WO2023047582A1 - Transmission method and transmission device - Google Patents

Transmission method and transmission device Download PDF

Info

Publication number
WO2023047582A1
WO2023047582A1 PCT/JP2021/035385 JP2021035385W WO2023047582A1 WO 2023047582 A1 WO2023047582 A1 WO 2023047582A1 JP 2021035385 W JP2021035385 W JP 2021035385W WO 2023047582 A1 WO2023047582 A1 WO 2023047582A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna elements
transmission
amplitude
phase
control unit
Prior art date
Application number
PCT/JP2021/035385
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 山田
斗煥 李
淳 増野
裕文 笹木
康徳 八木
知哉 景山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/035385 priority Critical patent/WO2023047582A1/en
Priority to JP2023549297A priority patent/JPWO2023047582A1/ja
Publication of WO2023047582A1 publication Critical patent/WO2023047582A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a transmission method and a transmission device in wireless communication.
  • Electromagnetic waves with OAM have a spiral distribution of equiphase planes along the direction of propagation centered on the propagation axis.
  • OAM multiplex transmission different OAM modes can be present, and electromagnetic waves propagating in the same direction have orthogonal spatial phase distributions in the rotation axis direction. Therefore, in the OAM multiplex transmission, it is possible to multiplex and transmit the signals by separating the signals of each OAM mode modulated by different signal sequences in the receiving device.
  • a uniform circular array antenna (hereinafter referred to as UCA (Uniform Circular Array)) in which a plurality of antenna elements are arranged in a circle at regular intervals is used, and multiple OAM modes are used.
  • Spatial multiplex transmission of different signal sequences can be realized by generating, synthesizing, and transmitting (see, for example, Non-Patent Document 2).
  • a Butler circuit (Butler matrix circuit), for example, is used to generate a plurality of OAM mode signals.
  • using a Butler circuit is an example.
  • multiple UCAs with different diameters arranged concentrically can multiplex and transmit signals of the same OAM mode.
  • the receiving device can separate signals multiplexed within the same OAM mode by MIMO (Multi Input Multi Output) technology.
  • MIMO Multi Input Multi Output
  • a transmission device using UCA can realize large-capacity wireless communication by performing multiplex transmission in a plurality of OAM modes. Also, it is desired to apply the OAM multiplex transmission technology to mobile communications. In order to use the OAM multiplex transmission technology for mobile communication, it is necessary to have multi-directional support and movement followability to transmit signals in multiple directions.
  • the present invention has been made in view of the above-described problems, and even if a circular array antenna in which a plurality of antenna elements are arranged in a circle is misaligned between the transmission axis and the reception axis, the orbital angle It is an object of the present invention to provide a transmission method and a transmission device that enable momentum multiplex transmission.
  • a transmission method is a transmission method that performs orbital angular momentum multiplexing transmission using a circular array antenna in which a plurality of antenna elements are arranged in a circle, wherein a radio wave transmission direction of each of the antenna elements is changed.
  • a transmission device is a transmission device that performs orbital angular momentum multiplexing transmission using a circular array antenna in which a plurality of antenna elements are arranged in a circle, wherein the radio wave transmission direction of each of the antenna elements is changed.
  • a rotation control unit for controlling rotation of each of the antenna elements, and the amplitude and phase of radio waves radiated by each of the antenna elements controlled to rotate by the rotation control unit are transmitted from each of the antenna elements. and an amplitude/phase control section for controlling the directions to be aligned.
  • orbital angular momentum multiplexing transmission can be made possible even when there is a misalignment between the transmission axis and the reception axis of a circular array antenna in which a plurality of antenna elements are arranged in a circle. .
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to an embodiment
  • FIG. FIG. 3 is a diagram showing an arrangement example of a plurality of antenna elements included in a transmitting device and a receiving device
  • (a) is a diagram showing signal generation in OAM mode 0.
  • FIG. (b) is a diagram illustrating signal generation in OAM mode 1
  • (c) is a diagram showing signal generation in OAM mode 2.
  • FIG. (d) is a diagram illustrating signal generation in OAM mode 3;
  • (a) is a diagram illustrating a phase distribution of OAM mode 1;
  • (b) is a diagram illustrating a phase distribution of OAM mode 2;
  • (c) is a diagram illustrating signal intensity distributions in the propagation directions of OAM modes 1 and 2.
  • FIG. 4 illustrates multiple UCAs in which four UCAs of different diameters are concentrically arranged;
  • FIG. 4 is a diagram showing a state in which the transmission axis of the transmission device and the reception axis of the reception device are misaligned;
  • (a) is a diagram schematically showing a state in which a UCA included in a transmitting device is viewed from the front (transmitting direction A).
  • FIG. 7(b) is a diagram schematically showing an overview of the operation of the UCA included in the transmitting device. It is a figure which shows the 1st structural example of a transmitter.
  • FIG. 10 is a diagram illustrating a second configuration example of a transmission device;
  • FIG. 11 is a diagram illustrating a third configuration example of a transmission device;
  • FIG. 4 illustrates an OAM mode generator with a Butler circuit;
  • 4 is a flowchart showing an operation example of a transmission device;
  • FIG. 4 is a diagram illustrating radiation directions of radio waves;
  • FIG. 1 is a diagram showing a configuration example of a wireless communication system 1 according to one embodiment.
  • a wireless communication system 1 includes, for example, a transmitting device (transmitting station) 2, a receiving device (receiving station) 3, and a control device (control station) 4.
  • the transmitting device 2 and the receiving device 3 are OAM-MIMO using UCA. (Multi Input Multi Output) communication.
  • the transmitting device 2 and the receiving device 3 perform orbital angular momentum multiplex transmission using a circular array antenna in which a plurality of antenna elements are arranged in a circle.
  • the transmitting device 2 and the receiving device 3 may be wireless communication devices having the same configuration, for example, so as to have a transmitting function and a receiving function, respectively.
  • the control device 4 transmits a control signal to each of the transmission device 2 and the reception device 3 .
  • the wireless communication system 1 may be configured without the control device 4 .
  • FIG. 2 is a diagram showing an arrangement example of a plurality of antenna elements that the transmitting device 2 and the receiving device 3 have.
  • the transmitting device 2 and the receiving device 3 have a circular array antenna (for example, UCA) in which a plurality of antenna elements 200 are arranged in a circle, and perform OAM multiplex communication.
  • UCA circular array antenna
  • a plurality of antenna elements 200 may be arranged in one circle, or a plurality of antenna elements 200 may be arranged in a plurality of concentric circles with different diameters.
  • FIG. 3 is a diagram showing an example of UCA phase setting for generating an OAM mode signal.
  • FIG. 3(a) is a diagram showing signal generation in OAM mode 0.
  • FIG. 3(b) is a diagram showing signal generation in OAM mode 1.
  • FIG. 3(c) is a diagram showing signal generation in OAM mode 2.
  • FIG. 3(d) is a diagram illustrating signal generation in OAM mode 3.
  • the UCA is shown with eight antenna elements 200 . Note that the appended numbers indicate the phase difference with respect to the reference phase (0°) signal.
  • a signal in which the direction of phase rotation is opposite to that of the signal in OAM mode n is called OAM mode-n.
  • OAM mode-n A signal in which the direction of phase rotation is opposite to that of the signal in OAM mode n.
  • the direction of phase rotation of the signal in the positive OAM mode is assumed to be counterclockwise
  • the direction of phase rotation of the signal in the negative OAM mode is assumed to be clockwise.
  • OAM multiplex communication different signal sequences are generated as signals of different OAM modes, and by simultaneously transmitting the generated signals, spatial multiplexing wireless communication can be performed.
  • the phase of each antenna element of the UCA of the receiving device 3 should be set to be opposite to the phase of the antenna element of the transmitting device 2 .
  • FIG. 4 is a diagram illustrating the phase distribution and signal strength distribution of OAM multiplexed signals.
  • FIG. 4A is a diagram illustrating the phase distribution of OAM mode 1.
  • FIG. 4B is a diagram illustrating the phase distribution of OAM mode 2.
  • FIG. 4(c) is a diagram illustrating the signal intensity distribution in the propagation direction of OAM modes 1 and 2.
  • FIG. 4A is a diagram illustrating the phase distribution and signal strength distribution of OAM multiplexed signals.
  • FIG. 4A is a diagram illustrating the phase distribution of OAM mode 1.
  • FIG. 4B is a diagram illustrating the phase distribution of OAM mode 2.
  • FIG. 4(c) is a diagram illustrating the signal intensity distribution in the propagation direction of OAM modes 1 and 2.
  • the arrows indicate the phase distribution of the signal viewed from the transmission device 2 on the end face (propagation orthogonal plane) orthogonal to the propagation direction.
  • the arrow starts at 0 degrees.
  • the phase changes linearly.
  • the arrow ends at 360 degrees. That is, the signal of OAM mode n propagates while rotating the phase by n (n ⁇ 360 degrees) on the propagation orthogonal plane. Note that the arrows of the phase distribution of the signals of OAM modes -1 and -2 are reversed.
  • the signal intensity distribution and the position where the signal intensity is maximized differ for each OAM mode.
  • the same OAM modes with different signs have the same intensity distribution.
  • the higher the order of the OAM mode the farther the position where the signal intensity is maximized from the propagation axis (see Non-Patent Document 2).
  • the OAM mode with a larger value is called a higher-order mode.
  • an OAM Mode 3 signal is a higher order mode than an OAM Mode 0, OAM Mode 1, or OAM Mode 2 signal.
  • the position where the signal intensity is maximized for each OAM mode is indicated by a ring.
  • the higher the order of the OAM mode the farther the position where the signal intensity is maximized from the central axis, and the beam diameter of the OAM mode multiplexed signal spreads according to the propagation distance, indicating the position where the signal intensity is maximized for each OAM mode. the circle becomes larger.
  • FIG. 5 is a diagram illustrating a multiple UCA in which four UCAs with different diameters are concentrically arranged. As shown in FIG. 5, it is possible to multiplex and transmit signals of the same OAM mode by multiple UCAs in which a plurality of UCAs having different diameters are concentrically arranged.
  • the receiving device 3 can separate signals multiplexed within the same OAM mode by MIMO technology.
  • the UCA needs to support multi-directional communication and also needs to be able to follow movement.
  • the reception antenna of the reception device 3 does not form an electromagnetic field distribution representing OAM.
  • the transmission device 2 rotates each antenna element so as to change the radio wave transmission direction of each antenna element, and the amplitude and phase of the radio wave radiated by each antenna element are adjusted to the radio wave transmission direction of each antenna element. Control so that the direction is aligned.
  • the transmission device 2 may perform transmission in one OAM mode.
  • OAM transmission includes OAM multiplex transmission.
  • FIG. 7 is a diagram schematically showing an overview of the UCA included in the transmitting device 2.
  • FIG. 7(a) is a diagram schematically showing a state in which the UCA included in the transmission device 2 is viewed from the front (transmission direction A).
  • FIG. 7(b) is a diagram schematically showing an overview of the operation of the UCA included in the transmission device 2. As shown in FIG.
  • the propagation time difference between the antenna elements 200 is the phase difference, which is expressed by the following formula (1).
  • the UCA included in the transmitting device 2 is configured such that each of the plurality of antenna elements 200 rotates in any direction.
  • the antenna element 200 may be configured to rotate in any three-dimensional direction (including the elevation angle) without being limited to one axis that rotates in the horizontal direction.
  • the UCA provided in the transmitting device 2 can rotate each of the antenna elements 200 toward the predetermined transmitting direction B as shown in FIG. 7(b). That is, the directivity (the direction in which the radiation intensity is maximized) of each antenna element 200 forming the UCA can be oriented in the direction of the transmission axis.
  • FIG. 8 is a diagram showing a first configuration example of the transmission device 2.
  • the first configuration example of the transmission device 2 includes, for example, a digital signal processing unit 21, an analog signal processing unit 22, an OAM mode generation unit 23, a switching control unit 24, a rotation control unit 25, an amplitude phase control unit 26 , UCA 27 and control unit 28 .
  • the digital signal processing unit 21 uses the input data to generate a digital signal to be superimposed on the carrier wave and transmitted, and outputs the generated digital signal to the analog signal processing unit 22 .
  • the digital signal processing unit 21 performs processing so as to superimpose the digital signal to be transmitted on the carrier before converting it into an analog signal and processing it.
  • the analog signal processing unit 22 performs processing such as converting a digital signal into an analog signal, and outputs the processing result to the OAM mode generation unit 23.
  • the OAM mode generator 23 uses the input analog signal to generate one or a plurality of OAM mode signals, and outputs the generated signals to the switching controller 24 .
  • the switching control unit 24 selects and switches the antenna elements 200 that radiate radio waves so that the radio waves radiated by each of the antenna elements 200 are radiated toward the receiving device 3 .
  • the rotation control unit 25 performs control to rotate each antenna element 200 so as to change the radio wave transmission direction of each antenna element 200 .
  • the amplitude and phase control unit 26 controls the amplitude and phase of radio waves emitted by the antenna elements 200 controlled to rotate by the rotation control unit 25 so that the radio wave transmission directions of the antenna elements 200 are aligned.
  • the control unit 28 controls each unit that configures the transmission device 2 .
  • the amplitude/phase control unit 26 controls the amplitude of a signal input to one or more antenna elements 200 (or UCA) switched (selected) by the switching control unit 24 based on an instruction from the control unit 28. • Control so that the phase is adjusted to a predetermined transmission direction.
  • the amplitude/phase control unit 26 controls the amplitude/phase from each antenna element 200 so that the OAM mode electromagnetic field distribution can be correctly formed on a plane perpendicular to the transmission direction.
  • the amplitude/phase control unit 26 receives feedback information indicating the channel state from the receiving device 3 so that the UCA 27 can form an appropriate electromagnetic field distribution for each OAM mode.
  • the amplitude/phase may be controlled to correct the difference.
  • the transmission device 2 performs unidirectional OAM multiplexing transmission, multidirectional OAM multiplexing transmission, unidirectional OAM-MIMO multiplexing transmission, multidirectional OAM-MIMO multiplexing transmission, and unidirectional OAM multiplexing transmission from the multiplexed UCA. Simultaneous transmission of OAM-MIMO multiplex transmission in the direction of .
  • FIG. 9 is a diagram showing a second configuration example of the transmission device 2.
  • the second configuration example of the transmission device 2 has a digital signal processing section 21, an analog signal processing section 22, a UCA 27, and a control section .
  • the same reference numerals are assigned to substantially the same configurations as those of the first configuration example of the transmission device 2 shown in FIG.
  • the digital signal processing unit 21 includes the OAM mode generation unit 23, the switching control unit 24, the rotation control unit 25, and the amplitude/phase control unit 26 described above.
  • the OAM mode signal is generated by digital signal processing, and the amplitude and phase difference of the digital OAM mode signal radiated from each antenna element 200 are adjusted in advance. good too.
  • the second configuration example of the transmission device 2 converts the digital OAM mode signal into an analog signal and supplies it to the UCA 27 .
  • FIG. 10 is a diagram showing a third configuration example of the transmission device 2.
  • the third configuration example of the transmission device 2 includes, for example, a digital signal processing unit 21, an analog signal processing unit 22, an OAM mode generation unit 23, a plurality of switching control units 24, a plurality of rotation control units 25, It has a plurality of amplitude phase controllers 26 , a plurality of UCAs 27 and a controller 28 .
  • the rotation control unit 25 performs control to rotate the antenna element 200 switched (selected) from among the plurality of antenna elements 200 by the switching control unit 24 so that the antenna element 200 is oriented in a predetermined direction.
  • the amplitude/phase control unit 26 controls the amplitude and phase of radio waves emitted by each of the antenna elements 200 controlled to rotate by the rotation control unit 25 .
  • the OAM mode generator 23 includes, for example, four Butler circuits 230 as shown in FIG. 11 to create OAM mode signals from analog signals. is configured as
  • the number of Butler circuits provided in the OAM mode generation unit 23 corresponds to the number of UCAs simultaneously selected from multiple UCAs, for example.
  • the four butler circuits 230 each select the corresponding UCA.
  • one or more OAM mode signals are transmitted. For example, when multiplexing OAM mode 1 and OAM mode 2 in each UCA, the OAM mode 1 signal and the OAM mode 2 signal are supplied to each UCA.
  • one or more OAM mode signals are similarly supplied from each Butler circuit 230 to the corresponding UCA.
  • each Butler circuit 230 has eight output ports when multiplexing OAM mode 1 and OAM mode-1.
  • a signal with a phase difference of 45° (360°/8) in the counterclockwise direction and a signal with a phase difference of -45° in the counterclockwise direction are combined (multiplexed) from each output port. signal is output. Signals from each output port are fed to a corresponding antenna element 200 .
  • FIG. 12 is a flowchart showing an operation example of the transmission device 2.
  • FIG. In S ⁇ b>100 data is input to the digital signal processing section 21 .
  • the digital signal processing unit 21 generates a digital signal to be superimposed on a carrier wave from the input data and outputs the generated digital signal to the analog signal processing unit 22 .
  • the analog signal processing unit 22 converts the digital signal into an analog signal (digital-analog conversion), and converts the frequency of the output signal into the carrier frequency band (eg, 28 GHz band).
  • the analog signal processor 22 then outputs the generated analog signal to the OAM mode generator 23 .
  • the OAM mode generator 23 generates an OAM mode and outputs the generated signal from each output port.
  • the OAM mode generator 23 has a configuration including the Butler circuit 230 shown in FIG. A signal to be transmitted in OAM mode 1 and a signal to be transmitted in OAM mode-1 are input from the analog signal processing unit 22 to the Butler circuit 230 .
  • the switching control unit 24 performs control to switch the antenna element 200 .
  • the rotation control unit 25 performs control to rotate the antenna elements 200 so that each direction of the antenna elements 200 is oriented in a predetermined direction.
  • the amplitude/phase control unit 26 performs control so that the signal is supplied to each antenna element 200 of each UCA after adjusting the amplitude and phase in accordance with the transmission direction of radio waves. Then, in S114, the transmitting device 2 transmits radio waves from the UCA.
  • the transmitting device 2 selects a UCA capable of directing the antenna element 200 in an arbitrary direction, and performs OAM multiplex transmission in that direction.
  • the control unit 28 executes the control for this.
  • control unit 28 in the transmitting device 2 knows the position of each receiving device 3 (or the direction in which the receiving device 3 exists with respect to the transmitting device 2). Any method may be used for the control unit 28 of the transmitting device 2 to grasp the state of the receiving device 3 (the position of the receiving device 3, etc.).
  • control unit 28 may grasp the position of the receiving device 3 by receiving the reference signal transmitted from the receiving device 3, or may grasp the position of the receiving device 3 by receiving the position information transmitted from the receiving device 3. 3 position may be grasped. Further, the position of the receiving device 3 (fixed position, planned movement position at each time, etc.) may be preset in the control unit 28 .
  • control unit 28 determines that the signal transmission target receiving device 3 is at position A shown in FIG. At this time, the control unit 28 calculates the amplitude/phase adjustment amount for each output to each antenna element 200 for transmission in the direction from the transmission device 2 to the position A, and sends the amplitude/phase control unit 26 an amplitude/phase adjustment amount. Give an instruction to adjust the phase.
  • the transmitting device 2 may select any one or more of the plurality of UCAs or all of them to perform OAM-MIMO multiplex transmission.
  • the transmitting device 2 similarly adjusts the amplitude and phase so that radio waves are radiated toward the position B. make adjustments.
  • control unit 28 tracks the movement of the receiving device 3 . In other words, as described above, the control unit 28 always keeps track of the position of the receiving device 3 .
  • the control unit 28 communication from UCA-X to another UCA.
  • the transmitting device 2 selects a UCA-X' that can be transmitted in the direction (transmission axis) from the transmitting device 2 to the position A'. 3 is switched from UCA-X to UCA-X', and the direction of antenna element 200 and the amplitude and phase of the output signal are adjusted.
  • the transmission device 2 performs control to rotate each antenna element 200 so as to change the radio wave transmission direction of each antenna element 200, and the amplitude and amplitude of radio waves emitted by each antenna element 200. Since the phase is controlled so that the radio wave transmission directions of the antenna elements 200 are aligned, orbital angular momentum multiplex transmission can be performed even when there is a misalignment between the transmission axis and the reception axis of the UCA 27. can.
  • each unit constituting the transmitting device 2, the receiving device 3, and the control device 4 in the above-described embodiment may be partially or wholly configured by hardware, or may be configured by causing a processor to execute a program.
  • each unit constituting the transmitting device 2, the receiving device 3, and the control device 4 is partially or entirely configured by causing a processor to execute a program
  • the program is recorded on a recording medium and supplied. may be supplied over a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

A transmission method according to an embodiment of the present invention is for performing multiplex transmission of orbital angular momentum by using a circular array antenna having a plurality of circularly arranged antenna elements, and is characterized by including: a rotation control step for executing control to rotate the antenna elements so as to change radio wave transmission directions for the antenna elements; and an amplitude phase control step for controlling the amplitude and the phase of a radio wave emitted from each of the antenna elements, which have been controlled to rotate, such that the radio wave transmission directions of the respective antenna elements become uniform.

Description

送信方法及び送信装置Transmission method and transmission device
 本発明は、無線通信における送信方法及び送信装置に関する。 The present invention relates to a transmission method and a transmission device in wireless communication.
 近年、無線通信の伝送容量を向上させるために、電磁波の軌道角運動量(Orbital Angular Momentum:OAM)を用いた無線信号の空間多重伝送技術の検討が進められている(例えば、非特許文献1参照)。 In recent years, in order to improve the transmission capacity of wireless communication, studies are underway on spatial multiplexing transmission technology for wireless signals using the orbital angular momentum (OAM) of electromagnetic waves (see, for example, Non-Patent Document 1). ).
 OAMを持つ電磁波は、伝搬軸を中心にして、伝搬方向にそって等位相面がらせん状に分布する。OAM多重伝送では、異なるOAMモードをもつことができ、同一方向に伝搬する電磁波は、回転軸方向において空間位相分布が直交する。このため、OAM多重伝送では、異なる信号系列で変調された各OAMモードの信号を受信装置において分離することにより、信号を多重伝送することが可能である。  Electromagnetic waves with OAM have a spiral distribution of equiphase planes along the direction of propagation centered on the propagation axis. In OAM multiplex transmission, different OAM modes can be present, and electromagnetic waves propagating in the same direction have orthogonal spatial phase distributions in the rotation axis direction. Therefore, in the OAM multiplex transmission, it is possible to multiplex and transmit the signals by separating the signals of each OAM mode modulated by different signal sequences in the receiving device.
 また、OAM多重技術を用いた無線通信システムでは、複数のアンテナ素子を等間隔に円形配置した等間隔円形アレーアンテナ(以下、UCA(Uniform Circular Array)と称する。)を用い、複数のOAMモードを生成・合成して送信することにより、異なる信号系列の空間多重伝送を実現することができる(例えば、非特許文献2参照)。複数のOAMモードの信号生成には、例えば、バトラー回路(バトラーマトリクス回路)が使用される。ただし、バトラー回路を使用することは一例である。 In addition, in a wireless communication system using OAM multiplexing technology, a uniform circular array antenna (hereinafter referred to as UCA (Uniform Circular Array)) in which a plurality of antenna elements are arranged in a circle at regular intervals is used, and multiple OAM modes are used. Spatial multiplex transmission of different signal sequences can be realized by generating, synthesizing, and transmitting (see, for example, Non-Patent Document 2). A Butler circuit (Butler matrix circuit), for example, is used to generate a plurality of OAM mode signals. However, using a Butler circuit is an example.
 また、異径の複数のUCAを同心円状に配置した多重UCAにより、同一OAMモードの信号を多重して送信することができる。受信装置は、MIMO(Multi Input Multi Output)技術により、同一OAMモード内で多重された信号を分離することができる。 Also, multiple UCAs with different diameters arranged concentrically can multiplex and transmit signals of the same OAM mode. The receiving device can separate signals multiplexed within the same OAM mode by MIMO (Multi Input Multi Output) technology.
 上述したように、UCAを用いた送信装置は、複数のOAMモードで多重伝送を行うことにより、大容量の無線通信を実現することが可能である。また、OAM多重伝送技術を移動通信へ利用することが望まれている。移動通信にOAM多重伝送技術を利用するためには、多方向に信号を送信できる多方向対応や移動追従性が必要である。 As described above, a transmission device using UCA can realize large-capacity wireless communication by performing multiplex transmission in a plurality of OAM modes. Also, it is desired to apply the OAM multiplex transmission technology to mobile communications. In order to use the OAM multiplex transmission technology for mobile communication, it is necessary to have multi-directional support and movement followability to transmit signals in multiple directions.
 しかしながら、従来は、UCAを用いて送信方向を制御する場合、UCAを構成するアンテナ素子の指向性によって、送信方向が制限されるという問題があった。また、UCAによってOAM多重伝送の電波の方向を制御しようとする場合、方向によってはUCAの各アンテナ素子間で伝送時間差が生じることや、UCAの開口面が楕円形になるため、OAMモードの電磁界分布が正しく形成できないことがある。 However, conventionally, when the UCA is used to control the transmission direction, there is a problem that the transmission direction is limited by the directivity of the antenna elements that make up the UCA. In addition, when trying to control the direction of radio waves for OAM multiplex transmission using a UCA, depending on the direction, transmission time differences may occur between the antenna elements of the UCA, and because the aperture of the UCA becomes elliptical, the OAM mode electromagnetic Sometimes the field distribution cannot be formed correctly.
 本発明は、上述した課題を鑑みてなされたものであり、複数のアンテナ素子が円形に配置された円形アレーアンテナの送信軸と受信軸との間に軸ずれが生じ得る場合にも、軌道角運動量多重伝送を可能にすることができる送信方法及び送信装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and even if a circular array antenna in which a plurality of antenna elements are arranged in a circle is misaligned between the transmission axis and the reception axis, the orbital angle It is an object of the present invention to provide a transmission method and a transmission device that enable momentum multiplex transmission.
 本発明の一態様にかかる送信方法は、複数のアンテナ素子が円形に配置された円形アレーアンテナを用いて軌道角運動量多重伝送を行う送信方法において、前記アンテナ素子それぞれの電波送信方向を変えるように、前記アンテナ素子それぞれを回転させる制御を行う回転制御工程と、回転させる制御を行った前記アンテナ素子それぞれが放射する電波の振幅及び位相を、前記アンテナ素子それぞれの電波送信方向が揃うように制御する振幅位相制御工程とを含むことを特徴とする。 A transmission method according to an aspect of the present invention is a transmission method that performs orbital angular momentum multiplexing transmission using a circular array antenna in which a plurality of antenna elements are arranged in a circle, wherein a radio wave transmission direction of each of the antenna elements is changed. a rotation control step of controlling to rotate each of the antenna elements; and controlling the amplitude and phase of radio waves radiated from each of the antenna elements that have been controlled to rotate so that the directions of radio wave transmission of each of the antenna elements are aligned. and an amplitude phase control step.
 また、本発明の一態様にかかる送信装置は、複数のアンテナ素子が円形に配置された円形アレーアンテナを用いて軌道角運動量多重伝送を行う送信装置において、前記アンテナ素子それぞれの電波送信方向を変えるように、前記アンテナ素子それぞれを回転させる制御を行う回転制御部と、前記回転制御部が回転させる制御を行った前記アンテナ素子それぞれが放射する電波の振幅及び位相を、前記アンテナ素子それぞれの電波送信方向が揃うように制御する振幅位相制御部とを有することを特徴とする。 Further, a transmission device according to an aspect of the present invention is a transmission device that performs orbital angular momentum multiplexing transmission using a circular array antenna in which a plurality of antenna elements are arranged in a circle, wherein the radio wave transmission direction of each of the antenna elements is changed. a rotation control unit for controlling rotation of each of the antenna elements, and the amplitude and phase of radio waves radiated by each of the antenna elements controlled to rotate by the rotation control unit are transmitted from each of the antenna elements. and an amplitude/phase control section for controlling the directions to be aligned.
 本発明によれば、複数のアンテナ素子が円形に配置された円形アレーアンテナの送信軸と受信軸との間に軸ずれが生じ得る場合にも、軌道角運動量多重伝送を可能にすることができる。 According to the present invention, orbital angular momentum multiplexing transmission can be made possible even when there is a misalignment between the transmission axis and the reception axis of a circular array antenna in which a plurality of antenna elements are arranged in a circle. .
一実施形態にかかる無線通信システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a wireless communication system according to an embodiment; FIG. 送信装置及び受信装置が有する複数のアンテナ素子の配置例を示す図である。FIG. 3 is a diagram showing an arrangement example of a plurality of antenna elements included in a transmitting device and a receiving device; (a)は、OAMモード0の信号生成を示す図である。(b)は、OAMモード1の信号生成を示す図である。(c)は、OAMモード2の信号生成を示す図である。(d)は、OAMモード3の信号生成を示す図である。(a) is a diagram showing signal generation in OAM mode 0. FIG. (b) is a diagram illustrating signal generation in OAM mode 1; (c) is a diagram showing signal generation in OAM mode 2. FIG. (d) is a diagram illustrating signal generation in OAM mode 3; (a)は、OAMモード1の位相分布を例示する図である。(b)は、OAMモード2の位相分布を例示する図である。(c)は、OAMモード1,2の伝搬方向における信号強度分布を例示する図である。(a) is a diagram illustrating a phase distribution of OAM mode 1; (b) is a diagram illustrating a phase distribution of OAM mode 2; (c) is a diagram illustrating signal intensity distributions in the propagation directions of OAM modes 1 and 2. FIG. 4つの異径のUCAが同心円に配置された多重UCAを例示する図である。FIG. 4 illustrates multiple UCAs in which four UCAs of different diameters are concentrically arranged; 送信装置の送信軸と、受信装置の受信軸とがずれてしまった状態を示す図である。FIG. 4 is a diagram showing a state in which the transmission axis of the transmission device and the reception axis of the reception device are misaligned; (a)は、送信装置が備えるUCAを正面(送信方向A)から見た状態を模式的に示す図である。図7(b)は、送信装置が備えるUCAの動作の概要を模式的に示す図である。(a) is a diagram schematically showing a state in which a UCA included in a transmitting device is viewed from the front (transmitting direction A). FIG. 7(b) is a diagram schematically showing an overview of the operation of the UCA included in the transmitting device. 送信装置の第1構成例を示す図である。It is a figure which shows the 1st structural example of a transmitter. 送信装置の第2構成例を示す図である。FIG. 10 is a diagram illustrating a second configuration example of a transmission device; 送信装置の第3構成例を示す図である。FIG. 11 is a diagram illustrating a third configuration example of a transmission device; バトラー回路を備えたOAMモード生成部を例示する図である。FIG. 4 illustrates an OAM mode generator with a Butler circuit; 送信装置の動作例を示すフローチャートである。4 is a flowchart showing an operation example of a transmission device; 電波の放射方向を例示する図である。FIG. 4 is a diagram illustrating radiation directions of radio waves; 電波の他の放射方向を例示する図である。FIG. 4 is a diagram illustrating another radiation direction of radio waves;
 以下に、図面を用いて無線通信システムの一実施形態を説明する。図1は、一実施形態にかかる無線通信システム1の構成例を示す図である。無線通信システム1は、例えば送信装置(送信局)2、受信装置(受信局)3、及び制御装置(制御局)4を有し、送信装置2と受信装置3がUCAを用いたOAM-MIMO(Multi Input Multi Output)通信を行うように構成されている。例えば、送信装置2及び受信装置3は、複数のアンテナ素子が円形に配置された円形アレーアンテナを用いて軌道角運動量多重伝送を行う。 An embodiment of the wireless communication system will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration example of a wireless communication system 1 according to one embodiment. A wireless communication system 1 includes, for example, a transmitting device (transmitting station) 2, a receiving device (receiving station) 3, and a control device (control station) 4. The transmitting device 2 and the receiving device 3 are OAM-MIMO using UCA. (Multi Input Multi Output) communication. For example, the transmitting device 2 and the receiving device 3 perform orbital angular momentum multiplex transmission using a circular array antenna in which a plurality of antenna elements are arranged in a circle.
 なお、送信装置2及び受信装置3は、例えばそれぞれ送信機能及び受信機能を備えるように同一の構成の無線通信装置であってもよい。制御装置4は、送信装置2及び受信装置3それぞれに対して制御用信号を送信する。ただし、無線通信システム1は、制御装置4を備えないように構成されてもよい。 Note that the transmitting device 2 and the receiving device 3 may be wireless communication devices having the same configuration, for example, so as to have a transmitting function and a receiving function, respectively. The control device 4 transmits a control signal to each of the transmission device 2 and the reception device 3 . However, the wireless communication system 1 may be configured without the control device 4 .
 図2は、送信装置2及び受信装置3が有する複数のアンテナ素子の配置例を示す図である。送信装置2及び受信装置3は、複数のアンテナ素子200が円形に配置された円形アレーアンテナ(例えばUCA)を有してOAM多重通信を行う。なお、UCAは、複数のアンテナ素子200が1つの円形に配置されていてもよいし、複数のアンテナ素子200が同心異径の複数の円形に配置されていてもよい。 FIG. 2 is a diagram showing an arrangement example of a plurality of antenna elements that the transmitting device 2 and the receiving device 3 have. The transmitting device 2 and the receiving device 3 have a circular array antenna (for example, UCA) in which a plurality of antenna elements 200 are arranged in a circle, and perform OAM multiplex communication. In the UCA, a plurality of antenna elements 200 may be arranged in one circle, or a plurality of antenna elements 200 may be arranged in a plurality of concentric circles with different diameters.
 図3は、OAMモードの信号を生成するためのUCAの位相設定例を示す図である。図3(a)は、OAMモード0の信号生成を示す図である。図3(b)は、OAMモード1の信号生成を示す図である。図3(c)は、OAMモード2の信号生成を示す図である。図3(d)は、OAMモード3の信号生成を示す図である。ここでは、UCAは、8つのアンテナ素子200を有する場合が示されている。なお、付記された数字は、基準位相(0°)信号に対する位相差を示す。 FIG. 3 is a diagram showing an example of UCA phase setting for generating an OAM mode signal. FIG. 3(a) is a diagram showing signal generation in OAM mode 0. FIG. FIG. 3(b) is a diagram showing signal generation in OAM mode 1. As shown in FIG. FIG. 3(c) is a diagram showing signal generation in OAM mode 2. As shown in FIG. FIG. 3(d) is a diagram illustrating signal generation in OAM mode 3. FIG. Here, the UCA is shown with eight antenna elements 200 . Note that the appended numbers indicate the phase difference with respect to the reference phase (0°) signal.
 図3において、送信側におけるOAMモード0,1,2,3,…の信号は、UCAの各アンテナ素子(黒丸●で示す)に供給される信号の位相差により生成される。すなわち、OAMモードnの信号は、位相がn回転(n×360度)になるように各アンテナ素子に供給する信号の位相を設定して生成する。 In FIG. 3, the signals of OAM modes 0, 1, 2, 3, . That is, the signal of OAM mode n is generated by setting the phase of the signal to be supplied to each antenna element so that the phase becomes n rotations (n×360 degrees).
 例えば、UCAがm=8個のアンテナ素子で構成される場合、OAMモードn=2の信号を生成する場合は、図3(c)に示すように、位相が2回転するように、各アンテナ素子に反時計回りに360n/m= 90度の位相差(0度,90度,180度,270度,0度,90度,180度,270度)を設定する。 For example, when the UCA is composed of m=8 antenna elements, when generating a signal of OAM mode n=2, as shown in FIG. A phase difference of 360 n/m=90 degrees (0 degrees, 90 degrees, 180 degrees, 270 degrees, 0 degrees, 90 degrees, 180 degrees, 270 degrees) is set to the element counterclockwise.
 なお、OAMモードnの信号に対して位相の回転方向を逆にした信号をOAMモード-nとする。例えば、正のOAMモードの信号の位相の回転方向を反時計回りとし、負のOAMモードの信号の位相の回転方向を時計回りとする。 A signal in which the direction of phase rotation is opposite to that of the signal in OAM mode n is called OAM mode-n. For example, the direction of phase rotation of the signal in the positive OAM mode is assumed to be counterclockwise, and the direction of phase rotation of the signal in the negative OAM mode is assumed to be clockwise.
 OAM多重通信では、異なる信号系列を異なるOAMモードの信号として生成し、生成した信号を同時に送信することにより、空間多重による無線通信を行うことができる。 In OAM multiplex communication, different signal sequences are generated as signals of different OAM modes, and by simultaneously transmitting the generated signals, spatial multiplexing wireless communication can be performed.
 受信装置3がOAM多重信号を分離するためには、受信装置3のUCAの各アンテナ素子の位相を、送信装置2のアンテナ素子の位相と逆方向になるように設定されていればよい。 In order for the receiving device 3 to separate the OAM multiplexed signal, the phase of each antenna element of the UCA of the receiving device 3 should be set to be opposite to the phase of the antenna element of the transmitting device 2 .
 図4は、OAM多重信号の位相分布と信号強度分布を例示する図である。図4(a)は、OAMモード1の位相分布を例示する図である。図4(b)は、OAMモード2の位相分布を例示する図である。図4(c)は、OAMモード1,2の伝搬方向における信号強度分布を例示する図である。 FIG. 4 is a diagram illustrating the phase distribution and signal strength distribution of OAM multiplexed signals. FIG. 4A is a diagram illustrating the phase distribution of OAM mode 1. FIG. FIG. 4B is a diagram illustrating the phase distribution of OAM mode 2. FIG. FIG. 4(c) is a diagram illustrating the signal intensity distribution in the propagation direction of OAM modes 1 and 2. FIG.
 図4(a),(b)では、送信装置2から伝搬方向に直交する端面(伝搬直交平面)で見た信号の位相分布を矢印で示している。矢印の始めは0度である。位相は線形に変化する。矢印の終わりは360度である。すなわち、OAMモードnの信号は、伝搬直交平面において、位相がn回転(n×360度)しながら伝搬する。なお、OAMモード-1,-2の信号の位相分布の矢印は逆向きになる。 In FIGS. 4(a) and 4(b), the arrows indicate the phase distribution of the signal viewed from the transmission device 2 on the end face (propagation orthogonal plane) orthogonal to the propagation direction. The arrow starts at 0 degrees. The phase changes linearly. The arrow ends at 360 degrees. That is, the signal of OAM mode n propagates while rotating the phase by n (n×360 degrees) on the propagation orthogonal plane. Note that the arrows of the phase distribution of the signals of OAM modes -1 and -2 are reversed.
 各OAMモードの信号は、OAMモードごとに信号強度分布と信号強度が最大になる位置が異なる。ただし、符号が異なる同じOAMモードの強度分布は同じである。具体的には、OAMモードが高次になるほど、信号強度が最大になる位置が伝搬軸から遠くなる(非特許文献2参照)。ここで、OAMモードの値が大きい方を高次モードと称する。例えば、OAMモード3の信号は、OAMモード0、OAMモード1、又はOAMモード2の信号より高次モードである。 For each OAM mode signal, the signal intensity distribution and the position where the signal intensity is maximized differ for each OAM mode. However, the same OAM modes with different signs have the same intensity distribution. Specifically, the higher the order of the OAM mode, the farther the position where the signal intensity is maximized from the propagation axis (see Non-Patent Document 2). Here, the OAM mode with a larger value is called a higher-order mode. For example, an OAM Mode 3 signal is a higher order mode than an OAM Mode 0, OAM Mode 1, or OAM Mode 2 signal.
 図4(c)では、OAMモードごとに信号強度が最大になる位置が円環で示されている。OAMモードが高次になるほど信号強度が最大になる位置が中心軸から遠くなり、かつ伝搬距離に応じてOAMモード多重信号のビーム径が広がり、OAMモードごとに信号強度が最大になる位置を示す円環が大きくなる。 In FIG. 4(c), the position where the signal intensity is maximized for each OAM mode is indicated by a ring. The higher the order of the OAM mode, the farther the position where the signal intensity is maximized from the central axis, and the beam diameter of the OAM mode multiplexed signal spreads according to the propagation distance, indicating the position where the signal intensity is maximized for each OAM mode. the circle becomes larger.
 図5は、4つの異径のUCAが同心円に配置された多重UCAを例示する図である。図5に示したように、異径の複数のUCAを同心円状に配置した多重UCAにより、同一OAMモードの信号を多重して送信することが可能である。受信装置3は、MIMO技術により、同一OAMモード内で多重された信号を分離することができる。 FIG. 5 is a diagram illustrating a multiple UCA in which four UCAs with different diameters are concentrically arranged. As shown in FIG. 5, it is possible to multiplex and transmit signals of the same OAM mode by multiple UCAs in which a plurality of UCAs having different diameters are concentrically arranged. The receiving device 3 can separate signals multiplexed within the same OAM mode by MIMO technology.
 上述したように、UCAを用いてOAM多重伝送を行うことにより、大容量の無線通信が可能になるが、複数のOAMモードの信号をモード間の干渉なく分離するためには、送信アンテナと受信アンテナをそれぞれ正面で対向する位置に設置する必要がある。しかし、送信装置2又は受信装置3が移動する場合などには、従来は、送信装置2の送信軸と、受信装置3の受信軸とが合わず、OAM多重伝送を行うことが困難となっていた。すなわち、UCAは、多方向への通信に対応する必要があり、移動追従性も必要となってくる。 As described above, by performing OAM multiplexing transmission using UCA, large-capacity wireless communication becomes possible. The antennas should be placed in front of each other. However, when the transmitting device 2 or the receiving device 3 moves, conventionally, the transmission axis of the transmitting device 2 and the receiving axis of the receiving device 3 do not match, making it difficult to perform OAM multiplex transmission. rice field. In other words, the UCA needs to support multi-directional communication and also needs to be able to follow movement.
 例えば、図6に示すように、送信装置2の送信軸と、受信装置3の受信軸とがずれてしまうと、受信装置3の受信アンテナでは、OAMを表す電磁界分布を形成されない。 For example, as shown in FIG. 6, if the transmission axis of the transmission device 2 and the reception axis of the reception device 3 deviate, the reception antenna of the reception device 3 does not form an electromagnetic field distribution representing OAM.
 そこで、本実施形態にかかる送信装置2は、アンテナ素子それぞれの電波送信方向を変えるように、アンテナ素子それぞれを回転させ、アンテナ素子それぞれが放射する電波の振幅及び位相を、アンテナ素子それぞれの電波送信方向が揃うように制御する。なお、送信装置2は、1つのOAMモードの送信を行ってもよい。また、OAM伝送には、OAM多重伝送が含まれる。 Therefore, the transmission device 2 according to the present embodiment rotates each antenna element so as to change the radio wave transmission direction of each antenna element, and the amplitude and phase of the radio wave radiated by each antenna element are adjusted to the radio wave transmission direction of each antenna element. Control so that the direction is aligned. Note that the transmission device 2 may perform transmission in one OAM mode. OAM transmission includes OAM multiplex transmission.
 図7は、送信装置2が備えるUCAの概要を模式的に示す図である。図7(a)は、送信装置2が備えるUCAを正面(送信方向A)から見た状態を模式的に示す図である。図7(b)は、送信装置2が備えるUCAの動作の概要を模式的に示す図である。 FIG. 7 is a diagram schematically showing an overview of the UCA included in the transmitting device 2. FIG. FIG. 7(a) is a diagram schematically showing a state in which the UCA included in the transmission device 2 is viewed from the front (transmission direction A). FIG. 7(b) is a diagram schematically showing an overview of the operation of the UCA included in the transmission device 2. As shown in FIG.
 アンテナ素子200間の伝搬時間差は、位相差となり、下式(1)のように示される。 The propagation time difference between the antenna elements 200 is the phase difference, which is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図7に示すように、送信装置2が備えるUCAは、複数のアンテナ素子200それぞれが任意の方向に回転するように構成されている。なお、アンテナ素子200は、回転が水平方向に回転する1軸に限定されることなく、3次元の任意の方向(仰角を含む)に回転するように構成されてもよい。 As shown in FIG. 7, the UCA included in the transmitting device 2 is configured such that each of the plurality of antenna elements 200 rotates in any direction. Note that the antenna element 200 may be configured to rotate in any three-dimensional direction (including the elevation angle) without being limited to one axis that rotates in the horizontal direction.
 そして、送信装置2が備えるUCAは、図7(b)に示したように所定の送信方向Bに向けてアンテナ素子200それぞれを回転させることができる。つまり、UCAを構成する個々のアンテナ素子200の指向性(放射強度が最大になる方向)を送信軸の方向に向けることができる。 Then, the UCA provided in the transmitting device 2 can rotate each of the antenna elements 200 toward the predetermined transmitting direction B as shown in FIG. 7(b). That is, the directivity (the direction in which the radiation intensity is maximized) of each antenna element 200 forming the UCA can be oriented in the direction of the transmission axis.
 次に、送信装置2の第1構成例について説明する。図8は、送信装置2の第1構成例を示す図である。図8に示すように、送信装置2の第1構成例は、例えばデジタル信号処理部21、アナログ信号処理部22、OAMモード生成部23、切替制御部24、回転制御部25、振幅位相制御部26、UCA27、及び制御部28を有する。 Next, a first configuration example of the transmission device 2 will be described. FIG. 8 is a diagram showing a first configuration example of the transmission device 2. As shown in FIG. As shown in FIG. 8, the first configuration example of the transmission device 2 includes, for example, a digital signal processing unit 21, an analog signal processing unit 22, an OAM mode generation unit 23, a switching control unit 24, a rotation control unit 25, an amplitude phase control unit 26 , UCA 27 and control unit 28 .
 デジタル信号処理部21は、入力されたデータを用いて、搬送波に重畳させて送信するデジタル信号を生成し、生成したデジタル信号をアナログ信号処理部22に対して出力する。つまり、デジタル信号処理部21は、送信すべきデジタル信号をアナログ信号に変換して処理する前に、搬送波に重畳させるように処理を行う。 The digital signal processing unit 21 uses the input data to generate a digital signal to be superimposed on the carrier wave and transmitted, and outputs the generated digital signal to the analog signal processing unit 22 . In other words, the digital signal processing unit 21 performs processing so as to superimpose the digital signal to be transmitted on the carrier before converting it into an analog signal and processing it.
 アナログ信号処理部22は、デジタル信号をアナログ信号に変換するなどの処理を行い、処理結果をOAMモード生成部23に対して出力する。 The analog signal processing unit 22 performs processing such as converting a digital signal into an analog signal, and outputs the processing result to the OAM mode generation unit 23.
 OAMモード生成部23は、入力されたアナログ信号を用いて、1又は複数のOAMモードの信号を生成し、生成した信号を切替制御部24に対して出力する。 The OAM mode generator 23 uses the input analog signal to generate one or a plurality of OAM mode signals, and outputs the generated signals to the switching controller 24 .
 切替制御部24は、アンテナ素子200それぞれが放射する電波が受信装置3に向けて放射されるように、電波を放射させるアンテナ素子200を選択して切替えるように制御する。 The switching control unit 24 selects and switches the antenna elements 200 that radiate radio waves so that the radio waves radiated by each of the antenna elements 200 are radiated toward the receiving device 3 .
 回転制御部25は、アンテナ素子200それぞれの電波送信方向を変えるように、アンテナ素子200それぞれを回転させる制御を行う。 The rotation control unit 25 performs control to rotate each antenna element 200 so as to change the radio wave transmission direction of each antenna element 200 .
 振幅位相制御部26は、回転制御部25が回転させる制御を行ったアンテナ素子200それぞれが放射する電波の振幅及び位相を、アンテナ素子200それぞれの電波送信方向が揃うように制御する。 The amplitude and phase control unit 26 controls the amplitude and phase of radio waves emitted by the antenna elements 200 controlled to rotate by the rotation control unit 25 so that the radio wave transmission directions of the antenna elements 200 are aligned.
 制御部28は、送信装置2を構成する各部を制御する。例えば、振幅位相制御部26は、制御部28からの指示に基づいて、切替制御部24により切替(選択)された1つ又は複数のアンテナ素子200(又はUCA)に対して入力する信号の振幅・位相を所定の送信方向へ合わせるように制御する。 The control unit 28 controls each unit that configures the transmission device 2 . For example, the amplitude/phase control unit 26 controls the amplitude of a signal input to one or more antenna elements 200 (or UCA) switched (selected) by the switching control unit 24 based on an instruction from the control unit 28. • Control so that the phase is adjusted to a predetermined transmission direction.
 例えば、振幅位相制御部26は、送信方向に対して垂直な平面において、OAMモードの電磁界分布が正しく形成できるように、各アンテナ素子200からの振幅・位相を制御する。 For example, the amplitude/phase control unit 26 controls the amplitude/phase from each antenna element 200 so that the OAM mode electromagnetic field distribution can be correctly formed on a plane perpendicular to the transmission direction.
 また、振幅位相制御部26は、UCA27により適切な各OAMモードの電磁界分布が形成できるように、受信装置3からのチャネル状態を示す情報をフィードバック受信し、受信装置3のチャネルの理想状態に対する差分を補正するように振幅・位相を制御してもよい。 In addition, the amplitude/phase control unit 26 receives feedback information indicating the channel state from the receiving device 3 so that the UCA 27 can form an appropriate electromagnetic field distribution for each OAM mode. The amplitude/phase may be controlled to correct the difference.
 したがって、送信装置2は、多重UCAから1方向のOAM多重伝送、複数方向のOAM多重伝送、1方向のOAM-MIMO多重伝送、複数方向のOAM―MIMO多重伝送、ある方向のOAM多重伝送と別の方向のOAM-MIMO多重伝送の同時送信などを行うことができる。 Therefore, the transmission device 2 performs unidirectional OAM multiplexing transmission, multidirectional OAM multiplexing transmission, unidirectional OAM-MIMO multiplexing transmission, multidirectional OAM-MIMO multiplexing transmission, and unidirectional OAM multiplexing transmission from the multiplexed UCA. Simultaneous transmission of OAM-MIMO multiplex transmission in the direction of .
 次に、送信装置2の第2構成例について説明する。図9は、送信装置2の第2構成例を示す図である。図9に示すように、送信装置2の第2構成例は、デジタル信号処理部21、アナログ信号処理部22、UCA27、及び制御部28を有する。以下、図8に示した送信装置2の第1構成例の構成と実質的に同一の構成には同一の符号を付すこととする。 Next, a second configuration example of the transmission device 2 will be described. FIG. 9 is a diagram showing a second configuration example of the transmission device 2. As shown in FIG. As shown in FIG. 9, the second configuration example of the transmission device 2 has a digital signal processing section 21, an analog signal processing section 22, a UCA 27, and a control section . In the following description, the same reference numerals are assigned to substantially the same configurations as those of the first configuration example of the transmission device 2 shown in FIG.
 ここでは、上述したOAMモード生成部23、切替制御部24、回転制御部25、及び振幅位相制御部26がデジタル信号処理部21に含まれるように構成されている。 Here, the digital signal processing unit 21 includes the OAM mode generation unit 23, the switching control unit 24, the rotation control unit 25, and the amplitude/phase control unit 26 described above.
 すなわち、送信装置2の第2構成例は、例えばデジタル信号処理によりOAMモード信号を生成し、デジタルのOAMモード信号を各アンテナ素子200から放射する信号の振幅・位相差を予め調整しておいてもよい。その後、送信装置2の第2構成例は、デジタルのOAMモード信号をアナログ信号に変換してUCA27へ供給する。 That is, in the second configuration example of the transmission device 2, for example, the OAM mode signal is generated by digital signal processing, and the amplitude and phase difference of the digital OAM mode signal radiated from each antenna element 200 are adjusted in advance. good too. After that, the second configuration example of the transmission device 2 converts the digital OAM mode signal into an analog signal and supplies it to the UCA 27 .
 次に、送信装置2の第3構成例について説明する。図10は、送信装置2の第3構成例を示す図である。図10に示すように、送信装置2の第3構成例は、例えばデジタル信号処理部21、アナログ信号処理部22、OAMモード生成部23、複数の切替制御部24、複数の回転制御部25、複数の振幅位相制御部26、複数のUCA27、及び制御部28を有する。 Next, a third configuration example of the transmission device 2 will be described. FIG. 10 is a diagram showing a third configuration example of the transmission device 2. As shown in FIG. As shown in FIG. 10, the third configuration example of the transmission device 2 includes, for example, a digital signal processing unit 21, an analog signal processing unit 22, an OAM mode generation unit 23, a plurality of switching control units 24, a plurality of rotation control units 25, It has a plurality of amplitude phase controllers 26 , a plurality of UCAs 27 and a controller 28 .
 ここでは、UCA27は、同心異径の多重UCAである。多重UCAのUCA27において選択可能なUCAがN個(例えばN=4)あるものとし、それぞれUCA-1~UCA-Nとする。 Here, UCA27 is a multiple UCA with concentric unequal diameters. Assume that there are N UCAs (for example, N=4) that can be selected in the UCA 27 of the multiple UCA, and UCA-1 to UCA-N, respectively.
 回転制御部25は、例えば複数のアンテナ素子200の中から切替制御部24により切替られた(選択された)アンテナ素子200を所定の方向に向けるように回転させる制御を行う。 For example, the rotation control unit 25 performs control to rotate the antenna element 200 switched (selected) from among the plurality of antenna elements 200 by the switching control unit 24 so that the antenna element 200 is oriented in a predetermined direction.
 振幅位相制御部26は、回転制御部25が回転させる制御を行ったアンテナ素子200それぞれが放射する電波の振幅及び位相を制御する。 The amplitude/phase control unit 26 controls the amplitude and phase of radio waves emitted by each of the antenna elements 200 controlled to rotate by the rotation control unit 25 .
 なお、図10に示した送信装置2の第3構成例では、OAMモード生成部23は、図11に示したように、例えば4つバトラー回路230を備えてアナログ信号からOAMモード信号を作成するように構成されている。 In the third configuration example of the transmission device 2 shown in FIG. 10, the OAM mode generator 23 includes, for example, four Butler circuits 230 as shown in FIG. 11 to create OAM mode signals from analog signals. is configured as
 OAMモード生成部23が備えるバトラー回路の数は、例えば多重UCAの中から同時に選択されるUCAの数に相当する。 The number of Butler circuits provided in the OAM mode generation unit 23 corresponds to the number of UCAs simultaneously selected from multiple UCAs, for example.
 例えば、多重UCAから、UCA-1、UCA-2、UCA-3、UCA-4を選択して、4つの方向へのOAM多重伝送を同時に行う場合、4つのバトラー回路230は、それぞれ対応するUCA(振幅位相制御部26に接続されたUCA)へ、1又は複数のOAMモードの信号を送信する。例えば、各UCAでOAMモード1とOAMモード2の多重を行う場合、各UCAへOAMモード1の信号とOAMモード2の信号が供給される。 For example, when UCA-1, UCA-2, UCA-3, and UCA-4 are selected from multiple UCAs and OAM multiplex transmission is performed in four directions at the same time, the four butler circuits 230 each select the corresponding UCA. (UCA connected to amplitude phase control unit 26), one or more OAM mode signals are transmitted. For example, when multiplexing OAM mode 1 and OAM mode 2 in each UCA, the OAM mode 1 signal and the OAM mode 2 signal are supplied to each UCA.
 また、例えば、多重UCAによって同一方向へOAM-MIMO多重伝送を行う場合にも同様に、各バトラー回路230から対応するUCAへ1又は複数のOAMモードの信号が供給される。 Also, for example, when OAM-MIMO multiplex transmission is performed in the same direction using multiple UCAs, one or more OAM mode signals are similarly supplied from each Butler circuit 230 to the corresponding UCA.
 一例として、1つのバトラー回路230に接続されるUCAが8つのアンテナ素子200によって構成される場合、OAMモード1とOAMモード-1の多重を行うときに、各バトラー回路230は、8つの出力ポートを備える。そして、各出力ポートから反時計回りに45°(360°/8)ずつの位相差をもった信号と、反時計回りに-45°ずつの位相差をもった信号が合波(多重)された信号が出力される。各出力ポートからの信号は、対応するアンテナ素子200に供給される。 As an example, if the UCA connected to one Butler circuit 230 is composed of eight antenna elements 200, each Butler circuit 230 has eight output ports when multiplexing OAM mode 1 and OAM mode-1. Prepare. A signal with a phase difference of 45° (360°/8) in the counterclockwise direction and a signal with a phase difference of -45° in the counterclockwise direction are combined (multiplexed) from each output port. signal is output. Signals from each output port are fed to a corresponding antenna element 200 .
 そして、当該UCAの8つのアンテナ素子200からは、以下の位相をもった2つの信号が合波された信号が出力される。 Then, from the eight antenna elements 200 of the UCA, a signal obtained by combining two signals having the following phases is output.
 アンテナ素子#1=(0°,0°)、アンテナ素子#2=(45°,-45°)、アンテナ素子#3=(90°,-90°)、アンテナ素子#4=(135°,-135°)、アンテナ素子#5=(180°,-180°)、アンテナ素子#6=(225°,-225°)、アンテナ素子#7=(270°,-270°)、アンテナ素子#8=(315°,-315°)。 Antenna element #1 = (0°, 0°), antenna element #2 = (45°, -45°), antenna element #3 = (90°, -90°), antenna element #4 = (135°, -135°), antenna element #5 = (180°, -180°), antenna element #6 = (225°, -225°), antenna element #7 = (270°, -270°), antenna element # 8 = (315°, -315°).
 図12は、送信装置2の動作例を示すフローチャートである。S100において、デジタル信号処理部21にデータが入力される。S102において、デジタル信号処理部21は、入力されたデータから搬送波に重畳させて送信するデジタル信号を生成し、生成したデジタル信号をアナログ信号処理部22に対して出力する。 FIG. 12 is a flowchart showing an operation example of the transmission device 2. FIG. In S<b>100 , data is input to the digital signal processing section 21 . In S<b>102 , the digital signal processing unit 21 generates a digital signal to be superimposed on a carrier wave from the input data and outputs the generated digital signal to the analog signal processing unit 22 .
 S104において、アナログ信号処理部22は、デジタル信号をアナログ信号に変換(デジタル-アナログ変換)し、出力信号の周波数を搬送波の周波数帯(例:28GHz帯)に変換する。そして、アナログ信号処理部22は、生成したアナログ信号をOAMモード生成部23に対して出力する。 In S104, the analog signal processing unit 22 converts the digital signal into an analog signal (digital-analog conversion), and converts the frequency of the output signal into the carrier frequency band (eg, 28 GHz band). The analog signal processor 22 then outputs the generated analog signal to the OAM mode generator 23 .
 S106において、OAMモード生成部23は、OAMモードを生成し、生成した信号を各出力ポートから出力する。例えば、OAMモード生成部23は、図11に示したバトラー回路230を備えた構成であり、4つのUCAによってOAMモード1と-1のOAM多重伝送を同時に行う場合、OAMモード生成部23における各バトラー回路230には、OAMモード1で送信する信号とOAMモード-1で送信する信号がアナログ信号処理部22から入力される。 In S106, the OAM mode generator 23 generates an OAM mode and outputs the generated signal from each output port. For example, the OAM mode generator 23 has a configuration including the Butler circuit 230 shown in FIG. A signal to be transmitted in OAM mode 1 and a signal to be transmitted in OAM mode-1 are input from the analog signal processing unit 22 to the Butler circuit 230 .
 S108において、切替制御部24は、アンテナ素子200を切替える制御を行う。S110において、回転制御部25は、アンテナ素子200それぞれの方向を所定の方向に向けるようにアンテナ素子200を回転させる制御を行う。 In S<b>108 , the switching control unit 24 performs control to switch the antenna element 200 . In S110, the rotation control unit 25 performs control to rotate the antenna elements 200 so that each direction of the antenna elements 200 is oriented in a predetermined direction.
 S112において、振幅位相制御部26は、電波の送信方向に合わせて各UCAの各アンテナ素子200へ信号が振幅と位相を調整して供給されるように制御を行う。そして、S114において、送信装置2は、電波をUCAから送信する。 In S112, the amplitude/phase control unit 26 performs control so that the signal is supplied to each antenna element 200 of each UCA after adjusting the amplitude and phase in accordance with the transmission direction of radio waves. Then, in S114, the transmitting device 2 transmits radio waves from the UCA.
 次に、制御部28が行う制御の例について説明する。上述したように、送信装置2は、任意の方向にアンテナ素子200を向けることができるUCAを選択して、その方向へのOAM多重伝送を行う。このための制御を制御部28が実行する。 Next, an example of control performed by the control unit 28 will be described. As described above, the transmitting device 2 selects a UCA capable of directing the antenna element 200 in an arbitrary direction, and performs OAM multiplex transmission in that direction. The control unit 28 executes the control for this.
 例えば、送信装置2における制御部28が、各受信装置3の位置(送信装置2に対する受信装置3が存在する方向でもよい)を把握しているとする。なお、送信装置2の制御部28が、受信装置3の状態(受信装置3の位置等)を把握する方法は、どのような方法であってもよい。 For example, it is assumed that the control unit 28 in the transmitting device 2 knows the position of each receiving device 3 (or the direction in which the receiving device 3 exists with respect to the transmitting device 2). Any method may be used for the control unit 28 of the transmitting device 2 to grasp the state of the receiving device 3 (the position of the receiving device 3, etc.).
 例えば、制御部28は、受信装置3から送信された参照信号を受信することによって受信装置3の位置を把握してもよいし、受信装置3から送信された位置情報を受信することによって受信装置3の位置を把握してもよい。また、制御部28に、受信装置3の位置(固定位置、時刻毎の移動予定位置等)が予め設定されていてもよい。 For example, the control unit 28 may grasp the position of the receiving device 3 by receiving the reference signal transmitted from the receiving device 3, or may grasp the position of the receiving device 3 by receiving the position information transmitted from the receiving device 3. 3 position may be grasped. Further, the position of the receiving device 3 (fixed position, planned movement position at each time, etc.) may be preset in the control unit 28 .
 例えば、制御部28は、図13に示す位置Aに信号送信対象の受信装置3があると判断する。このとき、制御部28は、送信装置2から位置Aへの方向に送信するための各アンテナ素子200への出力ごとの振幅・位相調整量を算出し、振幅位相制御部26に対して振幅・位相を調整する指示を行う。 For example, the control unit 28 determines that the signal transmission target receiving device 3 is at position A shown in FIG. At this time, the control unit 28 calculates the amplitude/phase adjustment amount for each output to each antenna element 200 for transmission in the direction from the transmission device 2 to the position A, and sends the amplitude/phase control unit 26 an amplitude/phase adjustment amount. Give an instruction to adjust the phase.
 なお、送信装置2は、同心異径のUCAを複数個選択可能な場合には、複数UCAのうちのいずれか複数又は全部のUCAを選択してOAM-MIMO多重伝送を行ってもよい。 When a plurality of concentric UCAs with different diameters can be selected, the transmitting device 2 may select any one or more of the plurality of UCAs or all of them to perform OAM-MIMO multiplex transmission.
 また、図14に示したように、位置Aとは異なる位置Bに受信装置3が存在する場合にも同様に、送信装置2は、位置Bに向けて電波が放射されるように振幅・位相調整を行う。 Also, as shown in FIG. 14, when the receiving device 3 is present at a position B different from the position A, the transmitting device 2 similarly adjusts the amplitude and phase so that radio waves are radiated toward the position B. make adjustments.
 さらに、受信装置3が位置Bから位置A(図13)に移動する場合、制御部28は、受信装置3の移動を追跡する。つまり、上述したように、制御部28は、受信装置3の位置を常に把握していることとする。 Furthermore, when the receiving device 3 moves from position B to position A (FIG. 13), the control unit 28 tracks the movement of the receiving device 3 . In other words, as described above, the control unit 28 always keeps track of the position of the receiving device 3 .
 例えば、制御部28は、受信装置3の移動前に選択したUCA-Xの送信軸と、受信装置3の移動後の送信軸との角度がある閾値以上になった場合に、受信装置3との通信のためのUCAをUCA-Xから、他のUCAに切り替える。 For example, when the angle between the transmission axis of the UCA-X selected before the movement of the receiving device 3 and the transmission axis after the movement of the receiving device 3 becomes equal to or greater than a certain threshold, the control unit 28 communication from UCA-X to another UCA.
 すなわち、送信装置2は、受信装置3の移動後の位置を位置A’とすると、送信装置2から位置A’への方向(送信軸)に送信可能なUCA-X’を選択し、受信装置3との通信のためのUCAをUCA-XからUCA-X’へ切り替え、アンテナ素子200の方向と出力信号の振幅・位相を調整する。 That is, if the position after the movement of the receiving device 3 is position A', the transmitting device 2 selects a UCA-X' that can be transmitted in the direction (transmission axis) from the transmitting device 2 to the position A'. 3 is switched from UCA-X to UCA-X', and the direction of antenna element 200 and the amplitude and phase of the output signal are adjusted.
 以上説明したように、実施形態にかかる送信装置2は、アンテナ素子200それぞれの電波送信方向を変えるように、アンテナ素子200それぞれを回転させる制御を行い、アンテナ素子200それぞれが放射する電波の振幅及び位相を、アンテナ素子200それぞれの電波送信方向が揃うように制御するので、UCA27の送信軸と受信軸との間に軸ずれが生じ得る場合にも、軌道角運動量多重伝送を可能にすることができる。 As described above, the transmission device 2 according to the embodiment performs control to rotate each antenna element 200 so as to change the radio wave transmission direction of each antenna element 200, and the amplitude and amplitude of radio waves emitted by each antenna element 200. Since the phase is controlled so that the radio wave transmission directions of the antenna elements 200 are aligned, orbital angular momentum multiplex transmission can be performed even when there is a misalignment between the transmission axis and the reception axis of the UCA 27. can.
 なお、上述した実施形態における送信装置2、受信装置3及び制御装置4を構成する各部は、一部又は全部が、ハードウェアによって構成されてもよいし、プログラムをプロセッサに実行させることによって構成されてもよい。 It should be noted that each unit constituting the transmitting device 2, the receiving device 3, and the control device 4 in the above-described embodiment may be partially or wholly configured by hardware, or may be configured by causing a processor to execute a program. may
 また、送信装置2、受信装置3及び制御装置4を構成する各部は、一部又は全部がプログラムをプロセッサに実行させることによって構成されている場合、当該プログラムが記録媒体に記録されて供給されてもよいし、ネットワークを介して供給されてもよい。 In addition, when each unit constituting the transmitting device 2, the receiving device 3, and the control device 4 is partially or entirely configured by causing a processor to execute a program, the program is recorded on a recording medium and supplied. may be supplied over a network.
 以上、本発明の実施形態について説明したが、本発明は、上述した実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. is possible.
 1・・・無線通信システム、2・・・送信装置、3・・・受信装置、4・・・制御装置、21・・・デジタル信号処理部、22・・・アナログ信号処理部、23・・・OAMモード生成部、24・・・切替制御部、25・・・回転制御部、26・・・振幅位相制御部、27・・・UCA、28・・・制御部、200・・・アンテナ素子 DESCRIPTION OF SYMBOLS 1... Wireless communication system 2... Transmitting device 3... Receiving device 4... Control device 21... Digital signal processing unit 22... Analog signal processing unit 23... OAM mode generation unit 24 switching control unit 25 rotation control unit 26 amplitude phase control unit 27 UCA 28 control unit 200 antenna element

Claims (8)

  1.  複数のアンテナ素子が円形に配置された円形アレーアンテナを用いて軌道角運動量多重伝送を行う送信方法において、
     前記アンテナ素子それぞれの電波送信方向を変えるように、前記アンテナ素子それぞれを回転させる制御を行う回転制御工程と、
     回転させる制御を行った前記アンテナ素子それぞれが放射する電波の振幅及び位相を、前記アンテナ素子それぞれの電波送信方向が揃うように制御する振幅位相制御工程と
     を含むことを特徴とする送信方法。
    In a transmission method that performs orbital angular momentum multiplexing transmission using a circular array antenna in which a plurality of antenna elements are arranged in a circle,
    a rotation control step of performing control to rotate each of the antenna elements so as to change the radio wave transmission direction of each of the antenna elements;
    and an amplitude and phase control step of controlling the amplitude and phase of radio waves radiated by the antenna elements controlled to rotate so that the radio wave transmission directions of the antenna elements are aligned.
  2.  送信すべきデジタル信号をアナログ信号に変換して処理する前に、搬送波に重畳させるように処理するデジタル信号処理工程をさらに含み、
     前記回転制御工程及び前記振幅位相制御工程は、
     前記デジタル信号処理工程に含まれること
     を特徴とする請求項1に記載の送信方法。
    further comprising a digital signal processing step for superimposing the digital signal to be transmitted on the carrier before converting and processing the digital signal to an analog signal;
    The rotation control step and the amplitude phase control step are
    2. The transmission method according to claim 1, being included in the digital signal processing step.
  3.  前記円形アレーアンテナは、
     複数の前記アンテナ素子が同心異径の複数の円を構成するように配置されており、
     前記回転制御工程では、
     複数の前記アンテナ素子の中から選択された前記アンテナ素子を回転させる制御を行い、
     前記振幅位相制御工程では、
     前記回転制御工程で回転させる制御を行った前記アンテナ素子それぞれが放射する電波の振幅及び位相を制御すること
     を特徴とする請求項1又は2に記載の送信方法。
    The circular array antenna is
    A plurality of the antenna elements are arranged to form a plurality of concentric circles with different diameters,
    In the rotation control step,
    performing control to rotate the antenna element selected from among the plurality of antenna elements;
    In the amplitude phase control step,
    3. The transmission method according to claim 1, further comprising: controlling the amplitude and phase of radio waves radiated from each of the antenna elements controlled to rotate in the rotation control step.
  4.  前記アンテナ素子それぞれが放射する電波が受信装置に向けて放射されるように、電波を放射させる前記アンテナ素子を選択して切替えるように制御する切替制御工程をさらに含むこと
     を特徴とする請求項1~3のいずれか1項に記載の送信方法。
    2. The method further comprises a switching control step of selecting and switching the antenna elements that radiate radio waves so that the radio waves radiated from each of the antenna elements are radiated toward a receiving device. 4. The transmission method according to any one of 3.
  5.  複数のアンテナ素子が円形に配置された円形アレーアンテナを用いて軌道角運動量多重伝送を行う送信装置において、
     前記アンテナ素子それぞれの電波送信方向を変えるように、前記アンテナ素子それぞれを回転させる制御を行う回転制御部と、
     前記回転制御部が回転させる制御を行った前記アンテナ素子それぞれが放射する電波の振幅及び位相を、前記アンテナ素子それぞれの電波送信方向が揃うように制御する振幅位相制御部と
     を有することを特徴とする送信装置。
    In a transmission device that performs orbital angular momentum multiplexing transmission using a circular array antenna in which a plurality of antenna elements are arranged in a circle,
    a rotation control unit that performs control to rotate each of the antenna elements so as to change the radio wave transmission direction of each of the antenna elements;
    and an amplitude/phase control unit that controls the amplitude and phase of radio waves radiated from each of the antenna elements controlled to rotate by the rotation control unit so that the radio wave transmission directions of the antenna elements are aligned. transmitting device.
  6.  送信すべきデジタル信号をアナログ信号に変換して処理する前に、搬送波に重畳させるように処理するデジタル信号処理部をさらに有し、
     前記回転制御部及び前記振幅位相制御部は、
     前記デジタル信号処理部に含まれるように構成されていること
     を特徴とする請求項5に記載の送信装置。
    further comprising a digital signal processing unit for superimposing a digital signal to be transmitted on a carrier wave before converting the digital signal to an analog signal and processing the signal;
    The rotation control unit and the amplitude phase control unit are
    6. The transmission device according to claim 5, wherein the transmission device is configured to be included in the digital signal processing section.
  7.  前記円形アレーアンテナは、
     複数の前記アンテナ素子が同心異径の複数の円を構成するように配置されており、
     前記回転制御部は、
     複数の前記アンテナ素子の中から選択された前記アンテナ素子を回転させる制御を行い、
     前記振幅位相制御部は、
     前記回転制御部が回転させる制御を行った前記アンテナ素子それぞれが放射する電波の振幅及び位相を制御すること
     を特徴とする請求項5又は6に記載の送信装置。
    The circular array antenna is
    A plurality of the antenna elements are arranged to form a plurality of concentric circles with different diameters,
    The rotation control unit is
    performing control to rotate the antenna element selected from among the plurality of antenna elements;
    The amplitude phase control section is
    7. The transmission device according to claim 5, wherein the rotation control unit controls the amplitude and phase of radio waves radiated from each of the antenna elements controlled to rotate.
  8.  前記アンテナ素子それぞれが放射する電波が受信装置に向けて放射されるように、電波を放射させる前記アンテナ素子を選択して切替えるように制御する切替制御部をさらに有すること
     を特徴とする請求項5~7のいずれか1項に記載の送信装置。
    6. The apparatus further comprises a switching control unit that selects and switches the antenna elements that radiate radio waves so that the radio waves radiated from each of the antenna elements are radiated toward a receiving device. 8. The transmitter according to any one of 1 to 7.
PCT/JP2021/035385 2021-09-27 2021-09-27 Transmission method and transmission device WO2023047582A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/035385 WO2023047582A1 (en) 2021-09-27 2021-09-27 Transmission method and transmission device
JP2023549297A JPWO2023047582A1 (en) 2021-09-27 2021-09-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035385 WO2023047582A1 (en) 2021-09-27 2021-09-27 Transmission method and transmission device

Publications (1)

Publication Number Publication Date
WO2023047582A1 true WO2023047582A1 (en) 2023-03-30

Family

ID=85720301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035385 WO2023047582A1 (en) 2021-09-27 2021-09-27 Transmission method and transmission device

Country Status (2)

Country Link
JP (1) JPWO2023047582A1 (en)
WO (1) WO2023047582A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017230A1 (en) * 2007-08-02 2009-02-05 Nec Corporation Mimo communication system having deterministic communication path and antenna arrangement method therefor
JP2015231108A (en) * 2014-06-04 2015-12-21 富士通株式会社 Antenna device and antenna direction adjusting method
JP2017224989A (en) * 2016-06-15 2017-12-21 日本電信電話株式会社 Antenna adjusting method and communication system
WO2019059408A1 (en) * 2017-09-25 2019-03-28 日本電信電話株式会社 Oam multiplexing communication system and oam multiplexing communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017230A1 (en) * 2007-08-02 2009-02-05 Nec Corporation Mimo communication system having deterministic communication path and antenna arrangement method therefor
JP2015231108A (en) * 2014-06-04 2015-12-21 富士通株式会社 Antenna device and antenna direction adjusting method
JP2017224989A (en) * 2016-06-15 2017-12-21 日本電信電話株式会社 Antenna adjusting method and communication system
WO2019059408A1 (en) * 2017-09-25 2019-03-28 日本電信電話株式会社 Oam multiplexing communication system and oam multiplexing communication method

Also Published As

Publication number Publication date
JPWO2023047582A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
KR101392073B1 (en) Antenna, base station and beam processing method
KR101563309B1 (en) Communication system and method using an active phased array antenna
JP7413672B2 (en) Antenna devices, radio transmitters, radio receivers, and radio communication systems
WO2015172667A1 (en) Multi-beam antenna system and phase adjustment method thereof, and dual-polarization antenna system
JP3997294B2 (en) Mobile radio communication system
JP2009050029A (en) Antenna system
WO2008118474A2 (en) Extensions to adaptive beam-steering method
JP6811155B2 (en) OAM multiplex communication system and antenna axis misalignment correction method
JP2015530052A (en) Multiband antenna with variable electrical tilt
WO2013113677A1 (en) Combined power transmission
WO2012103788A1 (en) Microwave device and microwave transmission method
WO2023047582A1 (en) Transmission method and transmission device
KR101859867B1 (en) Antenna apparatus for millimeter wave and beam generating method using lens
US8860628B2 (en) Antenna array for transmission/reception device for signals with a wavelength of the microwave, millimeter or terahertz type
WO2022145008A1 (en) Transmission device, wireless communication system, and communication method
JP2017212673A (en) Radio communication method and radio communication system
WO2023286161A1 (en) Transmission device and transmission method
WO2023286162A1 (en) Transmission device and transmission method
JP7371794B2 (en) Transmission device and signal transmission method
JPH05175933A (en) Indoor communication system
JP7414157B2 (en) Transmission device and signal transmission method
WO2022145006A1 (en) Transmission device and signal transmission method
WO2022145011A1 (en) Wireless communication system, transmission device, reception device, and communication method
WO2023286163A1 (en) Radio communication system, transmission device, and reception device
WO2022145010A1 (en) Wireless communication system, transmission device, reception device, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023549297

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE