 3G and the input gear 1G are arranged on the opposite sides of the first axis A1, the input gear 1G is the idler gear at the meshing portion between the two idler gears 3G and the input gear 1G. The loads received from the 3G can act in directions that cancel each other out.
 第4車両用駆動装置100Dを構成する第1駆動装置100a及び第2駆動装置100b)は、それぞれ、サンギヤSGとキャリヤCAとリングギヤRGとを備えた遊星歯車機構PSを備えている。それぞれ、第1駆動装置100aの遊星歯車機構PSのキャリヤCAが第1出力部材41に連結され、第2駆動装置100bの遊星歯車機構PSのキャリヤCAが第2出力部材42に連結されている。第1出力部材41及び第2出力部材42は、それぞれ独立した遊星歯車機構PSに駆動連結されている。つまり、第4車両用駆動装置100Dは、差動歯車機構DFを備えずに構成されている。図8及び図9に示すように、キャリヤCAは、ピニオン軸PAを介してピニオンギヤPGを支持している。ピニオンギヤPGは、リングギヤRG及びサンギヤSGに噛み合っている。リングギヤRGは出力ギヤ2Gと一体的に回転するように連結されている。本例では、図8に示されているように、リングギヤRGは、出力ギヤ2Gに対して径方向内側であって、径方向視で出力ギヤ2Gと重複するように配置されている。また、サンギヤSGはケース90に固定されている。これにより、第1駆動装置100aでは、出力ギヤ2Gに伝達された回転は、リングギヤRG及びキャリヤCAを介して減速されて第1出力部材41に伝達される。第2駆動装置100bでは、出力ギヤ2Gに伝達された回転は、リングギヤRG及びキャリヤCAを介して減速されて第2出力部材42に伝達される。すなわち、遊星歯車機構PSは減速機として機能する。 The first drive device 100a and the second drive device 100b) that constitute the fourth vehicle drive device 100D each include a planetary gear mechanism PS that includes a sun gear SG, a carrier CA, and a ring gear RG. The carrier CA of the planetary gear mechanism PS of the first driving device 100a is connected to the first output member 41, and the carrier CA of the planetary gear mechanism PS of the second driving device 100b is connected to the second output member 42, respectively. The first output member 41 and the second output member 42 are drivingly connected to independent planetary gear mechanisms PS. That is, the fourth vehicle drive device 100D is configured without the differential gear mechanism DF. As shown in FIGS. 8 and 9, carrier CA supports pinion gear PG via pinion shaft PA. The pinion gear PG meshes with the ring gear RG and the sun gear SG. The ring gear RG is connected to rotate integrally with the output gear 2G. In this example, as shown in FIG. 8, the ring gear RG is arranged radially inside the output gear 2G so as to overlap the output gear 2G when viewed in the radial direction. Also, the sun gear SG is fixed to the case 90 . As a result, in the first driving device 100a, the rotation transmitted to the output gear 2G is decelerated via the ring gear RG and the carrier CA and transmitted to the first output member 41. As shown in FIG. In the second driving device 100b, the rotation transmitted to the output gear 2G is decelerated via the ring gear RG and the carrier CA and transmitted to the second output member 42. That is, the planetary gear mechanism PS functions as a speed reducer.
 尚、第4車両用駆動装置100Dの第1駆動装置100a及び第2駆動装置100bにおいても、入力ギヤ1Gと第1アイドラギヤ31Gと第2アイドラギヤ32Gと出力ギヤ2Gと遊星歯車機構PSとの軸方向Lの配置領域が互いに重複している。 Also in the first drive device 100a and the second drive device 100b of the fourth vehicle drive device 100D, the axial directions of the input gear 1G, the first idler gear 31G, the second idler gear 32G, the output gear 2G, and the planetary gear mechanism PS The placement regions of L overlap each other.
 また、第4車両用駆動装置100Dの第1駆動装置100a及び第2駆動装置100bにおいても、図8に示すように、第1アイドラギヤ31Gの全体及び第2アイドラギヤ32Gの全体が、軸方向Lに沿う軸方向視で回転電機MGと重複するように配置されている。つまり、第1アイドラギヤ31G及び第2アイドラギヤ32Gが、軸方向視で回転電機MGからはみ出さないように配置されていることで、車両用駆動装置100の径方向寸法の大型化を抑制できる。 Also, in the first drive device 100a and the second drive device 100b of the fourth vehicle drive device 100D, as shown in FIG. It is arranged so as to overlap with the rotary electric machine MG when viewed in the axial direction along. That is, since the first idler gear 31G and the second idler gear 32G are arranged so as not to protrude from the rotary electric machine MG when viewed in the axial direction, it is possible to suppress an increase in the radial dimension of the vehicle drive device 100.
 尚、上記においては、図8及び図9を参照して、第1駆動装置100a及び第2駆動装置100bが、減速機として機能する遊星歯車機構PSを備えている構成を例示したが、遊星歯車機構PSを備えることなく、出力ギヤ2Gに第1出力部材41、及び第2出力部材42が連結されている構成であってもよい。 In the above description, with reference to FIGS. 8 and 9, the configuration in which the first driving device 100a and the second driving device 100b are provided with the planetary gear mechanism PS functioning as a speed reducer has been exemplified. A configuration in which the first output member 41 and the second output member 42 are connected to the output gear 2G without providing the mechanism PS may be employed.
〔その他の実施形態〕
 以下、その他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
[Other embodiments]
Other embodiments will be described below. The configuration of each embodiment described below is not limited to being applied alone, and can be applied in combination with the configuration of other embodiments as long as there is no contradiction.
(1)上記においては、第1車両用駆動装置100A、第2車両用駆動装置100Bの何れにおいても、入力ギヤ1Gが入力軸1と一体的に形成された構成を例示した。しかし、入力ギヤ1Gは入力軸1と別体で形成されて一体回転するように連結された構成であってもよい。 (1) In the above description, the configuration in which the input gear 1G is integrally formed with the input shaft 1 is exemplified in both the first vehicle drive device 100A and the second vehicle drive device 100B. However, the input gear 1G may be formed separately from the input shaft 1 and connected to rotate integrally.
(2)第1車両用駆動装置100Aでは、第1アイドラギヤ31Gと第2アイドラギヤ32Gとが180°間隔で入力ギヤ1Gに噛み合っている形態を例示した。つまり、2つのアイドラギヤ3Gが、180°ピッチで均等に入力ギヤ1Gに噛み合っている形態を例示した。また、第2車両用駆動装置100Bでは、3つのアイドラギヤ3Gが120°間隔で噛み合っている形態を例示した。つまり、3つのアイドラギヤ3Gが、120°ピッチで均等に入力ギヤ1Gに噛み合っている形態を例示した。しかし、複数のアイドラギヤ3Gが入力ギヤ1Gに対してこのように厳密に均等な間隔で噛み合っていなくても、おおよそ均等な間隔で噛み合っていればよい。 (2) In the first vehicle drive device 100A, the first idler gear 31G and the second idler gear 32G mesh with the input gear 1G at intervals of 180 degrees. In other words, the two idler gears 3G are exemplified as being in mesh with the input gear 1G evenly at a pitch of 180°. Further, in the second vehicle drive device 100B, the form in which the three idler gears 3G are meshed with each other at intervals of 120° is exemplified. In other words, the three idler gears 3G are exemplified as meshing with the input gear 1G evenly at a pitch of 120°. However, even if the plurality of idler gears 3G do not mesh with the input gear 1G at such strictly uniform intervals, it is sufficient if they mesh with the input gear 1G at approximately uniform intervals.
 例えば、第1車両用駆動装置100Aでは、2つのアイドラギヤ3Gが入力ギヤ1Gを挟んでおおよそ反対側に配置されていてもよい。また、第2車両用駆動装置100Bでは、おおよそ均等な間隔で入力ギヤ1Gの周囲に配置されていてもよい。即ち、複数のアイドラギヤ3Gは、それぞれ入力ギヤ1Gの周方向の異なる位置で前記入力ギヤと噛み合っていればよい。例えば、均等な間隔でなくても、第2アイドラギヤ32Gが、入力ギヤ1Gの周方向における第1アイドラギヤ31Gとは異なる位置で入力ギヤ1Gと噛み合っていれば、噛み合い部において入力ギヤ1Gに作用する荷重は軽減できる。例えば、2つのアイドラギヤが120°の間隔で入力ギヤ1Gと噛み合うように配置され、反対側は240°の間隔で噛み合っていても良い。 For example, in the first vehicle drive device 100A, the two idler gears 3G may be arranged on opposite sides of the input gear 1G. Further, in the second vehicle drive device 100B, they may be arranged around the input gear 1G at approximately equal intervals. That is, it is sufficient that the plurality of idler gears 3G mesh with the input gear 1G at different positions in the circumferential direction of the input gear 1G. For example, even if the intervals are not uniform, if the second idler gear 32G meshes with the input gear 1G at a position different from that of the first idler gear 31G in the circumferential direction of the input gear 1G, it acts on the input gear 1G at the meshing portion. The load can be reduced. For example, two idler gears may be arranged to mesh with the input gear 1G at an interval of 120°, and the other side may mesh at an interval of 240°.
(3)上記においては、差動歯車機構DFとして遊星歯車機構PSを例示したが、傘歯車機構であってもよい。 (3) In the above, the planetary gear mechanism PS was illustrated as the differential gear mechanism DF, but it may be a bevel gear mechanism.
(4)上記においては、差動歯車機構DFとしての遊星歯車機構PSが、1つの第1ピニオンギヤPG1に対して2つの第2ピニオンギヤPG2が噛み合っている構造を例示した。しかし、遊星歯車機構PSは、1つの第1ピニオンギヤPG1に対して1つの第2ピニオンギヤPG2が噛み合っている構造であっても良い。 (4) In the above, the planetary gear mechanism PS as the differential gear mechanism DF illustrated a structure in which two second pinion gears PG2 mesh with one first pinion gear PG1. However, the planetary gear mechanism PS may have a structure in which one second pinion gear PG2 meshes with one first pinion gear PG1.
(5)上記においては、2つのアイドラギヤ3Gが入力ギヤ1Gに噛み合う構造、及び、3つのアイドラギヤ3Gが入力ギヤ1Gに噛み合う構造を例示した。しかし、4つ以上のアイドラギヤ3Gが入力ギヤ1Gに噛み合う構造であってもよい。 (5) In the above, a structure in which two idler gears 3G mesh with the input gear 1G and a structure in which three idler gears 3G mesh with the input gear 1G are illustrated. However, the structure may be such that four or more idler gears 3G mesh with the input gear 1G.
〔実施形態の概要〕
 以下、上記において説明した車両用駆動装置(100)の概要について簡単に説明する。
[Outline of embodiment]
An overview of the vehicle drive system (100) described above will be briefly described below.
 車両用駆動装置(100)は、1つの態様として、ロータ(RT)を備えた回転電機(MG)と、前記ロータ(RT)と一体的に回転する入力軸(1)と、前記入力軸(1)と同軸に配置され、前記入力軸(1)に駆動連結された入力ギヤ(1G)と、第1輪(W1)に駆動連結される第1出力部材(41)と、第2輪(W2)に駆動連結される第2出力部材(42)と、前記入力軸(1)の側から出力ギヤ(2G)に伝達された駆動力を前記第1出力部材(41)と前記第2出力部材(42)とに分配する差動歯車機構(DF)と、第1アイドラギヤ(31G)及び第2アイドラギヤ(32G)と、を備えた車両用駆動装置(100)であって、前記入力ギヤ(1G)と前記出力ギヤ(2G)とは互いに平行な別軸上に配置され、前記第1アイドラギヤ(31G)と前記第2アイドラギヤ(32G)とは、同径且つ同じ歯数であり、前記第1アイドラギヤ(31G)は、前記入力ギヤ(1G)と噛み合っていると共に、前記出力ギヤ(2G)と噛み合っており、前記第2アイドラギヤ(32G)は、前記入力ギヤ(1G)の周方向における前記第1アイドラギヤ(31G)とは異なる位置で前記入力ギヤ(1G)と噛み合っていると共に、前記出力ギヤ(2G)の前記周方向における前記第1アイドラギヤ(31G)とは異なる位置で前記出力ギヤ(2G)と噛み合っている。 As one aspect, the vehicle drive device (100) includes a rotating electric machine (MG) having a rotor (RT), an input shaft (1) that rotates integrally with the rotor (RT), and the input shaft ( 1) coaxially arranged and drivingly connected to the input shaft (1), an input gear (1G), a first output member (41) drivingly connected to the first wheel (W1), and a second wheel ( W2), and the driving force transmitted from the input shaft (1) side to the output gear (2G) is transferred between the first output member (41) and the second output member (42). A vehicle drive system (100) comprising a differential gear mechanism (DF) distributed to a member (42), a first idler gear (31G) and a second idler gear (32G), wherein the input gear ( 1G) and the output gear (2G) are arranged on different shafts parallel to each other, the first idler gear (31G) and the second idler gear (32G) have the same diameter and the same number of teeth, and the The first idler gear (31G) is in mesh with the input gear (1G) and the output gear (2G), and the second idler gear (32G) is in mesh with the input gear (1G) in the circumferential direction. It meshes with the input gear (1G) at a position different from the first idler gear (31G), and at a position different from the first idler gear (31G) in the circumferential direction of the output gear (2G). 2G).
 この構成によれば、第1アイドラギヤ(31G)及び第2アイドラギヤ(32G)が、入力ギヤ(1G)及び出力ギヤ(2G)に噛み合っており、車両用駆動装置(100)における入力軸(1)に沿った方向(L)の長さを抑制することができる。また、第1アイドラギヤ(31G)及び第2アイドラギヤ(32G)が、入力ギヤ(1G)の周方向において互いに異なる位置で噛み合っているため、入力ギヤ(1G)及び入力軸(1)などの入力ギヤ(1G)が配置された軸部材(1,6)に作用する曲げモーメントを小さく抑えることができる。従って、入力ギヤ(1G)及び当該軸部材(1,6)を小径化し易い。入力ギヤ(1G)及び当該軸部材(1,6)の小型化が可能となることで、入力ギヤ(1G)と、出力ギヤ(2G)との間で大きな減速比を設定しつつ、出力ギヤ(2G)の径の小型化も可能となる。即ち、本構成によれば、必要な減速比を確保しつつ、軸方向長さが抑制された減速ギヤ機構を備え、小型化が可能な車両用駆動装置(100)を提供することができる。 According to this configuration, the first idler gear (31G) and the second idler gear (32G) mesh with the input gear (1G) and the output gear (2G), and the input shaft (1) in the vehicle drive device (100) can suppress the length in the direction (L) along the . In addition, since the first idler gear (31G) and the second idler gear (32G) mesh with each other at different positions in the circumferential direction of the input gear (1G), the input gear such as the input gear (1G) and the input shaft (1) The bending moment acting on the shaft members (1, 6) on which (1G) is arranged can be kept small. Therefore, it is easy to reduce the diameter of the input gear (1G) and the shaft members (1, 6). Since the size of the input gear (1G) and the shaft members (1, 6) can be reduced, a large reduction ratio can be set between the input gear (1G) and the output gear (2G), and the output gear It is also possible to reduce the diameter of (2G). That is, according to this configuration, it is possible to provide a compact vehicle drive device (100) that has a reduction gear mechanism with a reduced axial length while ensuring a required reduction ratio.
 また、車両用駆動装置(100)は、前記第1アイドラギヤ(31G)と前記入力ギヤ(1G)との噛み合い位置と、前記第2アイドラギヤ(32G)と前記入力ギヤ(1G)との噛み合い位置とが、前記入力ギヤ(1G)の回転軸心(A1)を挟んで互いに反対側に配置されていると好適である。 Further, the vehicle drive system (100) has a meshing position between the first idler gear (31G) and the input gear (1G) and a meshing position between the second idler gear (32G) and the input gear (1G). are arranged opposite to each other across the rotation axis (A1) of the input gear (1G).
 2つのアイドラギヤ(3G)の入力ギヤ(1G)との噛み合い位置が、入力ギヤ(1G)の周方向において均等な間隔で配置されているため、それぞれのアイドラギヤ(3G)と入力ギヤ(1G)との噛み合い部において、入力ギヤ(1G)がアイドラギヤ(3G)から受ける荷重が互いに打ち消しあう方向に作用するようにできる。このため、入力軸(1)などの入力ギヤ(1G)が配置された軸部材(1,6)及び入力ギヤ(1G)に作用する曲げモーメントを小さく抑えることができる。また、本構成によれば、2つのアイドラギヤ(3G)の入力ギヤ(1G)との噛み合い位置が、入力ギヤ(1G)の回転軸心(A1)を挟んで互いに反対側に配置されているので、2つのアイドラギヤ(3G)と入力ギヤ(1G)との噛み合い部において、入力ギヤ(1G)がアイドラギヤ(3G)から受ける荷重が互いに反対向きに作用するようにできる。従って、入力軸1などの入力ギヤ(1G)が配置された軸部材(1,6)及び入力ギヤ(1G)に作用する曲げモーメントの抑制効果が大きい。 Since the meshing positions of the two idler gears (3G) with the input gear (1G) are arranged at equal intervals in the circumferential direction of the input gear (1G), each idler gear (3G) and the input gear (1G) , the loads that the input gear (1G) receives from the idler gear (3G) act in directions that cancel each other out. Therefore, the bending moment acting on the input gear (1G) and the shaft members (1, 6) on which the input gear (1G) such as the input shaft (1) is arranged can be kept small. Further, according to this configuration, the meshing positions of the two idler gears (3G) with the input gear (1G) are arranged on opposite sides of the rotation axis (A1) of the input gear (1G). , the load that the input gear (1G) receives from the idler gear (3G) acts in opposite directions at the meshing portion between the two idler gears (3G) and the input gear (1G). Therefore, the effect of suppressing the bending moment acting on the input gear (1G) and the shaft members (1, 6) on which the input gear (1G) such as the input shaft 1 is arranged is large.
 また、車両用駆動装置(100)は、前記入力ギヤ(1G)の回転軸心(A1)と平行な方向を軸方向(L)として、前記入力ギヤ(1G)と前記第1アイドラギヤ(31G)と前記第2アイドラギヤ(32G)と前記出力ギヤ(2G)と前記差動歯車機構(DF)との前記軸方向(L)の配置領域が互いに重複していると好適である。 In addition, the vehicle drive device (100) is configured such that the input gear (1G) and the first idler gear (31G) are arranged such that the direction parallel to the rotation axis (A1) of the input gear (1G) is defined as an axial direction (L). , the second idler gear (32G), the output gear (2G), and the differential gear mechanism (DF) in the axial direction (L).
 このように、入力ギヤ(1G)から差動歯車機構(DF)までの動力伝達経路を構成する全てのギヤの軸方向(L)の配置領域を互いに重複させて配置することにより、これらのギヤの軸方向(L)の配置スペースの小型化を図ることができる。これにより、車両用駆動装置(100)の軸方向(L)の寸法の小型化を図ることができる。 In this way, by arranging the arrangement areas in the axial direction (L) of all the gears forming the power transmission path from the input gear (1G) to the differential gear mechanism (DF) so as to overlap each other, these gears It is possible to reduce the size of the arrangement space in the axial direction (L). As a result, the size of the vehicle drive system (100) in the axial direction (L) can be reduced.
 また、車両用駆動装置(100)は、前記入力ギヤ(1G)の回転軸心(A1)と平行な方向を軸方向(L)として、前記第1アイドラギヤ(31G)の全体及び前記第2アイドラギヤ(32G)の全体が、前記軸方向(L)に沿う軸方向視で前記回転電機(MG)と重複するように配置されていると好適である。 Further, the vehicle drive device (100) is configured such that the entire first idler gear (31G) and the second idler gear (31G) are arranged in an axial direction (L) parallel to the rotational axis (A1) of the input gear (1G). (32G) is preferably arranged so as to overlap with the rotating electric machine (MG) when viewed in the axial direction (L).
 本構成によれば、第1アイドラギヤ(31G)及び第2アイドラギヤ(32G)が、軸方向視で回転電機(MG)の外形からはみ出さないように配置されている。これにより、車両用駆動装置(100)の径方向寸法の大型化を抑制できる。尚、軸方向視で回転電機(MG)と重複することには、ロータ(RT)との重複に限定されるものではなく、ステータを含めた回転電機(MG)の全体と軸方向視で重複することを含む。 According to this configuration, the first idler gear (31G) and the second idler gear (32G) are arranged so as not to protrude from the outline of the rotating electric machine (MG) when viewed in the axial direction. As a result, it is possible to suppress an increase in the radial dimension of the vehicle drive device (100). Note that overlapping with the rotating electric machine (MG) in the axial direction is not limited to overlapping with the rotor (RT), but overlaps with the entire rotating electric machine (MG) including the stator when viewed in the axial direction. including doing
 また、車両用駆動装置(100)は、前記差動歯車機構(DF)が、サンギヤ(SG)とキャリヤ(CA)とリングギヤ(RG)とを備えた遊星歯車機構(PS)を備え、前記キャリヤ(CA)が、前記リングギヤ(RG)に噛み合う第1ピニオンギヤ(PG1)と、前記サンギヤ(SG)に噛み合う第2ピニオンギヤ(PG2)とを備え、1つの前記第1ピニオンギヤ(PG1)に対して2つの前記第2ピニオンギヤ(PG2)が噛み合っていると好適である。 Further, in the vehicle drive system (100), the differential gear mechanism (DF) includes a planetary gear mechanism (PS) including a sun gear (SG), a carrier (CA), and a ring gear (RG), and the carrier (CA) includes a first pinion gear (PG1) that meshes with the ring gear (RG) and a second pinion gear (PG2) that meshes with the sun gear (SG). It is preferable that two second pinion gears (PG2) are meshed with each other.
 この構成によれば、サンギヤ(SG)の軸に作用する曲げモーメントを小さく抑えることができる。 With this configuration, the bending moment acting on the shaft of the sun gear (SG) can be kept small.
 また、車両用駆動装置(100)は、前記入力軸(1)と同軸上に配置され、前記入力軸(1)の回転を変速して中間軸(6)に出力する変速機(7)をさらに備え、前記入力ギヤ(1G)が、前記中間軸(6)と一体的に回転するように設けられていると好適である。 Further, the vehicle drive system (100) includes a transmission (7) arranged coaxially with the input shaft (1) for changing the speed of rotation of the input shaft (1) and outputting it to an intermediate shaft (6). Further, it is preferable that the input gear (1G) is provided so as to rotate integrally with the intermediate shaft (6).
 この構成によれば、第1ギヤ(1G)が入力軸(1)に連結されている場合に留まらず、第1ギヤ(1G)が変速機(7)を介して入力軸(1)に駆動連結されている場合においても、入力ギヤ(1G)が配置された軸部材(6)及び入力ギヤ(1G)に作用する曲げモーメントを小さく抑えることができる。具体的には、入力ギヤ(1G)が配置された中間軸(6)及び入力ギヤ(1G)に作用する曲げモーメントを小さく抑えることができる。 According to this configuration, the first gear (1G) is driven to the input shaft (1) via the transmission (7), not limited to the case where the first gear (1G) is connected to the input shaft (1). Even when they are coupled, the bending moment acting on the shaft member (6) on which the input gear (1G) is arranged and the input gear (1G) can be kept small. Specifically, the bending moment acting on the intermediate shaft (6) on which the input gear (1G) is arranged and the input gear (1G) can be kept small.
1:入力軸、1G:入力ギヤ、2G:出力ギヤ、3G:アイドラギヤ、6:中間軸、7:変速機、31G:第1アイドラギヤ、32G:第2アイドラギヤ、41:第1出力部材、42:第2出力部材、100:車両用駆動装置、101:駆動装置、102:駆動装置、103:駆動装置、A1:第1軸(入力ギヤの回転軸心)、CA:キャリヤ、DF:差動歯車機構、L:軸方向、MG:回転電機、PG1:第1ピニオンギヤ、PG2:第2ピニオンギヤ、PS:遊星歯車機構、RG:リングギヤ、RT:ロータ、SG:サンギヤ、W:車輪、W1:第1輪、W2:第2輪 1: input shaft, 1G: input gear, 2G: output gear, 3G: idler gear, 6: intermediate shaft, 7: transmission, 31G: first idler gear, 32G: second idler gear, 41: first output member, 42: Second output member, 100: vehicle driving device, 101: driving device, 102: driving device, 103: driving device, A1: first shaft (rotational axis of input gear), CA: carrier, DF: differential gear Mechanism, L: axial direction, MG: rotary electric machine, PG1: first pinion gear, PG2: second pinion gear, PS: planetary gear mechanism, RG: ring gear, RT: rotor, SG: sun gear, W: wheel, W1: first wheel, W2: second wheel

Claims (6)

  1.  ロータを備えた回転電機と、
     前記ロータと一体的に回転する入力軸と、
     前記入力軸と同軸に配置され、前記入力軸に駆動連結された入力ギヤと、
     第1輪に駆動連結される第1出力部材と、
     第2輪に駆動連結される第2出力部材と、
     前記入力軸の側から出力ギヤに伝達された駆動力を前記第1出力部材と前記第2出力部材とに分配する差動歯車機構と、
     第1アイドラギヤ及び第2アイドラギヤと、を備えた車両用駆動装置であって、
     前記入力ギヤと前記出力ギヤとは互いに平行な別軸上に配置され、
     前記第1アイドラギヤと前記第2アイドラギヤとは、同径且つ同じ歯数であり、
     前記第1アイドラギヤは、前記入力ギヤと噛み合っていると共に、前記出力ギヤと噛み合っており、
     前記第2アイドラギヤは、前記入力ギヤの周方向における前記第1アイドラギヤとは異なる位置で前記入力ギヤと噛み合っていると共に、前記出力ギヤの前記周方向における前記第1アイドラギヤとは異なる位置で前記出力ギヤと噛み合っている、車両用駆動装置。
    a rotating electric machine having a rotor;
    an input shaft that rotates integrally with the rotor;
    an input gear arranged coaxially with the input shaft and drivingly connected to the input shaft;
    a first output member drivingly connected to the first wheel;
    a second output member drivingly connected to the second wheel;
    a differential gear mechanism that distributes the driving force transmitted from the input shaft side to the output gear to the first output member and the second output member;
    A vehicle drive device comprising a first idler gear and a second idler gear,
    The input gear and the output gear are arranged on different axes parallel to each other,
    The first idler gear and the second idler gear have the same diameter and the same number of teeth,
    the first idler gear meshes with the input gear and also meshes with the output gear;
    The second idler gear meshes with the input gear at a position different from the first idler gear in the circumferential direction of the input gear, and the output gear at a position different from the first idler gear in the circumferential direction of the output gear. A vehicle drive that meshes with a gear.
  2.  前記第1アイドラギヤと前記入力ギヤとの噛み合い位置と、前記第2アイドラギヤと前記入力ギヤとの噛み合い位置とが、前記入力ギヤの回転軸心を挟んで互いに反対側に配置されている、請求項1に記載の車両用駆動装置。 2. A meshing position between said first idler gear and said input gear and a meshing position between said second idler gear and said input gear are arranged on opposite sides of each other with respect to the rotational axis of said input gear. 2. The vehicle driving device according to 1.
  3.  前記入力ギヤの回転軸心と平行な方向を軸方向として、
     前記入力ギヤと前記第1アイドラギヤと前記第2アイドラギヤと前記出力ギヤと前記差動歯車機構との前記軸方向の配置領域が互いに重複している、請求項1又は2に記載の車両用駆動装置。
    With a direction parallel to the rotation axis of the input gear as an axial direction,
    3. The vehicle drive device according to claim 1, wherein said input gear, said first idler gear, said second idler gear, said output gear, and said differential gear mechanism overlap each other in said axial arrangement areas. .
  4.  前記入力ギヤの回転軸心と平行な方向を軸方向として、
     前記第1アイドラギヤの全体及び前記第2アイドラギヤの全体が、前記軸方向に沿う軸方向視で前記回転電機と重複するように配置されている、請求項1から3の何れか一項に記載の車両用駆動装置。
    With a direction parallel to the rotation axis of the input gear as an axial direction,
    4. The apparatus according to any one of claims 1 to 3, wherein the entire first idler gear and the entire second idler gear are arranged so as to overlap with the rotating electrical machine when viewed in the axial direction along the axial direction. Vehicle drive.
  5.  前記差動歯車機構は、サンギヤとキャリヤとリングギヤとを備えた遊星歯車機構を備え、
     前記キャリヤは、前記リングギヤに噛み合う第1ピニオンギヤと、前記サンギヤに噛み合う第2ピニオンギヤとを備え、
     1つの前記第1ピニオンギヤに対して2つの前記第2ピニオンギヤが噛み合っている、請求項1から4の何れか一項に記載の車両用駆動装置。
    The differential gear mechanism comprises a planetary gear mechanism comprising a sun gear, a carrier and a ring gear,
    The carrier includes a first pinion gear that meshes with the ring gear and a second pinion gear that meshes with the sun gear,
    The vehicle driving device according to any one of claims 1 to 4, wherein two of the second pinion gears mesh with one of the first pinion gears.
  6.  前記入力軸と同軸上に配置され、前記入力軸の回転を変速して中間軸に出力する変速機をさらに備え、
     前記入力ギヤは、前記中間軸と一体的に回転するように設けられている、請求項1から4の何れか一項に記載の車両用駆動装置。
    further comprising a transmission that is arranged coaxially with the input shaft and that changes the speed of rotation of the input shaft and outputs the speed to an intermediate shaft;
    The vehicle drive device according to any one of claims 1 to 4, wherein the input gear is provided so as to rotate integrally with the intermediate shaft.
PCT/JP2022/034962 2021-09-24 2022-09-20 Vehicle drive device WO2023048134A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-155603 2021-09-24
JP2021155603 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023048134A1 true WO2023048134A1 (en) 2023-03-30

Family

ID=85719464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034962 WO2023048134A1 (en) 2021-09-24 2022-09-20 Vehicle drive device

Country Status (1)

Country Link
WO (1) WO2023048134A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010014098A1 (en) * 2008-07-31 2010-02-04 Knowles Richard N Final drive for a work machine
WO2013062017A1 (en) * 2011-10-28 2013-05-02 日本精工株式会社 Electric vehicle driving device
JP2019007505A (en) * 2017-06-21 2019-01-17 株式会社ジェイテクト Differential gear
DE102019132590A1 (en) * 2019-12-02 2021-06-02 Audi Ag Driving device for a vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010014098A1 (en) * 2008-07-31 2010-02-04 Knowles Richard N Final drive for a work machine
WO2013062017A1 (en) * 2011-10-28 2013-05-02 日本精工株式会社 Electric vehicle driving device
JP2019007505A (en) * 2017-06-21 2019-01-17 株式会社ジェイテクト Differential gear
DE102019132590A1 (en) * 2019-12-02 2021-06-02 Audi Ag Driving device for a vehicle

Similar Documents

Publication Publication Date Title
WO2015008325A1 (en) Driving gear device
JP5364697B2 (en) Power split gear train assembly for automobile
US20180313440A1 (en) Geared transmission unit
WO2021039966A1 (en) Vehicle driving device
JP7215585B2 (en) Vehicle drive transmission device
WO2019074118A1 (en) Drive device for vehicle
WO2019074119A1 (en) Drive device for vehicle
CN114174099A (en) Drive device for a motor vehicle with a common rigid ring gear and a common rigid planetary gear carrier
WO2019074120A1 (en) Drive device for vehicle
JP2002235832A (en) Differential gear with reduction gear
WO2023048134A1 (en) Vehicle drive device
JP5062122B2 (en) Vehicle drive device
US11460097B2 (en) Complex planetary gear unit
WO2011077655A1 (en) Differential device
JPH05261792A (en) Driving power transmission device in twin-ram extruder
JP2019105331A (en) Electric drive unit
WO2024048774A1 (en) Vehicular drive apparatus
JP7276560B2 (en) electric drive
US12083893B1 (en) Torque transmission system
WO2023171054A1 (en) Device
JP2023067198A (en) Torque vectoring device
JP2024065898A (en) Vehicular drive transmission device
WO2024070143A1 (en) Transmission, and vehicular drive transmission device provided with same
WO2024166899A1 (en) Vehicle transmission
JP2018179212A (en) Gear transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22872886

Country of ref document: EP

Kind code of ref document: A1