WO2023048064A1 - 基板処理装置及び基板処理方法 - Google Patents
基板処理装置及び基板処理方法 Download PDFInfo
- Publication number
- WO2023048064A1 WO2023048064A1 PCT/JP2022/034560 JP2022034560W WO2023048064A1 WO 2023048064 A1 WO2023048064 A1 WO 2023048064A1 JP 2022034560 W JP2022034560 W JP 2022034560W WO 2023048064 A1 WO2023048064 A1 WO 2023048064A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- nozzle
- region
- etchant
- etching
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 381
- 238000003672 processing method Methods 0.000 title claims description 32
- 238000005530 etching Methods 0.000 claims abstract description 209
- 239000007788 liquid Substances 0.000 claims abstract description 123
- 230000007246 mechanism Effects 0.000 claims description 57
- 238000007599 discharging Methods 0.000 claims description 54
- 230000005764 inhibitory process Effects 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 29
- 238000005259 measurement Methods 0.000 claims description 28
- 230000008859 change Effects 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 15
- 230000002401 inhibitory effect Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 8
- 230000000630 rising effect Effects 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 23
- 239000000126 substance Substances 0.000 description 18
- 230000003287 optical effect Effects 0.000 description 14
- 230000002093 peripheral effect Effects 0.000 description 12
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000005305 interferometry Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- DKAGJZJALZXOOV-UHFFFAOYSA-N hydrate;hydrochloride Chemical compound O.Cl DKAGJZJALZXOOV-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67075—Apparatus for fluid treatment for etching for wet etching
- H01L21/6708—Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67253—Process monitoring, e.g. flow or thickness monitoring
Definitions
- the present invention relates to a substrate processing apparatus and a substrate processing method.
- Patent Document 1 describes a single-wafer etching method in which uniform etching is performed by supplying a chemical solution while moving a chemical solution supply port from the outer peripheral portion to the central portion in a short period of time prior to supplying the chemical solution to the central portion of the wafer. It is
- the amount of etching is generally greater in the central portion than in the outer peripheral portion of the wafer.
- the etching uniformity of the wafer can be improved by adjusting the moving speed of the chemical supply port.
- the peripheral portion of the wafer is etched more than the central portion. may increase. In this case, even if the moving speed of the chemical solution supply port is adjusted, it is difficult to improve the etching uniformity of the wafer.
- the present invention has been made in view of the above problems, and an object thereof is to provide a substrate processing apparatus and a substrate processing method capable of improving etching uniformity on a substrate.
- a substrate processing apparatus includes a substrate holder, a first nozzle, a second nozzle, a moving mechanism, and a controller.
- the substrate holding unit horizontally holds the substrate and rotates the substrate around a rotation axis that extends vertically through the center of the substrate.
- the first nozzle supplies an etchant to the upper surface of the substrate.
- the second nozzle supplies a rinse liquid to the upper surface of the substrate.
- the moving mechanism horizontally moves the first nozzle and the second nozzle.
- the control unit controls supply of the etching liquid from the first nozzle, supply of the rinse liquid from the second nozzle, and the moving mechanism.
- the controller discharges the etchant from the first nozzle to at least a first region on the upper surface of the substrate.
- the control unit controls, when the first nozzle is discharging the etchant inside the second nozzle in the radial direction of the substrate, a second region that is different in the radial direction from the first region.
- the rinsing liquid is discharged from the second nozzle.
- the moving mechanism includes a first nozzle moving mechanism for horizontally moving the first nozzle above the substrate holding part, and a first nozzle moving mechanism for moving the second nozzle to hold the substrate. and a second nozzle moving mechanism for moving horizontally above the part.
- the controller causes the first nozzle to etch the first region and the second region while moving the first nozzle in the radial direction.
- a liquid may be discharged.
- the controller does not discharge the rinse liquid from the second nozzle to the first region, but discharges the rinse liquid to the second region. You may let
- the substrate may have a plurality of regions in the radial direction.
- the plurality of areas may have a first specific area.
- the first specific region may be adjacent to the first region on the outer side in the radial direction and may constitute the second region.
- the first nozzle is discharging the etchant to a region radially inner than the first specific region, the rinse liquid is applied from the second nozzle to the first specific region for a first predetermined time. It may be discharged.
- the plurality of regions may further have a second specific region.
- the second specific region may be adjacent to the first specific region on the outer side in the radial direction and constitute the second region.
- the rinse liquid may be discharged from the second nozzle to the second specific region for a second predetermined time while the first nozzle is discharging the etching liquid to the first region.
- the substrate processing apparatus may further include a suction section for sucking the etchant discharged from the first nozzle.
- the control unit may cause the suction unit to suck the etchant from the second region when the first nozzle is discharging inside the suction unit in the radial direction.
- the control section may acquire an etching rate of each region when the etchant is discharged from the first nozzle onto the upper surface of the substrate.
- the control unit adjusts the etching speed of the first nozzle so that the product of the etching rate of each region in the radial direction of the upper surface of the substrate and the time during which the etchant is in contact with each region is substantially constant.
- the moving speed and the ejection time of the rinse liquid by the second nozzle may be calculated.
- the substrate processing apparatus may further include a measuring section that measures the thickness distribution of the substrate in the radial direction.
- the control section may control the measurement section.
- the obtained etching rate is the thickness of the substrate in the radial direction before and after the etching liquid is discharged from the first nozzle onto the upper surface of the substrate without discharging the rinse liquid from the second nozzle. It may be calculated by measuring the distribution.
- the substrate processing apparatus may further include a storage section.
- the etching rate may be stored in the storage unit. Acquisition of the etching rate may be performed by the control unit reading out the etching rate from the storage unit.
- a substrate processing method is a substrate processing method for etching a substrate.
- the substrate processing method comprises the steps of holding the substrate horizontally by a substrate holding part and rotating the substrate around a rotation axis passing through the center of the substrate; and discharging.
- the step of discharging the etchant from the first nozzle when the first nozzle is discharging the etchant inside the second nozzle in the radial direction of the substrate, the first region and the The rinse liquid is discharged from the second nozzle toward a second region that is different in the radial direction.
- the etching rate of each region when the etchant is discharged from the first nozzle onto the upper surface of the substrate without discharging the rinse liquid from the second nozzle is may further include the step of obtaining
- the substrate processing method further comprises the step of measuring the thickness distribution in the radial direction of the substrate before and after discharging the etchant from the first nozzle onto the upper surface of the substrate.
- the etching rate obtained in the obtaining step may be calculated from the thickness distribution measured in the measuring step.
- the product of the etching rate of each region in the radial direction of the upper surface of the substrate and the time during which the etchant contacts each region becomes substantially constant.
- the method may further include a step of calculating the moving speed of the first nozzle and the ejection time of the rinse liquid by the second nozzle.
- the second region may be a region where the rate of change of the etching rate for the first nozzle is zero or more toward the outer side in the radial direction. good.
- a substrate processing apparatus includes a substrate holding section, a first nozzle, an inhibition section, and a control section.
- the substrate holding part holds the substrate and rotates the substrate.
- the first nozzle supplies an etchant to the upper surface of the substrate.
- the inhibition portion inhibits etching of the substrate by the etchant.
- the control section controls the first nozzle and the inhibition section.
- the controller discharges the etchant from the first nozzle onto the first substrate.
- the controller calculates an etching rate at each position on the upper surface of the first substrate.
- the control unit calculates an inhibition condition for inhibiting etching by the etchant by the inhibition unit based on the calculation result of the etching rate.
- the control unit controls, when the etchant is being discharged from the first nozzle onto the upper surface of a second substrate different from the first substrate, the upper surface of the second substrate to the outside in the radial direction.
- the inhibition part is controlled so as to inhibit the etching under the inhibition condition at a position where the change rate of the etching rate is zero or more.
- the inhibition section includes a second nozzle that supplies a rinse liquid, and a nozzle moving mechanism capable of horizontally moving the second nozzle above the substrate holding section.
- Inhibition of the etching by the inhibition unit includes controlling the supply of the rinse liquid from the second nozzle to the second substrate, and controlling the position of the second nozzle with respect to the second substrate by the control unit. It may be done by controlling.
- a substrate processing method comprises a substrate holding part that holds a substrate and rotates the substrate, a first nozzle that supplies an etching solution to the upper surface of the substrate, and A substrate processing method for a substrate processing apparatus including an inhibition portion that inhibits etching.
- the substrate processing method comprises the steps of: discharging the etchant from the first nozzle onto the first substrate; obtaining an etching rate at each position on the upper surface of the first substrate; a step of calculating an inhibition condition for inhibiting etching by the etchant based on the above; and processing the substrate.
- the upper surface of the second substrate is radially outward. At a position where the rate of change of the etching rate is zero or more, the etching is inhibited under the inhibiting condition by the inhibiting portion.
- the inhibition section may have a second nozzle that supplies a rinse liquid.
- the inhibition of the etching by the inhibition part may be performed by supplying a rinse liquid from the second nozzle to the upper surface of the second substrate at a predetermined position based on the inhibition condition.
- the thickness distribution in the radial direction of the first substrate before and after discharging the etching liquid from the first nozzle onto the upper surface of the first substrate is measured.
- a step of measuring may be further provided.
- the present invention it is possible to provide a substrate processing apparatus and a substrate processing method capable of improving etching uniformity on a substrate.
- FIG. 1 is a schematic plan view showing a substrate processing apparatus according to one embodiment of the present invention
- FIG. It is a typical sectional view of a processing unit of one embodiment of the present invention.
- FIG. 4 is a plan view showing scanning processing according to one embodiment of the present invention;
- FIG. 4 is a plan view showing thickness measurement processing according to an embodiment of the present invention; It is a top view which shows the upper surface of a board
- FIG. 5 is a graph showing an example of an etching rate f(r) at each position in the radial direction of the substrate; 2 shows an example of the thickness distribution of a substrate when the etchant is discharged from the first nozzle to the central portion of the substrate for a predetermined period of time without discharging the rinse liquid from the second nozzle in the substrate processing apparatus of one embodiment of the present invention; graph. 8 is a graph showing an example of the thickness distribution of the substrate when the first nozzle is moved from the state shown in FIG. 7 to area A6 at a predetermined speed; FIG.
- FIG. 8 is a graph showing an example of the thickness distribution of the substrate when the first nozzle is moved to region A7 at a predetermined speed while discharging the rinse liquid from the second nozzle for a predetermined time from the state shown in FIG. 7;
- 5 is a flow chart showing a method of calculating the scan speed of the first nozzle, the ejection position of the second nozzle, and the ejection time of the substrate processing apparatus according to the embodiment of the present invention;
- 4 is a flow chart showing steps for measuring thickness distribution of a substrate by the substrate processing apparatus of one embodiment of the present invention.
- 4 is a flow chart showing steps of calculating a target scan speed of the first nozzle and a discharge time of the rinse liquid by the second nozzle of the substrate processing apparatus of one embodiment of the present invention. It is a flow chart which shows the substrate processing method in this embodiment. It is a top view which shows the structure around a 1st nozzle, a 2nd nozzle, and a suction part of the substrate processing apparatus of the modification of
- FIG. 1 is a schematic diagram of a substrate processing apparatus 100 of this embodiment. Specifically, FIG. 1 is a schematic plan view of the substrate processing apparatus 100. As shown in FIG.
- the substrate processing apparatus 100 is a single-wafer type apparatus that processes substrates W one by one.
- the substrate W is a semiconductor wafer.
- the substrate W is substantially disc-shaped.
- the substrate processing apparatus 100 includes a plurality of processing units 1, a fluid cabinet 100A, a plurality of fluid boxes 100B, a plurality of load ports LP, an indexer robot IR, a center robot CR, and a control device 101 .
- Each of the load ports LP accommodates a plurality of substrates W stacked one on top of another.
- the indexer robot IR transports substrates W between the load port LP and the center robot CR.
- the center robot CR transports substrates W between the indexer robot IR and the processing units 1 .
- Each of the processing units 1 supplies a processing liquid to the substrate W to perform processing on the substrate W.
- FIG. The fluid cabinet 100A contains processing liquids.
- the plurality of processing units 1 form a plurality of towers TW (four towers TW in FIG. 1) arranged to surround the center robot CR in plan view.
- Each tower TW includes a plurality of vertically stacked processing units 1 (three processing units 1 in FIG. 1).
- Each fluid box 100B corresponds to a plurality of towers TW.
- the processing liquid in the fluid cabinet 100A is supplied via one of the fluid boxes 100B to all the processing units 1 included in the tower TW corresponding to the fluid box 100B.
- the control device 101 controls the operation of each part of the substrate processing apparatus 100 .
- the control device 101 controls the load port LP, the indexer robot IR, and the center robot CR.
- FIG. 2 is a schematic diagram of the processing unit 1 of this embodiment. Specifically, FIG. 2 is a schematic cross-sectional view of the processing unit 1. As shown in FIG.
- the processing unit 1 processes an object constituting a substrate W with a processing liquid.
- object TG an object to be treated with the treatment liquid
- the target object TG is, for example, a substrate body (for example, a substrate body made of silicon) or a substance formed on the surface of the substrate body.
- the substance formed on the surface of the substrate body is, for example, a substance of the same material as the substrate body (eg, a layer made of silicon), or a substance of a material different from that of the substrate body (eg, a silicon oxide film, a silicon nitride film, or a resist).
- the "substance” may constitute a membrane.
- the processing liquid contains an etchant, and the processing unit 1 performs an etching process.
- the object TG is treated (etched) with an etchant.
- the etching liquid is a chemical liquid.
- the etching solution include hydrofluoric acid (mixture of hydrofluoric acid (HF) and nitric acid (HNO 3 )), hydrofluoric acid, buffered hydrofluoric acid (BHF), ammonium fluoride, and HFEG (a mixture of hydrofluoric acid and ethylene glycol). mixture) or phosphoric acid (H 3 PO 4 ).
- the processing unit 1 includes a chamber 2, a spin chuck 3, a spin motor section 5, a first nozzle moving mechanism 16, a second nozzle moving mechanism 26, a plurality of guards 10, a first nozzle 141, a second A nozzle 241 , a measuring unit 8 , and a probe moving mechanism 9 are provided.
- the substrate processing apparatus 100 also includes an etchant supply section 14 and a rinse liquid supply section 24 .
- the etchant supply section 14 has a first supply pipe 142
- the rinse liquid supply section 24 has a second supply pipe 242 .
- the first nozzle moving mechanism 16 is an example of the "moving mechanism" of the present invention.
- the second nozzle moving mechanism 26 is an example of the “moving mechanism” and the “nozzle moving mechanism” of the present invention.
- the second nozzle moving mechanism 26 and the rinse liquid supply section 24 are examples of the "inhibition section" of the present invention.
- the chamber 2 has a substantially box shape.
- the chamber 2 includes a substrate W, a spin chuck 3, a spin motor section 5, a first nozzle moving mechanism 16, a second nozzle moving mechanism 26, a plurality of guards 10, a first nozzle 141, a second nozzle 241, a measuring section 8, a probe.
- the moving mechanism 9, part of the first supply pipe 142, and part of the second supply pipe 242 are accommodated.
- the spin chuck 3 holds the substrate W horizontally.
- the spin chuck 3 has a plurality of chuck members 32 and a spin base 33 .
- a plurality of chuck members 32 are provided on the spin base 33 along the periphery of the substrate W. As shown in FIG. A plurality of chuck members 32 hold the substrate W in a horizontal posture.
- the spin base 33 has a substantially disc shape and supports the plurality of chuck members 32 in a horizontal posture.
- the spin chuck 3 is an example of the "substrate holder" in the present invention.
- the spin motor unit 5 rotates the substrate W and the spin chuck 3 integrally about the first rotation axis AX1.
- the first rotation axis AX1 extends vertically.
- the first rotation axis AX1 passes through the center of the substrate W and extends in a substantially vertical direction.
- the spin motor unit 5 rotates the spin base 33 about the first rotation axis AX1. Therefore, the spin base 33 rotates about the first rotation axis AX1.
- the substrate W held by the plurality of chuck members 32 provided on the spin base 33 rotates about the first rotation axis AX1.
- the first rotation axis AX1 is an example of the "rotation axis" in the present invention.
- the spin motor section 5 has a motor body 51 , a shaft 53 and an encoder 55 .
- Shaft 53 is coupled to spin base 33 .
- the motor body 51 rotates the shaft 53 .
- the spin base 33 rotates.
- the encoder 55 measures the rotational speed of the substrate W. Encoder 55 generates a signal indicative of the substrate W's rotational speed. Specifically, the encoder 55 generates a rotation speed signal indicating the rotation speed of the motor body 51 .
- the first nozzle 141 supplies the substrate W with the etchant. Specifically, the first nozzle 141 discharges the etchant toward the substrate W during rotation.
- the etchant supply unit 14 supplies the etchant to the first nozzle 141 .
- the first nozzle 141 is connected to one end of the first supply pipe 142 .
- the etchant is supplied to the first nozzle 141 through the first supply pipe 142 .
- the first supply pipe 142 is a tubular member through which the etchant flows.
- the first nozzle moving mechanism 16 moves the first nozzle 141 .
- the first nozzle moving mechanism 16 horizontally moves the first nozzle 141 above the spin chuck 3 .
- the first nozzle moving mechanism 16 turns the first nozzle 141 about the second rotation axis AX2 extending in the substantially vertical direction.
- the first nozzle 141 discharges the etchant toward the substrate W while stopping or moving (while rotating).
- the first nozzle 141 may be called a scan nozzle.
- the first nozzle moving mechanism 16 has a nozzle arm 161 , a first rotating shaft 163 and a first driving section 165 .
- the nozzle arm 161 extends substantially horizontally.
- a first nozzle 141 is arranged at the tip of the nozzle arm 161 .
- Nozzle arm 161 is coupled to first rotating shaft 163 .
- the first rotating shaft 163 extends substantially vertically.
- the first driving unit 165 rotates the first rotating shaft 163 about the second rotation axis AX2 to rotate the nozzle arm 161 about the first rotating shaft 163 along a substantially horizontal plane.
- the first nozzle 141 moves along a substantially horizontal plane.
- the first nozzle 141 revolves around the first rotation axis 163 around the second rotation axis AX2.
- the first driving section 165 includes, for example, a stepping motor.
- the rinsing liquid supply unit 24 and the second nozzle moving mechanism 26 inhibit the etching of the substrate W by the etchant.
- the etching is inhibited by diluting the etchant with the rinsing liquid.
- the second nozzle 241 supplies the substrate W with the rinse liquid.
- the second nozzle 241 discharges the rinse liquid toward the substrate W during rotation.
- the rinse liquid supply unit 24 supplies the rinse liquid to the second nozzle 241 .
- the second nozzle 241 is connected to one end of the second supply pipe 242 .
- the rinse liquid is supplied to the second nozzle 241 through the second supply pipe 242 .
- the second supply pipe 242 is a tubular member through which the rinse liquid flows.
- the rinsing liquid is, for example, deionized water, carbonated water, electrolytic ion water, hydrogen water, ozone water, or diluted hydrochloric acid water (for example, about 10 ppm to 100 ppm).
- a liquid obtained by diluting the etching liquid may be used.
- the second nozzle moving mechanism 26 moves the second nozzle 241 .
- the second nozzle moving mechanism 26 horizontally moves the second nozzle 241 above the spin chuck 3 .
- the second nozzle moving mechanism 26 turns the second nozzle 241 around a third rotation axis AX3 extending in the substantially vertical direction.
- the second nozzle 241 discharges the rinse liquid toward the substrate W in a stationary state.
- the second nozzle 241 may discharge the rinse liquid while moving (rotating).
- the second nozzle moving mechanism 26 has a nozzle arm 261 , a second rotating shaft 263 and a second driving section 265 .
- the nozzle arm 261 extends substantially horizontally.
- a second nozzle 241 is arranged at the tip of the nozzle arm 261 .
- Nozzle arm 261 is coupled to second rotating shaft 263 .
- the second rotating shaft 263 extends substantially vertically.
- the second driving section 265 rotates the second rotating shaft 263 around the third rotation axis AX3 to rotate the nozzle arm 261 around the second rotating shaft 263 along a substantially horizontal plane.
- the second nozzle 241 moves along a substantially horizontal plane.
- the second nozzle 241 revolves around the second rotation axis 263 around the third rotation axis AX3.
- the second driving section 265 includes, for example, a stepping motor.
- Each guard 10 has a substantially cylindrical shape.
- a plurality of guards 10 receive the etchant and rinse liquid discharged from the substrate W. As shown in FIG.
- the measurement unit 8 acquires information indicating the thickness distribution of the substrate W. In other words, the measurement unit 8 acquires information indicating the surface shape (profile) of the substrate W. FIG. In this embodiment, the measurement unit 8 measures the thickness distribution of the substrate W in the radial direction RD.
- the measurement unit 8 measures the thickness of the target object TG in a non-contact manner and generates a thickness detection signal indicating the thickness of the target object TG.
- a thickness detection signal is input to the control device 101 .
- the measurement unit 8 measures the thickness of the object TG by, for example, spectral interferometry.
- the measuring section 8 includes an optical probe 81 , a signal line 83 and a measuring device 85 .
- the optical probe 81 has a lens.
- a signal line 83 connects the optical probe 81 and the measuring device 85 .
- Signal line 83 includes, for example, an optical fiber.
- the measuring device 85 has a light source and a light receiving element. Light emitted from the light source of the measuring device 85 is emitted to the object TG via the signal line 83 and the optical probe 81 . The light reflected by the object TG is received by the light receiving element of the measuring device 85 via the optical probe 81 and signal line 83 .
- the measuring device 85 analyzes the light received by the light receiving element and calculates the thickness of the object TG.
- the measuring device 85 generates a thickness detection signal indicating the calculated thickness of the object TG.
- the measuring method of the measuring unit 8 is not limited to the spectral interferometry, and other measuring methods may be used as long as the thickness of the object TG can be measured.
- the probe moving mechanism 9 moves the optical probe 81 substantially horizontally. Specifically, the probe moving mechanism 9 rotates the optical probe 81 around a fourth rotation axis AX4 extending in the substantially vertical direction. The optical probe 81 emits light toward the substrate W while moving (rotating). Therefore, the thickness detection signal indicates the thickness distribution of the object TG.
- the probe moving mechanism 9 has a probe arm 91 , a third rotating shaft 93 and a third driving section 95 .
- the probe arm 91 extends substantially horizontally.
- An optical probe 81 is arranged at the tip of the probe arm 91 .
- a probe arm 91 is coupled to a third rotating shaft 93 .
- the third rotating shaft 93 extends substantially vertically.
- the third driving section 95 rotates the third rotating shaft 93 about the fourth rotation axis AX4 to rotate the probe arm 91 about the third rotating shaft 93 along a substantially horizontal plane.
- the optical probe 81 moves along a substantially horizontal plane.
- the optical probe 81 revolves around the third rotation axis 93 around the fourth rotation axis AX4.
- the third driving section 95 includes, for example, a stepping motor.
- the measurement unit 8 is used for detecting the etching amount.
- the etching amount indicates the amount by which the substrate W is etched by the processing unit 1 processing the substrate W.
- the etching amount can be calculated from the difference between the pre-treatment surface information and the post-treatment surface information.
- the control device 101 acquires the etching amount by calculating the etching amount based on the thickness detection signal input from the measurement unit 8 (measuring device 85). More specifically, the control device 101 acquires the etching amount distribution. The control device 101 uses the obtained etching amount to calculate etching conditions as described later.
- the etching conditions include, for example, the moving speed of the first nozzle 141 and the position and time for discharging the rinse liquid from the second nozzle 241 .
- a rotation speed signal is also input to the control device 101 from the encoder 55 .
- the rotation speed of the substrate W during processing is, for example, constant.
- the control device 101 stores a recipe for controlling each part of the substrate processing apparatus 100 , and the recipe indicates the set value of the rotation speed of the motor main body 51 .
- the control device 101 refers to the recipe and controls the processing executed by the processing unit 1 .
- FIG. 3 is a plan view showing the scanning process of this embodiment.
- the first nozzle 141 discharges the etchant to the target TG while stopping or moving such that the position where the etchant lands on the surface of the target TG forms an arc-shaped trajectory TJ1. do.
- the trajectory TJ1 passes through the center CT of the substrate W.
- a central portion CT indicates a portion of the substrate W through which the first rotation axis AX1 passes.
- the scanning process is performed while the substrate W is rotating.
- the second nozzle 241 discharges the rinse liquid to the target object TG while stopping or moving such that the landing position of the rinse liquid on the surface of the target object TG forms an arc-shaped trajectory TJ2.
- the trajectory TJ2 passes through the center CT of the substrate W. As shown in FIG. Note that the trajectory TJ2 does not have to pass through the center CT of the substrate W as long as it can pass through the vicinity of the center CT.
- the rinse liquid is discharged while the substrate W is rotating.
- FIG. 4 is a plan view showing the thickness measurement process of this embodiment.
- the optical probe 81 of the measurement unit 8 measures the thickness of the object TG while moving such that the thickness measurement position with respect to the object TG forms an arcuate locus TJ3.
- the trajectory TJ3 passes through the edge portion EG of the substrate W and the central portion CT of the substrate W.
- An edge portion EG indicates the peripheral portion of the substrate W.
- the thickness measurement process is performed while the substrate W is rotating.
- the optical probe 81 emits light toward the object TG while moving between the central portion CT and the edge portion EG of the substrate W in plan view.
- the thickness of the object TG is measured at each measurement position included in the trajectory TJ2.
- Each measurement position corresponds to each radial position of the substrate W.
- FIG. Therefore, the thickness distribution of the object TG in the radial direction RD of the substrate W is measured by the thickness measurement process.
- the surface shape (profile) of the target TG matches the shape indicating the thickness distribution of the target TG.
- the control device 101 has a control section 102 , a storage section 103 , an input section 104 and a display section 105 .
- the control device 101 is, for example, a computer.
- the control device 101 may be a general-purpose computer, a computer with some customized components, or a specially designed computer.
- the control unit 102 has a processor.
- the control unit 102 is, for example, a controller having a CPU (Central Processing Unit) or an MPU (Micro Processing Unit).
- the control unit 102 may have a general-purpose computing machine or a dedicated computing machine.
- the control unit 102 may further have an NPU (Neural Network Processing Unit).
- the storage unit 103 stores data and computer programs.
- the storage unit 103 has a main storage device.
- the main storage device is, for example, a semiconductor memory.
- the storage unit 103 may further have an auxiliary storage device.
- Auxiliary storage devices are, for example, semiconductor memories and/or hard disk drives.
- the storage unit 103 may have removable media.
- the control unit 102 controls the operation of each unit of the substrate processing apparatus 100 based on data and computer programs stored in the storage unit 103 . Furthermore, the control unit 102 calculates etching conditions based on the data stored in the storage unit 103 and the computer program. A detailed calculation method of the etching conditions will be described later.
- the storage unit 103 stores recipes and control programs.
- the recipe defines the processing content and processing procedure of the substrate W.
- FIG. Also, the recipe indicates various setting values.
- the control unit 102 controls operations of each unit of the substrate processing apparatus 100 based on recipes and control programs.
- the input unit 104 receives input from the operator and outputs information indicating the input result to the control unit 102 .
- the input unit 104 includes, for example, a touch panel and pointing device.
- the touch panel is arranged on the display surface of the display unit 105, for example.
- the input unit 104 and the display unit 105 constitute, for example, a graphical user interface.
- the display unit 105 displays various information.
- the display unit 105 displays, for example, various error screens and various setting screens (input screens).
- the display unit 105 has, for example, a liquid crystal display or an organic EL (electroluminescence) display.
- the etching amount of the substrate W when the etchant is discharged from the first nozzle 141 on the premise that there is no discharge from the second nozzle 241 will be described.
- the etching amount of the substrate W by the first nozzle 141 will be described on the premise that the etching by the second nozzle 241 is not hindered.
- 5 is a plan view showing the upper surface of the substrate W.
- the etchant is discharged onto the substrate W during rotation. In this case, the etchant flows radially outward from the contact position, and the entire area radially outward from the contact position is etched.
- the etching rate at each position of the substrate W does not change even if the position where the etching liquid is applied is changed.
- the etching rate at each position farther away than the above is constant.
- the etching rate is the amount of etching per unit time. According to the findings of the inventors of the present application, the etching rate at each position on the substrate W hardly changes even if the position where the etchant lands is changed.
- F(r) be the etching amount at a position r [mm] from the center CT of the substrate W
- f(r) be the etching speed
- v(r) be the scanning speed of the first nozzle 141 .
- the scan speed is the moving speed of the first nozzle 141 during the scan process.
- the etching amount F(r) at the position r [mm] is the product of the etching rate f(r) and the total contact time T [sec] of the etchant.
- the total contact time T [sec] of the etchant can be expressed by the following equation (1) using the scan speed v(r).
- the following equations (1) to (3) relate to the etchant discharged from the first nozzle 141, and do not take into consideration the influence of the rinse liquid discharged from the second nozzle 241.
- the etching amount F(r) at the position r [mm] is given by the following formula (2).
- the amount of etching is generally greater in the central portion than in the outer peripheral portion of the substrate W.
- the etch rate change rate f'(r) becomes negative.
- the central portion of the substrate W may be etched less than the outer peripheral portion.
- the etch rate change rate f'(r) may be positive.
- simply adjusting the scan speed v(r) of the first nozzle 141 does not satisfy equation (3).
- the uniform etching of the upper surface of the substrate W is achieved by overturning the premise that "the entire area radially outward from the position where the etchant is deposited" is overturned. A specific description will be given below.
- FIG. 6 is a graph showing an example of the etching rate f(r) at each position in the radial direction RD of the substrate W. As shown in FIG. FIG. 6 is a graph showing the distribution of the etching rate f(r) when the etching liquid is discharged from the first nozzle 141 toward the center of the substrate W without discharging the rinse liquid from the second nozzle 241. In FIG. be.
- FIG. 6 is a graph showing an example of the etching rate f(r) at each position in the radial direction RD of the substrate W.
- FIG. 6 is a graph showing the distribution of the etching rate f(r) when the etching liquid is discharged from the first nozzle 141 toward the center of the substrate W without discharging the rinse liquid from the second nozzle 241.
- FIG. 7 is a graph showing an example of the thickness distribution of the substrate W when the etching liquid is discharged from the first nozzle 141 to the central portion of the substrate W for a predetermined time without discharging the rinse liquid from the second nozzle 241 .
- FIG. 8 is a graph showing an example of the thickness distribution of the substrate W when the first nozzle 141 is moved from the state shown in FIG. 7 to the area A6 at a predetermined speed.
- the upper surface of the substrate W has a first region R1 and a second region R2 different from the first region R1 in the radial direction RD.
- the first region R1 and the second region R2 have a circular or ring shape in plan view.
- the first region R1 is a region where the etching rate change rate f'(r) becomes negative toward the outside in the radial direction RD.
- the second region R2 is a region where the rate of change f'(r) of the etching rate becomes zero or more toward the outside in the radial direction RD.
- the second region R2 is a region where the etching rate change rate f'(r) becomes positive toward the outside in the radial direction RD.
- the control unit 102 causes the etchant to be discharged from the first nozzle 141 to at least the first region R1 of the substrate W.
- the control unit 102 discharges the etchant from the first nozzle 141 to the first region R1 and the second region R2 while moving the first nozzle 141 in the radial direction RD. Therefore, the etching liquid can be stably discharged from the first nozzle 141, for example, compared to the case where the discharge and non-discharge of the etching liquid are switched for each of the first region R1 and the second region R2.
- the thickness (surface shape) of the substrate W is as shown in FIG.
- the first nozzle 141 moves from the first region R11 to the second region R2 as shown in FIG.
- the thickness of the first region R11 can be made uniform.
- the rate of change in the etching rate in the second region R2 is positive, so when the first nozzle 141 moves from the first region R11 to the second region R2, the second The thickness of the region R2 becomes smaller than the thickness of the first region R11.
- the controller 102 rinses the second region R2 from the second nozzle 241 while the first nozzle 141 is discharging the etchant inside the second nozzle 241 in the radial direction RD. Dispense the liquid. Specifically, while the first nozzle 141 is discharging the etchant to the first region R11 in FIG. 6, the second nozzle 241 is caused to discharge the rinse liquid to the second region R2. As a result, the first region R11 is etched, while the second region R2 and the first region R12 are not etched or are inhibited from being etched. That is, the etching of the second region R2 and the first region R12 by the etchant is inhibited.
- the etching amount of the second region R2 and the first region R12 is set to be less than or equal to the etching amount of the first region R11. can do. That is, as indicated by the dashed line in FIG. 8, the thickness of the second region R2 can be the same as the thickness of the first region R11 or greater than the thickness of the first region R11. As a result, the etching amount or thickness of the second region R2 and the etching amount or thickness of the first region R1 can be made the same by adjusting the speed at which the first nozzle 141 moves in the second region R2. can be done. That is, the upper surface of the substrate W can be etched uniformly.
- the second region R2 is a region where the etching rate change rate f'(r) becomes zero or more toward the outside in the radial direction RD.
- the upper surface of the substrate W cannot be etched uniformly only by controlling the etchant by the first nozzle 141.
- the application of the present invention makes it possible to etch the top surface of the substrate W uniformly.
- control unit 102 causes the second nozzle 241 to discharge the rinse liquid to the second region R2 without discharging the rinse liquid to the first region R1. Therefore, the rinse liquid can be selectively discharged to the second region R2.
- the first nozzle 141 may eject the etchant while moving from the central portion of the substrate W toward the outer peripheral portion, or may discharge the etchant from the outer peripheral portion of the substrate W toward the central portion.
- the etchant may be discharged while moving toward the substrate W, in the present embodiment, the etchant is discharged while the first nozzle 141 moves from the central portion of the substrate W toward the outer peripheral portion for ease of understanding. An example of ejection will be described.
- FIG. 9 shows an example of the thickness distribution of the substrate W when the first nozzle 141 is moved to the area A7 at a predetermined speed while discharging the rinse liquid from the second nozzle 241 for a predetermined time from the state shown in FIG. is a graph showing As shown in FIG. 6, the upper surface of the substrate W is divided into a plurality of regions (A1 to A21 here) in the radial direction RD. In other words, the substrate W has a plurality of regions A1 to A21 in the radial direction. Each of the regions A1 to A21 has a circular or ring shape in plan view.
- the multiple areas A1 to A21 have a first specific area Rs1.
- the first specific region Rs1 is adjacent to the first region R1 on the outside in the radial direction RD and constitutes the second region R2.
- the first specific region Rs1 is the region A7.
- the second nozzle 241 to the first specific A rinse liquid is discharged to the region Rs1 for a first predetermined time. Therefore, for example, when the first nozzle 141 moves to the first specific region Rs1 from the region (here, A6) adjacent to the first specific region Rs1 on the inner side in the radial direction RD, the first specific region Rs1
- the amount of etching can be made smaller than or equal to the amount of etching of the region (here, A6) adjacent to the inner side of the first specific region Rs1. That is, as indicated by the dashed line in FIG.
- the thickness of the first specific region Rs1 can be made equal to or greater than the thicknesses of the regions A1 to A6.
- the etching amount or thickness of the first specific region Rs1 and the region adjacent to the inside of the first specific region Rs1 can be made the same.
- the multiple regions A1 to A21 further have a second specific region Rs2 adjacent to the first specific region Rs1 on the outside in the radial direction RD and forming a second region R2.
- the second specific region Rs2 is the region A8.
- the second nozzle 241 to the second specific region Rs2 when the etchant is being discharged to the regions (here, A1 to A7) inside the second specific region Rs2 in the radial direction RD, the second nozzle 241 to the second specific region Rs2 The rinse liquid is discharged for a second predetermined time. Therefore, for example, when the first nozzle 141 moves from the first specific region Rs1 to the second specific region Rs2, the etching amount of the second specific region Rs2 is less than or equal to the etching amount of the first specific region Rs1. can be That is, as indicated by the dashed line in FIG. 9, the thickness of the second specific region Rs2 can be made equal to or greater than the thickness of the first specific region Rs1.
- the etching amount or thickness of the second specific region Rs2 and the etching quantity or thickness of the first specific region Rs1 are equalized.
- the second nozzle 241 discharges the rinse liquid to the second specific region Rs2. Discharge for a predetermined time.
- the rate of change f'(r) of the etching rate in the regions (here, A9 to A21) outside the second specific region Rs2 in the radial direction RD is negative. That is, when the first nozzle 141 moves from the second specific region Rs2 to the first region R12, the thickness of the first region R12 can be made equal to or greater than the thickness of the second specific region Rs2. Therefore, by adjusting the scanning speed when moving the first nozzle 141 in the area (A9 to A21 here) outside the second specific area Rs2, each area outside the second specific area Rs2 (here Then, the etching amount of A9 to A21) can be made the same as the etching amount of the second specific region Rs2.
- the entire upper surface of the substrate W can be uniformly etched.
- the etching amount of all regions (A1 to A21) can be the same.
- FIG. 10 is a flow chart showing a method of calculating the scan speed of the first nozzle 141, the ejection position of the second nozzle 241, and the ejection time of the substrate processing apparatus 100 of this embodiment.
- FIG. 11 is a flow chart showing step S1 for measuring the thickness distribution of the substrate W by the substrate processing apparatus 100 of this embodiment.
- FIG. 12 is a flowchart showing step S6 for calculating the target scan speed of the first nozzle 141 and the discharge time of the rinse liquid by the second nozzle 241 of the substrate processing apparatus 100 of this embodiment.
- the method of calculating the scan speed of the first nozzle 141 and the ejection position and ejection time of the second nozzle 241 in this embodiment includes steps S1 to S6. Further, the step S1 of measuring the thickness distribution of the substrate W includes steps S11 to S13. Further, step S6 of calculating the target scan speed of the first nozzles 141 and the like includes steps S61 and S62. Steps S 1 to S 6 are executed by control unit 102 .
- step S1 When calculating the scan speed of the first nozzle 141 and the ejection position and ejection time of the second nozzle 241, first, in step S1, as shown in FIG.
- the thickness distribution in the radial direction RD of the substrate W is measured before and after the etchant is discharged onto the upper surface of the substrate W from the nozzle 141 .
- the measurement unit 8 is used to measure the thickness distribution of the target object TG in the radial direction RD of the substrate W.
- the substrate W used in step S1 may be referred to as "first substrate".
- step S12 the rinsing liquid is not discharged from the second nozzle 241, and the etching liquid is discharged from the first nozzle 141 to the central portion CT of the substrate W for a predetermined time, and then the discharge of the etching liquid is stopped.
- the discharge time of the etchant is not particularly limited, the etching amount can be secured by increasing the discharge time, so that the measurement accuracy of the etching rate can be improved.
- the etchant is discharged from the first nozzle 141 for 60 seconds, for example.
- step S13 the measurement unit 8 is used to measure the thickness distribution of the target object TG in the radial direction RD of the substrate W.
- step S2 the etching rate of each region (each position) A1 to A21 in the radial direction RD of the substrate W is calculated. Specifically, the etching rate of each region A1 to A21 in the radial direction RD of the substrate W is calculated from the difference between the measurement result in step S11 and the measurement result in step S13. That is, the etching rate is calculated from the thickness distribution measured in step S1. As a result of the calculation in step S2, for example, the results shown in Table 1 below are obtained. That is, the etching rate at each position on the substrate W can be calculated. Table 1 shows an example of the etching rate calculated in step S2. The results shown in Table 1 correspond to the graph in FIG.
- the etching rate changes by approximately 0.5 nm or 1.0 nm.
- the measurement intervals of the measuring unit 8 may not be equal, and the etching rate may be an irregular numerical value with four or more digits below the decimal point.
- the thickness of the object TG is measured at one point in each of the regions A1 to A21.
- step S3 the etching rate calculated in step S2 is stored in the storage unit 103.
- step S4 the etching rate in each area (each position) A1 to A21 on the upper surface of the substrate W (first substrate) is obtained.
- the etching rate of each region A1 to A21 when the rinsing liquid is not discharged from the second nozzle 241 onto the upper surface of the substrate W but the etching liquid is discharged from the first nozzle 141 is obtained.
- step S5 the target etchant contact time in each area A1 to A21 is calculated. Specifically, for each of the regions A1 to A21, the target etchant contact time is calculated by dividing the target etching amount by the etching rate. Table 2 shows the etching rate, the target etchant contact time, the target scan rate, etc. in each area A1 to A21 of the substrate W.
- step S6 the target scan speed of the first nozzle 141 is calculated.
- step S61 shown in FIG. 12 the difference in the target etchant contact time is calculated.
- the target etchant contact time difference indicates the difference between the target etchant contact time in a certain region and the target etchant contact time in the previous region (region adjacent to the inside).
- step S62 shown in FIG. 12 the target scan speed for each area A2 to A21 is calculated.
- the target scan speed is calculated by dividing the moving distance of the first nozzle 141 by the difference in the target etchant contact time in each of the regions A2 to A21.
- the moving distance of the first nozzle 141 from area A1 to area A2 is 7.5 mm.
- the rate of change in the etching rate is positive. That is, the areas A7 and A8 have higher etching rates than the areas A6 and A7, which are adjacent inwardly. Therefore, for example, before the first nozzle 141 reaches the area A7, the etching amount of the area A7 becomes larger than the target etching amount. Similarly, before the first nozzle 141 reaches the area A8, the etching amount of the area A8 becomes larger than the target etching amount.
- the target scan speeds for the areas A7 and A8 are set to, for example, the upper limits of the set ranges.
- the target scan speeds for the areas A7 and A8 are both negative values.
- the target scan speeds for the areas A7 and A8 are set to the upper limit value (for example, 7500 mm/sec) of the setting range.
- the target scan speed is 7500 mm/sec
- the time required to move 7.5 mm is 0.001 sec. It is etched by ( ⁇ 0.4417 nm/sec ⁇ 0.001 sec).
- the area A8 is etched by 0.0004 nm.
- the etching amount of the regions A7 and A8 when the first nozzle 141 passes through the regions A7 and A8 at a scanning speed of 7500 mm/sec is assumed to be zero. I have something to explain.
- the time during which the regions A7 and A8 are in contact with the etching liquid must be the target etching liquid contact time.
- the time that the region A7 is in contact with the etchant should be shorter than or equal to the time that the region A6 is in contact with the etchant.
- the time that area A8 is in contact with the etchant should be less than or equal to the time that area A7 is in contact with the etchant.
- the second nozzle 241 is configured to discharge the rinse liquid to the region A7 for the first predetermined time.
- the ejection position and ejection time of the second nozzle 241 are calculated.
- the second nozzle 241 discharges the rinse liquid to the region A8 for a second predetermined time.
- the ejection position and ejection time of the second nozzle 241 are calculated.
- the calculation of the discharge position and the discharge time of the second nozzle 241 is an obstacle condition that inhibits the etching by the etchant. can be said to calculate
- the rinse liquid is discharged from the second nozzle 241 to the region A8 for 0.4193 sec (second The ejection position and the ejection time (inhibition condition) of the second nozzle 241 are calculated so that the ink is ejected for a predetermined time. Thereby, the etching amount of the regions A1 to A8 can be made uniform.
- the first predetermined time may be set in consideration of the time (0.0001 sec) for the first nozzle 141 to pass through the area A7. That is, the first predetermined time may be the sum of the difference in the target etchant contact time (here, 0.4354 sec) and 0.0001 sec (time to pass through region A7). In this case, the etching amount of the regions A1 to A7 can be made more uniform.
- the second predetermined time may be set in consideration of the time (0.0001 sec) for the first nozzle 141 to pass through the area A8. That is, the second predetermined time may be the sum of the difference in the target etchant contact time (here, 0.4193 sec) and 0.0001 sec (time to pass through region A8). In this case, the etching amount of the regions A1 to A8 can be made more uniform.
- the change rate of the etching rate is negative. Therefore, the target scan speeds for the areas A9 to A21 are calculated in the same manner as for the areas A2 to A6. Thereby, the etching amount of the entire upper surface of the substrate W can be made uniform.
- step S62 an example of calculating the ejection position and the ejection time of the second nozzle 241 is shown, but the present invention is not limited to this.
- step S7 may be provided after step S6, and the ejection position and ejection time of the second nozzle 241 may be calculated in step S7.
- FIG. 13 is a flow chart showing a substrate processing method according to this embodiment. Specifically, FIG. 13 shows the processing executed by the control unit 102 when etching the substrate W to be processed.
- the substrate processing method of this embodiment includes steps S1 to S6, steps S101, and steps S102.
- the substrate processing method of this embodiment includes a flow for calculating the scan speed of the first nozzle 141 and the ejection position and ejection time of the second nozzle 241 .
- the processing shown in FIG. 13 is started when the operator operates the input unit 104.
- the control unit 102 executes steps S1 to S6 described above.
- the etching speed at each position on the substrate W is acquired, and the scan speed of the first nozzle 141 and the ejection position and ejection time of the second nozzle 241 are calculated.
- step S1 the thickness distribution is measured by discharging the etchant onto the first substrate.
- step S101 the control unit 102 horizontally holds the substrate W to be processed on the spin chuck 3 and rotates the substrate W.
- a second substrate different from the first substrate is used in steps S101 and S102.
- the substrate W used in steps S101 and S102 may be referred to as a "second substrate”.
- step S102 the substrate W (second substrate) is etched under the etching conditions calculated in steps S1 to S6.
- the control unit 102 discharges the etchant from the first nozzle 141 to the center CT of the substrate W for a predetermined time (for example, 20 sec). Then, the control unit 102 moves the first nozzle 141 from the central portion CT (region A1) of the substrate W toward the outer peripheral portion at the target scanning speed.
- the second nozzle 241 discharges the rinse liquid to the region A7 for the first predetermined time. Further, while the first nozzle 141 is discharging the etchant to the regions A1 to A7 (regions A1 to A6 in this embodiment), the second nozzle 241 discharges the rinse liquid to the region A8 for a second predetermined time. . Note that while the first nozzle 141 is discharging the etchant to the regions A9 to A21, the second nozzle 241 does not discharge the rinsing liquid.
- control unit 102 stops the ejection of the etchant and stops the rotation of the substrate W.
- the control unit 102 controls the second region from the second nozzle 241 .
- R2 is caused to discharge the rinse liquid.
- the first nozzle 141 is discharging the etchant to the first region R11 in FIG. 6
- the second nozzle 241 is caused to discharge the rinse liquid to the second region R2.
- the first region R11 is etched, while the second region R2 and the first region R12 are not etched or are inhibited from being etched.
- the etching of the second region R2 and the first region R12 by the etchant is inhibited. Therefore, when the first nozzle 141 moves from the first region R11 to the second region R2, the etching amount of the second region R2 can be made smaller than or equal to the etching amount of the first region R11. As a result, the etching amount of the second region R2 and the etching amount of the first region R11 can be equalized by adjusting the speed at which the first nozzle 141 moves in the second region R2. That is, the upper surface of the substrate W can be etched uniformly.
- the control unit 102 controls the etching with the etching liquid by the inhibiting unit (rinsing liquid supply unit 24) based on the calculation result of the etching rate. and the second nozzle moving mechanism 26) to calculate the obstruction conditions (ejection position and ejection time of the second nozzle 241).
- the control unit 102 is processing the substrate W by discharging the etchant from the first nozzle 141 onto the upper surface of the substrate W (second substrate), the control unit 102 discharges the etchant from the upper surface of the substrate W outward in the radial direction RD.
- the inhibition part is controlled so as to inhibit etching under the above-mentioned inhibition conditions at positions where the rate of change in the etching rate is zero or more. Therefore, the etching of the second region R2 by the etchant can be inhibited. Therefore, when the first nozzle 141 moves from the first region R11 to the second region R2, the etching amount of the second region R2 can be made smaller than or equal to the etching amount of the first region R11. As a result, the etching amount of the second region R2 and the etching amount of the first region R11 can be equalized by adjusting the speed at which the first nozzle 141 moves in the second region R2. That is, the upper surface of the substrate W can be etched uniformly.
- the control unit 102 sets the etching rate of each of the regions A1 to A21 in the radial direction RD of the upper surface of the substrate W and the time during which the etchant contacts each of the regions A1 to A21.
- the scan speed of the first nozzle 141 and the discharge time of the rinse liquid by the second nozzle 241 are calculated so that the product becomes substantially constant. Therefore, the etching amount of each region A1 to A21 can be easily made uniform.
- FIG. 14 is a plan view showing the structure around the first nozzle 141, the second nozzle 241, and the suction unit 341 of the substrate processing apparatus 100 of the modified example of the present embodiment.
- the substrate processing apparatus 100 further includes a suction unit 341. As shown in FIG. 14, unlike the embodiment shown in FIGS. 1 to 13, the substrate processing apparatus 100 further includes a suction unit 341. As shown in FIG.
- the substrate processing apparatus 100 further includes a suction unit 341 in a modified example.
- the suction part 341 sucks the etchant discharged from the first nozzle 141 .
- the substrate processing apparatus 100 includes a suction section 341, a suction pipe 342, and a suction mechanism (not shown).
- the suction part 341 is a suction nozzle.
- the suction part 341 sucks the etchant discharged onto the substrate W.
- the suction part 341 is connected to one end of a suction pipe 342 .
- the etchant sucked by the suction part 341 is discharged to the outside of the chamber 2 through the suction pipe 342 .
- a suction mechanism (not shown) creates a negative pressure inside the suction pipe 342 .
- the substrate processing apparatus 100 further includes a suction movement mechanism (not shown).
- the suction movement mechanism (not shown) is configured in the same manner as the first nozzle movement mechanism 16 or the second nozzle movement mechanism 26, for example, and rotates the suction section 341 along a substantially horizontal plane about a rotation axis (not shown).
- the suction part 341, the suction mechanism, and the suction movement mechanism inhibit etching of the substrate W by the etchant.
- the suction part 341, the suction mechanism, and the suction movement mechanism are examples of the "inhibition part" of the present invention.
- the control unit 102 controls the suction mechanism and the suction movement mechanism.
- the control unit 102 causes the suction unit 341 to suck the etchant in the second region R2 while the first nozzle 141 is discharging inside the suction unit 341 in the radial direction RD.
- the suction unit 341 is caused to suck the etchant.
- the first region R11 is etched, etching of the second region R2 and the first region R12 is suppressed. That is, the etching of the second region R2 and the first region R12 by the etchant is inhibited.
- control unit 102 calculates an inhibition condition for the suction unit 341 and controls the inhibition unit according to the calculated inhibition condition.
- the inhibition condition for the suction unit 341 is the same as the inhibition condition for the second nozzle 241 .
- the suction unit 341 sucks the etchant from the area A7 at the timing when the second nozzle 241 discharges the rinse liquid to the area A7 and for the same time.
- the suction unit 341 sucks the etchant from the area A8 at the timing when the second nozzle 241 discharges the rinse liquid to the area A8 and for the same time.
- the suction unit 341 is arranged downstream of the first nozzle 141 and upstream of the second nozzle 241 in the direction of rotation of the substrate W (counterclockwise direction in FIG. 14). Therefore, after the etchant in the second region R2 is reduced by the suction part 341, the etchant in the second region R2 is diluted by the second nozzle 241, so that etching by the etchant can be effectively inhibited.
- the substrate W was a semiconductor wafer, but the substrate W is not limited to a semiconductor wafer.
- the substrate W may be a liquid crystal display device substrate, a field emission display (FED) substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate, a ceramic substrate, or It can be a substrate for solar cells.
- FED field emission display
- the substrate W may be a liquid crystal display device substrate, a field emission display (FED) substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate, a photomask substrate, a ceramic substrate, or It can be a substrate for solar cells.
- the etching process (steps S101 and S102) is performed on the substrate W after performing steps S1 to S6.
- a user or the like may manually perform the calculations in steps S1 to S6 and input the etching conditions.
- the substrate processing apparatus 100 that performs steps S1 to S6 may be different from the substrate processing apparatus 100 that performs steps S101 and S102. That is, the etching process may be performed using etching conditions calculated by another substrate processing apparatus 100 .
- the present invention is not limited to this.
- the etchant may be discharged while moving the first nozzle 141 from the outer peripheral portion of the substrate W toward the central portion thereof.
- first nozzle 141 and the second nozzle 241 are moved independently of each other has been shown, but the present invention is not limited to this.
- the first nozzle 141 and the second nozzle 241 may be moved integrally.
- the present invention is not limited to this.
- the first nozzle 141 may scan the upper surface of the substrate W, excluding the central portion.
- the scan speed is increased when the first nozzle 141 passes through the areas A7 and A8, but the present invention is not limited to this. It is not necessary to increase the scanning speed when the first nozzle 141 passes through the areas A7 and A8. In this case, for example, the ejection of the etchant from the first nozzle 141 may be stopped. Further, for example, the time for discharging the rinse liquid from the second nozzle 241 may be longer than that in the above embodiment by the time required for the first nozzle 141 to pass through the regions A7 and A8.
- FIG. 14 an example in which the second nozzle 241 and the suction section 341 are provided is shown, but only the suction section 341 may be provided among the second nozzle 241 and the suction section 341 .
- etching by the etchant may be inhibited by partially lowering the temperature of the substrate W.
- the substrate processing apparatus includes a control section, a storage section, an input section, and a display section.
- a control section for example, an embodiment in which any one or all of the storage unit, the input unit, and the display unit are in a state in which signals or information can be electrically communicated or communicated with the control unit separately or at a remote location. It's okay.
- the present invention is useful in the field of processing substrates.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Weting (AREA)
Abstract
基板処理装置(100)は、第1ノズル(141)と、第2ノズル(241)と、制御部(102)とを備える。第1ノズル(141)は、基板(W)の上面にエッチング液を供給する。第2ノズル(241)は、基板(W)の上面にリンス液を供給する。制御部(102)は、第1ノズル(141)からのエッチング液の供給、及び、第2ノズル(241)からのリンス液の供給を制御する。制御部(102)は、第1ノズル(141)から、少なくとも基板(W)の第1領域(R1)にエッチング液を吐出させる。制御部(102)は、第1ノズル(141)が、第2ノズル(241)よりも基板(W)の径方向(RD)において内側でエッチング液を吐出している際に、第1領域(R1)と径方向(RD)において異なる第2領域(R2)に向けて第2ノズル(241)からリンス液を吐出させる。
Description
本発明は、基板処理装置及び基板処理方法に関する。
従来、ウエハ等の基板の表面にエッチング液を供給して基板の表面を処理する基板処理装置が知られている(例えば、特許文献1参照)。特許文献1には、ウエハ中心部への薬液供給に先立ち、薬液供給口を外周部から中心部に短時間で移動させながら薬液供給することにより、均一なエッチングを行う枚葉式エッチング方法が記載されている。
特許文献1に記載のように、枚葉式エッチング方法では、ウエハに薬液を供給する場合、回転しているウエハに対して薬液を供給する。このため、ウエハに供給された薬液は、供給された位置から径方向外側に流れる。よって、ウエハのうち、薬液が供給された位置から径方向外側の部分が、エッチングされる。
ここで、特許文献1に記載のように、ウエハの中心部に薬液を供給した場合、一般的には、ウエハの外周部に比べて中心部の方が、エッチング量は多くなる。この場合、薬液供給口の移動速度を調整することによって、ウエハに対するエッチングの均一性を向上させることが可能である。
しかしながら、例えば、基板の表面の膜の種類、及び、薬液の種類によっては、ウエハの中心部に薬液を供給した場合であっても、ウエハの中心部に比べて外周部の方が、エッチング量が多くなる場合がある。この場合、薬液供給口の移動速度を調整したとしても、ウエハに対するエッチングの均一性を向上させることは困難である。
本発明は上記課題に鑑みてなされたものであり、その目的は、基板に対するエッチングの均一性を向上させることが可能な基板処理装置及び基板処理方法を提供することにある。
本発明の第1の局面による基板処理装置は、基板保持部と、第1ノズルと、第2ノズルと、移動機構と、制御部とを備える。前記基板保持部は、基板を水平に保持して前記基板の中心を通り鉛直に延びる回転軸線を中心として前記基板を回転する。前記第1ノズルは、前記基板の上面にエッチング液を供給する。前記第2ノズルは、前記基板の上面にリンス液を供給する。前記移動機構は、前記第1ノズル及び前記第2ノズルを水平移動させる。前記制御部は、前記第1ノズルからの前記エッチング液の供給、前記第2ノズルからの前記リンス液の供給、及び、前記移動機構を制御する。前記制御部は、前記第1ノズルから、少なくとも前記基板の上面における第1領域に前記エッチング液を吐出させる。前記制御部は、前記第1ノズルが、前記第2ノズルよりも前記基板の径方向において内側で前記エッチング液を吐出している際に、前記第1領域と前記径方向において異なる第2領域に向けて前記第2ノズルから前記リンス液を吐出させる。
本発明の第1の局面による基板処理装置において、前記移動機構は、前記第1ノズルを前記基板保持部の上方で水平方向に移動させる第1ノズル移動機構と、前記第2ノズルを前記基板保持部の上方で水平方向に移動させる第2ノズル移動機構とを有してもよい。
本発明の第1の局面による基板処理装置において、前記制御部は、前記第1ノズルを前記径方向に移動させながら、前記第1ノズルから前記第1領域及び前記第2領域に対して前記エッチング液を吐出させてもよい。
本発明の第1の局面による基板処理装置において、前記制御部は、前記第2ノズルから前記第1領域に対して前記リンス液を吐出せず、前記第2領域に対して前記リンス液を吐出させてもよい。
本発明の第1の局面による基板処理装置において、前記基板は、前記径方向に複数の領域を有してもよい。前記複数の領域は、第1特定領域を有してもよい。前記第1特定領域は、前記第1領域に対して前記径方向の外側に隣接し、且つ、前記第2領域を構成してもよい。前記第1ノズルが前記第1特定領域よりも前記径方向の内側の領域に前記エッチング液を吐出している際に、前記第2ノズルから前記第1特定領域に前記リンス液を第1所定時間吐出してもよい。
本発明の第1の局面による基板処理装置において、前記複数の領域は、第2特定領域をさらに有してもよい。前記第2特定領域は、前記第1特定領域に対して前記径方向の外側に隣接し、且つ、前記第2領域を構成してもよい。前記第1ノズルが前記第1領域に前記エッチング液を吐出している際に、前記第2ノズルから前記第2特定領域に前記リンス液を第2所定時間吐出してもよい。
本発明の第1の局面による基板処理装置において、前記第1ノズルから吐出された前記エッチング液を吸引する吸引部をさらに備えてもよい。前記制御部は、前記第1ノズルが前記吸引部よりも前記径方向の内側で吐出している際に、前記吸引部に前記第2領域の前記エッチング液を吸引させてもよい。
本発明の第1の局面による基板処理装置において、前記制御部は、前記基板の上面に前記第1ノズルから前記エッチング液を吐出したときの各領域のエッチング速度を取得してもよい。前記制御部は、前記基板の上面の前記径方向における各領域の前記エッチング速度と、前記各領域に前記エッチング液が接触する時間との積が、略一定になるように、前記第1ノズルの移動速度、及び、前記第2ノズルによる前記リンス液の吐出時間を算出してもよい。
本発明の第1の局面による基板処理装置において、前記基板の径方向における厚みの分布を測定する測定部をさらに備えてもよい。前記制御部は、前記測定部を制御してもよい。取得された前記エッチング速度は、前記第2ノズルから前記リンス液を吐出せず、前記第1ノズルから前記基板の上面に前記エッチング液を吐出する前と後との前記基板の径方向における厚みの分布を測定することにより算出されてもよい。
本発明の第1の局面による基板処理装置は、記憶部をさらに備えてもよい。前記エッチング速度は、前記記憶部に格納されてもよい。前記エッチング速度の取得は、前記制御部が前記記憶部から前記エッチング速度を読み出すことにより行われてもよい。
本発明の第2の局面による基板処理方法は、基板をエッチング処理する基板処理方法である。前記基板処理方法は、前記基板を基板保持部によって水平に保持し、前記基板の中心を通る回転軸線を中心として回転させる工程と、第1ノズルから、前記基板の少なくとも第1領域にエッチング液を吐出する工程とを有する。前記第1ノズルから前記エッチング液を吐出する工程において、前記第1ノズルが、第2ノズルよりも前記基板の径方向において内側で前記エッチング液を吐出している際に、前記第1領域と前記径方向において異なる第2領域に向けて前記第2ノズルからリンス液を吐出する。
本発明の第2の局面による基板処理方法は、前記基板の上面に、前記第2ノズルから前記リンス液を吐出せず、前記第1ノズルから前記エッチング液を吐出したときの各領域のエッチング速度を取得する工程をさらに備えてもよい。
本発明の第2の局面による基板処理方法は、前記第1ノズルから前記基板の上面に前記エッチング液を吐出する前と後との前記基板の径方向における厚みの分布を測定する工程をさらに備えてもよい。前記取得する工程において取得されるエッチング速度は、前記測定する工程により測定された厚みの分布から算出されてもよい。
本発明の第2の局面による基板処理方法は、前記基板の上面の前記径方向における各領域の前記エッチング速度と、前記各領域に前記エッチング液が接触する時間との積が、略一定になるように、前記第1ノズルの移動速度、及び、前記第2ノズルによる前記リンス液の吐出時間を算出する工程をさらに備えてもよい。
本発明の第2の局面による基板処理方法において、前記第2領域は、前記径方向の外側に向かって、前記第1ノズルについての前記エッチング速度の変化率がゼロ以上となる領域であってもよい。
本発明の第3の局面による基板処理装置は、基板保持部と、第1ノズルと、阻害部と、制御部とを備える。前記基板保持部は、基板を保持して前記基板を回転する。前記第1ノズルは、前記基板の上面にエッチング液を供給する。前記阻害部は、前記エッチング液による前記基板に対するエッチングを阻害する。前記制御部は、前記第1ノズル、及び、前記阻害部を制御する。前記制御部は、前記第1ノズルから第1の基板に前記エッチング液を吐出させる。前記制御部は、前記第1の基板の上面の各位置におけるエッチング速度を算出する。前記制御部は、前記エッチング速度の算出結果に基づいて、前記エッチング液によるエッチングを前記阻害部によって阻害する阻害条件を算出する。前記制御部は、前記第1ノズルから、前記第1の基板と異なる第2の基板の上面に前記エッチング液を吐出している際に、前記第2の基板の上面のうち、径方向の外側に向かって前記エッチング速度の変化率がゼロ以上の位置において、前記阻害条件で前記エッチングを阻害するように前記阻害部を制御する。
本発明の第3の局面による基板処理装置において、前記阻害部は、リンス液を供給する第2ノズルと、前記第2ノズルを前記基板保持部の上方で水平方向に移動可能なノズル移動機構とを有してもよい。前記阻害部による前記エッチングの阻害は、前記第2ノズルから前記第2の基板へのリンス液の供給を制御すること、及び、前記第2ノズルの前記第2の基板に対する位置を前記制御部により制御することにより行われてもよい。
本発明の第4の局面による基板処理方法は、基板を保持して前記基板を回転する基板保持部と、前記基板の上面にエッチング液を供給する第1ノズルと、前記エッチング液による前記基板に対するエッチングを阻害する阻害部とを備えた基板処理装置の基板処理方法である。前記基板処理方法は、前記第1ノズルから第1の基板に前記エッチング液を吐出する工程と、前記第1の基板の上面の各位置におけるエッチング速度を取得する工程と、取得した前記エッチング速度に基づいて、前記エッチング液によるエッチングを阻害する阻害条件を算出する工程と、前記第1ノズルから、前記第1の基板と異なる第2の基板の上面に前記エッチング液を吐出して前記第2の基板を処理する工程とを備える。前記第2の基板を処理する工程において、前記第1ノズルから前記第2の基板の上面に前記エッチング液を吐出している際に、前記第2の基板の上面のうち、径方向の外側に向かって前記エッチング速度の変化率がゼロ以上の位置において、前記阻害部によって前記阻害条件で前記エッチングを阻害する。
本発明の第4の局面による基板処理方法において、前記阻害部は、リンス液を供給する第2ノズルを有してもよい。前記阻害部による前記エッチングの阻害は、前記阻害条件に基づき、所定の位置において前記第2ノズルから前記第2の基板の上面にリンス液を供給することにより行われてもよい。
本発明の第4の局面による基板処理方法は、前記第1ノズルから前記第1の基板の上面に前記エッチング液を吐出する前と後との前記第1の基板の径方向における厚みの分布を測定する工程をさらに備えてもよい。
本発明によれば、基板に対するエッチングの均一性を向上させることが可能な基板処理装置及び基板処理方法を提供できる。
以下、図面を参照して本発明の実施形態を説明する。但し、本発明は以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。なお、説明が重複する箇所については、適宜説明を省略する場合がある。また、図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。
図1を参照して、本発明の一実施形態の基板処理装置100を説明する。図1は、本実施形態の基板処理装置100の模式図である。詳しくは、図1は、基板処理装置100の模式的な平面図である。基板処理装置100は、基板Wを一枚ずつ処理する枚葉式の装置である。本実施形態において、基板Wは半導体ウエハである。基板Wは略円板状である。
図1に示すように、基板処理装置100は、複数の処理ユニット1と、流体キャビネット100Aと、複数の流体ボックス100Bと、複数のロードポートLPと、インデクサーロボットIRと、センターロボットCRと、制御装置101とを備える。
ロードポートLPの各々は、複数枚の基板Wを積層して収容する。インデクサーロボットIRは、ロードポートLPとセンターロボットCRとの間で基板Wを搬送する。センターロボットCRは、インデクサーロボットIRと処理ユニット1との間で基板Wを搬送する。処理ユニット1の各々は、処理液を基板Wに供給して、基板Wに処理を実行する。流体キャビネット100Aは、処理液を収容する。
複数の処理ユニット1は、平面視においてセンターロボットCRを取り囲むように配置された複数のタワーTW(図1では4つのタワーTW)を形成している。各タワーTWは、上下に積層された複数の処理ユニット1(図1では3つの処理ユニット1)を含む。流体ボックス100Bは、それぞれ、複数のタワーTWに対応している。流体キャビネット100A内の処理液は、いずれかの流体ボックス100Bを介して、流体ボックス100Bに対応するタワーTWに含まれる全ての処理ユニット1に供給される。
制御装置101は、基板処理装置100の各部の動作を制御する。例えば、制御装置101は、ロードポートLP、インデクサーロボットIR、及びセンターロボットCRを制御する。
続いて図2を参照して、本実施形態の処理ユニット1を説明する。図2は、本実施形態の処理ユニット1の模式図である。詳しくは、図2は、処理ユニット1の模式的な断面図である。
図2に示すように、処理ユニット1は、基板Wを構成する対象物を処理液によって処理する。以下、処理液による処理の対象である対象物を「対象物TG」と記載する。対象物TGは、例えば、基板本体(例えば、シリコンからなる基板本体)、又は、基板本体の表面に形成された物質である。基板本体の表面に形成された物質は、例えば、基板本体と同じ材料の物質(例えば、シリコンからなる層)、又は、基板本体と異なる材料の物質(例えば、シリコン酸化膜、シリコン窒化膜、又はレジスト)である。「物質」は膜を構成していてもよい。
本実施形態において、処理液はエッチング液を含み、処理ユニット1はエッチング処理を実行する。対象物TGは、エッチング液によって処理される(エッチングされる)。エッチング液は、薬液である。エッチング液は、例えば、フッ硝酸(フッ酸(HF)と硝酸(HNO3)との混合液)、フッ酸、バッファードフッ酸(BHF)、フッ化アンモニウム、HFEG(フッ酸とエチレングリコールとの混合液)、又は、燐酸(H3PO4)である。
処理ユニット1は、チャンバー2と、スピンチャック3と、スピンモータ部5と、第1ノズル移動機構16と、第2ノズル移動機構26と、複数のガード10と、第1ノズル141と、第2ノズル241と、測定部8と、プローブ移動機構9とを備える。また、基板処理装置100は、エッチング液供給部14と、リンス液供給部24とを備える。エッチング液供給部14は、第1供給配管142を有し、リンス液供給部24は、第2供給配管242を有する。なお、第1ノズル移動機構16は、本発明の「移動機構」の一例である。また、第2ノズル移動機構26は、本発明の「移動機構」及び「ノズル移動機構」の一例である。また、第2ノズル移動機構26及びリンス液供給部24は、本発明の「阻害部」の一例である。
チャンバー2は略箱形状を有する。チャンバー2は、基板W、スピンチャック3、スピンモータ部5、第1ノズル移動機構16、第2ノズル移動機構26、複数のガード10、第1ノズル141、第2ノズル241、測定部8、プローブ移動機構9、第1供給配管142の一部、及び、第2供給配管242の一部を収容する。
スピンチャック3は、基板Wを水平に保持する。具体的には、スピンチャック3は、複数のチャック部材32と、スピンベース33とを有する。複数のチャック部材32は、基板Wの周縁に沿ってスピンベース33に設けられる。複数のチャック部材32は基板Wを水平な姿勢で保持する。スピンベース33は、略円板状であり、水平な姿勢で複数のチャック部材32を支持する。なお、スピンチャック3は、本発明の「基板保持部」の一例である。
スピンモータ部5は、第1回転軸線AX1を中心として基板Wとスピンチャック3とを一体に回転させる。第1回転軸線AX1は、上下方向に延びる。本実施形態では、第1回転軸線AX1は、基板Wの中心を通り略鉛直方向に延びる。詳しくは、スピンモータ部5は、第1回転軸線AX1を中心としてスピンベース33を回転させる。従って、スピンベース33は、第1回転軸線AX1を中心として回転する。その結果、スピンベース33に設けられた複数のチャック部材32に保持された基板Wが、第1回転軸線AX1を中心として回転する。なお、第1回転軸線AX1は、本発明の「回転軸線」の一例である。
具体的には、スピンモータ部5は、モータ本体51と、シャフト53と、エンコーダ55とを有する。シャフト53はスピンベース33に結合される。モータ本体51は、シャフト53を回転させる。その結果、スピンベース33が回転する。
エンコーダ55は、基板Wの回転速度を計測する。エンコーダ55は、基板Wの回転速度を示す信号を生成する。詳しくは、エンコーダ55は、モータ本体51の回転速度を示す回転速度信号を生成する。
第1ノズル141は、基板Wにエッチング液を供給する。詳しくは、第1ノズル141は、回転中の基板Wに向けてエッチング液を吐出する。エッチング液供給部14は、第1ノズル141にエッチング液を供給する。詳しくは、第1ノズル141は、第1供給配管142の一端に接続している。エッチング液は、第1供給配管142を介して第1ノズル141に供給される。第1供給配管142は、エッチング液が流通する管状部材である。
第1ノズル移動機構16は、第1ノズル141を移動させる。本実施形態において、第1ノズル移動機構16は、第1ノズル141をスピンチャック3の上方で水平方向に移動させる。詳しくは、第1ノズル移動機構16は、略鉛直方向に沿った第2回転軸線AX2を中心として第1ノズル141を旋回させる。第1ノズル141は、停止又は移動しながら(旋回しながら)、基板Wに向けてエッチング液を吐出する。第1ノズル141は、スキャンノズルと称されることがある。
具体的には、第1ノズル移動機構16は、ノズルアーム161と、第1回転軸163と、第1駆動部165とを有する。ノズルアーム161は略水平方向に沿って延びる。ノズルアーム161の先端部に第1ノズル141が配置される。ノズルアーム161は第1回転軸163に結合される。第1回転軸163は、略鉛直方向に沿って延びる。第1駆動部165は、第2回転軸線AX2を中心として第1回転軸163を回転させて、第1回転軸163を中心にノズルアーム161を略水平面に沿って回転させる。その結果、第1ノズル141が略水平面に沿って移動する。詳しくは、第1ノズル141は、第2回転軸線AX2を中心として第1回転軸163の周りを旋回する。第1駆動部165は、例えば、ステッピングモータを含む。
リンス液供給部24及び第2ノズル移動機構26は、エッチング液による基板Wに対するエッチングを阻害する。本実施形態では、リンス液によりエッチング液を希釈することによって、エッチングを阻害する。具体的には、第2ノズル241は、基板Wにリンス液を供給する。詳しくは、第2ノズル241は、回転中の基板Wに向けてリンス液を吐出する。リンス液供給部24は、第2ノズル241にリンス液を供給する。詳しくは、第2ノズル241は、第2供給配管242の一端に接続している。リンス液は、第2供給配管242を介して第2ノズル241に供給される。第2供給配管242は、リンス液が流通する管状部材である。リンス液は、例えば、脱イオン水、炭酸水、電解イオン水、水素水、オゾン水、又は、希釈濃度(例えば、10ppm~100ppm程度)の塩酸水である。なお、リンス液として、エッチング液を希釈した液を用いてもよい。
第2ノズル移動機構26は、第2ノズル241を移動させる。本実施形態において、第2ノズル移動機構26は、第2ノズル241をスピンチャック3の上方で水平方向に移動させる。詳しくは、第2ノズル移動機構26は、略鉛直方向に沿った第3回転軸線AX3を中心として第2ノズル241を旋回させる。第2ノズル241は、静止した状態で基板Wに向けてリンス液を吐出する。なお、第2ノズル241は、移動しながら(旋回しながら)リンス液を吐出してもよい。
第2ノズル移動機構26は、ノズルアーム261と、第2回転軸263と、第2駆動部265とを有する。ノズルアーム261は略水平方向に沿って延びる。ノズルアーム261の先端部に第2ノズル241が配置される。ノズルアーム261は第2回転軸263に結合される。第2回転軸263は、略鉛直方向に沿って延びる。第2駆動部265は、第3回転軸線AX3を中心として第2回転軸263を回転させて、第2回転軸263を中心にノズルアーム261を略水平面に沿って回転させる。その結果、第2ノズル241が略水平面に沿って移動する。詳しくは、第2ノズル241は、第3回転軸線AX3を中心として第2回転軸263の周りを旋回する。第2駆動部265は、例えば、ステッピングモータを含む。
ガード10の各々は、略筒形状を有する。複数のガード10は、基板Wから排出されたエッチング液及びリンス液を受け止める。
測定部8は、基板Wの厚みの分布を示す情報を取得する。言い換えると、測定部8は、基板Wの表面形状(プロファイル)を示す情報を取得する。本実施形態では、測定部8は、基板Wの径方向RDにおける厚み分布を測定する。
本実施形態では、測定部8は、対象物TGの厚みを非接触方式で測定して、対象物TGの厚みを示す厚み検出信号を生成する。厚み検出信号は、制御装置101に入力される。
測定部8は、例えば、分光干渉法によって対象物TGの厚みを測定する。具体的には、測定部8は、光学プローブ81と、信号線83と、測定器85とを含む。光学プローブ81は、レンズを有する。信号線83は、光学プローブ81と測定器85とを接続する。信号線83は、例えば光ファイバーを含む。測定器85は、光源と受光素子とを有する。測定器85の光源が出射した光は、信号線83及び光学プローブ81を介して、対象物TGに出射される。対象物TGによって反射された光は、光学プローブ81及び信号線83を介して、測定器85の受光素子で受光される。測定器85は、受光素子が受光した光を解析して、対象物TGの厚みを算出する。測定器85は、算出した対象物TGの厚みを示す厚み検出信号を生成する。なお、測定部8の測定方法は、分光干渉法に限らず、対象物TGの厚みを測定できれば他の測定方法を用いてもよい。
プローブ移動機構9は、略水平方向に光学プローブ81を移動させる。詳しくは、プローブ移動機構9は、略鉛直方向に沿った第4回転軸線AX4を中心として光学プローブ81を旋回させる。光学プローブ81は、移動しながら(旋回しながら)、基板Wに向けて光を出射する。従って、厚み検出信号は、対象物TGの厚みの分布を示す。
具体的には、プローブ移動機構9は、プローブアーム91と、第3回転軸93と、第3駆動部95とを有する。プローブアーム91は略水平方向に沿って延びる。プローブアーム91の先端部に光学プローブ81が配置される。プローブアーム91は第3回転軸93に結合される。第3回転軸93は、略鉛直方向に沿って延びる。第3駆動部95は、第4回転軸線AX4を中心として第3回転軸93を回転させて、第3回転軸93を中心にプローブアーム91を略水平面に沿って回転させる。その結果、光学プローブ81が略水平面に沿って移動する。詳しくは、光学プローブ81は、第4回転軸線AX4を中心として第3回転軸93の周りを旋回する。第3駆動部95は、例えば、ステッピングモータを含む。
本実施形態において、測定部8は、エッチング量の検出に用いられる。エッチング量は、処理ユニット1が基板Wを処理することによって基板Wがエッチングされる量を示す。詳しくは、測定部8は、処理前の基板Wの厚みの分布(基板Wの表面形状)を示す情報(以下、処理前表面情報と記載する)と、処理後の基板Wの厚みの分布(基板Wの表面形状)を示す情報(以下、処理後表面情報と記載する)とを取得する。処理前表面情報と処理後表面情報との差分から、エッチング量を算出することができる。
制御装置101は、測定部8(測定器85)から入力された厚み検出信号に基づいてエッチング量を算出することにより、エッチング量を取得する。より詳しくは、制御装置101は、エッチング量の分布を取得する。制御装置101は、取得したエッチング量を用いて、後述するように、エッチング条件を算出する。エッチング条件は、例えば、第1ノズル141の移動速度、第2ノズル241からリンス液を吐出する位置及び時間を含む。
また、制御装置101には、エンコーダ55から回転速度信号が入力される。なお、処理時における基板Wの回転速度は、例えば一定である。詳しくは、制御装置101は、基板処理装置100の各部を制御するためのレシピを記憶しており、レシピは、モータ本体51の回転速度の設定値を示す。制御装置101は、レシピを参照して、処理ユニット1が実行する処理を制御する。
続いて図3を参照して、第1ノズル141による基板Wのスキャン処理を説明する。図3は、本実施形態のスキャン処理を示す平面図である。図3に示すように、第1ノズル141は、対象物TGの表面に対するエッチング液の着液位置が円弧状の軌跡TJ1を形成するように停止又は移動しながら、エッチング液を対象物TGに吐出する。軌跡TJ1は、基板Wの中心部CTを通る。中心部CTは、基板Wのうち第1回転軸線AX1が通る部分を示す。スキャン処理は、基板Wの回転中に実行される。
また、第2ノズル241は、対象物TGの表面に対するリンス液の着液位置が円弧状の軌跡TJ2を形成するように停止又は移動しながら、リンス液を対象物TGに吐出する。本実施形態では、軌跡TJ2は、基板Wの中心部CTを通る。なお、軌跡TJ2は、基板Wの中心部CTの近傍を通ることができれば、中心部CTを通らなくてもよい。リンス液の吐出は、基板Wの回転中に実行される。
続いて図4を参照して、測定部8による厚み測定処理を説明する。図4は、本実施形態の厚み測定処理を示す平面図である。図4に示すように、測定部8の光学プローブ81は、対象物TGに対する厚みの測定位置が円弧状の軌跡TJ3を形成するように移動しながら、対象物TGの厚みを測定する。軌跡TJ3は、基板Wのエッジ部EGと基板Wの中心部CTとを通る。エッジ部EGは、基板Wの周縁部を示す。厚み測定処理は、基板Wの回転中に実行される。
具体的には、光学プローブ81は、平面視において、基板Wの中心部CTとエッジ部EGとの間を移動しながら、対象物TGに向けて光を出射する。この結果、軌跡TJ2に含まれる各測定位置において、対象物TGの厚みが測定される。各測定位置は、基板Wの各半径位置に対応している。従って、厚み測定処理により、基板Wの径方向RDにおける対象物TGの厚みの分布が測定される。なお、対象物TGの表面形状(プロファイル)は、対象物TGの厚みの分布を示す形状と一致する。
次に、図1を参照して、制御装置101を説明する。図1に示すように、制御装置101は、制御部102と、記憶部103と、入力部104と、表示部105とを有する。制御装置101は、例えばコンピュータである。制御装置101は、汎用のコンピュータを用いたものであってもよいし、構成部品の一部をカスタマイズしたもの、あるいは専用に設計されたコンピュータであってもよい。
制御部102は、プロセッサーを有する。制御部102は、例えば、CPU(Central Processing Unit)、又は、MPU(Micro Processing Unit)を有するコントローラである。あるいは、制御部102は、汎用演算機又は専用演算機を有してもよい。制御部102は、NPU(Neural Network Processing Unit)をさらに有してもよい。
記憶部103は、データ及びコンピュータプログラムを記憶する。記憶部103は、主記憶装置を有する。主記憶装置は、例えば、半導体メモリである。記憶部103は、補助記憶装置をさらに有してもよい。補助記憶装置は、例えば、半導体メモリ及び/又はハードディスクドライブである。記憶部103はリムーバブルメディアを有してもよい。制御部102は、記憶部103が記憶しているデータ及びコンピュータプログラムに基づいて、基板処理装置100の各部の動作を制御する。さらに、制御部102は、記憶部103が記憶しているデータ及びコンピュータプログラムに基づいて、エッチング条件を算出する。なお、エッチング条件の詳細な算出方法については、後述する。
記憶部103は、レシピと、制御プログラムとを記憶する。レシピは、基板Wの処理内容及び処理手順を規定する。また、レシピは、各種の設定値を示す。制御部102は、レシピ及び制御プログラムに基づいて、基板処理装置100の各部の動作を制御する。
入力部104は、作業者からの入力を受け付けて、入力結果を示す情報を制御部102に出力する。入力部104は、例えば、タッチパネル及びポインティングデバイスを含む。タッチパネルは、例えば、表示部105の表示面に配置される。入力部104と表示部105とは、例えば、グラフィカルユーザーインターフェースを構成する。
表示部105は各種情報を表示する。本実施形態において、表示部105は、例えば、各種のエラー画面、及び各種の設定画面(入力画面)を表示する。表示部105は、例えば、液晶ディスプレイ又は有機EL(electroluminescence)ディスプレイを有する。
次に、図5を参照して、第2ノズル241からの吐出が無い前提で、第1ノズル141からエッチング液を吐出した場合における基板Wのエッチング量について説明する。換言すると、第2ノズル241によるエッチングの阻害が行われない前提における、第1ノズル141による基板Wのエッチング量について説明する。図5は、基板Wの上面を示す平面図である。前提として、エッチング液は回転中の基板Wに対して吐出される。この場合、エッチング液は着液した位置から径方向外側に向かって流れ、着液した位置から径方向外側の全域がエッチングされる。また、前提として、エッチング液の着液位置を変えたとしても、基板Wの各位置におけるエッチング速度は変化しないこととする。例えば、エッチング液の着液位置を、基板Wの中心部CTにした場合も、基板Wの中心部CTからr[mm]離れた位置にした場合も、基板Wの中心部CTからr[mm]以上離れた各位置におけるエッチング速度は、一定であるとする。エッチング速度は、単位時間当たりのエッチング量である。なお、本願発明者の知見によれば、エッチング液の着液位置を変えたとしても、基板Wの各位置におけるエッチング速度はほとんど変化しない。
ここで、基板Wの中心部CTからr[mm]の位置におけるエッチング量をF(r)、エッチング速度をf(r)、第1ノズル141のスキャン速度をv(r)とする。なお、スキャン速度は、スキャン処理時における第1ノズル141の移動速度である。この場合、位置r[mm]におけるエッチング量F(r)は、エッチング速度f(r)と、エッチング液の接触時間の総和T[sec]との積である。また、エッチング液の接触時間の総和T[sec]は、スキャン速度v(r)を用いて、以下の式(1)のように表すことができる。なお、以下の式(1)~(3)は、第1ノズル141から吐出されるエッチング液に関する式であり、第2ノズル241から吐出されるリンス液の影響は考慮していない。
従って、位置r[mm]におけるエッチング量F(r)は、以下の式(2)になる。
基板Wの上面を均一にエッチングするためには、dF(r)/dr=0にする必要がある。つまり、以下の式(3)を満たす必要がある。
ここで、上述したように、基板Wの中心部にエッチング液を供給した場合、一般的には、基板Wの外周部に比べて中心部の方が、エッチング量が多くなる。言い換えると、エッチング速度の変化率f’(r)は、負になる。この場合、第1ノズル141を基板Wの中心部から径方向外側に向かって移動させる際のスキャン速度v(r)を調整することによって、基板Wの上面を均一にエッチングすることが可能である。つまり、式(3)が成立するようにスキャン速度v(r)を設定することが可能である。
その一方、基板Wの中心部にエッチング液を供給した場合に、基板Wの外周部に比べて中心部の方が、エッチング量が少なくなる場合がある。言い換えると、エッチング速度の変化率f’(r)が正になる場合がある。この場合、第1ノズル141のスキャン速度v(r)を調整するだけでは、式(3)は成立しない。言い換えると、一般的には、基板Wの上面を均一にエッチングすることはできない。そこで、本願発明では、「エッチング液の着液した位置から径方向外側の全域がエッチングされる」という前提を覆すことによって、基板Wの上面を均一にエッチングすることを実現する。以下、具体的に説明する。
次に、図6~図8を参照して、エッチング速度の変化率f’(r)が正になる場合であっても、基板Wの上面を均一にエッチングする方法について具体的に説明する。図6は、基板Wの径方向RDの各位置におけるエッチング速度f(r)の一例を示すグラフである。また、図6は、第2ノズル241からリンス液を吐出せず、第1ノズル141から基板Wの中心部に向けてエッチング液を吐出したときのエッチング速度f(r)の分布を示すグラフである。図7は、第2ノズル241からリンス液を吐出せず、第1ノズル141から基板Wの中心部にエッチング液を所定時間吐出したときの基板Wの厚みの分布の一例を示すグラフである。図8は、図7に示した状態から第1ノズル141を領域A6まで所定速度で移動させたときの基板Wの厚みの分布の一例を示すグラフである。
図6に示すように、基板Wの上面は、径方向RDにおいて、第1領域R1と、第1領域R1とは異なる第2領域R2とを有する。第1領域R1及び第2領域R2は、平面視で円形状又はリング形状を有する。第1領域R1は、径方向RDの外側に向かって、エッチング速度の変化率f’(r)が負になる領域である。第2領域R2は、径方向RDの外側に向かって、エッチング速度の変化率f’(r)がゼロ以上になる領域である。図6では、第2領域R2は、径方向RDの外側に向かって、エッチング速度の変化率f’(r)が正になる領域である。
制御部102は、第1ノズル141から、基板Wの少なくとも第1領域R1にエッチング液を吐出させる。本実施形態では、制御部102は、第1ノズル141を径方向RDに移動させながら、第1ノズル141から第1領域R1及び第2領域R2に対してエッチング液を吐出させる。従って、例えば、第1領域R1及び第2領域R2毎にエッチング液の吐出と不吐出とを切り替える場合に比べて、第1ノズル141からエッチング液を安定して吐出できる。
基板Wの中心部(領域A1)に第1ノズル141からエッチング液所定時間吐出した場合、基板Wの厚み(表面形状)は、図7に示すようになる。そして、図7に示す状態から第1ノズル141を径方向RDの外側に所定速度で移動させることによって、図8に示すように、第1ノズル141が第1領域R11から第2領域R2に移動する時点で、第1領域R11の厚みを均一にすることができる。しかしながら、図6を用いて説明したように、第2領域R2のエッチング速度の変化率は、正であるので、第1ノズル141が第1領域R11から第2領域R2に移動する時点で第2領域R2の厚みは第1領域R11の厚みよりも小さくなってしまう。
そこで、本実施形態では、制御部102は、第1ノズル141が第2ノズル241よりも径方向RDの内側でエッチング液を吐出している際に、第2ノズル241から第2領域R2にリンス液を吐出させる。具体的には、第1ノズル141が図6の第1領域R11にエッチング液を吐出している際に、第2ノズル241から第2領域R2にリンス液を吐出させる。これにより、第1領域R11はエッチングされる一方、第2領域R2及び第1領域R12は、エッチングされない、又は、エッチングが抑制される。つまり、第2領域R2及び第1領域R12のエッチング液によるエッチングが阻害される。従って、第1ノズル141が第1領域R11から第2領域R2に移動する時点で、第2領域R2及び第1領域R12のエッチング量を、第1領域R11のエッチング量に比べて少なく又は同じにすることができる。つまり、図8の破線で示すように、第2領域R2の厚みを第1領域R11の厚みと同じ、又は、第1領域R11の厚みより大きくすることができる。その結果、第1ノズル141が第2領域R2を移動する際の速度を調整することによって、第2領域R2のエッチング量又は厚みと、第1領域R1のエッチング量又は厚みとを同じにすることができる。つまり、基板Wの上面を均一にエッチングすることができる。
上記のように、第2領域R2は、径方向RDの外側に向かって、エッチング速度の変化率f’(r)がゼロ以上になる領域である。通常、基板W内に、エッチング速度の変化率f’(r)がゼロ以上になる領域が存在する場合、第1ノズル141によるエッチング液の制御のみでは基板Wの上面を均一にエッチングすることは困難であるが、本発明を適用することによって、基板Wの上面を均一にエッチングすることが可能となる。
また、制御部102は、第2ノズル241から、第1領域R1に対してリンス液を吐出せずに、第2領域R2に対してリンス液を吐出させる。従って、第2領域R2に対して選択的にリンス液を吐出できる。
なお、基板Wの上面をエッチングする場合、第1ノズル141は、基板Wの中心部から外周部に向けて移動しながらエッチング液を吐出してもよいし、基板Wの外周部から中心部に向けて移動しながらエッチング液を吐出してもよいが、本実施形態では、理解を容易にするために、第1ノズル141が基板Wの中心部から外周部に向けて移動しながらエッチング液を吐出する例について説明する。
次に、図6~図9を参照して、リンス液の吐出についてさらに詳細に説明する。図9は、図7に示した状態から、第2ノズル241からリンス液を所定時間吐出しながら、第1ノズル141を領域A7まで所定速度で移動させたときの基板Wの厚みの分布の一例を示すグラフである。図6に示すように、基板Wの上面を径方向RDに複数の領域(ここではA1~A21)に区分する。言い換えると、基板Wは、径方向に複数の領域A1~A21を有する。各領域A1~A21は、平面視で円形状又はリング形状を有する。
複数の領域A1~A21は、第1特定領域Rs1を有する。第1特定領域Rs1は、第1領域R1に対して径方向RDの外側に隣接し、且つ、第2領域R2を構成する。図6では、第1特定領域Rs1は、領域A7である。
本実施形態では、第1ノズル141が第1特定領域Rs1よりも径方向RDの内側の領域(ここではA1~A6)にエッチング液を吐出している際に、第2ノズル241から第1特定領域Rs1にリンス液を第1所定時間吐出する。従って、例えば、第1ノズル141が、第1特定領域Rs1に対して径方向RDの内側に隣接する領域(ここではA6)から第1特定領域Rs1に移動する時点で、第1特定領域Rs1のエッチング量を、第1特定領域Rs1の内側に隣接する領域(ここではA6)のエッチング量に比べて少なく又は同じにすることができる。つまり、図8の破線で示すように、第1特定領域Rs1の厚みを領域A1~A6の厚みと同じ、又は、それ以上の大きさにすることができる。その結果、第1ノズル141が第1特定領域Rs1を移動する際のスキャン速度を調整することによって、第1特定領域Rs1のエッチング量又は厚みと、第1特定領域Rs1の内側に隣接する領域(ここではA6)のエッチング量又は厚みとを同じにすることができる。
また、複数の領域A1~A21は、第1特定領域Rs1に対して径方向RDの外側に隣接し、且つ、第2領域R2を構成する第2特定領域Rs2をさらに有する。図6では、第2特定領域Rs2は、領域A8である。
また、本実施形態では、第2特定領域Rs2よりも径方向RDの内側の領域(ここではA1~A7)にエッチング液を吐出している際に、第2ノズル241から第2特定領域Rs2にリンス液を第2所定時間吐出する。従って、例えば、第1ノズル141が第1特定領域Rs1から第2特定領域Rs2に移動する時点で、第2特定領域Rs2のエッチング量を、第1特定領域Rs1のエッチング量に比べて少なく又は同じにすることができる。つまり、図9の破線で示すように、第2特定領域Rs2の厚みを第1特定領域Rs1の厚みと同じ、又は、それ以上の大きさにすることができる。その結果、第1ノズル141が第2特定領域Rs2を移動する際の速度を調整することによって、第2特定領域Rs2のエッチング量又は厚みと、第1特定領域Rs1のエッチング量又は厚みとを同じにすることができる。なお、本実施形態では、第1ノズル141が第1領域R11(ここではA1~A6)にエッチング液を吐出している際に、第2ノズル241から第2特定領域Rs2にリンス液を第2所定時間吐出する。
また、図6に示す例では、第2特定領域Rs2よりも径方向RDの外側の領域(ここではA9~A21)のエッチング速度の変化率f’(r)は、負である。つまり、第1ノズル141が第2特定領域Rs2から第1領域R12に移動する時点で、第1領域R12の厚みを第2特定領域Rs2の厚み以上の大きさにすることができる。従って、第1ノズル141を第2特定領域Rs2よりも外側の領域(ここではA9~A21)を移動させる際のスキャン速度を調整することによって、第2特定領域Rs2よりも外側の各領域(ここではA9~A21)のエッチング量を、第2特定領域Rs2のエッチング量と同じにすることができる。
以上の結果、基板Wの上面全面を均一にエッチングすることができる。言い換えると、全ての領域(A1~A21)のエッチング量を同じにすることができる。
次に、図6から図12、表1及び表2を参照して、第1ノズル141のスキャン速度、第2ノズル241の吐出位置及び吐出時間の算出方法について具体的に説明する。図10は、本実施形態の基板処理装置100の第1ノズル141のスキャン速度、第2ノズル241の吐出位置及び吐出時間の算出方法を示すフローチャートである。図11は、本実施形態の基板処理装置100により基板Wの厚み分布を測定するステップS1を示すフローチャートである。図12は、本実施形態の基板処理装置100の第1ノズル141の目標スキャン速度、及び、第2ノズル241によるリンス液の吐出時間を算出するステップS6を示すフローチャートである。
本実施形態の第1ノズル141のスキャン速度、第2ノズル241の吐出位置及び吐出時間の算出方法は、ステップS1~ステップS6を含む。また、基板Wの厚み分布を測定するステップS1は、ステップS11~ステップS13を含む。また、第1ノズル141の目標スキャン速度等を算出するステップS6は、ステップS61及びステップS62を含む。ステップS1~ステップS6は、制御部102によって実行される。
第1ノズル141のスキャン速度、第2ノズル241の吐出位置及び吐出時間を算出する場合、まず、図10に示すように、ステップS1において、第2ノズル241からリンス液を吐出せず、第1ノズル141から基板Wの上面にエッチング液を吐出する前と後との基板Wの径方向RDにおける厚みの分布を測定する。具体的には、図11に示すステップS11において、測定部8を用いて、基板Wの径方向RDにおける対象物TGの厚みの分布を測定する。以下、ステップS1で用いる基板Wを「第1の基板」と記載することがある。
次に、ステップS12において、第2ノズル241からリンス液を吐出せず、第1ノズル141からエッチング液を基板Wの中心部CTに所定時間吐出した後、エッチング液の吐出を停止する。なお、エッチング液の吐出時間は特に限定されないが、吐出時間を長くした方がエッチング量を確保できるため、エッチング速度の測定精度を向上できる。本実施形態では、第1ノズル141からエッチング液を例えば60秒吐出する。
次に、ステップS13において、測定部8を用いて、基板Wの径方向RDにおける対象物TGの厚みの分布を測定する。
次に、ステップS2において、基板Wの径方向RDにおける各領域(各位置)A1~A21のエッチング速度を算出する。具体的には、ステップS11での測定結果とステップS13での測定結果との差分から、基板Wの径方向RDにおける各領域A1~A21のエッチング速度を算出する。つまり、エッチング速度は、ステップS1で測定された厚みの分布から算出される。ステップS2における算出の結果、例えば以下の表1に示す結果が得られる。つまり、基板Wの各位置におけるエッチング速度を算出できる。表1は、ステップS2で算出したエッチング速度の一例を示す。なお、表1に示す結果は、図6のグラフに対応している。
また、表1では、理解を容易にするために、基板Wの中心部CT(r=0)から7.5mm間隔の位置で測定し、エッチング速度がおおよそ0.5nm又は1.0nmずつ変化する例について示すが、測定部8の測定間隔は、等間隔でなくてもよいし、エッチング速度は、小数点以下が4桁以上の不規則な数値となってもよい。また、ここでは、各領域A1~A21において、対象物TGの厚みを1ヶ所測定する。
次に、ステップS3(図7参照)において、ステップS2で算出したエッチング速度を記憶部103に格納する。
次に、ステップS4において、基板W(第1の基板)の上面の各領域(各位置)A1~A21におけるエッチング速度を取得する。言い換えると、基板Wの上面に、第2ノズル241からリンス液を吐出せず、第1ノズル141からエッチング液を吐出したときの各領域A1~A21のエッチング速度を取得する。
次に、ステップS5において、各領域A1~A21における目標エッチング液接触時間を算出する。具体的には、各領域A1~A21について、目標エッチング量をエッチング速度で除することによって、目標エッチング液接触時間を算出する。表2は、基板Wの各領域A1~A21における、エッチング速度、目標エッチング液接触時間、目標スキャン速度等を示す。
表2に示す例では、各領域A1~A21における目標エッチング量は、10nmである。また、領域A1のエッチング速度は、0.5nm/sec(=30.0nm/min)であるから、領域A1の目標エッチング液接触時間は、20sec(=10nm÷0.5nm/sec)である。なお、表2では、表1のエッチング速度に基づいて、1sec当たりのエッチング速度を示している。同様にして、領域A2~A21の目標エッチング液接触時間を算出する。
ステップS6において、第1ノズル141の目標スキャン速度を算出する。まず、図12に示すステップS61において、目標エッチング液接触時間の差分を算出する。目標エッチング液接触時間の差分とは、ある領域における目標エッチング液接触時間と、1つ前の領域(内側に隣接する領域)における目標エッチング液接触時間との差分を示す。
表2に示す例では、領域A2における目標エッチング液接触時間の差分は、領域A2の目標エッチング液接触時間から、領域A1の目標エッチング液接触時間を減じた値であり、0.6897sec(=20.6897sec-20sec)である。同様にして、領域A3~A21の目標エッチング液接触時間の差分を算出する。
そして、図12に示すステップS62において、各領域A2~A21における目標スキャン速度を算出する。各領域A2~A21において、第1ノズル141の移動距離を目標エッチング液接触時間の差分で除することによって、目標スキャン速度を算出する。
表2に示す例では、領域A1から領域A2までの第1ノズル141の移動距離は、7.5mmである。また、領域A2の目標エッチング液接触時間の差分は、0.6897secである。第1ノズル141は、7.5mmを0.6897secの時間をかけて移動すれば、領域A2のエッチング液接触時間が20.6897secになる。従って、領域A1(r=0.0mm)から領域A2(=7.5mm)までの第1ノズル141の目標スキャン速度は、10.875mm/sec(=7.5mm/0.6897sec)となる。同様にして、領域A3~A6における目標スキャン速度を算出する。
ここで、領域A7及び領域A8では、エッチング速度の変化率が正である。つまり、領域A7及び領域A8では、それぞれ内側に隣接する領域A6及び領域A7に比べて、エッチング速度が大きい。このため、例えば、第1ノズル141が領域A7に到達する前に、領域A7のエッチング量は、目標エッチング量よりも大きくなってしまう。同様に、第1ノズル141が領域A8に到達する前に、領域A8のエッチング量は、目標エッチング量よりも大きくなってしまう。領域A7及び領域A8へのエッチング液の吐出量を抑えるため、本実施形態では、領域A7及び領域A8における目標スキャン速度を、例えば設定範囲の上限値に設定する。
具体的には、表2に示す例では、領域A7及び領域A8の目標スキャン速度を、領域A1~A6のスキャン速度と同じ算出式で算出しているため、領域A7及び領域A8の目標スキャン速度は、共に負の値となっている。本実施形態では、上述したように、領域A7及び領域A8の目標スキャン速度を設定範囲の上限値(例えば7500mm/sec)に設定する。なお、目標スキャン速度を7500mm/secにした場合、7.5mmを移動するために要する時間は0.001secであるため、第1ノズル141が領域A7を通過する際に、領域A7は0.0004nm(≒0.4417nm/sec×0.001sec)だけエッチングされる。同様に、第1ノズル141が領域A8を通過する際に、領域A8は0.0004nmだけエッチングされる。ただし、本実施形態では、理解を容易にするために、第1ノズル141が7500mm/secのスキャン速度で領域A7及び領域A8を通過する際に領域A7及び領域A8がエッチングされる量をゼロとして説明することがある。
またここで、領域A7及び領域A8のエッチング量を目標エッチング量にするためには、領域A7及び領域A8がエッチング液に接触する時間を目標エッチング液接触時間にする必要がある。この場合、領域A7がエッチング液に接触する時間を、領域A6がエッチング液に接触する時間よりも短く又は同じにする必要がある。同様に、領域A8がエッチング液に接触する時間を、領域A7がエッチング液に接触する時間よりも短く又は同じにする必要がある。従って、本実施形態では、上述したように、第1ノズル141が領域A1~A6にエッチング液を吐出している際に、第2ノズル241から領域A7にリンス液を第1所定時間吐出するように、第2ノズル241の吐出位置及び吐出時間を算出する。また、第1ノズル141が領域A1~A7(本実施形態では、領域A1~A6)にエッチング液を吐出している際に、第2ノズル241から領域A8にリンス液を第2所定時間吐出するように、第2ノズル241の吐出位置及び吐出時間を算出する。なお、第2ノズル241からリンス液を吐出することによって、エッチング液によるエッチングが阻害されるため、第2ノズル241の吐出位置及び吐出時間を算出することは、エッチング液によるエッチングを阻害する阻害条件を算出することと言える。
表2に示す例では、領域A7がエッチング液に接触する時間を、領域A6がエッチング液に接触する時間よりも0.4354sec(=23.0769sec-22.6415sec)短くする必要がある。同様に、領域A8がエッチング液に接触する時間を、領域A7がエッチング液に接触する時間よりも0.4193(=22.6415-22.2222)短くする必要がある。従って、第1ノズル141が領域A1~A6にエッチング液を吐出している際に、第2ノズル241から領域A7にリンス液を0.4354sec(第1所定時間)吐出するように、第2ノズル241の吐出位置及び吐出時間(阻害条件)を算出する。また、第1ノズル141が領域A1~A7(本実施形態では、領域A1~A6)にエッチング液を吐出している際に、第2ノズル241から領域A8にリンス液を0.4193sec(第2所定時間)吐出するように、第2ノズル241の吐出位置及び吐出時間(阻害条件)を算出する。これにより、領域A1~A8のエッチング量を均一にできる。
なお、第1ノズル141が領域A7を通過する時間(0.0001sec)を考慮して、第1所定時間を設定してもよい。つまり、第1所定時間を、目標エッチング液接触時間の差分(ここでは0.4354sec)と、0.0001sec(領域A7を通過する時間)との和にしてもよい。この場合、領域A1~A7のエッチング量をより均一にできる。同様に、第1ノズル141が領域A8を通過する時間(0.0001sec)を考慮して、第2所定時間を設定してもよい。つまり、第2所定時間を、目標エッチング液接触時間の差分(ここでは0.4193sec)と、0.0001sec(領域A8を通過する時間)との和にしてもよい。この場合、領域A1~A8のエッチング量をより均一にできる。
領域A9~A21では、領域A2~A6と同様、エッチング速度の変化率が負である。従って、領域A9~A21における目標スキャン速度については、領域A2~A6と同様にして算出する。これにより、基板Wの上面全面のエッチング量を均一にできる。
なお、本実施形態では、ステップS62において、第2ノズル241の吐出位置及び吐出時間を算出する例について示したが、本発明はこれに限らない。例えば、ステップS6の後に、ステップS7を設け、ステップS7において第2ノズル241の吐出位置及び吐出時間を算出してもよい。
続いて図1、図2及び図13を参照して、基板処理装置100が実行する基板処理方法を説明する。図13は、本実施形態における基板処理方法を示すフローチャートである。詳しくは、図13は、処理対象の基板Wをエッチングする際に制御部102が実行する処理を示す。本実施形態の基板処理方法は、ステップS1~ステップS6、ステップS101、及び、ステップS102の各処理を含む。つまり、本実施形態の基板処理方法は、第1ノズル141のスキャン速度、第2ノズル241の吐出位置及び吐出時間の算出フローを含んでいる。
図13に示す処理は、作業者が入力部104を操作することにより開始する。作業者によって開始指示が入力されると、制御部102は、上述したステップS1~ステップS6を実行する。これにより、基板Wの各位置におけるエッチング速度が取得されるとともに、第1ノズル141のスキャン速度、第2ノズル241の吐出位置及び吐出時間が算出される。なお、ステップS1では、第1の基板にエッチング液が吐出されることによって、厚み分布が測定される。
次に、ステップS101において、制御部102は、処理対象の基板Wをスピンチャック3に水平に保持させるとともに、基板Wを回転させる。なお、ステップS101及びS102では、第1の基板と異なる第2の基板が用いられる。以下、ステップS101及びS102で用いる基板Wを「第2の基板」と記載することがある。
次に、ステップS102において、ステップS1~ステップS6で算出したエッチング条件で基板W(第2の基板)にエッチング処理を施す。
具体的には、本実施形態では、制御部102は、第1ノズル141から基板Wの中心部CTに所定時間(例えば20sec)エッチング液を吐出する。そして、制御部102は、第1ノズル141を基板Wの中心部CT(領域A1)から外周部に向かって、目標スキャン速度で移動させる。
このとき、本実施形態では、第1ノズル141が領域A1~A6にエッチング液を吐出している際に、第2ノズル241から領域A7にリンス液を第1所定時間吐出する。また、第1ノズル141が領域A1~A7(本実施形態では、領域A1~A6)にエッチング液を吐出している際に、第2ノズル241から領域A8にリンス液を第2所定時間吐出する。なお、第1ノズル141が領域A9~A21にエッチング液を吐出している際には、第2ノズル241からリンス液を吐出しない。
そして、制御部102は、エッチング液の吐出を停止し、基板Wの回転を停止する。
以上、図1~図13を参照して本発明の一実施形態を説明した。本実施形態では、上記のように、制御部102は、第1ノズル141が第2ノズル241よりも径方向RDの内側でエッチング液を吐出している際に、第2ノズル241から第2領域R2にリンス液を吐出させる。具体的には、第1ノズル141が図6の第1領域R11にエッチング液を吐出している際に、第2ノズル241から第2領域R2にリンス液を吐出させる。これにより、第1領域R11はエッチングされる一方、第2領域R2及び第1領域R12は、エッチングされない、又は、エッチングが抑制される。つまり、第2領域R2及び第1領域R12のエッチング液によるエッチングが阻害される。従って、第1ノズル141が第1領域R11から第2領域R2に移動する時点で、第2領域R2のエッチング量を、第1領域R11のエッチング量に比べて少なく又は同じにすることができる。その結果、第1ノズル141が第2領域R2を移動する際の速度を調整することによって、第2領域R2のエッチング量と第1領域R11のエッチング量とを同じにすることができる。つまり、基板Wの上面を均一にエッチングすることができる。
また、本実施形態を別の観点で示すと、本実施形態では、上記のように、制御部102は、エッチング速度の算出結果に基づいて、エッチング液によるエッチングを阻害部(リンス液供給部24及び第2ノズル移動機構26)によって阻害する阻害条件(第2ノズル241の吐出位置及び吐出時間)を算出する。また、制御部102は、第1ノズル141から基板W(第2の基板)の上面にエッチング液を吐出して基板Wを処理しながら、基板Wの上面のうち、径方向RDの外側に向かってエッチング速度の変化率がゼロ以上の位置において、上記阻害条件でエッチングを阻害するように阻害部を制御する。従って、第2領域R2のエッチング液によるエッチングを阻害できる。よって、第1ノズル141が第1領域R11から第2領域R2に移動する時点で、第2領域R2のエッチング量を、第1領域R11のエッチング量に比べて少なく又は同じにすることができる。その結果、第1ノズル141が第2領域R2を移動する際の速度を調整することによって、第2領域R2のエッチング量と第1領域R11のエッチング量とを同じにすることができる。つまり、基板Wの上面を均一にエッチングすることができる。
また、本実施形態では、上記のように、制御部102は、基板Wの上面の径方向RDにおける各領域A1~A21のエッチング速度と、各領域A1~A21にエッチング液が接触する時間との積が、略一定になるように、第1ノズル141のスキャン速度、及び、第2ノズル241によるリンス液の吐出時間を算出する。従って、各領域A1~A21のエッチング量を容易に均一にできる。
次に、図14を参照して、本実施形態の変形例による基板処理装置100の構造について説明する。図14は、本実施形態の変形例の基板処理装置100の第1ノズル141、第2ノズル241、及び、吸引部341周辺の構造を示す平面図である。図14に示す変形例では、図1~図13に示した実施形態と異なり、基板処理装置100が吸引部341をさらに備える例について説明する。
図14に示すように、変形例に基板処理装置100は、吸引部341をさらに備える。吸引部341は、第1ノズル141から吐出されたエッチング液を吸引する。具体的には、基板処理装置100は、吸引部341と、吸引配管342と、吸引機構(図示せず)とを備える。吸引部341は、吸引ノズルである。吸引部341は、基板W上に吐出されたエッチング液を吸引する。吸引部341は、吸引配管342の一端に接続している。吸引部341によって吸引されたエッチング液は、吸引配管342を介してチャンバー2の外部に排出される。また、吸引機構(図示せず)は、吸引配管342の内部を負圧にする。
また、基板処理装置100は、吸引移動機構(図示せず)をさらに備える。吸引移動機構(図示せず)は、例えば、第1ノズル移動機構16又は第2ノズル移動機構26と同様に構成されており、図示しない回転軸を中心に吸引部341を略水平面に沿って回転させる。
吸引部341、吸引機構及び吸引移動機構は、エッチング液による基板Wに対するエッチングを阻害する。なお、吸引部341、吸引機構及び吸引移動機構は、本発明の「阻害部」の一例である。
制御部102は、吸引機構及び吸引移動機構を制御する。本変形例では、制御部102は、第1ノズル141が吸引部341よりも径方向RDの内側で吐出している際に、吸引部341に第2領域R2のエッチング液を吸引させる。具体的には、第1ノズル141が図6の第1領域R11にエッチング液を吐出している際に、吸引部341にエッチング液を吸引させる。これにより、第1領域R11はエッチングされる一方、第2領域R2及び第1領域R12がエッチングされることが抑制される。つまり、第2領域R2及び第1領域R12のエッチング液によるエッチングが阻害される。
また、制御部102は、吸引部341による阻害条件を算出し、算出した阻害条件で阻害部を制御する。吸引部341による阻害条件は、第2ノズル241による阻害条件と同様である。具体的には、第2ノズル241が領域A7にリンス液を吐出するタイミングで、且つ同じ時間だけ、吸引部341が領域A7のエッチング液を吸引する。また、第2ノズル241が領域A8にリンス液を吐出するタイミングで、且つ同じ時間だけ、吸引部341が領域A8のエッチング液を吸引する。
本変形例では、吸引部341は、基板Wの回転方向(図14では反時計回り方向)において、第1ノズル141の下流側で、かつ、第2ノズル241の上流側に配置される。従って、吸引部341によって第2領域R2のエッチング液を減少させた後に、第2ノズル241によって第2領域R2のエッチング液を希釈するので、エッチング液によるエッチングを効果的に阻害できる。
以上、本発明の実施形態について図面を参照しながら説明した。但し、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。また、上記の実施形態に開示される複数の構成要素は適宜改変可能である。例えば、ある実施形態に示される全構成要素のうちのある構成要素を別の実施形態の構成要素に追加してもよく、又は、ある実施形態に示される全構成要素のうちのいくつかの構成要素を実施形態から削除してもよい。
図面は、発明の理解を容易にするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚さ、長さ、個数、間隔等は、図面作成の都合上から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素の構成は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能であることは言うまでもない。
例えば、図1~図13を参照して説明した実施形態では、基板Wは半導体ウエハであったが、基板Wは、半導体ウエハに限定されない。例えば、基板Wは、液晶表示装置用基板、電界放出ディスプレイ(Field Emission Display:FED)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、又は、太陽電池用基板であり得る。
また、上記の実施形態では、図13に示したように、ステップS1~S6を行った後に、基板Wに対してエッチング処理(ステップS101、S102)を行う例について示したが、本発明はこれに限らない。例えば、ステップS1~S6における算出を使用者等が手動で行って、エッチング条件を入力してもよい。また、ステップS1~S6を行う基板処理装置100と、ステップS101及びS102を行う基板処理装置100とが異なっていてもよい。つまり、別の基板処理装置100で算出したエッチング条件を用いてエッチング処理を行ってもよい。
また、上記の実施形態では、第1ノズル141を基板Wの中心部から外周部に向かって移動させながらエッチング液を吐出させる例について示したが、本発明はこれに限らない。例えば、第1ノズル141を基板Wの外周部から中心部に向かって移動させながらエッチング液を吐出させてもよい。
また、上記の実施形態では、第1ノズル141と第2ノズル241とを互いに独立して移動させる例について示したが、本発明はこれに限らない。第1ノズル141と第2ノズル241とを一体で移動させてもよい。
また、上記の実施形態では、第1ノズル141によって基板Wの上面全面をスキャンする例について示したが、本発明はこれに限らない。第1ノズル141によって、例えば、基板Wの上面のうち、中心部を除く部分をスキャンしてもよい。
また、上記の実施形態では、目標スキャン速度、第2ノズル241の吐出位置及び吐出時間を算出する際に、エッチング速度の変化率、及び、目標エッチング液接触時間等を用いる例について示したが、本発明はこれに限らない。目標スキャン速度、第2ノズル241の吐出位置及び吐出時間を算出する際に、エッチング速度の変化率、及び、目標エッチング液接触時間等を用いなくてもよい。
また、上記の実施形態では、例えば、第1ノズル141が領域A7及び領域A8を通過する際に、スキャン速度を高くする例について示したが、本発明はこれに限らない。第1ノズル141が領域A7及び領域A8を通過する際に、スキャン速度を高くしなくてもよい。この場合、例えば、第1ノズル141からのエッチング液の吐出を停止させてもよい。また、例えば、第1ノズル141が領域A7及び領域A8を通過するのに要する時間だけ、第2ノズル241からリンス液を吐出する時間を上記実施形態よりも長くしてもよい。
また、図14に示した変形例では、第2ノズル241と吸引部341とを設ける例について示したが、第2ノズル241及び吸引部341のうち吸引部341のみを設けてもよい。
また、上記の実施形態では、エッチング液による基板Wに対するエッチングを阻害する方法として、リンス液を吐出したり、エッチング液を吸引したりする例について説明したが、本発明はこれに限らない。例えば、基板Wの温度を部分的に低下させることによってエッチング液によるエッチングを阻害してもよい。
また、上記の実施形態では、基板処理装置が制御部、記憶部、入力部及び表示部を備える実施形態を例として説明したが、本発明は発明の本旨に沿って構成要素を適宜改変可能である。例えば、記憶部、入力部及び表示部のうちのいずれか又はその全てが制御部とは別体又は遠隔地に存した状態で電気的に信号又は情報を連通又は通信可能な状態である実施形態でもよい。
本発明は、基板を処理する分野に有用である。
3 :スピンチャック(基板保持部)
16 :第1ノズル移動機構(移動機構)
24 :リンス液供給部(阻害部)
26 :第2ノズル移動機構(移動機構、ノズル移動機構、阻害部)
100 :基板処理装置
102 :制御部
141 :第1ノズル
241 :第2ノズル
341 :吸引部(阻害部)
A1~A21 :領域
AX1 :第1回転軸線(回転軸線)
R2 :第1領域
R1 :第2領域
R11 :第1領域
R12 :第1領域
RD :径方向
Rs1 :第1特定領域
Rs2 :第2特定領域
W :基板
16 :第1ノズル移動機構(移動機構)
24 :リンス液供給部(阻害部)
26 :第2ノズル移動機構(移動機構、ノズル移動機構、阻害部)
100 :基板処理装置
102 :制御部
141 :第1ノズル
241 :第2ノズル
341 :吸引部(阻害部)
A1~A21 :領域
AX1 :第1回転軸線(回転軸線)
R2 :第1領域
R1 :第2領域
R11 :第1領域
R12 :第1領域
RD :径方向
Rs1 :第1特定領域
Rs2 :第2特定領域
W :基板
Claims (20)
- 基板を水平に保持して前記基板の中心を通り鉛直に延びる回転軸線を中心として前記基板を回転する基板保持部と、
前記基板の上面にエッチング液を供給する第1ノズルと、
前記基板の上面にリンス液を供給する第2ノズルと、
前記第1ノズル及び前記第2ノズルを水平移動させる移動機構と、
前記第1ノズルからの前記エッチング液の供給、前記第2ノズルからの前記リンス液の供給、及び、前記移動機構を制御する制御部と
を備え、
前記制御部は、
前記第1ノズルから、少なくとも前記基板の上面における第1領域に前記エッチング液を吐出させ、
前記第1ノズルが、前記第2ノズルよりも前記基板の径方向において内側で前記エッチング液を吐出している際に、前記第1領域と前記径方向において異なる第2領域に向けて前記第2ノズルから前記リンス液を吐出させる、基板処理装置。 - 前記移動機構は、前記第1ノズルを前記基板保持部の上方で水平方向に移動させる第1ノズル移動機構と、前記第2ノズルを前記基板保持部の上方で水平方向に移動させる第2ノズル移動機構とを有する、請求項1に記載の基板処理装置。
- 前記制御部は、前記第1ノズルを前記径方向に移動させながら、前記第1ノズルから前記第1領域及び前記第2領域に対して前記エッチング液を吐出させる、請求項1又は請求項2に記載の基板処理装置。
- 前記制御部は、前記第2ノズルから前記第1領域に対して前記リンス液を吐出せず、前記第2領域に対して前記リンス液を吐出させる、請求項1から請求項3のいずれか1項に記載の基板処理装置。
- 前記基板は、前記径方向に複数の領域を有し、
前記複数の領域は、前記第1領域に対して前記径方向の外側に隣接し、且つ、前記第2領域を構成する第1特定領域を有し、
前記第1ノズルが前記第1特定領域よりも前記径方向の内側の領域に前記エッチング液を吐出している際に、前記第2ノズルから前記第1特定領域に前記リンス液を第1所定時間吐出する、請求項1から請求項4のいずれか1項に記載の基板処理装置。 - 前記複数の領域は、前記第1特定領域に対して前記径方向の外側に隣接し、且つ、前記第2領域を構成する第2特定領域をさらに有し、
前記第1ノズルが前記第1領域に前記エッチング液を吐出している際に、前記第2ノズルから前記第2特定領域に前記リンス液を第2所定時間吐出する、請求項5に記載の基板処理装置。 - 前記第1ノズルから吐出された前記エッチング液を吸引する吸引部をさらに備え、
前記制御部は、前記第1ノズルが前記吸引部よりも前記径方向の内側で吐出している際に、前記吸引部に前記第2領域の前記エッチング液を吸引させる、請求項1から請求項6のいずれか1項に記載の基板処理装置。 - 前記制御部は、
前記基板の上面に前記第1ノズルから前記エッチング液を吐出したときの各領域のエッチング速度を取得し、
前記基板の上面の前記径方向における各領域の前記エッチング速度と、前記各領域に前記エッチング液が接触する時間との積が、略一定になるように、前記第1ノズルの移動速度、及び、前記第2ノズルによる前記リンス液の吐出時間を算出する、請求項1から請求項7のいずれか1項に記載の基板処理装置。 - 前記基板の径方向における厚みの分布を測定する測定部をさらに備え、
前記制御部は、前記測定部を制御し、
取得された前記エッチング速度は、前記第2ノズルから前記リンス液を吐出せず、前記第1ノズルから前記基板の上面に前記エッチング液を吐出する前と後との前記基板の径方向における厚みの分布を測定することにより算出される、請求項8に記載の基板処理装置。 - 記憶部をさらに備え、
前記エッチング速度は、前記記憶部に格納されており、
前記エッチング速度の取得は、前記制御部が前記記憶部から前記エッチング速度を読み出すことにより行われる、請求項8又は請求項9に記載の基板処理装置。 - 基板をエッチング処理する基板処理方法であって、
前記基板処理方法は、
前記基板を基板保持部によって水平に保持し、前記基板の中心を通る回転軸線を中心として回転させる工程と、
第1ノズルから、前記基板の少なくとも第1領域にエッチング液を吐出する工程と
を有し、
前記第1ノズルから前記エッチング液を吐出する工程において、前記第1ノズルが、第2ノズルよりも前記基板の径方向において内側で前記エッチング液を吐出している際に、前記第1領域と前記径方向において異なる第2領域に向けて前記第2ノズルからリンス液を吐出する、基板処理方法。 - 前記基板の上面に、前記第2ノズルから前記リンス液を吐出せず、前記第1ノズルから前記エッチング液を吐出したときの各領域のエッチング速度を取得する工程をさらに備える、請求項11に記載の基板処理方法。
- 前記第1ノズルから前記基板の上面に前記エッチング液を吐出する前と後との前記基板の径方向における厚みの分布を測定する工程をさらに備え、
前記取得する工程において取得されるエッチング速度は、前記測定する工程により測定された厚みの分布から算出される、請求項12に記載の基板処理方法。 - 前記基板の上面の前記径方向における各領域の前記エッチング速度と、前記各領域に前記エッチング液が接触する時間との積が、略一定になるように、前記第1ノズルの移動速度、及び、前記第2ノズルによる前記リンス液の吐出時間を算出する工程をさらに備える、請求項12又は請求項13に記載の基板処理方法。
- 前記第2領域は、前記径方向の外側に向かって、前記第1ノズルについての前記エッチング速度の変化率がゼロ以上となる領域である、請求項12から請求項14のいずれか1項に記載の基板処理方法。
- 基板を保持して前記基板を回転する基板保持部と、
前記基板の上面にエッチング液を供給する第1ノズルと、
前記エッチング液による前記基板に対するエッチングを阻害する阻害部と、
前記第1ノズル、及び、前記阻害部を制御する制御部と
を備え、
前記制御部は、
前記第1ノズルから第1の基板に前記エッチング液を吐出させ、
前記第1の基板の上面の各位置におけるエッチング速度を算出し、
前記エッチング速度の算出結果に基づいて、前記エッチング液によるエッチングを前記阻害部によって阻害する阻害条件を算出し、
前記第1ノズルから、前記第1の基板と異なる第2の基板の上面に前記エッチング液を吐出している際に、前記第2の基板の上面のうち、径方向の外側に向かって前記エッチング速度の変化率がゼロ以上の位置において、前記阻害条件で前記エッチングを阻害するように前記阻害部を制御する、基板処理装置。 - 前記阻害部は、リンス液を供給する第2ノズルと、前記第2ノズルを前記基板保持部の上方で水平方向に移動可能なノズル移動機構とを有し、
前記阻害部による前記エッチングの阻害は、前記第2ノズルから前記第2の基板へのリンス液の供給を制御すること、及び、前記第2ノズルの前記第2の基板に対する位置を前記制御部により制御することにより行われる、請求項16に記載の基板処理装置。 - 基板を保持して前記基板を回転する基板保持部と、前記基板の上面にエッチング液を供給する第1ノズルと、前記エッチング液による前記基板に対するエッチングを阻害する阻害部とを備えた基板処理装置の基板処理方法であって、
前記第1ノズルから第1の基板に前記エッチング液を吐出する工程と、
前記第1の基板の上面の各位置におけるエッチング速度を取得する工程と、
取得した前記エッチング速度に基づいて、前記エッチング液によるエッチングを阻害する阻害条件を算出する工程と、
前記第1ノズルから、前記第1の基板と異なる第2の基板の上面に前記エッチング液を吐出して前記第2の基板を処理する工程と
を備え、
前記第2の基板を処理する工程において、前記第1ノズルから前記第2の基板の上面に前記エッチング液を吐出している際に、前記第2の基板の上面のうち、径方向の外側に向かって前記エッチング速度の変化率がゼロ以上の位置において、前記阻害部によって前記阻害条件で前記エッチングを阻害する、基板処理方法。 - 前記阻害部は、リンス液を供給する第2ノズルを有し、
前記阻害部による前記エッチングの阻害は、前記阻害条件に基づき、所定の位置において前記第2ノズルから前記第2の基板の上面にリンス液を供給することにより行われる、請求項18に記載の基板処理方法。 - 前記第1ノズルから前記第1の基板の上面に前記エッチング液を吐出する前と後との前記第1の基板の径方向における厚みの分布を測定する工程をさらに備える、請求項18又は請求項19に記載の基板処理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247008120A KR20240043798A (ko) | 2021-09-27 | 2022-09-15 | 기판 처리 장치 및 기판 처리 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-156618 | 2021-09-27 | ||
JP2021156618A JP2023047615A (ja) | 2021-09-27 | 2021-09-27 | 基板処理装置及び基板処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023048064A1 true WO2023048064A1 (ja) | 2023-03-30 |
Family
ID=85720691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/034560 WO2023048064A1 (ja) | 2021-09-27 | 2022-09-15 | 基板処理装置及び基板処理方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2023047615A (ja) |
KR (1) | KR20240043798A (ja) |
TW (1) | TWI833360B (ja) |
WO (1) | WO2023048064A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07115060A (ja) * | 1993-08-23 | 1995-05-02 | Tokyo Electron Ltd | 処理装置及び処理方法 |
JPH0975826A (ja) * | 1995-09-20 | 1997-03-25 | Matsushita Electric Ind Co Ltd | 膜厚制御条件決定方法および塗膜形成装置 |
JP2003318154A (ja) * | 2002-04-25 | 2003-11-07 | Dainippon Screen Mfg Co Ltd | 基板エッチング方法および基板エッチング装置 |
JP2004335923A (ja) * | 2003-05-12 | 2004-11-25 | Sony Corp | エッチング方法およびエッチング装置 |
JP2010010679A (ja) * | 2008-06-24 | 2010-01-14 | Semes Co Ltd | 基板表面を選択的にエッチングするための基板処理装置及び方法 |
JP2012191071A (ja) * | 2011-03-11 | 2012-10-04 | Sony Corp | 半導体製造装置、半導体装置の製造方法、及び電子機器の製造方法 |
JP2015070023A (ja) * | 2013-09-27 | 2015-04-13 | 株式会社Screenホールディングス | 基板処理装置および基板処理方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3459137B2 (ja) | 1995-04-06 | 2003-10-20 | 日曹エンジニアリング株式会社 | 枚葉式スピンエッチング方法 |
JP6064875B2 (ja) * | 2013-11-25 | 2017-01-25 | 東京エレクトロン株式会社 | 液処理装置、液処理方法及び記憶媒体 |
-
2021
- 2021-09-27 JP JP2021156618A patent/JP2023047615A/ja active Pending
-
2022
- 2022-09-15 KR KR1020247008120A patent/KR20240043798A/ko unknown
- 2022-09-15 WO PCT/JP2022/034560 patent/WO2023048064A1/ja active Application Filing
- 2022-09-20 TW TW111135460A patent/TWI833360B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07115060A (ja) * | 1993-08-23 | 1995-05-02 | Tokyo Electron Ltd | 処理装置及び処理方法 |
JPH0975826A (ja) * | 1995-09-20 | 1997-03-25 | Matsushita Electric Ind Co Ltd | 膜厚制御条件決定方法および塗膜形成装置 |
JP2003318154A (ja) * | 2002-04-25 | 2003-11-07 | Dainippon Screen Mfg Co Ltd | 基板エッチング方法および基板エッチング装置 |
JP2004335923A (ja) * | 2003-05-12 | 2004-11-25 | Sony Corp | エッチング方法およびエッチング装置 |
JP2010010679A (ja) * | 2008-06-24 | 2010-01-14 | Semes Co Ltd | 基板表面を選択的にエッチングするための基板処理装置及び方法 |
JP2012191071A (ja) * | 2011-03-11 | 2012-10-04 | Sony Corp | 半導体製造装置、半導体装置の製造方法、及び電子機器の製造方法 |
JP2015070023A (ja) * | 2013-09-27 | 2015-04-13 | 株式会社Screenホールディングス | 基板処理装置および基板処理方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202316515A (zh) | 2023-04-16 |
KR20240043798A (ko) | 2024-04-03 |
JP2023047615A (ja) | 2023-04-06 |
TWI833360B (zh) | 2024-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102461723B1 (ko) | 제어 장치 | |
KR101098123B1 (ko) | 액 처리 장치 및 액 처리 방법 | |
JP4474438B2 (ja) | 基板処理装置及び方法、そしてこれに用いられる噴射ヘッド | |
TWI766506B (zh) | 基板處理裝置、基板處理方法、基板處理系統以及學習用資料的生成方法 | |
US20090285984A1 (en) | Coating apparatus and method | |
KR101312333B1 (ko) | 웨트 처리 장치 및 웨트 처리 방법 | |
US20240203765A1 (en) | Substrate processing apparatus, substrate processing system, and data processing method | |
TW201513190A (zh) | 半導體裝置的製造方法及製造裝置 | |
WO2023048064A1 (ja) | 基板処理装置及び基板処理方法 | |
KR20210066897A (ko) | 기판 처리 방법 및 기판 처리 장치 | |
JP7409956B2 (ja) | 基板処理装置、及び基板処理方法 | |
JP2021141087A (ja) | 基板処理方法および基板処理装置 | |
KR102714577B1 (ko) | 기판 처리 방법 | |
US11508574B2 (en) | Semiconductor manufacturing apparatus and manufacturing method of semiconductor device | |
US20230072887A1 (en) | Semiconductor manufacturing apparatus and method of manufacturing semiconductor device | |
US20240203777A1 (en) | Apparatus for treating substrate | |
JP2008141146A (ja) | 基材処理装置および基材処理方法 | |
TW202300226A (zh) | 基板處理裝置及基板處理方法 | |
CN113053780A (zh) | 基板处理装置、方法、系统以及学习用数据的生成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22872818 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22872818 Country of ref document: EP Kind code of ref document: A1 |