WO2023047748A1 - Polarizing plate with phase difference layer, image display device using same, and method for evaluating polarizing plate with phase difference layer - Google Patents

Polarizing plate with phase difference layer, image display device using same, and method for evaluating polarizing plate with phase difference layer Download PDF

Info

Publication number
WO2023047748A1
WO2023047748A1 PCT/JP2022/025957 JP2022025957W WO2023047748A1 WO 2023047748 A1 WO2023047748 A1 WO 2023047748A1 JP 2022025957 W JP2022025957 W JP 2022025957W WO 2023047748 A1 WO2023047748 A1 WO 2023047748A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation layer
polarizing plate
layer
retardation
polarizer
Prior art date
Application number
PCT/JP2022/025957
Other languages
French (fr)
Japanese (ja)
Inventor
洋毅 千田
大輔 林
克己 塚本
周作 後藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023047748A1 publication Critical patent/WO2023047748A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a polarizing plate with a retardation layer, an image display device using the same, and a method for evaluating the polarizing plate with a retardation layer.
  • the present invention has been made to solve the conventional problems described above, and its main purpose is to provide a polarizing plate with a retardation layer that is excellent in high-temperature durability.
  • the polarizing plate with a retardation layer of the embodiment of the present invention has a polarizing plate containing a polarizer and a retardation layer, and the angle formed by the absorption axis of the polarizer and the slow axis of the retardation layer is 40° to 50°.
  • This polarizing plate with a retardation layer is a square for evaluation defined in the center of the polarizing plate with a retardation layer, and the retardation layer shrinks in the slow axis direction after being placed under heating conditions at 80 ° C. for 500 hours.
  • the ratio x/y between the dimension x and the shrinkage dimension y in the fast axis direction of the retardation layer is 0.994 to 1.004.
  • the retardation layer-attached polarizing plate has an aspect ratio of 0.15 to 3.0.
  • the retardation layer is a fixed alignment layer of a liquid crystal compound.
  • the in-plane retardation of the retardation layer is 100 nm ⁇ Re(550) ⁇ 160 nm, and Re(450)/Re(550) ⁇ 1 and Re(650)/Re (550)>1.
  • the polarizer has a thickness of 7 ⁇ m or more.
  • the boric acid content of the polarizer is 20% by weight or less.
  • the image display device is an organic electroluminescent display device or an inorganic electroluminescent display device.
  • a method for evaluating a retardation layer-attached polarizing plate having a polarizing plate including a polarizer and a retardation layer is provided. This evaluation method is to define a square for evaluation in the center of the polarizing plate with a retardation layer, place the polarizing plate with a retardation layer in which the evaluation square is defined at 80 ° C.
  • the embodiment of the present invention it is possible to provide a thin polarizing plate with a retardation layer that is excellent in high-temperature durability. According to the embodiment of the present invention, even when heated, a change in phase difference due to dimensional shrinkage is suppressed, and a change in reflection hue can also be suppressed. As a result, a polarizing plate with a retardation layer having excellent high-temperature durability and reflection hue can be provided.
  • FIG. 1 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention
  • FIG. FIG. 2 is a plan view of the retardation layer-attached polarizing plate before heating for explaining a method for measuring the shrinkage dimension ratio x/y in the embodiment of the present invention
  • 4 is a graph showing the relationship between the shrinkage dimension ratio x/y and the retardation change ⁇ Re of the retardation layer-attached polarizing plates of Examples and Comparative Examples.
  • refractive index (nx, ny, nz) is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the in-plane direction orthogonal to the slow axis (i.e., fast axis direction) and "nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re( ⁇ )” is an in-plane retardation measured at 23° C. with light having a wavelength of ⁇ nm.
  • Re(550) is the in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
  • Thickness direction retardation (Rth) is the retardation in the thickness direction measured at 23° C. with light having a wavelength of ⁇ nm.
  • Rth(550) is the retardation in the thickness direction measured at 23° C. with light having a wavelength of 550 nm.
  • FIG. 1 is a schematic cross-sectional view of a retardation layer-attached polarizing plate according to one embodiment of the present invention.
  • a polarizing plate 100 with a retardation layer in the illustrated example has a polarizing plate 10, a retardation layer 20, and an adhesive layer 30 in this order from the viewing side.
  • Polarizing plate 10 typically includes polarizer 11 and protective layer 12 disposed on the viewing side of polarizer 11 .
  • another protective layer may be provided on the opposite side of the polarizer 11 from the viewing side (the side of the polarizer 11 on which the protective layer 12 is not laminated).
  • the retardation layer 20 is an alignment fixed layer of a liquid crystal compound (hereinafter sometimes simply referred to as a liquid crystal alignment fixed layer).
  • the retardation layer-attached polarizing plate is provided with an adhesive layer 30 as the outermost layer, and can be attached to an image display device (substantially, an image display cell).
  • an image display device substantially, an image display cell.
  • a release film is temporarily attached to the surface of the pressure-sensitive adhesive layer 30 until the polarizing plate is used. By temporarily attaching the release film, the pressure-sensitive adhesive layer can be appropriately protected.
  • the angle between the absorption axis of the polarizer 11 and the slow axis of the retardation layer 20 is 40° to 50°, preferably 42° to 48°, more preferably about 45°. is. If the angle formed by the absorption axis of the polarizer 11 and the slow axis of the retardation layer 20 is within this range, a polarizing plate with a retardation layer having excellent antireflection properties can be obtained.
  • the ratio of the retardation layer to the shrinkage dimension y in the fast axis direction (shrinkage dimension ratio) x/y is 0.994 to 1.004.
  • the dimensional shrinkage of the central portion of the retardation layer-attached polarizing plate can be correlated with the retardation change ( ⁇ Re) of the retardation layer-attached polarizing plate.
  • the shrinkage dimension ratio x/y is preferably 0.995 to 1.003, more preferably 0.996 to 1.002, still more preferably 0.997 to 1.001. The closer the shrinkage dimension ratio x/y is to 1, the better.
  • the retardation polarizing plate can be designed into any appropriate shape depending on the application.
  • the retardation layer-attached polarizing plate is rectangular.
  • FIG. 2 is a plan view of a polarizing plate with a retardation layer before heating for explaining a method for measuring the shrinkage dimension ratio x/y in an embodiment of the present invention.
  • the solid line direction corresponds to the slow axis direction of the retardation layer
  • the broken line direction corresponds to the fast axis direction of the retardation layer.
  • the retardation layer-equipped polarizing plate has the slow axis in the long side direction, but the slow axis may be in the short side direction.
  • a square for evaluation is defined at the center O of the polarizing plate 100 with a retardation layer.
  • the central portion O is a portion including the center of gravity of the polarizing plate with the retardation layer.
  • an evaluation square 200 is defined as a 1 cm square at center O.
  • FIG. The evaluation square 200 is defined so that the center of gravity of the retardation layer-attached polarizing plate and the center of gravity of the evaluation square 200 correspond to each other. Any appropriate method can be used as the defining method.
  • the retardation layer-attached polarizing plate may be drawn directly on the retardation layer-attached polarizing plate, or any appropriate mark may be attached.
  • Drawing can be done in any suitable way.
  • a drawing method is used in which the outermost surface of the polarizing plate is scratched using any appropriate means such as a cutter.
  • the size of the evaluation square can be set to any appropriate size according to the size of the retardation layer-attached polarizing plate.
  • the dimensional shrinkage y (y 2 / y 1 ) is calculated.
  • the shrinkage dimensional ratio x/y is calculated from the calculated dimensional shrinkage x in the slow axis direction and dimensional shrinkage y in the fast axis direction.
  • the retardation change ⁇ Re at the central portion of the polarizing plate with a retardation layer is preferably ⁇ 3 nm to 3 nm, more preferably ⁇ 2.5 nm to 2.5 nm, still more preferably ⁇ 2.3 nm to 2.3 nm. be.
  • the retardation change ⁇ Re of the central portion of the retardation layer-attached polarizing plate is within the above range, the retardation change due to dimensional shrinkage is suppressed even when heated, and the reflection hue change can also be suppressed.
  • a polarizing plate with a retardation layer having excellent high-temperature durability and reflection hue can be provided.
  • the retardation change ⁇ Re at the center of the polarizing plate with the retardation layer is defined (for example, drawn) on the polarizing plate with the retardation layer. It refers to the difference between the phase difference value of the square for evaluation after being left at room temperature for 500 hours and then returning to room temperature.
  • the retardation layer-attached polarizing plate is rectangular.
  • the aspect ratio (horizontal side length/vertical side length) of the retardation layer-attached polarizing plate can be set to any appropriate value depending on the application.
  • the aspect ratio of the retardation layer-attached polarizing plate is preferably 0.15 to 3.0, more preferably 0.17 to 2.5, still more preferably 0.3 to 2.2.
  • the aspect ratio is within the above range, the change in phase difference due to dimensional shrinkage can be suppressed even when heated, and the change in reflection hue can also be suppressed.
  • a polarizing plate with a retardation layer having excellent high-temperature durability and reflection hue can be provided.
  • it is preferable that the horizontal direction is a side corresponding to the slow axis direction of the retardation layer, and the vertical direction is a side corresponding to the fast axis direction of the retardation layer.
  • the retardation layer 20 is preferably a liquid crystal alignment fixed layer.
  • the retardation layer which is a liquid crystal alignment fixed layer, may undergo a large change in retardation due to dimensional shrinkage of the polarizing plate with the retardation layer. According to the embodiment of the present invention, even when the liquid crystal alignment fixed layer is used as the retardation layer, the retardation change due to dimensional shrinkage is suppressed, and the reflection hue change can also be suppressed. As a result, a polarizing plate with a retardation layer having excellent reflection hue can be provided.
  • the retardation layer 20 may be a single layer, or may have a laminated structure of a first liquid crystal alignment fixed layer and a second liquid crystal alignment fixed layer.
  • the total thickness of the retardation layer-attached polarizing plate is preferably 50 ⁇ m to 120 ⁇ m, more preferably 50 ⁇ m to 110 ⁇ m, still more preferably 60 ⁇ m to 100 ⁇ m.
  • a polarizing plate with a retardation layer having a certain thickness tends to be greatly affected by dimensional shrinkage due to heating. According to the embodiment of the present invention, even when the polarizing plate with a retardation layer having such a thickness is heated, the change in retardation due to dimensional shrinkage is suppressed, and the change in reflection hue is also suppressed. obtain.
  • the total thickness of the polarizing plate with a retardation layer means the polarizing plate, the retardation layer (when another retardation layer is present, the retardation layer and another retardation layer), and the thickness for laminating these. It refers to the total thickness of the adhesive layer or pressure-sensitive adhesive layer (that is, the total thickness of the retardation layer-attached polarizing plate does not include the thickness of the pressure-sensitive adhesive layer 30 and the release film that can be temporarily adhered to its surface).
  • Polarizing plate B-1 Polarizer A polarizer is typically composed of a polyvinyl alcohol (PVA) resin film containing a dichroic substance.
  • the thickness of the polarizer is preferably 7 ⁇ m or more, more preferably 7 ⁇ m to 15 ⁇ m, still more preferably 7 ⁇ m to 12 ⁇ m.
  • the thickness of the polarizer is large, the dimensional shrinkage rate tends to increase, and the change in the retardation of the retardation layer may become more pronounced.
  • even when a polarizer having the above thickness is used, it is excellent in high-temperature durability, retardation change due to dimensional shrinkage is suppressed, and reflection hue change can also be suppressed. As a result, a polarizing plate with a retardation layer having excellent reflection hue can be provided.
  • the boric acid content of the polarizer is preferably 20 wt % or less, more preferably 5 wt % to 20 wt %, still more preferably 10 wt % to 18 wt %. If the boric acid content of the polarizer is within such a range, it is possible to provide a thin polarizing plate with a retardation layer having excellent high-temperature durability. If the boric acid content is less than 5% by weight, the polarizer may become polyene and the durability may decrease. According to the embodiment of the present invention, even when heated, a change in phase difference due to dimensional shrinkage is suppressed, and a change in reflection hue can also be suppressed.
  • the boric acid content of the polarizer can be adjusted, for example, by adjusting the boric acid content in the aqueous solutions used in the following steps.
  • the boric acid content can be calculated as the amount of boric acid contained in the polarizer per unit weight, for example, using the following formula from the neutralization method.
  • the iodine content of the polarizer is preferably 2% by weight or more, more preferably 2% to 10% by weight. If the iodine content of the polarizer is within such a range, the synergistic effect with the above-mentioned boric acid content can maintain the ease of curl adjustment during bonding and prevent curl during heating. It is possible to improve the appearance durability during heating while satisfactorily suppressing the As used herein, "iodine content” means the total amount of iodine contained in the polarizer (PVA-based resin film).
  • iodine exists in the form of iodine ions (I ⁇ ), iodine molecules (I 2 ), polyiodine ions (I 3 ⁇ , I 5 ⁇ ) and the like in the polarizer.
  • the iodine content means the amount of iodine including all these forms.
  • the iodine content can be calculated, for example, by a calibration curve method of fluorescent X-ray analysis.
  • the polyiodine ions are present in the polarizer in the form of a PVA-iodine complex. Absorption dichroism can be expressed in the visible light wavelength range by forming such a complex.
  • the complex of PVA and triiodide ion (PVA ⁇ I 3 ⁇ ) has an absorption peak near 470 nm
  • the complex of PVA and pentaiodide ion (PVA ⁇ I 5 ⁇ ) has an absorption peak near 600 nm. has an absorption peak at
  • polyiodine ions can absorb light in a wide range of visible light, depending on their morphology.
  • iodine ions (I ⁇ ) have an absorption peak near 230 nm and are not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in a complex with PVA may be primarily responsible for the absorption performance of the polarizer.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance Ts of the polarizer is preferably 40% to 48%, more preferably 41% to 46%.
  • the degree of polarization P of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, still more preferably 99.9% or more.
  • the single transmittance is typically a Y value measured using an ultraviolet-visible spectrophotometer and subjected to visibility correction.
  • the degree of polarization is typically obtained by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured using an ultraviolet-visible spectrophotometer and subjected to visibility correction.
  • Degree of polarization (%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 ⁇ 100
  • a polarizer can be manufactured by any appropriate method.
  • any appropriate resin film such as a polyvinyl alcohol (PVA) resin film is subjected to various treatments such as swelling treatment, stretching treatment, dyeing treatment with a dichroic substance such as iodine, cross-linking treatment, washing treatment, and drying treatment. It can be manufactured by applying.
  • PVA polyvinyl alcohol
  • Protective Layer Protective layer 12 is formed of any suitable film that can be used as a protective layer for a polarizer.
  • the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based resins.
  • TAC triacetyl cellulose
  • polyester-based polyvinyl alcohol-based
  • polycarbonate-based polyamide-based
  • polyimide-based polyimide-based
  • polyethersulfone-based polysulfone-based resins.
  • polystyrene-based polynorbornene-based
  • polyolefin-based polyolefin-based
  • (meth)acrylic-based and acetate-based transparent resins.
  • the polymer film can be, for example, an extrudate of the resin composition.
  • the polarizing plate with a retardation layer is typically arranged on the viewing side of the image display device, and the protective layer 12 is typically arranged on the viewing side. Therefore, the protective layer 12 may be subjected to surface treatment such as hard coat treatment, anti-reflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary.
  • the thickness of the protective layer is preferably 10 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m.
  • the thickness of the outer protective layer is the thickness including the thickness of the surface treatment layer.
  • the retardation layer 20 is typically provided to impart antireflection properties to the polarizing plate, and can function as a ⁇ /4 plate when the retardation layer is a single layer.
  • the retardation layer is preferably an alignment fixed layer of a liquid crystal compound.
  • the in-plane retardation Re(550) of the retardation layer is preferably more than 100 nm and less than 160 nm, more preferably 110 nm to 155 nm, still more preferably 130 nm to less than 150 nm.
  • the retardation layer 20 is composed of a single layer, its thickness is preferably 0.5 ⁇ m to 7 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m.
  • a liquid crystal compound By using a liquid crystal compound, it is possible to realize an in-plane retardation equivalent to that of a resin film with a thickness much thinner than that of a resin film. Further, in the liquid crystal alignment fixed layer, the retardation change due to the dimensional shrinkage of the retardation layer-attached polarizing plate in a high-temperature environment may become more remarkable.
  • the retardation layer which is a fixed alignment layer of a liquid crystal compound, is employed, it is possible to provide a polarizing plate with a retardation layer that is excellent in high-temperature durability.
  • the Nz coefficient of the retardation layer is preferably 0.9 to 1.5, more preferably 0.9 to 1.3.
  • the retardation layer may exhibit a reverse wavelength dispersion characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may well exhibit a flat wavelength dispersion characteristic in which the retardation value hardly changes even with the wavelength of the measurement light.
  • the retardation layer exhibits reverse wavelength dispersion characteristics.
  • Re(450)/Re(550) of the retardation layer is preferably less than 1, more preferably 0.8 or more and less than 1, and still more preferably 0.8 or more and 0.95 or less.
  • Re(550)/Re(650) of the retardation layer is preferably greater than 1, more preferably greater than 1 and 1.2 or less, still more preferably 1.01 to 1.15. With such a configuration, very excellent antireflection properties can be achieved.
  • the angle between the slow axis of the retardation layer 20 and the absorption axis of the polarizer 11 is preferably 40° to 50°, more preferably 42° to 48°, and more preferably about 45°. If the angle is in such a range, by using the retardation layer as a ⁇ / 4 plate as described above, a retardation having very good circular polarization properties (as a result, very good antireflection properties) A layered polarizing plate can be obtained.
  • the retardation layer 20 is preferably an alignment fixed layer of a liquid crystal compound.
  • a liquid crystal compound By using a liquid crystal compound, the difference between nx and ny in the resulting retardation layer can be significantly increased compared to a non-liquid crystal material. can be significantly reduced. As a result, it is possible to further reduce the thickness of the retardation layer-attached polarizing plate.
  • the term “liquid crystal alignment fixed layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction within the layer and the alignment state is fixed.
  • the "alignment fixed layer” is a concept including an alignment cured layer obtained by curing a liquid crystal monomer as described later.
  • the retardation layer which is an alignment fixed layer of a liquid crystal compound, can be formed using a composition containing a polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound contained in the composition as used herein refers to a compound having a polymerizable group and liquid crystallinity.
  • a polymerizable group means a group involved in a polymerization reaction, preferably a photopolymerizable group.
  • the photopolymerizable group refers to a group that can participate in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like.
  • liquid crystallinity may be thermotropic or lyotropic.
  • the structure of the liquid crystal phase may be nematic liquid crystal or smectic liquid crystal. Thermotropic nematic liquid crystals are preferred from the standpoint of ease of production.
  • the single-layer retardation layer is formed using a composition containing a liquid crystal compound represented by the following formula (1).
  • L 1 and L 2 each independently represent a monovalent organic group, and at least one of L 1 and L 2 represents a polymerizable group.
  • Monovalent organic groups include any suitable groups.
  • the polymerizable group represented by at least one of L 1 and L 2 include radically polymerizable groups (groups capable of radical polymerization). Any appropriate radically polymerizable group can be used as the radically polymerizable group.
  • An acryloyl group or a methacryloyl group is preferred.
  • An acryloyl group is preferred because it has a high polymerization rate and improves productivity.
  • a methacryloyl group can also be used as a polymerizable group for highly birefringent liquid crystals.
  • SP 1 and SP 2 each independently constitute a single bond, a linear or branched alkylene group, or a linear or branched alkylene group having 1 to 14 carbon atoms —CH 2 represents a divalent linking group in which one or more of - are substituted with -O-;
  • the linear or branched alkylene group having 1 to 14 carbon atoms preferably includes methylene group, ethylene group, propylene group, butylene group, pentylene group and hexylene group.
  • a 1 and A 2 each independently represent an alicyclic hydrocarbon group or an aromatic ring substituent.
  • a 1 and A 2 are preferably aromatic ring substituents having 6 or more carbon atoms or cycloalkylene rings having 6 or more carbon atoms.
  • D 1 , D 2 , D 3 and D 4 each independently represent a single bond or a divalent linking group.
  • D 3 is preferably -O-CO-, and D 3 and D 4 are more preferably -O-CO-.
  • D 1 and D 2 are preferably single bonds.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms.
  • G 1 and G 2 each independently represent a single bond or an alicyclic hydrocarbon group.
  • G 1 and G 2 may represent an unsubstituted or substituted divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms.
  • one or more —CH 2 — constituting the alicyclic hydrocarbon group may be substituted with —O—, —S— or —NH—.
  • G 1 and G 2 preferably represent a single bond.
  • Ar represents an aromatic hydrocarbon ring or an aromatic heterocycle.
  • Ar represents, for example, an aromatic ring selected from the group consisting of groups represented by the following formulas (Ar-1) to (Ar-6).
  • *1 represents the bonding position with D1
  • *2 represents the bonding position with D2 .
  • Q 1 represents N or CH
  • Q 2 represents -S-, -O-, or -N(R 5 )-.
  • R 5 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Z 1 , Z 2 and Z 3 each independently represents a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, and 3 carbon atoms. represents a monovalent alicyclic hydrocarbon group of up to 20, a monovalent aromatic hydrocarbon group of 6 to 20 carbon atoms, a halogen atom, a cyano group, a nitro group, -NR 6 R 7 or -SR 8 .
  • R 6 to R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Z 1 and Z 2 may combine with each other to form a ring.
  • the ring may be an alicyclic, heterocyclic or aromatic ring, preferably an aromatic ring.
  • the formed ring may be substituted with a substituent.
  • a 3 and A 4 are each independently a group consisting of -O-, -N(R 9 )-, -S- and -CO- represents a group selected from the above, and R 9 represents a hydrogen atom or a substituent.
  • R 9 represents a hydrogen atom or a substituent. Examples of the substituent represented by R 9 include the same substituents that Y 1 in the above formula (Ar-1) may have.
  • X represents a hydrogen atom or an unsubstituted or substituted group 14 to group 16 nonmetallic atom.
  • group 14 to group 16 nonmetallic atoms represented by X include an oxygen atom, a sulfur atom, an unsubstituted or substituted nitrogen atom, and an unsubstituted or substituted carbon atom.
  • substituents include the same substituents that Y 1 in the above formula (Ar-1) may have.
  • R 1 , R 2 , R 3 and R 4 are as described above.
  • SP 3 and SP 4 are each independently a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a linear chain having 1 to 12 carbon atoms. divalent in which one or more —CH 2 — constituting a straight or branched alkylene group is substituted with —O—, —S—, —NH—, —N(Q)—, or —CO— and Q represents a polymerizable group.
  • L 3 and L 4 each independently represent a monovalent organic group, and at least one of L 3 and L 4 and L 1 and L 2 in formula (1) above is represents a polymerizable group.
  • Ax is an organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of aromatic hydrocarbon rings and aromatic heterocyclic rings. represents In formulas (Ar-4) to (Ar-6), Ax preferably has an aromatic heterocyclic ring, more preferably a benzothiazole ring.
  • Ay is a hydrogen atom, an unsubstituted or optionally substituted alkyl group having 1 to 6 carbon atoms, or an aromatic hydrocarbon ring and aromatic represents an organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of heterocyclic rings. In formulas (Ar-4) to (Ar-6), Ay preferably represents a hydrogen atom.
  • Q 3 represents a hydrogen atom or an unsubstituted or optionally substituted alkyl group having 1 to 6 carbon atoms. In formulas (Ar-4) to (Ar-6), Q3 preferably represents a hydrogen atom.
  • Ar a group (atomic group) represented by the above formula (Ar-4) or the above formula (Ar-6) is preferable.
  • liquid crystal compound represented by formula (I) is disclosed in International Publication No. 2018/123551. The description of the publication is incorporated herein by reference. These compounds may be used alone or in combination of two or more.
  • a composition containing a liquid crystal compound preferably contains a solvent from the viewpoint of workability for forming a retardation layer. Any suitable solvent can be used as the solvent, and organic solvents are preferably used.
  • composition containing the liquid crystal compound further contains any appropriate other component.
  • antioxidants such as phenolic antioxidants, liquid crystal compounds other than the above, leveling agents, surfactants, tilt angle control agents, alignment aids, plasticizers, and cross-linking agents.
  • the liquid crystal alignment fixed layer is formed by applying an alignment treatment to the surface of a predetermined base material, coating the surface with a composition (coating liquid) containing a liquid crystal compound, and aligning the liquid crystal compound in the direction corresponding to the alignment treatment. and fixing the orientation state.
  • the substrate is any appropriate resin film, and the liquid crystal alignment solidified layer formed on the substrate can be transferred to the surface of the polarizing plate.
  • orientation treatment can be adopted as the orientation treatment.
  • Specific examples include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment.
  • Specific examples of mechanical orientation treatment include rubbing treatment and stretching treatment.
  • Specific examples of physical orientation treatment include magnetic orientation treatment and electric field orientation treatment.
  • Specific examples of chemical alignment treatment include oblique vapor deposition and photo-alignment treatment.
  • Arbitrary appropriate conditions can be adopted as the processing conditions for various alignment treatments depending on the purpose.
  • the alignment of the liquid crystal compound is performed by processing at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such a temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is aligned in accordance with the orientation treatment direction of the surface of the base material.
  • the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
  • the thickness direction retardation Rth (550) of the other retardation layer is preferably ⁇ 50 nm to ⁇ 300 nm, more preferably ⁇ 70 nm to ⁇ 250 nm, still more preferably ⁇ 90 nm to ⁇ 200 nm, particularly preferably ⁇ 100 nm to -180 nm.
  • Another retardation layer preferably consists of a film containing a liquid crystal material fixed in homeotropic alignment.
  • a liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the liquid crystal compound and the method for forming the retardation layer include the liquid crystal compound and the method for forming the retardation layer described in [0020] to [0028] of JP-A-2002-333642.
  • the thickness of the separate retardation layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 8 ⁇ m, still more preferably 0.5 ⁇ m to 5 ⁇ m.
  • Adhesive Layer As the adhesive constituting the adhesive layer 30, any appropriate adhesive can be used.
  • adhesives include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, urethane-based adhesives, vinyl alkyl ether-based adhesives, polyvinyl alcohol-based adhesives, polyvinylpyrrolidone-based adhesives, polyacrylamide-based adhesives, A cellulose-based pressure-sensitive adhesive and the like are included.
  • these pressure-sensitive adhesives those having excellent optical transparency, appropriate wettability, cohesiveness, and adhesion properties, and excellent weather resistance and heat resistance are preferably used.
  • Acrylic pressure-sensitive adhesives are preferably used as those exhibiting such characteristics.
  • the retardation layer-attached polarizing plate of the embodiment of the present invention can be used for any appropriate application.
  • the retardation layer-attached polarizing plate can be suitably used for an image display device.
  • the retardation layer-attached polarizing plate can be suitably used for an organic electroluminescence device and an inorganic electroluminescence device.
  • image Display Device The polarizing plate with a retardation layer according to the above items A to E can be applied to an image display device. Accordingly, embodiments of the present invention include image display devices using such retardation layer-attached polarizing plates. Typical examples of image display devices include liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices and inorganic EL display devices).
  • An image display device according to an embodiment of the present invention includes the retardation layer-attached polarizing plate according to the above items A to E on the viewing side thereof.
  • the retardation layer-attached polarizing plate is laminated so that the retardation layer is on the image display cell (for example, liquid crystal cell, organic EL cell, inorganic EL cell) side (so that the polarizer is on the viewing side).
  • a method for evaluating a polarizing plate with a retardation layer includes: defining a square for evaluation in the center of the polarizing plate with a retardation layer; ° C.
  • the evaluation method it is possible to evaluate the high-temperature durability of the retardation layer-attached polarizing plate, that is, the degree of change in retardation when placed in a high-temperature environment.
  • the retardation polarizing plate can be designed into any appropriate shape depending on the application.
  • the retardation layer-attached polarizing plate is rectangular.
  • the evaluation method of the embodiment of the present invention will be described by taking a rectangular polarizing plate with a retardation layer as an example.
  • an evaluation square is defined at the center of the retardation layer-attached polarizing plate to be evaluated.
  • the central part is as described above.
  • a square for example, a square with a side of 1 cm
  • Any appropriate method can be used as the defining method.
  • the drawing method includes, for example, a method of scratching the outermost surface of the polarizing plate using any appropriate means such as a cutter, and drawing on the outermost surface of the polarizing plate using a writing instrument such as an oil-based pen. methods and the like.
  • a drawing method is used in which the outermost surface of the polarizing plate is scratched using any appropriate means such as a cutter.
  • the polarizing plate with a retardation layer having the defined evaluation squares is placed in an environment of 80° C. for 500 hours. After heating, in the polarizing plate with a retardation layer returned to room temperature, the length x 2 of the side parallel to the slow axis direction and the length y 2 of the side parallel to the fast axis direction of the square for evaluation are measured. . Next, dimensional shrinkage in the slow axis direction x (x 2 / x 1 ) is calculated. Similarly , the dimensional contraction y ( y 1 ) is calculated. The shrinkage dimensional ratio x/y is calculated from the calculated dimensional shrinkage x in the slow axis direction and dimensional shrinkage y in the fast axis direction.
  • the shrinkage dimension ratio x/y is preferably 0.995 to 1.003, more preferably 0.996 to 1.002, still more preferably 0.997 to 1.001.
  • Thickness A thickness of 10 ⁇ m or less was measured using an interferometric film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name “MCPD-3000”). A thickness exceeding 10 ⁇ m was measured using a digital micrometer (manufactured by Anritsu Co., Ltd., product name “KC-351C”).
  • the shrinkage dimension x 2 of the side parallel to the slow axis direction of the evaluation square retardation layer and the fast axis direction and the shrinkage dimension y 2 of the side parallel to was measured respectively.
  • the shrinkage dimension x (x 2 /1 (cm)) in the slow axis direction and the shrinkage dimension y (y 2 /1 (cm)) in the fast axis direction were calculated.
  • the shrinkage dimension ratio x/y was calculated from the shrinkage dimension x in the slow axis direction and the shrinkage dimension y in the fast axis direction.
  • the polarizing plate with a retardation layer attached to the glass plate was placed under conditions of 80° C. for 500 hours. Thereafter, the in-plane retardation Re 500 after heating of the square portion for evaluation was similarly measured. ⁇ Re (nm) was calculated from the initial in-plane retardation Re 0 and the in-plane retardation Re 500 after heating.
  • the weight ratio of iodine and potassium iodide is 1:7 and the iodine concentration is adjusted so that the single transmittance of the resulting polarizer is 45.0%. while stretching to 1.4 times.
  • a two-step cross-linking treatment was adopted for the cross-linking treatment, and in the first-step cross-linking treatment, the film was stretched 1.2 times while being treated in an aqueous solution of boric acid and potassium iodide at 40°C.
  • the boric acid content of the aqueous solution for the first-stage cross-linking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight.
  • the film was stretched 1.6 times while being treated in an aqueous solution of boric acid and potassium iodide at 65°C.
  • the boric acid content of the aqueous solution for the second-stage cross-linking treatment was 3.7% by weight, and the potassium iodide content was 5.0% by weight.
  • the cleaning treatment was performed with an aqueous solution of potassium iodide at 20°C.
  • the potassium iodide content of the aqueous solution for the cleaning treatment was 3.1% by weight.
  • the drying treatment was performed at 70° C. for 5 minutes to obtain a polarizer.
  • Preparation of First Retardation Layer 55 parts by weight of the compound represented by formula (I), 25 parts by weight of the compound represented by formula (II), and 20 parts by weight of the compound represented by formula (III) are After adding to non (CPN) 400 parts by weight, it was dissolved by heating to 60° C. and stirring. After that, the solution of the above compound is returned to room temperature, and the solution of the above compound is added with 3 parts by weight of Irgacure 907 (manufactured by BASF Japan), 0.2 parts by weight of Megafac F-554 (manufactured by DIC), and p -0.1 parts by weight of methoxyphenol (MEHQ) was added and further stirred. The solution after stirring was transparent and uniform.
  • Irgacure 907 manufactured by BASF Japan
  • Megafac F-554 manufactured by DIC
  • MEHQ methoxyphenol
  • the resulting solution was filtered through a 0.20 ⁇ m membrane filter to obtain a polymerizable composition.
  • the polyimide solution for alignment film was applied to a glass substrate having a thickness of 0.7 mm by spin coating, dried at 100° C. for 10 minutes, and then baked at 200° C. for 60 minutes to obtain a coating film. .
  • the resulting coating film was rubbed with a commercially available rubbing device to form an alignment film.
  • the polymerizable composition obtained above was applied to the substrate (substantially, the alignment film) by spin coating, and dried at 100° C. for 2 minutes.
  • the first retardation layer After cooling the resulting coating film to room temperature, using a high-pressure mercury lamp, ultraviolet light is irradiated for 30 seconds at an intensity of 30 mW/cm 2 to obtain a first retardation layer that is an aligned solid layer of a liquid crystal compound. rice field.
  • the in-plane retardation Re(550) of the first retardation layer was 130 nm.
  • the Re(450)/Re(550) of the first retardation layer was 0.851, indicating reverse dispersion wavelength characteristics.
  • the first retardation layer can function as a ⁇ /4 plate.
  • the coating solution was applied to the vertically aligned PET substrate using a bar coater, and dried by heating at 80° C. for 4 minutes to align the liquid crystal.
  • a UV adhesive was applied to the surface of the first retardation layer and the surface of the second retardation layer, and after they were bonded together, they were irradiated with UV light to cure and adhere.
  • the substrate of the first retardation layer was peeled off, and after plasma treatment, an undercoat was applied and dried, and then an acrylic pressure-sensitive adhesive (thickness: 5 ⁇ m) was applied and dried.
  • an acrylic pressure-sensitive adhesive thinness: 5 ⁇ m
  • the substrate on the surface of the retardation layer of 2 is peeled off, an adhesive layer (thickness 26 ⁇ m) is provided, and a protective layer (HC layer/COP film)/adhesive layer/polarizer/adhesive layer/protective layer (TAC)/
  • HC layer/COP film a protective layer
  • TAC a protective layer
  • a polarizing plate with a retardation layer having a structure of adhesive layer//first retardation layer/adhesive layer/second retardation layer)/adhesive layer was obtained.
  • the total thickness of the obtained polarizing plate with a retardation layer was 100 ⁇ m.
  • Example 1-1 The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 6.5 cm and a width of 13 cm (aspect ratio: 2), and subjected to the evaluation of (2) to (4). bottom. Table 1 shows the results.
  • Example 1-2 The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 7.8 cm and a width of 11 cm (aspect ratio: 1.4), and the evaluation of (2) to (4). served to Table 1 shows the results.
  • Example 1-3 The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 9.3 cm and a width of 9.3 cm (aspect ratio: 1), and the evaluation of (2) to (4). served to Table 1 shows the results.
  • Example 1-4 The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 12 cm and a width of 8 cm (aspect ratio: 0.67), and subjected to the evaluation of (2) to (4). bottom. Table 1 shows the results.
  • Example 1-5 The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 13 cm and a width of 6.5 cm (aspect ratio: 0.5), and the evaluation of (2) to (4). served to Table 1 shows the results.
  • Example 1-6 The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 16 cm and a width of 6 cm (aspect ratio: 0.38), and subjected to the evaluation of (2) to (4). bottom. Table 1 shows the results.
  • Example 1-7 The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 24 cm and a width of 4 cm (aspect ratio: 0.17), and subjected to the evaluation of (2) to (4). bottom. Table 1 shows the results.
  • Example 2 Polarized light with a retardation layer in the same manner as in Example 1 except that in the polarizer production process, the concentration of the boric acid aqueous solution used in the cross-linking treatment process was changed to obtain a polarizer with a boric acid content of 17% by weight. A plate was made. The obtained polarizing plate with a retardation layer was cut using a film cutting machine so as to have a length of 6.5 cm and a width of 13 cm (aspect ratio: 2). The cut polarizing plate with a retardation layer was evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Example 1 A polarizing plate with a retardation layer was produced in the same manner as in Example 1.
  • a polarizing plate with a retardation layer was prepared in the same manner as in Example 1 except that the obtained polarizing plate with a retardation layer was cut to have a length of 4 cm and a width of 24 cm (aspect ratio: 6). was used for evaluation. Table 1 shows the results.
  • Example 2 A retardation layer was prepared in the same manner as in Example 1-1 except that in the polarizer production process, the concentration of the boric acid aqueous solution used in the cross-linking treatment process was changed to obtain a polarizer having a boric acid content of 22% by weight. A polarizing plate was prepared. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. Table 1 shows the results.
  • FIG. 3 shows the distribution of the shrinkage dimension ratio x/y and ⁇ Re of the retardation layer-attached polarizing plates obtained in Examples and Comparative Examples. As can be seen from the graph in FIG. 3, there was a correlation between the shrinkage dimension ratio x/y and ⁇ Re. By measuring the shrinkage dimension ratio x/y, it was possible to evaluate the degree of change in the retardation of the retardation layer-attached polarizing plate.
  • the polarizing plate with a retardation layer of the present invention is suitably used for liquid crystal display devices, organic EL display devices and inorganic EL display devices.

Abstract

Provided is a polarizing plate with a phase difference layer having excellent high-temperature durability. A polarizing plate with a phase difference layer according to one embodiment of the present invention comprises a phase difference layer and a polarizing plate including a polarizer, wherein an angle formed between the absorption axis of the polarizer and the slow axis of the phase difference layer is 40-50°. The ratio x/y between a contraction dimension x in the slow axis direction of the phase difference layer after being left under a heating condition of 80°C for 500 hours for an evaluative square shape defined in the center of the polarizing plate with the phase difference layer, and the contraction dimension y in the fast axis direction of the phase difference layer for the same evaluative square shape, is 0.994 to 1.004.

Description

位相差層付偏光板およびそれを用いた画像表示装置、ならびに、位相差層付偏光板の評価方法Polarizing plate with retardation layer, image display device using the same, and evaluation method for polarizing plate with retardation layer
 本発明は、位相差層付偏光板およびそれを用いた画像表示装置、ならびに、位相差層付偏光板の評価方法に関する。 The present invention relates to a polarizing plate with a retardation layer, an image display device using the same, and a method for evaluating the polarizing plate with a retardation layer.
 近年、液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置には、代表的には偏光板および位相差板が用いられている。実用的には、偏光板と位相差板とを一体化した位相差層付偏光板が広く用いられている(例えば、特許文献1)。画像表示装置の薄型化への要望が強くなるに伴い、位相差層付偏光板についても薄型化の要望が強まっている。位相差層付偏光板の薄型化を目的として、位相差フィルムの薄型化が進んでいる。薄型の位相差フィルムとしては液晶系の材料を用いて作製された位相差板が用いられている。薄型の位相差フィルムは加熱条件下において偏光板の寸法収縮の影響を受けやすく、位相差が変化し得る。その結果、反射色相が変化する場合がある。 In recent years, image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices and inorganic EL display devices) have rapidly spread. Polarizing plates and retardation plates are typically used in image display devices. Practically, a polarizing plate with a retardation layer, in which a polarizing plate and a retardation plate are integrated, is widely used (for example, Patent Document 1). As the demand for thinner image display devices increases, the demand for thinner polarizing plates with retardation layers also increases. For the purpose of thinning the polarizing plate with the retardation layer, thinning of the retardation film is progressing. As a thin retardation film, a retardation plate manufactured using a liquid crystal material is used. A thin retardation film is susceptible to dimensional shrinkage of the polarizing plate under heating conditions, and the retardation may change. As a result, the reflected hue may change.
特許第3325560号公報Japanese Patent No. 3325560
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は高温耐久性に優れた位相差層付偏光板を提供することにある。 The present invention has been made to solve the conventional problems described above, and its main purpose is to provide a polarizing plate with a retardation layer that is excellent in high-temperature durability.
 本発明の実施形態の位相差層付偏光板は、偏光子を含む偏光板と、位相差層と、を有し、該偏光子の吸収軸と位相差層の遅相軸とがなす角度が40°~50°である。この位相差層付偏光板は、位相差層付偏光板の中心部に規定された評価用正方形の、80℃で500時間加熱条件下に置いた後の位相差層の遅相軸方向の収縮寸法xと位相差層の進相軸方向の収縮寸法yとの比x/yが0.994~1.004である。
 1つの実施形態において、上記位相差層付偏光板のアスペクト比は0.15~3.0である。
 1つの実施形態において、上記位相差層は液晶化合物の配向固化層である。
 1つの実施形態において、上記位相差層の面内位相差は、100nm<Re(550)<160nmであり、かつ、Re(450)/Re(550)<1、および、Re(650)/Re(550)>1を満たす。
 1つの実施形態において、上記偏光子の厚みは7μm以上である。
 1つの実施形態において、上記偏光子のホウ酸含有量は20重量%以下である。
 本発明の別の局面においては画像表示装置が提供される。この画像表示装置は上記位相差層付偏光板を備える。
 1つの実施形態において、上記画像表示装置は有機エレクトロルミネセンス表示装置または無機エレクトロルミネセンス表示装置である。
 本発明のさらに別の局面においては、偏光子を含む偏光板と、位相差層と、を有する位相差層付偏光板の評価方法が提供される。この評価方法は、位相差層付偏光板の中心部に評価用正方形を規定すること、評価用正方形が規定された位相差層付偏光板を80℃に500時間置くこと、評価用正方形の位相差層の遅相軸方向の収縮寸法xと位相差層の進相軸方向の収縮寸法yを測定すること、および、該収縮寸法xおよび収縮寸法yから収縮寸法比x/yを算出すること、を含む。
The polarizing plate with a retardation layer of the embodiment of the present invention has a polarizing plate containing a polarizer and a retardation layer, and the angle formed by the absorption axis of the polarizer and the slow axis of the retardation layer is 40° to 50°. This polarizing plate with a retardation layer is a square for evaluation defined in the center of the polarizing plate with a retardation layer, and the retardation layer shrinks in the slow axis direction after being placed under heating conditions at 80 ° C. for 500 hours. The ratio x/y between the dimension x and the shrinkage dimension y in the fast axis direction of the retardation layer is 0.994 to 1.004.
In one embodiment, the retardation layer-attached polarizing plate has an aspect ratio of 0.15 to 3.0.
In one embodiment, the retardation layer is a fixed alignment layer of a liquid crystal compound.
In one embodiment, the in-plane retardation of the retardation layer is 100 nm<Re(550)<160 nm, and Re(450)/Re(550)<1 and Re(650)/Re (550)>1.
In one embodiment, the polarizer has a thickness of 7 μm or more.
In one embodiment, the boric acid content of the polarizer is 20% by weight or less.
An image display device is provided in another aspect of the present invention. This image display device includes the retardation layer-attached polarizing plate.
In one embodiment, the image display device is an organic electroluminescent display device or an inorganic electroluminescent display device.
In still another aspect of the present invention, a method for evaluating a retardation layer-attached polarizing plate having a polarizing plate including a polarizer and a retardation layer is provided. This evaluation method is to define a square for evaluation in the center of the polarizing plate with a retardation layer, place the polarizing plate with a retardation layer in which the evaluation square is defined at 80 ° C. for 500 hours, and place the evaluation square Measuring the shrinkage dimension x in the slow axis direction of the retardation layer and the shrinkage dimension y in the fast axis direction of the retardation layer, and calculating the shrinkage dimension ratio x/y from the shrinkage dimension x and the shrinkage dimension y ,including.
 本発明の実施形態によれば、高温耐久性に優れた薄型の位相差層付偏光板を提供することができる。本発明の実施形態によれば、加熱された場合であっても寸法収縮による位相差変化が抑制され、反射色相の変化も抑制され得る。その結果、優れた高温耐久性、および、反射色相を有する位相差層付偏光板を提供し得る。 According to the embodiment of the present invention, it is possible to provide a thin polarizing plate with a retardation layer that is excellent in high-temperature durability. According to the embodiment of the present invention, even when heated, a change in phase difference due to dimensional shrinkage is suppressed, and a change in reflection hue can also be suppressed. As a result, a polarizing plate with a retardation layer having excellent high-temperature durability and reflection hue can be provided.
本発明の1つの実施形態による位相差層付偏光板の概略断面図である。1 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention; FIG. 本発明の実施形態における収縮寸法比x/yの測定法方法を説明するための加熱前の位相差層付偏光板の平面図である。FIG. 2 is a plan view of the retardation layer-attached polarizing plate before heating for explaining a method for measuring the shrinkage dimension ratio x/y in the embodiment of the present invention. 実施例および比較例の位相差層付偏光板の収縮寸法比x/yと位相差変化ΔReとの関係を示すグラフである。4 is a graph showing the relationship between the shrinkage dimension ratio x/y and the retardation change ΔRe of the retardation layer-attached polarizing plates of Examples and Comparative Examples.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the in-plane direction orthogonal to the slow axis (i.e., fast axis direction) and "nz" is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re(λ)” is an in-plane retardation measured at 23° C. with light having a wavelength of λ nm. For example, "Re(550)" is the in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is obtained by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Thickness direction retardation (Rth)
“Rth(λ)” is the retardation in the thickness direction measured at 23° C. with light having a wavelength of λ nm. For example, “Rth(550)” is the retardation in the thickness direction measured at 23° C. with light having a wavelength of 550 nm. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz Coefficient The Nz coefficient is obtained by Nz=Rth/Re.
(5) Angle When referring to an angle in this specification, the angle includes both clockwise and counterclockwise directions with respect to a reference direction. Thus, for example, "45°" means ±45°.
A.位相差層付偏光板の全体構成
 図1は、本発明の1つの実施形態による位相差層付偏光板の概略断面図である。図示例の位相差層付偏光板100は、偏光板10と位相差層20と粘着剤層30とを視認側からこの順に有する。偏光板10は、代表的には、偏光子11と、偏光子11の視認側に配置された保護層12と、を含む。目的に応じて、偏光子11の視認側と反対側(偏光子11の保護層12が積層されていない面)に別の保護層(図示せず)が設けられてもよい。1つの実施形態において、位相差層20は、液晶化合物の配向固化層(以下、単に液晶配向固化層と称する場合がある)である。位相差層付偏光板は粘着剤層30が最外層として設けられ、画像表示装置(実質的には、画像表示セル)に貼り付け可能とされている。実用的には、粘着剤層30の表面には、偏光板が使用に供されるまで、剥離フィルムが仮着されていることが好ましい。剥離フィルムを仮着することにより、粘着剤層を適切に保護することができる。
A. Overall Configuration of Retardation Layer-Equipped Polarizing Plate FIG. 1 is a schematic cross-sectional view of a retardation layer-attached polarizing plate according to one embodiment of the present invention. A polarizing plate 100 with a retardation layer in the illustrated example has a polarizing plate 10, a retardation layer 20, and an adhesive layer 30 in this order from the viewing side. Polarizing plate 10 typically includes polarizer 11 and protective layer 12 disposed on the viewing side of polarizer 11 . Depending on the purpose, another protective layer (not shown) may be provided on the opposite side of the polarizer 11 from the viewing side (the side of the polarizer 11 on which the protective layer 12 is not laminated). In one embodiment, the retardation layer 20 is an alignment fixed layer of a liquid crystal compound (hereinafter sometimes simply referred to as a liquid crystal alignment fixed layer). The retardation layer-attached polarizing plate is provided with an adhesive layer 30 as the outermost layer, and can be attached to an image display device (substantially, an image display cell). Practically, it is preferable that a release film is temporarily attached to the surface of the pressure-sensitive adhesive layer 30 until the polarizing plate is used. By temporarily attaching the release film, the pressure-sensitive adhesive layer can be appropriately protected.
 1つの実施形態において、偏光子11の吸収軸と位相差層20の遅相軸とがなす角度は40°~50°であり、好ましくは42°~48°であり、さらに好ましくは約45°である。偏光子11の吸収軸と位相差層20の遅相軸とがなす角度がこのような範囲であれば、非常に優れた反射防止特性を有する位相差層付偏光板が得られ得る。 In one embodiment, the angle between the absorption axis of the polarizer 11 and the slow axis of the retardation layer 20 is 40° to 50°, preferably 42° to 48°, more preferably about 45°. is. If the angle formed by the absorption axis of the polarizer 11 and the slow axis of the retardation layer 20 is within this range, a polarizing plate with a retardation layer having excellent antireflection properties can be obtained.
 1つの実施形態において、位相差層付偏光板の中心部に規定された評価用正方形の、80℃で500時間加熱条件下に置いた後の位相差層の遅相軸方向の収縮寸法xと位相差層の進相軸方向の収縮寸法yとの比(収縮寸法比)x/yが0.994~1.004である。位相差層付偏光板の中心部の寸法収縮は位相差層付偏光板の位相差変化(ΔRe)と相関し得る。収縮寸法比x/yを上記範囲とすることにより、加熱された場合であっても寸法収縮による位相差変化が抑制され、反射色相の変化も抑制され得る。その結果、優れた高温耐久性、および、反射色相を有する位相差層付偏光板を提供し得る。収縮寸法比x/yは、好ましくは0.995~1.003であり、より好ましくは0.996~1.002であり、さらに好ましくは0.997~1.001である。収縮寸法比x/yは1に近いほど好ましい。 In one embodiment, a square for evaluation defined in the center of the polarizing plate with a retardation layer, the shrinkage dimension x in the slow axis direction of the retardation layer after being placed under heating conditions at 80 ° C. for 500 hours and The ratio of the retardation layer to the shrinkage dimension y in the fast axis direction (shrinkage dimension ratio) x/y is 0.994 to 1.004. The dimensional shrinkage of the central portion of the retardation layer-attached polarizing plate can be correlated with the retardation change (ΔRe) of the retardation layer-attached polarizing plate. By setting the shrinkage dimensional ratio x/y within the above range, the change in phase difference due to dimensional shrinkage is suppressed even when heated, and the change in reflection hue can also be suppressed. As a result, a polarizing plate with a retardation layer having excellent high-temperature durability and reflection hue can be provided. The shrinkage dimension ratio x/y is preferably 0.995 to 1.003, more preferably 0.996 to 1.002, still more preferably 0.997 to 1.001. The closer the shrinkage dimension ratio x/y is to 1, the better.
 位相差付偏光板は用途等に応じて任意の適切な形状に設計され得る。代表的には、位相差層付偏光板は矩形である。以下、矩形の位相差層付偏光板を例として、本発明の実施形態について説明する。図2は本発明の実施形態における収縮寸法比x/yの測定法方法を説明するための加熱前の位相差層付偏光板の平面図である。図示例において、位相差層付偏光板100は実線方向が位相差層の遅相軸方向、破線方向が位相差層の進相軸方向にそれぞれ対応する。なお、図示例では長辺方向に遅相軸がある位相差層付偏光板を示しているが、短辺方向が遅相軸であってもよい。まず、位相差層付偏光板100の中心部Oに評価用正方形を規定する。中心部Oは位相差層付偏光板の重心を含む部分である。1つの実施形態において、中心部Oに一辺が1cmの正方形を評価用正方形200として規定する。評価用正方形200は位相差層付偏光板の重心と、評価用正方形200の重心とが対応するように規定する。規定方法としては任意の適切な方法を用いることができる。例えば、位相差層付偏光板に直接描画してもよく、任意の適切なマークを貼付してもよい。描画は任意の適切な方法で行うことができる。例えば、カッター等の任意の適切な手段を用いて偏光板の最表面にキズをつけて描画する方法、および、油性ペン等の筆記具を用いて偏光板の最表面に描画する方法等が挙げられる。好ましくはカッター等の任意の適切な手段を用いて偏光板の最表面にキズをつけて描画する方法が用いられる。評価用正方形のサイズは位相差層付偏光板のサイズに応じて任意の適切な大きさに設定され得る。上記のとおり、例えば、一辺が1cmの正方形が評価用正方形として採用される。評価用正方形200が規定された位相差層付偏光板は80℃の環境に500時間置かれる。加熱後、室温に戻された位相差層付偏光板100において評価用正方形200の遅相軸方向と平行な辺の長さxおよび進相軸方向と平行な辺の長さyをそれぞれ測定する。次いで、評価用正方形200の遅相軸方向の辺の長さの初期値xと加熱後の遅相軸方向に平行な辺の長さxから遅相軸方向の寸法収縮x(x/x)を算出する。同様に、評価用正方形200の進相軸方向の辺の長さの初期値yと加熱後の遅相軸方向の辺の長さyから進相軸方向の寸法収縮y(y/y)を算出する。それぞれ算出された遅相軸方向の寸法収縮xと進相軸方向の寸法収縮yの値から収縮寸法比x/yを算出する。 The retardation polarizing plate can be designed into any appropriate shape depending on the application. Typically, the retardation layer-attached polarizing plate is rectangular. Hereinafter, embodiments of the present invention will be described using a rectangular retardation layer-attached polarizing plate as an example. FIG. 2 is a plan view of a polarizing plate with a retardation layer before heating for explaining a method for measuring the shrinkage dimension ratio x/y in an embodiment of the present invention. In the illustrated example, in the polarizing plate 100 with retardation layers, the solid line direction corresponds to the slow axis direction of the retardation layer, and the broken line direction corresponds to the fast axis direction of the retardation layer. In the illustrated example, the retardation layer-equipped polarizing plate has the slow axis in the long side direction, but the slow axis may be in the short side direction. First, a square for evaluation is defined at the center O of the polarizing plate 100 with a retardation layer. The central portion O is a portion including the center of gravity of the polarizing plate with the retardation layer. In one embodiment, an evaluation square 200 is defined as a 1 cm square at center O. FIG. The evaluation square 200 is defined so that the center of gravity of the retardation layer-attached polarizing plate and the center of gravity of the evaluation square 200 correspond to each other. Any appropriate method can be used as the defining method. For example, it may be drawn directly on the retardation layer-attached polarizing plate, or any appropriate mark may be attached. Drawing can be done in any suitable way. For example, there are a method of scratching the outermost surface of the polarizing plate using any appropriate means such as a cutter and drawing, and a method of drawing on the outermost surface of the polarizing plate using a writing instrument such as an oil-based pen. . Preferably, a drawing method is used in which the outermost surface of the polarizing plate is scratched using any appropriate means such as a cutter. The size of the evaluation square can be set to any appropriate size according to the size of the retardation layer-attached polarizing plate. As described above, for example, a square with a side of 1 cm is adopted as the evaluation square. The retardation layer-attached polarizing plate in which the evaluation squares 200 were defined was placed in an environment of 80° C. for 500 hours. After heating, the length of the side parallel to the slow axis direction of the evaluation square 200 in the retardation layer-attached polarizing plate 100 returned to room temperature and the length of the side parallel to the fast axis direction x 2 were measured. Measure. Next, dimensional shrinkage in the slow axis direction x (x 2 /x 1 ). Similarly, from the initial value y 1 of the side length in the fast axis direction of the evaluation square 200 and the length y 2 of the side in the slow axis direction after heating, the dimensional shrinkage y (y 2 / y 1 ) is calculated. The shrinkage dimensional ratio x/y is calculated from the calculated dimensional shrinkage x in the slow axis direction and dimensional shrinkage y in the fast axis direction.
 位相差層付偏光板の中心部の位相差変化ΔReは好ましくは-3nm~3nmであり、より好ましくは-2.5nm~2.5nmであり、さらに好ましくは-2.3nm~2.3nmである。位相差層付偏光板の中心部の位相差変化ΔReが上記範囲であることにより、加熱された場合であっても寸法収縮による位相差変化が抑制され、反射色相の変化も抑制され得る。その結果、優れた高温耐久性、および、反射色相を有する位相差層付偏光板を提供し得る。本明細書において、位相差層付偏光板の中心部の位相差変化ΔReは位相差層付偏光板に規定(例えば、描画)した評価用正方形の加熱試験前の位相差値と80℃の環境に500時間置いた後室温に戻した後の評価用正方形の位相差値との差をいう。 The retardation change ΔRe at the central portion of the polarizing plate with a retardation layer is preferably −3 nm to 3 nm, more preferably −2.5 nm to 2.5 nm, still more preferably −2.3 nm to 2.3 nm. be. When the retardation change ΔRe of the central portion of the retardation layer-attached polarizing plate is within the above range, the retardation change due to dimensional shrinkage is suppressed even when heated, and the reflection hue change can also be suppressed. As a result, a polarizing plate with a retardation layer having excellent high-temperature durability and reflection hue can be provided. In this specification, the retardation change ΔRe at the center of the polarizing plate with the retardation layer is defined (for example, drawn) on the polarizing plate with the retardation layer. It refers to the difference between the phase difference value of the square for evaluation after being left at room temperature for 500 hours and then returning to room temperature.
 1つの実施形態において、上記位相差層付偏光板は矩形である。この実施形態において、位相差層付偏光板のアスペクト比(横方向の辺の長さ/縦方向の辺の長さ)は用途に応じて任意の適切な値に設定され得る。位相差層付偏光板のアスペクト比は、好ましくは0.15~3.0であり、より好ましくは0.17~2.5であり、さらに好ましくは0.3~2.2である。アスペクト比が上記範囲であることにより、加熱された場合であっても寸法収縮による位相差変化が抑制され、反射色相の変化も抑制され得る。その結果、優れた高温耐久性、および、反射色相を有する位相差層付偏光板を提供し得る。1つの実施形態において、上記横方向は位相差層の遅相軸方向に対応する辺であり、上記縦方向は位相差層の進相軸方向に対応する辺であることが好ましい。 In one embodiment, the retardation layer-attached polarizing plate is rectangular. In this embodiment, the aspect ratio (horizontal side length/vertical side length) of the retardation layer-attached polarizing plate can be set to any appropriate value depending on the application. The aspect ratio of the retardation layer-attached polarizing plate is preferably 0.15 to 3.0, more preferably 0.17 to 2.5, still more preferably 0.3 to 2.2. When the aspect ratio is within the above range, the change in phase difference due to dimensional shrinkage can be suppressed even when heated, and the change in reflection hue can also be suppressed. As a result, a polarizing plate with a retardation layer having excellent high-temperature durability and reflection hue can be provided. In one embodiment, it is preferable that the horizontal direction is a side corresponding to the slow axis direction of the retardation layer, and the vertical direction is a side corresponding to the fast axis direction of the retardation layer.
 位相差層20は好ましくは液晶配向固化層である。液晶配向固化層である位相差層は位相差層付偏光板の寸法収縮による位相差変化が大きくなるおそれがある。本発明の実施形態によれば、位相差層として液晶配向固化層を用いる場合であっても寸法収縮による位相差変化が抑制され、反射色相の変化も抑制され得る。その結果、優れた反射色相を有する位相差層付偏光板を提供し得る。位相差層20は、単一層であってもよく、第1の液晶配向固化層と第2の液晶配向固化層との積層構造を有していてもよい。 The retardation layer 20 is preferably a liquid crystal alignment fixed layer. The retardation layer, which is a liquid crystal alignment fixed layer, may undergo a large change in retardation due to dimensional shrinkage of the polarizing plate with the retardation layer. According to the embodiment of the present invention, even when the liquid crystal alignment fixed layer is used as the retardation layer, the retardation change due to dimensional shrinkage is suppressed, and the reflection hue change can also be suppressed. As a result, a polarizing plate with a retardation layer having excellent reflection hue can be provided. The retardation layer 20 may be a single layer, or may have a laminated structure of a first liquid crystal alignment fixed layer and a second liquid crystal alignment fixed layer.
 位相差層付偏光板は、位相差層20とは別の位相差層(図示せず)がさらに設けられてもよい。別の位相差層は、代表的には、位相差層20と粘着剤層30との間(すなわち、位相差層20の外側)に設けられる。別の位相差層は、代表的には、屈折率特性がnz>nx=nyの関係を示す。別の位相差層は、必要に応じて設けられる任意の層であり、省略されてもよい。 The retardation layer-attached polarizing plate may further include a retardation layer (not shown) other than the retardation layer 20 . Another retardation layer is typically provided between the retardation layer 20 and the adhesive layer 30 (that is, outside the retardation layer 20). Another retardation layer typically exhibits a refractive index characteristic of nz>nx=ny. Another retardation layer is an arbitrary layer provided as needed, and may be omitted.
 別の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。 The optical properties (for example, refractive index properties, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, etc. of another retardation layer can be appropriately set according to the purpose.
 位相差層付偏光板の総厚みは、好ましくは50μm~120μmであり、より好ましくは50μm~110μmであり、さらに好ましくは60μm~100μmである。ある程度の厚みを有する位相差層付偏光板では加熱による寸法収縮の影響が大きくなる傾向がある。本発明の実施形態によれば、このような厚みを有する位相差層付偏光板であっても加熱された場合であっても寸法収縮による位相差変化が抑制され、反射色相の変化も抑制され得る。なお、位相差層付偏光板の総厚みとは、偏光板、位相差層(別の位相差層が存在する場合には、位相差層および別の位相差層)およびこれらを積層するための接着剤層または粘着剤層の厚みの合計をいう(すなわち、位相差層付偏光板の総厚みは、粘着剤層30およびその表面に仮着され得る剥離フィルムの厚みを含まない)。 The total thickness of the retardation layer-attached polarizing plate is preferably 50 μm to 120 μm, more preferably 50 μm to 110 μm, still more preferably 60 μm to 100 μm. A polarizing plate with a retardation layer having a certain thickness tends to be greatly affected by dimensional shrinkage due to heating. According to the embodiment of the present invention, even when the polarizing plate with a retardation layer having such a thickness is heated, the change in retardation due to dimensional shrinkage is suppressed, and the change in reflection hue is also suppressed. obtain. In addition, the total thickness of the polarizing plate with a retardation layer means the polarizing plate, the retardation layer (when another retardation layer is present, the retardation layer and another retardation layer), and the thickness for laminating these. It refers to the total thickness of the adhesive layer or pressure-sensitive adhesive layer (that is, the total thickness of the retardation layer-attached polarizing plate does not include the thickness of the pressure-sensitive adhesive layer 30 and the release film that can be temporarily adhered to its surface).
 以下、位相差層付偏光板の構成要素について、より詳細に説明する。 The components of the retardation layer-equipped polarizing plate will be described in more detail below.
B.偏光板
B-1.偏光子
 偏光子は、代表的には、二色性物質を含むポリビニルアルコール(PVA)系樹脂フィルムで構成される。偏光子の厚みは、好ましくは7μm以上であり、より好ましくは7μm~15μmであり、さらに好ましくは7μm~12μmである。偏光子の厚みが大きい場合、寸法収縮率が大きくなる傾向があり、位相差層の位相差変化がより顕著になり得る。本発明の実施形態においては、上記の厚みの偏光子を用いる場合であっても、高温耐久性に優れ、寸法収縮による位相差変化が抑制され、反射色相の変化も抑制され得る。その結果、優れた反射色相を有する位相差層付偏光板を提供し得る。
B. Polarizing plate B-1. Polarizer A polarizer is typically composed of a polyvinyl alcohol (PVA) resin film containing a dichroic substance. The thickness of the polarizer is preferably 7 μm or more, more preferably 7 μm to 15 μm, still more preferably 7 μm to 12 μm. When the thickness of the polarizer is large, the dimensional shrinkage rate tends to increase, and the change in the retardation of the retardation layer may become more pronounced. In the embodiment of the present invention, even when a polarizer having the above thickness is used, it is excellent in high-temperature durability, retardation change due to dimensional shrinkage is suppressed, and reflection hue change can also be suppressed. As a result, a polarizing plate with a retardation layer having excellent reflection hue can be provided.
 偏光子のホウ酸含有量は、好ましくは20重量%以下であり、より好ましくは5重量%~20重量%であり、さらに好ましくは10重量%~18重量%である。偏光子のホウ酸含有量がこのような範囲であれば、高温耐久性に優れた薄型の位相差層付偏光板を提供することができる。ホウ酸含有量が5重量%未満の場合、偏光子がポリエン化し、耐久性が低下するおそれがある。本発明の実施形態によれば、加熱された場合であっても寸法収縮による位相差変化が抑制され、反射色相の変化も抑制され得る。その結果、優れた反射色相を有する位相差層付偏光板を提供し得る。偏光子のホウ酸含有量は、例えば以下の各工程において用いられる水溶液におけるホウ酸含有量を調整することにより、調整され得る。ホウ酸含有量は、例えば、中和法から下記式を用いて、単位重量当たりの偏光子に含まれるホウ酸量として算出することができる。
Figure JPOXMLDOC01-appb-M000001
The boric acid content of the polarizer is preferably 20 wt % or less, more preferably 5 wt % to 20 wt %, still more preferably 10 wt % to 18 wt %. If the boric acid content of the polarizer is within such a range, it is possible to provide a thin polarizing plate with a retardation layer having excellent high-temperature durability. If the boric acid content is less than 5% by weight, the polarizer may become polyene and the durability may decrease. According to the embodiment of the present invention, even when heated, a change in phase difference due to dimensional shrinkage is suppressed, and a change in reflection hue can also be suppressed. As a result, a polarizing plate with a retardation layer having excellent reflection hue can be provided. The boric acid content of the polarizer can be adjusted, for example, by adjusting the boric acid content in the aqueous solutions used in the following steps. The boric acid content can be calculated as the amount of boric acid contained in the polarizer per unit weight, for example, using the following formula from the neutralization method.
Figure JPOXMLDOC01-appb-M000001
 偏光子のヨウ素含有量は、好ましくは2重量%以上であり、より好ましくは2重量%~10重量%である。偏光子のヨウ素含有量がこのような範囲であれば、上記のホウ酸含有量との相乗的な効果により、貼り合わせ時のカール調整の容易性を良好に維持し、かつ、加熱時のカールを良好に抑制しつつ、加熱時の外観耐久性を改善することができる。本明細書において「ヨウ素含有量」とは、偏光子(PVA系樹脂フィルム)中に含まれるすべてのヨウ素の量を意味する。より具体的には、偏光子中においてヨウ素はヨウ素イオン(I)、ヨウ素分子(I)、ポリヨウ素イオン(I 、I )等の形態で存在するところ、本明細書におけるヨウ素含有量は、これらの形態をすべて包含したヨウ素の量を意味する。ヨウ素含有量は、例えば、蛍光X線分析の検量線法により算出することができる。なお、ポリヨウ素イオンは、偏光子中でPVA-ヨウ素錯体を形成した状態で存在している。このような錯体が形成されることにより、可視光の波長範囲において吸収二色性が発現し得る。具体的には、PVAと三ヨウ化物イオンとの錯体(PVA・I )は470nm付近に吸光ピークを有し、PVAと五ヨウ化物イオンとの錯体(PVA・I )は600nm付近に吸光ピークを有する。結果として、ポリヨウ素イオンは、その形態に応じて可視光の幅広い範囲で光を吸収し得る。一方、ヨウ素イオン(I)は230nm付近に吸光ピークを有し、可視光の吸収には実質的には関与しない。したがって、PVAとの錯体の状態で存在するポリヨウ素イオンが、主として偏光子の吸収性能に関与し得る。 The iodine content of the polarizer is preferably 2% by weight or more, more preferably 2% to 10% by weight. If the iodine content of the polarizer is within such a range, the synergistic effect with the above-mentioned boric acid content can maintain the ease of curl adjustment during bonding and prevent curl during heating. It is possible to improve the appearance durability during heating while satisfactorily suppressing the As used herein, "iodine content" means the total amount of iodine contained in the polarizer (PVA-based resin film). More specifically, iodine exists in the form of iodine ions (I ), iodine molecules (I 2 ), polyiodine ions (I 3 , I 5 ) and the like in the polarizer. The iodine content means the amount of iodine including all these forms. The iodine content can be calculated, for example, by a calibration curve method of fluorescent X-ray analysis. The polyiodine ions are present in the polarizer in the form of a PVA-iodine complex. Absorption dichroism can be expressed in the visible light wavelength range by forming such a complex. Specifically, the complex of PVA and triiodide ion (PVA·I 3 ) has an absorption peak near 470 nm, and the complex of PVA and pentaiodide ion (PVA·I 5 ) has an absorption peak near 600 nm. has an absorption peak at As a result, polyiodine ions can absorb light in a wide range of visible light, depending on their morphology. On the other hand, iodine ions (I ) have an absorption peak near 230 nm and are not substantially involved in the absorption of visible light. Therefore, polyiodine ions present in a complex with PVA may be primarily responsible for the absorption performance of the polarizer.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率Tsは、好ましくは40%~48%であり、より好ましくは41%~46%である。偏光子の偏光度Pは、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。上記単体透過率は、代表的には、紫外可視分光光度計を用いて測定し、視感度補正を行なったY値である。上記偏光度は、代表的には、紫外可視分光光度計を用いて測定して視感度補正を行なった平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められる。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmittance Ts of the polarizer is preferably 40% to 48%, more preferably 41% to 46%. The degree of polarization P of the polarizer is preferably 97.0% or more, more preferably 99.0% or more, still more preferably 99.9% or more. The single transmittance is typically a Y value measured using an ultraviolet-visible spectrophotometer and subjected to visibility correction. The degree of polarization is typically obtained by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured using an ultraviolet-visible spectrophotometer and subjected to visibility correction.
Degree of polarization (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 × 100
 偏光子は任意の適切な方法により製造することができる。例えば、ポリビニルアルコール(PVA)系樹脂フィルム等の任意の適切な樹脂フィルムに、膨潤処理、延伸処理、ヨウ素等の二色性物質による染色処理、架橋処理、洗浄処理、乾燥処理等の各種処理を施すことにより製造することができる。 A polarizer can be manufactured by any appropriate method. For example, any appropriate resin film such as a polyvinyl alcohol (PVA) resin film is subjected to various treatments such as swelling treatment, stretching treatment, dyeing treatment with a dichroic substance such as iodine, cross-linking treatment, washing treatment, and drying treatment. It can be manufactured by applying.
B-2.保護層
 保護層12は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
B-2. Protective Layer Protective layer 12 is formed of any suitable film that can be used as a protective layer for a polarizer. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based resins. , polystyrene-based, polynorbornene-based, polyolefin-based, (meth)acrylic-based, and acetate-based transparent resins. Thermosetting resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone, or ultraviolet curable resins may also be used. In addition, for example, a glassy polymer such as a siloxane-based polymer can also be used. Further, polymer films described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in a side chain. can be used, for example, a resin composition comprising an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile/styrene copolymer. The polymer film can be, for example, an extrudate of the resin composition.
 位相差層付偏光板は、後述するように代表的には画像表示装置の視認側に配置され、保護層12は、代表的にはその視認側に配置される。したがって、保護層12には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。 As will be described later, the polarizing plate with a retardation layer is typically arranged on the viewing side of the image display device, and the protective layer 12 is typically arranged on the viewing side. Therefore, the protective layer 12 may be subjected to surface treatment such as hard coat treatment, anti-reflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary.
 保護層の厚みは、好ましくは10μm~50μm、より好ましくは10μm~30μmである。なお、表面処理が施されている場合、外側保護層の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the protective layer is preferably 10 µm to 50 µm, more preferably 10 µm to 30 µm. In addition, when the surface treatment is performed, the thickness of the outer protective layer is the thickness including the thickness of the surface treatment layer.
C.位相差層
 位相差層20は、代表的には偏光板に反射防止特性を付与するために設けられ、位相差層が単一層である場合にはλ/4板として機能し得る。上記のとおり、位相差層は、好ましくは液晶化合物の配向固化層である。位相差層の面内位相差Re(550)は好ましくは100nmを超えて160nm未満であり、より好ましくは110nm~155nmであり、さらに好ましくは130nm~150nm未満である。
C. Retardation Layer The retardation layer 20 is typically provided to impart antireflection properties to the polarizing plate, and can function as a λ/4 plate when the retardation layer is a single layer. As described above, the retardation layer is preferably an alignment fixed layer of a liquid crystal compound. The in-plane retardation Re(550) of the retardation layer is preferably more than 100 nm and less than 160 nm, more preferably 110 nm to 155 nm, still more preferably 130 nm to less than 150 nm.
 位相差層20が単一層で構成される場合、その厚みは好ましくは0.5μm~7μmであり、より好ましくは1μm~5μmである。液晶化合物を用いることにより、樹脂フィルムよりも格段に薄い厚みで樹脂フィルムと同等の面内位相差を実現することができる。また、液晶配向固化層では位相差層付偏光板の高温環境での寸法収縮による位相差変化がより顕著となり得る。本発明の実施形態においては、液晶化合物の配向固化層である位相差層を採用した場合であっても、高温耐久性に優れた位相差層付偏光板を提供することができる。 When the retardation layer 20 is composed of a single layer, its thickness is preferably 0.5 μm to 7 μm, more preferably 1 μm to 5 μm. By using a liquid crystal compound, it is possible to realize an in-plane retardation equivalent to that of a resin film with a thickness much thinner than that of a resin film. Further, in the liquid crystal alignment fixed layer, the retardation change due to the dimensional shrinkage of the retardation layer-attached polarizing plate in a high-temperature environment may become more remarkable. In the embodiment of the present invention, even when the retardation layer, which is a fixed alignment layer of a liquid crystal compound, is employed, it is possible to provide a polarizing plate with a retardation layer that is excellent in high-temperature durability.
 位相差層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。このような関係を満たすことにより、得られる位相差層付偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。 The Nz coefficient of the retardation layer is preferably 0.9 to 1.5, more preferably 0.9 to 1.3. By satisfying such a relationship, when the obtained polarizing plate with a retardation layer is used in an image display device, a very excellent reflection hue can be achieved.
 位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、位相差層は、逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは1未満であり、より好ましくは0.8以上1未満であり、さらに好ましくは0.8以上0.95以下である。また、位相差層のRe(550)/Re(650)は好ましくは1を超え、より好ましくは1を超えて1.2以下であり、さらに好ましくは1.01~1.15である。このような構成であれば、非常に優れた反射防止特性を実現することができる。 The retardation layer may exhibit a reverse wavelength dispersion characteristic in which the retardation value increases according to the wavelength of the measurement light, or may exhibit a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may well exhibit a flat wavelength dispersion characteristic in which the retardation value hardly changes even with the wavelength of the measurement light. In one embodiment, the retardation layer exhibits reverse wavelength dispersion characteristics. In this case, Re(450)/Re(550) of the retardation layer is preferably less than 1, more preferably 0.8 or more and less than 1, and still more preferably 0.8 or more and 0.95 or less. . In addition, Re(550)/Re(650) of the retardation layer is preferably greater than 1, more preferably greater than 1 and 1.2 or less, still more preferably 1.01 to 1.15. With such a configuration, very excellent antireflection properties can be achieved.
 上記のとおり、位相差層20の遅相軸と偏光子11の吸収軸とのなす角度は、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。角度がこのような範囲であれば、上記のように位相差層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する位相差層付偏光板が得られ得る。 As described above, the angle between the slow axis of the retardation layer 20 and the absorption axis of the polarizer 11 is preferably 40° to 50°, more preferably 42° to 48°, and more preferably about 45°. If the angle is in such a range, by using the retardation layer as a λ / 4 plate as described above, a retardation having very good circular polarization properties (as a result, very good antireflection properties) A layered polarizing plate can be obtained.
 上記のとおり、位相差層20は好ましくは液晶化合物の配向固化層である。液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための位相差層の厚みを格段に小さくすることができる。その結果、位相差層付偏光板のさらなる薄型化を実現することができる。本明細書において「液晶配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。 As described above, the retardation layer 20 is preferably an alignment fixed layer of a liquid crystal compound. By using a liquid crystal compound, the difference between nx and ny in the resulting retardation layer can be significantly increased compared to a non-liquid crystal material. can be significantly reduced. As a result, it is possible to further reduce the thickness of the retardation layer-attached polarizing plate. As used herein, the term “liquid crystal alignment fixed layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction within the layer and the alignment state is fixed. In addition, the "alignment fixed layer" is a concept including an alignment cured layer obtained by curing a liquid crystal monomer as described later.
 液晶化合物の配向固化層である位相差層は、重合性液晶化合物を含む組成物を用いて形成され得る。本明細書において組成物に含まれる重合性液晶化合物とは、重合性基を有し、かつ、液晶性を有する化合物をいう。重合性基は、重合反応に関与する基を意味し、好ましくは光重合性基である。ここで、光重合性基とは、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基をいう。 The retardation layer, which is an alignment fixed layer of a liquid crystal compound, can be formed using a composition containing a polymerizable liquid crystal compound. The polymerizable liquid crystal compound contained in the composition as used herein refers to a compound having a polymerizable group and liquid crystallinity. A polymerizable group means a group involved in a polymerization reaction, preferably a photopolymerizable group. Here, the photopolymerizable group refers to a group that can participate in a polymerization reaction by an active radical generated from a photopolymerization initiator, an acid, or the like.
 液晶性の発現は、サーモトロピックであってもよく、リオトロピックであってもよい。また、液晶相の構成としてはネマチック液晶であってもよく、スメクチック液晶であってもよい。製造の容易さという観点から、液晶性はサーモトロピックのネマチック液晶が好ましい。 The expression of liquid crystallinity may be thermotropic or lyotropic. Further, the structure of the liquid crystal phase may be nematic liquid crystal or smectic liquid crystal. Thermotropic nematic liquid crystals are preferred from the standpoint of ease of production.
 1つの実施形態において、単一層である位相差層は、下記式(1)で表される液晶化合物を含む組成物を用いて形成される。
-SP-A-D-G-D-Ar-D-G-D-A-SP-L (1)
In one embodiment, the single-layer retardation layer is formed using a composition containing a liquid crystal compound represented by the following formula (1).
L 1 -SP 1 -A 1 -D 3 -G 1 -D 1 -Ar-D 2 -G 2 -D 4 -A 2 -SP 2 -L 2 (1)
 LおよびLは、それぞれ独立して、1価の有機基を表し、LおよびLの少なくとも一方は重合性基を表す。1価の有機基としては任意の適切な基が含まれる。LおよびLの少なくとも一方が示す重合性基としては、ラジカル重合性基(ラジカル重合可能な基)が挙げられる。ラジカル重合性基としては、任意の適切なラジカル重合性基を用いることができる。好ましくはアクリロイル基またはメタクリロイル基である。重合速度が速く、生産性向上の観点からアクリロイル基が好ましい。メタクリロイル基も高複屈折性液晶の重合性基として同様に使用できる。 L 1 and L 2 each independently represent a monovalent organic group, and at least one of L 1 and L 2 represents a polymerizable group. Monovalent organic groups include any suitable groups. Examples of the polymerizable group represented by at least one of L 1 and L 2 include radically polymerizable groups (groups capable of radical polymerization). Any appropriate radically polymerizable group can be used as the radically polymerizable group. An acryloyl group or a methacryloyl group is preferred. An acryloyl group is preferred because it has a high polymerization rate and improves productivity. A methacryloyl group can also be used as a polymerizable group for highly birefringent liquid crystals.
 SPおよびSPは、それぞれ独立して、単結合、直鎖状もしくは分岐鎖状のアルキレン基、または、炭素数1~14の直鎖状もしくは分岐鎖状のアルキレン基を構成する-CH-の1個以上が-O-に置換された2価の連結基を表す。炭素数1~14の直鎖状または分岐鎖状のアルキレン基としては、好ましくは、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基およびへキシレン基が挙げられる。 SP 1 and SP 2 each independently constitute a single bond, a linear or branched alkylene group, or a linear or branched alkylene group having 1 to 14 carbon atoms —CH 2 represents a divalent linking group in which one or more of - are substituted with -O-; The linear or branched alkylene group having 1 to 14 carbon atoms preferably includes methylene group, ethylene group, propylene group, butylene group, pentylene group and hexylene group.
 AおよびAは、それぞれ独立して、脂環式炭化水素基または芳香族環置換基を表す。AおよびAは好ましくは炭素数6以上の芳香族環置換基または炭素数6以上のシクロアルキレン環である。 A 1 and A 2 each independently represent an alicyclic hydrocarbon group or an aromatic ring substituent. A 1 and A 2 are preferably aromatic ring substituents having 6 or more carbon atoms or cycloalkylene rings having 6 or more carbon atoms.
 D、D、DおよびDは、それぞれ独立して、単結合または二価の連結基を表す。具体的には、D、D、DおよびDは、単結合、-O-CO-、-C(=S)O-、-CR-、-CR-CR-、-O-CR-、-CR-O-CR-、-CO-O-CR-、-O-CO-CR-、-CR-O-CO-CR-、-CR-CO-O-CR-、-NR-CR-、または、-CO-NR-を表す。ただし、D、D、DおよびDの少なくとも一つは-O-CO-を表す。なかでも、Dが-O-CO-であることが好ましく、DおよびDが-O-CO-であることがより好ましい。D1およびDは、好ましくは、単結合である。R、R、RおよびRは、それぞれ独立して、水素原子、フッ素原子、または、炭素数1~4のアルキル基を表す。 D 1 , D 2 , D 3 and D 4 each independently represent a single bond or a divalent linking group. Specifically, D 1 , D 2 , D 3 and D 4 are a single bond, —O—CO—, —C(=S)O—, —CR 1 R 2 —, —CR 1 R 2 —CR 3R 4 -, -O-CR 1 R 2 -, -CR 1 R 2 -O-CR 3 R 4 -, -CO-O-CR 1 R 2 -, -O-CO-CR 1 R 2 -, -CR 1 R 2 -O-CO-CR 3 R 4 -, -CR 1 R 2 -CO-O-CR 3 R 4 -, -NR 1 -CR 2 R 3 -, or -CO-NR 1 - represents However, at least one of D 1 , D 2 , D 3 and D 4 represents -O-CO-. Among them, D 3 is preferably -O-CO-, and D 3 and D 4 are more preferably -O-CO-. D 1 and D 2 are preferably single bonds. R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 4 carbon atoms.
 GおよびGは、それぞれ独立して、単結合または脂環式炭化水素基を表す。具体的には、GおよびGは無置換または置換された炭素数5~8の2価の脂環式炭化水素基を表してもよい。また、脂環式炭化水素基を構成する-CH-の1個以上が-O-、-S-または-NH-で置換されていてもよい。GおよびGは、好ましくは単結合を表す。 G 1 and G 2 each independently represent a single bond or an alicyclic hydrocarbon group. Specifically, G 1 and G 2 may represent an unsubstituted or substituted divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms. In addition, one or more —CH 2 — constituting the alicyclic hydrocarbon group may be substituted with —O—, —S— or —NH—. G 1 and G 2 preferably represent a single bond.
 Arは、芳香族炭化水素環または芳香族複素環を表す。Arは、例えば、下記式(Ar-1)~(Ar-6)で表される基からなる群より選択される芳香族環を表す。なお、下記式(Ar-1)~(Ar-6)中、*1はDとの結合位置を表し、*2はDとの結合位置を表す。
Figure JPOXMLDOC01-appb-C000002
Ar represents an aromatic hydrocarbon ring or an aromatic heterocycle. Ar represents, for example, an aromatic ring selected from the group consisting of groups represented by the following formulas (Ar-1) to (Ar-6). In the following formulas (Ar-1) to (Ar-6), *1 represents the bonding position with D1 , and *2 represents the bonding position with D2 .
Figure JPOXMLDOC01-appb-C000002
 式(Ar-1)中、Qは、NまたはCHを表し、Qは、-S-、-O-、または、-N(R)-を表す。Rは、水素原子または炭素数1~6のアルキル基を表す。 In formula (Ar-1), Q 1 represents N or CH, and Q 2 represents -S-, -O-, or -N(R 5 )-. R 5 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
 式(Ar-1)~(Ar-6)中、Z、ZおよびZは、それぞれ独立して、水素原子、炭素数1~20の1価の脂肪族炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR、または、-SRを表す。R~Rは、それぞれ独立して、水素原子または炭素数1~6のアルキル基を表し、ZおよびZは、互いに結合して環を形成してもよい。環は、脂環式、複素環、および、芳香族環のいずれであってもよく、好ましくは芳香族環である。形成される環には、置換基が置換していてもよい。 In formulas (Ar-1) to (Ar-6), Z 1 , Z 2 and Z 3 each independently represents a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 20 carbon atoms, and 3 carbon atoms. represents a monovalent alicyclic hydrocarbon group of up to 20, a monovalent aromatic hydrocarbon group of 6 to 20 carbon atoms, a halogen atom, a cyano group, a nitro group, -NR 6 R 7 or -SR 8 . R 6 to R 8 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Z 1 and Z 2 may combine with each other to form a ring. The ring may be an alicyclic, heterocyclic or aromatic ring, preferably an aromatic ring. The formed ring may be substituted with a substituent.
 式(Ar-2)および(Ar-3)中、AおよびAは、それぞれ独立して、-O-、-N(R)-、-S-、および、-CO-からなる群より選択される基を表し、Rは、水素原子または置換基を表す。Rが示す置換基としては、上記式(Ar-1)中のYが有していてもよい置換基と同じものが挙げられる。 In formulas (Ar-2) and (Ar-3), A 3 and A 4 are each independently a group consisting of -O-, -N(R 9 )-, -S- and -CO- represents a group selected from the above, and R 9 represents a hydrogen atom or a substituent. Examples of the substituent represented by R 9 include the same substituents that Y 1 in the above formula (Ar-1) may have.
 式(Ar-2)中、Xは、水素原子もしくは無置換または置換基を有する第14族~第16族の非金属原子を表す。Xが表す第14族~第16族の非金属原子としては、例えば、酸素原子、硫黄原子、無置換または置換基を有する窒素原子、無置換または置換基を有する炭素原子が挙げられる。置換基としては、上記式(Ar-1)中のYが有していてもよい置換基と同じものが挙げられる。 In formula (Ar-2), X represents a hydrogen atom or an unsubstituted or substituted group 14 to group 16 nonmetallic atom. Examples of the group 14 to group 16 nonmetallic atoms represented by X include an oxygen atom, a sulfur atom, an unsubstituted or substituted nitrogen atom, and an unsubstituted or substituted carbon atom. Examples of the substituent include the same substituents that Y 1 in the above formula (Ar-1) may have.
 式(Ar-3)中、DおよびDは、それぞれ独立して、単結合、-O-CO-、-C(=S)O-、-CR-、-CR-CR-、-O-CR-、-CR-O-CR-、-CO-O-CR-、-O-CO-CR-、-CR-O-CO-CR-、-CR-CO-O-CR-、-NR-CR-、または、-CO-NR-を表す。R、R、RおよびRは、上記のとおりである。 In formula (Ar-3), D 5 and D 6 are each independently a single bond, -O-CO-, -C(=S)O-, -CR 1 R 2 -, -CR 1 R 2 -CR 3 R 4 -, -O-CR 1 R 2 -, -CR 1 R 2 -O-CR 3 R 4 -, -CO-O-CR 1 R 2 -, -O-CO-CR 1 R 2 -, -CR 1 R 2 -O-CO-CR 3 R 4 -, -CR 1 R 2 -CO-O-CR 3 R 4 -, -NR 1 -CR 2 R 3 -, or -CO-NR 1 represents -. R 1 , R 2 , R 3 and R 4 are as described above.
 式(Ar-3)中、SPおよびSPは、それぞれ独立して、単結合、炭素数1~12の直鎖状もしくは分岐鎖状のアルキレン基、または、炭素数1~12の直鎖状もしくは分岐鎖状のアルキレン基を構成する-CH-の1個以上が-O-、-S-、-NH-、-N(Q)-、もしくは、-CO-に置換された2価の連結基を表し、Qは、重合性基を表す。 In formula (Ar-3), SP 3 and SP 4 are each independently a single bond, a linear or branched alkylene group having 1 to 12 carbon atoms, or a linear chain having 1 to 12 carbon atoms. divalent in which one or more —CH 2 — constituting a straight or branched alkylene group is substituted with —O—, —S—, —NH—, —N(Q)—, or —CO— and Q represents a polymerizable group.
 式(Ar-3)中、LおよびLは、それぞれ独立して、1価の有機基を表し、LおよびLならびに上記式(1)中のLおよびLの少なくとも1つが重合性基を表す。 In formula (Ar-3), L 3 and L 4 each independently represent a monovalent organic group, and at least one of L 3 and L 4 and L 1 and L 2 in formula (1) above is represents a polymerizable group.
 式(Ar-4)~(Ar-6)中、Axは、芳香族炭化水素環および芳香族複素環からなる群より選ばれる少なくとも1つの芳香族環を有する、炭素数2~30の有機基を表す。式(Ar-4)~(Ar-6)中、Axは、好ましくは、芳香族複素環を有し、より好ましくはベンゾチアゾール環を有する。式(Ar-4)~(Ar-6)中、Ayは、水素原子、無置換または置換基を有していてもよい炭素数1~6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群より選択される少なくとも1つの芳香族環を有する、炭素数2~30の有機基を表す。式(Ar-4)~(Ar-6)中、Ayは、好ましくは水素原子を表す。 In formulas (Ar-4) to (Ar-6), Ax is an organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of aromatic hydrocarbon rings and aromatic heterocyclic rings. represents In formulas (Ar-4) to (Ar-6), Ax preferably has an aromatic heterocyclic ring, more preferably a benzothiazole ring. In formulas (Ar-4) to (Ar-6), Ay is a hydrogen atom, an unsubstituted or optionally substituted alkyl group having 1 to 6 carbon atoms, or an aromatic hydrocarbon ring and aromatic represents an organic group having 2 to 30 carbon atoms and having at least one aromatic ring selected from the group consisting of heterocyclic rings. In formulas (Ar-4) to (Ar-6), Ay preferably represents a hydrogen atom.
 式(Ar-4)~(Ar-6)中、Qは、水素原子、または、無置換または置換基を有していてもよい炭素数1~6のアルキル基を表す。式(Ar-4)~(Ar-6)中、Qは、好ましくは水素原子を表す。 In formulas (Ar-4) to (Ar-6), Q 3 represents a hydrogen atom or an unsubstituted or optionally substituted alkyl group having 1 to 6 carbon atoms. In formulas (Ar-4) to (Ar-6), Q3 preferably represents a hydrogen atom.
 このようなArのなかでは、好ましくは、上記式(Ar-4)または上記式(Ar-6)で表される基(原子団)が挙げられる。 Among such Ar, a group (atomic group) represented by the above formula (Ar-4) or the above formula (Ar-6) is preferable.
 式(I)で表される液晶化合物の具体例は国際公開第2018/123551号公報に開示されている。当該公報の記載は本明細書に参考として援用される。これらの化合物は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 A specific example of the liquid crystal compound represented by formula (I) is disclosed in International Publication No. 2018/123551. The description of the publication is incorporated herein by reference. These compounds may be used alone or in combination of two or more.
 液晶化合物を含む組成物は、好ましくは重合開始剤を含む。重合開始剤としては、任意の適切な重合剤が用いられる。好ましくは紫外線照射によって重合反応を開始可能な光重合開始剤である。光重合開始剤としては、例えば、α-カルボニル化合物(米国特許第2367661号、米国特許第2367670号の明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、米国特許第2951758号の明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、オキサジアゾール化合物(米国特許第4212970号明細書記載)、および、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)が挙げられる。当該公報の記載は本明細書に参考として援用される。重合開始剤は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 A composition containing a liquid crystal compound preferably contains a polymerization initiator. Any appropriate polymerization agent can be used as the polymerization initiator. A photopolymerization initiator capable of initiating a polymerization reaction by ultraviolet irradiation is preferred. Examples of photopolymerization initiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ethers (described in US Pat. No. 2,448,828), α-hydrocarbon substituted Aromatic acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), combinations of triarylimidazole dimers and p-aminophenyl ketones ( US Pat. No. 3,549,367), oxadiazole compounds (US Pat. No. 4,212,970), and acylphosphine oxide compounds (JP-B-63-40799, JP-B-5-29234, JP-A-10-95788 and JP-A-10-29997). The description of the publication is incorporated herein by reference. Only one type of polymerization initiator may be used, or two or more types may be used in combination.
 液晶化合物を含む組成物は、位相差層を形成する作業性の観点から、溶媒を含むことが好ましい。溶媒としては任意の適切な溶媒を用いることができ、好ましくは有機溶媒が用いられる。 A composition containing a liquid crystal compound preferably contains a solvent from the viewpoint of workability for forming a retardation layer. Any suitable solvent can be used as the solvent, and organic solvents are preferably used.
 液晶化合物を含む組成物は、任意の適切な他の成分をさらに含む。例えば、フェノール系酸化防止剤などの酸化防止剤、上記以外の液晶化合物、レベリング剤、界面活性剤、チルト角制御剤、配向助剤、可塑剤、および、架橋剤などが挙げられる。 The composition containing the liquid crystal compound further contains any appropriate other component. Examples include antioxidants such as phenolic antioxidants, liquid crystal compounds other than the above, leveling agents, surfactants, tilt angle control agents, alignment aids, plasticizers, and cross-linking agents.
 液晶配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む組成物(塗工液)を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムであり、当該基材上に形成された液晶配向固化層は、偏光板の表面に転写され得る。 The liquid crystal alignment fixed layer is formed by applying an alignment treatment to the surface of a predetermined base material, coating the surface with a composition (coating liquid) containing a liquid crystal compound, and aligning the liquid crystal compound in the direction corresponding to the alignment treatment. and fixing the orientation state. In one embodiment, the substrate is any appropriate resin film, and the liquid crystal alignment solidified layer formed on the substrate can be transferred to the surface of the polarizing plate.
 上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 Any appropriate orientation treatment can be adopted as the orientation treatment. Specific examples include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment. Specific examples of mechanical orientation treatment include rubbing treatment and stretching treatment. Specific examples of physical orientation treatment include magnetic orientation treatment and electric field orientation treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo-alignment treatment. Arbitrary appropriate conditions can be adopted as the processing conditions for various alignment treatments depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。  The alignment of the liquid crystal compound is performed by processing at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such a temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is aligned in accordance with the orientation treatment direction of the surface of the base material.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
 配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Details of the method for forming the alignment fixed layer are described in JP-A-2006-163343. The description of the publication is incorporated herein by reference.
D.別の位相差層
 別の位相差層は、上記のとおり、屈折率特性がnz>nx=nyの関係を示す、いわゆるポジティブCプレートであり得る。別の位相差層としてポジティブCプレートを用いることにより、斜め方向の反射を良好に防止することができ、反射防止機能の広視野角化が可能となる。この場合、別の位相差層の厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nm、より好ましくは-70nm~-250nm、さらに好ましくは-90nm~-200nm、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。すなわち、別の位相差層の面内位相差Re(550)は10nm未満であり得る。
D. Alternative Retardation Layer As described above, the alternative retardation layer can be a so-called positive C plate whose refractive index characteristics exhibit a relationship of nz>nx=ny. By using a positive C plate as another retardation layer, it is possible to satisfactorily prevent reflection in oblique directions and widen the viewing angle of the antireflection function. In this case, the thickness direction retardation Rth (550) of the other retardation layer is preferably −50 nm to −300 nm, more preferably −70 nm to −250 nm, still more preferably −90 nm to −200 nm, particularly preferably − 100 nm to -180 nm. Here, "nx=ny" includes not only the case where nx and ny are strictly equal but also the case where nx and ny are substantially equal. That is, the in-plane retardation Re(550) of another retardation layer can be less than 10 nm.
 nz>nx=nyの屈折率特性を有する別の位相差層は、任意の適切な材料で形成され得る。別の位相差層は、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムからなる。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該位相差層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および当該位相差層の形成方法が挙げられる。この場合、別の位相差層の厚みは、好ましくは0.5μm~10μmであり、より好ましくは0.5μm~8μmであり、さらに好ましくは0.5μm~5μmである。 Another retardation layer having a refractive index characteristic of nz>nx=ny can be made of any appropriate material. Another retardation layer preferably consists of a film containing a liquid crystal material fixed in homeotropic alignment. A liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the liquid crystal compound and the method for forming the retardation layer include the liquid crystal compound and the method for forming the retardation layer described in [0020] to [0028] of JP-A-2002-333642. In this case, the thickness of the separate retardation layer is preferably 0.5 μm to 10 μm, more preferably 0.5 μm to 8 μm, still more preferably 0.5 μm to 5 μm.
E.粘着剤層
 粘着剤層30を構成する粘着剤としては、任意の適切な粘着剤を用いることができる。粘着剤としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などが挙げられる。これら粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく使用される。このような特徴を示すものとしてアクリル系粘着剤が好ましく使用される。
E. Adhesive Layer As the adhesive constituting the adhesive layer 30, any appropriate adhesive can be used. Examples of adhesives include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, urethane-based adhesives, vinyl alkyl ether-based adhesives, polyvinyl alcohol-based adhesives, polyvinylpyrrolidone-based adhesives, polyacrylamide-based adhesives, A cellulose-based pressure-sensitive adhesive and the like are included. Among these pressure-sensitive adhesives, those having excellent optical transparency, appropriate wettability, cohesiveness, and adhesion properties, and excellent weather resistance and heat resistance are preferably used. Acrylic pressure-sensitive adhesives are preferably used as those exhibiting such characteristics.
F.位相差層付偏光板の用途
 本発明の実施形態の位相差層付偏光板は任意の適切な用途に用いることができる。1つの実施形態において、上記位相差層付偏光板は画像表示装置に好適に用いることができる。好ましくは、上記位相差層付偏光板は有機エレクトロルミネッセンス装置、無機エレクトロルミネッセンス装置に好適に用いることができる。
F. Applications of Retardation Layer-attached Polarizing Plate The retardation layer-attached polarizing plate of the embodiment of the present invention can be used for any appropriate application. In one embodiment, the retardation layer-attached polarizing plate can be suitably used for an image display device. Preferably, the retardation layer-attached polarizing plate can be suitably used for an organic electroluminescence device and an inorganic electroluminescence device.
G.画像表示装置
 上記A項からE項に記載の位相差層付偏光板は、画像表示装置に適用され得る。したがって、本発明の実施形態は、そのような位相差層付偏光板を用いた画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。本発明の実施形態による画像表示装置は、その視認側に上記A項からE項に記載の位相差層付偏光板を備える。位相差層付偏光板は、位相差層が画像表示セル(例えば、液晶セル、有機ELセル、無機ELセル)側となるように(偏光子が視認側となるように)積層されている。
G. Image Display Device The polarizing plate with a retardation layer according to the above items A to E can be applied to an image display device. Accordingly, embodiments of the present invention include image display devices using such retardation layer-attached polarizing plates. Typical examples of image display devices include liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices and inorganic EL display devices). An image display device according to an embodiment of the present invention includes the retardation layer-attached polarizing plate according to the above items A to E on the viewing side thereof. The retardation layer-attached polarizing plate is laminated so that the retardation layer is on the image display cell (for example, liquid crystal cell, organic EL cell, inorganic EL cell) side (so that the polarizer is on the viewing side).
H.評価方法
 本発明の1つの実施形態においては位相差層付偏光板の評価方法が提供される。本発明の実施形態による位相差層付偏光板の評価方法は、位相差層付偏光板の中心部に評価用正方形を規定すること、評価用正方形が規定された位相差層付偏光板を80℃に500時間置くこと、評価用正方形の位相差層の遅相軸方向の収縮寸法xと位相差層の進相軸方向の収縮寸法yを測定すること、および、収縮寸法xおよび収縮寸法yから収縮寸法比x/yを算出すること、を含む。本発明の実施形態による評価方法によれば、位相差層付偏光板の高温耐久性、すなわち高温環境下に置かれた場合の位相差変化の程度、を評価することができる。
H. Evaluation Method One embodiment of the present invention provides a method for evaluating a polarizing plate with a retardation layer. A method for evaluating a polarizing plate with a retardation layer according to an embodiment of the present invention includes: defining a square for evaluation in the center of the polarizing plate with a retardation layer; ° C. for 500 hours, measuring the shrinkage dimension x in the slow axis direction of the retardation layer for evaluation and the shrinkage dimension y in the fast axis direction of the retardation layer for evaluation, and shrinkage dimension x and shrinkage dimension y calculating the shrinkage dimension ratio x/y from According to the evaluation method according to the embodiment of the present invention, it is possible to evaluate the high-temperature durability of the retardation layer-attached polarizing plate, that is, the degree of change in retardation when placed in a high-temperature environment.
 位相差付偏光板は用途等に応じて任意の適切な形状に設計され得る。代表的には、位相差層付偏光板は矩形である。以下、矩形の位相差層付偏光板を例として、本発明の実施形態の評価方法について説明する。まず、評価対象の位相差層付偏光板の中心部に評価用正方形を規定する。中心部とは上記のとおりである。例えば、位相差層付偏光板の重心と評価用正方形の重心とが対応するよう正方形(例えば、一辺が1cmである正方形)を任意の適切な方法により規定する。規定方法としては任意の適切な方法を用いることができる。例えば、位相差層付偏光板に描画してもよく、マークを貼付してもよい。描画方法としては、例えば、カッター等の任意の適切な手段を用いて偏光板の最表面にキズをつけて描画する方法、および、油性ペン等の筆記具を用いて偏光板の最表面に描画する方法等が挙げられる。好ましくはカッター等の任意の適切な手段を用いて偏光板の最表面にキズをつけて描画する方法が用いられる。 The retardation polarizing plate can be designed into any appropriate shape depending on the application. Typically, the retardation layer-attached polarizing plate is rectangular. Hereinafter, the evaluation method of the embodiment of the present invention will be described by taking a rectangular polarizing plate with a retardation layer as an example. First, an evaluation square is defined at the center of the retardation layer-attached polarizing plate to be evaluated. The central part is as described above. For example, a square (for example, a square with a side of 1 cm) is defined by any appropriate method so that the center of gravity of the retardation layer-attached polarizing plate and the center of gravity of the evaluation square correspond to each other. Any appropriate method can be used as the defining method. For example, it may be drawn on the polarizing plate with a retardation layer, or a mark may be attached. The drawing method includes, for example, a method of scratching the outermost surface of the polarizing plate using any appropriate means such as a cutter, and drawing on the outermost surface of the polarizing plate using a writing instrument such as an oil-based pen. methods and the like. Preferably, a drawing method is used in which the outermost surface of the polarizing plate is scratched using any appropriate means such as a cutter.
 次いで、評価用正方形が規定された位相差層付偏光板を80℃の環境に500時間置く。加熱後、室温に戻した位相差層付偏光板において、評価用正方形の遅相軸方向と平行な辺の長さxおよび進相軸方向と平行な辺の長さyをそれぞれ測定する。次いで、評価用正方形の遅相軸方向の辺の長さの初期値xと加熱後の遅相軸方向に平行な辺の長さxから遅相軸方向の寸法収縮x(x/x)を算出する。同様に、評価用正方形の進相軸方向の辺の長さの初期値yと加熱後の遅相軸方向の辺の長さyから進相軸方向の寸法収縮y(y/y)を算出する。それぞれ算出された遅相軸方向の寸法収縮xと進相軸方向の寸法収縮yの値から収縮寸法比x/yを算出する。 Next, the polarizing plate with a retardation layer having the defined evaluation squares is placed in an environment of 80° C. for 500 hours. After heating, in the polarizing plate with a retardation layer returned to room temperature, the length x 2 of the side parallel to the slow axis direction and the length y 2 of the side parallel to the fast axis direction of the square for evaluation are measured. . Next, dimensional shrinkage in the slow axis direction x (x 2 / x 1 ) is calculated. Similarly , the dimensional contraction y ( y 1 ) is calculated. The shrinkage dimensional ratio x/y is calculated from the calculated dimensional shrinkage x in the slow axis direction and dimensional shrinkage y in the fast axis direction.
 算出された収縮寸法比x/yが1に近いほど位相差層付偏光板が高温耐久性に優れ、高温環境に置かれた場合であっても位相差変化が抑制されていることを示す。収縮寸法比x/yは好ましくは0.995~1.003であり、より好ましくは0.996~1.002であり、さらに好ましくは0.997~1.001である。 The closer the calculated shrinkage dimension ratio x/y is to 1, the better the polarizing plate with a retardation layer is in high temperature durability, indicating that the retardation change is suppressed even when placed in a high temperature environment. The shrinkage dimension ratio x/y is preferably 0.995 to 1.003, more preferably 0.996 to 1.002, still more preferably 0.997 to 1.001.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The measurement method of each characteristic is as follows. "Parts" and "%" in Examples and Comparative Examples are by weight unless otherwise specified.
(1)厚み
 10μm以下の厚みは、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(1) Thickness A thickness of 10 μm or less was measured using an interferometric film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name “MCPD-3000”). A thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Co., Ltd., product name “KC-351C”).
(2)収縮寸法比x/y
 実施例および比較例で得られた位相差層付偏光板に、カッターを用いて位相差層付偏光板の最表面にキズをつけることにより、位相差層付偏光板の重心と重心が対応する位置に1cm四方の正方形(評価用正方形)を描画した。次いで、位相差層付偏光板の粘着剤層を厚さ0.5mmのガラス板(80mm×150mm)に貼り合わせ積層した。その後、ガラス板に貼り合わせた位相差層付偏光板を80℃の条件下に500時間置いた。次いで、XY測長機(ミツトヨ社製、製品名:QUICK VISION QVA1517-PRO)を用いて、評価用正方形の位相差層の遅相軸方向と平行な辺の収縮寸法xおよび進相軸方向と平行な辺の収縮寸法yをそれぞれ測定した。次いで、遅相軸方向の収縮寸法x(x/1(cm))および進相軸方向の収縮寸法y(y/1(cm))をそれぞれ算出した。それぞれ算出された遅相軸方向の収縮寸法xと進相軸方向の収縮寸法yの値から収縮寸法比x/yを算出した。
(2) Shrinkage dimension ratio x/y
By using a cutter to scratch the outermost surface of the polarizing plate with a retardation layer obtained in Examples and Comparative Examples, the center of gravity of the polarizing plate with a retardation layer corresponds to the center of gravity. A 1 cm square (evaluation square) was drawn at the position. Then, the pressure-sensitive adhesive layer of the retardation layer-attached polarizing plate was laminated on a glass plate (80 mm×150 mm) having a thickness of 0.5 mm. After that, the polarizing plate with a retardation layer attached to the glass plate was placed under conditions of 80° C. for 500 hours. Then, using an XY length measuring machine (manufactured by Mitutoyo, product name: QUICK VISION QVA1517-PRO), the shrinkage dimension x 2 of the side parallel to the slow axis direction of the evaluation square retardation layer and the fast axis direction and the shrinkage dimension y 2 of the side parallel to was measured respectively. Next, the shrinkage dimension x (x 2 /1 (cm)) in the slow axis direction and the shrinkage dimension y (y 2 /1 (cm)) in the fast axis direction were calculated. The shrinkage dimension ratio x/y was calculated from the shrinkage dimension x in the slow axis direction and the shrinkage dimension y in the fast axis direction.
(3)ΔRe
 実施例および比較例で得られた位相差層付偏光板に、カッターを用いて位相差層付偏光板の最表面にキズをつけることにより、位相差層付偏光板の重心と重心が対応する位置に1cm四方の正方形(評価用正方形)を描画した。評価用正方形部分の面内位相差Reの初期面内位相差Reを位相差フィルム・光学材料検査装置(大塚電子社製、商品名「RETS」)を用いて測定した。次いで、位相差層付偏光板の粘着剤層を厚さ0.5mmのガラス板(80mm×150mm)に貼り合わせ積層した。その後、ガラス板に貼り合わせた位相差層付偏光板を80℃の条件下に500時間置いた。その後、同様にして、評価用正方形部分の加熱後の面内位相差Re500を測定した。初期面内位相差Reと加熱後の面内位相差Re500の値からΔRe(nm)を算出した。
(3) ΔRe
By using a cutter to scratch the outermost surface of the polarizing plate with a retardation layer obtained in Examples and Comparative Examples, the center of gravity of the polarizing plate with a retardation layer corresponds to the center of gravity. A 1 cm square (evaluation square) was drawn at the position. The initial in-plane retardation Re 0 of the in-plane retardation Re of the evaluation square portion was measured using a retardation film/optical material inspection device (manufactured by Otsuka Electronics Co., Ltd., trade name “RETS”). Then, the pressure-sensitive adhesive layer of the retardation layer-attached polarizing plate was laminated on a glass plate (80 mm×150 mm) having a thickness of 0.5 mm. After that, the polarizing plate with a retardation layer attached to the glass plate was placed under conditions of 80° C. for 500 hours. Thereafter, the in-plane retardation Re 500 after heating of the square portion for evaluation was similarly measured. ΔRe (nm) was calculated from the initial in-plane retardation Re 0 and the in-plane retardation Re 500 after heating.
(4)Δa
 実施例および比較例で得られた位相差層付偏光板に、カッターを用いて位相差層付偏光板の最表面にキズをつけることにより、位相差層付偏光板の重心と重心が対応する位置に1cm四方の正方形(評価用正方形)を描画した。評価用正方形部分について、積分球付き紫外可視分光光度計(日本分光社製、製品名:V-7100)を用いてa値およびb値を測定した。これをa値およびb値とした。次いで、位相差層付偏光板の粘着剤層を厚さ0.5mmのガラス板(80mm×150mm)に貼り合わせ積層した。その後、ガラス板に貼り合わせた位相差層付偏光板を80℃の条件下に500時間置いた。80℃の条件で500時間置いたした後のa500値およびb500値を同様に求めた。これらの値から下記式を用いて色相変化量Δabを求めた。
    Δa={(a500-a+(b500-b1/2
(4) Δa * b *
By using a cutter to scratch the outermost surface of the polarizing plate with a retardation layer obtained in Examples and Comparative Examples, the center of gravity of the polarizing plate with a retardation layer corresponds to the center of gravity. A 1 cm square (evaluation square) was drawn at the position. For the evaluation square portion, the a value and b value were measured using a UV-visible spectrophotometer with an integrating sphere (manufactured by JASCO Corporation, product name: V-7100). This was taken as the a0 and b0 values. Then, the pressure-sensitive adhesive layer of the retardation layer-attached polarizing plate was laminated on a glass plate (80 mm×150 mm) having a thickness of 0.5 mm. After that, the polarizing plate with a retardation layer attached to the glass plate was placed under conditions of 80° C. for 500 hours. The a 500 value and b 500 value after being placed at 80° C. for 500 hours were similarly determined. From these values, the hue change amount Δab was obtained using the following formula.
Δa * b * ={(a 500 −a 0 ) 2 +(b 500 −b 0 ) 2 } 1/2
[製造例1:位相差層付偏光板の作製]
1.偏光子の作製
 厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子を作製した。
 具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光子の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。さらに、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は3.7重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は3.1重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて偏光子を得た。
[Production Example 1: Production of polarizing plate with retardation layer]
1. Preparation of polarizer A long roll of polyvinyl alcohol (PVA) resin film (manufactured by Kuraray, product name “PE3000”) with a thickness of 30 μm was uniaxially stretched in the longitudinal direction by a roll stretching machine so that it was 5.9 times longer in the longitudinal direction. A polarizer having a thickness of 12 μm was produced by simultaneously performing swelling, dyeing, cross-linking, and washing treatments while stretching, and finally performing a drying treatment.
Specifically, in the swelling treatment, the film was stretched 2.2 times while being treated with pure water at 20°C. Next, the dyeing treatment is performed in an aqueous solution at 30° C. in which the weight ratio of iodine and potassium iodide is 1:7 and the iodine concentration is adjusted so that the single transmittance of the resulting polarizer is 45.0%. while stretching to 1.4 times. Furthermore, a two-step cross-linking treatment was adopted for the cross-linking treatment, and in the first-step cross-linking treatment, the film was stretched 1.2 times while being treated in an aqueous solution of boric acid and potassium iodide at 40°C. The boric acid content of the aqueous solution for the first-stage cross-linking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. In the second-stage cross-linking treatment, the film was stretched 1.6 times while being treated in an aqueous solution of boric acid and potassium iodide at 65°C. The boric acid content of the aqueous solution for the second-stage cross-linking treatment was 3.7% by weight, and the potassium iodide content was 5.0% by weight. Further, the cleaning treatment was performed with an aqueous solution of potassium iodide at 20°C. The potassium iodide content of the aqueous solution for the cleaning treatment was 3.1% by weight. Finally, the drying treatment was performed at 70° C. for 5 minutes to obtain a polarizer.
2.偏光板の作製
 上記で得られた偏光子の表面(樹脂基材とは反対側の面)に、保護層としてHC-COPフィルムを、紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線を保護層側から照射して接着剤を硬化させた。なお、HC-COPフィルムは、シクロオレフィン(COP)フィルム(日本ゼオン社製、製品名「ZF12」、厚み25μm)にハードコート(HC)層(厚み2μm)が形成されたフィルムであり、COPフィルムが偏光子側となるようにして貼り合わせた。次いで、樹脂基材を剥離し、保護層(HC層/COPフィルム)/接着剤層/偏光子の構成を有する偏光板を得た。
2. Preparation of Polarizing Plate An HC-COP film as a protective layer was attached to the surface of the polarizer obtained above (the surface opposite to the resin substrate) via an ultraviolet curable adhesive. Specifically, the curable adhesive was applied so as to have a total thickness of 1.0 μm, and was bonded using a roll machine. After that, UV rays were applied from the protective layer side to cure the adhesive. The HC-COP film is a film in which a hard coat (HC) layer (thickness 2 μm) is formed on a cycloolefin (COP) film (manufactured by Zeon Corporation, product name “ZF12”, thickness 25 μm), and the COP film was placed on the polarizer side. Then, the resin substrate was peeled off to obtain a polarizing plate having a structure of protective layer (HC layer/COP film)/adhesive layer/polarizer.
3.第1の位相差層の作製
 式(I)で示される化合物55重量部と、式(II)で示される化合物25重量部と、式(III)で示される化合物20重量部とを、シクロペンタノン(CPN)400重量部に加えた後、60℃に加温、撹拌して溶解させた。その後、上記した化合物の溶液を室温に戻し、上記した化合物の溶液に、イルガキュア907(BASFジャパン社製)3重量部と、メガファックF-554(DIC社製)0.2重量部と、p-メトキシフェノール(MEHQ)0.1重量部とを加えて、さらに撹拌した。撹拌後の溶液は、透明で均一であった。得られた溶液を0.20μmのメンブランフィルターでろ過し、重合性組成物を得た。
 また、配向膜用ポリイミド溶液を厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜を、市販のラビング装置によってラビング処理し、配向膜を形成した。
 次いで、基材(実質的には、配向膜)に、上記で得られた重合性組成物をスピンコート法で塗布し、100℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して、液晶化合物の配向固化層である第1の位相差層を得た。第1の位相差層の面内位相差Re(550)は130nmであった。また、第1の位相差層のRe(450)/Re(550)は0.851であり、逆分散波長特性を示した。第1の位相差層は、λ/4板として機能し得る。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
3. Preparation of First Retardation Layer 55 parts by weight of the compound represented by formula (I), 25 parts by weight of the compound represented by formula (II), and 20 parts by weight of the compound represented by formula (III) are After adding to non (CPN) 400 parts by weight, it was dissolved by heating to 60° C. and stirring. After that, the solution of the above compound is returned to room temperature, and the solution of the above compound is added with 3 parts by weight of Irgacure 907 (manufactured by BASF Japan), 0.2 parts by weight of Megafac F-554 (manufactured by DIC), and p -0.1 parts by weight of methoxyphenol (MEHQ) was added and further stirred. The solution after stirring was transparent and uniform. The resulting solution was filtered through a 0.20 μm membrane filter to obtain a polymerizable composition.
Further, the polyimide solution for alignment film was applied to a glass substrate having a thickness of 0.7 mm by spin coating, dried at 100° C. for 10 minutes, and then baked at 200° C. for 60 minutes to obtain a coating film. . The resulting coating film was rubbed with a commercially available rubbing device to form an alignment film.
Then, the polymerizable composition obtained above was applied to the substrate (substantially, the alignment film) by spin coating, and dried at 100° C. for 2 minutes. After cooling the resulting coating film to room temperature, using a high-pressure mercury lamp, ultraviolet light is irradiated for 30 seconds at an intensity of 30 mW/cm 2 to obtain a first retardation layer that is an aligned solid layer of a liquid crystal compound. rice field. The in-plane retardation Re(550) of the first retardation layer was 130 nm. In addition, the Re(450)/Re(550) of the first retardation layer was 0.851, indicating reverse dispersion wavelength characteristics. The first retardation layer can function as a λ/4 plate.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
4.第2の位相差層の作製
 下記化学式(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、垂直配向処理を施したPET基材に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、nz>nx=nyの屈折率特性を示す第2の位相差層(厚み3μm)を基材上に形成した。
Figure JPOXMLDOC01-appb-C000005
4. Preparation of the second retardation layer Side chain type liquid crystal represented by the following chemical formula (numbers 65 and 35 in the formula indicate mol% of the monomer unit and are conveniently represented by block polymer: weight average molecular weight 5000) Polymer 20 parts by weight, polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name Paliocolor LC242) 80 parts by weight and photopolymerization initiator (manufactured by Ciba Specialty Chemicals: trade name Irgacure 907) 5 parts by weight of cyclopentanone A liquid crystal coating liquid was prepared by dissolving in 200 parts by weight. Then, the coating solution was applied to the vertically aligned PET substrate using a bar coater, and dried by heating at 80° C. for 4 minutes to align the liquid crystal. By irradiating the liquid crystal layer with ultraviolet rays and curing the liquid crystal layer, a second retardation layer (thickness: 3 μm) exhibiting refractive index characteristics of nz>nx=ny was formed on the substrate.
Figure JPOXMLDOC01-appb-C000005
 次いで、第1の位相差層表面と第2の位相差層表面にUV接着剤を塗工し、貼り合わせた後UV光を照射し、硬化、接着させた。その後、第1位相差層の基材を剥離し、プラズマ処理後、下塗り剤を塗工、乾燥し、その後、アクリル系粘着剤(厚み5μm)を塗工、乾燥した。次いで、これら積層品のアクリル系粘着剤面と、保護層(HC層/COPフィルム)/接着剤層/偏光子/接着剤層/保護層(TAC)のTAC面とを貼り合わせ、その後、第2の位相差層表面の基材を剥離し、粘着剤層(厚み26μm)を設け、保護層(HC層/COPフィルム)/接着剤層/偏光子/接着剤層/保護層(TAC)/粘着剤層//第1の位相差層/接着剤層/第2位相差層)/粘着剤層の構成を有する位相差層付偏光板を得た。得られた位相差層付偏光板の総厚みは100μmであった。 Next, a UV adhesive was applied to the surface of the first retardation layer and the surface of the second retardation layer, and after they were bonded together, they were irradiated with UV light to cure and adhere. After that, the substrate of the first retardation layer was peeled off, and after plasma treatment, an undercoat was applied and dried, and then an acrylic pressure-sensitive adhesive (thickness: 5 μm) was applied and dried. Next, the acrylic pressure-sensitive adhesive surface of these laminates and the TAC surface of the protective layer (HC layer/COP film)/adhesive layer/polarizer/adhesive layer/protective layer (TAC) are laminated together. The substrate on the surface of the retardation layer of 2 is peeled off, an adhesive layer (thickness 26 μm) is provided, and a protective layer (HC layer/COP film)/adhesive layer/polarizer/adhesive layer/protective layer (TAC)/ A polarizing plate with a retardation layer having a structure of adhesive layer//first retardation layer/adhesive layer/second retardation layer)/adhesive layer was obtained. The total thickness of the obtained polarizing plate with a retardation layer was 100 μm.
[実施例1-1]
 製造例1で得られた位相差層付偏光板を縦6.5cm、横13cm(アスペクト比:2)となるようフィルム切断機を用いて切断し、(2)~(4)の評価に供した。結果を表1に示す。
[Example 1-1]
The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 6.5 cm and a width of 13 cm (aspect ratio: 2), and subjected to the evaluation of (2) to (4). bottom. Table 1 shows the results.
[実施例1-2]
 製造例1で得られた位相差層付偏光板を縦7.8cm、横11cm(アスペクト比:1.4)となるようフィルム切断機を用いて切断し、(2)~(4)の評価に供した。結果を表1に示す。
[Example 1-2]
The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 7.8 cm and a width of 11 cm (aspect ratio: 1.4), and the evaluation of (2) to (4). served to Table 1 shows the results.
[実施例1-3]
 製造例1で得られた位相差層付偏光板を縦9.3cm、横9.3cm(アスペクト比:1)となるようフィルム切断機を用いて切断し、(2)~(4)の評価に供した。結果を表1に示す。
[Example 1-3]
The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 9.3 cm and a width of 9.3 cm (aspect ratio: 1), and the evaluation of (2) to (4). served to Table 1 shows the results.
[実施例1-4]
 製造例1で得られた位相差層付偏光板を縦12cm、横8cm(アスペクト比:0.67)となるようフィルム切断機を用いて切断し、(2)~(4)の評価に供した。結果を表1に示す。
[Example 1-4]
The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 12 cm and a width of 8 cm (aspect ratio: 0.67), and subjected to the evaluation of (2) to (4). bottom. Table 1 shows the results.
[実施例1-5]
 製造例1で得られた位相差層付偏光板を縦13cm、横6.5cm(アスペクト比:0.5)となるようフィルム切断機を用いて切断し、(2)~(4)の評価に供した。結果を表1に示す。
[Example 1-5]
The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 13 cm and a width of 6.5 cm (aspect ratio: 0.5), and the evaluation of (2) to (4). served to Table 1 shows the results.
[実施例1-6]
 製造例1で得られた位相差層付偏光板を縦16cm、横6cm(アスペクト比:0.38)となるようフィルム切断機を用いて切断し、(2)~(4)の評価に供した。結果を表1に示す。
[Example 1-6]
The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 16 cm and a width of 6 cm (aspect ratio: 0.38), and subjected to the evaluation of (2) to (4). bottom. Table 1 shows the results.
[実施例1-7]
 製造例1で得られた位相差層付偏光板を縦24cm、横4cm(アスペクト比:0.17)となるようフィルム切断機を用いて切断し、(2)~(4)の評価に供した。結果を表1に示す。
[Example 1-7]
The retardation layer-attached polarizing plate obtained in Production Example 1 was cut using a film cutting machine so as to have a length of 24 cm and a width of 4 cm (aspect ratio: 0.17), and subjected to the evaluation of (2) to (4). bottom. Table 1 shows the results.
[実施例2]
 偏光子の作製工程において、架橋処理工程で用いるホウ酸水溶液の濃度を変更して、ホウ酸含有量17重量%の偏光子を得たこと以外は実施例1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を縦6.5cm、横13cm(アスペクト比:2)となるようフィルム切断機を用いて切断した。切断した位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
[Example 2]
Polarized light with a retardation layer in the same manner as in Example 1 except that in the polarizer production process, the concentration of the boric acid aqueous solution used in the cross-linking treatment process was changed to obtain a polarizer with a boric acid content of 17% by weight. A plate was made. The obtained polarizing plate with a retardation layer was cut using a film cutting machine so as to have a length of 6.5 cm and a width of 13 cm (aspect ratio: 2). The cut polarizing plate with a retardation layer was evaluated in the same manner as in Example 1. Table 1 shows the results.
(比較例1)
 実施例1と同様にして、位相差層付偏光板を作製した。得られた位相差層付偏光板を縦4cm、横24cm(アスペクト比:6)となるよう切断した以外は実施例1と同様にして位相差層付偏光板を作製し、実施例1と同様の評価に供した。結果を表1に示す。
(Comparative example 1)
A polarizing plate with a retardation layer was produced in the same manner as in Example 1. A polarizing plate with a retardation layer was prepared in the same manner as in Example 1 except that the obtained polarizing plate with a retardation layer was cut to have a length of 4 cm and a width of 24 cm (aspect ratio: 6). was used for evaluation. Table 1 shows the results.
(比較例2)
 偏光子の作製工程において、架橋処理工程で用いるホウ酸水溶液の濃度を変更して、ホウ酸含有量22重量%の偏光子を得たこと以外は実施例1-1と同様にして位相差層付偏光板を作製した。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表1に示す。
(Comparative example 2)
A retardation layer was prepared in the same manner as in Example 1-1 except that in the polarizer production process, the concentration of the boric acid aqueous solution used in the cross-linking treatment process was changed to obtain a polarizer having a boric acid content of 22% by weight. A polarizing plate was prepared. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[評価]
 表1から明らかなように、本発明の実施例の位相差層付偏光板は高温耐久性に優れるものであった。実施例および比較例で得られた位相差層付偏光板の収縮寸法比x/yとΔReの分布を図3に示す。図3のグラフからも分かるとおり、収縮寸法比x/yとΔReには相関関係がみられた。収縮寸法比x/yを測定することにより、位相差層付偏光板の位相差変化の程度について評価することができた。
[evaluation]
As is clear from Table 1, the retardation layer-attached polarizing plates of the examples of the present invention were excellent in high-temperature durability. FIG. 3 shows the distribution of the shrinkage dimension ratio x/y and ΔRe of the retardation layer-attached polarizing plates obtained in Examples and Comparative Examples. As can be seen from the graph in FIG. 3, there was a correlation between the shrinkage dimension ratio x/y and ΔRe. By measuring the shrinkage dimension ratio x/y, it was possible to evaluate the degree of change in the retardation of the retardation layer-attached polarizing plate.
 本発明の位相差層付偏光板は、液晶表示装置、有機EL表示装置および無機EL表示装置に好適に用いられる。 The polarizing plate with a retardation layer of the present invention is suitably used for liquid crystal display devices, organic EL display devices and inorganic EL display devices.
 10   偏光板
 11   偏光子
 12   保護層
 20   位相差層
 30   粘着剤層
100   位相差層付偏光板
REFERENCE SIGNS LIST 10 polarizing plate 11 polarizer 12 protective layer 20 retardation layer 30 adhesive layer 100 polarizing plate with retardation layer

Claims (9)

  1.  偏光子を含む偏光板と、位相差層と、を有し、
     該偏光子の吸収軸と位相差層の遅相軸とがなす角度が40°~50°である、位相差層付偏光板であって、
     該位相差層付偏光板の中心部に規定された評価用正方形の、80℃で500時間加熱条件下に置いた後の位相差層の遅相軸方向の収縮寸法xと位相差層の進相軸方向の収縮寸法yとの比x/yが0.994~1.004である、位相差層付偏光板。
    A polarizing plate including a polarizer and a retardation layer,
    A polarizing plate with a retardation layer, wherein the angle formed by the absorption axis of the polarizer and the slow axis of the retardation layer is 40° to 50°,
    The shrinkage dimension x in the slow axis direction of the retardation layer after placing the square for evaluation defined in the center of the polarizing plate with the retardation layer under heating conditions at 80 ° C. for 500 hours and the progress of the retardation layer A polarizing plate with a retardation layer, wherein the ratio x/y to the shrinkage dimension y in the phase axis direction is 0.994 to 1.004.
  2.  アスペクト比が0.15~3.0である、請求項1に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 1, which has an aspect ratio of 0.15 to 3.0.
  3.  前記位相差層が液晶化合物の配向固化層である、請求項1または2に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 1 or 2, wherein the retardation layer is an alignment fixed layer of a liquid crystal compound.
  4.  前記位相差層の面内位相差が、100nm<Re(550)<160nmであり、かつ、
    Re(450)/Re(550)<1、および、Re(650)/Re(550)>1を満たす、請求項1から3のいずれかに記載の位相差層付偏光板。
    The in-plane retardation of the retardation layer is 100 nm<Re(550)<160 nm, and
    4. The retardation layer-attached polarizing plate according to claim 1, which satisfies Re(450)/Re(550)<1 and Re(650)/Re(550)>1.
  5.  前記偏光子の厚みが7μm以上である、請求項1から4のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 4, wherein the polarizer has a thickness of 7 µm or more.
  6.  前記偏光子のホウ酸含有量が20重量%以下である、請求項1から5のいずれかに記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to any one of claims 1 to 5, wherein the polarizer has a boric acid content of 20% by weight or less.
  7.  請求項1から6のいずれかに記載の位相差層付偏光板を備える、画像表示装置。 An image display device comprising the retardation layer-attached polarizing plate according to any one of claims 1 to 6.
  8.  有機エレクトロルミネセンス表示装置または無機エレクトロルミネセンス表示装置である、請求項7に記載の画像表示装置。 The image display device according to claim 7, which is an organic electroluminescence display device or an inorganic electroluminescence display device.
  9.  偏光子を含む偏光板と、位相差層と、を含む位相差層付偏光板の評価方法であって、
     該位相差層付偏光板の中心部に評価用正方形を規定すること、
     該評価用正方形が規定された位相差層付偏光板を80℃に500時間置くこと、
     該評価用正方形の位相差層の遅相軸方向の収縮寸法xと位相差層の進相軸方向の収縮寸法yを測定すること、および、
     該収縮寸法xおよび収縮寸法yから収縮寸法比x/yを算出すること、を含む、位相差層付偏光板の評価方法。
    A method for evaluating a polarizing plate with a retardation layer comprising a polarizing plate containing a polarizer and a retardation layer,
    Prescribing an evaluation square in the center of the retardation layer-attached polarizing plate;
    placing the polarizing plate with a retardation layer in which the evaluation squares are defined at 80° C. for 500 hours;
    measuring the shrinkage dimension x in the slow axis direction of the square retardation layer for evaluation and the shrinkage dimension y in the fast axis direction of the retardation layer;
    A method for evaluating a polarizing plate with a retardation layer, comprising calculating a shrinkage dimension ratio x/y from the shrinkage dimension x and the shrinkage dimension y.
PCT/JP2022/025957 2021-09-27 2022-06-29 Polarizing plate with phase difference layer, image display device using same, and method for evaluating polarizing plate with phase difference layer WO2023047748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156434 2021-09-27
JP2021156434A JP2023047491A (en) 2021-09-27 2021-09-27 Polarizing plate with retardation layer, image display device using the same, and method for evaluating polarizing plate with retardation layer

Publications (1)

Publication Number Publication Date
WO2023047748A1 true WO2023047748A1 (en) 2023-03-30

Family

ID=85720479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025957 WO2023047748A1 (en) 2021-09-27 2022-06-29 Polarizing plate with phase difference layer, image display device using same, and method for evaluating polarizing plate with phase difference layer

Country Status (3)

Country Link
JP (1) JP2023047491A (en)
TW (1) TW202313323A (en)
WO (1) WO2023047748A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112232A (en) * 2008-11-25 2014-06-19 Nitto Denko Corp Manufacturing method of glass pane with polarizing plate, glass pane with polarizing plate, and liquid crystal cell with polarizing plate
JP2020024422A (en) * 2018-07-31 2020-02-13 住友化学株式会社 Circularly polarizing plate and display device
WO2021186946A1 (en) * 2020-03-18 2021-09-23 日東電工株式会社 Polarizing plate with retardation layer and adhesive layer, and image display device using polarizing plate with retardation layer and adhesive layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112232A (en) * 2008-11-25 2014-06-19 Nitto Denko Corp Manufacturing method of glass pane with polarizing plate, glass pane with polarizing plate, and liquid crystal cell with polarizing plate
JP2020024422A (en) * 2018-07-31 2020-02-13 住友化学株式会社 Circularly polarizing plate and display device
WO2021186946A1 (en) * 2020-03-18 2021-09-23 日東電工株式会社 Polarizing plate with retardation layer and adhesive layer, and image display device using polarizing plate with retardation layer and adhesive layer

Also Published As

Publication number Publication date
TW202313323A (en) 2023-04-01
JP2023047491A (en) 2023-04-06

Similar Documents

Publication Publication Date Title
CN110192130B (en) Polarizing plate with optical compensation layer and organic EL panel using the same
JP6243869B2 (en) Optical film, polarizing plate, and method for producing optical film
JP4737629B2 (en) Elliptical polarizing plate and image display device using the same
JP2006178389A (en) Method of producing elliptically polarizing plate and image display using the elliptically polarizing plate
JPWO2019167926A1 (en) Laminate, organic electroluminescent device, liquid crystal display device
KR102060795B1 (en) Anti-reflection layer and anti-mirroring layer-attached polarizing plate and manufacturing method thereof
CN111727206B (en) Polymerizable liquid crystal composition, optically anisotropic film, optical film, polarizing plate, and image display device
WO2023047748A1 (en) Polarizing plate with phase difference layer, image display device using same, and method for evaluating polarizing plate with phase difference layer
JP7385380B2 (en) Manufacturing method of polarizing plate with retardation layer and hard coat layer
JP2023075748A (en) Polarizing plate with retardation layer, and image display device using the same
JP2023075790A (en) Polarizing plate with retardation layer, and image display device using the same
WO2023084837A1 (en) Retardation layer-equipped polarizing plate and image display device including retardation layer-equipped polarizing plate
WO2023084838A1 (en) Polarizing plate having retardation layer and image display device including said polarizing plate having retardation layer
WO2022045188A1 (en) Optical film, circularly polarizing plate, and organic electroluminescence display device
WO2022185802A1 (en) Circular polarizing plate and image display device using same
WO2023074041A1 (en) Polarizing plate and organic electroluminescence display device
WO2023074042A1 (en) Polarizing plate and organic electroluminescent display device
WO2022201907A1 (en) Polarizing plate with retardation layer and production method therefor, and image display device using said polarizing plate with retardation layer
WO2022045187A1 (en) Optical film, circularly polarizing plate, and organic electroluminescent display device
WO2022044500A1 (en) Polarizing plate, retardation-layer-equipped polarizing plate, and image display device
WO2020166505A1 (en) Polarizing plate, manufacturing method thereof, and image display device using said polarizing plate
KR20220135162A (en) Polarizing plate and method for manufacturing polarizing plate
KR20240028118A (en) Polarizing plate and optical display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872505

Country of ref document: EP

Kind code of ref document: A1