WO2023048016A1 - 樹脂組成物、遮光膜、および隔壁付き基板 - Google Patents

樹脂組成物、遮光膜、および隔壁付き基板 Download PDF

Info

Publication number
WO2023048016A1
WO2023048016A1 PCT/JP2022/034188 JP2022034188W WO2023048016A1 WO 2023048016 A1 WO2023048016 A1 WO 2023048016A1 JP 2022034188 W JP2022034188 W JP 2022034188W WO 2023048016 A1 WO2023048016 A1 WO 2023048016A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
group
light
substrate
partition walls
Prior art date
Application number
PCT/JP2022/034188
Other languages
English (en)
French (fr)
Inventor
飯塚英祐
諏訪充史
小林秀行
藤井真実
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202280062985.3A priority Critical patent/CN117957494A/zh
Priority to JP2022555633A priority patent/JPWO2023048016A1/ja
Priority to KR1020247008749A priority patent/KR20240058111A/ko
Publication of WO2023048016A1 publication Critical patent/WO2023048016A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present invention relates to a resin composition, a light-shielding film formed from the resin composition, and a substrate with partition walls having patterned partition walls.
  • a color display device that includes a light source, a wavelength conversion section made of a wavelength conversion phosphor, a polarization separation means, and a polarization conversion means (for example, patent Reference 1).
  • a blue light source for example, a liquid crystal element, a phosphor that emits red fluorescence when excited by blue light, a phosphor that emits green fluorescence when excited by blue light, and a light scattering layer that scatters blue light.
  • a color display device including a conversion unit has been proposed (see, for example, Patent Document 2).
  • color filters containing color-converting phosphors such as those described in Patent Documents 1 and 2
  • high-definition display devices called 4K and 8K
  • the pixel size is small, the problem of brightness becomes significant, and higher brightness is required.
  • it is effective to separate the color-converting phosphors with highly reflective partition walls.
  • it is necessary to improve the light shielding property of the partition wall. Therefore, there is a demand for a barrier rib material that achieves both high reflectivity and high light-shielding properties.
  • barrier ribs having both high reflectivity and high light-shielding properties
  • the inventors first used a material obtained by adding a light-shielding pigment to a white barrier rib material using a titanium oxide white pigment that exhibits high reflectance. I considered how to do it.
  • the entire exposure light is absorbed by the white pigment and the light-shielding pigment, and the light does not reach the bottom of the film during exposure, resulting in poor pattern processability.
  • Patent Literatures 3 and 4 a technique has been proposed in which a specific metal compound is added to blacken the material by firing after pattern formation.
  • these blackening techniques require baking at 400° C. or higher, and there is a problem that the light-shielding property cannot be improved by heating at 250° C. or lower.
  • the inventors devised a design in which the exposure light is transmitted during the process of pattern exposure after film formation, and the light shielding property is increased after heating the exposed film at a temperature of 120°C or higher and 250°C or lower.
  • a resin composition containing a resin, an organometallic compound containing at least one metal selected from the group consisting of silver, gold, platinum and palladium, a photopolymerization initiator or a quinonediazide compound, and a solvent is used. This was achieved by doing so (see Patent Document 5).
  • partition walls having high heat resistance can be formed by using polysiloxane as the resin.
  • pattern processing may be performed with a high exposure amount of about 300 to 500 mJ/cm 2 .
  • another problem that the line width of the formed barrier ribs is greatly increased has also been clarified.
  • the present invention provides a resin composition capable of forming a thick barrier rib that achieves both tackless properties after prebaking and heat resistance after curing, and which can be formed according to the designed line width of the photomask even during high-exposure processing. intended to
  • a photoradical generator a hindered phenol compound and/or a hindered amine compound, a polysiloxane containing a specific structure, a (meth)acrylic polymer containing a specific structure and/or A resin composition containing a cardo-based polymer containing a specific structure, wherein the ratio of the weight of the polysiloxane to the total weight of the (meth)acrylic polymer and the cardo-based polymer is 30/70 to 70/30.
  • barrier ribs By forming the barrier ribs with the composition, it is possible to form a thick barrier rib that achieves both tackless properties after prebaking and heat resistance after curing, and can be formed according to the designed line width of the photomask even during high-exposure processing. We found that and completed the present invention.
  • the present invention provides the following. [1] (i) a photoradical generator; (ii) a polysiloxane comprising a structure having an aromatic ring represented by the following general formula (1) or (2) and a structure having a photoradical polymerizable group represented by the following general formula (3); (iii) a (meth)acrylic polymer containing a structure having an aromatic ring represented by the following general formula (4) and a structure having a photoradical polymerizable group represented by the following general formula (5) and/or the following general a cardo-based polymer having a structure represented by formula (6) or the following general formula (7) and a photoradical polymerizable group; wherein the ratio of the weight of the polysiloxane to the total weight of the (meth)acrylic polymer and the cardo-based polymer is 30/70 to 70/30.
  • R 1 and R 2 each independently represent hydrogen, a hydroxy group, an alkoxy group, a group having a siloxane bond, or a monovalent organic group having 1 to 30 carbon atoms.
  • R 3 and R 4 each independently represent hydrogen, a hydroxy group or a monovalent organic group having 1 to 30 carbon atoms
  • R 5 to R 7 each independently represent hydrogen, a monovalent organic group having 1 to 30 carbon atoms, represents an aryl group having 6 to 20 carbon atoms or a group having an aromatic ring formed by adjacent R 5 to R 7.
  • R 8 represents hydrogen, a monovalent organic group having 1 to 30 carbon atoms, or a monovalent organic group having 1 to 30 carbon atoms.
  • X 1 , X 2 , X 3 and X 4 each independently represent an organic group having an aromatic ring
  • Y 1 and Y 2 each independently represent an organic group having a photoradical polymerizable group.
  • the polysiloxane has a weight-average molecular weight of 5,000 to 300,000, and 30 to 30 of the repeating units represented by the general formula (1) or (2)
  • the (A-1) patterned partition contains a resin, a white pigment, and a light-shielding pigment, and the light-shielding pigment includes titanium nitride, zirconium nitride, carbon black, a red pigment, and a blue pigment. and at least one metal oxide or metal selected from the group consisting of palladium oxide, platinum oxide, gold oxide, silver oxide, palladium, platinum, gold and silver.
  • A-2) patterned light shielding having an OD value of 0.5 or more per 1.0 ⁇ m of thickness
  • the substrate with partitions according to any one of [11] to [13], which has partitions.
  • a display device comprising the partition-attached substrate according to any one of [11] to [15] and a light-emitting light source selected from a liquid crystal cell, an organic EL cell, a mini-LED cell and a micro-LED cell.
  • the resin composition of the present invention can form a fine thick-film barrier rib pattern that is excellent in tacklessness after prebaking and heat resistance after curing, and can be formed according to the designed line width of the photomask even during high-exposure processing.
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having patterned partitions.
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having pixels containing patterned partitions and a color-converting luminescent material;
  • FIG. 2 is a cross-sectional view showing one embodiment of the partition-attached substrate of the present invention, which has patterned partitions, a color-converting luminescent material, and light-shielding partitions.
  • FIG. 2 is a cross-sectional view showing one embodiment of the substrate with partitions of the present invention, which has patterned partitions, a color-converting luminescent material, and a color filter.
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having patterned partitions.
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having pixels containing patterned partitions and a
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having patterned partitions, a color-converting luminescent material, and a low refractive index layer;
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having patterned partitions, a color-converting luminescent material, a low refractive index layer, and an inorganic protective layer I.
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having patterned partitions, a color-converting luminescent material, a low refractive index layer, and an inorganic protective layer I.
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having patterned partitions, a color-converting luminescent material, a light-shielding partition, a color filter, a low refractive index layer, and an inorganic protective layer I.
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having patterned partitions, a color-converting luminescent material, a low refractive index layer, and an inorganic protective layer II.
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having patterned partitions, a color-converting luminescent material, a low refractive index layer, and an inorganic protective
  • FIG. 2 is a cross-sectional view showing one embodiment of the substrate with partitions of the present invention having patterned partitions, a color-converting luminescent material, a color filter, and an inorganic protective layer III and/or a yellow organic protective layer.
  • 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having patterned partitions, a color-converting luminescent material, an inorganic protective layer IV and/or a yellow organic protective layer;
  • FIG. 1 is a cross-sectional view showing one embodiment of a substrate with partitions of the present invention having pixels containing patterned partitions and light-emitting light sources selected from organic EL cells, mini-LED cells, and micro-LED cells.
  • FIG. 2 is a cross-sectional view showing the configuration of a display device used for color mixture evaluation in Examples.
  • the resin composition of the present invention can be suitably used as a material for forming a color-converting phosphor, a partition wall separating light sources selected from organic EL cells, mini-LED cells, and micro-LED cells.
  • the resin composition of the present invention comprises a photoradical generator, a hindered phenol compound and/or a hindered amine compound, a polysiloxane containing a specific structure, and a (meth)acrylic polymer containing a specific structure and/or a specific structure. It is preferable that the ratio of the weight of the polysiloxane to the total weight of the (meth)acrylic polymer and the cardo-based polymer is 30/70 to 70/30.
  • the resin composition of the present invention preferably has negative photosensitivity when used for pattern formation of partition walls (A-1) described below.
  • the resin composition of the present invention preferably contains a photoradical generator. By containing a photo-radical generator, it is possible to form partition walls having a highly precise pattern shape.
  • Any photoradical generator can be used as long as it decomposes and/or reacts with irradiation of light (including ultraviolet rays and electron beams) to generate radicals.
  • ⁇ -aminoalkylphenone compounds such as 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1; 2,4,6-trimethylbenzoylphenylphosphine oxide, bis(2,4 phosphine oxide compounds such as ,6-trimethylbenzoyl)-phenylphosphine oxide, bis(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl)-phosphine oxide; 1-phenyl-1,2-propanedione -2-(O-ethoxycarbonyl)oxime, 1,2-octanedione-1-[4-(phenylthio)-2-(O-benzoyloxime)], 1-phenyl-1,2-butadione
  • oxime ester compounds which are resistant to oxygen damage and are effective for surface curability
  • phosphine which absorbs longer-wavelength light and generate radicals
  • It preferably contains an oxide compound.
  • the content of the photo-radical generator in the resin composition of the present invention is preferably 0.01% by weight or more, more preferably 1% by weight or more, based on the solid content, from the viewpoint of effectively promoting radical curing.
  • the content of the photo-radical generator is preferably 20% by weight or less, more preferably 10% by weight or less, based on the solid content.
  • the resin composition of the present invention preferably contains a hindered phenol compound and/or a hindered amine compound.
  • a hindered phenol compound and/or a hindered amine compound By containing a hindered phenol compound and/or a hindered amine compound, it is possible to moderately trap radicals, suppress overreaction, and suppress line width broadening when forming a barrier rib pattern with a high exposure dose.
  • a fine barrier rib pattern can be formed according to the designed line width of the mask.
  • the hindered phenol compound is preferably a hindered phenol compound having two or more hindered phenol groups in one molecule.
  • the hindered phenol group refers to a functional group containing a structure having at least one or more t-butyl groups at the carbon site adjacent to the carbon site to which the hydroxyl group of the phenolic hydroxyl group is bonded.
  • the hindered phenol group preferably has a structure having t-butyl groups at two carbon sites adjacent to the carbon site to which the hydroxyl group of the phenolic hydroxyl group is bonded.
  • a fine barrier rib pattern can be formed as follows. It is more preferable to have 3 or more hindered phenol groups in one molecule, and more preferably to have 4 or more hindered phenol groups in one molecule.
  • Hindered phenol compounds include, for example, 3,5-di-t-butyl-4-hydroxytoluene, octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, hexamethylenebis[3 (3,5-di-t-butyl-4-hydroxyphenylpropionate, thiodiethylenebis[3(3,5-di-t-butyl-4-hydroxyphenylpropionate, ethylenebis(oxyethylene)bis(3 -(5-t-butyl-4-hydroxy-m-tolyl)propionate, tris-(3,5-di-t-butyl-4-hydroxybenzyl)-isocyanurate, 1,3,5-trimethyl-2, 4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene, pentaerythritol tetrakis(3-(3,5-di-t-butyl-4
  • a hindered amine compound refers to a compound having at least one or more hindered amino groups in the molecule.
  • a hindered amino group is preferably a functional group having a secondary or tertiary amine structure bonded to two quaternary carbons.
  • the hindered amine compound is preferably a piperidine compound.
  • the radical trap effect is moderately limited, suppressing line width thickening when forming a barrier rib pattern with a high exposure dose, and forming a fine barrier rib pattern according to the designed line width of the photomask. can be done.
  • a piperidine compound having a 2,2,6,6-tetramethylpiperidine structure is more preferred.
  • Hindered amine compounds include, for example, bis(1,2,2,6,6-pentamethyl-4-piperidyl)[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl]butylmalo bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, methyl-1,2,2,6,6-pentamethyl-4-piperidyl sebacate, 1,2,2,6, 6-pentamethyl-4-piperidyl methacrylate, 2,2,6,6-tetramethyl-4-piperidyl methacrylate, bis(2,2,6,6-tetramethyl-1-(octyloxy)-4-decanedioate Tetrakis(1,2,2,6,6-pentamethyl-4-pyridyl)butane-1,2,3,4-tetracarboxylate, reaction product of piperidinyl) ester with 1,1-dimethylethyl hydroperoxide and octane or t
  • 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate and 2,2,6,6-tetramethyl-4-piperidyl methacrylate which are piperidine compounds having a photopolymerizable group
  • piperidine compound having a photopolymerizable group By using a piperidine compound having a photopolymerizable group, a radical reaction proceeds while trapping radicals, and curing of the bottom of the film can be further promoted.
  • the photopolymerizable group may be photopolymerized in the partition walls (A-1) made of the photocured material of the negative photosensitive resin composition.
  • the content of the hindered phenol compound and/or hindered amine compound in the resin composition of the present invention is preferably 0.050% by weight or more, more preferably 0.070% by weight or more, based on the solid content, from the viewpoint of suppressing line thickening. preferable.
  • the content of the hindered phenol compound and/or the hindered amine compound is preferably 5.0% by weight or less, more preferably 3.0% by weight or less, based on the solid content.
  • the radical trapping effect is large, so it is more preferably 0.10% by weight or more and 0.50% by weight or less in the solid content.
  • a piperidine compound having a photopolymerizable group is used as the hindered amine compound, it is more preferably 0.10% by weight or more and 2.5% by weight or less from the viewpoint of accelerating the curing of the film bottom.
  • the resin composition of the present invention contains polysiloxane as a resin.
  • Polysiloxane has the function of improving the crack resistance, weather resistance and heat resistance of the partition walls.
  • the content of polysiloxane in the solid content of the resin composition is preferably 10% by weight or more, more preferably 15% by weight or more, from the viewpoint of improving crack resistance of partition walls in heat treatment.
  • the content of polysiloxane in the solid content of the resin composition is preferably 55% by weight or less, more preferably 50% by weight or less.
  • the solid content means all the components excluding volatile components such as solvent among the components contained in the resin composition. The amount of solids can be determined by heating the resin composition to evaporate volatile components and weighing the residue.
  • Polysiloxane is a hydrolysis/dehydration condensate of organosilane.
  • Polysiloxane includes a structure having an aromatic ring represented by the following general formula (1) or (2) and a structure having a photoradical polymerizable group represented by the following general formula (3). Further, other repeating units may be included.
  • R 1 and R 2 each independently represent hydrogen, a hydroxy group, an alkoxy group, a group having a siloxane bond, or a monovalent organic group having 1 to 30 carbon atoms.
  • X 1 , X 2 and X 3 represent an organic group having an aromatic ring
  • Y 1 represents an organic group having a photoradical polymerizable group
  • a, b and c each independently represents an integer of 1 or more.
  • R 1 , R 2 , X 1 , X 2 , X 3 and Y 1 may be the same or different.
  • the "group having a siloxane bond" represented by R 1 or R 2 refers to a "--Si--O--Si--" bond generated by condensation of silanol groups.
  • the functional group bonded to the Si atom to which it is bonded is not particularly limited.
  • the "monovalent organic group having 1 to 30 carbon atoms" represented by R 1 or R 2 is preferably an alkyl group having 1 to 6 carbon atoms (including linear and branched alkyl groups). .
  • Preferred specific examples thereof include methyl group, ethyl group, n-propyl group and isopropyl group.
  • the “organic group having an aromatic ring” represented by X 1 , X 2 or X 3 is preferably an aromatic hydrocarbon group having 6 to 15 carbon atoms.
  • Preferable specific examples thereof include a phenyl group, a benzyl group, a styryl group, a naphthyl group and a biphenyl group.
  • the "radical photopolymerizable group” represented by Y1 is preferably an ethylenically unsaturated group, more preferably a functional group containing a methacrylic group and/or an acrylic group.
  • a, b, and c each independently represent an integer of 1 or more, a is preferably 10 to 60, more preferably 20 to 55, b is preferably 10 to 60, more preferably 20 to 55, c is preferably 5-60, more preferably 10-50.
  • the Tg of the polysiloxane can be improved, and the tackless property after prebaking can be improved. can be improved.
  • the content of the repeating unit represented by formula (1) or (2) is more preferably 25 mol % or more, still more preferably 30 mol % or more.
  • the content of the repeating unit represented by formula (1) or (2) is more preferably 75 mol % or less, even more preferably 70 mol % or less.
  • a bifunctional alkoxysilane containing two organic groups having an aromatic ring represented by general formula (2) It preferably contains a repeating unit derived from a compound.
  • the crack resistance can be further improved.
  • the content of the repeating unit represented by formula (2) is more preferably 15 mol % or more, and even more preferably 20 mol % or more.
  • the molecular weight of the polysiloxane can be sufficiently increased during polymerization, and the coatability can be improved.
  • the content of the repeating unit represented by formula (2) is more preferably 70 mol % or less.
  • the polysiloxane contains a repeating unit derived from an alkoxysilane compound containing an organic group having a photoradical polymerizable group represented by the general formula (3), the radicals generated from the photoradical generator in the exposed area can A cross-linking reaction proceeds and the degree of curing of the exposed portion can be increased.
  • the content of the repeating unit represented by formula (3) is more preferably 12 mol % or more, and even more preferably 15 mol % or more.
  • the content of the repeating unit represented by formula (3) is more preferably 75 mol % or less, even more preferably 70 mol % or less.
  • repeating units that may be contained in the polysiloxane include repeating units derived from an alkoxysilane compound containing an organic group having a cyclic ether group such as an epoxy group and/or an oxetanyl group, and an alkyl group having 1 to 30 carbon atoms. repeating units derived from an alkoxysilane compound containing an organic group having an acid anhydride, repeating units derived from an alkoxysilane compound containing an organic group having an acid anhydride, and repeating units derived from an alkoxysilane compound containing an organic group having a fluorine group. . These may not be contained, and if they are contained, their content is preferably 80 mol % or less, more preferably 70 mol % or less, of all repeating units.
  • the repeating units represented by the above general formulas (1), (2) and (3) are derived from alkoxysilane compounds represented by the following general formulas (8), (9) and (10), respectively. That is, the polysiloxane containing repeating units represented by the general formulas (1), (2) and (3) is an alkoxysilane compound represented by the following general formulas (8), (9) and (10) It can be obtained by hydrolyzing and polycondensing an alkoxysilane compound containing. Furthermore, other alkoxysilane compounds may be used.
  • R 1 , R 2 , X 1 , X 2 , X 3 and Y 1 are represented by general formulas (1), (2) and (3) respectively. represents the same group as R 1 , R 2 , X 1 , X 2 , X 3 and Y 1 in .
  • R 9 which may be the same or different, represents a monovalent organic group having 1 to 20 carbon atoms, preferably an alkyl group having 1 to 6 carbon atoms.
  • the notation "-(OR 9 ) 2 " means that two "-(OR 9 )" are bonded to the Si atom. .
  • alkoxysilane compounds represented by general formula (8) include phenyltrimethoxysilane, 1-naphthyltrimethoxysilane, 2-naphthyltrimethoxysilanetolyltrimethoxysilane, biphenyltrimethoxysilane, and 3-trimethoxysilyl.
  • alkoxysilane compounds represented by general formula (8) include phenyltrimethoxysilane, 1-naphthyltrimethoxysilane, 2-naphthyltrimethoxysilanetolyltrimethoxysilane, biphenyltrimethoxysilane, and 3-trimethoxysilyl.
  • aromatic ring-containing alkoxysilane compounds such as propylphthalic anhydride, 3-triethoxysilylpropylphthalic anhydride, phenylmethyldimethoxysilane, phenylethyldimethoxysilane, phen
  • alkoxysilane compound represented by the general formula (9) examples include diphenyldimethoxysilane, 1-naphthylphenyldimethoxysilane, tolylphenyldimethoxysilane, biphenylphenyldimethoxysilane, 1-naphthyltolyldimethoxysilane, 1-naphthylbiphenyldimethoxysilane.
  • Alkoxysilane compounds containing two aromatic rings such as silanes are included. You may use 2 or more types of these.
  • diphenyldimethoxysilane, diphenyldiethoxysilane, styryltrimethoxysilane, and styryltriethoxysilane are preferred from the viewpoint of crack resistance and tacklessness.
  • alkoxysilane compounds represented by general formula (10) include vinyltrimethoxysilane, allyltrimethoxysilane, ⁇ -acryloylpropyltrimethoxysilane, ⁇ -acryloylpropyltriethoxysilane, and ⁇ -methacryloylpropyltrimethoxysilane.
  • ⁇ -methacryloylpropyltriethoxysilane vinylmethyldimethoxysilane, styrylmethyldimethoxysilane, ⁇ -methacryloylpropylmethyldimethoxysilane, ⁇ -acryloylpropylmethyldimethoxysilane, and other photoradical-polymerizable group-containing alkoxysilane compounds. You may use 2 or more types of these.
  • ⁇ -acryloylpropyltrimethoxysilane ⁇ -acryloylpropylmethyldimethoxysilane, ⁇ -methacryloylpropyltrimethoxysilane, and ⁇ -methacryloylpropylmethyldimethoxysilane are preferred from the viewpoint of photopolymerization reactivity.
  • the alkoxysilane compound represented by the general formula (10) contains a styryl group such as styryltrimethoxysilane or styryltriethoxysilane.
  • the alkoxysilane compound represented by general formula (8) or (9) may not be included. That is, when the polysiloxane contains a structure having a styryl group as the structure represented by general formula (3), it may not contain the structure represented by general formula (1) or (2).
  • alkoxysilane compound represented by the general formula (8) when a styryl group-containing alkoxysilane compound such as styryltrimethoxysilane or styryltriethoxysilane is used as the alkoxysilane compound represented by the general formula (8), it may also be represented by the general formula (10).
  • the alkoxysilane compound may not be included. That is, when polysiloxane contains a structure having a styryl group as the structure represented by general formula (1), it may not contain the structure represented by general formula (3).
  • the content of repeating units containing a structure having a styryl group is preferably 12 mol % or more, more preferably 15 mol % or more, from the viewpoint of improving tacklessness after prebaking.
  • the content of repeating units containing a structure having a styryl group is more preferably 70 mol% or less, and 60 mol% or less. is more preferred.
  • alkoxysilane compounds include, for example, dimethyldimethoxysilane, ethylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-(3,4-epoxycyclohexyl).
  • ethylmethyldimethoxysilane 2-(3,4-epoxycyclohexyl)ethylethyldimethoxysilane, 3-dimethylmethoxysilylpropylsuccinic anhydride, 3-dimethylethoxysilylpropylsuccinic anhydride, trifluoropropylmethyldimethoxysilane, trifluoropropylmethyldimethoxysilane, Bifunctional alkoxy compounds such as fluoropropylethyldimethoxysilane; methyltrimethoxysilaneethyltrimethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane trifunctional alkoxysilane compounds such as silane, 3-ureidopropyltrimeth
  • the other alkoxysilane compound preferably contains at least one carboxyl group-containing alkoxysilane compound. Containing a carboxyl group-containing alkoxysilane compound improves the solubility of the unexposed area, and can improve the resolution during pattern processing.
  • the weight average molecular weight (Mw) of polysiloxane is preferably 1,000 or more, more preferably 2,000 or more, from the viewpoint of coating properties. From the viewpoint of tacklessness, it is more preferably 5,000 or more. On the other hand, from the viewpoint of developability, Mw of polysiloxane is preferably 500,000 or less, more preferably 300,000 or less.
  • the Mw of polysiloxane in the present invention refers to a polystyrene conversion value measured by gel permeation chromatography (GPC). The measuring method is as described in Examples below.
  • Polysiloxane can be obtained by hydrolyzing the aforementioned organosilane compound and then subjecting the hydrolyzate to a dehydration condensation reaction in the presence or absence of a solvent.
  • Various conditions for hydrolysis can be set according to physical properties suitable for the intended use, taking into consideration the reaction scale, the size and shape of the reaction vessel, and the like.
  • Various conditions include, for example, acid concentration, reaction temperature, and reaction time.
  • Acid catalysts such as hydrochloric acid, acetic acid, formic acid, nitric acid, oxalic acid, hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, polyvalent carboxylic acids and their anhydrides, and ion exchange resins can be used for the hydrolysis reaction.
  • an acidic aqueous solution containing an acid selected from formic acid, acetic acid and phosphoric acid is preferred.
  • the amount of the acid catalyst added is 0.05 parts by weight with respect to 100 parts by weight of all the alkoxysilane compounds used in the hydrolysis reaction, from the viewpoint of making the hydrolysis proceed more rapidly. part or more is preferable, and 0.1 part by weight or more is more preferable.
  • the amount of the acid catalyst to be added is preferably 20 parts by weight or less, more preferably 10 parts by weight or less with respect to 100 parts by weight of all the alkoxysilane compounds.
  • the total amount of alkoxysilane compound means the amount including all of the alkoxysilane compound, its hydrolyzate and its condensate. The same shall apply hereinafter.
  • a hydrolysis reaction can be performed in a solvent.
  • the solvent can be appropriately selected in consideration of the stability, wettability, volatility, etc. of the resin composition.
  • hydrolysis can be performed without a solvent.
  • the dehydration condensation reaction for example, there is a method of heating the silanol compound solution obtained by the hydrolysis reaction of the organosilane compound as it is.
  • the heating temperature is preferably 50° C. or higher and the boiling point of the solvent or lower, and the heating time is preferably 1 to 100 hours.
  • reheating or addition of a base catalyst may be performed in order to increase the degree of polymerization of polysiloxane.
  • an appropriate amount of the alcohol produced may be distilled off under heating and/or under reduced pressure, and then a suitable solvent may be added.
  • the resin composition of the present invention further includes, as a resin, a structure having an aromatic ring represented by the general formula (4) and a structure having a photoradical polymerizable group represented by the general formula (5) (meta ) contains an acrylic polymer and/or a cardo-based polymer having a structure represented by the general formula (6) or the general formula (7) and a photoradical polymerizable group.
  • the (meth)acrylic polymer and/or cardo-based polymer has the function of improving tacklessness after prebaking.
  • the content of the (meth)acrylic polymer and/or cardo-based polymer in the solid content of the resin composition is preferably 10% by weight or more, more preferably 15% by weight or more, from the viewpoint of improving tacklessness after prebaking. .
  • the content of the (meth)acrylic polymer and/or cardo-based polymer in the solid content of the resin composition is preferably 55% by weight or less, more preferably 50% by weight or less. preferable.
  • the (meth)acrylic polymer is preferably a radical polymerized (meth)acrylic compound and/or a styrene compound.
  • the radical polymerization catalyst is not particularly limited, and azo compounds such as azobisisobutyronitrile and organic peroxides such as benzoyl peroxide are generally used.
  • the conditions for radical polymerization can be set as appropriate. For example, a (meth)acrylic compound and/or styrene compound and a radical polymerization catalyst are added in a solvent, and the reaction vessel is sufficiently filled by bubbling or vacuum degassing. After purging with nitrogen, it is preferable to react at 60 to 110° C. for 30 to 300 minutes. Moreover, you may use chain transfer agents, such as a thiol compound, as needed.
  • the (meth)acrylic polymer has an ethylenically unsaturated bond
  • the (meth)acrylic polymer has an ethylenically unsaturated double bond group after radical polymerization of a (meth)acrylic compound and/or a styrene compound, for example.
  • Those obtained by addition reaction of glycidyl compounds are preferred.
  • the catalyst used for the addition reaction of the glycidyl compound having an ethylenically unsaturated double bond group is not particularly limited, and known catalysts can be used.
  • Examples include dimethylaniline, 2,4,6-tris(dimethylaminomethyl ) Phenol, amino catalysts such as dimethylbenzylamine, tin catalysts such as tin (II) 2-ethylhexanoate and dibutyltin laurate, titanium catalysts such as titanium (IV) 2-ethylhexanoate, triphenylphosphine Phosphorus-based catalysts such as acetylacetonate chromium and chromium-based catalysts such as chromium chloride are used.
  • a phosphorus-based catalyst is preferable from the viewpoint of improving the storage stability of polysiloxane.
  • the (meth)acrylic polymer used in the resin composition of the present invention includes a structure represented by the following general formula (4) and a structure represented by the following general formula (5). Other structures may be included.
  • R 3 and R 4 each independently represent hydrogen, a hydroxy group, or a monovalent organic group having 1 to 30 carbon atoms.
  • X 4 represents an organic group having an aromatic ring.
  • Y 2 represents an organic group having a radically photopolymerizable group, d and e each independently represent an integer of 1 or more, and when d and e are 2 or more, a plurality of R 3 , R 4 and X 4 , and Y2 may be the same or different.
  • the “monovalent organic group having 1 to 30 carbon atoms” represented by R 3 or R 4 is preferably an alkyl group having 1 to 6 carbon atoms (including linear and branched alkyl groups).
  • Preferred specific examples thereof include methyl group, ethyl group, n-propyl group and isopropyl group.
  • the “organic group having an aromatic ring” represented by X 4 is preferably an aromatic hydrocarbon group having 6 to 15 carbon atoms.
  • Preferable specific examples thereof include a phenyl group, a benzyl group, a styryl group, a naphthyl group and a biphenyl group.
  • the "organic group having a photoradical polymerizable group” represented by Y2 an ethylenically unsaturated group is preferable, and a functional group containing a methacrylic group and/or an acrylic group is more preferable.
  • d and e each independently represent an integer of 1 or more; d is preferably 10-60, more preferably 20-50; e is preferably 5-60, more preferably 10-50.
  • the repeating unit represented by general formula (4) is derived from a (meth)acrylic acid compound and/or a styrene compound containing an organic group having an aromatic ring. By containing an organic group having an aromatic ring, tacklessness can be improved.
  • the (meth)acrylic polymer preferably contains 10 to 80 mol% of repeating units represented by general formula (4) in all repeating units.
  • the content of the repeating unit represented by formula (4) is more preferably 15 mol % or more, and even more preferably 20 mol % or more.
  • the content of the repeating unit represented by formula (4) is more preferably 75 mol % or less, even more preferably 70 mol % or less.
  • Examples of (meth)acrylic acid compounds containing an organic group having an aromatic ring include phenyl (meth)acrylate, benzyl (meth)acrylate, tolyl (meth)acrylate, naphthyl (meth)acrylate, and the like.
  • Examples of styrene compounds include p-methylstyrene, o-methylstyrene, m-methylstyrene, ⁇ -methylstyrene and the like. Among these, styrene is preferred. By copolymerizing styrene, the heat resistance and moist heat resistance of the resulting cured film are improved.
  • the repeating unit represented by formula (5) preferably has an ethylenically unsaturated group as a radically photopolymerizable group.
  • an ethylenically unsaturated group as the photoradical polymerizable group, a crosslinking reaction proceeds with radicals generated from the photoradical generator in the exposed area, and the degree of curing in the exposed area can be increased.
  • the (meth)acrylic polymer contains 10 to 80 mol % of repeating units represented by the general formula (5) in all repeating units. By including 10 mol % or more of the repeating unit represented by the general formula (5), radical cross-linking between resins in the film can be efficiently advanced, and the degree of curing of the film can be improved.
  • the content of the repeating unit represented by formula (5) is more preferably 15 mol % or more, and even more preferably 20 mol % or more.
  • the content of the repeating unit represented by formula (5) is more preferably 75 mol % or less, even more preferably 70 mol % or less.
  • ethylenically unsaturated groups examples include vinyl groups, allyl groups, acrylic groups, and methacrylic groups.
  • the carboxylic acid group of the acrylic (co)polymer may be an ethylenically unsaturated compound or (meth)
  • a common method is to add acrylic acid chloride.
  • an isocyanate can be used to add a compound having an ethylenically unsaturated group.
  • Examples of the ethylenically unsaturated compound having a glycidyl group and acrylic acid or methacrylic acid chloride herein include glycidyl (meth)acrylate, ⁇ -ethylglycidyl (meth)acrylate, ⁇ -n-(meth)acrylate, Propylglycidyl, ⁇ -n-butylglycidyl (meth)acrylate, 3,4-epoxybutyl (meth)acrylate, 3,4-epoxyheptyl (meth)acrylate, ⁇ -ethyl-6 (meth)acrylate, 7-epoxyheptyl, allyl glycidyl ether, vinyl glycidyl ether, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, ⁇ -methyl-o-viny
  • repeating units in the (meth)acrylic polymer preferably contain a carboxyl group and/or an acid anhydride group.
  • a carboxyl group and/or an acid anhydride group By containing a carboxyl group and/or an acid anhydride group, the solubility contrast between the exposed area and the unexposed area is increased, and the patterning resolution is improved.
  • (Meth)acrylic compounds containing a carboxyl group and/or an acid anhydride group include (meth)acrylic acid, (meth)acrylic anhydride, itaconic acid, itaconic anhydride, succinic acid mono(2-acryloyloxy ethyl), mono(2-acryloyloxyethyl) phthalate, mono(2-acryloyloxyethyl) tetrahydrophthalate, and the like. You may use 2 or more types of these.
  • repeating units in the (meth)acrylic polymer may not be contained, and if they are contained, the content thereof is preferably 90 mol% or less, more preferably 80 mol% or less of all repeating units. is.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) of the (meth)acrylic polymer is not particularly limited, it is preferably 2,000 or more and 200,000 or less in terms of polystyrene measured by gel permeation chromatography (GPC). By setting Mw within the above range, good coating properties can be obtained, and the solubility of unexposed areas in a developer during pattern formation is also good.
  • the (meth)acrylic polymer used in the resin composition of the present invention may be synthesized according to the synthesis examples described later, or may be a commercially available product.
  • Commercially available (meth)acrylic polymers include, for example, AX3-BX-TR-101, AX3-BX-TR-102, AX3-BX-TR-106, AX3-BX-TR-107, AX3-BX-TR- 108, AX3-BX-TR-109, AX3-BX-TR-110, AX3-RD-TR-501, AX3-RD-TR-502, AX3-RD-TR-503, AX3-RD-TR-504, AX3-RD-TR-103, AX3-RD-TR-104 (trade name, manufactured by Nippon Shokubai Co., Ltd.), SPCR-10X, SPCR-10P, SPCR-24X, SPCR-18X, SPCR-215X (trade name, Showa Denko Co., Ltd.), X-40
  • the cardo-based polymer used in the resin composition of the present invention contains a structure represented by the following general formula (6) or the following general formula (7) and a photoradical polymerizable group. Other structures may be included.
  • R 5 to R 7 are hydrogen, monovalent organic groups having 1 to 30 carbon atoms, aryl groups having 6 to 20 carbon atoms, or adjacent R 5 to R 7 represents a group in which the formed ring is an aromatic ring
  • R 8 represents hydrogen, a monovalent organic group having 1 to 30 carbon atoms, or an aryl group having 6 to 20 carbon atoms
  • p, q, and r represent 0 to 2
  • s represents an integer of 1 to 2.
  • f to g each independently represent an integer of 1 or more.When f to g are 2 or more, a plurality of R 5 , R 6 , R 7 and Each R8 may be the same or different.
  • the "monovalent organic group having 1 to 30 carbon atoms” is preferably an alkyl group having 1 to 6 carbon atoms (including linear and branched alkyl groups). Preferred specific examples thereof include methyl group, ethyl group, n-propyl group and isopropyl group.
  • aryl group having 6 to 20 carbon atoms an aromatic hydrocarbon group having 6 to 15 carbon atoms is preferable.
  • R 5 , R 6 and R 7 are preferably hydrogen, and R 8 is preferably a phenyl group.
  • f and g each independently represent an integer of 1 or more; f is preferably 2-60, more preferably 3-50; e is preferably 2-60, more preferably 3-50.
  • an ethylenically unsaturated group is preferred.
  • a crosslinking reaction proceeds with radicals generated from the photoradical generator in the exposed area, and the degree of curing of the exposed area can be increased.
  • Ethylenically unsaturated groups include, for example, vinyl groups, allyl groups, styryl groups, acryl groups, methacryl groups, and the like.
  • Functional groups containing styryl, methacryl, acryl groups are preferred.
  • a preferred specific example is a functional group obtained by adding glycidyl methacrylate and/or glycidyl acrylate to a carboxylic acid group.
  • the cardo-based polymer used in the resin composition of the present invention preferably contains an alkali-soluble group as "another structure".
  • the alkali-soluble group preferably contains a carboxyl group and/or an acid anhydride group.
  • the weight average molecular weight (Mw) of the cardo-based polymer is not particularly limited, it is preferably 2,000 or more and 200,000 or less in terms of polystyrene measured by gel permeation chromatography (GPC) described later. By setting Mw within the above range, good coating properties can be obtained, and the solubility of unexposed areas in a developer during pattern formation is also good.
  • the cardo-based polymer used in the resin composition of the present invention may be synthesized and used, or a commercially available product may be used.
  • Commercially available cardo-based polymers include, for example, "Oxol” (registered trademark) CR-TR, CR-TR2, CR-TR3, CR-TR4, CR-TR5, CR-TR6 (these are trade names, Osaka Gas Chemicals ( Ltd.), INR-16 (trade name, manufactured by Nagase Chemtech Co., Ltd.), V-259ME (trade name, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), WR-301 (trade name, manufactured by ADEKA Corporation) etc.
  • V-259ME and WR-301 containing a structure represented by the general formula (6) or the general formula (7), a photoradical polymerizable group, and an alkali-soluble group are preferable. Two or more of these may be used.
  • the resin composition of the present invention preferably contains, as a resin, the total weight of the aforementioned polysiloxane and the aforementioned (meth)acrylic polymer and cardo-based polymer in a ratio of 30/70 to 70/30. By containing in this ratio, it is possible to achieve both high heat resistance derived from polysiloxane and tacklessness of the prebaked film derived from (meth)acrylic polymer and/or cardo-based polymer.
  • the ratio of the weight of polysiloxane to the total weight of (meth)acrylic polymer and cardo-based polymer is more preferably 35/65 to 65/35, more preferably 40/60 to 60/40.
  • the (meth)acrylic polymer and/or cardo-based polymer preferably has a glass transition temperature of 60°C or higher.
  • a high glass transition temperature can improve the tacklessness of the pre-baked film.
  • 65° C. or higher is more preferable.
  • the glass transition temperature can be measured as described in Examples below.
  • the resin composition of the present invention preferably further contains a white pigment.
  • a white pigment has a function of further improving the reflectance of the partition wall.
  • white pigments include titanium dioxide, zirconium oxide, zinc oxide, barium sulfate, and composite compounds thereof. You may contain 2 or more types of these. Among these, titanium dioxide is preferable because of its high reflectance and easy industrial use.
  • the crystal structure of titanium dioxide is classified into anatase, rutile and brookite types. Among these, rutile-type titanium oxide is preferable because of its low photocatalytic activity.
  • the white pigment may be surface-treated. Surface treatment with a metal oxide containing a metal selected from Al, Si and Zr is preferable, and the light resistance and heat resistance of the formed partition walls can be improved.
  • the average primary particle size of the white pigment is preferably from 100 to 500 nm, more preferably from 150 nm to 350 nm, from the viewpoint of further improving the reflectance of the partition walls.
  • the average primary particle size of the white pigment can be measured by a laser diffraction method using a particle size distribution analyzer (N4-PLUS; manufactured by Beckman Coulter, Inc.).
  • Titanium dioxide pigments preferably used as white pigments include, for example, R960 manufactured by DuPont (rutile type, SiO 2 /Al 2 O 3 treatment, average primary particle size 210 nm), CR-97 manufactured by Ishihara Sangyo Co., Ltd. (rutile type, Al 2 O 3 /ZrO 2 treatment, average primary particle size 250 nm), and the like. You may contain 2 or more types of these.
  • the content of the white pigment in the resin composition is preferably 10% by weight or more, more preferably 15% by weight or more, based on the solid content.
  • the content of the white pigment is preferably 60% by weight or less, more preferably 55% by weight or less in the solid content.
  • the resin composition of the present invention further comprises a light-shielding pigment and/or an organometallic compound (hereinafter referred to as "organometallic compound") containing at least one metal selected from the group consisting of silver, gold, platinum and palladium. may be used) is preferably contained.
  • organometallic compound an organometallic compound containing at least one metal selected from the group consisting of silver, gold, platinum and palladium. may be used.
  • the light-shielding pigment and the organometallic compound have the function of further improving the light-shielding properties of the partition walls.
  • the light-shielding pigment preferably contains a black pigment from the viewpoint of improving light-shielding properties.
  • black pigments include black organic pigments, mixed-color organic pigments, and black inorganic pigments.
  • black organic pigments include carbon black, perylene black, aniline black, and benzofuranone pigments. These may be coated with resin.
  • Mixed-color organic pigments include, for example, pseudo-black pigments obtained by mixing two or more pigments selected from red, blue, green, purple, yellow, magenta, cyan, and the like.
  • a mixed pigment of a red pigment and a blue pigment is preferable from the viewpoint of achieving both a moderately high OD value and pattern workability.
  • the weight ratio of the red pigment and the blue pigment in the mixed pigment is preferably 20/80 to 80/20, more preferably 30/70 to 70/30. Specific examples of representative pigments are shown below by color index (CI) number.
  • red pigments include Pigment Red (hereinafter abbreviated as PR) 9, PR177, PR215, and PR254. You may contain 2 or more types of these.
  • Examples of blue pigments include Pigment Blue (hereinafter abbreviated as PB) 15, PB15:4, and PB15:6. You may contain 2 or more types of these.
  • Black inorganic pigments include, for example, graphite; fine particles of metals such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, silver, gold, platinum, and palladium; metal oxides; metal composite oxides; Metal sulfides; metal nitrides; metal oxynitrides; metal carbides and the like. You may contain 2 or more types of these.
  • pigments selected from titanium nitride, zirconium nitride, carbon black, and mixed pigments of red and blue pigments in a weight ratio of 20/80 to 80/20 are preferred because they have high light-shielding properties. preferable.
  • the content of the light-shielding pigment in the resin composition is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, based on the solid content, from the viewpoint of improving light-shielding properties.
  • the content of the light-shielding pigment is preferably 5% by weight or less, more preferably 3% by weight or less, based on the solid content.
  • the resin composition of the present invention may contain a light-shielding pigment other than the black pigment in order to improve the light-shielding property of a specific wavelength.
  • Other light-shielding pigments include, for example, red pigments, blue pigments, purple pigments, green pigments, yellow pigments, and the like. You may contain 2 or more types of these.
  • the organometallic compound decomposes and aggregates in the exposure step and/or the heating step to become black particles or yellow particles, which light-shield the partition walls (A-1) described later. It has the function of improving the quality (OD value). Since the OD value is low before exposure and the OD value increases after pattern formation, the exposed light can be sufficiently transmitted to the bottom in the exposure process to cause photocuring or photodecomposition. If a pattern is formed in advance using a resin composition containing a large amount of a light-shielding pigment in order to form partition walls (A-1) with a high OD value, photocuring at the bottom tends to be insufficient.
  • the shape of the obtained partition (A-1) tends to be a reverse tapered shape.
  • the taper angle can be easily set within the preferred range described later, since sufficient photocuring is performed up to the bottom.
  • organometallic compounds include silver-containing organometallic compounds such as silver neodecanoate, silver octylate, and silver salicylate; organometallic compounds containing gold, such as chloro(triphenylphosphine)gold; ) organometallic compounds containing platinum such as platinum and dichlorobis(triphenylphosphine)platinum; organometallic compounds containing bis(acetylacetonato)palladium and dichlorobis(triphenylphosphine)palladium palladium; You may contain 2 or more types of these.
  • organometallic compounds include silver-containing organometallic compounds such as silver neodecanoate, silver octylate, and silver salicylate; organometallic compounds containing gold, such as chloro(triphenylphosphine)gold; ) organometallic compounds containing platinum such as platinum and dichlorobis(triphenylphosphine)platinum; organometallic compounds
  • an organometallic compound containing silver such as silver neodecanoate, silver octylate, and silver salicylate is contained, it decomposes and aggregates in the exposure process and/or the heating process to generate nanosilver particles, resulting in a yellow color.
  • an organometallic compound containing platinum such as bis(acetylacetonato)platinum or an organometallic compound containing palladium such as bis(acetylacetonato)palladium is contained, decomposition and/or Agglomeration produces palladium oxide and turns black.
  • silver neodecanoate and bis(acetylacetonato)palladium are preferable from the viewpoint of further improving the OD value.
  • the content of the organometallic compound in the solid content is preferably 0.2 to 5% by weight.
  • the OD value of the obtained partition wall can be further improved.
  • the content of the organometallic compound is more preferably 0.5% by weight or more.
  • the reflectance can be further improved.
  • the resin composition of the present invention preferably further contains a coordinating compound having a phosphorus atom (hereinafter sometimes referred to as "coordinating compound").
  • the coordinating compound coordinates to the organometallic compound in the resin composition, improves the solubility of the organometallic compound in a solvent, promotes the decomposition of the organometallic compound, and further improves the OD value of the obtained partition walls.
  • coordinating compounds include triphenylphosphine, tri-t-butylphosphine, trimethylphosphine, tricyclohexylphosphine, tris(O-tolyl)phosphine and the like. You may contain 2 or more types of these.
  • the content of the coordinating compound in the resin composition of the present invention is preferably 0.5 to 3.0 molar equivalents relative to the organometallic compound.
  • the resin composition of the present invention preferably further contains a photopolymerizable compound.
  • the photopolymerizable compound in the present invention refers to a compound having two or more ethylenically unsaturated double bonds in its molecule.
  • a radical cross-linking reaction can occur with (meth)acrylic groups in the resin, and the degree of curing of the film can be improved.
  • the photopolymerizable compound preferably has a (meth)acrylic group.
  • photopolymerizable compounds include 1,6-hexanediol diacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, pentaerythritol triacrylate, penta Erythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, tripentaerythritol heptaacrylate, tripentaerythritol octaacrylate, tetrapentaerythritol nonaacrylate, tetrapentaerythritol decaacrylate, tripentaerythritol heptamethacrylate, tripentaery
  • the content of the photopolymerizable compound in the resin composition of the present invention is preferably 1% by weight or more based on the solid content.
  • the content of the photopolymerizable compound is preferably 50% by weight or less in the solid content.
  • the resin composition of the present invention preferably contains a liquid-repellent compound having a photopolymerizable group.
  • a liquid-repellent compound is a compound that imparts the property of repelling water and organic solvents (liquid-repellent performance) to a resin composition.
  • the compound is not particularly limited as long as it has such properties, but specifically, a compound having a fluoroalkyl group is preferably used.
  • liquid-repellent performance can be imparted to the top of the partition walls (A-1) described later after the partition walls (A-1) are formed.
  • color-converting light-emitting materials having different compositions can be easily applied to each pixel.
  • a liquid-repellent compound refers to a compound having a fluoroalkyl or fluoroalkylene group at the terminal, main chain and/or side chain.
  • the liquid-repellent compound contained in the resin composition of the present invention is more preferably a liquid-repellent compound having a photopolymerizable group because it can form a strong bond with the resin.
  • Liquid-repellent compounds having a photopolymerizable group include, for example, “Megafac” (registered trademark) RS-72-A, RS-75-A, RS-56, RS-90 (trade names, DIC Corporation ) made) and the like.
  • the photopolymerizable group may be photopolymerized in the partition walls (A-1) made of the photocured product of the negative photosensitive resin composition.
  • the content of the liquid-repellent compound in the resin composition is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, based on the solid content. more preferred.
  • the content of the liquid-repellent compound is preferably 10% by weight or less, more preferably 5% by weight or less, based on the solid content.
  • the resin composition of the present invention may contain surfactants, adhesion improvers, etc., if necessary.
  • a surfactant include "Megafac” (registered trademark) F445, F470, F475, F477 (trade names, manufactured by DIC Corporation), NBX-15, FTX-218 (trade names, ( Neos Co., Ltd.) and other fluorine-based surfactants; "BYK” (registered trademark)-333, 352, 301 (trade names, BYK Chemie Japan Co., Ltd.) and other silicone-based surfactants; polyalkylene Examples include oxide-based surfactants; poly(meth)acrylate-based surfactants; You may contain 2 or more types of these.
  • adhesion improvers include alicyclic epoxy compounds and silane coupling agents. Among these, alicyclic epoxy compounds are preferred from the viewpoint of heat resistance.
  • Examples of alicyclic epoxy compounds include 3′,4′-epoxycyclohexymethyl-3,4-epoxycyclohexanecarboxylate, 2,2-bis(hydroxymethyl)-1-butanol and 1,2-epoxy- 4-(2-oxiranyl)cyclohexane adduct, ⁇ -caprolactone-modified 3′,4′-epoxycyclohexylmethyl 3′,4′-epoxycyclohexane carboxylate, 1,2-epoxy-4-vinylcyclohexane, butanetetracarboxylic acid tetra(3,4-epoxycyclohexylmethyl)-modified ⁇ -caprolactone, 3,4-epoxycyclohexylmethyl methacrylate, diglycidyl 1,4-cyclohexanedicarboxylate, diglycidyl ether of 1,4-cyclohexanedimethanol and the like. You may contain 2 or more types of these
  • the content of the adhesion improving agent in the resin composition of the present invention is preferably 0.1% by weight or more, more preferably 1% by weight or more, based on the solid content, from the viewpoint of further improving the adhesion to the underlying substrate.
  • the content of the adhesion improver is preferably 20% by weight or less, more preferably 10% by weight or less, in the solid content from the viewpoint of pattern processability.
  • the resin composition of the present invention preferably further contains a solvent.
  • the solvent has the function of adjusting the viscosity of the resin composition to a range suitable for application and improving the uniformity of the partition walls.
  • As the solvent it is preferable to combine a solvent having a boiling point of more than 150° C. and 250° C. or less under atmospheric pressure and a solvent having a boiling point of 150° C. or less.
  • solvents include alcohols such as isopropanol and diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone and cyclopentanone; amides such as dimethylformamide and dimethylacetamide; propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, Acetates such as methyl lactate, ethyl lactate and butyl lactate can be mentioned. You may contain 2 or more types of these. Among these, it is preferable to combine diacetone alcohol as a solvent with a boiling point of more than 150° C. and 250° C. or less under atmospheric pressure and propylene glycol monomethyl ether as a solvent with a boiling point of 150° C. or less from the viewpoint of coating properties.
  • the content of the solvent can be arbitrarily set according to the application method.
  • the content of the solvent is generally 50% by weight or more and 95% by weight or less in the resin composition.
  • the resin composition of the present invention can be produced, for example, by mixing the photo-radical generator, polysiloxane, (meth)acrylic polymer and/or cardo-based polymer and, if necessary, other components.
  • the light shielding film of the present invention will be described.
  • the light-shielding film of the present invention is obtained by curing the resin composition of the present invention described above.
  • the light-shielding film of the present invention can be suitably used as a light-shielding pattern in an OGS type touch panel, such as a decorative pattern for a cover base material, in addition to the barrier ribs (A-1) described later.
  • the film thickness of the light shielding film is preferably 10 ⁇ m or more.
  • the method for producing a light-shielding film of the present invention includes a film-forming step of applying the resin composition of the present invention on a base substrate and drying to obtain a dry film, an exposure step of pattern-exposing the obtained dry film, and a It is preferable to have a developing step of dissolving and removing a portion of the dry film that is soluble in a developer, and a heating step of heating and curing the dry film after development.
  • Examples of the method of applying the resin composition in the film-forming step include a slit coating method and a spin coating method.
  • Examples of the drying device include a hot air oven and a hot plate.
  • the drying time is preferably 80 to 120° C., preferably 1 to 15 minutes.
  • the exposure step is a step of photocuring the necessary portion of the dry film by exposure or photolyzing the unnecessary portion of the dry film to make any portion of the dry film soluble in the developer. .
  • exposure may be performed through a photomask having a predetermined opening, or an arbitrary pattern may be directly drawn using a laser beam or the like without using a photomask.
  • Examples of the exposure device include a proximity exposure machine.
  • Ultraviolet rays are preferable as the actinic rays irradiated in the exposure step.
  • the light source include high-pressure mercury lamps, ultra-high-pressure mercury lamps, and halogen lamps, with ultra-high-pressure mercury lamps being preferred.
  • Exposure conditions can be appropriately selected depending on the thickness of the dry film to be exposed. In general, it is preferable to perform exposure using an ultra-high pressure mercury lamp with an output of 1 to 100 mW/cm 2 and an exposure amount of 1 to 10,000 mJ/cm 2 .
  • the developer-soluble portion of the dry film after exposure is dissolved and removed with the developer, leaving only the developer-insoluble portion, and the dry film patterned in an arbitrary pattern shape (hereinafter referred to as , which is called a pre-heating pattern).
  • the pattern shape includes, for example, a lattice shape, a stripe shape, a hole shape, and the like.
  • the developing method includes, for example, an immersion method, a spray method, a brush method, and the like.
  • the developer a solvent capable of dissolving the unnecessary portion of the dry film after exposure can be appropriately selected, and an aqueous solution containing water as the main component is preferable.
  • the developer is preferably an alkaline aqueous solution.
  • alkaline aqueous solutions include inorganic alkaline aqueous solutions such as sodium hydroxide, potassium hydroxide, sodium carbonate, and calcium hydroxide; and organic alkaline aqueous solutions such as tetramethylammonium hydroxide.
  • a potassium hydroxide aqueous solution or a tetramethylammonium hydroxide aqueous solution is preferable from the viewpoint of improving resolution.
  • the developer may contain a surfactant.
  • the developing temperature is preferably 20 to 50° C. in order to facilitate process control.
  • the heating process is a process of heating and curing the preheated pattern formed in the developing process. Examples of heating devices include hot plates and ovens.
  • the heating temperature is preferably 250° C. or less from the viewpoint of suppressing the generation of cracks in the heated film.
  • the heating time is preferably 15 minutes to 2 hours.
  • the heating temperature is preferably 150° C. or higher from the viewpoint of further improving the OD value.
  • the substrate with partition walls of the present invention has (A-1) patterned partition walls (hereinafter sometimes referred to as “partition walls (A-1)”) formed on an underlying substrate.
  • the underlying substrate functions as a support for the substrate with partition walls.
  • the partition has a function of suppressing color mixture of light between adjacent pixels.
  • the partition walls (A-1) have a reflectance of 10% to 60% per 10 ⁇ m thickness at a wavelength of 550 nm and an OD value of 1.0 to 3.0 per 10 ⁇ m thickness at a wavelength of 450 nm.
  • the reflectance is set to 10% or more and the OD value to 3.0 or less, (A-1) the luminance of the display device can be improved by utilizing the reflection on the side surface of the partition wall.
  • FIG. 1 shows a cross-sectional view of one embodiment of the substrate with partitions of the present invention having patterned partitions.
  • a base substrate 1 has partition walls 2 patterned thereon.
  • the base substrate examples include a glass plate, a resin plate, and a resin film.
  • Non-alkali glass is preferable as the material of the glass plate.
  • Polyester, (meth)acrylic polymer, transparent polyimide, polyethersulfone, and the like are preferable as materials for the resin plate and resin film.
  • the thickness of the glass plate and the resin plate is preferably 1 mm or less, and preferably 0.8 mm or less.
  • the thickness of the resin film is preferably 100 ⁇ m or less.
  • the barrier rib (A-1) preferably has a reflectance of 10% to 60% per 10 ⁇ m thickness at a wavelength of 550 nm and an OD value of 1.0 to 3.0 per 10 ⁇ m thickness at a wavelength of 450 nm.
  • the thickness of the partition (A-1) refers to the height of the partition (A-1) and/or the width of the partition (A-1).
  • the height of the partition (A-1) refers to the length of the partition (A-1) in the direction perpendicular to the base substrate (height direction). In the case of the substrate with partition walls shown in FIG. 1, the height of the partition walls 2 is represented by symbol H.
  • the width of the partition (A-1) refers to the length of the partition (A-1) in the direction horizontal to the base substrate.
  • the width of the partition walls 2 is represented by symbol L.
  • "height” may be called “thickness.”
  • the reflectance on the side surface of the partition wall contributes to the improvement of the luminance of the display device, and the light shielding property contributes to the suppression of color mixture.
  • the present invention focuses on the reflectance and OD value per thickness of the partition walls.
  • the thickness (height) of the partition (A-1) is preferably 0.5 to 100 ⁇ m, and the width is preferably 1 to 100 ⁇ m. Therefore, in the present invention, 10 ⁇ m is selected as a representative value of the thickness of the partition (A-1), and the reflectance and OD value per 10 ⁇ m of thickness are focused on.
  • the reflectance per 10 ⁇ m thickness of the barrier ribs (A-1) at a wavelength of 550 nm is less than 10%, the visible light reflection on the side walls of the barrier ribs becomes small, resulting in insufficient brightness of the display device.
  • the reflectance per 10 ⁇ m thickness at a wavelength of 550 nm is preferably 10% or more, more preferably 20% or more, and even more preferably 30% or more.
  • the OD value per 10 ⁇ m thickness of the partition (A-1) at a wavelength of 450 nm is preferably 1.0 or more, more preferably 1.5 or more, and even more preferably 2.0 or more.
  • the higher the OD value per 10 ⁇ m thickness at a wavelength of 450 nm the greater the light-shielding property of the side walls of the barrier ribs, thereby preventing color mixture between adjacent pixels and improving the contrast of the display device.
  • the OD value per 10 ⁇ m thickness of the partition (A-1) at a wavelength of 450 nm is less than 1.0, the blue excitation light leaks to adjacent pixels, and the (B) color conversion luminescent material described later is contained between the partitions. In the case of including a pixel having the same color, the pixel emits light, resulting in color mixture.
  • the reflectance per 10 ⁇ m thickness of the partition wall (A-1) at a wavelength of 550 nm was measured using a spectrophotometer (for example, CM-2600d manufactured by Konica Minolta Co., Ltd.) from the top of the partition wall (A-1) with a thickness of 10 ⁇ m. can be measured by SCI mode.
  • a spectrophotometer for example, CM-2600d manufactured by Konica Minolta Co., Ltd.
  • the same composition as the partition wall (A-1) A solid film having a thickness of 10 ⁇ m may be prepared, and the reflectance per 10 ⁇ m thickness may be obtained by similarly measuring the reflectance of the solid film instead of the partition wall (A-1).
  • a solid film was prepared under the same processing conditions as for the formation of the partition wall (A-1) except that the thickness was 10 ⁇ m and no pattern was formed. Reflectance may be similarly measured from the top surface of the film.
  • the OD value per 10 ⁇ m thickness of the partition wall (A-1) at a wavelength of 450 nm is obtained from the top surface of the partition wall (A-1) with a thickness of 10 ⁇ m using an optical densitometer (e.g., Hitachi High-Tech Science U-4100). and the intensity of the transmitted light are measured, and it can be calculated by the following formula (1).
  • an optical densitometer e.g., Hitachi High-Tech Science U-4100
  • the partition ( A 10 ⁇ m-thick solid film having the same composition as A-1) may be prepared, and the OD value per 10 ⁇ m thickness may be obtained by similarly measuring the OD value of the solid film instead of the partition wall (A-1). .
  • OD value log10( I0 /I) (1) I 0 : incident light intensity I : transmitted light intensity.
  • Means for adjusting the reflectance and the OD value within the above ranges include, for example, making the partition wall (A-1) have a preferable composition described later.
  • the taper angle of the partition wall (A-1) is preferably 45° to 110°.
  • the taper angle of the partition wall (A-1) refers to the angle formed by the side and bottom sides of the cross section of the partition wall. In the case of the substrate with partition walls shown in FIG. 1, the taper angle of the partition walls 2 is represented by the symbol ⁇ .
  • the taper angle is 70° or more.
  • the taper angle is more preferably 95° or less.
  • the taper angle of the partition wall (A-1) is measured using an optical microscope (FE-SEM (eg, S-4800 manufactured by Hitachi, Ltd.)) at an acceleration voltage of 3. It can be obtained by observing at 0 kV and a magnification of 2,500 times and measuring the angle formed by the side and base of the cross section of the partition wall (A-1).
  • the partition wall (A-1) is made to have a preferable composition described later, or the resin composition of the present invention described above is used. forming.
  • the thickness of the partition (A-1) is preferably larger than the thickness of the pixel when the substrate with the partition has a pixel containing the (B) color-converting luminescent material described later.
  • the thickness of the partition wall (A-1) is preferably 0.5 ⁇ m or more, more preferably 10 ⁇ m or more.
  • the thickness of the partition wall (A-1) is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, from the viewpoint of extracting light emitted from the bottom of the pixel more efficiently.
  • the width of the partition (A-1) is preferably sufficient to further improve the brightness by utilizing light reflection on the side of the partition and to further suppress color mixture of light in adjacent pixels due to light leakage.
  • the width of the partition is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more.
  • the width of the partition wall (A-1) is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, from the viewpoint of securing a large light-emitting region of the pixel and further improving luminance.
  • the partition (A-1) has a repeating pattern for a predetermined number of pixels according to the screen size of the image display device.
  • the number of pixels of the image display device is, for example, 4000 horizontally and 2000 vertically.
  • the number of pixels affects the resolution (fineness) of the displayed image. Therefore, it is necessary to form the number of pixels corresponding to the required image resolution and the screen size of the image display device, and it is preferable to determine the partition pattern formation dimensions accordingly.
  • the partition wall (A-1) preferably contains a resin, a white pigment, and a light-shielding pigment.
  • the resin has a function of improving crack resistance and light resistance of the partition walls.
  • a white pigment has a function of further improving the reflectance of the partition wall.
  • the light-shielding pigment has the function of adjusting the OD value and suppressing color mixture of light in adjacent pixels.
  • the light-shielding pigments are as described above as materials constituting the resin composition.
  • the light-shielding pigment preferably contains at least one pigment selected from black pigments, red pigments, blue pigments, purple pigments, and yellow pigments from the viewpoint of improving light-shielding properties. Among these, it is preferable to contain a black pigment and/or a yellow pigment from the viewpoint of suppressing color mixture of light in adjacent pixels.
  • the black pigment is as described above as a material constituting the resin composition.
  • Yellow pigments include, for example, pigment yellow (hereinafter abbreviated as PY), yellow organic pigments such as PY137, PY138, PY139, PY150, PY166, PY168, and PY185; metal fine particles such as nanosilver particles and nanogold particles; metal oxides; metal composite oxides; metal sulfides; metal nitrides; metal oxynitrides; and yellow inorganic pigments such as metal carbides.
  • PY pigment yellow
  • yellow organic pigments such as PY137, PY138, PY139, PY150, PY166, PY168, and PY185
  • metal fine particles such as nanosilver particles and nanogold particles
  • metal oxides metal composite oxides
  • metal sulfides metal nitrides
  • metal oxynitrides and yellow inorganic pigments such as metal carbides.
  • the light-shielding pigment is titanium nitride, zirconium nitride, carbon black, a mixed pigment of a red pigment and a blue pigment in a weight ratio of 20/80 to 80/20, and Containing at least one pigment selected from at least one metal oxide or metal particles selected from the group consisting of palladium oxide, platinum oxide, gold oxide, silver oxide, palladium, platinum, gold, and silver is preferred.
  • the partition wall (A-1) preferably further contains a hindered amine compound.
  • the partition wall (A-1) is as described above as a material constituting the resin composition.
  • the hindered amine compound may be immobilized on a resin by reaction of the photopolymerizable group in the molecule.
  • the content of the hindered amine compound in the partition wall (A-1) is preferably 0.005% by weight or more, more preferably 0.008% by weight or more, from the viewpoint of further improving weather resistance.
  • the content of the hindered amine compound in the partition walls (A-1) is preferably 5.0% by weight or less, more preferably 3.0% by weight or less.
  • the partition (A-1) preferably further contains a liquid-repellent compound.
  • liquid-repellent compound By containing the liquid-repellent compound, liquid-repellent performance can be imparted to the partition wall (A-1).
  • color-converting light-emitting materials having different compositions can be easily applied separately.
  • the liquid-repellent compound is as described above as a material constituting the resin composition.
  • the surface contact angle of the partition wall (A-1) with respect to propylene glycol monomethyl ether acetate is preferably 10° or more, more preferably 20° or more, from the viewpoint of improving inkjet applicability and facilitating separate coating of the color-converting luminescent material. More preferably, 40° or more is even more preferable.
  • the surface contact angle of the partition wall (A-1) is preferably 70° or less, more preferably 60° or less.
  • the surface contact angle of the partition wall (A-1) conforms to the substrate glass surface wettability test method specified in JIS R3257 (enacted date: 1999/04/20) for the upper part of the partition wall. can be measured by As a method for adjusting the surface contact angle of the partition wall (A-1) to the above range, for example, a method using the liquid-repellent compound described above can be used.
  • the photosensitive paste method is preferable because the pattern shape can be easily adjusted.
  • the above-mentioned resin composition is applied onto a base substrate and dried to obtain a dry film.
  • a method comprising an exposure step of pattern-wise exposing according to the shape, a developing step of dissolving and removing portions soluble in the developer in the dry film after exposure, and a heating step of curing the barrier ribs after development is preferred.
  • the resin composition preferably has negative photosensitivity.
  • Pattern exposure may be performed through a photomask having a predetermined opening, or an arbitrary pattern may be directly drawn using a laser beam or the like without using a photomask.
  • partition walls (A-1) are similarly formed on the color filters and/or light-shielding partition walls (A-2). Can be patterned. Each step is as described above for the method of manufacturing the light shielding film.
  • the substrate with partition walls of the present invention further includes pixels (hereinafter sometimes referred to as “pixels (B)”) containing (B) color-converting luminescent materials arranged separated by the partition walls (A-1). It is preferred to have The pixel (B) has a function of enabling color display by converting at least part of the wavelength range of incident light and emitting output light in a wavelength range different from that of the incident light.
  • FIG. 2 shows a cross-sectional view of one mode of the substrate with partitions of the present invention having patterned partitions (A-1) and pixels (B).
  • a base substrate 1 has partition walls 2 patterned thereon, and pixels 3 are arranged in regions separated by the partition walls 2 .
  • the color conversion material preferably contains a phosphor selected from inorganic phosphors and organic phosphors.
  • the substrate with partition walls of the present invention can be used as a display device by combining, for example, a backlight that emits blue light, liquid crystals formed on TFTs, and pixels (B).
  • the region corresponding to the red pixel preferably contains a red phosphor that emits red fluorescence when excited by blue excitation light.
  • the region corresponding to the green pixel preferably contains a green phosphor that emits green fluorescence when excited by blue excitation light.
  • a region corresponding to a blue pixel preferably does not contain a phosphor.
  • the inorganic phosphor is preferably one that emits green or red light by blue excitation light, that is, one that is excited by excitation light with a wavelength of 400 to 500 nm and has a peak emission spectrum in the region of 500 to 700 nm.
  • examples of such inorganic phosphors include YAG-based phosphors, TAG-based phosphors, sialon-based phosphors, Mn 4+ -activated fluoride complex phosphors, and inorganic semiconductors called quantum dots.
  • quantum dots are preferred. Since quantum dots have a smaller average particle size than other phosphors, the surface of the pixel (B) can be smoothed to suppress light scattering on the surface, so that the light extraction efficiency is further improved. Brightness can be further improved.
  • Quantum dot materials include, for example, II-IV group, III-V group, IV-VI group, and IV group semiconductors.
  • these inorganic semiconductors include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSe and the like. You may use 2 or more types of these.
  • the organic phosphor is preferably one that emits green, red, or other colors when excited by blue light.
  • a pyrromethene derivative having a basic skeleton represented by the following structural formula (11) as a phosphor emitting red fluorescence and a pyrromethene derivative having a basic skeleton represented by the following structural formula (12) as a phosphor emitting green fluorescence derivatives and the like.
  • Other examples include perylene-based derivatives, porphyrin-based derivatives, oxazine-based derivatives, and pyrazine-based derivatives that emit red or green fluorescence depending on the selection of substituents. You may contain 2 or more types of these. Among these, pyrromethene derivatives are preferred because of their high quantum yield.
  • a pyrromethene derivative can be obtained, for example, by the method described in JP-A-2011-241160.
  • the thickness of the pixel (B) is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the thickness of the pixel (B) is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, from the viewpoint of thinning of the display device and curved surface workability.
  • the size of each pixel (B) is generally about 20 to 200 ⁇ m.
  • the pixels (B) are preferably arranged separated by partition walls (A-1). By providing a partition between pixels, diffusion and color mixture of emitted light can be further suppressed.
  • a method for forming the pixel (B) for example, a method of filling a space separated by the partition wall (A-1) with a coating liquid containing a color-converting light-emitting material (hereinafter referred to as a color-converting light-emitting material coating liquid) can be mentioned. be done.
  • the color conversion luminescent material coating liquid may further contain a resin and a solvent.
  • Examples of methods for filling the color-converting luminescent material coating liquid include photolithography and inkjet methods, but the inkjet coating method is preferable from the viewpoint of easily separately coating different types of color-converting luminescent materials on each pixel.
  • ⁇ Light shielding partition (A-2)> In the substrate with partition walls of the present invention, (A-1) between the base substrate and the patterned partition walls, and (A-2) an OD value per 1.0 ⁇ m of thickness of 0.5 or more. It is preferable to have a pattern-formed partition (hereinafter sometimes referred to as a “light-shielding partition (A-2)”). By having the light-shielding partition (A-2), the light-shielding property is improved, light leakage from the backlight in the display device is suppressed, and a high-contrast and clear image can be obtained.
  • FIG. 3 shows a cross-sectional view showing one embodiment of the partition-attached substrate of the present invention having light-shielding partitions. It has partition walls 2 and light-shielding partition walls 4 patterned on a base substrate 1 , and pixels 3 are arranged in regions separated by the partition walls 2 and the light-shielding partition walls 4 .
  • the light-shielding partition (A-2) has an OD value of 0.5 or more per 1.0 ⁇ m of thickness.
  • the thickness of the light shielding partition (A-2) is preferably 0.5 to 10 ⁇ m, as will be described later.
  • 1.0 ⁇ m was selected as a representative value of the thickness of the light-shielding barrier ribs (A-2), and attention was paid to the OD value per 1.0 ⁇ m of thickness.
  • the OD value per 1.0 ⁇ m of thickness is preferably 4.0 or less, which can improve pattern workability.
  • the OD value of the light-shielding partition wall (A-2) can be measured in the same manner as the OD value of the partition wall (A-1) described above.
  • the thickness of the light-shielding partition wall (A-2) is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, from the viewpoint of improving light-shielding properties. On the other hand, from the viewpoint of improving flatness, the thickness of the light shielding partition (A-2) is more preferably 5 ⁇ m or less. Further, the width of the light-shielding partition (A-2) is preferably approximately the same as that of the above-described partition (A-1).
  • the light-shielding partition (A-2) preferably contains a resin and a light-shielding pigment.
  • the resin has a function of improving crack resistance and light resistance of the partition walls.
  • the light-shielding pigment has a function of absorbing incident light and reducing emitted light.
  • the resin and the light-shielding pigment the same materials as those described above as materials constituting the resin composition can be used.
  • a method for patterning the light-shielding partition (A-2) on the underlying substrate for example, a photosensitive material described in JP-A-2015-1654 is used, and the above-described partition (A-1) is photosensitive.
  • a method of forming a pattern by a transparent paste method is preferred.
  • the substrate with partition walls of the present invention preferably further has a color filter (hereinafter sometimes referred to as “color filter”) having a thickness of 1 to 5 ⁇ m between the base substrate and the pixels (B).
  • color filter has a function of transmitting visible light in a specific wavelength range to make the transmitted light have a desired hue, and can improve the color purity of the display device. Color purity can be further improved by setting the thickness of the color filter to 1 ⁇ m or more. On the other hand, by setting the thickness to 5 ⁇ m or less, the luminance can be further improved.
  • FIG. 4 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention having a color filter. It has patterned partition walls 2 and color filters 5 on a base substrate 1 , and pixels 3 on the color filters 5 .
  • color filters examples include color filters that use pigment-dispersed materials in which pigments are dispersed in photoresist, which are used in flat panel displays such as liquid crystal displays. Moreover, the color filter may be laminated separately from the pixel (B) containing the color-converting luminescent material, or may be integrally laminated.
  • the substrate with partition walls of the present invention preferably further has a color filter with a thickness of 1 to 5 ⁇ m separated by a light-shielding partition wall between the underlying substrate and the pixels (B).
  • FIG. 5 shows a cross-sectional view of one embodiment of the partition-attached substrate of the present invention having color filters separated by light-shielding partition walls. Color filters 5 separated by patterned light-shielding barrier ribs 4 are provided on a base substrate 1, and barrier ribs 2 and pixels 3 are provided thereon.
  • the substrate with partition walls of the present invention further includes (C) a low refractive index layer having a refractive index of 1.20 to 1.35 at a wavelength of 550 nm (hereinafter referred to as "low refractive index layer (C)” may be described).
  • low refractive index layer (C) a low refractive index layer having a refractive index of 1.20 to 1.35 at a wavelength of 550 nm.
  • FIG. 6 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention having a low refractive index layer. It has patterned barrier ribs 2 and pixels 3 on an underlying substrate 1, and further has a low refractive index layer 6 thereon.
  • the refractive index of the low refractive index layer (C) is preferably 1.20 or more from the viewpoint of appropriately suppressing the reflection of light from the backlight and allowing light to enter the pixels (B) efficiently. 23 or more is more preferable.
  • the refractive index of the low refractive index layer (C) is preferably 1.35 or less, more preferably 1.30 or less.
  • the refractive index of the low refractive index layer (C) is measured by irradiating light with a wavelength of 550 nm from a direction perpendicular to the cured film surface under atmospheric pressure and at 20° C. using a prism coupler. can be done.
  • the low refractive index layer (C) can be formed, for example, as in Examples 72 to 74 using the low refractive index layer-forming material obtained in Preparation Example 6 described later.
  • the thickness of the low refractive index layer (C) is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, from the viewpoint of covering the steps of the pixels (B) and suppressing the occurrence of defects.
  • the thickness of the low refractive index layer (C) is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, from the viewpoint of reducing stress that causes cracks in the low refractive index layer (C).
  • the substrate with partition walls of the present invention preferably further has an inorganic protective layer I with a thickness of 50 to 1,000 nm on the low refractive index layer (C). Since the presence of the inorganic protective layer I makes it difficult for moisture in the atmosphere to reach the low refractive index layer (C), it is possible to suppress fluctuations in the refractive index of the low refractive index layer (C) and suppress luminance degradation. can.
  • FIG. 7 and 8 show cross-sectional views of one embodiment of the substrate with partition walls of the present invention having a low refractive index layer and an inorganic protective layer (I). It has patterned partition walls 2 and pixels 3 on a base substrate 1, and further has a low refractive index layer 6 and an inorganic protective layer (I) 7 on or under these.
  • the substrate with partition walls of the present invention preferably has the low refractive index layer (C) between the pixel (B) and the color filter. It is preferred to have an inorganic protective layer (I) of 1,000 nm. By having the low refractive index layer (C) between the pixel (B) and the color filter, the effect of improving the light extraction of emitted light is increased, and the brightness of the display is improved.
  • FIG. 9 shows a cross-sectional view of one embodiment of the substrate with partitions of the present invention having the low refractive index layer and the inorganic protective layer (I) between the pixels (B) and the color filters.
  • a color filter 5 separated by a light-shielding partition wall 4 is provided on a base substrate 1, a low refractive index layer 6 and an inorganic protective layer (I) 7 are provided thereon, and a pattern is formed thereon. It has partition walls 2 and pixels 3 .
  • the substrate with partition walls of the present invention preferably further has an inorganic protective layer (II) with a thickness of 50 to 1,000 nm between the pixels (B) and the low refractive index layer (C).
  • an inorganic protective layer (II) with a thickness of 50 to 1,000 nm between the pixels (B) and the low refractive index layer (C).
  • FIG. 10 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention having a low refractive index layer and an inorganic protective layer (II). It has patterned partition walls 2 and pixels 3 on a base substrate 1 , and further has an inorganic protective layer (II) 8 and a low refractive index layer 6 thereon.
  • II inorganic protective layer
  • the substrate with partition walls of the present invention preferably further has an inorganic protective layer (III) and/or a yellow organic protective layer with a thickness of 50 to 1,000 nm between the color filter and the pixel (B).
  • an inorganic protective layer (III) it becomes difficult for the raw materials for forming the color filter to reach the pixel (B) containing the color conversion light emitting material from the color filter. ) can be suppressed.
  • the yellow organic protective layer it is possible to cut blue leakage light that has not been completely converted by the pixels (B) containing the color-converting light-emitting material, thereby improving color reproducibility.
  • FIG. 11 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention having a color filter and an inorganic protective layer (III) and/or a yellow organic protective layer. It has patterned barrier ribs 2 and color filters 5 on a base substrate 1, has an inorganic protective layer (III) and/or a yellow organic protective layer 9 thereon, and further has barrier ribs thereon. It has pixels 3 arranged at 2 intervals.
  • the substrate with partition walls of the present invention preferably further has an inorganic protective layer (IV) having a thickness of 50 to 1,000 nm and/or a yellow organic protective layer on the underlying substrate.
  • the inorganic protective layer (IV) and/or the yellow organic protective layer act as a refractive index adjusting layer, extracting light emitted from the pixels (B) more efficiently, and can further improve the luminance of the display device.
  • the yellow organic protective layer cuts the blue leakage light that has not been completely converted by the pixels (B) containing the color-converting light-emitting material, and can improve color reproducibility.
  • FIG. 12 shows a cross-sectional view of one embodiment of the substrate with partition walls of the present invention having an inorganic protective layer (IV) and/or a yellow organic protective layer. It has an inorganic protective layer (IV) and/or a yellow organic protective layer 10 on a base substrate 1, and has patterned barrier ribs 2 and pixels 3 thereon.
  • Materials constituting the inorganic protective layers (I) to (IV) include, for example, metal oxides such as silicon oxide, indium tin oxide and gallium zinc oxide; metal nitrides such as silicon nitride; and the like. Among these, silicon nitride or silicon oxide is more preferable because of its low water vapor permeability and high permeability.
  • the thickness of the inorganic protective layers (I) to (IV) is preferably 50 nm or more, more preferably 100 nm or more, from the viewpoint of sufficiently suppressing permeation of substances such as water vapor. On the other hand, from the viewpoint of suppressing a decrease in transmittance, the thickness of the inorganic protective layers (I) to (IV) is preferably 800 nm or less, more preferably 500 nm or less.
  • the yellow organic protective layer is obtained, for example, by patterning a resin composition containing a yellow pigment and a resin.
  • the yellow pigment and the resin the same materials as those described above as the materials constituting the partition wall (A-1) can be used.
  • a method of patterning the yellow organic protective layer a method of forming a pattern by a photosensitive paste method is preferable, as in the case of the barrier ribs (A-1) described above.
  • the yellow organic protective layer 8 may serve as an overcoat layer that planarizes each pixel of the color filter.
  • the substrate with partitions of the present invention can also be used in a display device using mini or micro LEDs, in which a large number of LEDs corresponding to pixels separated by partitions formed on the substrate are arranged. ON/OFF of each pixel is enabled by ON/OFF of a mini or micro LED, no liquid crystal is required.
  • the substrate with partition walls of the present invention can be used not only for partition walls for separating pixels, but also for partition walls for separating mini or micro LEDs in a backlight.
  • the substrate with partition walls of the present invention preferably further has a light emitting source selected from organic EL cells, mini-LED cells and micro-LED cells on the base substrate.
  • a light emitting source selected from organic EL cells, mini-LED cells and micro-LED cells on the base substrate.
  • FIG. 13 shows a cross-sectional view of one embodiment of the partition-furnished substrate of the present invention having a light-emitting light source selected from organic EL cells, mini-LED cells and micro-LED cells.
  • a light emitting source 11 selected from organic EL cells, mini-LED cells and micro-LED cells is provided between partition walls 2 patterned on a base substrate 1 .
  • the substrate with partition walls of the present invention preferably further has pixels (B) on the light emitting light sources selected from organic EL cells, mini-LED cells and micro-LED cells.
  • FIG. 14 shows a cross-sectional view of one embodiment of the partition-furnished substrate of the present invention having light-emitting light sources and pixels selected from organic EL cells, mini-LED cells, and micro-LED cells.
  • a light emitting source 11 selected from organic EL cells, mini-LED cells and micro-LED cells is provided between partition walls 2 patterned on a base substrate 1, and pixels 3 are provided thereon.
  • a display device of the present invention includes the substrate with partition walls and a light emitting source.
  • a light emission source selected from a liquid crystal cell, an organic EL cell, a mini LED cell and a micro LED cell is preferable.
  • An organic EL cell is more preferable as the light source because of its excellent light emission characteristics.
  • a mini-LED cell is a cell in which a large number of LEDs each having a length and width of about 100 ⁇ m to 10 mm are arranged.
  • a micro LED cell refers to a cell in which a large number of LEDs each having a length and width of less than 100 ⁇ m are arranged.
  • the method for manufacturing the display device of the present invention will be described by taking an example of the display device having the substrate with partition walls and the organic EL cell of the present invention.
  • a photosensitive polyimide resin is applied on a glass substrate, and an insulating film having an opening is formed by photolithography. After aluminum is sputtered thereon, the aluminum is patterned by photolithography to form a back electrode layer made of aluminum in the openings where there is no insulating film.
  • Alq3 tris(8-quinolinolato)aluminum
  • Alq3 tris(8-quinolinolato)aluminum
  • ITO is deposited as a transparent electrode by sputtering to fabricate an organic EL cell having a white light-emitting layer.
  • a display device can be produced by bonding the aforementioned substrate with partition walls to the organic EL cell obtained in this manner so as to face each other with a sealant.
  • the solid content concentrations of the polysiloxane solutions in Synthesis Examples 1-6 and the (meth)acrylic polymer solutions in Synthesis Examples 7-9 were obtained by the following method. 1.5 g of polysiloxane solution or (meth)acrylic polymer solution was placed in an aluminum cup and heated at 250° C. for 30 minutes using a hot plate to evaporate the liquid. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration was obtained from the ratio to the weight before heating.
  • the weight average molecular weights of the polysiloxane solutions in Synthesis Examples 1 to 6 and the (meth)acrylic polymer solutions in Synthesis Examples 7 to 9 were obtained in terms of polystyrene by the following method.
  • Apparatus Waters GPC measuring apparatus with RI detector (2695) Column: PLgel MIXED-C column (manufactured by Polymer Laboratories, 300 mm) x 2 (connected in series) Measurement temperature: 40°C Flow rate: 1 mL/min Solvent: Tetrahydrofuran (THF) 0.5% by weight solution Standard substance: polystyrene Detection mode: RI.
  • the content ratio of each repeating unit in polysiloxane in Synthesis Examples 1 to 6 was obtained by the following method.
  • a polysiloxane solution is injected into a “Teflon” (registered trademark) NMR sample tube with a diameter of 10 mm and 29 Si-NMR measurement is performed, and the Si derived from a specific organosilane is compared with the integrated value of the entire Si derived from the organosilane.
  • the content ratio of each repeating unit was calculated from the ratio of the integrated value of. 29 Si-NMR measurement conditions are shown below.
  • Apparatus Nuclear magnetic resonance apparatus (JNM-GX270; manufactured by JEOL Ltd.) Measurement method: Gated decoupling method Measurement nucleus frequency: 53.6693 MHz ( 29 Si nuclei) Spectrum width: 20000Hz Pulse width: 12 ⁇ s (45° pulse) Pulse repetition time: 30.0 seconds Solvent: Acetone-d6 Reference substance: Tetramethylsilane Measurement temperature: 23°C Sample rotation speed: 0.0 Hz.
  • aqueous phosphoric acid solution was added over 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. A mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 182.96 g of methanol and water, which are by-products, were distilled during the reaction.
  • PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-1) solution.
  • the weight average molecular weight of the obtained polysiloxane (PSL-1) was 12,000.
  • aqueous phosphoric acid solution was added over 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution. A mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 195.52 g of methanol and water, which are by-products, were distilled during the reaction.
  • PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-2) solution.
  • the weight average molecular weight of the obtained polysiloxane (PSL-2) was 5,500.
  • the molar ratio of each repeating unit derived from succinic anhydride was 47.5 mol %, 17.5 mol %, 5 mol %, 20 mol % and 10 mol %, respectively.
  • Aqueous phosphoric acid was added over 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution.
  • a mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring. A total of 173.99 g of methanol and water, which are by-products, were distilled during the reaction.
  • PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-3) solution.
  • the weight average molecular weight of the obtained polysiloxane (PSL-3) was 6,000.
  • PSL-3 polysiloxane
  • an aqueous phosphoric acid solution prepared by dissolving 3.328 g of phosphoric acid (1.0% by weight based on the charged monomers) in 85.84 g of water was added with stirring at 40° C. over 30 minutes. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution.
  • a mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring.
  • PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-4) solution.
  • the weight average molecular weight of the obtained polysiloxane (PSL-4) was 15,000.
  • each repeat derived from styryltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, dimethyldimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride in polysiloxane (PSL-4)
  • PSL-4 polysiloxane
  • Synthesis Example 5 Polysiloxane (PSL-5) solution In a 1000 ml three-necked flask, 76.06 g (0.306 mol) of 3-methacryloxypropyltrimethoxysilane and 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane were added.
  • the weight average molecular weight of the obtained polysiloxane (PSL-5) was 5,000.
  • 3-methacryloxypropyltrimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, dimethyldimethoxysilane, and 3-trimethoxysilylpropylsuccinic anhydride in polysiloxane (PSL-5) The molar ratio of each repeating unit derived was 17.5 mol %, 5 mol %, 67.5 mol % and 10 mol %, respectively.
  • aqueous phosphoric acid solution prepared by dissolving 3.495 g of phosphoric acid (1.0% by weight with respect to the charged monomers) in 70.88 g of water was added over 30 minutes while stirring at 40°C. After that, the flask was immersed in an oil bath at 70° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the temperature of the solution (internal temperature) reached 100° C., and the solution was heated and stirred for 2 hours (internal temperature: 100 to 110° C.) to obtain a polysiloxane solution.
  • a mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 liter/min during the temperature rise and heating and stirring.
  • PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane (PSL-6) solution.
  • the weight average molecular weight of the obtained polysiloxane (PSL-6) was 6,000.
  • each repeating unit derived from diphenyldimethoxysilane, 3-(3,4-epoxycyclohexyl)propyltrimethoxysilane, dimethyldimethoxysilane, and 3-trimethoxysilylpropylsuccinic anhydride in polysiloxane (PSL-6) were 47.5 mol %, 5 mol %, 37.5 mol % and 10 mol %, respectively.
  • the compositions of Synthesis Examples 1 to 6 are summarized in Table 1.
  • Synthesis Example 8 Synthesis of (meth)acrylic polymer solution (PAL-2) A 500 mL flask was charged with 3.00 g of 2,2′-azobis(isobutyronitrile) and 50.0 g of PGMEA, and then 15% of methacrylic acid was added. 0 g (0.174 mol), 38.06 g (0.216 mol) of benzyl methacrylate, and 32.80 g (0.149 mol) of tricyclodecanyl methacrylate were charged, stirred at room temperature for a while, and the atmosphere in the flask was replaced with nitrogen. The mixture was heated and stirred at 70° C. for 5 hours.
  • PAL-2 (meth)acrylic polymer solution
  • Synthesis Example 9 Synthesis of (meth)acrylic polymer solution (PAL-3) After charging 3.00 g of 2,2'-azobis(isobutyronitrile) and 50.0 g of PGMEA into a 500 mL flask, 30 g of methacrylic acid was added. .0 g (0.349 mol) and 116.98 g (0.498 mol) of tricyclo[5.2.1.02,6]decan-8-yl methacrylate were charged, stirred at room temperature for a while, and the inside of the flask was replaced with nitrogen. The mixture was heated and stirred at 70° C. for 5 hours.
  • PAL-3 After charging 3.00 g of 2,2'-azobis(isobutyronitrile) and 50.0 g of PGMEA into a 500 mL flask, 30 g of methacrylic acid was added. .0 g (0.349 mol) and 116.98 g (0.498 mol) of tricyclo[5.2.1.0
  • the resulting reaction product was purified by silica gel column chromatography to give 3,5-bis(4-t-butylphenyl)benzaldehyde (3.5 g) as a white solid.
  • 3,5-bis(4-t-butylphenyl)benzaldehyde (1.5 g) and 2,4-dimethylpyrrole (0.7 g) were placed in a flask, followed by anhydrous dichloromethane (200 mL) and trifluoroacetic acid (1 drop) was added and stirred for 4 hours under a nitrogen atmosphere.
  • Synthesis Example 12 Silica Particle-Containing Polysiloxane Solution (LS-1) 0.05 g (0.4 mmol) of methyltrimethoxysilane, 0.66 g (3.0 mmol) of trifluoropropyltrimethoxysilane, and 0.10 g (0.0 mmol) of trimethoxysilylpropylsuccinic anhydride are placed in a 500 ml three-necked flask. .4 mmol), 7.97 g (34 mmol) of ⁇ -acryloxypropyltrimethoxysilane, and 15.6% by weight of an isopropyl alcohol dispersion of silica particles (IPA-ST-UP: manufactured by Nissan Chemical Industries, Ltd.).
  • IPA-ST-UP isopropyl alcohol dispersion of silica particles
  • aqueous phosphoric acid solution prepared by dissolving 0.088 g of phosphoric acid in 4.09 g of water was added over 3 minutes while stirring at room temperature. After that, the flask was immersed in an oil bath at 40° C. and stirred for 60 minutes, and then the oil bath was heated to 115° C. over 30 minutes. After 1 hour from the start of heating, the internal temperature of the solution reached 100° C., and by further heating and stirring for 2 hours (the internal temperature was 100 to 110° C.), a silica particle-containing polysiloxane solution (LS-1) was obtained. rice field.
  • silica particle-containing polysiloxane solution had a solid content concentration of 24.3% by weight, and the content of polysiloxane and silica particles in the solid content was 15% by weight and 85% by weight, respectively.
  • Example 1 Partition wall resin composition (P-1) 5.00 g of titanium dioxide pigment (R-960; manufactured by BASF Japan Co., Ltd. (hereinafter "R-960”)) as a white pigment, and the polysiloxane (PSL-1) solution obtained in Synthesis Example 1 as a resin. 5.00 g and 0.0188 g of titanium nitride as a light-shielding pigment were mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-1).
  • R-960 titanium dioxide pigment
  • PSL-1 polysiloxane
  • OXE-02 bis (2,4,6-trimethylbenzoyl)-phenylphosphine oxide
  • IC-819 bis (2,4,6-trimethylbenzoyl)-phenylphosphine oxide
  • IC-819 bis (2,4,6-trimethylbenzoyl)-phenylphosphine oxide
  • IC-819 1,3,5-tris(3,5-di-t-butyl-4-hydroxyphenylmethyl)-2,4,6- 0.0309 g of trimethylbenzene (“ADEKA STAB” (registered trademark) AO-330, manufactured by ADEKA Corporation (hereinafter “AO-330”)), and dipentaerythritol hexaacrylate (“KAYARAD” (registered trademark) as a photopolymerizable compound.
  • ADEKA STAB registered trademark
  • AO-330 dipentaerythritol hexaacrylate
  • KAYARAD dipentaerythritol hexaacrylate
  • DPHA manufactured by Shin Nihon Yakugyo Co., Ltd.
  • DPHA a photopolymerizable fluorine-containing compound
  • RS-72A a photopolymerizable fluorine-containing compound
  • PGMEA a photopolymerizable fluorine-containing compound
  • RS-72A a photopolymerizable fluorine-containing compound
  • PGMEA a photopolymerizable fluorine-containing compound
  • PGMEA a photopolymerizable fluorine-containing compound
  • PGMEA a photopolymerizable fluorine-containing compound
  • PGMEA a photopolymerizable fluorine-containing compound
  • PGMEA a photopolymerizable fluorine-containing compound
  • PGMEA a photopolymerizable fluorine-containing compound
  • PGMEA a photopolymerizable fluorine-containing compound
  • PGMEA a photopolymerizable
  • Example 2 Partition wall resin composition (P-2) R-960 as a white pigment and 5.00 g of a polysiloxane (PSL-1) solution as a resin were mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-2). . Further, 0.103 g of bis(acetylacetonato)palladium as an organometallic compound and 0.089 g of triphenylphosphine as a coordinating compound having a phosphorus atom (equimolar amount relative to the organometallic compound) were added to DAA1. .726 g to obtain an organometallic compound solution (OM-1).
  • Example 3 Partition wall resin composition (P-3) As an organometallic compound, 0.103 g of silver neodecanoate was dissolved in 0.928 g of EDM to obtain an organometallic compound solution (OM-2). Instead of the organometallic compound solution (OM-1), 1.03 g of organometallic compound solution (OM-2), 2.72 g of polysiloxane (PSL-1) solution, and (meth)acrylic polymer (PAL-1) solution were added. A resin composition for partition walls (P-3) was obtained in the same manner as in Example 2, except that 4.37 g of PGMEA and 1.366 g of PGMEA were added.
  • Partition wall resin compositions (P-4) to (P-6) Resin for partition walls was prepared in the same manner as in Example 1, except that the polysiloxane (PSL-2), (PSL-3), and (PSL-4) solutions were used instead of the polysiloxane (PSL-1) solution. Compositions (P-4) to (P-6) were obtained.
  • Example 7 Partition wall resin composition (P-7) A partition wall resin composition (P-7) was prepared in the same manner as in Example 1, except that the (meth)acrylic polymer (PAL-2) solution was used instead of the (meth)acrylic polymer (PAL-1) solution. got
  • Example 8 Partition wall resin composition (P-8) A partition wall resin composition (P-8) was obtained in the same manner as in Example 1, except that the cardo-based polymer V-259ME was used instead of the (meth)acrylic polymer (PAL-1) solution.
  • Example 9 Partition wall resin composition (P-9) A partition wall resin composition (P-9) was obtained in the same manner as in Example 1, except that the cardo-based polymer WR-301 was used instead of the (meth)acrylic polymer (PAL-1) solution.
  • Example 10 Partition wall resin composition (P-10) Instead of the hindered phenol compound AO-330, pentaerythritol tetrakis (3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate (“adekastab” (registered trademark) AO-60, ADEKA Corporation) ) (hereinafter “AO-60”)) was used to obtain a partition wall resin composition (P-10) in the same manner as in Example 1.
  • AO-60 pentaerythritol tetrakis
  • Example 11 Partition wall resin composition (P-11) Instead of the hindered phenol compound AO-330, 6,6'-di-t-butyl-4,4'-butylidenedi-m-cresol (“ADEKA STAB” (registered trademark) AO-40, manufactured by ADEKA Corporation) (hereinafter referred to as "AO-40”)) was used in the same manner as in Example 1 to obtain a partition wall resin composition (P-11).
  • ADEKA STAB 6,6'-di-t-butyl-4,4'-butylidenedi-m-cresol
  • AO-40 6,6'-di-t-butyl-4,4'-butylidenedi-m-cresol
  • Example 12 Partition wall resin composition (P-12) Instead of the hindered phenol compound AO-330, octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate (“ADEKA STAB” (registered trademark) AO-50, manufactured by ADEKA Corporation ( A resin composition for partition walls (P-12) was obtained in the same manner as in Example 1, except that hereinafter "AO-50”)) was used.
  • ADEKA STAB registered trademark
  • AO-50 octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate
  • Example 13 Partition wall resin composition (P-13)
  • the hindered phenol compound AO-330 was added in an amount of 0.0474 g
  • polysiloxane (PSL-1) solution was 2.81 g
  • (meth)acrylic polymer (PAL-1) solution was 4.46 g
  • PGMEA was 0.46 g
  • a resin composition for partition walls (P-13) was obtained in the same manner as in Example 1, except that 538 g was added.
  • Example 14 Partition wall resin composition (P-14)
  • the hindered phenol compound AO-330 was added in an amount of 0.330 g
  • polysiloxane (PSL-1) solution was 2.46 g
  • (meth)acrylic polymer (PAL-1) solution was 4.10 g
  • PGMEA was 0.33 g
  • a resin composition for partition walls (P-14) was obtained in the same manner as in Example 1, except that 962 g was added.
  • Example 15 Partition wall resin composition (P-15)
  • the hindered phenol compound AO-330 was added in an amount of 0.00516 g
  • polysiloxane (PSL-1) solution was 2.86 g
  • (meth)acrylic polymer (PAL-1) solution was 4.51 g
  • PGMEA was 0.00 g
  • a resin composition for partition walls (P-15) was obtained in the same manner as in Example 1, except that 474 g was added.
  • Example 16 Partition wall resin composition (P-16) The hindered phenol compound AO-330 was added in an amount of 0.00309 g, 2.87 g of polysiloxane (PSL-1) solution, 4.51 g of (meth)acrylic polymer (PAL-1) solution, and 0.51 g of PGMEA.
  • a resin composition for partition walls (P-16) was obtained in the same manner as in Example 1, except that 474 g was added.
  • Example 17 Partition wall resin composition (P-17) As a hindered amine compound, 0.103 g of 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate (“ADEKA STAB” (registered trademark) LA-82, manufactured by ADEKA Corporation (hereinafter “LA-82”)) Partition walls in the same manner as in Example 1 except that 2.70 g of polysiloxane (PSL-1) solution, 4.35 g of (meth) acrylic polymer (PAL-1) solution, and 0.668 g of PGMEA were added. to obtain a resin composition (P-17) for
  • Example 18 Partition wall resin composition (P-18) Instead of the hindered amine compound LA-82, 2,2,6,6-tetramethyl-4-piperidyl methacrylate (“ADEKA STAB” (registered trademark) LA-87, manufactured by ADEKA Corporation (hereinafter “LA-87”) ) was used to obtain a partition wall resin composition (P-18) in the same manner as in Example 17.
  • ADEKA STAB 2,2,6,6-tetramethyl-4-piperidyl methacrylate
  • LA-87 2,2,6,6-tetramethyl-4-piperidyl methacrylate
  • Example 19 Partition wall resin composition (P-19) Without adding the hindered phenol compound AO-330, 2.74 g of polysiloxane (PSL-1) solution, 4.39 g of (meth)acrylic polymer (PAL-1) solution, and 0.621 g of PGMEA were added. A resin composition for partition walls (P-19) was obtained in the same manner as in Example 17 except for the above.
  • Example 20 Partition wall resin composition (P-20) Instead of the hindered amine compound LA-82, bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate (“ADEKA STAB” (registered trademark) LA-72, manufactured by ADEKA Corporation (hereinafter “LA A resin composition for partition walls (P-20) was obtained in the same manner as in Example 19, except that the resin composition (P-20) was used.
  • ADEKA STAB registered trademark
  • LA-72 manufactured by ADEKA Corporation
  • Example 21 Partition wall resin composition (P-21) A partition wall resin composition (P-21) was obtained in the same manner as in Example 19, except that 1,2,2,5,5-pentamethylpiperidine was used instead of the hindered amine compound LA-82.
  • Example 22 Partition wall resin composition (P-22)
  • the hindered amine compound LA-82 was added in an amount of 0.248 g, and 2.56 g of polysiloxane (PSL-1) solution, 4.71 g of (meth)acrylic polymer (PAL-1) solution, and 0.838 g of PGMEA were added.
  • a partition wall resin composition (P-22) was obtained in the same manner as in Example 19, except that
  • Example 23 Partition wall resin composition (P-23)
  • the hindered amine compound LA-82 was added in an amount of 0.371 g, and 2.40 g of polysiloxane (PSL-1) solution, 4.05 g of (meth)acrylic polymer (PAL-1) solution, and 1.024 g of PGMEA were added.
  • a partition wall resin composition (P-23) was obtained in the same manner as in Example 19, except that
  • Example 24 Partition wall resin composition (P-24)
  • the hindered amine compound LA-82 was added in an amount of 0.0100 g, and 2.86 g of polysiloxane (PSL-1) solution, 4.51 g of (meth)acrylic polymer (PAL-1) solution, and 0.482 g of PGMEA were added.
  • a partition wall resin composition (P-24) was obtained in the same manner as in Example 19, except that
  • Example 25 Partition wall resin composition (P-25)
  • the hindered amine compound LA-82 was added in an amount of 0.0039, and 2.86 g of polysiloxane (PSL-1) solution, 4.51 g of (meth)acrylic polymer (PAL-1) solution, and 0.471 g of PGMEA were added.
  • a partition wall resin composition (P-25) was obtained in the same manner as in Example 19, except that
  • Example 26 Partition wall resin composition (P-26) A partition wall resin composition (P-26) was obtained in the same manner as in Example 1, except that the amount of IC-819 added was 0.413 g and OXE-02 was not added.
  • Example 27 Partition wall resin composition (P-27) A partition wall resin composition (P-27) was obtained in the same manner as in Example 1, except that the amount of OXE-02 added was 0.413 g and IC-819 was not added.
  • Example 28 Partition wall resin composition (P-28) A resin composition for partition walls was prepared in the same manner as in Example 1, except that the amount of polysiloxane (PSL-1) solution added was 1.33 g and the amount of (meth)acrylic polymer (PAL-1) solution added was 5.98 g. A product (P-28) was obtained.
  • PSL-1 polysiloxane
  • PAL-1 polymethacrylic polymer
  • Example 29 Partition wall resin composition (P-29) A resin composition for partition walls was prepared in the same manner as in Example 1, except that the amount of the polysiloxane (PSL-1) solution added was 4.73 g and the amount of the (meth)acrylic polymer (PAL-1) solution added was 2.58 g. A product (P-29) was obtained.
  • PSL-1 polysiloxane
  • PAL-1 polymethacrylic polymer
  • Example 30 Partition wall resin composition (P-30) 7.68 g of polysiloxane (PSL-1) solution, 7.68 g of (meth)acrylic polymer (PAL-1) solution, 0.123 g of OXE-02, 0.205 g of IC-819, and 1.0 g of DPHA. 64 g, 0.205 g of RS-72A, 0.016 g of Celoxide 2021P, 0.025 g of AO-330, and 0.103 g of a 10 wt. and stirred. The resulting mixture was filtered through a 5.0 ⁇ m filter to obtain a partition wall resin composition (P-30).
  • PSL-1 polysiloxane
  • PAL-1 (meth)acrylic polymer
  • Example 31 Partition wall resin composition (P-31) Without adding the organometallic compound solution (OM-1), the amount of polysiloxane (PSL-1) solution added was 2.85 g, the amount of (meth)acrylic polymer (PAL-1) solution added was 4.50 g, A partition wall resin composition (P-31) was obtained in the same manner as in Example 2, except that the amount of PGMEA added was changed to 0.284 g and the amount of DAA added was changed to 1.86 g.
  • Example 32 Partition wall resin composition (P-32) 0.20 g of titanium nitride as a light-shielding pigment and 7.00 g of a polysiloxane (PSL-1) solution as a resin are mixed and dispersed using a mill-type disperser filled with zirconia beads to obtain a pigment dispersion (MW-3). Obtained.
  • Example 33 Partition wall resin composition (P-33) 4.00 g of the organometallic compound solution (OM-1), 6.21 g of polysiloxane (PSL-1) solution, 6.21 g of (meth)acrylic polymer (PAL-1) solution, 0 OXE-02 10 wt. 0.103 g was dissolved in 2.03 g of solvent PGMEA and stirred. The resulting mixture was filtered through a 5.0 ⁇ m filter to obtain a partition wall resin composition (P-33).
  • OM-1 organometallic compound solution
  • PSL-1 polysiloxane
  • PAL-1 (meth)acrylic polymer
  • Example 34 Partition wall resin composition (P-34) Without adding the liquid-repellent compound RS-72A, the amount of polysiloxane (PSL-1) solution added was 2.67 g, the amount of (meth)acrylic polymer (PAL-1) solution added was 4.32 g, and PGMEA was added.
  • a resin composition for partition walls (P-34) was obtained in the same manner as in Example 2, except that the amount was changed to 0.830 g.
  • Comparative Example 7 Partition wall resin composition (P-41) 5.00 g of R-960 as a white pigment, 5.00 g of a (meth)acrylic polymer (PAL-1) solution as a resin, and 0.0188 g of titanium nitride as a light-shielding pigment were mixed, and a mill-type dispersion filled with zirconia beads. A pigment dispersion liquid (MW-4) was obtained by dispersing using a machine.
  • P-41 Partition wall resin composition (P-41) 5.00 g of R-960 as a white pigment, 5.00 g of a (meth)acrylic polymer (PAL-1) solution as a resin, and 0.0188 g of titanium nitride as a light-shielding pigment were mixed, and a mill-type dispersion filled with zirconia beads.
  • a pigment dispersion liquid (MW-4) was obtained by dispersing using a machine.
  • Comparative Example 8 Partition wall resin composition (P-42) Without adding the hindered phenol compound AO-330, 2.87 g of polysiloxane (PSL-1) solution, 4.52 g of (meth)acrylic polymer (PAL-1) solution, and 0.467 g of PGMEA were added. Except for this, the resin composition for partition walls (P-42) was obtained in the same manner as in Example 1.
  • the compositions of Examples 1 to 34 and Comparative Examples 1 to 8 are summarized in Tables 3-1 to 3-4.
  • Color Conversion Luminescent Material Composition (CL-1) Green quantum dot material (Lumidot 640 CdSe / ZnS, average particle size 6.3 nm: manufactured by Aldrich) 0.5 wt% toluene solution 20 parts by weight, DPHA 45 parts by weight, "Irgacure” (registered trademark) 907 ( 5 parts by weight of BASF Japan Co., Ltd.), 166 parts by weight of 30% by weight PGMEA solution of acrylic resin (SPCR-18 (trade name), Showa Denko Co., Ltd.) and 97 parts by weight of toluene are mixed and stirred. and dissolved uniformly. The resulting mixture was filtered through a 0.45 ⁇ m syringe filter to prepare a color-converting luminescent material composition (CL-1).
  • Preparation Example 2 Color-converting luminescent material composition (CL-2) Color in the same manner as in Preparation Example 1, except that 0.4 parts by weight of the green phosphor G-1 obtained in Synthesis Example 10 was used instead of the green quantum dot material, and the amount of toluene added was changed to 117 parts by weight. A conversion luminescent material composition (CL-2) was prepared.
  • Preparation Example 3 Color Conversion Luminescent Material Composition (CL-3) Color in the same manner as in Preparation Example 1, except that 0.4 parts by weight of the red phosphor R-1 obtained in Synthesis Example 11 was used instead of the green quantum dot material, and the amount of toluene added was changed to 117 parts by weight. A conversion luminescent material composition (CL-3) was prepared.
  • Color filter forming material C. I. Pigment Green 59, 90 g, C.I. I. 60 g of Pigment Yellow 150, 75 g of a polymer dispersant (“BYK” (registered trademark)-6919 (trade name) manufactured by BYK Chemie (hereinafter “BYK-6919”)), a binder resin (“Adeka Arkles” (registered trademark) ) 100 g of WR301 (trade name, manufactured by ADEKA Corporation) and 675 g of PGMEA were mixed to prepare a slurry.
  • a polymer dispersant (“BYK” (registered trademark)-6919 (trade name) manufactured by BYK Chemie (hereinafter “BYK-6919”)
  • a binder resin (“Adeka Arkles” (registered trademark) ) 100 g of WR301 (trade name, manufactured by ADEKA Corporation) and 675 g of PGMEA were mixed to prepare a slurry.
  • a beaker containing the slurry was connected to a Dyno mill and a tube, and zirconia beads with a diameter of 0.5 mm were used as media to perform dispersion treatment at a peripheral speed of 14 m/s for 8 hours to obtain Pigment Green 59 dispersion (GD-1). was made.
  • Pigment Green 59 dispersion (GD-1) 56.54 g, acrylic resin (“Cyclomer” (registered trademark) P (ACA) Z250 (trade name) manufactured by Daicel Allnex Co., Ltd. (hereinafter “P (ACA) Z250” )) 3.14 g, DPHA 2.64 g, a photopolymerization initiator (“OPTOMER” (registered trademark) NCI-831 (trade name) manufactured by ADEKA Corporation (hereinafter “NCI-831”)) 0.330 g, 0.04 g of a surfactant (BYK” (registered trademark)-333 (trade name) manufactured by BYK-Chemie (hereinafter “BYK-333”)), 0.01 g of BHT as a polymerization inhibitor, and 37 g of PGMEA as a solvent. 30 g were mixed to prepare a color filter forming material (CF-1).
  • CF-1 color filter forming material
  • Preparation Example 5 Resin composition for light-shielding barrier ribs 150 g of carbon black (MA100 (trade name) manufactured by Mitsubishi Chemical Corporation), 75 g of polymer dispersant BYK-6919, 100 g of P(ACA)Z250, and 675 g of PGMEA were mixed. to prepare a slurry. A beaker containing the slurry was connected to a Dyno mill and a tube, and zirconia beads with a diameter of 0.5 mm were used as media to perform dispersion treatment at a peripheral speed of 14 m/s for 8 hours to prepare a pigment dispersion liquid (MB-1). bottom.
  • carbon black MA100 (trade name) manufactured by Mitsubishi Chemical Corporation
  • Pigment dispersion (MB-1) 56.54 g, P (ACA) Z250 3.14 g, DPHA 2.64 g, NCI-831 0.330 g, BYK-333 0.04 g, tertiary polymerization inhibitor 0.01 g of butylcatechol and 37.30 g of PGMEA were mixed to prepare a resin composition for light-shielding partition walls.
  • Preparation Example 6 Low Refractive Index Layer-Forming Material 5.350 g of the silica particle-containing polysiloxane solution (LS-1) obtained in Synthesis Example 12, 1.170 g of ethylene glycol mono-t-butyl ether, and 3.48 g of DAA After mixing, the mixture was filtered through a 0.45 ⁇ m syringe filter to prepare a low refractive index layer-forming material.
  • Yellow organic protective layer-forming material C.
  • 150 g of Pigment Yellow 150 75 g of a polymer dispersant (“BYK” (registered trademark)-6919 (trade name) manufactured by BYK-Chemie (hereinafter “BYK-6919”)), a binder resin (“Adeka Arkles” (registered trademark) )
  • BYK-6919 a polymer dispersant
  • Adeka Arkles registered trademark
  • a beaker containing the slurry was connected to a Dyno mill and a tube, and using zirconia beads with a diameter of 0.5 mm as media, dispersion treatment was performed at a peripheral speed of 14 m / s for 8 hours to obtain Pigment Yellow 150 dispersion (YD-1). was made.
  • Pigment Yellow 150 dispersion liquid (YD-1) 3.09 g, polysiloxane (PSL-1) solution 23.54 g as resin, DPHA 6.02 g as photopolymerizable compound, silver neodecanoate as organometallic compound 6.02 g of the prepared organometallic compound solution (OM-2), 0.20 g of OXE-02 as a photopolymerization initiator, 0.40 g of IC-819, 0.060 g of IRGANOX (registered trademark) 1010, and BYK 0.050 g of a 10% by weight diluted solution of PGMEA of -352 (equivalent to a concentration of 500 ppm) was dissolved in 61.15 g of solvent PGMEA and stirred. The resulting mixture was filtered through a 5.0 ⁇ m filter to obtain a yellow organic protective layer-forming material (YL-1).
  • PSL-1 polysiloxane
  • DPHA 6.02 g photopolyme
  • Examples 35-69, Comparative Examples 9-16 A 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used as the base substrate. A partition wall resin composition shown in Tables 4 and 5 was spin-coated thereon, and dried at a temperature of 100° C. for 3 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). , to prepare a dry film.
  • SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.
  • the prepared dried film is exposed through a photomask using a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) with an ultra-high pressure mercury lamp as a light source and an exposure amount of 100 mJ/cm 2 (g, h , i-line irradiation.The amount of exposure is the i-line conversion value.). Then, using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.), shower development is performed using a 0.045% by weight potassium hydroxide aqueous solution for 100 seconds, and then water is used for 30 seconds. Rinse for seconds.
  • AD-2000 automatic developing device
  • the regions separated by the partition walls of the obtained substrate with partition walls were coated with the color-converting light-emitting material compositions shown in Tables 4 and 5 using an inkjet method in a nitrogen atmosphere, dried at 100° C. for 30 minutes, and the thickness was reduced. Pixels of 5.0 ⁇ m were formed to obtain a substrate with partition walls having the configuration shown in FIG.
  • Example 70 A 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used as the base substrate.
  • the light-shielding barrier rib forming material obtained in Preparation Example 5 was spin-coated thereon, and dried at a temperature of 100° C. for 3 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). , to prepare a dry film.
  • the prepared dried film was exposed through a photomask using a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) with an ultra-high pressure mercury lamp as a light source, with an exposure amount of 40 mJ/cm 2 (g, h , i-line). Thereafter, using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.), development is performed with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, and then rinsed with water for 30 seconds. bottom. Furthermore, using an oven (trade name: IHPS-222, manufactured by ESPEC Co., Ltd.), it was heated in the air at a temperature of 230° C.
  • AD-2000 automatic developing device
  • IHPS-222 manufactured by ESPEC Co., Ltd.
  • a substrate with light-shielding barrier ribs was obtained, in which barrier ribs having an OD value of 2.0 per 0 ⁇ m were formed in a lattice pattern with a pitch of 40 ⁇ m on the short side and 280 ⁇ m on the long side.
  • barrier ribs having a height of 10 ⁇ m and a width of 20 ⁇ m were formed on the light shielding barrier ribs in a lattice pattern similar to that of the light shielding barrier ribs having a pitch of 40 ⁇ m on the short side and 280 ⁇ m on the long side. obtained a substrate with The color-converting luminescent material composition (CL-2) obtained in Preparation Example 2 was applied to the regions separated by the partition walls of the obtained substrate with partition walls using an inkjet method in a nitrogen atmosphere, and the mixture was heated at 100°C. After drying for 30 minutes, pixels with a thickness of 5.0 ⁇ m were formed to obtain a substrate with partition walls having the structure shown in FIG.
  • Example 71 The colorant obtained in Preparation Example 4 was applied to the regions separated by the partition walls of the substrate with partition walls before pixel formation, which was obtained by the same method as in Example 36, so that the film thickness after curing was 2.5 ⁇ m.
  • a filter-forming material (CF-1) was applied and vacuum dried. Exposure was performed at an exposure amount of 40 mJ/cm 2 (g, h, i lines) through a photomask designed to expose the regions of the openings of the substrate with partition walls. After developing with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, heat curing was performed at 230° C. for 30 minutes. A color filter layer was formed.
  • the color-converting light-emitting material composition (CL-2) obtained in Preparation Example 2 was applied onto the color filter in a nitrogen atmosphere using an inkjet method and dried at 100° C. for 30 minutes to obtain a thickness of 5.5. Pixels of 0 ⁇ m were formed to obtain a substrate with partition walls having the structure shown in FIG.
  • Example 72 The low refractive index layer-forming material obtained in Preparation Example 6 was spin-coated on the substrate with partition walls after forming pixels by the same method as in Example 36, and a hot plate (trade name: SCW-636, Dainippon Screen Mfg. Co., Ltd. (manufactured by Co., Ltd.), and dried at a temperature of 100° C. for 3 minutes to prepare a dry film. Furthermore, using an oven (trade name IHPS-222, manufactured by ESPEC Co., Ltd.), the mixture is heated in air at a temperature of 90° C. for 30 minutes to form a low refractive index layer having a height of 1.0 ⁇ m and a refractive index of 1.25. Then, a substrate with partition walls having the structure shown in FIG. 6 was obtained.
  • a hot plate trade name: SCW-636, Dainippon Screen Mfg. Co., Ltd. (manufactured by Co., Ltd.
  • IHPS-222 manufactured by ESPEC Co., Ltd.
  • Example 73 On the low refractive index layer of the substrate with partition walls having the low refractive index layer obtained in Example 72, using a plasma CVD apparatus (PD-220NL, manufactured by Samco), inorganic protection with a height of 50 to 1,000 nm A silicon nitride film having a thickness of 300 nm, which corresponds to layer I, was formed to obtain a substrate with partition walls having the structure shown in FIG.
  • a plasma CVD apparatus PD-220NL, manufactured by Samco
  • Example 74 A 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used as the base substrate.
  • the light-shielding barrier rib forming material obtained in Preparation Example 5 was spin-coated thereon, and dried at a temperature of 100° C. for 3 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). , to prepare a dry film.
  • the prepared dried film was exposed through a photomask using a parallel light mask aligner (trade name: PLA-501F, manufactured by Canon Inc.) with an ultra-high pressure mercury lamp as a light source, with an exposure amount of 40 mJ/cm 2 (g, h , i-line). Thereafter, using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.), development is performed with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, and then rinsed with water for 30 seconds. bottom. Furthermore, using an oven (trade name: IHPS-222, manufactured by ESPEC Co., Ltd.), it was heated in the air at a temperature of 230° C.
  • AD-2000 automatic developing device
  • IHPS-222 manufactured by ESPEC Co., Ltd.
  • a substrate with light-shielding barrier ribs was obtained, in which barrier ribs having an OD value of 2.0 per 0 ⁇ m were formed in a lattice pattern with a pitch of 40 ⁇ m on the short side and 280 ⁇ m on the long side.
  • the color filter forming material (CF-1) obtained in Preparation Example 4 was applied to the regions separated by the light-shielding partition walls so that the film thickness after curing was 2.5 ⁇ m, and dried in a vacuum. Exposure was performed at an exposure dose of 40 mJ/cm 2 (g, h, i lines) through a photomask designed to expose the regions of the openings of the substrate with partition walls. After developing with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, heat curing was performed at 230° C. for 30 minutes. A color filter layer was formed.
  • the low refractive index layer-forming material obtained in Preparation Example 6 was spin-coated and dried at a temperature of 90° C. for 2 minutes using a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.). , to prepare a dry film. Furthermore, using an oven (trade name IHPS-222, manufactured by ESPEC Co., Ltd.), the mixture is heated in air at a temperature of 90° C. for 30 minutes to form a low refractive index layer having a height of 1.0 ⁇ m and a refractive index of 1.25. bottom.
  • a hot plate trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.
  • IHPS-222 manufactured by ESPEC Co., Ltd.
  • a substrate with barrier ribs was formed thereon by the same method as in Example 36 to form barrier ribs having a height of 10 ⁇ m and a width of 20 ⁇ m in a lattice pattern similar to the light shielding barrier ribs having a pitch of 40 ⁇ m on the short side and 280 ⁇ m on the long side. got
  • the color-converting luminescent material composition (CL-2) obtained in Preparation Example 2 was applied to the regions separated by the partition walls of the obtained substrate with partition walls using an inkjet method in a nitrogen atmosphere, and the mixture was heated at 100°C. After drying for 30 minutes, pixels having a thickness of 5.0 ⁇ m were formed to obtain a substrate with partition walls having the structure shown in FIG.
  • Example 75 A plasma CVD apparatus ( PD-220NL (manufactured by Samco) was used to form a silicon nitride film with a thickness of 300 nm, which corresponds to the inorganic protective layer III with a thickness of 50 to 1,000 nm. Furthermore, on the inorganic protective layer III, in a nitrogen atmosphere, the color-converting light-emitting material composition (CL-2) obtained in Preparation Example 2 is applied using an inkjet method, dried at 100° C. for 30 minutes, and the thickness is Pixels of 5.0 ⁇ m were formed to obtain a substrate with partition walls having the configuration shown in FIG. 11 .
  • PD-220NL manufactured by Samco
  • Example 76 A 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used as the base substrate.
  • a plasma CVD device (PD-220NL, manufactured by Samco) was used to form a silicon nitride film with a thickness of 300 nm thereon, which corresponds to the inorganic protective layer IV with a thickness of 50 to 1,000 nm.
  • a substrate with partition walls having the configuration shown in FIG. 12 was obtained in the same manner as in Example 36, except that the above substrate was used instead of the 10 cm square non-alkali glass substrate.
  • Example 77 A color filter layer having a thickness of 2.5 ⁇ m, a short side of 40 ⁇ m, and a long side of 280 ⁇ m was formed by the same method as in Example 71.
  • the resulting yellow organic protective layer-forming material (YL-1) was applied and vacuum-dried. Exposure was performed at an exposure amount of 300 mJ/cm 2 (g, h, i lines) through a photomask designed to expose the regions of the openings of the substrate with partition walls. After developing with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, heat curing was performed at 230° C.
  • a yellow organic protective layer having a thickness of 1.0 ⁇ m, a short side of 40 ⁇ m and a long side of 280 ⁇ m. Furthermore, on the yellow organic protective layer, in a nitrogen atmosphere, using an inkjet method, the color conversion light-emitting material composition (CL-2) obtained in Preparation Example 2 is applied, dried at 100 ° C. for 30 minutes, and the thickness is Pixels of 5.0 ⁇ m were formed to obtain a substrate with partition walls having the configuration shown in FIG. 11 .
  • Example 78 A 10 cm square non-alkali glass substrate (manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm) was used as the base substrate.
  • the yellow organic protective layer-forming material (YL-1) obtained in Preparation Example 7 was applied thereon and vacuum dried. After exposing the dry film with an exposure dose of 300 mJ/cm 2 (g, h, i lines) without using a photomask, the film was developed with a 0.3% by weight tetramethylammonium aqueous solution for 50 seconds, and the film was dried at 230°C for 30 seconds.
  • a yellow organic protective layer having a thickness of 1.0 ⁇ m was formed by heat curing for 1 minute.
  • a substrate with partition walls having the structure shown in FIG. 8 was obtained in the same manner as in Example 36, except that the above substrate was used instead of the 10 cm square non-alkali glass substrate. Tables 4 and 5 show the configuration of each example and comparative example.
  • the inflection point was the temperature corresponding to the peak in the DDSC (differential value of DSC) curve of the thermogram.
  • the DDSC curve was referred to as needed to confirm the DSC baseline.
  • the glass transition temperature (Tg) was evaluated as "A” when it was 60°C or higher, and as “B” when it was lower than 60°C.
  • ⁇ Refractive index of low refractive index layer> The low refractive index layer-forming material used in each example was applied onto a silicon wafer with a spinner, and a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.) was used at a temperature of 90°C. Dried for 2 minutes. Then, using an oven (IHPS-222; manufactured by ESPEC Co., Ltd.), it was heated in the air at 90° C. for 30 minutes to prepare a cured film.
  • SCW-636 trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.
  • the refractive index was measured by irradiating light with a wavelength of 550 nm from the direction perpendicular to the surface of the cured film at 20° C. under atmospheric pressure. , rounded to the third decimal place.
  • a 10 cm square non-alkali glass substrate acting as a mask was placed on top of the prepared dry film for 1 minute, and the tackless property of the dry film was evaluated according to the following criteria. The lower the adhesiveness of the glass substrate, the higher the tackless property and the better the handleability.
  • B When the dry film and the glass substrate were superimposed, they stuck together, but the glass substrate was easily separated. The glass substrate was slightly stained due to the partition wall material.
  • C When the dry film and the glass substrate were overlapped, they adhered and stuck together. The glass substrate could not be easily separated. After separating the glass substrates, the glass substrates were stained by the partition wall material.
  • the barrier rib-forming resin composition used in each example and comparative example was spin-coated so that the film thickness after heating was 10 ⁇ m, 15 ⁇ m, 20 ⁇ m and 25 ⁇ m, respectively.
  • processing was performed under the same conditions as in each example and comparative example, and a solid film was formed on the glass substrate.
  • the resulting solid film was visually observed to evaluate the presence or absence of cracks in the solid film. If even one crack was confirmed, it was determined that the film had no crack resistance at that film thickness.
  • the crack resistant film thickness was judged to be “ ⁇ 15 ⁇ m”.
  • the crack resistant film thickness was determined as " ⁇ 25 ⁇ m” when there was no crack even at 25 ⁇ m, and the crack resistant film thickness was determined as " ⁇ 10 ⁇ m” when there was a crack even at 10 ⁇ m, and the crack resistance was determined.
  • ⁇ Wrinkle resistance> The partition-forming resin composition used in each example and comparative example was spin-coated so that the film thickness after heating was 10 ⁇ m, 15 ⁇ m, 20 ⁇ m and 25 ⁇ m, respectively.
  • processing was performed under the same conditions as in each example and comparative example, and a solid film was formed on the glass substrate.
  • the glass substrate having the solid film was visually observed to evaluate the presence or absence of wrinkles in the solid film. When wrinkles were confirmed, it was determined that the thickness had no wrinkle resistance.
  • the wrinkle resistance was determined as “ ⁇ 15 ⁇ m”.
  • the wrinkle resistance when there were no wrinkles even at 25 ⁇ m was judged as “ ⁇ 25 ⁇ m”
  • the wrinkle resistance when there were wrinkles at 10 ⁇ m was judged as “ ⁇ 10 ⁇ m”.
  • thermogravimetric analyzer TGA-50, manufactured by Shimadzu Corporation
  • the sample was held at 150°C for 30 minutes in a nitrogen atmosphere, then heated to 400°C at a heating rate of 10°C/min, and the weight was measured. bottom.
  • the temperature at which the weight decreased by 1% from the weight at the start of heating was taken as the 1% weight loss temperature. A higher 1% weight loss temperature indicates higher heat resistance.
  • the prepared dry film was measured using a parallel light mask aligner (trade name PLA-501F, manufactured by Canon Inc.) with an ultra-high pressure mercury lamp as a light source, and each width of 100 ⁇ m, 80 ⁇ m, 60 ⁇ m, 50 ⁇ m, 40 ⁇ m, 30 ⁇ m and 20 ⁇ m. was exposed at an exposure amount of 300 mJ/cm 2 (i line) with a gap of 100 ⁇ m through a mask having a line and space pattern of . Then, using an automatic developing device ("AD-2000 (trade name)" manufactured by Takizawa Sangyo Co., Ltd.), shower development is performed using a 0.045% by weight potassium hydroxide aqueous solution for 100 seconds, and then water is used for 30 seconds. Rinse for seconds.
  • AD-2000 automatic developing device
  • the barrier rib-forming resin composition used in each example and comparative example was processed under the same conditions as in each example and comparative example, except that the entirety was exposed without passing through a photomask during exposure. A solid film with a thickness of 10 ⁇ m was produced. Using the obtained solid film as a model of the barrier ribs of the substrates with barrier ribs obtained in each example and comparative example, the glass substrate having the solid film was measured with a spectrophotometer (trade name: CM-2600d, manufactured by Konica Minolta Co., Ltd.).
  • ⁇ OD value> As a model of the barrier ribs of the substrate with barrier ribs obtained in each example and comparative example, a solid film having a height of 10 ⁇ m was formed on a glass substrate in the same manner as in the evaluation of the reflectance. For the glass substrate having the obtained solid film, the intensity of incident light and transmitted light was measured using an optical densitometer (Hitachi High-Tech Science U-4100), and the OD at a wavelength of 300 to 800 nm was calculated according to the above formula (1). Values were calculated and compared with the value at 450 nm as a representative value.
  • Example 70 a solid film was similarly produced on a glass substrate as a model of the light shielding partition (A-2).
  • the intensity of incident light and transmitted light on the obtained glass substrate having the solid film was measured using an optical densitometer (Hitachi High-Tech Science U-4100), and the intensity was calculated according to the above formula (1).
  • ⁇ Taper angle> In each of the examples and comparative examples, an arbitrary cross section of the substrate with partition walls before pixel formation was measured using an optical microscope (FE-SEM (S-4800); manufactured by Hitachi, Ltd.) at an acceleration voltage of 3.0 kV. was observed and the taper angle was measured.
  • a 10 cm square non-alkali glass substrate manufactured by AGC Techno Glass Co., Ltd., thickness 0.7 mm was used as the base substrate, and the barrier rib resin composition used in each example and comparative example was spin-coated thereon.
  • a hot plate (trade name: SCW-636, manufactured by Dainippon Screen Mfg. Co., Ltd.) was used to dry at a temperature of 100° C. for 3 minutes to prepare a dry film.
  • the prepared dry film is applied to a photomask (design: partition wall width 20 ⁇ m, opening short side 80 ⁇ m, opening length) using a parallel light mask aligner (trade name PLA-501F, manufactured by Canon Inc.) with an ultra-high pressure mercury lamp as a light source. 280 ⁇ m on the sides), exposure doses of 100 mJ/cm 2 and 500 mJ/cm 2 (irradiation with g, h, and i-rays; exposure doses are i-ray conversion values).
  • the line width of the barrier ribs processed with an exposure amount of 500 mJ/cm 2 is within +5.0 ⁇ m compared to the line width of the barrier ribs processed with an exposure amount of 100 mJ/cm 2 .
  • B The line width of the barrier ribs processed with an exposure amount of 500 mJ/cm 2 is +5.0 ⁇ m to +10 ⁇ m compared to the line width of the barrier ribs processed with an exposure amount of 100 mJ/cm 2 .
  • C The line width of the barrier ribs processed with an exposure amount of 500 mJ/cm 2 is +10 ⁇ m or more compared to the line width of the barrier ribs processed with an exposure amount of 100 mJ/cm 2 .
  • PGMEA was used as an ink for pixel portions surrounded by grid-shaped barrier ribs, and an inkjet coating device (InkjetLabo, cluster technology ( Co., Ltd.) was used for inkjet coating. 160 pL of PGMEA was applied to each grid pattern, and the presence or absence of breakage (a phenomenon in which ink crosses over the partition wall and mixes into the adjacent pixel portion) was observed, and the inkjet applicability was evaluated according to the following criteria. The smaller the breakage, the higher the liquid repellency and the better the inkjet applicability.
  • B Ink overflowed from the inside of the pixel to the upper surface of the partition in a part.
  • C Ink overflowed from the inside of the pixel to the upper surface of the partition on the entire surface.
  • the height of the structure before and after forming the pixel (B) was measured using a Surfcom stylus type film thickness measuring device, and the difference was calculated. , the height of the pixel (B) was measured. Further, for Examples 72 to 74, the film thickness of the low refractive index layer (C) is further measured. For Examples 71, 74 to 75, and 77, the film thickness of the color filter is further measured. The thickness (height) and the thickness (height) of the yellow organic protective layer of Examples 77 and 78 were measured in the same manner.
  • Examples 73 to 76 a cross section perpendicular to the base substrate was exposed using a polishing apparatus such as a cross section polisher, and the cross section was enlarged and observed with a scanning electron microscope or a transmission electron microscope. , respectively, the height of the inorganic protective layer was measured.
  • a planar light-emitting device equipped with a commercially available LED backlight (peak wavelength 465 nm) was used as a light source, and the substrates with partition walls obtained in each example and comparative example were placed so that the pixel portion was on the light source side.
  • a current of 30 mA is passed through this planar light emitting device to light the LED element, and the luminance (unit: cd/m 2 ) based on the CIE1931 standard is measured using a spectral radiance meter (CS-1000, manufactured by Konica Minolta). measured and taken as the initial luminance.
  • CS-1000 spectral radiance meter
  • the luminance was similarly measured to evaluate the change in luminance over time.
  • the evaluation of the brightness was performed using a relative value with the initial brightness of Example 67 being 100 as the standard.
  • CM-2600d manufactured by Konica Minolta, measuring diameter ⁇ 8 mm
  • the substrate with partition walls was irradiated with light from the underlying substrate side, and the spectrum including regular reflection light was measured.
  • Color standard BT The color gamut defined by 2020 is defined as the three primary colors red, green and blue on the spectral locus shown in the chromaticity diagram, with the wavelengths of red, green and blue corresponding to 630 nm, 532 nm and 467 nm respectively.
  • R reflectance
  • Display characteristics The display characteristics of the display devices produced by combining the substrates with partition walls obtained in each of the examples and the comparative examples and the organic EL elements were evaluated based on the following criteria.
  • a color-converting luminescent material composition ( CL-2) was applied and dried at 100° C. for 30 minutes to form pixels with a thickness of 5.0 ⁇ m. Then, of the pixel portions surrounded by the grid-like partition walls, the color-converting light-emitting material composition (CL -3) was applied and dried at 100° C. for 30 minutes to form pixels with a thickness of 5.0 ⁇ m.
  • a blue organic EL cell having the same width as the pixel portion surrounded by the grid-like partition walls was prepared, and the substrate with the partition walls and the blue organic EL cell were opposed to each other and bonded with a sealant, as shown in FIG. A display device of the configuration was obtained.
  • the blue organic EL cells 11 in FIG. 15 only the blue organic EL cells bonded immediately below the pixels 3 (CL-2) formed of the color-converting light-emitting material composition (CL-2) are lit.
  • Tables 6 and 7 show the evaluation results of each example and comparative example.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials For Photolithography (AREA)

Abstract

本発明は、プリベーク後の膜のタックレス性と、キュア後の耐熱性を両立した厚膜隔壁を、高露光量加工時にもフォトマスクの設計線幅通りに形成可能な樹脂組成物を提供することを目的とする。本発明の目的は、光ラジカル発生剤と、ヒンダードフェノール化合物および/またはヒンダードアミン化合物と、特定の構造を含むポリシロキサンと、特定の構造を含む(メタ)アクリルポリマおよび/または特定の構造を含むカルド系ポリマとを含有する樹脂組成物であって、前記ポリシロキサンの重量と(メタ)アクリルポリマおよびカルド系ポリマの合計重量の比が30/70~70/30である樹脂組成物により達成できる。

Description

樹脂組成物、遮光膜、および隔壁付き基板
 本発明は、樹脂組成物と、樹脂組成物から形成される遮光膜、およびパターン形成された隔壁を有する隔壁付き基板に関する。
 近年、光利用効率を高くしたカラー表示装置として、光源と、波長変換用蛍光体からなる波長変換部と、偏光分離手段と偏光変換手段を備えたカラー表示装置が提案されている(例えば、特許文献1参照)。例えば、青色光源と、液晶素子と、青色光により励起されて赤色の蛍光を発する蛍光体、青色光により励起されて緑色の蛍光を発する蛍光体、および青色光を散乱させる光散乱層を有する波長変換部とを含むカラー表示装置が提案されている(例えば、特許文献2参照)。
 しかし、特許文献1、2に記載されるような色変換蛍光体を含むカラーフィルターは、蛍光があらゆる方向に発生することから、光の取り出し効率が低く、輝度が不十分である。特に、4K、8Kと言われる高精細表示装置においては、画素サイズが小さくなるため、輝度の課題が顕著となることから、より高い輝度が求められている。
表示装置の輝度を向上させるためには、色変換蛍光体を、反射性の高い隔壁で隔てることが有効である。また、隣接画素間において、光の混色が発生しないためには、隔壁の遮光性を高くする必要がある。従って、高反射性と高遮光性を両立した隔壁材料が求められている。
特開2000-131683号公報 特開2009-244383号公報 特開2000-347394号公報 特開2006-259421号公報 国際公開第2020/008969号
 発明者らは、高反射性と高遮光性を両立した隔壁を形成するために、まず、高反射率を発現する酸化チタン白色顔料を用いた白色隔壁材料に、遮光顔料を添加した材料を使用する方法を検討した。しかし、この方法では、白色顔料と遮光顔料によって露光光全体が吸収され、露光時に膜の底部まで光が届かず、パターン加工性が悪いという課題が明らかになった。
 特許文献3、4に記載されているように、特定の金属化合物を添加することで、パターン形成後の焼成によって黒色化する技術が提案されている。しかしながら、これらの黒色化技術は、400℃以上の焼成が必要であり、250℃以下の加熱では遮光性が向上しないという課題があった。
 そこで発明者らは、製膜後にパターン露光する工程時には露光光を透過し、露光した膜を120℃以上250℃以下の温度で加熱した後に、遮光性を上昇させる設計を考案した。また、樹脂と、銀、金、白金およびパラジウムからなる群より選ばれる少なくとも1種の金属を含有する有機金属化合物と、光重合開始剤またはキノンジアジド化合物と、溶媒とを含有する樹脂組成物を用いることで、これを達成した(特許文献5参照)。特に、樹脂としてポリシロキサンを用いると高耐熱性を有する隔壁を形成できることを見出した。
 しかしながら、この技術は、樹脂としてポリシロキサンを用いると、プリベーク後の膜にタック性があり、加工途中の基板の取り扱いが難しいという問題があった。一方、樹脂として(メタ)アクリルポリマおよび/またはカルド系ポリマを用いると、プリベーク後のタック性は改善されるものの、高さ10μm以上の厚膜の隔壁を形成する際に膜上部と膜底部で硬化度に差が生じ、キュア後にストレス差によってシワが発生するという課題が明らかになった。さらに、(メタ)アクリルポリマおよび/またはカルド系ポリマを用いて形成された隔壁は、シロキサンポリマを用いた場合に比べて耐熱性や耐候性が低いという課題も明らかになった。
 また、高さ10μm以上の厚膜の隔壁を形成するには、300~500mJ/cm程度の高い露光量でパターン加工を行う場合があるが、このような場合に、フォトマスクの線幅設計に対して、形成した隔壁の線幅が大幅に太ってしまうという別の課題も明らかになった。
 そこで、本発明は、プリベーク後の膜のタックレス性と、キュア後の耐熱性を両立した厚膜隔壁を、高露光量加工時にもフォトマスクの設計線幅通りに形成可能な樹脂組成物を提供することを目的とする。
 本願発明者らは、鋭意研究の結果、光ラジカル発生剤と、ヒンダードフェノール化合物および/またはヒンダードアミン化合物と、特定の構造を含むポリシロキサンと、特定の構造を含む(メタ)アクリルポリマおよび/または特定の構造を含むカルド系ポリマとを含有する樹脂組成物であって、前記ポリシロキサンの重量と(メタ)アクリルポリマおよびカルド系ポリマの合計重量の比が30/70~70/30である樹脂組成物で隔壁を形成することにより、プリベーク後の膜のタックレス性と、キュア後の耐熱性を両立した厚膜隔壁を、高露光量加工時にもフォトマスクの設計線幅通りに形成可能であることを見出し、本発明を完成した。
 すなわち、本発明は、以下のものを提供する。
[1](i)光ラジカル発生剤と、
(ii)下記一般式(1)または(2)で表される芳香環を有する構造と下記一般式(3)で表される光ラジカル重合性基を有する構造を含むポリシロキサンと、
(iii)下記一般式(4)で表される芳香環を有する構造と下記一般式(5)で表される光ラジカル重合性基を有する構造を含む(メタ)アクリルポリマおよび/または、下記一般式(6)若しくは下記一般式(7)で表される構造と光ラジカル重合性基を有するカルド系ポリマと、
を含有する樹脂組成物であって、前記ポリシロキサンの重量と(メタ)アクリルポリマおよびカルド系ポリマの合計重量の比が30/70~70/30である、樹脂組成物。
Figure JPOXMLDOC01-appb-C000002
(一般式(1)~(7)中、RおよびRはそれぞれ独立に水素、ヒドロキシ基、アルコキシ基、シロキサン結合を有する基または炭素数1~30の1価の有機基を表す。RおよびRはそれぞれ独立に水素、ヒドロキシ基または炭素数1~30の1価の有機基を表す。R~Rはそれぞれ独立に水素、炭素数1~30の1価の有機基、炭素数6~20のアリール基または隣接するR~R同士で形成した環が芳香環となる基を表す。Rは水素、炭素数1~30の1価の有機基、または炭素数6~20のアリール基を表す。X、X、XおよびXはそれぞれ独立に芳香環を有する有機基を表す。YおよびYはそれぞれ独立に光ラジカル重合性基を有する有機基を表す。p、q、rはそれぞれ独立に0~2の整数であり、sは1~2の整数を表す。a、b、c、d、e、fおよびgはそれぞれ独立に1以上の整数を表す。a~eが2以上の場合、複数のR、R、R、R、R、R、R、R、X、X、X、X、YおよびYはそれぞれ同じであっても異なっていてもよい。)
[2]前記ヒンダードフェノール化合物が、1分子中に2つ以上のヒンダードフェノール基を有するヒンダードフェノール化合物である[1]記載の樹脂組成物。
[3]前記ヒンダードアミン化合物が、ピペリジン化合物である[1]または[2]記載の樹脂組成物。
[4]前記ヒンダードアミン化合物が、光重合性基を有するピペリジン化合物である[1]~[3]いずれか記載の樹脂組成物。
[5]前記ポリシロキサンの重量平均分子量が5,000~300,000であって、前記ポリシロキサンの全繰り返し単位中、前記一般式(1)または(2)で表される繰り返し単位を30~70モル%、前記一般式(3)で表される繰り返し単位を15~70モル%含有する[1]~[4]いずれか1項に記載の樹脂組成物。
[6]前記(メタ)アクリルポリマおよび/またはカルド系ポリマのガラス転移温度が、60℃以上である[1]~[5]いずれか1項に記載の樹脂組成物。
[7]白色顔料、遮光顔料、および銀、金、白金およびパラジウムからなる群より選ばれる少なくとも1種の金属を含有する有機金属化合物のうち、少なくとも1種以上をさらに含有する[1]~[6]いずれか1項に記載の樹脂組成物。
[8]前記光ラジカル発生剤として、オキシムエステル化合物およびホスフィンオキサイド化合物を含有する[1]~[7]いずれか1項に記載の樹脂組成物。
[9]光重合性基を有する撥液化合物をさらに含有する[1]~[8]いずれか1項に記載の樹脂組成物。
[10][1]~[9]いずれか1項に記載の樹脂組成物を硬化させてなる遮光膜。
[11]下地基板上に[1]~[9]いずれか1項に記載の樹脂組成物によって(A-1)パターン形成された隔壁を有する隔壁付き基板であって、前記隔壁の波長550nmにおける厚み10μmあたりの反射率が10%~60%、波長450nmにおける厚み10μmあたりのOD値が1.0~3.0である隔壁付き基板。
[12]前記(A-1)パターン形成された隔壁が、樹脂と、白色顔料と、遮光顔料とを含有し、前記遮光顔料が、窒化チタン、窒化ジルコニウム、カーボンブラック、赤色顔料と青色顔料との重量比20/80~80/20の混合顔料、および酸化パラジウム、酸化白金、酸化金、酸化銀、パラジウム、白金、金、銀からなる群より選ばれる少なくとも1種の金属酸化物または金属からなる粒子から選ばれた顔料である[11]記載の隔壁付き基板。
[13]前記(A-1)パターン形成された隔壁が、さらにヒンダードアミン化合物を含有する[11]または[12]記載の隔壁付き基板。
[14]前記下地基板と(A-1)パターン形成された隔壁との間に、さらに、(A-2)厚み1.0μmあたりのOD値が0.5以上である、パターン形成された遮光隔壁を有する、[11]~[13]いずれか1項に記載の隔壁付き基板。
[15]前記(A-1)パターン形成された隔壁によって隔てられて配列した(B)色変換発光材料をさらに含有する画素層を有する[11]~[14]いずれか1項に記載の隔壁付き基板。
[16][11]~[15]いずれか1項に記載の隔壁付き基板と、液晶セル、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源とを有する表示装置。
 本発明の樹脂組成物は、プリベーク後のタックレス性とキュア後の耐熱性に優れた微細厚膜隔壁パターンを、高露光量加工時にもフォトマスクの設計線幅通りに形成可能である。
パターン形成された隔壁を有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と色変換発光材料を含有する画素を有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と色変換発光材料と遮光隔壁を有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と色変換発光材料とカラーフィルターを有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と色変換発光材料と遮光隔壁とカラーフィルターを有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と色変換発光材料と低屈折率層を有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と色変換発光材料と低屈折率層および無機保護層Iを有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と色変換発光材料と低屈折率層および無機保護層Iを有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と色変換発光材料と遮光隔壁とカラーフィルターと低屈折率層および無機保護層Iを有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と色変換発光材料と低屈折率層および無機保護層IIを有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と色変換発光材料とカラーフィルターと、無機保護層IIIおよび/または黄色有機保護層を有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と色変換発光材料と無機保護層IVおよび/または黄色有機保護層を有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と、有機ELセル、ミニLEDセル、マイクロLEDセルから選ばれた発光光源とを含有する画素を有する本発明の隔壁付き基板の一態様を示す断面図である。 パターン形成された隔壁と色変換発光材料と、有機ELセル、ミニLEDセル、マイクロLEDセルから選ばれた発光光源とを含有する画素を有する本発明の隔壁付き基板の一態様を示す断面図である。 実施例において混色評価に用いた表示装置の構成を示す断面図である。
 以下、本発明に係る樹脂組成物、樹脂組成物から形成される遮光膜、遮光膜の製造方法、および隔壁付き基板の好適な実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。本発明の樹脂組成物は、色変換蛍光体や、有機ELセル、ミニLEDセル、マイクロLEDセルから選ばれた発光光源等を隔てる隔壁を形成するための材料として好適に用いることができる。
 本発明の樹脂組成物は、光ラジカル発生剤と、ヒンダードフェノール化合物および/またはヒンダードアミン化合物と、特定の構造を含むポリシロキサンと、特定の構造を含む(メタ)アクリルポリマおよび/または特定の構造を含むカルド系ポリマとを含有し、前記ポリシロキサンの重量と(メタ)アクリルポリマおよびカルド系ポリマの合計重量の比が、30/70~70/30であることが好ましい。
 本発明の樹脂組成物は、後述の隔壁(A-1)のパターン形成に用いられる場合、ネガ型感光性を有することが好ましい。ネガ型感光性を付与するために、本発明の樹脂組成物は、光ラジカル発生剤を含有することが好ましい。光ラジカル発生剤を含有することで、高精細なパターン形状の隔壁を形成することができる。
 光ラジカル発生剤は、光(紫外線、電子線を含む)の照射によって分解および/または反応し、ラジカルを発生させるものであればどのようなものでもよい。例えば、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1などのα-アミノアルキルフェノン化合物;2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-ホスフィンオキサイドなどのホスフィンオキサイド化合物;1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)などのオキシムエステル化合物などが挙げられる。これらを2種以上含有してもよい。
 これらの中でも、厚膜の隔壁を形成するためには、酸素障害に強く表面硬化性に有効なオキシムエステル化合物と、より長波長光を吸収してラジカルを発生するため底部硬化性に有効なホスフィンオキサイド化合物を含有することが好ましい。本発明の樹脂組成物中における光ラジカル発生剤の含有量は、ラジカル硬化を効果的に進める観点から、固形分中、0.01重量%以上が好ましく、1重量%以上がより好ましい。一方、残留した光ラジカル発生剤の溶出等を抑制させる観点から、光ラジカル発生剤の含有量は、固形分中、20重量%以下が好ましく、10重量%以下がより好ましい。
 本発明の樹脂組成物は、ヒンダードフェノール化合物および/またはヒンダードアミン化合物を含有することが好ましい。ヒンダードフェノール化合物および/またはヒンダードアミン化合物を含有することで、適度にラジカルをトラップして過反応を抑制し、高露光量で隔壁パターンを形成する際に線幅太りを抑制することができ、フォトマスクの設計線幅通りに微細隔壁パターンを形成することができる。
 ヒンダードフェノール化合物は、1分子中に2つ以上のヒンダードフェノール基を有するヒンダードフェノール化合物であることが好ましい。ここで、ヒンダードフェノール基とは、フェノール性水酸基の水酸基が結合する炭素部位に隣接した炭素部位に少なくとも1つ以上のt-ブチル基を有する構造を含む官能基のことを指す。ヒンダードフェノール基は、フェノール性水酸基の水酸基が結合する炭素部位に隣接した2つの炭素部位にt-ブチル基を有する構造が好ましい。1分子中に2つ以上のヒンダードフェノール基を有することで、ラジカルトラップ効果が適度に制限され、高露光量で隔壁パターンを形成する際に線幅太りを抑制し、フォトマスクの設計線幅通りに微細隔壁パターンを形成することができる。1分子中に3つ以上のヒンダードフェノール基を有することがより好ましく、1分子中に4つ以上のヒンダードフェノール基を有することがさらに好ましい。
 ヒンダードフェノール化合物としては、例えば、3,5-ジ-t-ブチル-4-ヒドロキシトルエン、オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ヘキサメチレンビス[3(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート、チオジエチレンビス[3(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート、エチレンビス(オキシエチレン)ビス(3-(5-t-ブチル-4-ヒドロキシ-m-トリル)プロピオネート、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ペンタエリスリトールテトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ3,5-ジ-t-ペンチルフェニル)エチル]-4,6-ジ-t-ペンチルフェニルアクリレート、2,2’-メチレンビス(6-t-ブチル-4-メチルフェノール又は4,4’-ブチリデンビス(6-t-ブチル-3-メチルフェノール)、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、4,4’,4’’-(1-メチルプロパニル-3-イリデン)トリス(6-t-ブチル-m-クレゾール)、6,6’-ジ-t-ブチル-4,4’-ブチリデンジ-m-クレゾール、3,9-ビス-(2-(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニロキシ)-1,1-ヂメチルエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデセン、1,3,5-トリス(3,5-ジーt-ブチル-4-ヒドロキシフェニルメチル)-2,4,6-トリメチルベンゼンなどが挙げられる。これらを2種以上含有してもよい。
 これらの中でも、1分子中に2つ以上のヒンダードフェノール基を有するヘキサメチレンビス[3(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート、チオジエチレンビス[3(3,5-ジ-t-ブチル-4-ヒドロキシフェニルプロピオネート、エチレンビス(オキシエチレン)ビス(3-(5-t-ブチル-4-ヒドロキシ-m-トリル)プロピオネート、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ペンタエリスリトールテトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ3,5-ジ-t-ペンチルフェニル)エチル]-4,6-ジ-t-ペンチルフェニルアクリレート、2,2’-メチレンビス(6-t-ブチル-4-メチルフェノール又は4,4’-ブチリデンビス(6-t-ブチル-3-メチルフェノール)、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、4,4’,4’’-(1-メチルプロパニル-3-イリデン)トリス(6-t-ブチル-m-クレゾール)、6,6’-ジ-t-ブチル-4,4’-ブチリデンジ-m-クレゾール、3,9-ビス-(2-(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニロキシ)-1,1-ヂメチルエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデセン、1,3,5-トリス(3,5-ジーt-ブチル-4-ヒドロキシフェニルメチル)-2,4,6-トリメチルベンゼンが好ましく、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ペンタエリスリトールテトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ3,5-ジ-t-ペンチルフェニル)エチル]-4,6-ジ-t-ペンチルフェニルアクリレート、2,2’-メチレンビス(6-t-ブチル-4-メチルフェノール又は4,4’-ブチリデンビス(6-t-ブチル-3-メチルフェノール)、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、4,4’,4’’-(1-メチルプロパニル-3-イリデン)トリス(6-t-ブチル-m-クレゾール)、1,3,5-トリス(3,5-ジーt-ブチル-4-ヒドロキシフェニルメチル)-2,4,6-トリメチルベンゼンがより好ましい。
 ヒンダードアミン化合物は、分子内に少なくとも1つ以上のヒンダードアミノ基を有する化合物を指す。ヒンダードアミノ基は、2つの4級炭素と結合した2級または3級アミン構造を有する官能基であることが好ましい。ヒンダードアミン化合物は、ピペリジン化合物であることが好ましい。ピペリジン化合物を含有することで、ラジカルトラップ効果が適度に制限され、高露光量で隔壁パターンを形成する際に線幅太りを抑制し、フォトマスクの設計線幅通りに微細隔壁パターンを形成することができる。2,2,6,6-テトラメチルピペリジン構造を有するピペリジン化合物であることがより好ましい。
 ヒンダードアミン化合物としては、例えば、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、メチル-1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート、1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、デカン二酸ビス(2,2,6,6-テトラメチル-1-(オクチルオキシ)-4-ピペリジニル)エステルと1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、テトラキス(1,2,2,6,6-ペンタメチル-4-ピリジル)ブタン-1,2,3,4-テトラカルボキシレート又はテトラキス(2,2,6,6-テトラメチル-4-ピリジル)ブタン-1,2,3,4-テトラカルボキシレートなどが挙げられる。
 これらの中でも、光重合性基を有するピペリジン化合物である1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレートが好ましい。光重合性基を有するピペリジン化合物を用いることで、ラジカルをトラップしつつ、ラジカル反応が進行し、膜底部の硬化をより進行させることができる。この場合、ネガ型感光性樹脂組成物の光硬化物からなる隔壁(A-1)中においては、光重合性基は光重合されていてもよい。
 本発明の樹脂組成物中におけるヒンダードフェノール化合物および/またはヒンダードアミン化合物の含有量は、線太り抑制の観点から、固形分中、0.050重量%以上が好ましく、0.070重量%以上がより好ましい。一方、ラジカル反応を効率的に進行させる観点から、ヒンダードフェノール化合物および/またはヒンダードアミン化合物の含有量は、固形分中、5.0重量%以下が好ましく、3.0重量%以下がより好ましい。特に、ヒンダードフェノール化合物を用いる場合は、ラジカルトラップ効果が大きいため、固形分中、0.10重量%以上0.50重量%以下がさらに好ましい。また、ヒンダードアミン化合物として光重合性基を有するピペリジン化合物を用いる場合は、膜底部の硬化促進の観点から、0.10重量%以上2.5重量%以下がさらに好ましい。
 本発明の樹脂組成物は、樹脂としてポリシロキサンを含有する。ポリシロキサンは、隔壁のクラック耐性、耐候性および耐熱性を向上させる機能を有する。樹脂組成物の固形分中に占めるポリシロキサンの含有量は、熱処理における隔壁のクラック耐性を向上させる観点から、10重量%以上が好ましく、15重量%以上がより好ましい。一方、耐光性を向上させる観点から、樹脂組成物の固形分中に占めるポリシロキサンの含有量は、55重量%以下が好ましく、50重量%以下がより好ましい。ここで、固形分とは、樹脂組成物に含まれる成分のうち、溶媒等の揮発性の成分を除いた全成分のことを意味する。固形分の量は、樹脂組成物を加熱して揮発性の成分を蒸発させた残分を計ることにより求めることができる。
 ポリシロキサンは、オルガノシランの加水分解・脱水縮合物である。ポリシロキサンは、下記一般式(1)または(2)で表される芳香環を有する構造と下記一般式(3)で表される光ラジカル重合性基を有する構造を含む。さらに他の繰り返し単位を含んでもよい。
Figure JPOXMLDOC01-appb-C000003
(一般式(1)~(3)中、RおよびRはそれぞれ独立に水素、ヒドロキシ基、アルコキシ基、シロキサン結合を有する基または炭素数1~30の1価の有機基を表す。X、X、およびXは芳香環を有する有機基を表す。Yは光ラジカル重合性基を有する有機基を表す。a、b、およびcはそれぞれ独立に1以上の整数を表す。a~cが2以上の場合、複数のR、R、X、X、X、およびYはそれぞれ同じであっても異なっていてもよい。)
 前記RまたはRにより表される「シロキサン結合を有する基」は、シラノール基同士の縮合によって生じた「-Si-O-Si-」結合のことを指す。結合先のSi原子に結合した官能基は特に限定されない。前記RまたはRで表される「炭素数1~30の1価の有機基」としては、炭素数1~6のアルキル基(直鎖状及び分枝状アルキル基を包含する)が好ましい。これらの好ましい具体例として、メチル基、エチル基、n-プロピル基及びイソプロピル基を挙げることができる。前記X、X、またはXで表される「芳香環を有する有機基」としては、炭素数6~15の芳香族炭化水素基が好ましい。これらの好ましい具体例として、フェニル基、ベンジル基、スチリル基、ナフチル基及びビフェニル基を挙げることができる。
前記Yで表される「光ラジカル重合性基」としては、エチレン性不飽和基が好ましく、メタクリル基および/またはアクリル基を含む官能基がさらに好ましい。これらの好ましい具体例として、3-メタクリロキシプロピル基及び3-アクリロキシプロピル基を挙げることができる。
前記a、b、およびcはそれぞれ独立に1以上の整数を表すが、aは好ましくは10~60、さらに好ましくは20~55、bは好ましくは10~60、さらに好ましくは20~55、cは好ましくは5~60、さらに好ましくは10~50である。
 一般式(1)または(2)で表される芳香環を有する有機基を含むアルコキシシラン化合物由来の繰り返し単位を含むことにより、ポリシロキサンのTgを向上することができ、プリベーク後のタックレス性を改善することができる。
 ポリシロキサンにおける全繰り返し単位中、一般式(1)または(2)で表される繰り返し単位を20~80モル%含有することが好ましい。一般式(1)または(2)で表される繰り返し単位を20モル%以上含むことにより、プリベーク後のタックレス性をより改善することができる。一般式(1)または(2)で表される繰り返し単位の含有量は、25モル%以上がより好ましく、30モル%以上がさらに好ましい。一方、一般式(1)または(2)で表される繰り返し単位を80モル%以下含むことにより、膜中でのシロキサン熱縮合を効率的に進行させ、膜の硬化度を向上することができる。一般式(1)または(2)で表される繰り返し単位の含有量は、75モル%以下がより好ましく、70モル%以下がさらに好ましい。
 一般式(1)または(2)で表される芳香環を有する有機基を含むアルコキシシラン化合物のうち、一般式(2)で表される芳香環を有する有機基を2つ含む2官能アルコキシシラン化合物由来の繰り返し単位を含むことが好ましい。一般式(2)で表される2官能アルコキシシラン化合物由来の繰り返し単位を含むことにより、加熱によるポリシロキサンの過剰な熱重合(縮合)を抑制し、隔壁のクラック耐性を向上させることができる。
 一般式(2)で表される繰り返し単位を10モル%以上含むことにより、クラック耐性をより向上させることができる。一般式(2)で表される繰り返し単位の含有量は、15モル%以上がより好ましく、20モル%以上がさらに好ましい。一方、一般式(2)で表される繰り返し単位を80モル%以下含むことにより、重合時にポリシロキサンの分子量を十分に高め、塗布性を向上させることができる。一般式(2)で表される繰り返し単位の含有量は、70モル%以下がより好ましい。
 また、ポリシロキサンは、一般式(3)で表される光ラジカル重合性基を有する有機基を含むアルコキシシラン化合物由来の繰り返し単位を含むことにより、露光部で光ラジカル発生剤から発生したラジカルで架橋反応が進行し、露光部の硬化度を高めることができる。
 ポリシロキサンにおける全繰り返し単位中、一般式(3)で表される繰り返し単位を10~80モル%含有することが好ましい。一般式(3)で表される繰り返し単位を10モル%以上含むことにより、膜中のポリシロキサン同士のラジカル架橋を効率的に進行させ、膜の硬化度を向上することができる。一般式(3)で表される繰り返し単位の含有量は、12モル%以上がより好ましく、15モル%以上がさらに好ましい。一方、一般式(3)で表される繰り返し単位を80モル%以下含むことにより、ポリシロキサンの過剰なラジカル架橋を抑制し、隔壁のクラック耐性を向上させることができる。一般式(3)で表される繰り返し単位の含有量は、75モル%以下がより好ましく、70モル%以下がさらに好ましい。
 ポリシロキサンに含まれていてもよい他の繰り返し単位としてはエポキシ基および/またはオキセタニル基などの環状エーテル基を有する有機基を含むアルコキシシラン化合物由来の繰り返し単位、炭素数1~30のアルキル基を有する有機基を含むアルコキシシラン化合物由来の繰り返し単位、酸無水物を有する有機基を含むアルコキシシラン化合物由来の繰り返し単位、フッ素基を有する有機基を含むアルコキシシラン化合物由来の繰り返し単位を挙げることができる。これらは含まれていなくてもよく、含まれている場合には、その含量は、全繰り返し単位中80モル%以下が好ましく、さらに好ましくは70モル%以下である。
 上記一般式(1)、(2)および(3)で表される繰り返し単位は、それぞれ下記一般式(8)、(9)および(10)で表されるアルコキシシラン化合物に由来する。すなわち、前記一般式(1)、(2)および(3)で表される繰り返し単位を含むポリシロキサンは、下記一般式(8)、(9)および(10)で表されるアルコキシシラン化合物を含むアルコキシシラン化合物を加水分解および重縮合することによって得ることができる。さらにその他のアルコキシシラン化合物を用いてもよい。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(8)、(9)および(10)中、R、R、X、X、X、およびYは、それぞれ一般式(1)、(2)および(3)における、R、R、X、X、X、およびYと同じ基を表す。Rは、同じでも異なってもよく、炭素数1~20の1価の有機基を表し、炭素数1~6のアルキル基が好ましい。なお、一般式(8)、(9)および(10)中、「―(OR」なる表記は、Si原子に「―(OR)」が2個結合していることを意味する。
 一般式(8)で表されるアルコキシシラン化合物としては、例えば、フェニルトリメトキシシラン、1-ナフチルトリメトキシシラン、2-ナフチルトリメトキシシラントリルトリメトキシシラン、ビフェニルトリメトキシシラン、3-トリメトキシシリルプロピルフタル酸無水物、3-トリエトキシシリルプロピルフタル酸無水物、フェニルメチルジメトキシシラン、フェニルエチルジメトキシシラン、フェニルプロピルジメトキシシラン、スチリルトリメトキシシランなどの芳香環含有アルコキシシラン化合物が挙げられる。これらを2種以上用いてもよい。
 一般式(9)で表されるアルコキシシラン化合物としては、例えば、ジフェニルジメトキシシラン、1-ナフチルフェニルジメトキシシラン、トリルフェニルジメトキシシラン、ビフェニルフェニルジメトキシシラン、1-ナフチルトリルジメトキシシラン、1-ナフチルビフェニルジメトキシシランなどの2つの芳香環を含むアルコキシシラン化合物が挙げられる。これらを2種以上用いてもよい。
これらの中でも、クラック耐性とタックレス性の観点から、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、スチリルトリメトキシシラン、スチリルトリエトキシシランが好ましい。
 一般式(10)で表されるアルコキシシラン化合物としては、例えば、ビニルトリメトキシシラン、アリルトリメトキシシラン、γ-アクリロイルプロピルトリメトキシシラン、γ-アクリロイルプロピルトリエトキシシラン、γ-メタクリロイルプロピルトリメトキシシラン、γ-メタクリロイルプロピルトリエトキシシラン、ビニルメチルジメトキシシラン、スチリルメチルジメトキシシラン、γ-メタクリロイルプロピルメチルジメトキシシラン、γ-アクリロイルプロピルメチルジメトキシシランなどの光ラジカル重合性基含有アルコキシシラン化合物が挙げられる。これらを2種以上用いてもよい。これらの中でも、光重合反応性の観点から、γ-アクリロイルプロピルトリメトキシシラン、γ-アクリロイルプロピルメチルジメトキシシラン、γ-メタクリロイルプロピルトリメトキシシラン、γ-メタクリロイルプロピルメチルジメトキシシランが好ましい。
 なお、スチリル基は、光ラジカル重合性基であり、かつ芳香族基でもあるため、一般式(10)で表されるアルコキシシラン化合物として、スチリルトリメトキシシランまたはスチリルトリエトキシシランなどのスチリル基含有アルコキシシラン化合物を用いる場合、これ以外に一般式(8)または(9)で表されるアルコキシシラン化合物は含まなくてもよい。すなわち、ポリシロキサンが一般式(3)で表される構造としてスチリル基を有する構造を含有する場合、一般式(1)または(2)で表される構造を含まなくてもよい。同様に、一般式(8)で表されるアルコキシシラン化合物として、スチリルトリメトキシシランまたはスチリルトリエトキシシランなどのスチリル基含有アルコキシシラン化合物を用いる場合、これ以外に一般式(10)で表されるアルコキシシラン化合物は含まなくてもよい。すなわち、ポリシロキサンが一般式(1)で表される構造としてスチリル基を有する構造を含有する場合、一般式(3)で表される構造を含まなくてもよい。また、この場合、スチリル基を有する構造を含有した繰り返し単位の含有量は、プリベーク後のタックレス性を改善する観点から、12モル%以上が好ましく、15モル%以上がより好ましい。一方、ポリシロキサンの過剰なラジカル架橋を抑制し、隔壁のクラック耐性を向上させる観点から、スチリル基を有する構造を含有した繰り返し単位の含有量は、70モル%以下がより好ましく、60モル%以下がさらに好ましい。
 その他のアルコキシシラン化合物としては、例えば、ジメチルジメトキシシラン、エチルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルエチルジメトキシシラン、3-ジメチルメトキシシリルプロピルコハク酸無水物、3-ジメチルエトキシシリルプロピルコハク酸無水物、トリフルオロプロピルメチルジメトキシシラン、トリフルオロプロピルエチルジメトキシシランなどの2官能アルコキシ化合物;メチルトリメトキシシランエチルトリメトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシランなどの3官能アルコキシシラン化合物;3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-エチル-3-{[3-(トリメトキシシリル)プロポキシ]メチル}オキセタン、などのエポキシ基またはオキセタン基含有アルコキシシラン化合物;3-トリメトキシシリルプロピオン酸、4-トリメトキシシリル酪酸、5-トリメトキシシリル吉草酸、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-トリメトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリメトキシシリルプロピルフタル酸無水物などのカルボキシル基含有アルコキシシラン化合物;トリフルオロプロピルトリメトキシシラン、パーフルオロペンチルトリメトキシシランなどのフッ素基含有アルコキシシラン化合物;テトラメトキシシラン、テトラエトキシシラン、シリケート51(テトラエトキシシランオリゴマー)などの4官能アルコキシシラン化合物;トリメチルメトキシシラン、トリフェニルメトキシシランなどの単官能アルコキシシラン化合物等が挙げられる。これらを2種以上用いてもよい。
 その他のアルコキシシラン化合物としては、少なくとも1種のカルボキシル基含有アルコキシシラン化合物を含有することが好ましい。カルボキシル基含有アルコキシシラン化合物を含有することで、未露光部の溶解性が向上し、パターン加工時に解像度を向上させることができる。
 ポリシロキサンの重量平均分子量(Mw)は、塗布性の観点から、1,000以上が好ましく、2,000以上がより好ましい。タックレス性の観点から、5,000以上がさらに好ましい。一方、現像性の観点から、ポリシロキサンのMwは、500,000以下が好ましく、300,000以下がより好ましい。ここで、本発明におけるポリシロキサンのMwとは、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算値を言う。測定方法は、後述の実施例で記載の通りである。
 ポリシロキサンは、前述のオルガノシラン化合物を加水分解した後、該加水分解物を溶媒の存在下または無溶媒で脱水縮合反応させることによって得ることができる。
加水分解における各種条件は、反応スケール、反応容器の大きさ、形状などを考慮して、目的とする用途に適した物性に合わせて設定することができる。各種条件としては、例えば、酸濃度、反応温度、反応時間などが挙げられる。
加水分解反応には、塩酸、酢酸、蟻酸、硝酸、蓚酸、塩酸、硫酸、リン酸、ポリリン酸、多価カルボン酸やその無水物、イオン交換樹脂などの酸触媒を用いることができる。これらの中でも、蟻酸、酢酸およびリン酸から選ばれた酸を含む酸性水溶液が好ましい。
 加水分解反応に酸触媒を用いる場合、酸触媒の添加量は、加水分解をより速やかに進行させる観点から、加水分解反応に使用される全アルコキシシラン化合物100重量部に対して、0.05重量部以上が好ましく、0.1重量部以上がより好ましい。一方、加水分解反応の進行を適度に調整する観点から、酸触媒の添加量は、全アルコキシシラン化合物100重量部に対して、20重量部以下が好ましく、10重量部以下がより好ましい。ここで、全アルコキシシラン化合物量とは、アルコキシシラン化合物、その加水分解物およびその縮合物の全てを含む量のことを言う。以下同じとする。
 加水分解反応は、溶媒中で行うことができる。溶媒は、樹脂組成物の安定性、濡れ性、揮発性などを考慮して、適宜選択することができる。
加水分解反応によって溶媒が生成する場合には、無溶媒で加水分解を行うことも可能である。樹脂組成物に用いる場合には、加水分解反応終了後に、さらに溶媒を添加することにより、樹脂組成物を適切な濃度に調整することも好ましい。また、加水分解後に加熱および/または減圧下により生成アルコール等の全量あるいは一部を留出、除去し、その後好適な溶媒を添加することも可能である。
 脱水縮合反応の方法としては、例えば、オルガノシラン化合物の加水分解反応により得られたシラノール化合物溶液をそのまま加熱する方法などが挙げられる。加熱温度は、50℃以上、溶媒の沸点以下が好ましく、加熱時間は、1~100時間が好ましい。また、ポリシロキサンの重合度を高めるために、再加熱または塩基触媒の添加を行ってもよい。また、目的に応じて、脱水縮合反応後に、生成アルコールなどの適量を加熱および/または減圧下にて留出、除去し、その後好適な溶媒を添加してもよい。
 本発明の樹脂組成物は、樹脂としてさらに、前記一般式(4)で表される芳香環を有する構造と前記一般式(5)で表される光ラジカル重合性基を有する構造を含む(メタ)アクリルポリマおよび/または、前記一般式(6)または前記一般式(7)で表される構造と光ラジカル重合性基を有するカルド系ポリマを含有する。(メタ)アクリルポリマおよび/またはカルド系ポリマは、プリベーク後のタックレス性を向上させる機能を有する。樹脂組成物の固形分中に占める(メタ)アクリルポリマおよび/またはカルド系ポリマの含有量は、プリベーク後のタックレス性を向上させる観点から、10重量%以上が好ましく、15重量%以上がより好ましい。一方、隔壁の耐熱性を向上させる観点から、樹脂組成物の固形分中に占める(メタ)アクリルポリマおよび/またはカルド系ポリマの含有量は、55重量%以下が好ましく、50重量%以下がより好ましい。
 (メタ)アクリルポリマとしては、(メタ)アクリル化合物および/またはスチレン化合物をラジカル重合したものが好ましい。ラジカル重合の触媒に特に制限はなく、アゾビスイソブチロニトリルなどのアゾ化合物や過酸化ベンゾイルなどの有機過酸化物などが一般的に用いられる。
ラジカル重合の条件は適宜設定することができるが、例えば、溶媒中、(メタ)アクリル化合物および/またはスチレン化合物、およびラジカル重合触媒を添加し、バブリングや減圧脱気などによって反応容器内を十分に窒素置換したのち、60~110℃で30~300分反応させることが好ましい。また、必要に応じてチオール化合物などの連鎖移動剤を用いてもよい。
 (メタ)アクリルポリマがエチレン性不飽和結合を有する場合、(メタ)アクリルポリマとしては、たとえば(メタ)アクリル化合物および/またはスチレン化合物をラジカル重合したのち、エチレン性不飽和二重結合基を有するグリシジル化合物を付加反応して得られるものが好ましい。エチレン性不飽和二重結合基を有するグリシジル化合物の付加反応に用いる触媒に特に制限はなく、公知の触媒を用いることが出来るが、たとえば、ジメチルアニリン、2,4,6-トリス(ジメチルアミノメチル)フェノール、ジメチルベンジルアミン等のアミノ系触媒、2-エチルヘキサン酸すず(II)、ラウリン酸ジブチルすず等のすず系触媒、2-エチルヘキサン酸チタン(IV)等のチタン系触媒、トリフェニルホスフィン等のリン系触媒およびアセチルアセトネートクロム、塩化クロム等のクロム系触媒などが用いられる。これらの中でも、ポリシロキサンと同時に用いる場合は、ポリシロキサンの保存安定性を向上する観点から、リン系の触媒が好ましい。
 本発明の樹脂組成物に使用される(メタ)アクリルポリマは、下記一般式(4)で表される構造と下記一般式(5)で表される構造を含む。その他の構造を含んでもよい。
Figure JPOXMLDOC01-appb-C000005
(一般式(4)、(5)中、RおよびRはそれぞれ独立に水素、ヒドロキシ基または炭素数1~30の1価の有機基を表す。Xは芳香環を有する有機基を表す。Yは光ラジカル重合性基を有する有機基を表す。dおよびeはそれぞれ独立に1以上の整数を表す。dおよびeが2以上の場合、複数のR、R、X、およびYはそれぞれ同じであっても異なっていてもよい。)
またはRで表される「炭素数1~30の1価の有機基」としては炭素数1~6のアルキル基(直鎖状及び分枝状アルキル基を包含する)が好ましい。これらの好ましい具体例として、メチル基、エチル基、n-プロピル基及びイソプロピル基を挙げることができる。
で表される「芳香環を有する有機基」としては炭素数6~15の芳香族炭化水素基が好ましい。これらの好ましい具体例として、フェニル基、ベンジル基、スチリル基、ナフチル基及びビフェニル基を挙げることができる。
で表される「光ラジカル重合性基を有する有機基」としてはエチレン性不飽和基が好ましく、メタクリル基および/またはアクリル基を含む官能基がさらに好ましい。これらの好ましい具体例として、カルボン酸基にメタクリル酸グリシジルおよび/またはアクリル酸グリシジルが付加した官能基を挙げることができる。
dおよびeは、それぞれ独立して1以上の整数を表すが、dは好ましくは10~60、さらに好ましくは20~50、eは好ましくは5~60、さらに好ましくは10~50である。
 一般式(4)で表される繰り返し単位は、芳香環を有する有機基を含有する(メタ)アクリル酸化合物および/またはスチレン化合物に由来する。芳香環を有する有機基を含有することで、タックレス性を向上することができる。
 (メタ)アクリルポリマにおける全繰り返し単位中、一般式(4)で表される繰り返し単位を10~80モル%含有することが好ましい。一般式(4)で表される繰り返し単位を10モル%以上含むことにより、プリベーク後の膜のタックレス性を向上することができる。一般式(4)で表される繰り返し単位の含有量は、15モル%以上がより好ましく、20モル%以上がさらに好ましい。一方、一般式(4)で表される繰り返し単位を80モル%以下含むことにより、隔壁の硬化度を向上させることができる。一般式(4)で表される繰り返し単位の含有量は、75モル%以下がより好ましく、70モル%以下がさらに好ましい。
 芳香環を有する有機基を含有する(メタ)アクリル酸化合物としては、例えば、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート等が挙げられる。スチレン化合物としては、例えば、p-メチルスチレン、o-メチルスチレン、m-メチルスチレン、α-メチルスチレン等が挙げられる。これらの中でも、スチレンが好ましい。スチレンを共重合する事により、得られる硬化膜の耐熱性および耐湿熱性が向上する。
 一般式(5)で表される繰り返し単位は、光ラジカル重合性基としてエチレン性不飽和基を有することが好ましい。光ラジカル重合性基としてエチレン性不飽和基を含有することで、露光部で光ラジカル発生剤から発生したラジカルで架橋反応が進行し、露光部の硬化度を高めることができる。
(メタ)アクリルポリマにおける全繰り返し単位中、一般式(5)で表される繰り返し単位を10~80モル%含有することが好ましい。一般式(5)で表される繰り返し単位を10モル%以上含むことにより、膜中の樹脂同士のラジカル架橋を効率的に進行させ、膜の硬化度を向上することができる。一般式(5)で表される繰り返し単位の含有量は、15モル%以上がより好ましく、20モル%以上がさらに好ましい。一方、一般式(5)で表される繰り返し単位を80モル%以下含むことにより、(メタ)アクリルポリマの過剰なラジカル架橋を抑制し、隔壁のクラック耐性を向上させることができる。一般式(5)で表される繰り返し単位の含有量は、75モル%以下がより好ましく、70モル%以下がさらに好ましい。
 エチレン性不飽和基としては、例えば、ビニル基、アリル基、アクリル基、メタクリル基等がある。このような側鎖をアクリル系(共)重合体に付加させる方法としては、アクリル系(共)重合体のカルボン酸基に、先述のようにグリシジル基を有するエチレン性不飽和化合物や(メタ)アクリル酸クロライドを付加反応させる方法が一般的である。その他、イソシアネートを利用してエチレン性不飽和基を有する化合物を付加させることもできる。ここでいうグリシジル基を有するエチレン性不飽和化合物やアクリル酸またはメタクリル酸クロライドとしては、例えば、(メタ)アクリル酸グリシジル、(メタ)アクリル酸α-エチルグリシジル、(メタ)アクリル酸α-n-プロピルグリシジル、(メタ)アクリル酸α-n-ブチルグリシジル、(メタ)アクリル酸3,4-エポキシブチル、(メタ)アクリル酸3,4-エポキシヘプチル、(メタ)アクリル酸α-エチル-6,7-エポキシヘプチル、アリルグリシジルエーテル、ビニルグリシジルエーテル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、α-メチル-o-ビニルベンジルグリシジルエーテル、α-メチル-m-ビニルベンジルグリシジルエーテル、α-メチル-p-ビニルベンジルグリシジルエーテル、2,3-ジグリシジルオキシメチルスチレン、2,4-ジグリシジルオキシメチルスチレン、2,5-ジグリシジルオキシメチルスチレン、2,6-ジグリシジルオキシメチルスチレン、2,3,4-トリグリシジルオキシメチルスチレン、2,3,5-トリグリシジルオキシメチルスチレン、2,3,6-トリグリシジルオキシメチルスチレン、3,4,5-トリグリシジルオキシメチルスチレン、2,4,6-トリグリシジルオキシメチルスチレン、アクリル酸クロライド、メタクリル酸クロライド等が挙げられる。
 (メタ)アクリルポリマ中のその他の繰り返し単位としては、カルボキシル基および/または酸無水物基を含有することが好ましい。カルボキシル基および/または酸無水物基を含有することで、露光部と未露光部における溶解性のコントラストが大きくなり、パターン加工可能な解像度が向上する。カルボキシル基および/または酸無水物基を含有する(メタ)アクリル化合物としては、(メタ)アクリル酸、(メタ)アクリル酸無水物、イタコン酸、イタコン酸無水物、こはく酸モノ(2-アクリロイルオキシエチル)、フタル酸モノ(2-アクリロイルオキシエチル)、テトラヒドロフタル酸モノ(2-アクリロイルオキシエチル)などが挙げられる。これらを2種以上用いてもよい。
 (メタ)アクリルポリマ中のその他の繰り返し単位は含まれていなくてもよく、含まれている場合には、その含量は、全繰り返し単位中90モル%以下が好ましく、さらに好ましくは80モル%以下である。
(メタ)アクリルポリマの重量平均分子量(Mw)は特に制限されないが、ゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算で、2,000以上、200,000以下であることが好ましい。Mwを上記範囲とすることで、良好な塗布特性が得られ、パターン形成する際の未露光部の現像液への溶解性も良好となる。
 本発明の樹脂組成物に使用される(メタ)アクリルポリマは、後述の合成例の通り合成して用いてもよいし、市販の製品を使用してもよい。市販の(メタ)アクリルポリマとしては、例えば、AX3-BX-TR-101、AX3-BX-TR-102、AX3-BX-TR-106、AX3-BX-TR-107、AX3-BX-TR-108、AX3-BX-TR-109、AX3-BX-TR-110、AX3-RD-TR-501、AX3-RD-TR-502、AX3-RD-TR-503、AX3-RD-TR-504、AX3-RD-TR-103、AX3-RD-TR-104(商品名、日本触媒株式会社製)、SPCR-10X、SPCR-10P、SPCR-24X、SPCR-18X、SPCR-215X(商品名、昭和電工株式会社製)、X-4007(商品名、日油株式会社製)などが挙げられる。これらの中でも、芳香族基と光ラジカル重合性基を有するSPCR-10X、SPCR-10P、SPCR-24X、SPCR-18X、SPCR-215Xが好ましい。これらを2種類以上用いてもよい。
 本発明の樹脂組成物に使用されるカルド系ポリマは、下記一般式(6)または下記一般式(7)で表される構造と光ラジカル重合性基を含む。その他の構造を含んでもよい。
Figure JPOXMLDOC01-appb-C000006
(一般式(6)、(7)中、R~Rは水素、炭素数1~30の1価の有機基、炭素数6~20のアリール基または隣接するR~R同士で形成した環が芳香環となる基を表す。Rは水素、炭素数1~30の1価の有機基、または炭素数6~20のアリール基を表す。p、q、rは0~2の整数であり、sは1~2の整数を表す。f~gはそれぞれ独立に1以上の整数を表す。f~gが2以上の場合、複数のR、R、R、およびRはそれぞれ同じであっても異なっていてもよい。)
 ここで、「炭素数1~30の1価の有機基」としては、炭素数1~6のアルキル基(直鎖状及び分枝状アルキル基を包含する)が好ましい。これらの好ましい具体例として、メチル基、エチル基、n-プロピル基及びイソプロピル基を挙げることができる。また、「炭素数6~20のアリール基」としては、炭素数6~15の芳香族炭化水素基が好ましい。これらの好ましい具体例として、フェニル基、ベンジル基、スチリル基、ナフチル基及びビフェニル基を挙げることができる。また、合成の容易さから、R、R、およびRは水素が好ましく、Rはフェニル基であることが好ましい。
fおよびgは、それぞれ独立して1以上の整数を表すが、fは好ましくは2~60、さらに好ましくは3~50、eは好ましくは2~60、さらに好ましくは3~50である。
 カルド系ポリマに含まれる「光ラジカル重合性基」としては、エチレン性不飽和基が好ましい。光ラジカル重合性基としてエチレン性不飽和基を含有することで、露光部で光ラジカル発生剤から発生したラジカルで架橋反応が進行し、露光部の硬化度を高めることができる。
エチレン性不飽和基としては、例えば、ビニル基、アリル基、スチリル基、アクリル基、メタクリル基等がある。スチリル基、メタクリル基、アクリル基を含む官能基が好ましい。好ましい具体例として、カルボン酸基にメタクリル酸グリシジルおよび/またはアクリル酸グリシジルが付加した官能基を挙げることができる。
 本発明の樹脂組成物に使用されるカルド系ポリマは、「その他の構造」として、アルカリ可溶性基を含むことが好ましい。アルカリ可溶性基としては、カルボキシル基および/または酸無水物基を含有することが好ましい。カルボキシル基および/または酸無水物基を含有することで、露光部と未露光部における溶解性のコントラストが大きくなり、パターン加工可能な解像度が向上する。
 カルド系ポリマの重量平均分子量(Mw)は特に制限されないが、後述のゲルパーミエーションクロマトグラフィー(GPC)で測定されるポリスチレン換算で、2,000以上、200,000以下であることが好ましい。Mwを上記範囲とすることで、良好な塗布特性が得られ、パターン形成する際の未露光部の現像液への溶解性も良好となる。
 本発明の樹脂組成物に使用されるカルド系ポリマは、合成して用いてもよいし、市販の製品を使用してもよい。市販のカルド系ポリマとしては、例えば、“オグゾール”(登録商標)CR-TR、CR-TR2、CR-TR3、CR-TR4、CR-TR5、CR-TR6(以上、商品名、大阪ガスケミカル(株)製)、INR-16(商品名、ナガセケムテック(株)製)、V-259ME(商品名、新日鉄住金化学(株)製)、WR-301(商品名、ADEKA(株)製)などが挙げられる。これらの中でも、前記一般式(6)または前記一般式(7)で表される構造と光ラジカル重合性基、およびアルカリ可溶性基を含むV-259ME、WR-301が好ましい。これらを2種類以上用いてもよい。
 本発明の樹脂組成物は、樹脂として、先述のポリシロキサンの重量と先述の(メタ)アクリルポリマおよびカルド系ポリマの合計重量を30/70~70/30の比で含有することが好ましい。この比で含有することにより、ポリシロキサン由来の高い耐熱性と、(メタ)アクリルポリマおよび/またはカルド系ポリマ由来のプリベーク後の膜のタックレス性を両立することができる。ポリシロキサンの重量と(メタ)アクリルポリマおよびカルド系ポリマの合計重量の比は、35/65~65/35がより好ましく、40/60~60/40がさらに好ましい。
 前記(メタ)アクリルポリマおよび/またはカルド系ポリマは、ガラス転移温度が60℃以上であることが好ましい。ガラス転移温度が高いことで、プリベーク後の膜のタックレス性を高めることができる。65℃以上がさらに好ましい。ガラス転移温度は、後述の実施例に記載の通り測定できる。
 本発明の樹脂組成物は、さらに、白色顔料を含有することが好ましい。白色顔料は、隔壁の反射率をより向上させる機能を有する。白色顔料としては、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、硫酸バリウム、これらの複合化合物などが挙げられる。これらを2種以上含有してもよい。これらの中でも、反射率が高く工業的利用が容易な二酸化チタンが好ましい。二酸化チタンの結晶構造は、アナターゼ型、ルチル型およびブルッカイト型に分類される。これらの中でも、光触媒活性が低いことから、ルチル型酸化チタンが好ましい。
 白色顔料には、表面処理が施されていてもよい。Al、SiおよびZrから選ばれた金属を含む金属酸化物による表面処理が好ましく、形成した隔壁の耐光性および耐熱性を向上させることができる。白色顔料の平均一次粒子径は、隔壁の反射率をより向上させる観点から、100~500nmが好ましく、150nm~350nmがより好ましい。ここで、白色顔料の平均一次粒子径は、粒度分布測定装置(N4-PLUS;ベックマン・コールター(株)製)などを用いてレーザー回折法により測定することができる。
 白色顔料として好ましく用いられる二酸化チタン顔料としては、例えば、R960;デュポン(株)製(ルチル型、SiO/Al処理、平均一次粒子径210nm)、CR-97;石原産業(株)製(ルチル型、Al/ZrO処理、平均一次粒子径250nm)、等が挙げられる。これらを2種以上含有してもよい。樹脂組成物における白色顔料の含有量は、反射率をより向上させる観点から、固形分中の10重量%以上が好ましく、15重量%以上がより好ましい。一方、隔壁の表面平滑性を向上させる観点から、白色顔料の含有量は、固形分中の60重量%以下が好ましく、55重量%以下がより好ましい。
 本発明の樹脂組成物は、さらに、遮光顔料および/または、銀、金、白金およびパラジウムからなる群より選ばれる少なくとも1種の金属を含有する有機金属化合物(以下、「有機金属化合物」と記載する場合がある)を含有することが好ましい。遮光顔料および有機金属化合物は、隔壁の遮光性をより向上させる機能を有する。
 遮光顔料は、遮光性向上の観点から、黒色顔料を含有することが好ましい。
黒色顔料としては、例えば、黒色有機顔料、混色有機顔料、黒色無機顔料等が挙げられる。黒色有機顔料としては、例えば、カーボンブラック、ペリレンブラック、アニリンブラック、ベンゾフラノン系顔料などが挙げられる。これらは、樹脂で被覆されていてもよい。
 混色有機顔料としては、例えば、赤、青、緑、紫、黄色、マゼンダおよびシアン等から選ばれた2種以上の顔料を混合して疑似黒色化したものが挙げられる。これらの中でも、適度に高いOD値とパターン加工性を両立する観点から、赤色顔料と青色顔料との混合顔料が好ましい。混合顔料における赤色顔料と青色顔料の重量比は、20/80~80/20が好ましく、30/70~70/30がより好ましい。代表的な顔料の具体例をカラーインデックス(CI)ナンバーで示すと、次のようなものが挙げられる。赤色顔料としては、例えば、ピグメントレッド(以下PRと略す)9、PR177、PR215、PR254などが挙げられる。これらを2種以上含有してもよい。青色顔料としては、例えば、ピグメントブルー(以下PBと略す)15、PB15:4、PB15:6などが挙げられる。これらを2種以上含有してもよい。
 黒色無機顔料としては、例えば、グラファイト;チタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム、銀、金、白金、パラジウム等の金属の微粒子;金属酸化物;金属複合酸化物;金属硫化物;金属窒化物;金属酸窒化物;金属炭化物などが挙げられる。これらを2種以上含有してもよい。
以上の黒色顔料の中でも、高い遮光性を有することから、窒化チタン、窒化ジルコニウム、カーボンブラック、および赤色顔料と青色顔料との重量比20/80~80/20の混合顔料から選ばれた顔料が好ましい。
 樹脂組成物における遮光顔料の含有量は、遮光性を向上する観点から、固形分中の0.01重量%以上が好ましく、0.05重量%以上がより好ましい。一方、微細厚膜隔壁パターンを安定して形成する観点から、遮光顔料の含有量は、固形分中の5重量%以下が好ましく、3重量%以下がより好ましい。
また、本発明の樹脂組成物は、特定の波長の遮光性を向上するために、黒色顔料以外のその他の遮光顔料を含んでもよい。その他の遮光顔料としては、例えば、赤色顔料、青色顔料、紫色顔料、緑色顔料、黄色顔料等が挙げられる。これらを2種以上含有してもよい。
 有機金属化合物は、後述の隔壁(A-1)のパターン形成に際し、露光工程および/または加熱工程において、分解・凝集することにより黒色粒子または黄色粒子となり、後述の隔壁(A-1)の遮光性(OD値)を向上させる機能を有する。露光前にはOD値が低く、パターン形成後にOD値が上昇することから、露光工程においては露光した光を底部まで十分に透過させて、光硬化または光分解させることができる。OD値の高い隔壁(A-1)を形成するために、予め遮光顔料を多量に含有する樹脂組成物を用いてパターン形成すると、底部における光硬化が不十分となりやすい。その結果、得られた隔壁(A-1)の形状が逆テーパー型になりやすい傾向にある。前述の有機金属化合物を含有する本発明の樹脂組成物を用いてパターン形成すると、底部まで十分に光硬化することから、テーパー角度を容易に後述の好ましい範囲にすることができる。
 有機金属化合物としては、例えば、ネオデカン酸銀、オクチル酸銀、サリチル酸銀などの銀を含有する有機金属化合物;クロロ(トリフェニルホスフィン)金などの金を含有する有機金属化合物;ビス(アセチルアセトナト)白金、ジクロロビス(トリフェニルホスフィン)白金などの白金を含有する有機金属化合物;ビス(アセチルアセトナト)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウムパラジウムを含有する有機金属化合物などが挙げられる。これらを2種以上含有してもよい。
 これらのうち、ネオデカン酸銀、オクチル酸銀、サリチル酸銀などの銀を含有する有機金属化合物を含有すると、露光工程および/または加熱工程において、分解・凝集することによりナノ銀粒子を生成して黄色化する。
 一方、ビス(アセチルアセトナト)白金などの白金を含有する有機金属化合物;ビス(アセチルアセトナト)パラジウムなどのパラジウムを含有する有機金属化合物を含有すると、露光工程および/または加熱工程において、分解・凝集することにより酸化パラジウムを生成して黒色化する。
これらの中でも、OD値をより向上させる観点から、ネオデカン酸銀、ビス(アセチルアセトナト)パラジウムが好ましい。
 本発明の樹脂組成物において、固形分中に占める有機金属化合物の含有量は、0.2~5重量%が好ましい。有機金属化合物の含有量を0.2重量%以上とすることにより、得られる隔壁のOD値をより向上させることができる。有機金属化合物の含有量は、0.5重量%以上がより好ましい。一方、有機金属化合物の含有量を5重量%以下とすることにより、反射率をより向上させることができる。
 本発明の樹脂組成物は、さらに、リン原子を有する配位性化合物(以下、「配位性化合物」と記載する場合がある)を含有することが好ましい。配位性化合物は、樹脂組成物中の有機金属化合物に配位し、有機金属化合物の溶媒への溶解性を向上させて有機金属化合物の分解を促進し、得られる隔壁のOD値をより向上させることができる。配位性化合物としては、例えば、トリフェニルホスフィン、トリ-t-ブチルホスフィン、トリメチルホスフィン、トリシクロヘキシルホスフィン、トリス(O-トリル)ホスフィンなどが挙げられる。これらを2種以上含有してもよい。本発明の樹脂組成物中における配位性化合物の含有量は、有機金属化合物に対して0.5~3.0モル当量が好ましい。
 本発明の樹脂組成物は、さらに、光重合性化合物を含有することが好ましい。本発明における光重合性化合物とは、分子中に2つ以上のエチレン性不飽和二重結合を有する化合物をいう。光重合性化合物を含有することで、樹脂中の(メタ)アクリル基とラジカル架橋反応を起こし、膜の硬化度を向上することができる。ラジカル重合性のしやすさを考えると、光重合性化合物は、(メタ)アクリル基を有することが好ましい。
 光重合性化合物としては、例えば、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート、トリペンタエリスリトールヘプタメタクリレート、トリペンタエリスリトールオクタメタクリレート、テトラペンタエリスリトールノナメタクリレート、テトラペンタエリスリトールデカメタクリレートなどが挙げられる。これらを2種以上含有してもよい。
 本発明の樹脂組成物中における光重合性化合物の含有量は、ラジカル硬化を効果的に進める観点から、固形分中、1重量%以上が好ましい。一方、ラジカルの過剰反応を抑制し解像度を向上させる観点から、光重合性化合物の含有量は、固形分中、50重量%以下が好ましい。
 本発明の樹脂組成物は、光重合性基を有する撥液化合物を含有することが好ましい。撥液化合物とは、樹脂組成物に水や有機溶媒をはじく性質(撥液性能)を付与する化合物である。このような性質を有する化合物であれば特に限定されないが、具体的には、フルオロアルキル基を有する化合物が好ましく用いられる。撥液化合物を含有することにより、後述する隔壁(A-1)を形成後に、隔壁の頂部に撥液性能を付与することができる。それにより、例えば、後述する(B)色変換発光材料を含有する画素を形成する際に、それぞれの画素に、組成の異なる色変換発光材料を、容易に塗り分けることができる。
 撥液化合物は、末端、主鎖および/または側鎖にフルオロアルキルまたはフルオロアルキレン基を有する化合物を指す。本発明の樹脂組成物中に含有する撥液化合物は、樹脂と強固な結合を形成することができることから、光重合性基を有する撥液化合物がより好ましい。光重合性基を有する撥液化合物としては、例えば、“メガファック”(登録商標)RS-72-A、RS-75-A、RS-56、RS-90(以上、商品名、DIC(株)製)等が挙げられる。なお、この場合、ネガ型感光性樹脂組成物の光硬化物からなる隔壁(A-1)中においては、光重合性基は光重合されていてもよい。
 隔壁の撥液性能を向上させ、インクジェット塗布性を向上させる観点から、樹脂組成物における撥液化合物の含有量は、固形分中の0.01重量%以上が好ましく、0.1重量%以上がより好ましい。一方、樹脂や白色顔料との相溶性を向上させる観点から、撥液化合物の含有量は、固形分中の10重量%以下が好ましく、5重量%以下がより好ましい。
 また、本発明の樹脂組成物は、必要に応じて、界面活性剤、密着性改良剤などを含有してもよい。本発明の樹脂組成物中に界面活性剤を含有することにより、塗布時のフロー性を向上させることができる。界面活性剤としては、例えば、“メガファック”(登録商標)F445、F470、F475、F477(以上、商品名、DIC(株)製)、NBX-15、FTX-218(以上、商品名、(株)ネオス製)などのフッ素系界面活性剤;“BYK”(登録商標)-333、352、301(以上、商品名、ビックケミージャパン(株)製)などのシリコーン系界面活性剤;ポリアルキレンオキシド系界面活性剤;ポリ(メタ)アクリレート系界面活性剤などが挙げられる。これらを2種以上含有してもよい。
 本発明の樹脂組成物中に密着性改良剤を含有することにより、下地基板との密着性が向上し、信頼性の高い隔壁を得ることができる。密着性改良剤としては、例えば、脂環式エポキシ化合物や、シランカップリング剤などが挙げられる。これらの中でも、耐熱性の観点から、脂環式エポキシ化合物が好ましい。脂環式エポキシ化合物としては、例えば、3’,4’-エポキシシクロヘキシメチル-3,4-エポキシシクロヘキサンカルボキシレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、ε-カプロラクトン変性3’,4’-エポキシシクロヘキシルメチル3’,4’-エポキシシクロヘキサンカルボキシレート、1,2-エポキシ-4-ビニルシクロヘキサン、ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン、3,4-エポキシシクロヘキシルメチルメタアクリレート、1,4-シクロヘキサンジカルボン酸ジグリシジル、1,4-シクロヘキサンジメタノールジグリシジルエーテル等が挙げられる。これらを2種以上含有してもよい。
 本発明の樹脂組成物中における密着性改良剤の含有量は、下地基板との密着性をより向上させる観点から、固形分中の0.1重量%以上が好ましく、1重量%以上がより好ましい。一方、密着性改良剤の含有量は、パターン加工性の観点から、固形分中の20重量%以下が好ましく、10重量%以下がより好ましい。
 本発明の樹脂組成物は、さらに、溶剤を含有することが好ましい。溶媒は、樹脂組成物の粘度を塗布に適した範囲に調整し、隔壁の均一性を向上させる機能を有する。溶媒としては、大気圧下の沸点が150℃を超えて250℃以下の溶媒と、150℃以下の溶媒を組み合わせることが好ましい。溶媒としては、例えば、イソプロパノール、ジアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのエーテル類;メチルエチルケトンメチルイソブチルケトン、ジイソブチルケトン、シクロペンタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類などを挙げることができる。これらを2種以上含有してもよい。これらの中でも、塗布性の観点から、大気圧下の沸点が150℃を超えて250℃以下の溶媒としてジアセトンアルコールと、150℃以下の溶媒としてプロピレングリコールモノメチルエーテルを組み合わせることが好ましい。
 溶媒の含有量は、塗布方法などに応じて任意に設定することができる。例えば、スピンコーティングにより膜形成を行う場合には、溶媒の含有量は、樹脂組成物中、50重量%以上、95重量%以下とすることが一般的である。
 本発明の樹脂組成物は、例えば、前述の光ラジカル発生剤、ポリシロキサン、(メタ)アクリルポリマおよび/またはカルド系ポリマおよび必要に応じてその他成分を混合することにより製造することができる。
次に、本発明の遮光膜について説明する。本発明の遮光膜は、前述の本発明の樹脂組成物を硬化して得られる。本発明の遮光膜は、後述の隔壁(A-1)の他、カバー基材用加飾パターンなどのOGSタイプのタッチパネルにおける遮光パターンとして好適に用いることができる。遮光膜の膜厚は、10μm以上が好ましい。
次に、本発明の遮光膜の製造方法について、例を挙げて説明する。本発明の遮光膜の製造方法は、下地基板上に本発明の樹脂組成物を塗布し、乾燥して乾燥膜を得る製膜工程、得られた乾燥膜をパターン露光する露光工程、露光後の乾燥膜における現像液に可溶な部分を溶解除去する現像工程、および現像後の乾燥膜を加熱することにより硬化させる加熱工程を有することが好ましい。 
 前記製膜工程における樹脂組成物の塗布方法としては、例えば、スリットコート法、スピンコート法などが挙げられる。乾燥装置としては、例えば、熱風オーブンやホットプレートなどが挙げられる。乾燥時間は80~120℃が好ましく、乾燥時間は1~15分間が好ましい。
露光工程は、露光により乾燥膜の必要な部分を光硬化させて、または、乾燥膜の不要な部分を光分解させて、乾燥膜の任意の部分を、現像液に可溶とする工程である。露光工程においては、所定の開口部を有するフォトマスクを介して露光してもよいし、フォトマスクを用いずに、レーザー光等を用いて任意のパターンを直接描画してもよい。
露光装置としては、例えば、プロキシミティ露光機が挙げられる。露光工程において照射する活性光線としては、紫外線が好ましい。また、その光源としては、例えば、高圧水銀灯、超高圧水銀灯、ハロゲンランプなどが挙げられ、超高圧水銀灯が好ましい。露光条件は露光する乾燥膜の厚さにより適宜選択することができる。一般的に、1~100mW/cmの出力の超高圧水銀灯を用いて、1~10,000mJ/cmの露光量で露光することが好ましい。
 現像工程は、露光後の乾燥膜における現像液に可溶な部分を現像液で溶解除去して、現像液に不溶な部分のみが残存した、任意のパターン形状にパターン形成された乾燥膜(以下、加熱前パターンと呼ぶ)を得る工程である。パターン形状としては、例えば格子状、ストライプ状、ホール状などの形状が挙げられる。現像方法としては、例えば、浸漬法、スプレー法、ブラシ法などが挙げられる。
 現像液としては、露光後の乾燥膜における不要な部分を溶解することが可能な溶媒を適宜選択することができ、水を主成分とする水溶液が好ましい。例えば、樹脂組成物がカルボキシル基を有するポリマーを含有する場合、現像液としては、アルカリ水溶液が好ましい。アルカリ水溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、水酸化カルシウム等の無機アルカリ水溶液;テトラメチルアンモニウムヒドロキサイド等の有機アルカリ水溶液などが挙げられる。これらの中でも、解像度を向上させる観点から、水酸化カリウム水溶液またはテトラメチルアンモニウムヒドロキサイド水溶液が好ましい。また、解像度を向上させる観点から、現像液に界面活性剤を含有してもよい。現像温度は、工程管理を容易にするため、20~50℃が好ましい。 加熱工程は、現像工程で形成された加熱前パターンを加熱硬化させる工程である。加熱装置としては、例えば、ホットプレート、オーブン等が挙げられる。加熱温度は、加熱する膜のクラック発生を抑制する観点から、250℃以下が好ましい。加熱時間は15分間~2時間が好ましい。本発明の樹脂組成物が、先述の有機金属化合物を含有する場合、加熱温度は、OD値をより向上する観点から、150℃以上が好ましい。
 次に、本発明の隔壁付き基板について説明する。本発明の隔壁付き基板は、下地基板上に(A-1)パターン形成された隔壁(以下、「隔壁(A-1)」と記載する場合がある)を有する。下地基板は、隔壁付き基板における支持体としての機能を有する。隔壁は、後述する色変換発光材料を含有する画素を有する場合、隣接する画素間における光の混色を抑制する機能を有する。
 本発明の隔壁付き基板において、隔壁(A-1)は、波長550nmにおける厚み10μmあたりの反射率が10%~60%、波長450nmにおける厚み10μmあたりのOD値が1.0~3.0であることが好ましい。反射率を10%以上、OD値を3.0以下とすることにより、(A-1)隔壁側面における反射を利用して表示装置の輝度を向上させることができる。一方、波長550nmにおける反射率を60%以下、波長450nmにおけるOD値を1.0以上とすることにより、隔壁(A-1)の透過光を抑制して隣接画素間における光の混色を抑制することができる。
 図1に、パターン形成された隔壁を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2を有する。
 <下地基板>
 下地基板としては、例えば、ガラス板、樹脂板、樹脂フイルムなどが挙げられる。ガラス板の材質としては、無アルカリガラスが好ましい。樹脂板および樹脂フイルムの材質としては、ポリエステル、(メタ)アクリルポリマ、透明ポリイミド、ポリエーテルスルフォン等が好ましい。ガラス板および樹脂板の厚みは、1mm以下が好ましく、0.8mm以下が好ましい。樹脂フイルムの厚みは、100μm以下が好ましい。
 <隔壁(A-1)>
 隔壁(A-1)は、波長550nmにおける厚み10μmあたりの反射率が10%~60%、波長450nmにおける厚み10μmあたりのOD値が1.0~3.0であることが好ましい。ここで、隔壁(A-1)の厚みとは、隔壁(A-1)の高さおよび/または隔壁(A-1)の幅を指す。隔壁(A-1)の高さとは、隔壁(A-1)の下地基板と垂直な方向(高さ方向)の長さを指す。図1に示す隔壁付き基板の場合、隔壁2の高さは符号Hで表される。また、隔壁(A-1)の幅とは、隔壁(A-1)の下地基板と水平な方向の長さを指す。図1に示す隔壁付き基板の場合、隔壁2の幅は符号Lで表される。なお、本明細書において、「高さ」は「厚み」と呼ぶこともある。
 本発明においては、隔壁側面における反射率が表示装置の輝度向上に、遮光性が混色抑制に、それぞれ寄与すると考えられる。一方で、厚みあたりの反射率およびOD値は、高さ方向、幅方向によらず同じであると考えられるため、本発明においては、隔壁の厚みあたりの反射率およびOD値に着目する。なお、後述する通り、隔壁(A-1)の厚み(高さ)は0.5~100μmが好ましく、幅は1~100μmが好ましい。そこで、本発明においては、隔壁(A-1)の厚みの代表値として10μmを選択し、厚み10μmあたりの反射率およびOD値に着目した。 波長550nmにおける隔壁(A-1)の厚み10μmあたりの反射率が10%未満であると、隔壁側面における可視光反射が小さくなり、表示装置の輝度が不十分となる。波長550nmにおける厚み10μmあたりの反射率は、10%以上が好ましく、20%以上がより好ましく、30%以上がさらに好ましい。
 波長450nmにおける隔壁(A-1)の厚み10μmあたりのOD値は、1.0以上が好ましく、1.5以上がより好ましく、2.0以上がさらに好ましい。波長450nmにおける厚み10μmあたりのOD値が高いほど、隔壁側面の遮光性が大きくなるため、隣接画素間の混色を防止し、表示装置のコントラストを向上できる。波長450nmにおける隔壁(A-1)の厚み10μmあたりのOD値が1.0未満であると、隣接画素に青色励起光が漏れることで、隔壁間に後述の(B)色変換発光材料を含有する画素を含有する場合、画素内で発光してしまい、混色が発生する。 
 隔壁(A-1)の波長550nmにおける厚み10μmあたりの反射率は、厚み10μmの隔壁(A-1)について、上面から分光測色計(例えば、コニカミノルタ(株)製CM-2600d)を用いて、SCIモードにより測定することができる。ただし、測定に十分な面積を確保できない場合や、厚み10μmの測定サンプルが採取できない場合において、隔壁(A-1)の組成が既知である場合には、隔壁(A-1)と同組成の厚み10μmのベタ膜を作製し、隔壁(A-1)にかえてベタ膜について同様に反射率を測定することにより、厚み10μmあたりの反射率を求めてもよい。例えば、隔壁(A-1)を形成した材料を用いて、厚みを10μmとし、パターン形成しないこと以外は隔壁(A-1)の形成と同じ加工条件によりベタ膜を作製し、得られたベタ膜について、上面から、同様に反射率を測定してもよい。
 隔壁(A-1)の波長450nmにおける厚み10μmあたりのOD値は、厚み10μmの隔壁(A-1)について、上面から光学濃度計(例えば、日立ハイテクサイエンス製U-4100)を用いて入射光および透過光の強度を測定し、下記式(1)により算出することができる。ただし、測定に十分な面積を確保できない場合や、厚み10μmの測定サンプルが採取できない場合において、隔壁(A-1)の組成が既知である場合には、反射率の測定と同様に、隔壁(A-1)と同組成の厚み10μmのベタ膜を作製し、隔壁(A-1)にかえてベタ膜について同様にOD値を測定することにより、厚み10μmあたりのOD値を求めてもよい。
OD値 = log10(I/I) ・・・ (1)
 : 入射光強度
I : 透過光強度。
 なお、反射率およびOD値を上記範囲にするための手段としては、例えば、隔壁(A-1)を後述する好ましい組成とすることなどが挙げられる。
 隔壁(A-1)のテーパー角度は、45°~110°が好ましい。隔壁(A-1)のテーパー角度とは、隔壁断面の側辺と底辺とがなす角度を指す。図1に示す隔壁付き基板の場合、隔壁2のテーパー角度は符号θで表される。テーパー角度を45°以上とすることにより、隔壁(A-1)の上部と底部の幅の差が小さくなり、隔壁(A-1)の幅を後述する好ましい範囲に容易に形成することができる。テーパー角度は、70°以上がより好ましい。一方、テーパー角度を110°以下とすることにより、後述する(B)色変換発光材料を含有する画素を、インクジェット塗布により形成する際に、インクの決壊を抑制し、インクジェット塗布性を向上させることができる。ここで、インクの決壊とは、インクが隔壁を乗り越えて隣の画素部分に混入する現象のことを言う。テーパー角度は、95°以下がより好ましい。隔壁(A-1)のテーパー角度は、隔壁(A-1)の任意の断面を、光学顕微鏡(FE-SEM(例えば、(株)日立製作所製S-4800))を用いて、加速電圧3.0kV、倍率2,500倍で観察し、隔壁(A-1)の断面の側辺と底辺とがなす角度を測定することにより求めることができる。
 なお、隔壁(A-1)のテーパー角度を上記範囲にするための手段としては、例えば、隔壁(A-1)を後述する好ましい組成とすること、前述の本発明の樹脂組成物を用いて形成することなどが挙げられる。
 隔壁(A-1)の厚みは、隔壁付き基板が後述する(B)色変換発光材料を含有する画素を有する場合には、その画素の厚みよりも大きいことが好ましい。具体的には、隔壁(A-1)の厚みは、0.5μm以上が好ましく、10μm以上がより好ましい。一方、画素底部における発光をより効率良く取り出す観点から、隔壁(A-1)の厚みは、100μm以下が好ましく、50μm以下がより好ましい。また、隔壁(A-1)の幅は、隔壁側面における光反射を利用し輝度をより向上させ、光漏れによる隣接画素における光の混色をより抑制するために十分なものであることが好ましい。具体的には、隔壁の幅は、1μm以上が好ましく、5μm以上がより好ましい。一方、画素の発光領域を多く確保して輝度をより向上させる観点から、隔壁(A-1)の幅は、100μm以下が好ましく、50μm以下がより好ましい。
 隔壁(A-1)は、画像表示装置の画面サイズに応じた所定画素数分の繰り返しパターンを有している。画像表示装置の画素数としては、例えば、横に4000個、縦に2000個が挙げられる。画素数は、表示される画像の解像度(きめ細かさ)に影響する。そのため、要求される画像の解像度と画像表示装置の画面サイズに応じた数の画素を形成する必要があり、それに併せて、隔壁のパターン形成寸法を決定することが好ましい。
 隔壁(A-1)は、樹脂と、白色顔料と、遮光顔料を含有することが好ましい。樹脂は、隔壁のクラック耐性および耐光性を向上させる機能を有する。白色顔料は、隔壁の反射率をより向上させる機能を有する。遮光顔料は、OD値を調整し、隣接画素における光の混色を抑制する機能を有する。
 樹脂、白色顔料遮光顔料は、樹脂組成物を構成する材料として先に説明した通りである。遮光顔料は、遮光性を向上する観点から、黒色顔料、赤色顔料、青色顔料、紫色顔料、黄色顔料から選ばれた少なくとも1種の顔料を含有することが好ましい。これらの中でも、隣接画素における光の混色を抑制する観点から、黒色顔料および/または黄色顔料を含有することが好ましい。
黒色顔料は、樹脂組成物を構成する材料として先に説明した通りである。
黄色顔料は、例えば、ピグメントイエロー(以下PYと略す)PY137、PY138、PY139、PY150、PY166、PY168、PY185などの黄色有機顔料や、ナノ銀粒子、ナノ金粒子等の金属の微粒子;金属酸化物;金属複合酸化物;金属硫化物;金属窒化物;金属酸窒化物;金属炭化物など黄色無機顔料が挙げられる。
これらの中でも、遮光顔料は、隣接画素における光の混色を抑制する観点から、窒化チタン、窒化ジルコニウム、カーボンブラック、赤色顔料と青色顔料との重量比20/80~80/20の混合顔料、および酸化パラジウム、酸化白金、酸化金、酸化銀、パラジウム、白金、金、銀からなる群より選ばれる少なくとも1種の金属酸化物または金属からなる粒子から選ばれた少なくとも1種の顔料を含有することが好ましい。
 隔壁(A-1)は、さらにヒンダードアミン化合物を含有することが好ましい。ヒンダードアミン化合物を含有することにより、隔壁の耐候性を向上することができる。隔壁(A-1)は、樹脂組成物を構成する材料として先に説明した通りである。ヒンダードアミン化合物は、分子中の光重合性基が反応し樹脂に固定化されていてもよい。
隔壁(A-1)中のヒンダードアミン化合物の含有量は、耐候性をより向上させる観点から、0.005重量%以上が好ましく、0.008重量%以上がより好ましい。一方、隔壁の表面硬化性を向上させる観点から、隔壁(A-1)中のヒンダードアミン化合物の含有量は、5.0重量%以下が好ましく、3.0重量%以下がより好ましい。
隔壁(A-1)は、さらに撥液化合物を含有することが好ましい。撥液化合物を含有することにより、隔壁(A-1)に撥液性能を付与することができ、例えば、後述する(B)色変換発光材料を含有する画素を形成する際に、それぞれの画素に、組成の異なる色変換発光材料を、容易に塗り分けることができる。撥液化合物は、樹脂組成物を構成する材料として先述した通りである。 
 隔壁(A-1)の、プロピレングリコールモノメチルエーテルアセテートに対する表面接触角は、インクジェット塗布性を向上させ、色変換発光材料の塗り分けを容易にする観点から、10°以上が好ましく、20°以上がより好ましく、40°以上がさらに好ましい。一方、隔壁と下地基板との密着性を向上させる観点から、隔壁(A-1)の表面接触角は、70°以下が好ましく、60°以下がより好ましい。ここで、隔壁(A-1)の表面接触角は、隔壁上部に対して、JIS R3257(制定年月日:1999/04/20)に規定される基板ガラス表面のぬれ性試験方法に準拠して測定することができる。なお、隔壁(A-1)の表面接触角を前記範囲にする方法としては、例えば、前述の撥液化合物を用いる方法などが挙げられる。
 下地基板上に隔壁(A-1)をパターン形成する方法としては、パターン形状の調整が容易であることから、感光性ペースト法が好ましい。感光性ペースト法により隔壁をパターン形成する方法としては、例えば、下地基板上に、前述の樹脂組成物を塗布し、乾燥して乾燥膜を得る塗布工程、得られた乾燥膜を、所望のパターン形状に応じてパターン露光する露光工程、露光後の乾燥膜における現像液に可溶な部分を溶解除去する現像工程および現像後の隔壁を硬化させる加熱工程を有する方法が好ましい。樹脂組成物は、ネガ型の感光性を持たせることが好ましい。パターン露光は、所定の開口部を有するフォトマスクを介して露光してもよいし、フォトマスクを用いずに、レーザー光等を用いて任意のパターンを直接描画してもよい。なお、隔壁付き基板が後述するカラーフィルターおよび/または遮光隔壁(A-2)を有する場合は、カラーフィルターおよび/または遮光隔壁(A-2)上に、同様にして隔壁(A-1)をパターン形成することができる。各工程については、遮光膜の製造方法として先に説明した通りである。
 本発明の隔壁付き基板は、さらに、前記隔壁(A-1)によって隔てられて配列した(B)色変換発光材料を含有する画素(以下、「画素(B)」と記載する場合がある)を有することが好ましい。画素(B)は、入射光の波長領域の少なくとも一部を変換して、入射光とは異なる波長領域の出射光を放出することにより、カラー表示を可能にする機能を有する。
 図2に、パターン形成された隔壁(A-1)と画素(B)を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2を有し、隔壁2によって隔てられた領域に画素3が配列されている。色変換材料は、無機蛍光体および有機蛍光体から選ばれた蛍光体を含有することが好ましい。
 本発明の隔壁付き基板は、例えば、青色光を発光するバックライトとTFT上に形成された液晶と画素(B)を組み合わせて、表示装置として用いることができる。この場合、赤色画素に対応する領域には、青色の励起光により励起されて赤色の蛍光を発する赤色用蛍光体を含有することが好ましい。同様に、緑色画素に対応する領域には、青色の励起光により励起されて緑色の蛍光を発する緑色用蛍光体を含有することが好ましい。青色画素に対応する領域には、蛍光体を含有しないことが好ましい。
 無機蛍光体としては、青色の励起光により緑色や赤色などの各色を発光するもの、すなわち、波長400~500nmの励起光により励起され、発光スペクトルが500~700nmの領域にピークを有するものが好ましい。かかる無機蛍光体としては、例えば、YAG系蛍光体、TAG系蛍光体、サイアロン系蛍光体、Mn4+付活フッ化物錯体蛍光体、量子ドットと称される無機半導体等が挙げられる。これらの中でも、量子ドットが好ましい。量子ドットは他の蛍光体に比較して平均粒子径が小さいことから、画素(B)の表面を平滑化して表面における光散乱を抑制することができるため、光の取り出し効率をより向上させ、輝度をより向上させることができる。
 量子ドットの材料としては、例えば、II-IV族、III-V族、IV-VI族、IV族の半導体などが挙げられる。これらの無機半導体としては、例えば、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeなどが挙げられる。これらを2種以上用いてもよい。
 有機蛍光体としては、青色の励起光により緑色や赤色などの各色を発光するものが好ましい。赤色の蛍光を発する蛍光体として、下記構造式(11)で表される基本骨格を有するピロメテン誘導体、緑色の蛍光を発する蛍光体として、下記構造式(12)で表される基本骨格を有するピロメテン誘導体などが挙げられる。その他には、置換基の選択により赤色または緑色の蛍光を発するペリレン系誘導体、ポルフィリン系誘導体、オキサジン系誘導体、ピラジン系誘導体などが挙げられる。これらを2種以上含有してもよい。これらの中でも、量子収率が高いことから、ピロメテン誘導体が好ましい。ピロメテン誘導体は、例えば、特開2011-241160号公報に記載の方法により得ることができる。
Figure JPOXMLDOC01-appb-C000007
 有機蛍光体は溶媒に可溶なため、所望の厚みの画素(B)を容易に形成することができる。画素(B)の厚みは、色特性を向上させる観点から、0.5μm以上が好ましく、1μm以上がより好ましい。一方、画素(B)の厚みは、表示装置の薄型化や曲面加工性の観点から、30μm以下が好ましく、20μm以下がより好ましい。
各画素(B)の大きさは、20~200μm程度が一般的である。
画素(B)は、隔壁(A-1)によって隔てられて配列していることが好ましい。画素と画素の間に隔壁を設けることにより、発光した光の拡散や混色をより抑制することができる。
画素(B)の形成方法としては、例えば、色変換発光材料を含有する塗液(以下、色変換発光材料塗液)を、隔壁(A-1)によって隔てられた空間に充填する方法が挙げられる。色変換発光材料塗液は、さらに樹脂や溶媒を含有してもよい。
 色変換発光材料塗液の充填方法としては、フォトリソ法、インクジェット法などが挙げられるが、各画素に種類の異なる色変換発光材料を容易に塗り分ける観点から、インクジェット塗布法が好ましい。
 <遮光隔壁(A-2)>
 本発明の隔壁付き基板は、前記下地基板と(A-1)パターン形成された隔壁との間に、さらに、さらに、(A-2)厚み1.0μmあたりのOD値が0.5以上である、パターン形成された隔壁(以下、「遮光隔壁(A-2)」と記載する場合がある)を有することが好ましい。遮光隔壁(A-2)を有することにより、遮光性を向上させて表示装置におけるバックライトの光漏れを抑制し、高コントラストで鮮明な画像を得ることができる。
 図3に、遮光隔壁を有する本発明の隔壁付き基板の一態様を示す断面図を示す。下地基板1上に、パターン形成された隔壁2および遮光隔壁4を有し、隔壁2および遮光隔壁4によって隔てられた領域に画素3が配列されている。
 遮光隔壁(A-2)は、厚み1.0μmあたりのOD値が0.5以上である。ここで、遮光隔壁(A-2)の厚みは、後述するとおり、0.5~10μmが好ましい。本発明においては、遮光隔壁(A-2)の厚みの代表値として1.0μmを選択し、厚み1.0μmあたりのOD値に着目した。厚み1.0μmあたりのOD値を0.5以上とすることにより、遮光性をより向上させ、より高コントラストで鮮明な画像を得ることができる。一方、厚み1.0μmあたりのOD値は4.0以下が好ましく、パターン加工性を向上させることができる。遮光隔壁(A-2)のOD値は、前述の隔壁(A-1)のOD値と同様に測定することができる。
 遮光隔壁(A-2)の厚みは、遮光性を向上させる観点から、0.5μm以上が好ましく、1.0μm以上がより好ましい。一方、平坦性を向上させる観点から、遮光隔壁(A-2)の厚みは、5μm以下がより好ましい。また、遮光隔壁(A-2)の幅は、前述の隔壁(A-1)と同程度が好ましい。
 遮光隔壁(A-2)は、樹脂および遮光顔料を含有することが好ましい。樹脂は、隔壁のクラック耐性および耐光性を向上させる機能を有する。遮光顔料は、入射した光を吸収し、射出光を低減する機能を有する。樹脂および遮光顔料は、樹脂組成物を構成する材料として先に説明した材料と同様の材料を使用できる。
 下地基板上に遮光隔壁(A-2)をパターン形成する方法としては、例えば、特開2015-1654号公報に記載の感光性材料を用いて、前述の隔壁(A-1)と同様に感光性ペースト法によりパターン形成する方法が好ましい。
 また、本発明の隔壁付き基板は、下地基板と前記画素(B)の間に、さらに、厚み1~5μmのカラーフィルター(以下、「カラーフィルター」と記載する場合がある)を有することが好ましい。カラーフィルターは、特定波長域の可視光を透過させて透過光を所望の色相とする機能を有し、表示装置の色純度を向上させることができる。カラーフィルターの厚みを1μm以上とすることにより、色純度をより向上させることができる。一方、厚みを5μm以下とすることにより、輝度をより向上させることができる。
 図4に、カラーフィルターを有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2およびカラーフィルター5を有し、カラーフィルター5上に画素3を有する。
 カラーフィルターとしては、例えば、液晶ディスプレイ等のフラットパネルディスプレイに用いられる、フォトレジストに顔料を分散させた顔料分散型材料を用いたカラーフィルターなどが挙げられる。また、カラーフィルターは、色変換発光材料を含有する画素(B)から離隔して積層されていてもよいし、一体化して積層されていてもよい。
 本発明の隔壁付き基板は、下地基板と前記画素(B)の間に、さらに、遮光隔壁で隔てられた厚み1~5μmのカラーフィルターを有することが好ましい。図5に、遮光隔壁で隔てられたカラーフィルターを有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された遮光隔壁4に隔てられたカラーフィルター5を有し、その上に隔壁2および画素3を有する。
 本発明の隔壁付き基板は、画素(B)の上部または下部に、さらに、(C)波長550nmにおける屈折率が1.20~1.35である低屈折率層(以下、「低屈折率層(C)」と記載する場合がある)を有することが好ましい。低屈折率層(C)を有することにより、光の取り出し効率をより向上させ、表示装置の輝度をより向上させることができる。
 図6に、低屈折率層を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2および画素3を有し、これらの上に、さらに低屈折率層6を有する。
 表示装置において、バックライトの光の反射を適度に抑えて画素(B)に効率よく光を入射させる観点から、低屈折率層(C)の屈折率は、1.20以上が好ましく、1.23以上がより好ましい。一方、輝度を向上させる観点から、低屈折率層(C)の屈折率は、1.35以下が好ましく、1.30以下がより好ましい。ここで、低屈折率層(C)の屈折率は、プリズムカプラーを用いて、大気圧下、20℃の条件で、硬化膜面に対し垂直方向から波長550nmの光を照射して測定することができる。
 低屈折率層(C)は、例えば、後述する調製例6で得られた低屈折率層形成材料を用いて、実施例72~74のように形成することができる。低屈折率層(C)の厚みは、画素(B)の段差をカバーして欠陥の発生を抑制する観点から、0.1μm以上が好ましく、0.5μm以上がより好ましい。一方、低屈折率層(C)の厚みは、低屈折率層(C)のクラックの原因となるストレスを低減する観点から、20μm以下が好ましく、10μm以下がより好ましい。
 また、本発明の隔壁付き基板は、前記低屈折率層(C)上に、さらに、厚み50~1,000nmの無機保護層Iを有することが好ましい。無機保護層Iを有することにより、大気中の水分が低屈折率層(C)に到達しにくくなるため、低屈折率層(C)の屈折率変動を抑制し、輝度劣化を抑制することができる。
 図7および図8に、低屈折率層および無機保護層(I)を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2および画素3を有し、これらの上または下に、さらに低屈折率層6および無機保護層(I)7を有する。
 本発明の隔壁付き基板は、画素(B)とカラーフィルターの間に前記低屈折率層(C)を有することが好ましく、さらに、前記低屈折率層(C)上に、さらに、厚み50~1,000nmの無機保護層(I)を有することが好ましい。画素(B)とカラーフィルターの間に前記低屈折率層(C)を有することで、発光した光の光取り出し向上効果が高くなり、ディスプレイの輝度が向上する。
 図9に、画素(B)とカラーフィルターの間に前記低屈折率層および無機保護層(I)を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、遮光隔壁4で隔てられたカラーフィルター5を有し、それらの上に低屈折率層6および無機保護層(I)7を有し、さらにそれらの上にパターン形成された隔壁2および画素3を有する。
 また、本発明の隔壁付き基板は、前記画素(B)と前記低屈折率層(C)の間に、さらに、厚み50~1,000nmの無機保護層(II)を有することが好ましい。無機保護層(II)を有することにより、画素(B)から、低屈折率層に、画素(B)を形成する原料が移動しにくくなるため、低屈折率層(C)の屈折率変動を抑制し、輝度劣化を抑制することができる。
 図10に、低屈折率層および無機保護層(II)を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2および画素3を有し、これらの上に、さらに無機保護層(II)8および低屈折率層6を有する。
 また、本発明の隔壁付き基板は、カラーフィルターと前記画素(B)の間に、さらに厚み50~1,000nmの無機保護層(III)および/または黄色有機保護層を有することが好ましい。無機保護層(III)を有することにより、カラーフィルターから、色変換発光材料を含有する画素(B)に、カラーフィルターの形成原料が到達しにくくなるため、色変換発光材料を含有する画素(B)の輝度劣化を抑制することができる。また、黄色有機保護層を有することにより、色変換発光材料を含有する画素(B)によって変換しきれなかった青色漏れ光をカットし、色再現性を向上させることができる。
 図11に、カラーフィルターおよび無機保護層(III)および/または黄色有機保護層を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、パターン形成された隔壁2およびカラーフィルター5を有し、これらの上に、無機保護層(III)および/または黄色有機保護層9を有し、さらにこれらの上に、隔壁2で隔てられて配列した画素3を有する。
 また、本発明の隔壁付き基板は、前記下地基板上に、さらに厚み50~1,000nmの無機保護層(IV)および/または黄色有機保護層を有することが好ましい。無機保護層(IV)および/または黄色有機保護層が屈折率調整層として作用し、画素(B)から出る光をより効率的に取り出し、表示装置の輝度をより向上させることができる。また、黄色有機保護層は、色変換発光材料を含有する画素(B)によって変換しきれなかった青色漏れ光をカットし、色再現性を向上させることができる。
 図12に、無機保護層(IV)および/または黄色有機保護層を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上に、無機保護層(IV)および/または黄色有機保護層10を有し、これらの上に、パターン形成された隔壁2および画素3を有する。
 無機保護層(I)~(IV)を構成する材料としては、例えば、酸化ケイ素、酸化インジウムスズ、酸化ガリウム亜鉛などの金属酸化物;窒化ケイ素などの金属窒化物;等が挙げられる。これらの中でも、水蒸気透過性が低く、透過性が高いことから、窒化ケイ素または酸化ケイ素がより好ましい。無機保護層(I)~(IV)の厚みは、水蒸気等の物質透過を充分に抑制する観点から、50nm以上が好ましく、100nm以上がより好ましい。一方、透過率の低下を抑制する観点から、無機保護層(I)~(IV)の厚みは、800nm以下が好ましく、500nm以下がより好ましい。
 黄色有機保護層は、例えば、黄色顔料と樹脂を含有する樹脂組成物をパターン加工して得られる。黄色顔料と樹脂は、前述の隔壁(A-1)を構成する材料として先に説明した材料と同様の材料を使用できる。黄色有機保護層をパターン形成する方法としては、前述の隔壁(A-1)と同様に感光性ペースト法によりパターン形成する方法が好ましい。
 図7のように、カラーフィルター7上に黄色有機保護層8を形成する場合、黄色有機保護層8は、カラーフィルターの各画素を平坦化するオーバーコート層としての役割を持たせてもよい。
 本発明の隔壁付き基板は、基板上に形成された隔壁によって分離された各画素に対応したLEDを多数並べた、ミニまたはマイクロLEDを用いた表示装置にも用いることができる。各画素のON/OFFは、ミニまたはマイクロLEDのON/OFFによって可能となり、液晶は必要ない。すなわち、本発明の隔壁付き基板は、各画素を分離する隔壁に加えて、バックライトにおけるミニまたはマイクロLEDを分離する隔壁にも用いることができる。
 例えば、本発明の隔壁付き基板は、前記下地基板上に、さらに有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源を有することが好ましい。有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源を隔壁で隔てることで、各画素間の混色を防止しディスプレイの表示色純度を向上することができる。
 図13に、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上にパターン形成された隔壁2の間に、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源11を有する。また、本発明の隔壁付き基板は、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源の上に、さらに画素(B)を有することが好ましい。
 図14に、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源と画素を有する本発明の隔壁付き基板の一態様の断面図を示す。下地基板1上にパターン形成された隔壁2の間に、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源11を有し、さらにその上に画素3を有する。
 次に、本発明の表示装置について説明する。本発明の表示装置は、前記隔壁付き基板と、発光光源とを有する。発光光源としては、液晶セル、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源が好ましい。発光特性に優れることから、発光光源としては、有機ELセルがより好ましい。ミニLEDセルとは、縦横の長さが100μm~10mm程度であるLEDを多数並べたセルのことを指す。マイクロLEDセルとは、縦横の長さが100μm未満であるLEDを多数並べたセルのことを指す。
 本発明の表示装置の製造方法について、本発明の隔壁付き基板と有機ELセルを有する表示装置の一例を挙げて説明する。ガラス基板上に、感光性ポリイミド樹脂を塗布し、フォトリソグラフィー法を用いて、開口部を有する絶縁膜を形成する。その上に、アルミニウムをスパッタした後、フォトリソグラフィー法によりアルミニウムのパターニングを行い、絶縁膜の無い開口部にアルミニウムからなる背面電極層を形成する。続いて、その上に、電子輸送層としてトリス(8-キノリノラト)アルミニウム(以下、Alq3と略す)を真空蒸着法により成膜した後、発光層としてAlq3にジシアノメチレンピラン、キナクリドンおよび4,4’-ビス(2,2-ジフェニルビニル)ビフェニルをドーピングした白色発光層を形成する。次に、正孔輸送層としてN,N’-ジフェニル-N,N’-ビス(α-ナフチル)-1,1’-ビフェニル-4,4’-ジアミンを真空蒸着法にて成膜する。最後に、透明電極としてITOをスパッタリングにて成膜し、白色発光層を有する有機ELセルを作製する。前述の隔壁付き基板と、このようにして得られた有機ELセルを対向させて封止剤により貼り合せることにより、表示装置を作製することができる。
 以下に実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの範囲に限定されない。なお、用いた化合物のうち略語を使用しているものについて、名称を以下に示す。
PGMEA:プロピレングリコールモノメチルエーテルアセテート
DAA:ジアセトンアルコール
EDM:ジエチレングリコールエチルメチルエーテル
BHT:ジブチルヒドロキシトルエン。
 合成例1~6におけるポリシロキサン溶液および合成例7~9における(メタ)アクリルポリマ溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン溶液または(メタ)アクリルポリマ溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分の重量を秤量して、加熱前の重量に対する割合から固形分濃度を求めた。
 合成例1~6におけるポリシロキサン溶液および合成例7~9における(メタ)アクリルポリマ溶液の重量平均分子量は、以下の方法でポリスチレン換算の値を求めた。
装置: Waters社製 RI検出器付きGPC測定装置(2695)
カラム: PLgel MIXED-Cカラム(ポリマーラボラトリーズ社製,300mm)×2本(直列連結)
測定温度:40℃
流速:1mL/min
溶媒:テトラヒドロフラン(THF) 0.5質量%溶液
標準物質:ポリスチレン
検出モード:RI。
 合成例1~6におけるポリシロキサン中の各繰り返し単位の含有比率は、以下の方法により求めた。ポリシロキサン溶液を直径10mmの“テフロン”(登録商標)製NMRサンプル管に注入して29Si-NMR測定を行い、オルガノシランに由来するSi全体の積分値に対する、特定のオルガノシランに由来するSiの積分値の割合から各繰り返し単位の含有比率を算出した。29Si-NMR測定条件を以下に示す。
装置:核磁気共鳴装置(JNM-GX270;日本電子(株)製)
測定法:ゲーテッドデカップリング法
測定核周波数:53.6693MHz(29Si核)
スペクトル幅:20000Hz
パルス幅:12μs(45°パルス)
パルス繰り返し時間:30.0秒
溶媒:アセトン-d6
基準物質:テトラメチルシラン
測定温度:23℃
試料回転数:0.0Hz。
 合成例1 ポリシロキサン(PSL-1)溶液
 1000mlの三口フラスコに、スチリルトリメトキシシランを117.76g(0.525mol)、3-メタクリロキシプロピルメチルジメトキシシランを71.16g(0.306mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、ジメチルジメトキシシランを78.89g(0.656mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを1.180g、およびPGMEAを251.60g仕込み、40℃で撹拌しながら水80.33gにリン酸3.353g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計182.96g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-1)溶液を得た。なお、得られたポリシロキサン(PSL-1)の重量平均分子量は12,000であった。また、ポリシロキサン(PSL-1)における、スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、ジメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ30mol%、17.5mol%、5mol%、37.5mol%および10mol%であった。
 合成例2 ポリシロキサン(PSL-2)溶液
 1000mlの三口フラスコに、フェニルトリメトキシシランを198.29g(0.831mol)、3-メタクリロキシプロピルメチルジメトキシシランを71.16g(0.306mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、ジメチルジメトキシシランを42.08g(0.350mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを1.197g、およびPGMEAを256.24g仕込み、40℃で撹拌しながら水85.84gにリン酸3.455g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計195.52g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-2)溶液を得た。なお、得られたポリシロキサン(PSL-2)の重量平均分子量は5,500であった。また、ポリシロキサン(PSL-2)における、フェニルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、ジメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ47.5mol%、17.5mol%、5mol%、20mol%および10mol%であった。
 合成例3 ポリシロキサン(PSL-3)溶液
 1000mlの三口フラスコに、ジフェニルジメトキシシランを203.13g(0.831mol)、3-メタクリロキシプロピルトリメトキシシランを76.06g(0.306mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、ジメチルジメトキシシランを42.08g(0.350mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを1.475g、およびPGMEAを308.45g仕込み、40℃で撹拌しながら水76.39gにリン酸3.887g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計173.99g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-3)溶液を得た。なお、得られたポリシロキサン(PSL-3)の重量平均分子量は6,000であった。また、ポリシロキサン(PSL-3)における、ジフェニルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、ジメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ47.5mol%、17.5mol%、5mol%、20mol%および10mol%であった。
 合成例4 ポリシロキサン(PSL-4)溶液
 1000mlの三口フラスコに、スチリルトリメトキシシランを186.45g(0.831mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、ジメチルジメトキシシランを78.89g(0.656mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを1.132g、およびPGMEAを243.65g仕込み、40℃で撹拌しながら水85.84gにリン酸3.328g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計195.52g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-4)溶液を得た。なお、得られたポリシロキサン(PSL-4)の重量平均分子量は15,000であった。また、ポリシロキサン(PSL-4)における、スチリルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、ジメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ47.5mol%、5mol%、20mol%および10mol%であった。
 合成例5 ポリシロキサン(PSL-5)溶液
 1000mlの三口フラスコに、3-メタクリロキシプロピルトリメトキシシランを76.06g(0.306mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、ジメチルジメトキシシランを142.01g(1.181mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを0.954g、およびPGMEAを206.29g仕込み、40℃で撹拌しながら水76.39gにリン酸2.855g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計173.99g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-5)溶液を得た。なお、得られたポリシロキサン(PSL-5)の重量平均分子量は5,000であった。また、ポリシロキサン(PSL-5)における、3-メタクリロキシプロピルトリメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、ジメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ17.5mol%、5mol%、67.5mol%および10mol%であった。
 合成例6 ポリシロキサン(PSL-6)溶液
 1000mlの三口フラスコに、ジフェニルジメトキシシランを203.13g(0.831mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを21.56g(0.088mol)、ジメチルジメトキシシランを78.89g(0.656mol)、3-トリメトキシシリルプロピルコハク酸無水物を45.91g(0.175mol)、BHTを1.312g、およびPGMEAを275.12g仕込み、40℃で撹拌しながら水70.88gにリン酸3.495g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05リットル/分流した。反応中に副生成物であるメタノールおよび水が合計161.44g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン(PSL-6)溶液を得た。なお、得られたポリシロキサン(PSL-6)の重量平均分子量は6,000であった。また、ポリシロキサン(PSL-6)における、ジフェニルジメトキシシラン、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシラン、ジメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物に由来する各繰り返し単位のモル比は、それぞれ47.5mol%、5mol%、37.5mol%および10mol%であった。
合成例1~6の組成をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000008
 合成例7 (メタ)アクリルポリマ溶液(PAL-1)の合成
 500mLのフラスコに2,2’-アゾビス(イソブチロニトリル)を3.00g、PGMEAを50.0g仕込んだ後、メタクリル酸を30.0g(0.349mol)、スチレンを22.48g(0.216mol)、トリシクロ[5.2.1.02,6]デカン-8-イルメタクリレートを35.0g(0.149mol)仕込み、室温でしばらく撹拌し、フラスコ内を窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを15.00g(0.106mol)、トリフェニルホスフィンを1.00g、p-メトキシフェノールを0.200g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、(メタ)アクリルポリマ溶液を得た。得られた(メタ)アクリルポリマ溶液に固形分濃度が40重量%になるようにPGMEAを加え、(メタ)アクリルポリマ溶液(PAL-1)とした。(メタ)アクリルポリマの重量平均分子量は16000であった。
 合成例8 (メタ)アクリルポリマ溶液(PAL-2)の合成
 500mLのフラスコに2,2’-アゾビス(イソブチロニトリル)を3.00g、PGMEAを50.0g仕込んだ後、メタクリル酸を15.0g(0.174mol)、ベンジルメタクリレートを38.06g(0.216mol)、トリシクロデカニルメタクリレートを32.80g(0.149mol)仕込み、室温でしばらく撹拌し、フラスコ内を窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを15.0g(0.106mol)、トリフェニルホスフィンを1g、p-メトキシフェノールを0.200g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、(メタ)アクリルポリマ溶液を得た。得られた(メタ)アクリルポリマ溶液に固形分濃度が40重量%になるようにPGMEAを加え、(メタ)アクリルポリマ溶液(PAL-2)とした。(メタ)アクリルポリマの重量平均分子量は25000であった。
 合成例9 (メタ)アクリルポリマ溶液(PAL-3)の合成
 500mLのフラスコに2,2’-アゾビス(イソブチロニトリル)を3.00g、PGMEAを50.0g仕込んだ後、メタクリル酸を30.0g(0.349mol)、トリシクロ[5.2.1.02,6]デカン-8-イルメタクリレートを116.98g(0.498mol)仕込み、室温でしばらく撹拌し、フラスコ内を窒素置換した後、70℃で5時間加熱撹拌した。次に、得られた溶液にメタクリル酸グリシジルを15.00g(0.106mol)、トリフェニルホスフィンを1.00g、p-メトキシフェノールを0.200g、PGMEAを100g添加し、90℃で4時間加熱撹拌し、(メタ)アクリルポリマ溶液を得た。得られた(メタ)アクリルポリマ溶液に固形分濃度が40重量%になるようにPGMEAを加え、(メタ)アクリルポリマ溶液(PAL-3)とした。(メタ)アクリルポリマの重量平均分子量は16000であった。
合成例7~9の組成をまとめて表2に示す。
Figure JPOXMLDOC01-appb-T000009
 合成例10 緑色有機蛍光体
 3,5-ジブロモベンズアルデヒド(3.0g)、4-t-ブチルフェニルボロン酸(5.3g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.4g)、および炭酸カリウム(2.0g)をフラスコに入れ、窒素置換した。ここに脱気したトルエン(30mL)および脱気した水(10mL)を加え、4時間還流した。反応溶液を室温まで冷却し、分液した後に、有機層を飽和食塩水で洗浄した。この有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。得られた反応生成物をシリカゲルカラムクロマトグラフィーにより精製し、3,5-ビス(4-t-ブチルフェニル)ベンズアルデヒド(3.5g)の白色固体を得た。次に、3,5-ビス(4-t-ブチルフェニル)ベンズアルデヒド(1.5g)と2,4-ジメチルピロール(0.7g)をフラスコに入れ、脱水ジクロロメタン(200mL)およびトリフルオロ酢酸(1滴)を加えて、窒素雰囲気下、4時間撹拌した。この反応混合物に2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(0.85g)の脱水ジクロロメタン溶液を加え、さらに1時間撹拌した。反応終了後、三弗化ホウ素ジエチルエーテル錯体(7.0mL)およびジイソプロピルエチルアミン(7.0mL)を加えて、4時間撹拌した後、さらに水(100mL)を加えて撹拌し、有機層を分液した。この有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。得られた反応生成物をシリカゲルカラムクロマトグラフィーにより精製し、緑色粉末0.4gを得た(収率17%)。得られた緑色粉末のH-NMR分析結果は次の通りであり、上記で得られた緑色粉末が、下記構造式で表される[G-1]であることが確認された。
H-NMR(CDCl(d=ppm)):7.95(s,1H)、7.63-7.48(m,10H)、6.00(s,2H)、2.58(s,6H)、1.50(s,6H)、1.37(s,18H)。
Figure JPOXMLDOC01-appb-C000010
 合成例11 赤色有機蛍光体
 4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール300mg、2-メトキシベンゾイルクロリド201mgおよびトルエン10mlの混合溶液を、窒素気流下、120℃で6時間加熱した。室温に冷却後、溶媒をエバポレートした。得られた残留物をエタノール20mlで洗浄し、真空乾燥することにより、2-(2-メトキシベンゾイル)-3-(4-t-ブチルフェニル)-5-(4-メトキシフェニル)ピロール260mgを得た。次に、2-(2-メトキシベンゾイル)-3-(4-t-ブチルフェニル)-5-(4-メトキシフェニル)ピロール260mg、4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール180mg、メタンスルホン酸無水物206mgおよび脱気したトルエン10mlの混合溶液を、窒素気流下、125℃で7時間加熱した。この反応混合物を室温に冷却後、水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄した後、エバポレートし、真空乾燥することにより、残留物としてピロメテン体を得た。次に、得られたピロメテン体とトルエン10mlの混合溶液に、窒素気流下、ジイソプロピルエチルアミン305mgおよび三フッ化ホウ素ジエチルエーテル錯体670mgを加え、室温で3時間撹拌した。この反応混合物に水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、赤紫色粉末0.27gを得た(収率70%)。得られた赤紫色粉末のH-NMR分析結果は次の通りであり、上記で得られた赤紫色粉末が、下記構造式で表される[R-1]であることが確認された。
H-NMR(CDCl(d=ppm)):1.19(s,18H),3.42(s,3H),3.85(s,6H),5.72(d,1H),6.20(t,1H),6.42-6.97(m,16H),7.89(d,4H)。
Figure JPOXMLDOC01-appb-C000011
 合成例12 シリカ粒子含有ポリシロキサン溶液(LS-1)
 500mlの三口フラスコに、メチルトリメトキシシランを0.05g(0.4mmol)、トリフルオロプロピルトリメトキシシランを0.66g(3.0mmol)、トリメトキシシリルプロピルコハク酸無水物を0.10g(0.4mmol)、γ-アクリロキシプロピルトリメトキシシランを7.97g(34mmol)、および15.6重量%のシリカ粒子のイソプロピルアルコール分散液(IPA-ST-UP:日産化学工業(株)製)を224.37g入れ、エチレングリコールモノ-t-ブチルエーテル163.93gを加えた。室温で撹拌しながら、水4.09gにリン酸0.088gを溶かしたリン酸水溶液を3分間かけて添加した。その後、フラスコを40℃のオイルバスに浸けて60分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこからさらに2時間加熱撹拌することにより(内温は100~110℃)、シリカ粒子含有ポリシロキサン溶液(LS-1)を得た。なお、昇温および加熱撹拌中、窒素を0.05l(リットル)/分流した。反応中に副生成物であるメタノールおよび水が合計194.01g留出した。得られたシリカ粒子含有ポリシロキサン溶液(LS-1)の固形分濃度は24.3重量%、固形分中のポリシロキサンとシリカ粒子の含有量は、それぞれ15重量%および85重量%であった。得られたシリカ粒子含有ポリシロキサン(LS-1)におけるポリシロキサンの、メチルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、およびγ-アクリロキシプロピルトリメトキシシランに由来する各繰り返し単位のモル比は、それぞれ1.0mol%、8.0mol%、1.0mol%および90.0mol%であった。
 実施例1 隔壁用樹脂組成物(P-1)
 白色顔料として二酸化チタン顔料(R-960;BASFジャパン(株)製(以下「R-960」))を5.00g、樹脂として、合成例1により得られたポリシロキサン(PSL-1)溶液を5.00g、遮光顔料として窒化チタンを0.0188g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-1)を得た。
 次に、前記顔料分散液(MW-1)8.27g、ポリシロキサン(PSL-1)溶液2.83g、合成例7により得られた(メタ)アクリルポリマ(PAL-1)溶液を4.48g、光重合開始剤として、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(О-アセチルオキシム)(“イルガキュア”(登録商標)OXE-02、BASFジャパン(株)製(以下「OXE-02」))0.155g、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(“イルガキュア”819、BASFジャパン(株)製(以下「IC-819」))0.258g、ヒンダードフェノール化合物として、1,3,5-トリス(3,5-ジーt-ブチル-4-ヒドロキシフェニルメチル)-2,4,6-トリメチルベンゼン(“アデカスタブ”(登録商標)AO-330、ADEKA(株)製(以下「AO-330」))0.0309g、光重合性化合物として、ジペンタエリスリトールヘキサアクリレート(“KAYARAD”(登録商標)DPHA、新日本薬業(株)製(以下「DPHA」))2.063g、撥液化合物として、光重合性フッ素含有化合物(“メガファック”(登録商標)RS-72A、20重量%PGMEA希釈溶液品、DIC(株)製(以下「RS-72A」))0.258g、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(“セロキサイド”(登録商標)2021P、ダイセル(株)製(以下「セロキサイド(登録商標)2021P」))0.021gおよびアクリル系界面活性剤(“BYK”(登録商標)352、ビックケミージャパン(株)製(以下「BYK-352」))のPGMEA10重量%希釈溶液0.103g(濃度500ppmに相当)を、溶媒PGMEA0.513gとDAA1.65gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-1)を得た。
 実施例2 隔壁用樹脂組成物(P-2)
 白色顔料としてR-960、樹脂としてポリシロキサン(PSL-1)溶液を5.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-2)を得た。また、有機金属化合物として、ビス(アセチルアセトナト)パラジウムを0.103gと、リン原子を有する配位性化合物として、トリフェニルホスフィンを0.089g(有機金属化合物に対して等モル量)をDAA1.726gに溶解して、有機金属化合物溶液(OM-1)を得た。
 前記顔料分散液(MW-1)の代わりに顔料分散液(MW-2)を8.25g添加し、前記有機金属化合物溶液(OM-1)1.92g、ポリシロキサン(PSL-1)溶液2.61g、(メタ)アクリルポリマ(PAL-1)溶液を4.26g、PGMEA0.701gを添加し、DAAを添加しなかった以外は、実施例1と同様にして隔壁用樹脂組成物(P-2)を得た。
 実施例3 隔壁用樹脂組成物(P-3)
 有機金属化合物として、ネオデカン酸銀0.103gをEDM0.928gに溶解して、有機金属化合物溶液(OM-2)を得た。前記有機金属化合物溶液(OM-1)の代わりに有機金属化合物溶液(OM-2)1.03g、ポリシロキサン(PSL-1)溶液2.72g、(メタ)アクリルポリマ(PAL-1)溶液を4.37g、PGMEA1.366gを添加した以外は、実施例2と同様にして隔壁用樹脂組成物(P-3)を得た。
 実施例4~6 隔壁用樹脂組成物(P-4)~(P-6)
 ポリシロキサン(PSL-1)溶液の代わりに、それぞれ前記ポリシロキサン(PSL-2)、(PSL-3)、(PSL-4)溶液を使用した以外は、実施例1と同様にして隔壁用樹脂組成物(P-4)~(P-6)を得た。
 実施例7 隔壁用樹脂組成物(P-7)
 (メタ)アクリルポリマ(PAL-1)溶液の代わりに、前記(メタ)アクリルポリマ(PAL-2)溶液を使用した以外は、実施例1と同様にして隔壁用樹脂組成物(P-7)を得た。
 実施例8 隔壁用樹脂組成物(P-8)
 (メタ)アクリルポリマ(PAL-1)溶液の代わりに、カルド系ポリマV-259MEを使用した以外は、実施例1と同様にして隔壁用樹脂組成物(P-8)を得た。
 実施例9 隔壁用樹脂組成物(P-9)
 (メタ)アクリルポリマ(PAL-1)溶液の代わりに、カルド系ポリマWR-301を使用した以外は、実施例1と同様にして隔壁用樹脂組成物(P-9)を得た。
 実施例10 隔壁用樹脂組成物(P-10)
 前記ヒンダードフェノール化合物AO-330の代わりに、ペンタエリスリトールテトラキス(3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(“アデカスタブ”(登録商標)AO-60、ADEKA(株)製(以下「AO-60」))を使用した以外は、実施例1と同様にして隔壁用樹脂組成物(P-10)を得た。
 実施例11 隔壁用樹脂組成物(P-11)
 前記ヒンダードフェノール化合物AO-330の代わりに、6,6’-ジ-t-ブチル-4,4’-ブチリデンジ-m-クレゾール(“アデカスタブ”(登録商標)AO-40、ADEKA(株)製(以下「AO-40」))を使用した以外は、実施例1と同様にして隔壁用樹脂組成物(P-11)を得た。
 実施例12 隔壁用樹脂組成物(P-12)
 前記ヒンダードフェノール化合物AO-330の代わりに、オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(“アデカスタブ”(登録商標)AO-50、ADEKA(株)製(以下「AO-50」))を使用した以外は、実施例1と同様にして隔壁用樹脂組成物(P-12)を得た。
 実施例13 隔壁用樹脂組成物(P-13)
 前記ヒンダードフェノール化合物AO-330の添加量を0.0474gとし、ポリシロキサン(PSL-1)溶液を2.81g、(メタ)アクリルポリマ(PAL-1)溶液を4.46g、PGMEAを0.538g添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-13)を得た。
 実施例14 隔壁用樹脂組成物(P-14)
 前記ヒンダードフェノール化合物AO-330の添加量を0.330gとし、ポリシロキサン(PSL-1)溶液を2.46g、(メタ)アクリルポリマ(PAL-1)溶液を4.10g、PGMEAを0.962g添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-14)を得た。
 実施例15 隔壁用樹脂組成物(P-15)
 前記ヒンダードフェノール化合物AO-330の添加量を0.00516gとし、ポリシロキサン(PSL-1)溶液を2.86g、(メタ)アクリルポリマ(PAL-1)溶液を4.51g、PGMEAを0.474g添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-15)を得た。
 実施例16 隔壁用樹脂組成物(P-16)
 前記ヒンダードフェノール化合物AO-330の添加量を0.00309gとし、ポリシロキサン(PSL-1)溶液を2.87g、(メタ)アクリルポリマ(PAL-1)溶液を4.51g、PGMEAを0.474g添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-16)を得た。
 実施例17 隔壁用樹脂組成物(P-17)
 ヒンダードアミン化合物として、1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート(“アデカスタブ”(登録商標)LA-82、ADEKA(株)製(以下「LA-82」))を0.103g添加し、ポリシロキサン(PSL-1)溶液を2.70g、(メタ)アクリルポリマ(PAL-1)溶液を4.35g、PGMEAを0.668g添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-17)を得た。
 実施例18 隔壁用樹脂組成物(P-18)
 前記ヒンダードアミン化合物LA-82の代わりに、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート(“アデカスタブ”(登録商標)LA-87、ADEKA(株)製(以下「LA-87」))を使用した以外は、実施例17と同様にして隔壁用樹脂組成物(P-18)を得た。
 実施例19 隔壁用樹脂組成物(P-19)
 前記ヒンダードフェノール化合物AO-330を添加せずに、ポリシロキサン(PSL-1)溶液を2.74g、(メタ)アクリルポリマ(PAL-1)溶液を4.39g、PGMEAを0.621g添加した以外は、実施例17と同様にして隔壁用樹脂組成物(P-19)を得た。
 実施例20 隔壁用樹脂組成物(P-20)
 前記ヒンダードアミン化合物LA-82の代わりに、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート(“アデカスタブ”(登録商標)LA-72、ADEKA(株)製(以下「LA-72」))を使用した以外は、実施例19と同様にして隔壁用樹脂組成物(P-20)を得た。
 実施例21 隔壁用樹脂組成物(P-21)
 前記ヒンダードアミン化合物LA-82の代わりに、1,2,2,5,5-ペンタメチルピペリジンを使用した以外は、実施例19と同様にして隔壁用樹脂組成物(P-21)を得た。
 実施例22 隔壁用樹脂組成物(P-22)
 前記ヒンダードアミン化合物LA-82の添加量を0.248gとし、ポリシロキサン(PSL-1)溶液を2.56g、(メタ)アクリルポリマ(PAL-1)溶液を4.71g、PGMEAを0.838g添加した以外は、実施例19と同様にして隔壁用樹脂組成物(P-22)を得た。
 実施例23 隔壁用樹脂組成物(P-23)
 前記ヒンダードアミン化合物LA-82の添加量を0.371gとし、ポリシロキサン(PSL-1)溶液を2.40g、(メタ)アクリルポリマ(PAL-1)溶液を4.05g、PGMEAを1.024g添加した以外は、実施例19と同様にして隔壁用樹脂組成物(P-23)を得た。
 実施例24 隔壁用樹脂組成物(P-24)
 前記ヒンダードアミン化合物LA-82の添加量を0.0100gとし、ポリシロキサン(PSL-1)溶液を2.86g、(メタ)アクリルポリマ(PAL-1)溶液を4.51g、PGMEAを0.482g添加した以外は、実施例19と同様にして隔壁用樹脂組成物(P-24)を得た。
 実施例25 隔壁用樹脂組成物(P-25)
 前記ヒンダードアミン化合物LA-82の添加量を0.0039とし、ポリシロキサン(PSL-1)溶液を2.86g、(メタ)アクリルポリマ(PAL-1)溶液を4.51g、PGMEAを0.471g添加した以外は、実施例19と同様にして隔壁用樹脂組成物(P-25)を得た。
 実施例26 隔壁用樹脂組成物(P-26)
 IC-819の添加量を0.413gとし、OXE-02を添加しなかった以外は、実施例1と同様にして隔壁用樹脂組成物(P-26)を得た。
 実施例27 隔壁用樹脂組成物(P-27)
 OXE-02の添加量を0.413gとし、IC-819を添加しなかった以外は、実施例1と同様にして隔壁用樹脂組成物(P-27)を得た。
 実施例28 隔壁用樹脂組成物(P-28)
 ポリシロキサン(PSL-1)溶液の添加量を1.33g、(メタ)アクリルポリマ(PAL-1)溶液の添加量を5.98gとした以外は、実施例1と同様にして隔壁用樹脂組成物(P-28)を得た。
 実施例29 隔壁用樹脂組成物(P-29)
 ポリシロキサン(PSL-1)溶液の添加量を4.73g、(メタ)アクリルポリマ(PAL-1)溶液の添加量を2.58gとした以外は、実施例1と同様にして隔壁用樹脂組成物(P-29)を得た。
 実施例30 隔壁用樹脂組成物(P-30)
 ポリシロキサン(PSL-1)溶液を7.68g、(メタ)アクリルポリマ(PAL-1)溶液量を7.68g、OXE-02を0.123g、IC-819を0.205g、DPHAを1.64g、RS-72Aを0.205g、セロキサイド2021Pを0.016g、AO-330を0.025g、およびBYK-352のPGMEA10重量%希釈溶液0.103gを、溶媒PGMEA0.619gとDAA2.214gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-30)を得た。
 実施例31 隔壁用樹脂組成物(P-31)
 前記有機金属化合物溶液(OM-1)を添加せず、ポリシロキサン(PSL-1)溶液の添加量を2.85g、(メタ)アクリルポリマ(PAL-1)溶液の添加量を4.50g、PGMEAの添加量を0.284g、DAAの添加量を1.86gとした以外は、実施例2と同様にして隔壁用樹脂組成物(P-31)を得た。
 実施例32 隔壁用樹脂組成物(P-32)
 遮光顔料として窒化チタン0.20g、樹脂としてポリシロキサン(PSL-1)溶液を7.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-3)を得た。前記顔料分散液(MW-3)5.90g、ポリシロキサン(PSL-1)溶液を0.79g、(メタ)アクリルポリマ(PAL-1)溶液量を6.54g、OXE-02を0.108g、IC-819を0.180g、DPHAを1.44g、RS-72Aを0.179g、セロキサイド2021Pを0.014g、AO-330を0.022g、およびBYK-352のPGMEA10重量%希釈溶液0.103gを、溶媒PGMEA1.804gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-32)を得た。
 実施例33 隔壁用樹脂組成物(P-33)
 前記有機金属化合物溶液(OM-1)を4.00g、ポリシロキサン(PSL-1)溶液を6.21g、(メタ)アクリルポリマ(PAL-1)溶液量を6.21g、OXE-02を0.108g、IC-819を0.180g、DPHAを1.44g、RS-72Aを0.179g、セロキサイド2021Pを0.014g、AO-330を0.022g、およびBYK-352のPGMEA10重量%希釈溶液0.103gを、溶媒PGMEA2.03gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、隔壁用樹脂組成物(P-33)を得た。
 実施例34 隔壁用樹脂組成物(P-34)
 前記撥液化合物RS-72Aを添加せず、ポリシロキサン(PSL-1)溶液の添加量を2.67g、(メタ)アクリルポリマ(PAL-1)溶液の添加量を4.32g、PGMEAの添加量を0.830gとした以外は、実施例2と同様にして隔壁用樹脂組成物(P-34)を得た。
 比較例1~2 隔壁用樹脂組成物(P-35)~(P-36)
 ポリシロキサン(PSL-1)溶液の代わりに、それぞれ前記ポリシロキサン(PSL-5)、(PSL-6)溶液を使用した以外は、実施例1と同様にして隔壁用樹脂組成物(P-35)~(P-36)を得た。
 比較例3 隔壁用樹脂組成物(P-37)
 (メタ)アクリルポリマ(PAL-1)溶液の代わりに、前記(メタ)アクリルポリマ(PAL-3)溶液を使用した以外は、実施例1と同様にして隔壁用樹脂組成物(P-37)を得た。
 比較例4 隔壁用樹脂組成物(P-38)
 ポリシロキサン(PSL-1)溶液の添加量を0.590g、(メタ)アクリルポリマ(PAL-1)溶液の添加量を6.72gとした以外は、実施例1と同様にして隔壁用樹脂組成物(P-38)を得た。
 比較例5 隔壁用樹脂組成物(P-39)
 ポリシロキサン(PSL-1)溶液の添加量を5.07g、(メタ)アクリルポリマ(PAL-1)溶液の添加量を2.24gとした以外は、実施例1と同様にして隔壁用樹脂組成物(P-39)を得た。
 比較例6 隔壁用樹脂組成物(P-40)
 (メタ)アクリルポリマ(PAL-1)溶液を添加せずに、ポリシロキサン(PSL-1)溶液の添加量を7.31gとした以外は、実施例1と同様にして隔壁用樹脂組成物(P-40)を得た。
 比較例7 隔壁用樹脂組成物(P-41)
 白色顔料としてR-960を5.00g、樹脂として(メタ)アクリルポリマ(PAL-1)溶液を5.00g、遮光顔料として窒化チタンを0.0188g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し顔料分散液(MW-4)を得た。
 顔料分散液(MW-1)の代わりに顔料分散液(MW-4)を8.27g添加し、ポリシロキサン(PSL-1)溶液を添加せずに、(メタ)アクリルポリマ(PAL-1)溶液を7.31g添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-41)を得た。
 比較例8 隔壁用樹脂組成物(P-42)
 前記ヒンダードフェノール化合物AO-330を添加せずに、ポリシロキサン(PSL-1)溶液を2.87g、(メタ)アクリルポリマ(PAL-1)溶液を4.52g、PGMEAを0.467g添加した以外は、実施例1と同様にして隔壁用樹脂組成物(P-42)を得た。
実施例1~34および比較例1~8の組成をまとめて表3-1~表3-4に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 調製例1 色変換発光材料組成物(CL-1)
 緑色量子ドット材料(Lumidot 640 CdSe/ZnS、平均粒子径6.3nm:アルドリッチ社製)の0.5重量%トルエン溶液を20重量部、DPHAを45重量部、“イルガキュア”(登録商標)907(BASFジャパン(株)製)を5重量部、アクリル樹脂(SPCR-18(商品名)、昭和電工(株)製)の30重量%PGMEA溶液を166重量部およびトルエンを97重量部混合して撹拌し、均一に溶解した。得られた混合物を0.45μmのシリンジフィルターで濾過し、色変換発光材料組成物(CL-1)を調製した。
 調製例2 色変換発光材料組成物(CL-2)
 緑色量子ドット材料にかえて合成例10により得られた緑色蛍光体G-1を0.4重量部用い、トルエンの添加量を117重量部に変更した以外は、調製例1と同様にして色変換発光材料組成物(CL-2)を調製した。
 調製例3 色変換発光材料組成物(CL-3)
 緑色量子ドット材料にかえて合成例11により得られた赤色蛍光体R-1を0.4重量部用い、トルエンの添加量を117重量部に変更した以外は、調製例1と同様にして色変換発光材料組成物(CL-3)を調製した。
 調製例4 カラーフィルター形成材料(CF-1)
 C.I.ピグメントグリーン59を90g、C.I.ピグメントイエロー150を60g、高分子分散剤(“BYK”(登録商標)-6919(商品名)ビックケミー社製(以下「BYK-6919」))を75g、バインダー樹脂(“アデカアークルズ”(登録商標)WR301(商品名)(株)ADEKA製)を100g、およびPGMEAを675g混合してスラリーを作製した。スラリーを入れたビーカーをダイノーミルとチューブでつなぎ、メディアとして直径0.5mmのジルコニアビーズを使用して、周速14m/sで8時間の分散処理を行い、ピグメントグリーン59分散液(GD-1)を作製した。
 ピグメントグリーン59分散液(GD-1)56.54g、アクリル樹脂(“サイクロマー”(登録商標)P(ACA)Z250(商品名)ダイセル・オルネクス(株)製(以下「P(ACA)Z250」))を3.14g、DPHAを2.64g、光重合開始剤(“オプトマー”(登録商標)NCI-831(商品名)(株)ADEKA製(以下「NCI-831」))0.330g、界面活性剤(BYK”(登録商標)-333(商品名)ビックケミー社製(以下「BYK-333」))を0.04g、重合禁止剤としてBHTを0.01g、および溶媒としてPGMEAを37.30g混合し、カラーフィルター形成材料(CF-1)を作製した。
 調製例5 遮光隔壁用樹脂組成物
 カーボンブラック(MA100(商品名)三菱化学(株)製)150g、高分子分散剤BYK-6919を75g、P(ACA)Z250を100g、およびPGMEAを675g混合してスラリーを作製した。スラリーを入れたビーカーをダイノーミルとチューブでつなぎ、メディアとして直径0.5mmのジルコニアビーズを使用して、周速14m/sで8時間の分散処理を行い、顔料分散液(MB-1)を作製した。
 顔料分散液(MB-1)56.54g、P(ACA)Z250を3.14g、DPHAを2.64g、NCI-831を0.330g、BYK-333を0.04g、重合禁止剤としてターシャリブチルカテコール0.01g、およびPGMEA37.30gを混合し、遮光隔壁用樹脂組成物を作製した。
 調製例6 低屈折率層形成材料
 合成例12により得られたシリカ粒子含有ポリシロキサン溶液(LS-1)を5.350g、エチレングリコールモノ-t-ブチルエーテルを1.170g、およびDAAを3.48g混合した後、0.45μmのシリンジフィルターで濾過し、低屈折率層形成材料を調製した。
 調製例7 黄色有機保護層形成材料(YL-1)
 C.I.ピグメントイエロー150を150g、高分子分散剤(“BYK”(登録商標)-6919(商品名)ビックケミー社製(以下「BYK-6919」))を75g、バインダー樹脂(“アデカアークルズ”(登録商標)WR301(商品名)(株)ADEKA製)を100g、およびPGMEAを675g混合してスラリーを作製した。スラリーを入れたビーカーをダイノーミルとチューブでつなぎ、メディアとして直径0.5mmのジルコニアビーズを使用して、周速14m/sで8時間の分散処理を行い、ピグメントイエロー150分散液(YD-1)を作製した。
 ピグメントイエロー150分散液(YD-1)3.09g、樹脂としてポリシロキサン(PSL-1)溶液を23.54g、光重合性化合物としてDPHAを6.02g、有機金属化合物としてネオデカン酸銀を用いて調製した有機金属化合物溶液(OM-2)を6.02g、光重合開始剤としてOXE-02を0.20g、IC-819を0.40g、IRGANOX(登録商標)1010を0.060g、およびBYK-352のPGMEA10重量%希釈溶液0.050g(濃度500ppmに相当)を、溶媒PGMEA61.15gに溶解させ、撹拌した。得られた混合物を、5.0μmのフィルターでろ過し、黄色有機保護層形成材料(YL-1)を得た。
 実施例35~69、比較例9~16
 下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、表4~5に示す隔壁用樹脂組成物をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で3分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量100mJ/cm(g、h、i線を照射。露光量はi線換算値。)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.045重量%水酸化カリウム水溶液を用いて100秒間シャワー現像し、次いで水を用いて30秒間リンスした。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ10μm、幅20μmの隔壁が、短辺80μm、長辺280μmのピッチ間隔の格子状パターンに形成された隔壁を形成した。
 得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、表4~5に示す色変換発光材料組成物を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図2に示す構成の隔壁付き基板を得た。
 実施例70
 下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、調製例5により得られた遮光隔壁形成材料をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で3分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量40mJ/cm(g、h、i線)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行い、次いで水を用いて30秒間リンスした。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ2.0μm、幅20μmで、厚み1.0μmあたりのOD値が2.0である隔壁が、短辺40μm、長辺280μmのピッチ間隔の格子状パターンに形成された遮光隔壁付き基板を得た。
 その後、実施例36と同様の方法により、遮光隔壁上に、高さ10μm、幅20μmの隔壁が、短辺40μm、長辺280μmのピッチ間隔の遮光隔壁と同様の格子状パターンに形成された隔壁付き基板を得た。得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図3に示す構成の隔壁付き基板を得た。
 実施例71
 実施例36と同様の方法により得られた、画素形成前の隔壁付き基板の隔壁で隔てられた領域に、硬化後の膜厚が2.5μmになるように、調製例4により得られたカラーフィルター形成材料(CF-1)を塗布し、真空乾燥した。隔壁付き基板の開口部の領域に露光されるように設計したフォトマスクを介して、露光量40mJ/cm(g、h、i線)で露光した。0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行った後、230℃で30分間加熱硬化を行い、隔壁で隔てられた領域に、高さ2.5μm、短辺40μm、長辺280μmのカラーフィルター層を形成した。その後、カラーフィルター上に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図4に示す構成の隔壁付き基板を得た。
 実施例72
 実施例36と同様の方法により画素を形成した後の隔壁付き基板に、調製例6により得られた低屈折率層形成材料をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で3分間乾燥し、乾燥膜を作製した。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度90℃で30分間加熱し、高さ1.0μm、屈折率1.25の低屈折率層を形成し、図6に示す構成の隔壁付き基板を得た。
 実施例73
 実施例72により得られた低屈折率層を有する隔壁付き基板の低屈折率層上に、プラズマCVD装置(PD-220NL、サムコ社製)を用いて、高さ50~1,000nmの無機保護層Iに相当する、膜厚300nmの窒化ケイ素膜を形成し、図7に示す構成の隔壁付き基板を得た。
 実施例74
 下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、調製例5により得られた遮光隔壁形成材料をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で3分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、フォトマスクを介して、露光量40mJ/cm(g、h、i線)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行い、次いで水を用いて30秒間リンスした。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ2.0μm、幅20μmで、厚み1.0μmあたりのOD値が2.0である隔壁が、短辺40μm、長辺280μmのピッチ間隔の格子状パターンに形成された遮光隔壁付き基板を得た。
 その後、遮光隔壁で隔てられた領域に、硬化後の膜厚が2.5μmになるように、調製例4により得られたカラーフィルター形成材料(CF-1)を塗布し、真空乾燥した。隔壁付き基板の開口部の領域に露光されるように設計したフォトマスクを介して、露光量40mJ/cm(g、h、i線)で露光した。0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行った後、230℃で30分間加熱硬化を行い、隔壁で隔てられた領域に、高さ2.5μm、短辺40μm、長辺280μmのカラーフィルター層を形成した。
 その後、調製例6により得られた低屈折率層形成材料をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度90℃で2分間乾燥し、乾燥膜を作製した。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度90℃で30分間加熱し、高さ1.0μm、屈折率1.25の低屈折率層を形成した。
 さらにその後、低屈折率層上に、プラズマCVD装置(PD-220NL、サムコ社製)を用いて、高さ50~1,000nmの無機保護層Iに相当する、膜厚300nmの窒化ケイ素膜を形成した。
 これらの上に、実施例36と同様の方法で、高さ10μm、幅20μmの隔壁が、短辺40μm、長辺280μmのピッチ間隔の遮光隔壁と同様の格子状パターンに形成された隔壁付き基板を得た。得られた隔壁付き基板の隔壁で隔てられた領域に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図9に示す構成の隔壁付き基板を得た。
 実施例75
 実施例71と同様の方法により得られた、厚み2.5μm、短辺40μm、長辺280μmのカラーフィルター層が形成された、画素形成前の隔壁付き基板のカラーフィルター上に、プラズマCVD装置(PD-220NL、サムコ社製)を用いて、厚み50~1,000nmの無機保護層IIIに相当する、膜厚300nmの窒化ケイ素膜を形成した。さらに、無機保護層III上に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図11に示す構成の隔壁付き基板を得た。
 実施例76
 下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、プラズマCVD装置(PD-220NL、サムコ社製)を用いて、厚み50~1,000nmの無機保護層IVに相当する、膜厚300nmの窒化ケイ素膜を形成した。上記基板を、10cm角の無アルカリガラス基板の代わりに使用する以外は、実施例36と同様の方法により、図12に示す構成の隔壁付き基板を得た。
 実施例77
 実施例71と同様の方法により得られた、厚み2.5μm、短辺40μm、長辺280μmのカラーフィルター層が形成された、画素形成前の隔壁付き基板のカラーフィルター上に、調製例7により得られた黄色有機保護層形成材料(YL-1)を塗布し、真空乾燥した。隔壁付き基板の開口部の領域に露光されるように設計したフォトマスクを介して、露光量300mJ/cm(g、h、i線)で露光した。0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行った後、230℃で30分間加熱硬化を行い、厚み1.0μm、短辺40μm、長辺280μmの黄色有機保護層を形成した。さらに、黄色有機保護層上に、窒素雰囲気下、インクジェット法を用いて、調製例2により得られた色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成し、図11に示す構成の隔壁付き基板を得た。
 実施例78
 下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いた。その上に、調製例7により得られた黄色有機保護層形成材料(YL-1)を塗布し、真空乾燥した。乾燥膜を、フォトマスクを介さずに、露光量300mJ/cm(g、h、i線)で露光した後、0.3重量%テトラメチルアンモニウム水溶液により50秒間現像を行い、230℃で30分間加熱硬化を行うことで、厚み1.0μmの黄色有機保護層を形成した。上記基板を、10cm角の無アルカリガラス基板の代わりに使用する以外は、実施例36と同様の方法により、図8に示す構成の隔壁付き基板を得た。
各実施例および比較例の構成を表4~5に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 各実施例および比較例における評価方法を以下に示す。
<(メタ)アクリルポリマ・カルド系ポリマのガラス転移温度>
 実施例および比較例で使用した本発明の樹脂組成物中の(メタ)アクリルポリマおよび/またはカルド系ポリマについて、DSC装置(Rigaku社の「Thermo Plus DSC8230」)を用いて得られたサーモグラムから算出した。DSC測定は、窒素下、昇温速度を20℃/分として行った。 ガラス転移温度は、サーモグラムでのDSCの昇温曲線において、ベースラインと変曲点での接線との交点に対応する温度として算出した。変曲点は、サーモグラムのDDSC(DSCの微分値)曲線におけるピークに対応する温度とした。また、DSCのベースラインの確認には、適宜DDSC曲線を参照した。ガラス転移温度(Tg)は、60℃以上である場合を「A」、60℃未満の場合を「B」として評価した。
 <低屈折率層の屈折率>
 各実施例において用いた低屈折率層形成材料を、シリコンウェハ上に、スピナーにより塗布し、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度90℃で2分間乾燥した。その後、オーブン(IHPS-222;エスペック(株)製)を用いて、空気中90℃で30分間加熱して、硬化膜を作製した。プリズムカプラー(PC-2000(Metricon(株)製))を用いて、大気圧下、20℃の条件で、硬化膜面に対し垂直方向から波長550nmの光を照射して、屈折率を測定し、小数点以下第三位を四捨五入した。
 <乾燥膜のタックレス性>
 スピンコーター(商品名1H-360S、ミカサ(株)製)を用いて、各実施例および比較例において用いた隔壁用樹脂組成物を、10cm角の無アルカリガラス基板上に、乾燥後の膜厚が10μmとなるようにスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で3分間乾燥し、膜厚10μmの乾燥膜を作製した。作製した乾燥膜の上に、マスクに見立てた10cm角の無アルカリガラス基板を重なるように1分間置き、下記基準によって乾燥膜のタックレス性を評価した。ガラス基板の粘着が少ないほど、タックレス性が高く取り扱い性がよいことを示す。
A:乾燥膜とガラス基板を重ねても粘着せず、ガラス基板を離した後、ガラス基板に隔壁材料由来の汚れがつかなかった。
B:乾燥膜とガラス基板を重ねると粘着してくっついたが、容易にガラス基板を引き離せた。ガラス基板に隔壁材料由来の汚れがわずかについた。
C:乾燥膜とガラス基板を重ねると粘着し、くっついた。容易にガラス基板を引き離せなかった。ガラス基板を引き離した後、ガラス基板に隔壁材料由来の汚れがついた。
 <クラック耐性>
 各実施例および比較例において用いた隔壁形成樹脂組成物を、加熱後の膜厚がそれぞれ10μm、15μm、20μmおよび25μmとなるようにスピンコートした。その後の工程については、露光時にフォトマスクを介さずに全体を露光したこと以外は、各実施例および比較例と同条件で加工し、ガラス基板上にベタ膜を作製した。得られたベタ膜を各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、ベタ膜を有するガラス基板を目視観察し、ベタ膜のクラックの有無を評価した。1つでもクラックが確認された場合には、その膜厚におけるクラック耐性はないと判断した。例えば、膜厚15μmではクラックがなく、膜厚20μmではクラックがあった場合には、耐クラック膜厚を「≧15μm」と判定した。また、25μmでもクラックがない場合の耐クラック膜厚を「≧25μm」、10μmでもクラックがある場合の耐クラック膜厚を「<10μm」と、それぞれ判定し、クラック耐性とした。
 <シワ耐性>
 各実施例および比較例において用いた隔壁形成樹脂組成物を、加熱後の膜厚がそれぞれ10μm、15μm、20μmおよび25μmとなるようにスピンコートした。その後の工程については、露光時にフォトマスクを介さずに全体を露光したこと以外は、各実施例および比較例と同条件で加工し、ガラス基板上にベタ膜を作製した。得られたベタ膜を各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、ベタ膜を有するガラス基板を目視観察し、ベタ膜のシワの有無を評価した。シワが確認された場合には、その膜厚におけるシワ耐性はないと判断した。例えば、膜厚15μmではシワがなく、膜厚20μmではシワがあった場合には、シワ耐性を「≧15μm」と判定した。また、25μmでもシワがない場合のシワ耐性を「≧25μm」、10μmでもシワがある場合のシワ耐性を「<10μm」と、それぞれ判定し、シワ耐性とした。
 <1%重量減少温度>
 各実施例および比較例において用いた隔壁形成樹脂組成物を、Siウエハ上に加熱後の膜厚が10μmとなるようにスピンコートした。その後の工程については、露光時にフォトマスクを介さずに全体を露光したこと以外は、各実施例および比較例と同条件で加工し、ガラス基板上にベタ膜を作製した。次にSiウエハ上に作製したベタ膜の一部を、不純物が混ざらないように注意して削り取り、アルミセルに約100mg入れた。熱重量測定装置(TGA-50、(株)島津製作所製)を用いて、窒素雰囲気中、150℃で30分間保持した後、昇温速度10℃/分で400℃まで加熱して重量を測定した。昇温開始時の重量から1重量%減少した温度を、1%重量減少温度とした。1%重量減少温度が高いほど、耐熱性が高いことを示す。
 <解像度>
 スピンコーター(商品名1H-360S、ミカサ(株)製)を用いて、各実施例および比較例において用いた隔壁用樹脂組成物を、10cm角の無アルカリガラス基板上に、加熱後の膜厚が10μmとなるようにスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で3分間乾燥し、膜厚10μmの乾燥膜を作製した。
 作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、100μm、80μm、60μm、50μm、40μm、30μmおよび20μmの各幅のライン&スペースパターンを有するマスクを介して露光量300mJ/cm(i線)で、100μmのギャップで露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.045重量%水酸化カリウム水溶液を用いて100秒間シャワー現像し、次いで水を用いて30秒間リンスした。
 倍率100倍に調整した顕微鏡を用いて、現像後のパターンを拡大観察し、未露光部に残渣が認められないパターンのうち、最も狭い線幅を解像度とした。ただし、100μm幅のパターン付近の未露光部にも残渣がある場合は「>100μm」とした。
 <反射率>
 各実施例および比較例において用いた隔壁形成樹脂組成物を、露光時にフォトマスクを介さずに全体を露光したこと以外は、各実施例および比較例と同条件で加工し、ガラス基板上に高さ10μmのベタ膜を作製した。得られたベタ膜を各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、ベタ膜を有するガラス基板について、分光測色計(商品名CM-2600d、コニカミノルタ(株)製)を用いて、ベタ膜側からSCIモードで波長350~750nmにおける反射率を測定し、代表値として550nmの値を比較した。ただし、ベタ膜にクラックやシワが発生した場合は、亀裂などが原因で正確な値を得ることができないため、反射率の測定は実施しなかった。
 <OD値>
 各実施例および比較例により得られた隔壁付き基板の隔壁のモデルとして、反射率の評価と同様に、ガラス基板上に高さ10μmのベタ膜を作製した。得られたベタ膜を有するガラス基板について、光学濃度計(日立ハイテクサイエンス製U-4100)を用いて入射光および透過光の強度を測定し、先述の式(1)により波長300~800nmにおけるOD値を算出し、代表値として450nmの値を比較した。
 また、実施例70について、遮光隔壁(A-2)のモデルとして、同様にガラス基板上にベタ膜を作製した。得られたベタ膜を有するガラス基板について、光学濃度計(日立ハイテクサイエンス製U-4100)を用いて入射光および透過光の強度を測定し、先述の式(1)により算出した。
 <テーパー角度>
 各実施例および比較例において、画素形成前の隔壁付き基板の任意の断面を、光学顕微鏡(FE-SEM(S-4800);(株)日立製作所製)を用いて、加速電圧3.0kVで観測し、テーパー角度を測定した。
 <線幅太り>
 下地基板として10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)を用いて、その上に、各実施例および比較例に用いた隔壁用樹脂組成物をスピンコートし、ホットプレート(商品名SCW-636、大日本スクリーン製造(株)製)を用いて、温度100℃で3分間乾燥し、乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(商品名PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、フォトマスク(設計:隔壁幅20μm、開口短辺80μm、開口長辺280μm)を介して、露光量100mJ/cmおよび500mJ/cm(g、h、i線を照射。露光量はi線換算値。)で露光した。その後、自動現像装置(滝沢産業(株)製「AD-2000(商品名)」)を用いて、0.045重量%水酸化カリウム水溶液を用いて100秒間シャワー現像し、次いで水を用いて30秒間リンスした。さらに、オーブン(商品名IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、格子状パターンに形成された高さ10μmの隔壁を形成した。
 倍率100倍に調整した顕微鏡を用いて、隔壁パターンを拡大観察し、隔壁線幅を測定し、露光量100mJ/cmおよび500mJ/cmのときの線幅を比較した。線幅太りについて、以下の基準により評価した。なお、パターンが現像時に剥がれた場合や、残渣が発生し測定困難な場合は、評価しなかった。
A:露光量500mJ/cmで加工した隔壁の線幅が、露光量100mJ/cmで加工した隔壁の線幅に比べて、+5.0μm以内である。
B:露光量500mJ/cmで加工した隔壁の線幅が、露光量100mJ/cmで加工した隔壁の線幅に比べて、+5.0μm~+10μmである。
C:露光量500mJ/cmで加工した隔壁の線幅が、露光量100mJ/cmで加工した隔壁の線幅に比べて、+10μm以上である。
 <表面接触角>
 各実施例および比較例により得られた隔壁付き基板における隔壁のモデルとして、反射率の評価と同様に、ガラス基板上に高さ10μmのベタ膜を作製した。得られたベタ膜の表面について、協和界面科学(株)製 DM-700、マイクロシリンジ:協和界面科学(株)製 接触角計用テフロン(登録商標)コート針22Gを用いて、25℃、大気中において、JIS R3257(制定年月日=1999/04/20)に規定される基板ガラス表面のぬれ性試験方法に準拠して、表面接触角を測定した。ただし、水の代わりにプロピレングリコールモノメチルエーテルアセテートを使用し、ベタ膜の表面とプロピレングリコールモノメチルエーテルアセテートとの接触角を測定した。
 <インクジェット塗布性>
 各実施例および比較例により得られた、画素を形成する前の隔壁付き基板において、格子状の隔壁で囲われた画素部分に対して、PGMEAをインクとして、インクジェット塗布装置(InkjetLabo、クラスターテクノロジー(株)製)を用いて、インクジェット塗布を行った。1つの格子状パターンあたり160pLのPGMEAを塗布して、決壊(インクが隔壁を乗り越えて隣の画素部分に混入する現象)の有無を観察し、下記基準によりインクジェット塗布性を評価した。決壊が少ないほど撥液性能が高く、インクジェット塗布性が優れていることを示す。
A:インクが画素内からあふれなかった。
B:一部分においてインクが画素内から隔壁の上面にあふれ出した。
C:全面においてインクが画素内から隔壁の上面にあふれ出した。
 <高さ>
 各実施例および比較例により得られた隔壁付き基板について、サーフコム触針式膜厚測定装置を用いて、画素(B)形成前後の構造体の高さを測定し、その差分を算出することにより、画素(B)の高さを測定した。実施例72~74についてはさらに低屈折率層(C)の膜厚を、実施例71、74~75、77についてはさらにカラーフィルターの膜厚を、実施例70、74についてはさらに遮光隔壁の厚み(高さ)を、実施例77、78についてはさらに黄色有機保護層の厚み(高さ)を、それぞれ同様に測定した。また、実施例73~76については、クロスセクションポリッシャー等の研磨装置を用いて、下地基板に対して垂直な断面を露出させ、走査型電子顕微鏡または透過型電子顕微鏡で断面を拡大観察することにより、それぞれ無機保護層の高さを測定した。
 <輝度>
 市販のLEDバックライト(ピーク波長465nm)を搭載した面状発光装置を光源として、画素部が光源側になるように各実施例および比較例により得られた隔壁付き基板を設置した。この面状発光装置に30mAの電流を流してLED素子を点灯させ、分光放射輝度計(CS-1000、コニカミノルタ社製)を用いて、CIE1931規格に基づく輝度(単位:cd/m)を測定し、初期輝度とした。ただし、輝度の評価は、実施例67の初期輝度を標準の100とする相対値により行った。また、室温(23℃)にて、LED素子を、48時間点灯した後、同様に輝度を測定し、輝度の経時変化を評価した。ただし、輝度の評価は、実施例67の初期輝度を標準の100とする相対値により行った。
 <色特性>
 市販の白色反射板上に、各実施例および比較例により得られた隔壁付き基板を、画素が白色反射板側に配置されるように設置した。分光測色計(CM-2600d、コニカミノルタ社製、測定径φ8mm)を用いて、隔壁付き基板の下地基板側から光を照射し、正反射光込みのスペクトルを測定した。
 自然界の色をほぼ再現できる色規格BT.2020が定める色域は、色度図に示されるスペクトル軌跡上の赤、緑および青を三原色として規定されており、赤、緑および青の波長はそれぞれ630nm、532nmおよび467nmに相当している。得られた反射スペクトルの470nm、530nmおよび630nmの3つの波長の反射率(R)から、画素の発光色について以下の基準により評価した。
A:R530/(R630+R530+R470)≧0.55
B:R530/(R630+R530+R470)<0.55。
 <表示特性>
 各実施例および比較例により得られた隔壁付き基板と有機EL素子を組み合わせて作製した表示装置の表示特性を、以下の基準に基づき評価した。
A:緑表示が非常に色鮮やかであり、鮮明でコントラストに優れた表示装置である。
B:色彩にやや不自然さが見られるものの、問題のない表示装置である。
 <混色>
 各実施例および比較例により得られた、画素を形成する前の隔壁付き基板において、格子状の隔壁で囲われた画素部分の一部に、インクジェット法を用いて、色変換発光材料組成物(CL-2)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成した。その後、格子状の隔壁で囲われた画素部分のうち、色変換発光材料組成物(CL-2)を塗布した領域の隣の領域に、インクジェット法を用いて、色変換発光材料組成物(CL-3)を塗布し、100℃で30分間乾燥し、厚み5.0μmの画素を形成した。
 一方、格子状の隔壁で囲われた画素部分と同じ幅をもつ青色有機ELセルを作製し、前述の隔壁付き基板と青色有機ELセルを対向させて封止剤により貼り合せ、図15に示す構成の表示装置を得た。図15における青色有機ELセル11のうち、色変換発光材料組成物(CL-2)で形成された画素3(CL-2)の直下に貼り合わせた青色有機ELセルのみを点灯させた状態で、色変換発光材料組成物(CL-3)で形成された画素3(CL-3)部分について、顕微分光光度計LVmicro-V(ラムダビジョン(株)製)を用いて、波長630nmにおける吸光強度A(630nm)を測定した。吸光強度A(630nm)の値が小さいほど、混色を起こしにくいことを示している。下記の判定基準により混色を判定した。
A:A(630nm)<0.01
B:0.01≦A(630nm)≦0.5
C:0.5<A(630nm)。
 各実施例および比較例評価結果を表6~7に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 1 下地基板
 2 隔壁
 3 画素
 3(CL-2) 色変換発光材料組成物(CL-2)で形成された画素
 3(CL-3) 色変換発光材料組成物(CL-3)で形成された画素
 4 遮光隔壁
 5 カラーフィルター
 6 低屈折率層
 7 無機保護層I
 8 無機保護層II
 9 無機保護層IIIおよび/または黄色有機保護層
 10 無機保護層IVおよび/または黄色有機保護層
 11 有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源
 12 青色有機ELセル
 H 隔壁の厚み
 L 隔壁の幅
 θ テーパー角度

Claims (16)

  1. (i)光ラジカル発生剤と、
    (ii)ヒンダードフェノール化合物および/またはヒンダードアミン化合物と、
    (iii)下記一般式(1)または(2)で表される芳香環を有する構造と下記一般式(3)で表される光ラジカル重合性基を有する構造を含むポリシロキサンと、
    (iv)下記一般式(4)で表される芳香環を有する構造と下記一般式(5)で表される光ラジカル重合性基を有する構造を含む(メタ)アクリルポリマおよび/または、下記一般式(6)若しくは下記一般式(7)で表される構造と光ラジカル重合性基を有するカルド系ポリマと、を含有する樹脂組成物であって、前記ポリシロキサンの重量と(メタ)アクリルポリマおよびカルド系ポリマの合計重量の比が30/70~70/30である、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)~(7)中、RおよびRはそれぞれ独立に水素、ヒドロキシ基、シロキサン結合を有する基または炭素数1~30の1価の有機基を表す。RおよびRはそれぞれ独立に水素、ヒドロキシ基または炭素数1~30の1価の有機基を表す。R~Rはそれぞれ独立に水素、炭素数1~30の1価の有機基、炭素数6~20のアリール基または隣接するR~R同士で形成した環が芳香環となる基を表す。Rは水素、炭素数1~30の1価の有機基、または炭素数6~20のアリール基を表す。X、X、XおよびXはそれぞれ独立に芳香環を有する有機基を表す。YおよびYはそれぞれ独立に光ラジカル重合性基を有する有機基を表す。p、q、rはそれぞれ独立に0~2の整数であり、sは1~2の整数を表す。a、b、c、d、e、fおよびgはそれぞれ独立に1以上の整数を表す。a~eが2以上の場合、複数のR、R、R、R、R、R、R、R、X、X、X、X、YおよびYはそれぞれ同じであっても異なっていてもよい。)
  2. 前記ヒンダードフェノール化合物が、1分子中に2つ以上のヒンダードフェノール基を有するヒンダードフェノール化合物である請求項1記載の樹脂組成物。
  3. 前記ヒンダードアミン化合物が、ピペリジン化合物である請求項1または2記載の樹脂組成物。
  4. 前記ヒンダードアミン化合物が、光重合性基を有するピペリジン化合物である請求項1または2記載の樹脂組成物。
  5. 前記ポリシロキサンの重量平均分子量が5,000~300,000であって、前記ポリシロキサンの全繰り返し単位中、前記一般式(1)または(2)で表される繰り返し単位を30~70モル%、前記一般式(3)で表される繰り返し単位を15~70モル%含有する請求項1または2記載の樹脂組成物。
  6. 前記(メタ)アクリルポリマおよび/またはカルド系ポリマのガラス転移温度が、60℃以上である請求項または2記載の樹脂組成物。
  7. 白色顔料、遮光顔料、および銀、金、白金およびパラジウムからなる群より選ばれる少なくとも1種の金属を含有する有機金属化合物のうち、少なくとも1種以上をさらに含有する請求項1または2記載の樹脂組成物。
  8. 前記光ラジカル発生剤として、オキシムエステル化合物およびホスフィンオキサイド化合物を含有する請求項1または2記載の樹脂組成物。
  9. 光重合性基を有する撥液化合物をさらに含有する請求項1または2記載の樹脂組成物。
  10. 請求項1または2記載の樹脂組成物を硬化させてなる遮光膜。
  11. 下地基板上に請求項1または2記載の樹脂組成物によって(A-1)パターン形成された隔壁を有する隔壁付き基板であって、前記隔壁の波長550nmにおける厚み10μmあたりの反射率が10%~60%、波長450nmにおける厚み10μmあたりのOD値が1.0~3.0である隔壁付き基板。
  12. 前記(A-1)パターン形成された隔壁が、樹脂と、白色顔料と、遮光顔料とを含有し、前記遮光顔料が、窒化チタン、窒化ジルコニウム、カーボンブラック、赤色顔料と青色顔料との重量比20/80~80/20の混合顔料、および酸化パラジウム、酸化白金、酸化金、酸化銀、パラジウム、白金、金、銀からなる群より選ばれる少なくとも1種の金属酸化物または金属からなる粒子から選ばれた顔料である請求項11記載の隔壁付き基板。
  13. 前記(A-1)パターン形成された隔壁が、さらにヒンダードアミン化合物を含有する請求項11記載の隔壁付き基板。
  14. 前記下地基板と(A-1)パターン形成された隔壁との間に、さらに、(A-2)厚み1.0μmあたりのOD値が0.5以上である、パターン形成された遮光隔壁を有する、請求項11記載の隔壁付き基板。
  15. 前記(A-1)パターン形成された隔壁によって隔てられて配列した(B)色変換発光材料をさらに含有する画素層を有する請求項11記載の隔壁付き基板。
  16. 請求項11記載の隔壁付き基板と、液晶セル、有機ELセル、ミニLEDセルおよびマイクロLEDセルから選ばれた発光光源とを有する表示装置。
PCT/JP2022/034188 2021-09-24 2022-09-13 樹脂組成物、遮光膜、および隔壁付き基板 WO2023048016A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280062985.3A CN117957494A (zh) 2021-09-24 2022-09-13 树脂组合物、遮光膜及带有间隔壁的基板
JP2022555633A JPWO2023048016A1 (ja) 2021-09-24 2022-09-13
KR1020247008749A KR20240058111A (ko) 2021-09-24 2022-09-13 수지 조성물, 차광막 및 격벽 구비 기판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-155230 2021-09-24
JP2021155230 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023048016A1 true WO2023048016A1 (ja) 2023-03-30

Family

ID=85720674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034188 WO2023048016A1 (ja) 2021-09-24 2022-09-13 樹脂組成物、遮光膜、および隔壁付き基板

Country Status (4)

Country Link
JP (1) JPWO2023048016A1 (ja)
KR (1) KR20240058111A (ja)
CN (1) CN117957494A (ja)
WO (1) WO2023048016A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204805A (ja) * 2008-02-27 2009-09-10 Nippon Zeon Co Ltd 感光性樹脂組成物、積層体及びその製造方法並びに電子部品
JP2014222367A (ja) * 2011-08-31 2014-11-27 旭化成イーマテリアルズ株式会社 感光性アルカリ可溶シリコーン樹脂組成物
JP2015072468A (ja) * 2013-09-05 2015-04-16 三洋化成工業株式会社 感光性樹脂組成物
WO2019176785A1 (ja) * 2018-03-14 2019-09-19 東レ株式会社 ネガ型感光性着色組成物、硬化膜、それを用いたタッチパネル
WO2020031958A1 (ja) * 2018-08-09 2020-02-13 東レ株式会社 感光性樹脂組成物、感光性シート、ならびにそれらの硬化膜およびその製造方法、電子部品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131683A (ja) 1998-10-29 2000-05-12 Hitachi Ltd カラー表示装置
JP4352509B2 (ja) 1999-06-07 2009-10-28 東レ株式会社 感光性ペーストおよびディスプレイ用部材の製造方法
JP4197177B2 (ja) 2005-03-18 2008-12-17 東京応化工業株式会社 ブラックマトリックス形成用光硬化性樹脂組成物、これを用いた感光性フィルム、ブラックマトリックスの形成方法、ブラックマトリックス及びそのブラックマトリックスを有するプラズマディスプレイパネル
JP2009244383A (ja) 2008-03-28 2009-10-22 Fujifilm Corp 液晶表示装置
JP6908116B2 (ja) 2018-07-05 2021-07-21 東レ株式会社 樹脂組成物、遮光膜および遮光膜の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204805A (ja) * 2008-02-27 2009-09-10 Nippon Zeon Co Ltd 感光性樹脂組成物、積層体及びその製造方法並びに電子部品
JP2014222367A (ja) * 2011-08-31 2014-11-27 旭化成イーマテリアルズ株式会社 感光性アルカリ可溶シリコーン樹脂組成物
JP2015072468A (ja) * 2013-09-05 2015-04-16 三洋化成工業株式会社 感光性樹脂組成物
WO2019176785A1 (ja) * 2018-03-14 2019-09-19 東レ株式会社 ネガ型感光性着色組成物、硬化膜、それを用いたタッチパネル
WO2020031958A1 (ja) * 2018-08-09 2020-02-13 東レ株式会社 感光性樹脂組成物、感光性シート、ならびにそれらの硬化膜およびその製造方法、電子部品

Also Published As

Publication number Publication date
CN117957494A (zh) 2024-04-30
KR20240058111A (ko) 2024-05-03
JPWO2023048016A1 (ja) 2023-03-30

Similar Documents

Publication Publication Date Title
JP7201062B2 (ja) 隔壁付き基板および表示装置
JP7306264B2 (ja) ネガ型感光性着色組成物、硬化膜、それを用いたタッチパネル
TWI638234B (zh) 觸控面板用負型感光性白色組成物、觸控面板及觸控面板之製造方法
CN106415393B (zh) 负型感光性树脂组合物、使其固化而成的固化膜及其制造方法、以及具有其的光学设备及背面照射型cmos图像传感器
JP2021161401A (ja) 樹脂組成物、遮光膜、遮光膜の製造方法および隔壁付き基板
TW201339194A (zh) 感光性樹脂組成物、彩色濾光片及其液晶顯示元件
US10067421B2 (en) Negative photosensitive resin composition, cured resin film, partition walls and optical element
JP2021005083A (ja) 黄色カラーフィルターおよび黄色カラーフィルター付き基板
JP7115635B2 (ja) 樹脂組成物、遮光膜、および隔壁付き基板
US10877607B2 (en) Laminated base material, cover glass, touch panel, and method for manufacturing laminated base material
WO2023048016A1 (ja) 樹脂組成物、遮光膜、および隔壁付き基板
JP2022150305A (ja) 樹脂組成物、紫外線吸収層および紫外線吸収層付き基板
JP2021162860A (ja) ネガ型感光性着色組成物、硬化膜、硬化膜の製造方法、隔壁付き基板、および画像表示装置
WO2023157713A1 (ja) 樹脂組成物、遮光膜、遮光膜の製造方法および隔壁付き基板、表示装置
KR20230157944A (ko) 유기 el 표시장치
TWI564657B (zh) Photosensitive resin composition for color filter and its application
JP2023119574A (ja) 樹脂組成物、遮光膜、遮光膜の製造方法、隔壁付き基板および表示装置
JP2023031448A (ja) 隔壁付き基板、波長変換基板、波長変換基板の製造方法および表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022555633

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247008749

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280062985.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE