WO2023048076A1 - 揮発性脂肪酸の検知方法および測定装置 - Google Patents
揮発性脂肪酸の検知方法および測定装置 Download PDFInfo
- Publication number
- WO2023048076A1 WO2023048076A1 PCT/JP2022/034697 JP2022034697W WO2023048076A1 WO 2023048076 A1 WO2023048076 A1 WO 2023048076A1 JP 2022034697 W JP2022034697 W JP 2022034697W WO 2023048076 A1 WO2023048076 A1 WO 2023048076A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrodes
- fatty acids
- volatile fatty
- humidity
- measuring
- Prior art date
Links
- 235000014113 dietary fatty acids Nutrition 0.000 title claims abstract description 53
- 229930195729 fatty acid Natural products 0.000 title claims abstract description 53
- 239000000194 fatty acid Substances 0.000 title claims abstract description 53
- 150000004665 fatty acids Chemical class 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000005259 measurement Methods 0.000 claims abstract description 62
- 239000000758 substrate Substances 0.000 claims abstract description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 31
- 238000009833 condensation Methods 0.000 claims abstract description 23
- 230000005494 condensation Effects 0.000 claims abstract description 23
- 239000000523 sample Substances 0.000 claims description 32
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 15
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 13
- 229910052709 silver Inorganic materials 0.000 claims description 13
- 239000004332 silver Substances 0.000 claims description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 238000013075 data extraction Methods 0.000 claims description 9
- 229910052697 platinum Inorganic materials 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- 238000007405 data analysis Methods 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000013074 reference sample Substances 0.000 claims description 6
- 238000011088 calibration curve Methods 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 239000011135 tin Substances 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 20
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 36
- 238000001514 detection method Methods 0.000 description 27
- 235000019260 propionic acid Nutrition 0.000 description 18
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 18
- 239000000203 mixture Substances 0.000 description 16
- 241000283690 Bos taurus Species 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 210000004767 rumen Anatomy 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000003977 dairy farming Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/0047—Organic compounds
Definitions
- the present invention relates to a detection method and measuring device for volatile fatty acids.
- VFA Volatile fatty acids
- propionic acid propionic acid
- butyric acid acetic acid
- acetic acid Volatile fatty acids
- cows digest their food they emit a large amount of methane gas, which contributes to global warming, but this amount can be greatly reduced by controlling VFA in the cow rumen (rumen).
- rumen cow rumen
- the object of the present invention is to detect VFA with high sensitivity and to provide a method and apparatus for measuring it with high accuracy.
- the reference data is data obtained by measuring the electrical characteristics using the sample when the relative humidity in the space near the electrodes is in a humidity condition in which dew condensation does not occur between the electrodes, or data obtained by measuring the volatile Using a reference sample containing no fatty acid or a reference sample containing a certain proportion of volatile fatty acid, the relative humidity in the space near the electrodes satisfies the humidity conditions immediately before dew condensation occurs between the electrodes.
- composition 1 The method for detecting volatile fatty acids according to configuration 1, which is the obtained data.
- Composition 3 The method for detecting volatile fatty acids according to Configuration 1 or Configuration 2, wherein the humidity condition is that the relative humidity is 80% or more and less than 100%.
- Composition 4 The method for detecting volatile fatty acids according to configuration 3, wherein the relative humidity is 80% or more and 95% or less.
- Composition 5 5. The volatile fatty acid according to any one of configurations 1 to 4, wherein the electrodes have a configuration in which the first thin line electrodes and the second thin line electrodes are alternately arranged in at least a partial region on the insulating substrate. detection method.
- composition 6 The method for detecting volatile fatty acids according to configuration 5, wherein the first thin wire electrodes and the second thin wire electrodes are alternately arranged at regular intervals.
- Composition 7 The method for detecting volatile fatty acids according to configuration 6, wherein the interval is 100 nm or more and 1000 nm or less.
- Composition 8) A first metal is formed on at least a part of the exposed surface of the first fine wire electrode, and a second metal different from the first metal is formed on at least a part of the exposed surface of the second fine wire electrode. is formed and 8.
- Composition 9 9.
- composition 8 The method of detecting volatile fatty acids according to configuration 8, wherein said first metal is selected from the group consisting of gold, platinum, silver, titanium and alloys thereof, and carbon.
- Configuration 10 The volatile according to configuration 8 or 9, wherein said second metal is selected from the group consisting of silver, copper, iron, zinc, nickel, cobalt, aluminum, tin, chromium, molybdenum, manganese, magnesium and alloys thereof.
- Method for detecting fatty acids Composition 11
- Composition 12 12.
- composition 13 The method for detecting volatile fatty acids according to any one of configurations 1 to 11, wherein the relative humidity is controlled by a temperature adjustment device thermally connected to the resistance measurement device.
- Composition 13 The method for detecting volatile fatty acids according to configuration 12, wherein the temperature control device is a Peltier element.
- composition 14 14. The method for detecting volatile fatty acids according to any one of configurations 1 to 13, wherein the form of the sample is an aqueous solution.
- Composition 15 comprising a resistance measuring device, a humidity measuring means, a data extracting means and a data analyzing means;
- the resistance measuring device has at least two or more electrodes arranged adjacent to each other with a fine interval on an insulating substrate, measures the electrical characteristics caused by the electrical resistance between the electrodes, and outputs the results.
- the humidity measuring means is arranged adjacent to the resistance measuring device, measures the relative humidity in the space near the electrodes of the resistance measuring device, and outputs the result
- the data extracting means is means for extracting output data from the resistance measuring device when the relative humidity measured by the humidity measuring means satisfies a predetermined humidity condition
- the data analysis means is means for comparing the data extracted by the data extraction means with calibration curve data obtained in advance and outputting the result.
- composition 16 16. The apparatus for measuring volatile fatty acids according to configuration 15, wherein the electrodes have a configuration in which first fine wire electrodes and second fine wire electrodes are alternately arranged in at least a partial region on the insulating substrate.
- Composition 17 17. The apparatus for measuring volatile fatty acids according to configuration 16, wherein the first thin wire electrodes and the second thin wire electrodes are alternately arranged at regular intervals.
- Composition 18 18. The device for measuring volatile fatty acids according to configuration 17, wherein the interval is 100 nm or more and 1000 nm or less.
- composition 19 A first metal is formed on at least a part of the exposed surface of the first fine wire electrode, and a second metal different from the first metal is formed on at least a part of the exposed surface of the second fine wire electrode. is formed and 19. Measurement of volatile fatty acids according to any one of configurations 16 to 18, wherein the resistance measuring device measures a current flowing between the first thin wire electrode and the second thin wire electrode and outputs the result.
- the humidity measuring means comprises humidity measuring electrodes for determining humidity based on the electrical resistance between the electrodes, and the material constituting the humidity measuring electrodes constitutes the first thin wire electrode or the second thin wire electrode. 20.
- FIG. 1 is a schematic configuration diagram for explaining the configuration of a VFA detection and measurement device according to the present invention
- BRIEF DESCRIPTION OF THE DRAWINGS It is structural drawing explaining the structure of a resistance measuring device (galvanic sensor), (a) is a top view, (b) is sectional drawing. It is an explanatory view explaining the principle of operation in case a resistance measuring device is a galvanic sensor.
- FIG. 2 is an explanatory diagram for explaining a method for detecting and measuring VFA according to the present invention; It is an explanatory view explaining the method of the present invention based on the time change of the sensor output and the platinum resistance obtained by using the prototype VFA detection and measurement system.
- FIG. 6 is a characteristic diagram showing the propionic acid concentration dependency of the sensor output shown in FIG. 5;
- FIG. 6 is a characteristic diagram showing the propionic acid concentration dependency of the sensor output shown in FIG. 5;
- a sample that may contain VFA is placed together with a resistance measurement device in a closed space in which water vapor exists, and the space near the electrodes provided in the resistance measurement device is The output from the resistance measuring device is monitored when the humidity meets the humidity conditions just before condensation occurs between the electrodes.
- the resistance measuring device measures an electrical characteristic (either electrical resistance, conductivity, or current value) caused by electrical resistance between at least two or more electrodes that are adjacently arranged on an insulating substrate with a fine interval. and the output from the resistance measuring device shall be the measurement result of the electrical property.
- a specific example of such a resistance measuring device has two or more electrodes exposed on an insulating substrate so as to be in contact with the outside air (in the present invention, the steam atmosphere in the closed space is intended), At least two different metals are used as materials for the electrodes, and a galvanic sensor that measures a galvanic current flowing between the electrodes can be mentioned.
- a galvanic sensor is disclosed, for example, in US Pat.
- two or more electrodes exposed to the outside air are provided on an insulating substrate, and the electrodes are made of the same material.
- a resistance measuring sensor, etc. in which a circuit is provided and a resistance value is measured from the circuit, can also be used.
- the galvanic sensor is characterized by its small size and does not necessarily require an external power supply, and can be used particularly favorably. The details of the aspect of using a galvanic sensor as a resistance measuring device in the VFA detection and measurement method of the present invention will be described later.
- the inventors have found that the electrical characteristics caused by the electrical resistance between the electrodes of the resistance measuring device in a state where the VFA exists in a water vapor atmosphere are the relative humidity of the space near the electrodes just before condensation occurs between the electrodes. It was found that the output from the resistance measuring device depends on the concentration of VFA in the atmosphere, and that VFA can be detected with high sensitivity and quantified with high accuracy when measured when the conditions are satisfied. On the other hand, when the electrical characteristics due to the electrical resistance between the electrodes are measured in a state where dew condensation occurs between the electrodes of the resistance measurement device, the output from the resistance measurement device is reduced until the space between the electrodes is completely filled with the liquid consisting of water and VFA.
- the relative humidity of the space near the electrodes of the resistance measuring device is preferably 80% or more and less than 100%, more preferably 80% or more and 95% or less.
- the space near the electrodes of the resistance measuring device means a space containing at least the outside air in contact with the electrodes of the device in the closed space where the resistance measuring device is placed, and typically the space around the device.
- a space containing atmosphere is intended. Specifically, for example, by arranging any humidity measuring means in a closed space adjacent to the resistance measuring device, it is possible to measure the relative humidity in the space near the electrodes of the resistance measuring device. .
- the detection and measurement of VFA according to the present invention are believed to be based on the following mechanism.
- the location where the target electrical characteristics are measured by the resistance measuring device that is, the resistance measurement
- water molecules derived from water vapor and VFA volatilized from the sample and floating in the atmosphere in the closed space are co-adsorbed.
- the ionized protons (H + ) become carriers, which move in a hopping manner via water molecules and adsorbed VFAs, changing the electrical resistance (which can be called conductivity) between the electrodes. .
- the surface is in a state where many (frequently) adsorption phenomena of water molecules derived from water vapor can occur. Such a state is generally considered to occur over a certain time range (time interval) rather than at a certain point in time (instantaneous).
- the electrical resistance between the electrodes is calculated using the same sample as the measurement result obtained under the above conditions when the relative humidity is a humidity condition in which dew condensation does not occur between the electrodes.
- VFA in the sample can be detected by comparing the data obtained by measurement.
- the relative humidity that is, immediately before condensation occurs between the electrodes, the relative humidity It is also possible to detect VFAs in the sample by comparing the data obtained by measuring the electrical resistance between the electrodes (when the humidity condition of 1000 ) is satisfied.
- the amount of protons described above is highly and monotonically dependent on the amount of VFA, it is possible to determine (quantify) the amount of VFA in the sample using a calibration curve.
- the surface of the insulating substrate is preferably hydrophilic.
- the use of an insulating substrate with a hydrophilic surface promotes the co-adsorption of water molecules and VFAs, improving the detection sensitivity and measurement accuracy of VFAs, as well as improving the stability and reproducibility of output data from resistance measurement equipment. do.
- that the surface is hydrophilic means that the contact angle of water on the surface is 0° or more and 50° or less.
- FIG. 1 shows the configuration of the VFA detection and measurement apparatus of the present invention.
- the VFA detection and measurement device 101 of the present invention comprises a resistance measurement device 11 , humidity measurement means 12 , data extraction means 13 and data analysis means 14 .
- Output data from the resistance measuring device 11 and the humidity measuring means 12 are sent to the data extracting means 13 via the signal line 15 .
- the output data from the resistance measuring device 11 when a predetermined humidity condition is satisfied, which is extracted by the data extraction means 13, is sent to the data analysis means 14 via another signal line, and the data is converted into data.
- the analytical means 14 compares the data with previously obtained calibration curve data and the like to confirm the presence or absence of VFA in the sample 16 and/or quantify the VFA.
- the resistance measuring device 11 and the humidity measuring means 12 are placed together with the sample 16 in a closed space 17 in which water vapor exists.
- the resistance measuring device 11 includes a substrate (insulating substrate) 21 , a first thin wire electrode 22 , a second thin wire electrode 23 , a first electrode (first collector electrode) 24 and a second electrode (second collector electrode) 25 .
- the first fine wire electrode 22 and the second fine wire electrode 23 are arranged adjacent to each other on the insulating substrate 21 with a fine gap therebetween.
- the resistance measuring device 11 measures electrical characteristics resulting from the electrical resistance between the first thin wire electrode 22 and the second thin wire electrode 23 .
- the first fine line-shaped electrodes 22 and the second fine line-shaped electrodes 23 are arranged alternately in at least a part of the insulating substrate 21 .
- the facing surfaces of the first thin wire electrode 22 and the second thin wire electrode 23 are widened, the sensitivity to VFA is increased, and the stability (reproducibility) of the obtained results is improved. get higher
- the first fine line-shaped electrodes 22 and the second fine line-shaped electrodes 23 are alternately arranged at regular intervals, that is, the values of d1 and d2 in the sectional view of FIG. and have no in-plane distribution (constant in the plane).
- this interval is constant, the VFA detection and measurement mechanism according to the present invention described above functions effectively, and the change in electrical resistance between the first fine-line electrode 22 and the second fine-line electrode 23 becomes steep. As a result, detection sensitivity improves, and measurement accuracy also increases.
- first thin wire electrode 22 and the second thin wire electrode 23 are made of the same conductive material, and a voltage is applied between both electrodes via the first electrode 24 and the second electrode 25, so that the first electrode 24 and the second electrode 25 may be used as a resistance measurement sensor that measures electrical resistance by measuring the current flowing between them, or the first thin wire electrode 22 and the second thin wire electrode 23 are made of different metals, A galvanic sensor that measures electrical resistance by measuring a galvanic current flowing between the first electrode 24 and the second electrode 25 may be used.
- the first thin wire electrode 22 and the first electrode 24 may be made of the same conductive material or may be made of different conductive materials. The same applies to the second thin wire electrode 23 and the second electrode 25 .
- the resistance measuring device 11 is a galvanic sensor.
- a first thin wire electrode 22 and a second thin wire electrode 23 made of different metals (metals A and B) are arranged side by side on an insulating substrate.
- It is a current detection type sensor that utilizes the phenomenon that a galvanic current flows between the electrodes when a conductive droplet such as a water droplet touches a pair of electrodes.
- the galvanic sensor 11 includes a first thin wire electrode 22 made of a first metal and a second metal or semiconductor made of a second metal different from the first metal.
- Two thin wire electrodes 23 are juxtaposed on the insulating substrate 21 .
- the first fine line-shaped electrode 22 and the second fine line-shaped electrode 23 are arranged adjacent to each other on the insulating substrate 21 with a fine gap therebetween.
- the distance between the first thin wire electrode 22 and the second thin wire electrode 23 detects VFA with high sensitivity, and From the viewpoint of measuring with high accuracy, it is preferably 100 nm or more and 1000 nm or less.
- a silicon substrate having an oxide film ( SiO.sub.2 film) formed on its surface can be preferably used, but it is not limited to a silicon substrate.
- a wide variety of insulating materials can also be used.
- the substrate body is a conductor such as metal, by forming an insulating coating or coating thereon, the relationship between the first fine wire electrode 22 and the second fine wire electrode 23 can be improved.
- the first fine wire electrode 22 is connected to the first electrode 24
- the second fine wire electrode 23 is connected to the second electrode 25
- the electrical current connected to the first electrode 24 and the second electrode 25 is connected to the first electrode 24 and the second electrode 25 .
- An electrical signal is transmitted to the data extraction means 13 via wiring (not shown).
- an amplifier may be connected to the first electrode 24 and the second electrode 25 to amplify the galvanic current and transmit an electric signal to the data extraction means 13 .
- a space may be provided between the first fine-line electrode 22 and the second fine-line electrode 23, or an insulator may be embedded therein.
- the surface is preferably hydrophilic so that water molecules can easily be adsorbed.
- first metal and a second metal having a different electrochemical potential are used, and the gap between the metals is equal to or greater than a certain level due to water molecules and VFA. In the co-adsorption state with a density of current flows.
- the length of the adjacent portion between the thin line electrodes (hereinafter referred to as parallel running distance) can be increased, for example, by a comb structure or a double spiral structure. be able to.
- parallel running distance the length of the adjacent portion between the thin line electrodes
- the structure itself for maximizing the parallel running distance of two wirings within a certain planar area is well known in the field of semiconductor devices and the like, such a structure may also be adopted as necessary.
- "arranging thin line electrodes in parallel on a substrate” does not specify the mutual orientation of a plurality of thin line electrodes placed on the substrate, but rather, the thin line electrodes are spaced apart on the same plane of the substrate. It means to place
- the material of the first thin wire electrode 22 includes, for example, gold (Au), platinum (Pt), silver (Ag), titanium (Ti) and alloys thereof, and Carbon (C) and allotropes thereof may be mentioned.
- the second fine wire electrode 23 is used as an anode, examples of the material of the second fine wire electrode 23 include silver (Ag), copper (Cu), iron (Fe), zinc (Zn), nickel (Ni), Mention may be made of cobalt (Co), aluminum (Al), tin (Sn), chromium (Cr), molybdenum (Mo), manganese (Mn), magnesium (Mg) and alloys thereof.
- the second fine wire electrodes 23 are made of materials other than silver and its alloys.
- the output (galvanic current value) of the galvanic sensor 11 depends on the combination of metal materials used for the first fine wire electrode 22 and the second fine wire electrode 23 .
- the silver/iron combination has a higher corrosion rate per the same area, resulting in a higher galvanic current value.
- the gold/silver electrode wears less and has a longer life.
- silver since silver has the effect of preventing the galvanic sensor 11 from being moldy, it is preferably used as the first fine wire electrode 22 or the second fine wire electrode 23 .
- the first electrode 24 and the second electrode 25 are made of the same material as the first thin wire electrode 22 and the second thin wire electrode 23, respectively, because the manufacturing process of the galvanic sensor 11 is simplified.
- the metal of the anode electrode which is the second fine wire electrode 23 is ionized, and the anode electrode (second fine wire electrode) is gradually consumed.
- the thickness of the anode electrode is increased, or the width of the anode electrode is increased, and instead the width of the cathode electrode (first thin wire electrode) is increased. For example, it can be made narrower.
- the interval between the fine wire electrodes is made very short, a slight increase in the interval between the fine wire electrodes due to consumption of the anode electrode has a large effect on the measurement result of electrical resistance (galvanic current).
- the humidity measuring means 12 is arranged adjacent to the resistance measuring device 11, and is a portion (hereinafter referred to as In a similar context, it is simply referred to as a “measurement unit”.), that is, in the vicinity of two or more thin wire electrodes of the resistance measuring device 11.
- a humidity measurement means there are resistance change type humidity sensors that measure the amount of moisture absorbed by dry and wet materials such as polymers and ceramics as electrical resistance, and capacitance sensors that use polymer films as dry and wet response materials. and a method using a temperature sensor and a humidity conversion system that monitors the temperature as a saturated steam environment and obtains the converted humidity.
- the first thin wire electrode 22 and the second A method of placing a platinum electrode near the fine wire electrode 23, monitoring the temperature from the resistance value of the platinum electrode, and determining the converted humidity can be preferably used.
- the temperature measuring section of the humidity measuring means 12 adopting the above method can be easily provided in the resistance measuring device 11. is possible, and there is an advantage that the whole VFA detection and measurement apparatus of the present invention can be miniaturized and the cost can be reduced.
- the data extracting means 13 has a function of extracting output data from the resistance measuring device 11 and sending it to the data analyzing means 14 when the relative humidity measured by the humidity measuring means 12 satisfies a predetermined humidity condition.
- the predetermined humidity condition regarding the relative humidity the relative humidity is preferably 80% or more and less than 100%, more preferably 80% or more and 95% or less, as described above.
- the relative humidity in the space near the electrodes of the resistance measurement device 11 measured by the humidity measurement means 12 is 80% or more and 100%. Less than is preferable, and 80% or more and 95% or less is more preferable.
- VFA can be detected with high sensitivity and can be measured with high accuracy.
- the data analysis means 14 extracts the output data of the resistance measuring device 11 sent via the data extracting means 13 (measurement data of galvanic current when the resistance measuring device 11 is a galvanic sensor), and the data obtained in advance. It compares with the calibration curve data obtained and outputs the amount of VFA corresponding to the output data, or outputs the presence or absence of VFA in the sample 16 from which the output data is obtained by comparing with a predetermined threshold value.
- VFA detection and measurement A specific embodiment of VFA detection and measurement according to the present invention will be further described with reference to FIG.
- a sample 16 made of a VFA aqueous solution is placed on a base 41 together with a resistance measuring device 11 in a closed space 17 made of an acrylic box or the like.
- Water (water vapor) 31 and VFA 32 transpired from the resistance measuring device 11 are configured to be able to reach the measuring portion (at least the portion including the electrodes).
- the humidity measuring means 12 is arranged adjacent to the resistance measuring device 11, and is configured to be able to measure the relative humidity in the vicinity of the electrodes of the resistance measuring device 11.
- FIG. Here, in the system shown in FIG.
- the temperature adjustment device 42 is arranged under the resistance measurement device 11, the resistance measurement device 11 and the temperature adjustment device 42 are thermally connected, and the temperature adjustment device 42 controls the resistance measurement device 11, more precisely, by adjusting the temperature of the measuring section of the resistance measuring device 11, the relative humidity in the space near the electrodes existing in the measuring section is preferably configured to be controllable.
- a Peltier device or the like can be used as the temperature adjustment device 42 .
- the temperature adjusting device 42 and the resistance measuring device 11 are connected thermally by a heat pump.
- the temperature of the resistance measurement device 11 is controlled by the temperature adjustment device 42.
- the relative humidity in the vicinity of the electrodes present in the measurement unit is set to satisfy the humidity conditions immediately before dew condensation occurs between the electrodes, specifically, the relative humidity is set to 80% or more and less than 100%. Alternatively, the relative humidity can be efficiently controlled to be 80% or more and 95% or less.
- Example 1 In Example 1, the results of fabricating the VFA detection and measurement system shown in FIG. 4 and examining its characteristics will be described. However, it should be noted that the present invention is of course not limited to such a particular form, and the scope of the present invention is defined by the appended claims.
- the resistance measuring device 11 was a galvanic sensor in which a first thin wire electrode 22 and a second thin wire electrode 23 were arranged in parallel in a comb shape on an insulating substrate 21 as shown in FIG.
- the material of the first thin wire electrode 22 was aluminum
- the material of the second thin wire electrode 23 was gold.
- Each of the first fine-line electrode 22 and the second fine-line electrode 23 has a line width of 2 ⁇ m, a height of 200 nm, and a length of 1300 ⁇ m. be.
- the number of pairs consisting of the first thin wire electrode 22 and the second thin wire electrode 23 is 92 pieces.
- a Si wafer on which a thermal oxide film with a thickness of 100 nm was formed was used as the substrate 21 .
- the contact angle of water on the flat portion of the substrate 21 is 33°, and the surface is hydrophilic.
- the humidity measuring means 12 the temperature is monitored from the resistance value of the platinum electrode, and the converted humidity is obtained therefrom.
- a Peltier element was used as the temperature control device 42 .
- As the sample 16 a propionic acid aqueous solution with five concentrations (0 mM, 10 mM, 20.7 mM, 100 mM and 207 mM) was used. The amount of aqueous solution is 50 mL each in common.
- a closed space 17 was provided by a polypropylene resin box. The capacity of the closed space 17 is 430 mL, and the shortest distance between the container holding the sample 16 and the resistance measuring device 11 is about 3 cm.
- the elapsed time of 600-800 s is zone 1a
- the elapsed time of 1500-1700 s is zone 1b.
- the relative humidity in zone 1a is estimated to be 85%
- the relative humidity in zone 1b is estimated to be 92%. It was confirmed to be within the preferred range of conditions.
- the sample with a propionic acid concentration of 0 mM and the sample with a propionic acid concentration of 10 mM have almost the same sensor output after an elapsed time of about 1950 s, and the 20.7 mM sample has a sensor output of 100 mM after an elapsed time of 1900 s.
- the 207 mM sample is exceeded, and after an elapsed time of about 2300 s, the sensor output with the 100 mM sample exceeds the sensor output with the 207 mM sample.
- Zone 1a has a steep characteristic curve at a propionic acid concentration of 20 mM or less and a relatively gentle characteristic curve at a propionic acid concentration of 20 mM or more
- Zone 1b has a steep characteristic curve at a propionic acid concentration of 20 mM or less and a saturated characteristic curve at a propionic acid concentration of 20 mM or more. From this characteristic curve, it can be seen that a low concentration of propionic acid (VFA) such as 10 mM can be detected and measured with sufficiently high linearity.
- VFA propionic acid
- VFA is a substance that greatly affects the productivity and quality improvement of dairy farming such as cattle, and is also closely related to the emission of methane gas through the digestion of food by cattle. It is matter. Therefore, if VFA is detected with high sensitivity, measured with high accuracy, and the results are fed back, the productivity and quality of dairy farming can be greatly improved, and it is believed that this will greatly contribute to the prevention of global warming.
- the method of the present invention which detects VFA with high sensitivity and measures it with high accuracy, leads to quantitative evaluation of the activity of anaerobic bacteria, quality control in feed production, monitoring of methane fermentation tanks, and final disposal. It can be expected to be widely used in various cases where VFA is generated by microbial decomposition, such as landfill operation management and environmental management of paddy fields and lake water.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
このような背景から、VFA、特に牛ルーメンの液状部から揮発したVFAを検知し、また、定量的に測定する方法およびそのための装置が求められている。なお、本明細書において、VFAに関する「検知」とは、VFAの存在の有無を確認することを意味し、「測定」とは、VFAの量を測って求めること(定量すること)を意味するものとする。
しかし、この方法では検知感度や測定精度が低く、装置も比較的大きいという問題があった。なお、実用上の検知感度、測定精度としては、牛ルーメン液状部での液体で25mM(ミリモル)が要求されている。
本発明の構成を以下に示す。
(構成1)
揮発性脂肪酸を含む可能性のある試料を、絶縁性基板上に微細な間隔で隣接配置された少なくとも2以上の電極間の電気抵抗に起因する電気特性を測定する抵抗測定装置とともに水蒸気が存在する閉空間に載置し、
前記電気特性を、前記電極間近傍の空間の相対湿度が前記電極間に結露が発生する直前の湿度条件を満たすときに測定し、
得られた測定結果と、所定の条件で得られた基準データとを比較することを含む、揮発性脂肪酸の検知方法。
(構成2)
前記基準データは、前記試料を用いて前記電極間近傍の空間の相対湿度が前記電極間に結露が発生しない湿度条件にあるときに前記電気特性を測定して得られたデータ、または、揮発性脂肪酸を含まない基準試料または一定の割合で揮発性脂肪酸を含む基準試料を用いて前記電極間近傍の空間の相対湿度が前記電極間に結露が発生する直前の湿度条件を満たすときに測定して得られたデータである、構成1記載の揮発性脂肪酸の検知方法。
(構成3)
前記湿度条件は、前記相対湿度が80%以上100%未満である、構成1または構成2記載の揮発性脂肪酸の検知方法。
(構成4)
前記湿度条件は、前記相対湿度が80%以上95%以下である、構成3記載の揮発性脂肪酸の検知方法。
(構成5)
前記電極は、絶縁性基板上の少なくとも一部の領域において第1の細線電極と第2の細線電極が交互に並置された構成を有する、構成1から4の何れか1項記載の揮発性脂肪酸の検知方法。
(構成6)
前記第1の細線電極と前記第2の細線電極は、一定の間隔を有して交互に並置されている、構成5記載の揮発性脂肪酸の検知方法。
(構成7)
前記間隔は、100nm以上1000nm以下である、構成6記載の揮発性脂肪酸の検知方法。
(構成8)
少なくとも前記第1の細線電極の露出面の一部には第1の金属が形成され、少なくとも前記第2の細線電極の露出面の一部には前記第1の金属とは異なる第2の金属が形成されており、
前記第1の細線電極と前記第2の細線電極の間を流れる電流を測定する、構成5から7の何れか1項記載の揮発性脂肪酸の検知方法。
(構成9)
前記第1の金属は金、白金、銀、チタンおよびこれらの合金、並びに炭素からなる群から選択される、構成8に記載の揮発性脂肪酸の検知方法。
(構成10)
前記第2の金属は銀、銅、鉄、亜鉛、ニッケル、コバルト、アルミニウム、スズ、クロム、モリブデン、マンガン、マグネシウムおよびこれらの合金からなる群から選択される、構成8または9に記載の揮発性脂肪酸の検知方法。
(構成11)
前記絶縁性基板の表面は親水性である、構成1から10の何れか1項記載の揮発性脂肪酸の検知方法。
(構成12)
前記相対湿度を、前記抵抗測定装置と熱的に接続された温度調整装置によって制御する、構成1から11の何れか1項記載の揮発性脂肪酸の検知方法。
(構成13)
前記温度調整装置はペルチェ素子である、構成12記載の揮発性脂肪酸の検知方法。
(構成14)
前記試料の形態は水溶液である、構成1から13の何れか1項記載の揮発性脂肪酸の検知方法。
(構成15)
抵抗測定装置、湿度測定手段、データ抽出手段およびデータ解析手段を具備し、
前記抵抗測定装置は、絶縁性基板上に微細な間隔で隣接配置された少なくとも2以上の電極を有し、前記電極間の電気抵抗に起因する電気特性を測定し、その結果を出力する装置であり、
前記湿度測定手段は、前記抵抗測定装置に隣接して配置され、前記抵抗測定装置の電極間近傍の空間の相対湿度を測定し、その結果を出力する手段であり、
前記データ抽出手段は、前記湿度測定手段によって測定された相対湿度が所定の湿度条件を満たすときに、前記抵抗測定装置からの出力データを抽出する手段であり、
前記データ解析手段は、前記データ抽出手段によって抽出されたデータを予め求めておいた検量線データと比較し、その結果を出力する手段である、揮発性脂肪酸の測定装置。
(構成16)
前記電極は、絶縁性基板上の少なくとも一部の領域において第1の細線電極と第2の細線電極が交互に並置された構成を有する、構成15記載の揮発性脂肪酸の測定装置。
(構成17)
前記第1の細線電極と前記第2の細線電極は、一定の間隔を有して交互に並置されている、構成16記載の揮発性脂肪酸の測定装置。
(構成18)
前記間隔は、100nm以上1000nm以下である、構成17記載の揮発性脂肪酸の測定装置。
(構成19)
少なくとも前記第1の細線電極の露出面の一部には第1の金属が形成され、少なくとも前記第2の細線電極の露出面の一部には前記第1の金属とは異なる第2の金属が形成されており、
前記抵抗測定装置は、前記第1の細線電極と前記第2の細線電極の間を流れる電流を測定し、その結果を出力する、構成16から18の何れか1項記載の揮発性脂肪酸の測定装置。
(構成20)
前記湿度測定手段は、電極間の電気抵抗に基づいて湿度を求める湿度測定電極を具備し、かつ前記湿度測定電極を構成する材料は、前記第1の細線電極または前記第2の細線電極を構成する材料と同じである、構成16から19の何れか1項記載の揮発性脂肪酸の測定装置。
本発明のVFAの検知、測定方法では、VFAを含む可能性のある試料を抵抗測定装置とともに水蒸気が存在する閉空間に載置し、当該抵抗測定装置に備えられた電極間近傍の空間の相対湿度が、当該電極間に結露が発生する直前の湿度条件を満たすときに、当該抵抗測定装置からの出力をモニターする。
このような抵抗測定装置の具体例としては、絶縁性基板上に、外気(本発明においては上記閉空間内の水蒸気雰囲気が意図される)に接するように露出した2以上の電極を有し、かつそれらの電極材料として少なくとも2以上の異種の金属が用いられており、当該電極間に流れるガルバニー電流を測定するガルバニ型センサーを挙げることができる。そのようなガルバニ型センサーは、例えば特許文献1に開示がある。
また、絶縁性基板上に、外気に接するように露出した2以上の電極を有し、かつそれらの電極が同一材料からなり、当該電極間に電圧を印加して電極間に流れる電流、あるいはブリッジ回路を設けてその回路から抵抗値を測定する抵抗測定センサーなどを挙げることもできる。
この中で、ガルバニ型センサーは、小型で外部電源を必ずしも要しないという特徴があり、特に好んで用いることができる。本発明のVFAの検知、測定方法において抵抗測定装置としてガルバニ型センサーを用いる態様の詳細は後述する。
一方、抵抗測定装置の電極間に結露が発生した状態で当該電極間の電気抵抗に起因する電気特性を測定すると、電極間が全て水とVFAからなる液体で埋まるまで抵抗測定装置からの出力が安定せず、その出力は当該雰囲気中のVFAの濃度と相関しなかった。また、抵抗測定装置の電極間が全て水とVFAからなる液体で埋まった状態でも、VFAに対する検知感度、測定精度は高くないという問題があった。
ここで、抵抗測定装置の電極間に結露が発生する直前の湿度条件としては、数多くの実験を通じたVFAの検知感度および測定精度の観点から、当該抵抗測定装置の電極間近傍の空間の相対湿度が80%以上100%未満であることが好ましく、当該相対湿度が80%以上95%以下であることがより好ましい。抵抗測定装置の電極間近傍の空間とは、抵抗測定装置が載置されている閉空間において、少なくとも当該装置の電極が接する外気を含む空間を意味し、典型的には、当該装置の周囲の雰囲気を含む空間が意図される。具体的には、例えば、任意の湿度測定手段を、抵抗測定装置に隣接して閉空間に配置することにより、当該抵抗測定装置の電極間近傍の空間の相対湿度を測定することが可能である。
抵抗測定装置の電極間近傍の空間の相対湿度が当該電極間に結露が発生する直前の湿度条件を満たすときに測定すると、抵抗測定装置によって目的の電気特性が測定される場所、すなわち、抵抗測定装置の電極間の絶縁性基板露出面上に、水蒸気由来の水分子と、試料から揮発して閉空間内の雰囲気に漂うVFAが共吸着する。そして、電離して生じたプロトン(H+)がキャリアになって、それが水分子や吸着VFAを介してホッピング的に動いて電極間の電気抵抗(導電率と言い換えてもよい)が変化する。言い換えると、抵抗測定装置の電極間に結露が発生する直前の湿度条件では、当該電極間の絶縁性基板露出面上に、雰囲気中の水蒸気の凝縮現象が生じるまでには至らないものの、当該露出面上は、水蒸気由来の水分子の吸着現象が多く(頻繁に)生じ得る状態にあると言うことができる。通常、このような状態は、ある特定の一時点(瞬間的)というよりは、ある一定の時間範囲(時間間隔)において生じるものであると考えられる。本発明では、この現象を利用して、上記条件で得られた測定結果と、同じ試料を用いて上記相対湿度が上記電極間に結露が発生しない湿度条件にあるときに電極間の電気抵抗を測定して得られたデータとを比較することで、当該試料中のVFAを検知することができる。あるいは、上記条件で得られた測定結果と、VFAを含まない基準試料または一定の割合でVFAを含む基準試料を用いて上記条件で(すなわち、上記相対湿度が上記電極間に結露が発生する直前の湿度条件を満たすときに)電極間の電気抵抗を測定して得られたデータとを比較することにより、上記試料中のVFAを検知することも可能である。さらに、上述したプロトンの量はVFAの量に大きく、かつ単調に依存するため、検量線を用いることによって上記試料中のVFAの量を求める(定量する)ことが可能になる。しかも、これは一種の界面現象の応用のため、装置構成がコンパクトでありながらも高い検知感度と測定精度を得やすい。なお、電極間の絶縁性基板露出面上に水分子をより多く吸着させるために、絶縁性基板の表面は親水性であることが好ましい。表面が親水性の絶縁性基板を用いると水分子とVFAの共吸着が促進され、VFAの検知感度および測定精度が上がるとともに、抵抗測定装置からの出力の安定性や出力データの再現性も向上する。ここで、表面が親水性であるとは、当該表面における水の接触角が0°以上50°以下であることをいう。
本発明のVFAの検知、測定装置の構成を図1に示す。
本発明のVFAの検知、測定装置101は、抵抗測定装置11、湿度測定手段12、データ抽出手段13およびデータ解析手段14を有する。
抵抗測定装置11および湿度測定手段12からの出力データは、信号線15を介してデータ抽出手段13に送られる。また、データ抽出手段13によって抽出された、所定の湿度条件を満たすときの、抵抗測定装置11からの出力データは、別の信号線を介してデータ解析手段14に送られ、そのデータは、データ解析手段14にて、予め求めておいた検量線データなどと比較され、試料16におけるVFAの存在の有無の確認、および/あるいはVFAの定量が行われる。ここで、抵抗測定装置11および湿度測定手段12は、試料16とともに水蒸気が存在する閉空間17に配置される。
ここで、第1の細線電極22と第2の細線電極23は、絶縁性基板21上の少なくとも一部の領域において交互に並置された構成を有することが好ましい。このような構成であると、第1の細線電極22と第2の細線電極23との対向する面が広くなって、VFAに対する感度が高くなり、また得られる結果の安定性(再現性)も高くなる。
また、第1の細線電極22と第2の細線電極23は、一定の間隔を有して交互に並置されている、すなわち図2(b)の断面図におけるd1とd2の値が等しく、かつ面内分布もない(面内で一定である)ことが好ましい。この間隔が一定であると、上述した本発明によるVFAの検知、測定のメカニズムが効果的に機能し、第1の細線電極22と第2の細線電極23の間の電気抵抗の変化が急峻になって検知感度が向上し、測定精度も高くなる。
ガルバニ型センサー11は、図3に示すように、異なる金属(金属A、B)からなる第1の細線電極22および第2の細線電極23が絶縁性基板上に並置されており、この細線電極対の電極に跨って水滴などの導電性の液滴が触れると、ガルバニー電流が電極間に流れる現象を利用した電流検知型のセンサーである。
第1の細線電極22と第2の細線電極23の間は空間でもよいし、そこに絶縁物が埋め込まれていてもよい。ここで、絶縁物が埋め込まれている場合は、水分子が吸着しやすいようにその表面が親水性であることが好ましい。
細線電極の敷設密度を維持したままでこの問題に対処するには、例えばアノード電極を厚くしたり、あるいはアノード電極の幅を広くし、その代わりにカソード電極(第1の細線電極)の幅を狭くする等すればよい。また、細線電極間の間隔を非常に短くした場合には、アノード電極の消耗による細線電極間の間隔のわずかな増大が電気抵抗(ガルバニー電流)の測定結果に与える影響が大きくなる。このような影響が問題になる場合には、例えば、アノード電極の金属の消耗が原理的にはガルバニー電流の時間積分に比例することを利用して測定結果に対して補償演算を行うという測定系全体としての対策も可能である。
ここで、試料16と、抵抗測定装置11および湿度測定手段12を同じ閉空間環境に載置してVFAの検知、測定を行う場合は、抵抗測定装置11の第1の細線電極22および第2の細線電極23の近くに白金電極を置き、当該白金電極の抵抗値から温度をモニターして、換算湿度を求める方式を好んで用いることができる。特に、抵抗測定装置11の第1の細線電極22あるいは第2細線電極23として白金を用いる場合には、上記方式を採用した湿度測定手段12の温度計測部を抵抗測定装置11に容易に設けることが可能になり、本発明のVFAの検知、測定装置全体の小型化やコスト低減を行えるという長所がある。
ここで、相対湿度に関する所定の湿度条件としては、前述のように、相対湿度80%以上100%未満が好ましく、80%以上95%以下がより好ましい。言い換えると、データ抽出手段13が抵抗測定装置11からの出力データを抽出する際の、湿度測定手段12によって測定される抵抗測定装置11の電極間近傍の空間の相対湿度は、80%以上100%未満が好ましく、80%以上95%以下がより好ましい。上記相対湿度がこの湿度条件を満たしていると、高い感度でVFAを検知し、また、高い精度でVFAを測定することができる。
図4に示すVFAの検知、測定システムでは、土台41上に、VFA水溶液からなる試料16が、抵抗測定装置11とともに、アクリルボックスなどによって作られた閉空間17に載置されており、試料16から蒸散された水(水蒸気)31とVFA32が、抵抗測定装置11の測定部(少なくとも電極を含む部分)に到達可能に構成されている。また、閉空間17には、湿度測定手段12が、抵抗測定装置11に隣接して配置されており、抵抗測定装置11の電極間近傍の相対湿度を測定可能に構成されている。ここで、図4に示すシステムでは、抵抗測定装置11の下部に温度調整装置42を配置して抵抗測定装置11と温度調整装置42を熱的に接続し、温度調整装置42により、抵抗測定装置11の温度調整、より正確に言うと抵抗測定装置11の測定部の温度調整を行うことで当該測定部に存在する電極間近傍の空間の相対湿度を制御可能に構成することが好ましい。温度調整装置42としてはペルチェ素子などを挙げることができる。また、熱伝導効率を上げるために、温度調整装置42と抵抗測定装置11とはヒートポンプで繋がれて、熱的に接続されていることが好ましい。
なお、図4には、データ抽出手段13およびデータ解析手段14が図示されていないが、抵抗測定装置11および湿度測定手段12からの出力データを、データ抽出手段13を介してデータ解析手段14に送るようにすればよい。
実施例1では、図4に示したVFAの検知、測定システムを作製してその特性を調べた結果を述べる。
但し、当然ながら、本発明はこのような特定の形式に限定されるものではなく、本発明の技術的範囲は特許請求の範囲により規定されるものであることに注意されたい。
湿度測定手段12としては、白金電極の抵抗値から温度をモニターし、そこから換算湿度を求めるものとした。
温度調整装置42としてはペルチェ素子を用いた。
試料16としては、濃度を5段階(0mM、10mM、20.7mM、100mMおよび207mM)に設定したプロピオン酸水溶液を用いた。水溶液の量はすべて共通で各々50mLである。
ポリプロピレン樹脂ボックスによって閉空間17を設けた。閉空間17内の容量は430mLであり、試料16を収容した容器と抵抗測定装置11との最短距離は約3cmである。
結露が発生した経過時間1900s以降では、センサー出力は、その大小関係がプロピオン酸の濃度に応じたものとはなっておらず、その挙動も確率論的な不規則なものになっていることがわかる。具体的には、プロピオン酸濃度が0mMの試料と10mMの試料は、経過時間約1950s以降のセンサー出力がほぼ同じとなり、20.7mMの試料は、経過時間1900s以降のセンサー出力が100mMの試料および207mMの試料を上回り、経過時間約2300s以降では、100mMの試料でのセンサー出力が207mMの試料でのセンサー出力を上回っている。
表1に示すように、水溶液の形態である試料に含まれるプロピオン酸は、閉空間中の水蒸気雰囲気において、水溶液中の濃度と相関する相対濃度および分圧で存在すると考えることができるため、本実施例で試作したシステムによって、VFAの高感度な検知および高精度な測定が実現できたと言える。
VFAは、背景技術の項で述べたように、牛などの酪農の生産性、品質向上に大いに影響を与える物質であり、また牛による食べ物の消化を介したメタンガスの排出にも大いに関係がある物質である。したがって、VFAを高感度に検知し、高精度に測定し、その結果をフィードバックすれば、酪農の生産性、品質は大いに改善され、地球温暖化抑止にも大いに寄与すると考えられる。
また、VFAを高感度に検知し、高精度に測定する本発明の方法は、嫌気性細菌の活性を定量的に評価することに繋がり、飼料生産における品質管理、メタン発酵槽のモニタリング、最終処分場(ランドフィル)のオペレーション管理、水田や湖水の環境管理など、微生物分解でVFAを発生する様々なケースでの幅広い活用も期待できる。
12:湿度測定手段
13:データ抽出手段
14:データ解析手段
15:信号線
16:試料
17:閉空間
21:基板(絶縁性基板)
22:第1の細線電極
23:第2の細線電極
24:第1の電極(第1の集電極)
25:第2の電極(第2の集電極)
31:水(水蒸気)
32:VFA
41:土台
42:温度調整装置(ペルチェ素子)
101:VFAの検知、測定装置
Claims (20)
- 揮発性脂肪酸を含む可能性のある試料を、絶縁性基板上に微細な間隔で隣接配置された少なくとも2以上の電極間の電気抵抗に起因する電気特性を測定する抵抗測定装置とともに水蒸気が存在する閉空間に載置し、
前記電気特性を、前記電極間近傍の空間の相対湿度が前記電極間に結露が発生する直前の湿度条件を満たすときに測定し、
得られた測定結果と、所定の条件で得られた基準データとを比較することを含む、揮発性脂肪酸の検知方法。 - 前記基準データは、前記試料を用いて前記電極間近傍の空間の相対湿度が前記電極間に結露が発生しない湿度条件にあるときに前記電気特性を測定して得られたデータ、または、揮発性脂肪酸を含まない基準試料または一定の割合で揮発性脂肪酸を含む基準試料を用いて前記電極間近傍の空間の相対湿度が前記電極間に結露が発生する直前の湿度条件を満たすときに測定して得られたデータである、請求項1記載の揮発性脂肪酸の検知方法。
- 前記湿度条件は、前記相対湿度が80%以上100%未満である、請求項1または2記載の揮発性脂肪酸の検知方法。
- 前記湿度条件は、前記相対湿度が80%以上95%以下である、請求項3記載の揮発性脂肪酸の検知方法。
- 前記電極は、絶縁性基板上の少なくとも一部の領域において第1の細線電極と第2の細線電極が交互に並置された構成を有する、請求項1から4の何れか1項記載の揮発性脂肪酸の検知方法。
- 前記第1の細線電極と前記第2の細線電極は、一定の間隔を有して交互に並置されている、請求項5記載の揮発性脂肪酸の検知方法。
- 前記間隔は、100nm以上1000nm以下である、請求項6記載の揮発性脂肪酸の検知方法。
- 少なくとも前記第1の細線電極の露出面の一部には第1の金属が形成され、少なくとも前記第2の細線電極の露出面の一部には前記第1の金属とは異なる第2の金属が形成されており、
前記第1の細線電極と前記第2の細線電極の間を流れる電流を測定する、請求項5から7の何れか1項記載の揮発性脂肪酸の検知方法。
- 前記第1の金属は金、白金、銀、チタンおよびこれらの合金、並びに炭素からなる群から選択される、請求項8記載の揮発性脂肪酸の検知方法。
- 前記第2の金属は銀、銅、鉄、亜鉛、ニッケル、コバルト、アルミニウム、スズ、クロム、モリブデン、マンガン、マグネシウムおよびこれらの合金からなる群から選択される、請求項8または9記載の揮発性脂肪酸の検知方法。
- 前記絶縁性基板の表面は親水性である、請求項1から10の何れか1項記載の揮発性脂肪酸の検知方法。
- 前記相対湿度を、前記抵抗測定装置と熱的に接続された温度調整装置によって制御する、請求項1から11の何れか1項記載の揮発性脂肪酸の検知方法。
- 前記温度調整装置はペルチェ素子である、請求項12記載の揮発性脂肪酸の検知方法。
- 前記試料の形態は水溶液である、請求項1から13の何れか1項記載の揮発性脂肪酸の検知方法。
- 抵抗測定装置、湿度測定手段、データ抽出手段およびデータ解析手段を具備し、
前記抵抗測定装置は、絶縁性基板上に微細な間隔で隣接配置された少なくとも2以上の電極を有し、前記電極間の電気抵抗に起因する電気特性を測定し、その結果を出力する装置であり、
前記湿度測定手段は、前記抵抗測定装置に隣接して配置され、前記抵抗測定装置の電極間近傍の空間の相対湿度を測定し、その結果を出力する手段であり、
前記データ抽出手段は、前記湿度測定手段によって測定された相対湿度が所定の湿度条件を満たすときに、前記抵抗測定装置からの出力データを抽出する手段であり、
前記データ解析手段は、前記データ抽出手段によって抽出されたデータを予め求めておいた検量線データと比較し、その結果を出力する手段である、揮発性脂肪酸の測定装置。 - 前記電極は、絶縁性基板上の少なくとも一部の領域において第1の細線電極と第2の細線電極が交互に並置された構成を有する、請求項15記載の揮発性脂肪酸の測定装置。
- 前記第1の細線電極と前記第2の細線電極は、一定の間隔を有して交互に並置されている、請求項16記載の揮発性脂肪酸の測定装置。
- 前記間隔は、100nm以上1000nm以下である、請求項17記載の揮発性脂肪酸の測定装置。
- 少なくとも前記第1の細線電極の露出面の一部には第1の金属が形成され、少なくとも前記第2の細線電極の露出面の一部には前記第1の金属とは異なる第2の金属が形成されており、
前記抵抗測定装置は、前記第1の細線電極と前記第2の細線電極の間を流れる電流を測定し、その結果を出力する、請求項16から18の何れか1項記載の揮発性脂肪酸の測定装置。 - 前記湿度測定手段は、電極間の電気抵抗に基づいて湿度を求める湿度測定電極を具備し、かつ前記湿度測定電極を構成する材料は、前記第1の細線電極または前記第2の細線電極を構成する材料と同じである、請求項16から19の何れか1項記載の揮発性脂肪酸の測定装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22872830.9A EP4407308A1 (en) | 2021-09-21 | 2022-09-16 | Method for sensing and device for measuring volatile fatty acid |
JP2023549520A JPWO2023048076A1 (ja) | 2021-09-21 | 2022-09-16 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-153071 | 2021-09-21 | ||
JP2021153071 | 2021-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023048076A1 true WO2023048076A1 (ja) | 2023-03-30 |
Family
ID=85720701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/034697 WO2023048076A1 (ja) | 2021-09-21 | 2022-09-16 | 揮発性脂肪酸の検知方法および測定装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4407308A1 (ja) |
JP (1) | JPWO2023048076A1 (ja) |
WO (1) | WO2023048076A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010002335A (ja) * | 2008-06-20 | 2010-01-07 | New Cosmos Electric Corp | ガス検知素子 |
WO2016013544A1 (ja) | 2014-07-23 | 2016-01-28 | 国立研究開発法人物質・材料研究機構 | 高速応答・高感度乾湿応答センサー |
JP2017509874A (ja) * | 2014-02-21 | 2017-04-06 | ドレーガー セイフティー アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト アウフ アクチエン | 電気化学ガスセンサ |
WO2017213118A1 (ja) * | 2016-06-08 | 2017-12-14 | 国立研究開発法人物質・材料研究機構 | 露点測定方法及び露点測定装置 |
JP2019066427A (ja) * | 2017-10-04 | 2019-04-25 | 山形県 | 湿度センサ及びその製造方法 |
-
2022
- 2022-09-16 EP EP22872830.9A patent/EP4407308A1/en active Pending
- 2022-09-16 WO PCT/JP2022/034697 patent/WO2023048076A1/ja active Application Filing
- 2022-09-16 JP JP2023549520A patent/JPWO2023048076A1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010002335A (ja) * | 2008-06-20 | 2010-01-07 | New Cosmos Electric Corp | ガス検知素子 |
JP2017509874A (ja) * | 2014-02-21 | 2017-04-06 | ドレーガー セイフティー アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト アウフ アクチエン | 電気化学ガスセンサ |
WO2016013544A1 (ja) | 2014-07-23 | 2016-01-28 | 国立研究開発法人物質・材料研究機構 | 高速応答・高感度乾湿応答センサー |
WO2017213118A1 (ja) * | 2016-06-08 | 2017-12-14 | 国立研究開発法人物質・材料研究機構 | 露点測定方法及び露点測定装置 |
JP2019066427A (ja) * | 2017-10-04 | 2019-04-25 | 山形県 | 湿度センサ及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
TERADA, HIDEFUMI ET AL.: "Behavior in sensors that measure humidity separately that reach relative humidity 100% +/-", THE SURFACE FINISHING SOCIETY OF JAPAN KOEN TAIKAI KOEN YOSHISHU, THE SURFACE FINISHING SOCIETY OF JAPAN, JP, vol. 141, 20 February 2020 (2020-02-20), JP , pages 92 - 93, XP009545115, ISSN: 0917-2947 * |
Also Published As
Publication number | Publication date |
---|---|
EP4407308A1 (en) | 2024-07-31 |
JPWO2023048076A1 (ja) | 2023-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8683861B2 (en) | Humidity sensor based on progressive corrosion of exposed material | |
Mitzner et al. | Development of a micromachined hazardous gas sensor array | |
US20170003238A1 (en) | Multiple non-conductive polymer substrates and conductive coatings and methods for detecting voc | |
Furqan et al. | Humidity sensor based on Gallium Nitride for real time monitoring applications | |
Jain et al. | Novel bismuth/multi-walled carbon nanotubes-based electrochemical sensor for the determination of neuroprotective drug cilostazol | |
JP6898605B2 (ja) | 露点測定方法及び露点測定装置 | |
Khorami et al. | Ammonia sensing properties of (SnO 2–ZnO)/polypyrrole coaxial nanocables | |
CA2598424A1 (en) | Method and apparatus for providing an electrochemical sensor at an adjustable temperature | |
US11913892B2 (en) | Condensation detection element | |
WO2023048076A1 (ja) | 揮発性脂肪酸の検知方法および測定装置 | |
US20200256826A1 (en) | Pulse-driven capacitive detection for field-effect transistors | |
RU2718133C1 (ru) | Газочувствительный детектор | |
CN210803349U (zh) | 用于检测气体的设备 | |
Gupta et al. | Manganese phthalocyanine for the detection of fish freshness by its trimethylamine emission | |
JP6786918B2 (ja) | ガスセンサアレイ、ガス測定装置、及びガス測定方法 | |
CN201043961Y (zh) | 温度补偿蒸汽传感器 | |
Rehacek et al. | Bismuth film voltammetric sensor on pyrolyzed photoresist/alumina support for determination of heavy metals | |
WO2004048957A1 (ja) | 酸化性ガスセンサ | |
JP4969577B2 (ja) | 電気化学セルの出力のためのスケールファクター | |
US20240210350A1 (en) | Selective chemical sensor | |
JPWO2023048076A5 (ja) | ||
US20240369526A1 (en) | Integrated printed sensor patch for micro-climate monitoring of greenhouse and soil-related variables | |
JP2000131258A (ja) | 汚損検出センサ | |
US20220404302A1 (en) | Hydrogen gas sensor assembly | |
Kubota et al. | Control of Heat Capacity of Moisture Sensor by Galvanic Arrays with Micro/Nano Gap |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22872830 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023549520 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022872830 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022872830 Country of ref document: EP Effective date: 20240422 |