WO2022145011A1 - Wireless communication system, transmission device, reception device, and communication method - Google Patents

Wireless communication system, transmission device, reception device, and communication method Download PDF

Info

Publication number
WO2022145011A1
WO2022145011A1 PCT/JP2020/049214 JP2020049214W WO2022145011A1 WO 2022145011 A1 WO2022145011 A1 WO 2022145011A1 JP 2020049214 W JP2020049214 W JP 2020049214W WO 2022145011 A1 WO2022145011 A1 WO 2022145011A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving device
oam mode
signal
oam
transmitting device
Prior art date
Application number
PCT/JP2020/049214
Other languages
French (fr)
Japanese (ja)
Inventor
斗煥 李
裕文 笹木
康徳 八木
貴之 山田
智貴 瀬本
淳 増野
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022572854A priority Critical patent/JP7563489B2/en
Priority to PCT/JP2020/049214 priority patent/WO2022145011A1/en
Publication of WO2022145011A1 publication Critical patent/WO2022145011A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems

Definitions

  • the present invention relates to a technique for spatially multiplex transmission of a radio signal using the orbital angular momentum (OAM) of an electromagnetic wave.
  • OFAM orbital angular momentum
  • Non-Patent Document 1 In an electromagnetic wave having OAM, the equiphase planes are spirally distributed along the propagation direction around the propagation axis. Since electromagnetic waves having different OAM modes and propagating in the same direction have orthogonal spatial phase distributions in the rotation axis direction, the signals are multiplexed by separating the signals of each OAM mode modulated by different signal sequences in the receiving device. It is possible to transmit.
  • a plurality of OAM modes are generated by using an evenly spaced circular array antenna (hereinafter referred to as UCA (Uniform Circular Array)) in which a plurality of antenna elements are arranged in a circle at equal intervals.
  • UCA Uniform Circular Array
  • -By synthesizing and transmitting spatial multiplex transmission of different signal sequences can be realized (for example, Non-Patent Document 2).
  • a butler circuit butler matrix circuit
  • a transmission device and a reception device using UCA enable large-capacity communication, but in the future, support for mobile communication is desired.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a technique capable of reducing interference between OAM modes on the receiving side in a wireless transmission technique using UCA.
  • a wireless communication system including a transmitting device and a receiving device.
  • the transmitting device transmits a signal in OAM mode having the maximum signal strength at the position of the receiving device to the receiving device.
  • a wireless communication system is provided in which the receiving device receives the OAM mode signal.
  • a technique capable of reducing interference between OAM modes on the receiving side is provided.
  • FIG. 1 shows an example of UCA phase setting for generating an OAM mode signal.
  • the UCA shown in FIG. 1 is a UCA composed of eight antenna elements.
  • the signals of OAM mode 0, 1, 2, 3, ... On the transmitting side are generated by the phase difference of the signals supplied to each antenna element (indicated by ⁇ ) of UCA. That is, the signal in the OAM mode n is generated by setting the phase of the signal supplied to each antenna element so that the phase becomes n rotations (n ⁇ 360 degrees).
  • the signal in which the rotation direction of the phase is reversed with respect to the signal in the OAM mode n is referred to as the OAM mode-n.
  • the rotation direction of the phase of the signal in the positive OAM mode is counterclockwise
  • the rotation direction of the phase of the signal in the negative OAM mode is clockwise.
  • signals to be transmitted in each OAM mode may be generated and synthesized in advance, and the combined signal of each OAM mode may be transmitted by a single UCA, or a plurality of UCAs may be used and different UCAs are used for each OAM mode.
  • the signal of each OAM mode may be transmitted.
  • the phase of each antenna element of the UCA on the receiving side may be set so as to be in the opposite direction to the phase of the antenna element on the transmitting side.
  • the OAM modes mixed by interference are mixed by digital signal processing such as channel equalization processing and sequential interference removal processing. It is necessary to separate the signals.
  • the interference between the OAM modes means that, for example, the signal transmitted from the transmitting device in the OAM mode 1 is output as a signal in the OAM mode 2 on the receiving side.
  • FIG. 2 shows an example of the phase distribution and signal strength (signal power) distribution of the OAM multiplex signal.
  • the phase distributions of the signals of OAM mode 1 and OAM mode 2 as seen from the end face (propagation orthogonal plane) orthogonal to the propagation direction from the transmission side are represented by arrows.
  • the beginning of the arrow is 0 degrees, the phase changes linearly and the end of the arrow is 360 degrees. That is, the signal in the OAM mode n propagates while the phase rotates n times (n ⁇ 360 degrees) in the propagation orthogonal plane.
  • the arrows in the phase distribution of the signals in OAM modes -1 and -2 are in the opposite direction.
  • the signal of each OAM mode has a different signal strength distribution and the position where the signal strength is maximized for each OAM mode.
  • the intensity distributions of the same OAM modes with different signs are the same.
  • the higher the OAM mode the farther the position where the signal strength is maximized from the propagation axis (Non-Patent Document 2).
  • the one with a larger value in the OAM mode is referred to as a higher-order mode.
  • the signal in OAM mode 3 is a higher-order mode than the signals in OAM mode 0, OAM mode 1, and OAM mode 2.
  • FIG. 2 (3) shows the position where the signal strength becomes maximum in each OAM mode by an annulus, but the position where the signal strength becomes maximum becomes farther from the central axis and the propagation distance becomes higher as the OAM mode becomes higher. Accordingly, the beam diameter of the OAM mode multiplex signal is widened, and the annulus indicating the position where the signal strength is maximized becomes large in each OAM mode.
  • a transmission device and a reception device using UCA enable large-capacity communication, but it is desired to support mobile communication in the future.
  • the axis between the transmitting antenna of the transmitting device (base station) and the receiving antenna of the receiving device (mobile terminal) shifts, resulting in interference between OAM modes in the receiving device. May occur.
  • the movement of the receiving device (assuming a mobile terminal) is supported by using the difference in the spread of the signal strength between the OAM modes as shown in FIG. 2 (3). .. Specifically, the transmitting device transmits only the OAM mode signal having the highest signal strength at the current position of the receiving device. Since the number of OAM modes to be transmitted is limited, the interference between OAM modes in the receiving device is reduced, and the amount of calculation for signal separation is also reduced.
  • FIG. 3 shows a configuration example of the wireless communication system according to the present embodiment.
  • the wireless communication system according to the present embodiment includes a transmitting device 100 and a receiving device 200.
  • the transmitting device 100 and the receiving device 200 are provided with a UCA and a butler circuit, respectively.
  • the transmitting device 100 can multiplex and transmit one or more OAM mode signals
  • the receiving device 200 is a signal in which one or more OAM modes transmitted from the transmitting device 100 are multiplexed. Can be received and the signals of each OAM mode can be separated.
  • the transmitting device 100 multiplexes and transmits two OAM mode (n and ⁇ n) signals at the maximum, and the receiving device 200 transmits from the transmitting device 100. Receive the signal.
  • the process described in "Communication with a plurality of receiving devices 200" described later is not limited to such transmission / reception in the OAM mode.
  • the transmitting device 100 is a non-moving base station and the receiving device 200 is a mobile terminal, but both the transmitting device 100 and the receiving device 200 may be mobile terminals. ..
  • FIG. 4 is a diagram of an image of the transmitting device 100 (base station) and the receiving device 200 (mobile terminal) viewed from above.
  • the spread of each OAM mode of the signal transmitted by the transmitting device 100 is shown as a triangle with the transmitting device 100 as the apex.
  • the position where the signal strength is maximized becomes farther from the central axis as the OAM mode becomes higher. It should be noted that the positions where the signal strengths of the same OAM modes having different symbols are maximized are the same.
  • the transmitting device 100 transmits a signal in the OAM mode in which the signal strength is highest at the position of the receiving device 200. Since there are two OAM modes having the highest signal strength, + n and ⁇ n, the transmitting device 100 uses the OAM mode n signal and the OAM as the OAM mode signal having the highest signal strength at the position of the receiving device 200. A signal obtained by multiplexing a mode-n signal is transmitted. However, the signal of OAM mode n and the signal of any one of OAM mode ⁇ n may be transmitted.
  • the transmitting device 100 transmits a signal in OAM mode 2 and OAM mode-2.
  • the transmitting device 100 transmits a signal in OAM mode 0 (or OAM mode 1 and OAM mode -1).
  • the transmitting device 100 transmits a signal in OAM mode 2 and OAM mode-2.
  • Example 1 An operation example of the transmission device 100 in Example 1 will be described with reference to the flowchart of FIG.
  • the transmitting device 100 calculates (or predicts) the current position of the receiving device 200 (or the future position after the processing time from the present in consideration of the processing time of S101 to S104).
  • the current position and the future position of the receiving device 200 are collectively referred to as "predicted position”.
  • the transmitting device 100 periodically calculates the predicted position of the receiving device 200.
  • the transmitting device 100 periodically receives the position information and the speed information of the receiving device 200 from the receiving device 200, and calculates the predicted position of the receiving device 200 from the received position information and the speed information of the receiving device 200. do.
  • the transmitting device 100 may hold the position of the receiving device 200 for each time in a table in advance. In this case, the transmitting device 100 can grasp the predicted position of the receiving device 200 by acquiring the position corresponding to the current time (or future time) from the table.
  • the transmitting device 100 determines whether or not the predicted position of the receiving device 200 has been changed from the previous predicted position. Whether or not it has been changed is determined by, for example, whether or not the distance between the current predicted position and the previous predicted position is equal to or less than the threshold value. If the predicted position of the receiving device 200 is changed from the previous predicted position, the process proceeds to S103, and if the predicted position is not changed, the process returns to S101.
  • the transmitting device 100 determines the OAM mode used for transmission with respect to the predicted position of the receiving device 200.
  • the OAM mode that maximizes the signal strength at the predicted position of the receiving device 200 is selected.
  • the transmission device 100 holds distribution information of signal strength on a plane according to each distance from the transmission device 100 (example: distribution of signal strength as shown in FIG. 2 (3)) for each OAM mode. Since (or can be calculated), the OAM mode in which the signal strength is maximized at the predicted position of the receiving device 200 can be determined based on the distribution information.
  • OAM mode n and OAM mode-n are selected.
  • the transmitting device 100 switches the currently used OAM mode to "OAM mode n and OAM mode-n". If the currently used OAM mode is the same as "OAM mode n and OAM mode-n", the system returns to S101 while continuing to use the currently used OAM mode.
  • the receiving device 200 receives only two OAM mode signals having a large signal strength at the maximum, it is desired without performing signal separation processing in digital signal processing (or reducing the amount of calculation related to signal separation processing). Data can be received.
  • Example 2 will be described with reference to the flowchart of FIG.
  • the transmitting device 100 transmits a signal (eg, an orthogonal signal sequence) to the receiving device 200 in a plurality of candidate OAM modes used in data communication.
  • a signal eg, an orthogonal signal sequence
  • the receiving device 200 measures the signal strength of the signal of each OAM mode, and selects the OAM mode in which the signal strength is maximum.
  • the receiving device 200 feeds back the identification information (index) of the OAM mode selected in S202 to the transmitting device 100.
  • Communication for control such as transmission / reception of feedback may be performed using UCA by using one OAM mode, or each of the transmitting device 100 and the receiving device 200 is controlled separately from the UCA. It may be possible to provide an antenna for communication and use the antenna.
  • the transmitting device 100 transmits data using the OAM mode (for example, OAM mode 1 and OAM mode-1) fed back from the receiving device 200 in S203.
  • OAM mode for example, OAM mode 1 and OAM mode-1
  • the receiving device 200 receives only two OAM mode signals having a large signal strength at the maximum, it is desired without performing signal separation processing in digital signal processing (or reducing the amount of calculation related to signal separation processing). Data can be received.
  • the processes of S201 to S203 may be executed at a predetermined cycle or at a predetermined timing. Further, the processes S201 to S203 may be executed when the receiving device 200 requests the transmitting device 100. More detailed operation examples of S201 and S202 will be described below.
  • the transmitting device 100 transmits signals to the receiving device 200 separately (at different timings, not simultaneously) in each of the plurality of OAM modes that are candidates for use. For example, assuming that there are four OAM modes of 1, -1, 2, and -2, the transmission device 100 has an OAM mode 1 signal, an OAM mode-1 signal, an OAM mode 2 signal, and an OAM. Each of the mode-2 signals is transmitted to the receiving device 200.
  • the butler circuit in the receiving device 200 has a plurality of output ports, and one output port corresponds to one OAM mode.
  • the signal of OAM mode 1 (the signal transmitted by the radio wave of OAM mode 1) is output from the output port # 1 of the butler circuit in the receiving device 200, and the output port.
  • the OAM mode-1 signal is output from # 2
  • the OAM mode 2 signal is output from the output port # 3
  • the OAM mode-2 signal is output from the output port # 4.
  • the receiving device 200 measures the signal strength of the signal output from the output port corresponding to each OAM mode, and selects the OAM mode that has the maximum signal strength.
  • FIG. 7 is a diagram showing a configuration example of the transmission device 100 according to the present embodiment.
  • the transmission device 100 includes a UCA 110, an OAM mode generation unit 120, a signal processing unit 130, and a control unit 140.
  • the "UCA 110, OAM mode generation unit 120, signal processing unit 130" may be referred to as a transmission unit.
  • the signal processing unit 130 generates a digital signal to be transmitted on a carrier from the input data, converts the digital signal into an analog signal (digital-analog conversion), and converts the frequency of the analog signal into the frequency band of the carrier (eg, the frequency band of the carrier). : 28GHz band).
  • the signal processing unit 130 inputs the generated analog signal to the OAM mode generation unit 120 (butler circuit).
  • control unit 140 executes the processes of S101 to S104 described with reference to the flowchart of FIG.
  • the control unit 140 decides to change the OAM mode to be used from "OAM mode 1 and OAM mode-1" to "OAM mode 2 and OAM mode-2".
  • the signal processing unit 130 is instructed by the control unit 140 to generate signals of OAM mode 2 and OAM mode-2, generates those signals, and signals of OAM mode 2 (OAM mode 2).
  • Signal transmitted by radio wave is input to the input port corresponding to OAM mode 2 of the OAM mode generator 120 (Butler circuit), and the signal of OAM mode-2 (signal transmitted by radio wave of OAM mode-2) is input.
  • control unit 140 receives feedback from the receiving device 200, generates a signal to be transmitted in the OAM mode specified by the feedback, and generates a signal to be transmitted in the OAM mode, and the OAM mode generation unit 120 (Butler circuit). Instruct the signal processing unit 130 to input to the corresponding input port of.
  • the signal processing unit 130 when the signal processing unit 130 receives an instruction from the control unit 140 to generate OAM mode 1 and OAM mode-1 signals, the signal processing unit 130 generates those signals and generates the OAM mode 1 signal (with the radio wave of OAM mode 1).
  • the signal to be transmitted is input to the input port corresponding to OAM mode 1 of the OAM mode generator 120 (Butler circuit), and the signal of OAM mode-1 (the signal transmitted by the radio wave of OAM mode-1) is input to the OAM mode. Input to the input port corresponding to OAM mode-1 of the generation unit 120 (Butler circuit).
  • the OAM mode generation unit 120 is a butler circuit.
  • FIG. 8 shows an example of a connection configuration between the OAM mode generator 120 (butler circuit) and the UCA 110.
  • the UCA110 in the example shown in FIG. 8 is an antenna in which eight antenna elements # 1 to # 8 are arranged in a circular shape.
  • FIG. 8 shows that the Butler circuit has N input ports. Basically, the number of output ports is the maximum number of N, and when there are eight output ports as in the example of FIG. 8, the maximum number of N is eight.
  • the "port" may be referred to as a "terminal”.
  • one UCA and one butler circuit are provided, and the number of antenna elements is eight. There may be a plurality of UCA and Butler circuits, respectively. The number of antenna elements of the UCA110 may be more than eight or less.
  • FIG. 8 shows, as an example, that a signal to be transmitted in OAM mode 1 is input to input port A, and a signal to be transmitted in OAM mode -1 is input to input port B.
  • the input ports other than the input port A and the input port B correspond to the OAM modes other than the OAM modes 1 and -1.
  • a signal with a phase difference of 45 ° (360 ° / 8) counterclockwise is output from each output port for input from input port A, and each output is output for input from input port B.
  • a signal with a phase difference of -45 ° counterclockwise is output from the port. That is, when both the input port A and the input port B have inputs, a signal obtained by combining (multiplexing) two signals having different phases is output from each output port.
  • each antenna element of the UCA 110 outputs a signal obtained by combining two signals having the following phases. To.
  • the output port J of the OAM mode generator 120 (Butler circuit) is connected to the antenna element # 1 of the UCA 110, the output port I is connected to the antenna element # 2 of the UCA 110, and the output port H is ,
  • the output port G is connected to the antenna element # 4 of the UCA 110, the output port F is connected to the antenna element # 5 of the UCA 110, and the output port E is the antenna element of the UCA 110.
  • the output port D is connected to the antenna element # 7 of the UCA 110, and the output port C is connected to the antenna element # 8 of the UCA 110.
  • FIG. 8 shows the connection of only the output port J.
  • the signal output from each output port is supplied to the connected antenna element and output as a radio wave from the antenna element.
  • FIG. 9 is a diagram showing a configuration example of the receiving device 200 according to the present embodiment.
  • the receiving device 200 includes a UCA 210, an OAM mode separating unit 220, a signal processing unit 230, and a control unit 240.
  • the "UCA210, OAM mode separation unit 220, signal processing unit 230" may be referred to as a receiving unit.
  • the OAM mode separation unit 220 has a butler circuit. Further, the OAM mode separation unit 220 includes a measurement unit 221 for measuring the signal strength output from each output port of the butler circuit. The measuring unit 221 is unnecessary when only the operation of Example 1 described above is performed.
  • the measuring unit 221 measures the signal strength output from each output port, notifies the control unit 240 of the measurement result, and the control unit 240 has an OAM mode in which the signal strength is maximized. Is selected, and the selected OAM mode is fed back to the transmission device 100.
  • FIG. 10 shows an example of a connection configuration between the OAM mode separation unit 220 (butler circuit) and the UCA 210.
  • the UCA210 in the example shown in FIG. 10 is an antenna in which eight antenna elements # 1 to # 8 are arranged in a circular shape.
  • the butler circuit shown in FIG. 10 corresponds to the one in which the input and the output of the butler circuit in the transmission device 100 are reversed.
  • the butler circuit has N output ports. As shown in FIGS. 9 and 10, it is an example that one UCA and one butler circuit are provided, and the number of antenna elements is eight. There may be a plurality of UCA and Butler circuits, respectively. The number of antenna elements of the UC A210 may be more than eight or less.
  • FIG. 10 shows, as an example, that the OAM mode 1 signal is output from the output port A and the OAM mode-1 signal is output from the output port B.
  • the output ports other than the output port A and the output port B correspond to the OAM modes other than the OAM modes 1 and -1.
  • Each antenna element of UCA210 and each input port of OAM mode separation unit 220 (Butler circuit) are connected as shown in the figure (for convenience of illustration, only # 7 is drawn with a connection line).
  • a phase conversion or the like opposite to that of the butler circuit on the transmitting side is performed, so that an OAM mode signal corresponding to the output port is output from each output port.
  • the signal processing unit 230 shown in FIG. 9 converts an analog signal received from the OAM mode separation unit 220 (Butler circuit) into a digital signal (analog-digital conversion), performs demodulation, generates data, and outputs the data. Further, the signal processing unit 230 performs signal separation processing by digital signal processing. If there is no need for signal separation, the signal separation process may not be performed.
  • control unit 240 receives only the OAM mode signal instructed to the transmission device 100 in S203 of FIG. 6 from the corresponding output port of the OAM mode separation unit 220 (butler circuit). It may be instructed to the signal processing unit 230.
  • the signal processing unit 230 performs demodulation processing and the like using the signal received from the output port.
  • the signal having the OAM mode transmitted from the UCA of the transmitting device 100 has a place where the strength becomes stronger and a place where the strength becomes weaker on the end face on the receiving side. It depends on the distance between the transmitting device 100 and the receiving device 200. Also, this location is different for each OAM mode. That is, the OAM beam transmitted from the UCA of the transmitting device 100 (the beam in the OAM mode transmitted from the UCA) has a weakened or strong received power depending on the distance between the transmitting device 100 and the receiving device 200. There is a place to do it, which is different for each OAM mode.
  • FIG. 11 shows an example of the relationship between the distance from the UCA of the transmitting device 100 to the receiving device 200 and the receiving strength.
  • the horizontal axis of FIG. 11 shows the distance from the UCA of the transmitting device 100 to the receiving device 200, and the vertical axis is the receiving intensity at the position of the receiving device 200.
  • the above distance is, for example, a distance in the direction perpendicular to the plane of the UCA.
  • the reception intensity of the OAM mode 1 is weakened at the location of the distance 1
  • the reception intensity of the OAM mode 2 is weakened at the location of the distance 2.
  • "weak" signal strength (reception strength) at a certain place (position) may mean that the received power is lower than a certain threshold value, or it may be at another place (position). ) May be lower than the received power.
  • "strong" signal strength (reception strength) at a certain place (position) may mean that the received power is higher than a certain threshold value or higher than the received power at another place (position). It may also be that the received power is high.
  • FIG. 12 is a diagram showing a two-dimensional situation when the transmitting device 100, the receiving device 200-1 and the receiving device 200-2 are viewed from the sky.
  • the UCA 110 of the transmission device 100 is located on the rooftop of a building or the like, and the antenna is installed in a direction in which radio waves reach the ground side.
  • the part (location) of the dotted line indicated by A is the location where the strength of the signal of OAM mode 1 transmitted from the transmission device 100 is weakened.
  • the place where the signal strength of the OAM mode 1 is weakened is indicated by a circle.
  • the receiving device 200-2 is located in a place where the strength of the signal of the OAM mode 1 transmitted from the transmitting device 100 is weakened. Further, the receiving device 200-1 is located at a place where the strength of the signal of the OAM mode 1 transmitted from the transmitting device 100 becomes strong.
  • the control unit 140 of the transmitting device 100 grasps the positions of the receiving device 200-1 and the receiving device 200-2, the situation shown in FIG. 12 (the receiving device 200-1 has a reception intensity of OAM mode 1). Strong, the receiving device 200-2 has a weak reception strength in OAM mode 1).
  • the transmitting device 100 transmits a signal from the UCA 110 to the receiving device 200-1 in the OAM mode 1, and is weak at another OAM mode (for example, the position of the receiving device 200-1).
  • the signal to the receiving device 200-2 is transmitted in the mode) in which the signal becomes stronger at the position of the receiving device 200-2.
  • the receiving device 200-1 can receive the OAM mode 1 signal transmitted from the transmitting device 100 without interference, and the receiving device 200-2 receives the signal of another mode transmitted from the transmitting device 100 without interference. can.
  • each receiving device 200 feeds back the OAM mode having a small amount of interference (or having good reception quality or high receiving power) to the transmitting device 100 in S203.
  • the transmitting device 100 grasps, for example, that the OAM mode 1 has good reception quality with respect to the receiving device 200-1 and the OAM mode 2 has good receiving quality with respect to the receiving device 200-2, the transmitting device 200-1 has a good reception quality.
  • OAM mode 1 a signal is transmitted to the receiver 200-2, and a signal is transmitted to the receiving device 200-2 in OAM mode 2.
  • the transmitting device 100 transmits all the signals of the OAM mode that can be transmitted by itself, and each receiving device 200 sets the receiving intensity (reception power, reception quality, etc.) for each OAM mode to the transmitting device 100. You may give feedback to.
  • the transmitting device 100 transmits a signal to the receiving device 200-2 in the OAM mode in which the receiving device 200-1 has a weak receiving strength, and the receiving device 100 has a weak receiving strength to the receiving device 200-2.
  • a signal is transmitted to the receiving device 200-1 in OAM mode.
  • the signal transmitted to a certain receiving device can reduce the interference with another receiving device.
  • the difference in the distribution of the signal strength (power) depending on the OAM mode and the difference in the distribution of the signal strength (power) depending on the distance described with reference to FIGS. 2 (3) and 11 depend on the size of the UCA of the transmission device 100. Will also be different.
  • the transmission device 100 includes UCA # 1 to # 3 having a plurality of different diameters, as shown in FIG.
  • the OAM mode is from the UCA having a diameter at which the signal in the OAM mode is weakened at the position of the receiving device 200-x.
  • the signal to the receiving device 200-y is transmitted, and the signal to the receiving device 200-x in the OAM mode is transmitted from the UCA having a diameter at which the signal in the OAM mode becomes weak at the position of the receiving device 200-y.
  • Such control is also possible by the feedback control described above.
  • the OAM mode when the signal of OAM mode 1 is transmitted from UCA # 2 among UCA # 1 to # 3 of the transmission device 100, the OAM mode is located at the circular location shown by A in FIG. It is assumed that the reception strength of 1 becomes weak. Further, for example, when a signal of OAM mode 2 is transmitted from UCA # 1, it is assumed that the signal strength of OAM mode 2 is weakened at the location of the receiving device 200-1.
  • the transmitting device 100 transmits a signal from UCA # 2 to the receiving device 200-1 in OAM mode 1 based on the instruction of the control unit 140, and from UCA # 1 to the receiving device 200-2 in OAM mode 2.
  • Send a signal
  • the receiving device 200-1 can receive the OAM mode 1 signal transmitted from the transmitting device 100 with low interference, and the receiving device 200-2 lowers the OAM mode 2 signal transmitted from the transmitting device 100. Can be received by interference.
  • the OAM mode used for transmission to the receiving device 200 has less interference with other receiving devices by using the characteristics that the intensity of the OAM differs depending on the mode and the diameter of the UCA of the OAM antenna.
  • the OAM mode for transmitting a signal to a certain receiving device 200 it is preferable, but not essential, to select an OAM mode that becomes stronger at the position of the receiving device 200.
  • the OAM mode may be selected according to the signal processing capability (interference elimination capability) of the receiving device 200.
  • the receiving device 200-1 has a low signal processing capacity and requires quick processing such as real time processing, and the receiving device 200-2 is more than the receiving device 200-1. It is assumed that the signal processing capacity is high, the signal processing for interference elimination can be taken time, and the request for real time is small.
  • the transmitting device 100 acquires the capability information of each receiving device as described above in advance. In the above case, the transmitting device 100 transmits a signal to the receiving device 200-2 using the OAM mode in which the signal is weakened at the position of the receiving device 200-1 based on the control by the control unit 140, so that the receiving device 200 Prevent the signal to -2 from reaching the receiving device 200-1 as interference.
  • the transmitting device 100 transmits a signal to the receiving device 200-1 using the OAM mode in which the signal becomes stronger at the position of the receiving device 200-1.
  • the receiving device 200-2 causes interference due to the OAM mode signal transmitted to the receiving device 200-1, but the receiving device 200-2 uses a conventional interference removing method such as an overloaded MIMO interference removing method. It can be used to acquire only the signal to the receiving device 200-2 itself.
  • the receiving device 200-1 since the receiving device 200-1 has less interference from the OAM mode transmitted to the receiving device 200-2, the signal to the receiving device 200-1 itself can be acquired without performing the interference removing process.
  • the transmitting device 100 can transmit only the OAM mode signal having the maximum signal strength at the position of the receiving device 200. Therefore, the receiving device 200 has a maximum of 2 signals. You will receive one OAM mode signal. Therefore, in the receiving device 200, it is possible to eliminate or reduce the signal separation processing for the interference between OAM modes. Therefore, when a mobile terminal having a particularly low capacity is used as a receiving device, the mobile terminal can receive the OAM mode multiplex signal and widen the bandwidth.
  • This specification describes at least the wireless communication system, the transmitting device, the receiving device, and the communication method described in the following items.
  • (Section 1) A wireless communication system including a transmitting device and a receiving device. The transmitting device transmits a signal in OAM mode having the maximum signal strength at the position of the receiving device to the receiving device.
  • (Section 2) The wireless communication system according to item 1, wherein the transmitting device determines an OAM mode having the maximum signal strength at a position of the receiving device based on distribution information of signal strengths of a plurality of OAM modes.
  • the receiving device measures the signal strength of a plurality of OAM mode signals received from the transmitting device, and notifies the transmitting device of the OAM mode having the maximum signal strength.
  • the wireless communication system according to item 1, wherein the transmitting device transmits an OAM mode signal notified from the receiving device to the receiving device.
  • the wireless communication system includes a first receiving device and a second receiving device, and the transmitting device receives an OAM mode signal in which the receiving intensity at the position of the first receiving device is weakened.
  • the wireless communication system according to any one of claims 1 to 3, which is transmitted to the second receiving device located at a position different from the existing position of the device.
  • the transmitting device in a wireless communication system including a transmitting device and a receiving device.
  • a transmitter including a transmitter that transmits a signal in OAM mode having the maximum signal strength at the position of the receiver to the receiver.
  • the transmitting device according to item 5 further comprising a control unit for determining the OAM mode having the maximum signal strength at the position of the receiving device based on the distribution information of the signal strengths of the plurality of OAM modes.
  • the receiving device in a wireless communication system including a transmitting device and a receiving device.
  • a receiver that receives a plurality of OAM mode signals from the transmitter, A receiving device including a control unit that measures the signal strength of a plurality of OAM mode signals received by the receiving unit and notifies the transmitting device of the OAM mode having the maximum signal strength.
  • the receiver comprises a butler circuit.
  • a communication method in a wireless communication system including a transmitting device and a receiving device. The transmitting device transmits a signal in OAM mode having the maximum signal strength at the position of the receiving device to the receiving device. A communication method in which the receiving device receives the OAM mode signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a wireless communication system provided with a transmission device and a reception device, wherein the transmission device transmits, to the reception device, a signal in which the signal strength at the location of the reception device is in a maximum OAM mode, and the reception device receives the signal in said OAM mode.

Description

無線通信システム、送信装置、受信装置、及び通信方法Wireless communication system, transmitter, receiver, and communication method
 本発明は、電磁波の軌道角運動量(Orbital Angular Momentum:OAM)を用いて無線信号を空間多重伝送する技術に関連するものである。 The present invention relates to a technique for spatially multiplex transmission of a radio signal using the orbital angular momentum (OAM) of an electromagnetic wave.
 近年、伝送容量向上のため、OAMを用いた無線信号の空間多重伝送技術の検討が進められている。(例えば、非特許文献1)。OAMを持つ電磁波は、伝搬軸を中心に伝搬方向にそって等位相面がらせん状に分布する。異なるOAMモードを持ち、同一方向に伝搬する電磁波は、回転軸方向において空間位相分布が直交するため、異なる信号系列で変調された各OAMモードの信号を受信装置において分離することにより、信号を多重伝送することが可能である。 In recent years, in order to improve the transmission capacity, studies on spatial multiplex transmission technology for wireless signals using OAM are underway. (For example, Non-Patent Document 1). In an electromagnetic wave having OAM, the equiphase planes are spirally distributed along the propagation direction around the propagation axis. Since electromagnetic waves having different OAM modes and propagating in the same direction have orthogonal spatial phase distributions in the rotation axis direction, the signals are multiplexed by separating the signals of each OAM mode modulated by different signal sequences in the receiving device. It is possible to transmit.
 このOAM多重技術を用いた無線通信システムでは、複数のアンテナ素子を等間隔に円形配置した等間隔円形アレーアンテナ(以下、UCA(Uniform Circular Array)と称する。)を用い、複数のOAMモードを生成・合成して送信することにより、異なる信号系列の空間多重伝送を実現できる(例えば、非特許文献2)。複数のOAMモードの信号生成及び信号分離には、例えば、バトラー回路(バトラーマトリクス回路)が使用される。 In a wireless communication system using this OAM multiplexing technology, a plurality of OAM modes are generated by using an evenly spaced circular array antenna (hereinafter referred to as UCA (Uniform Circular Array)) in which a plurality of antenna elements are arranged in a circle at equal intervals. -By synthesizing and transmitting, spatial multiplex transmission of different signal sequences can be realized (for example, Non-Patent Document 2). For example, a butler circuit (butler matrix circuit) is used for signal generation and signal separation in a plurality of OAM modes.
 上記のように、UCAを用いた送信装置と受信装置により、大容量の通信が可能になるが、今後は、移動通信への対応が望まれている。 As mentioned above, a transmission device and a reception device using UCA enable large-capacity communication, but in the future, support for mobile communication is desired.
 しかし、UCAを用いた従来の無線伝送技術では、複数のOAMモードの信号をモード間の干渉なく分離するために、送信アンテナと受信アンテナを正面で対向する位置に設置する必要があり、軸合わせが必要である。例えば受信装置として移動端末を使用した場合に、送信装置(基地局)の送信アンテナと受信装置(移動端末)の受信アンテナとの間の軸がずれる結果、受信装置においてOAMモード間で干渉が生じる場合がある。 However, in the conventional wireless transmission technique using UCA, in order to separate a plurality of OAM mode signals without interference between the modes, it is necessary to install the transmitting antenna and the receiving antenna at positions facing each other in the front, and the axes are aligned. is required. For example, when a mobile terminal is used as a receiving device, the axis between the transmitting antenna of the transmitting device (base station) and the receiving antenna of the receiving device (mobile terminal) is deviated, and as a result, interference occurs between the OAM modes in the receiving device. In some cases.
 受信装置においてOAMモード間干渉が生じると、干渉した信号を分離するための演算が必要となる。信号分離のための演算量は、帯域幅に比例して増加するため、広い帯域幅を使うほど演算量が増大し、広帯域化が困難となる。 When interference between OAM modes occurs in the receiving device, an operation for separating the interfering signals is required. Since the amount of calculation for signal separation increases in proportion to the bandwidth, the wider the bandwidth is used, the more the amount of calculation is, and it becomes difficult to widen the bandwidth.
 本発明は上記の点に鑑みてなされたものであり、UCAを用いた無線伝送技術において、受信側におけるOAMモード間干渉を低減することを可能とする技術を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a technique capable of reducing interference between OAM modes on the receiving side in a wireless transmission technique using UCA.
 開示の技術によれば、送信装置と受信装置とを備える無線通信システムであって、
 前記送信装置が、前記受信装置の位置における信号強度が最大のOAMモードの信号を前記受信装置に送信し、
 前記受信装置が、前記OAMモードの信号を受信する
 無線通信システムが提供される。
According to the disclosed technique, it is a wireless communication system including a transmitting device and a receiving device.
The transmitting device transmits a signal in OAM mode having the maximum signal strength at the position of the receiving device to the receiving device.
A wireless communication system is provided in which the receiving device receives the OAM mode signal.
 開示の技術によれば、UCAを用いた無線伝送技術において、受信側におけるOAMモード間干渉を低減することを可能とする技術が提供される。 According to the disclosed technique, in the wireless transmission technique using UCA, a technique capable of reducing interference between OAM modes on the receiving side is provided.
OAMモードの信号を生成するためのUCAの位相設定例を示す図である。It is a figure which shows the phase setting example of UCA for generating the signal of OAM mode. OAM多重信号の位相分布と信号強度分布の例を示す図である。It is a figure which shows the example of the phase distribution and the signal intensity distribution of the OAM multiplex signal. 本発明の実施の形態における通信システムの構成図である。It is a block diagram of the communication system in embodiment of this invention. 本発明の実施の形態の概要を説明するための図である。It is a figure for demonstrating the outline of embodiment of this invention. 例1を説明するためのフローチャートである。It is a flowchart for demonstrating Example 1. 例2を説明するためのフローチャートである。It is a flowchart for demonstrating Example 2. 本発明の実施の形態における送信装置の構成例を示す図である。It is a figure which shows the structural example of the transmission device in embodiment of this invention. バトラー回路とアンテナ素子との接続構成例を示す図である。It is a figure which shows the example of the connection structure of a Butler circuit and an antenna element. 本発明の実施の形態における受信装置の構成例を示す図である。It is a figure which shows the structural example of the receiving apparatus in embodiment of this invention. バトラー回路とアンテナ素子との接続構成例を示す図である。It is a figure which shows the example of the connection structure of a Butler circuit and an antenna element. アンテナからの距離と受信強度との関係の例を示す図である。It is a figure which shows the example of the relationship between the distance from an antenna, and the reception intensity. 送信装置と受信装置を上から見た場合の図である。It is a figure when the transmitting device and the receiving device are seen from the top. 複数のUCAを有するアンテナの例を示す図である。It is a figure which shows the example of the antenna which has a plurality of UCA.
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。 Hereinafter, an embodiment of the present invention (the present embodiment) will be described with reference to the drawings. The embodiments described below are merely examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
 (基本的な動作例)
 まず、本実施の形態における送信装置及び受信装置において使用するUCAに係る基本的な設定・動作例について説明する。
(Basic operation example)
First, a basic setting / operation example related to UCA used in the transmitting device and the receiving device in the present embodiment will be described.
 図1は、OAMモードの信号を生成するためのUCAの位相設定例を示す。図1に示すUCAは、8つのアンテナ素子からなるUCAである。 FIG. 1 shows an example of UCA phase setting for generating an OAM mode signal. The UCA shown in FIG. 1 is a UCA composed of eight antenna elements.
 図1において、送信側におけるOAMモード0,1,2,3,…の信号は、UCAの各アンテナ素子(●で示す)に供給される信号の位相差により生成される。すなわち、OAMモードnの信号は、位相がn回転(n×360度)になるように各アンテナ素子に供給する信号の位相を設定して生成する。例えば、図1に示すようにUCAがm=8個のアンテナ素子で構成される場合で、OAMモードn=2の信号を生成する場合は、図1(3)に示すように、位相が2回転するように、各アンテナ素子に反時計回りに360n/m=90度の位相差(0度,90度,180度,270度,0度,90度,180度,270度)を設定する。 In FIG. 1, the signals of OAM mode 0, 1, 2, 3, ... On the transmitting side are generated by the phase difference of the signals supplied to each antenna element (indicated by ●) of UCA. That is, the signal in the OAM mode n is generated by setting the phase of the signal supplied to each antenna element so that the phase becomes n rotations (n × 360 degrees). For example, when the UCA is composed of m = 8 antenna elements as shown in FIG. 1 and a signal of OAM mode n = 2 is generated, the phase is 2 as shown in FIG. 1 (3). A phase difference of 360 n / m = 90 degrees (0 degrees, 90 degrees, 180 degrees, 270 degrees, 0 degrees, 90 degrees, 180 degrees, 270 degrees) is set for each antenna element so as to rotate. ..
 なお、OAMモードnの信号に対して位相の回転方向を逆にした信号をOAMモード-nとする。例えば、正のOAMモードの信号の位相の回転方向を反時計回りとし、負のOAMモードの信号の位相の回転方向を時計回りとする。 Note that the signal in which the rotation direction of the phase is reversed with respect to the signal in the OAM mode n is referred to as the OAM mode-n. For example, the rotation direction of the phase of the signal in the positive OAM mode is counterclockwise, and the rotation direction of the phase of the signal in the negative OAM mode is clockwise.
 異なる信号系列を異なるOAMモードの信号として生成し、生成した信号を同時に送信することで、空間多重による無線通信を行うことができる。送信側では、各OAMモードで伝送する信号を予め生成・合成し、単一UCAで各OAMモードの合成信号を送信してもよいし、複数のUCAを用いて、OAMモード毎に異なるUCAで各OAMモードの信号を送信してもよい。 By generating different signal sequences as signals in different OAM modes and transmitting the generated signals at the same time, wireless communication by spatial multiplexing can be performed. On the transmitting side, signals to be transmitted in each OAM mode may be generated and synthesized in advance, and the combined signal of each OAM mode may be transmitted by a single UCA, or a plurality of UCAs may be used and different UCAs are used for each OAM mode. The signal of each OAM mode may be transmitted.
 受信側でOAM多重信号を分離するためには、受信側のUCAの各アンテナ素子の位相を、送信側のアンテナ素子の位相と逆方向になるように設定すればよい。 In order to separate the OAM multiplex signal on the receiving side, the phase of each antenna element of the UCA on the receiving side may be set so as to be in the opposite direction to the phase of the antenna element on the transmitting side.
 ただし、送信アンテナと受信アンテナとの間の軸ずれ等により、OAMモード間で干渉が生じた場合、チャネル等化処理や逐次干渉除去処理等のデジタル信号処理により、干渉で混ざったOAMモード間の信号を分離することが必要になる。なお、OAMモード間の干渉とは、例えば、送信装置からOAMモード1で送信した信号が、受信側でOAMモード2の信号として出力されるといったことである。 However, if interference occurs between the OAM modes due to axis misalignment between the transmitting antenna and the receiving antenna, the OAM modes mixed by interference are mixed by digital signal processing such as channel equalization processing and sequential interference removal processing. It is necessary to separate the signals. The interference between the OAM modes means that, for example, the signal transmitted from the transmitting device in the OAM mode 1 is output as a signal in the OAM mode 2 on the receiving side.
 図2は、OAM多重信号の位相分布と信号強度(信号電力)分布の例を示す。図2(1),(2)において、送信側から伝搬方向に直交する端面(伝搬直交平面)で見た、OAMモード1とOAMモード2の信号の位相分布を矢印で表す。矢印の始めは0度であり、位相が線形に変化して矢印の終わりは360度である。すなわち、OAMモードnの信号は、伝搬直交平面において、位相がn回転(n×360度)しながら伝搬する。なお、OAMモード-1,-2の信号の位相分布の矢印は逆向きになる。 FIG. 2 shows an example of the phase distribution and signal strength (signal power) distribution of the OAM multiplex signal. In FIGS. 2 (1) and 2 (2), the phase distributions of the signals of OAM mode 1 and OAM mode 2 as seen from the end face (propagation orthogonal plane) orthogonal to the propagation direction from the transmission side are represented by arrows. The beginning of the arrow is 0 degrees, the phase changes linearly and the end of the arrow is 360 degrees. That is, the signal in the OAM mode n propagates while the phase rotates n times (n × 360 degrees) in the propagation orthogonal plane. The arrows in the phase distribution of the signals in OAM modes -1 and -2 are in the opposite direction.
 各OAMモードの信号は、OAMモード毎に信号強度分布と信号強度が最大になる位置が異なる。ただし、符号が異なる同じOAMモードの強度分布は同じである。具体的には、OAMモードが高次になるほど、信号強度が最大になる位置が伝搬軸から遠くなる(非特許文献2)。ここで、OAMモードの値が大きい方を高次モードと称する。例えば、OAMモード3の信号は、OAMモード0、OAMモード1、OAMモード2の信号より、高次モードである。 The signal of each OAM mode has a different signal strength distribution and the position where the signal strength is maximized for each OAM mode. However, the intensity distributions of the same OAM modes with different signs are the same. Specifically, the higher the OAM mode, the farther the position where the signal strength is maximized from the propagation axis (Non-Patent Document 2). Here, the one with a larger value in the OAM mode is referred to as a higher-order mode. For example, the signal in OAM mode 3 is a higher-order mode than the signals in OAM mode 0, OAM mode 1, and OAM mode 2.
 図2(3)は、OAMモードごとに信号強度が最大になる位置を円環で示すが、OAMモードが高次になるほど信号強度が最大になる位置が中心軸から遠くなり、かつ伝搬距離に応じてOAMモード多重信号のビーム径が広がり、OAMモードごとに信号強度が最大になる位置を示す円環が大きくなる。 FIG. 2 (3) shows the position where the signal strength becomes maximum in each OAM mode by an annulus, but the position where the signal strength becomes maximum becomes farther from the central axis and the propagation distance becomes higher as the OAM mode becomes higher. Accordingly, the beam diameter of the OAM mode multiplex signal is widened, and the annulus indicating the position where the signal strength is maximized becomes large in each OAM mode.
 (本発明の実施の形態の概要)
 前述したとおり、UCAを用いた送信装置と受信装置により、大容量の通信が可能になるが、今後は、移動通信への対応が望まれている。しかし、例えば受信装置として移動端末を使用した場合に、送信装置(基地局)の送信アンテナと受信装置(移動端末)の受信アンテナとの間の軸がずれる結果、受信装置においてOAMモード間で干渉が生じる場合がある。
(Outline of Embodiment of this invention)
As described above, a transmission device and a reception device using UCA enable large-capacity communication, but it is desired to support mobile communication in the future. However, for example, when a mobile terminal is used as a receiving device, the axis between the transmitting antenna of the transmitting device (base station) and the receiving antenna of the receiving device (mobile terminal) shifts, resulting in interference between OAM modes in the receiving device. May occur.
 受信装置においてOAMモード間干渉が生じると、前述したように、デジタル信号処理により干渉した信号を分離するための演算が必要となる。このための演算量は、帯域幅に比例して増加するため、広い帯域幅を使うほど演算量が多くなる。受信装置として移動端末を使用することを想定した場合、能力が限られている移動端末において、OAMモード間の信号分離のための演算量が増加することは望ましくない。 When interference between OAM modes occurs in the receiving device, as described above, an operation for separating the interfered signal by digital signal processing is required. The amount of computation for this increases in proportion to the bandwidth, so the wider the bandwidth, the greater the amount of computation. Assuming that a mobile terminal is used as a receiving device, it is not desirable to increase the amount of computation for signal separation between OAM modes in a mobile terminal having limited capability.
 そこで、本実施の形態では、図2(3)に示したような、OAMモード間での信号強度の広がりの差を用いて、受信装置(移動端末を想定)の移動に対応することとしている。具体的には、送信装置は、受信装置の現在位置において最も信号強度が大きくなるOAMモードの信号のみを送信する。送信するOAMモードの数が限定されるので、受信装置におけるOAMモード間干渉が少なくなり、信号分離のための演算量も少なくなる。 Therefore, in the present embodiment, the movement of the receiving device (assuming a mobile terminal) is supported by using the difference in the spread of the signal strength between the OAM modes as shown in FIG. 2 (3). .. Specifically, the transmitting device transmits only the OAM mode signal having the highest signal strength at the current position of the receiving device. Since the number of OAM modes to be transmitted is limited, the interference between OAM modes in the receiving device is reduced, and the amount of calculation for signal separation is also reduced.
 以下、本実施の形態におけるシステム構成と、動作について詳細に説明する。 Hereinafter, the system configuration and operation in this embodiment will be described in detail.
 (システム構成)
 図3に、本実施の形態における無線通信システムの構成例を示す。図3に示すように、本実施の形態における無線通信システムは、送信装置100と受信装置200を有する。
(System configuration)
FIG. 3 shows a configuration example of the wireless communication system according to the present embodiment. As shown in FIG. 3, the wireless communication system according to the present embodiment includes a transmitting device 100 and a receiving device 200.
 送信装置100と受信装置200は、それぞれUCAとバトラー回路を備えている。所望データの送受信において、送信装置100は、1以上のOAMモードの信号を多重して送信することができ、受信装置200は、送信装置100から送信された1以上のOAMモードが多重された信号を受信し、各OAMモードの信号を分離することができる。ただし、本実施の形態では、後述するように、送信装置100は、最大で、2つのOAMモード(nと-n)の信号を多重して送信し、受信装置200は、送信装置100から送信された当該信号を受信する。ただし、後述する「複数の受信装置200との通信」において説明する処理に関しては、このようなOAMモードの送受信に限定されない。 The transmitting device 100 and the receiving device 200 are provided with a UCA and a butler circuit, respectively. In transmitting and receiving desired data, the transmitting device 100 can multiplex and transmit one or more OAM mode signals, and the receiving device 200 is a signal in which one or more OAM modes transmitted from the transmitting device 100 are multiplexed. Can be received and the signals of each OAM mode can be separated. However, in the present embodiment, as will be described later, the transmitting device 100 multiplexes and transmits two OAM mode (n and −n) signals at the maximum, and the receiving device 200 transmits from the transmitting device 100. Receive the signal. However, the process described in "Communication with a plurality of receiving devices 200" described later is not limited to such transmission / reception in the OAM mode.
 本実施の形態では、送信装置100は移動しない基地局であり、受信装置200は移動端末であることを想定しているが、送信装置100と受信装置200が両方とも移動端末であってもよい。 In the present embodiment, it is assumed that the transmitting device 100 is a non-moving base station and the receiving device 200 is a mobile terminal, but both the transmitting device 100 and the receiving device 200 may be mobile terminals. ..
 (システムの動作例)
 まず、図4を参照して本実施の形態における無線通信システムの動作概要を説明する。図4は、送信装置100(基地局)と受信装置200(移動端末)とを上空から見たイメージの図である。この例において、送信装置100が送信する信号の各OAMモードの広がりが、送信装置100を頂点とする三角形として示されている。図4に示すように、OAMモードが高次になるほど信号強度が最大になる位置が中心軸から遠くなっている。なお、符号が異なる同じOAMモードの信号強度が最大になる位置は同じである。
(System operation example)
First, an outline of the operation of the wireless communication system according to the present embodiment will be described with reference to FIG. FIG. 4 is a diagram of an image of the transmitting device 100 (base station) and the receiving device 200 (mobile terminal) viewed from above. In this example, the spread of each OAM mode of the signal transmitted by the transmitting device 100 is shown as a triangle with the transmitting device 100 as the apex. As shown in FIG. 4, the position where the signal strength is maximized becomes farther from the central axis as the OAM mode becomes higher. It should be noted that the positions where the signal strengths of the same OAM modes having different symbols are maximized are the same.
 本実施の形態では、送信装置100は、受信装置200の位置において最も信号強度が大きくなるOAMモードで信号を送信する。最も信号強度が大きくなるOAMモードとして、+nと-nの2つがあるので、送信装置100は、受信装置200の位置において最も信号強度が大きくなるOAMモードの信号として、OAMモードnの信号とOAMモード-nの信号を多重した信号を送信する。ただし、OAMモードnの信号とOAMモード-nのうちのいずれか1つのOAMモードの信号を送信することとしてもよい。 In the present embodiment, the transmitting device 100 transmits a signal in the OAM mode in which the signal strength is highest at the position of the receiving device 200. Since there are two OAM modes having the highest signal strength, + n and −n, the transmitting device 100 uses the OAM mode n signal and the OAM as the OAM mode signal having the highest signal strength at the position of the receiving device 200. A signal obtained by multiplexing a mode-n signal is transmitted. However, the signal of OAM mode n and the signal of any one of OAM mode −n may be transmitted.
 図4に示す例において、例えば、受信装置200がAで示す位置にあるときには、送信装置100は、OAMモード2とOAMモード-2で信号を送信する。受信装置200がBで示す位置にあるときには、送信装置100は、OAMモード0(又はOAMモード1とOAMモード-1)で信号を送信する。受信装置200がCで示す位置にあるときには、送信装置100は、OAMモード2とOAMモード-2で信号を送信する。 In the example shown in FIG. 4, for example, when the receiving device 200 is in the position indicated by A, the transmitting device 100 transmits a signal in OAM mode 2 and OAM mode-2. When the receiving device 200 is in the position indicated by B, the transmitting device 100 transmits a signal in OAM mode 0 (or OAM mode 1 and OAM mode -1). When the receiving device 200 is in the position indicated by C, the transmitting device 100 transmits a signal in OAM mode 2 and OAM mode-2.
 送信装置100がどのOAMモードを使用するかの判断に関してはバリエーションがある。以下、例1と例2を説明する。 There are variations in determining which OAM mode the transmitter 100 uses. Hereinafter, Examples 1 and 2 will be described.
  <例1>
 例1における送信装置100の動作例を図5のフローチャートを参照して説明する。S101において、送信装置100は、受信装置200の現在の位置(あるいは、S101~S104の処理時間を考慮した、現在から処理時間後の将来の位置)を計算(あるいは予測)する。以降、受信装置200の現在の位置と将来の位置を総称して「予測位置」と呼ぶ。送信装置100は、受信装置200の予測位置の算出を周期的に行う。
<Example 1>
An operation example of the transmission device 100 in Example 1 will be described with reference to the flowchart of FIG. In S101, the transmitting device 100 calculates (or predicts) the current position of the receiving device 200 (or the future position after the processing time from the present in consideration of the processing time of S101 to S104). Hereinafter, the current position and the future position of the receiving device 200 are collectively referred to as "predicted position". The transmitting device 100 periodically calculates the predicted position of the receiving device 200.
 例えば、送信装置100は、受信装置200から、受信装置200の位置情報と速度情報を周期的に受信しており、受信した受信装置200の位置情報と速度情報から受信装置200の予測位置を算出する。 For example, the transmitting device 100 periodically receives the position information and the speed information of the receiving device 200 from the receiving device 200, and calculates the predicted position of the receiving device 200 from the received position information and the speed information of the receiving device 200. do.
 また、送信装置100は、受信装置200の時刻毎の位置をテーブルに予め保持しておいてもよい。この場合、送信装置100は、現在時刻(あるいは将来時刻)に対応する位置をテーブルから取得することにより、受信装置200の予測位置を把握できる。 Further, the transmitting device 100 may hold the position of the receiving device 200 for each time in a table in advance. In this case, the transmitting device 100 can grasp the predicted position of the receiving device 200 by acquiring the position corresponding to the current time (or future time) from the table.
 S102において、送信装置100は、受信装置200の予測位置が、前回の予測位置から変更されたかどうかを判定する。変更されたかどうかは、例えば、今回の予測位置と前回の予測位置との間の距離が閾値以下か否かで判断する。受信装置200の予測位置が、前回の予測位置から変更された場合には、S103に進み、変更されない場合にはS101に戻る。 In S102, the transmitting device 100 determines whether or not the predicted position of the receiving device 200 has been changed from the previous predicted position. Whether or not it has been changed is determined by, for example, whether or not the distance between the current predicted position and the previous predicted position is equal to or less than the threshold value. If the predicted position of the receiving device 200 is changed from the previous predicted position, the process proceeds to S103, and if the predicted position is not changed, the process returns to S101.
 S103において、送信装置100は、受信装置200の予測位置に対して送信に使用するOAMモードを決定する。ここでは、送信装置100が使用可能な複数のOAMモードのうち、受信装置200の予測位置において信号強度が最大になるOAMモードを選択する。 In S103, the transmitting device 100 determines the OAM mode used for transmission with respect to the predicted position of the receiving device 200. Here, among a plurality of OAM modes that can be used by the transmitting device 100, the OAM mode that maximizes the signal strength at the predicted position of the receiving device 200 is selected.
 例えば、送信装置100は、OAMモード毎に、送信装置100からの各距離に応じた平面上の信号強度の分布情報(例:図2(3)に示すような信号強度の分布)を保持している(あるいは算出できる)ので、当該分布情報に基づいて、受信装置200の予測位置において信号強度が最大になるOAMモードを決定することができる。 For example, the transmission device 100 holds distribution information of signal strength on a plane according to each distance from the transmission device 100 (example: distribution of signal strength as shown in FIG. 2 (3)) for each OAM mode. Since (or can be calculated), the OAM mode in which the signal strength is maximized at the predicted position of the receiving device 200 can be determined based on the distribution information.
 S103では、OAMモードnとOAMモード-nが選択されたものとする。S104において、送信装置100は、現在使用中のOAMモードが「OAMモードnとOAMモード-n」と異なる場合には、現在使用中のOAMモードを「OAMモードnとOAMモード-n」に切り替えてS101に戻り、現在使用中のOAMモードが「OAMモードnとOAMモード-n」と同じ場合には、現在使用中のOAMモードの使用を継続したままS101に戻る。 In S103, it is assumed that OAM mode n and OAM mode-n are selected. In S104, when the currently used OAM mode is different from "OAM mode n and OAM mode-n", the transmitting device 100 switches the currently used OAM mode to "OAM mode n and OAM mode-n". If the currently used OAM mode is the same as "OAM mode n and OAM mode-n", the system returns to S101 while continuing to use the currently used OAM mode.
 受信装置200は、信号強度の大きい最大でも2つのOAMモードの信号のみを受信するので、デジタル信号処理での信号分離処理を行うことなく(あるいは信号分離処理に係る演算量を低減して)所望のデータを受信することができる。 Since the receiving device 200 receives only two OAM mode signals having a large signal strength at the maximum, it is desired without performing signal separation processing in digital signal processing (or reducing the amount of calculation related to signal separation processing). Data can be received.
 <例2>
 次に、例2を図6のフローチャートを参照して説明する。
<Example 2>
Next, Example 2 will be described with reference to the flowchart of FIG.
 S201において、送信装置100は、データ通信において使用する候補となる複数のOAMモードで信号(例:直交信号系列)を受信装置200に送信する。 In S201, the transmitting device 100 transmits a signal (eg, an orthogonal signal sequence) to the receiving device 200 in a plurality of candidate OAM modes used in data communication.
 S202において、受信装置200は、各OAMモードの信号の信号強度を測定し、信号強度が最大となるOAMモードを選択する。 In S202, the receiving device 200 measures the signal strength of the signal of each OAM mode, and selects the OAM mode in which the signal strength is maximum.
 S203において、受信装置200は、S202で選択したOAMモードの識別情報(インデックス)を送信装置100にフィードバックする。なお、フィードバックの送受信等の制御のための通信については、ある1つのOAMモードを使用することでUCAを用いて行ってもよいし、送信装置100と受信装置200のそれぞれにUCAとは別に制御通信用のアンテナを設け、そのアンテナを用いて行うこととしてもよい。 In S203, the receiving device 200 feeds back the identification information (index) of the OAM mode selected in S202 to the transmitting device 100. Communication for control such as transmission / reception of feedback may be performed using UCA by using one OAM mode, or each of the transmitting device 100 and the receiving device 200 is controlled separately from the UCA. It may be possible to provide an antenna for communication and use the antenna.
 S204において、送信装置100は、S203で受信装置200からフィードバックされたOAMモード(例えばOAMモード1とOAMモード-1)を使用してデータ送信を行う。 In S204, the transmitting device 100 transmits data using the OAM mode (for example, OAM mode 1 and OAM mode-1) fed back from the receiving device 200 in S203.
 受信装置200は、信号強度の大きい最大でも2つのOAMモードの信号のみを受信するので、デジタル信号処理での信号分離処理を行うことなく(あるいは信号分離処理に係る演算量を低減して)所望のデータを受信することができる。 Since the receiving device 200 receives only two OAM mode signals having a large signal strength at the maximum, it is desired without performing signal separation processing in digital signal processing (or reducing the amount of calculation related to signal separation processing). Data can be received.
 S201~S203の処理は、予め定めた周期で実行してもよいし、予め定めたタイミングで実行してもよい。また、S201~S203の処理は、受信装置200から送信装置100に対して要求があった場合に実行してもよい。S201、S202のより詳細な動作例を以下に説明する。 The processes of S201 to S203 may be executed at a predetermined cycle or at a predetermined timing. Further, the processes S201 to S203 may be executed when the receiving device 200 requests the transmitting device 100. More detailed operation examples of S201 and S202 will be described below.
 S201において、送信装置100は、使用候補になっている複数のOAMモードのそれぞれで別々に(同時ではなく異なるタイミングで)信号を受信装置200に送信する。例えば、複数のOAMモードが、1、-1、2、-2の4つであるとすると、送信装置100は、OAMモード1の信号、OAMモード-1の信号、OAMモード2の信号、OAMモード-2の信号のそれぞれを受信装置200に送信する。 In S201, the transmitting device 100 transmits signals to the receiving device 200 separately (at different timings, not simultaneously) in each of the plurality of OAM modes that are candidates for use. For example, assuming that there are four OAM modes of 1, -1, 2, and -2, the transmission device 100 has an OAM mode 1 signal, an OAM mode-1 signal, an OAM mode 2 signal, and an OAM. Each of the mode-2 signals is transmitted to the receiving device 200.
 後述するように、受信装置200におけるバトラー回路は複数の出力ポートを有しており、1つの出力ポートが1つのOAMモードに対応している。上記のように4つのOAMモードを使用する場合、例えば、受信装置200におけるバトラー回路の出力ポート#1からOAMモード1の信号(OAMモード1の電波で伝送された信号)が出力され、出力ポート#2からOAMモード-1の信号が出力され、出力ポート#3からOAMモード2の信号が出力され、出力ポート#4からOAMモード-2の信号が出力される。 As will be described later, the butler circuit in the receiving device 200 has a plurality of output ports, and one output port corresponds to one OAM mode. When the four OAM modes are used as described above, for example, the signal of OAM mode 1 (the signal transmitted by the radio wave of OAM mode 1) is output from the output port # 1 of the butler circuit in the receiving device 200, and the output port. The OAM mode-1 signal is output from # 2, the OAM mode 2 signal is output from the output port # 3, and the OAM mode-2 signal is output from the output port # 4.
 受信装置200は、各OAMモードに対応する出力ポートから出力される信号の信号強度を測定し、最大の信号強度になるOAMモードを選択する。 The receiving device 200 measures the signal strength of the signal output from the output port corresponding to each OAM mode, and selects the OAM mode that has the maximum signal strength.
 (装置構成例)
 次に、送信装置100と受信装置200の装置構成例を説明する。
(Device configuration example)
Next, an example of device configuration of the transmitting device 100 and the receiving device 200 will be described.
  <送信装置100>
 まず、送信装置100について説明する。図7は、本実施の形態における送信装置100の構成例を示す図である。図7に示すように、送信装置100は、UCA110、OAMモード生成部120、信号処理部130、制御部140を有する。なお、「UCA110、OAMモード生成部120、信号処理部130」を送信部と呼んでもよい。
<Transmitting device 100>
First, the transmission device 100 will be described. FIG. 7 is a diagram showing a configuration example of the transmission device 100 according to the present embodiment. As shown in FIG. 7, the transmission device 100 includes a UCA 110, an OAM mode generation unit 120, a signal processing unit 130, and a control unit 140. The "UCA 110, OAM mode generation unit 120, signal processing unit 130" may be referred to as a transmission unit.
 信号処理部130は、入力されたデータから、搬送波に乗せて送信するデジタル信号を生成し、デジタル信号をアナログ信号に変換(デジタル-アナログ変換)し、アナログ信号の周波数を搬送波の周波数帯(例:28GHz帯)に変換する。信号処理部130は、生成したアナログ信号をOAMモード生成部120(バトラー回路)に入力する。 The signal processing unit 130 generates a digital signal to be transmitted on a carrier from the input data, converts the digital signal into an analog signal (digital-analog conversion), and converts the frequency of the analog signal into the frequency band of the carrier (eg, the frequency band of the carrier). : 28GHz band). The signal processing unit 130 inputs the generated analog signal to the OAM mode generation unit 120 (butler circuit).
 本実施の形態における前述した例1においては、制御部140が、図5のフローチャートを参照して説明したS101~S104の処理を実行する。ここで、S103において、制御部140が、使用するOAMモードを「OAMモード1とOAMモード-1」から「OAMモード2とOAMモード-2」に変更することを決定したとする。 In Example 1 described above in the present embodiment, the control unit 140 executes the processes of S101 to S104 described with reference to the flowchart of FIG. Here, it is assumed that in S103, the control unit 140 decides to change the OAM mode to be used from "OAM mode 1 and OAM mode-1" to "OAM mode 2 and OAM mode-2".
 この場合、S104において、信号処理部130は、制御部140からOAMモード2とOAMモード-2の信号を生成するよう指示を受け、それらの信号を生成し、OAMモード2の信号(OAMモード2の電波で伝送する信号)を、OAMモード生成部120(バトラー回路)のOAMモード2に対応する入力ポートに入力し、OAMモード-2の信号(OAMモード-2の電波で伝送する信号)を、OAMモード生成部120(バトラー回路)のOAMモード-2に対応する入力ポートに入力する。 In this case, in S104, the signal processing unit 130 is instructed by the control unit 140 to generate signals of OAM mode 2 and OAM mode-2, generates those signals, and signals of OAM mode 2 (OAM mode 2). (Signal transmitted by radio wave) is input to the input port corresponding to OAM mode 2 of the OAM mode generator 120 (Butler circuit), and the signal of OAM mode-2 (signal transmitted by radio wave of OAM mode-2) is input. , Input to the input port corresponding to OAM mode-2 of the OAM mode generation unit 120 (Butler circuit).
 また、前述した例2の場合には、制御部140は、受信装置200からフィードバックを受信し、そのフィードバックで指定されたOAMモードで送信する信号を生成し、OAMモード生成部120(バトラー回路)の対応する入力ポートに入力するよう、信号処理部130に指示する。 Further, in the case of Example 2 described above, the control unit 140 receives feedback from the receiving device 200, generates a signal to be transmitted in the OAM mode specified by the feedback, and generates a signal to be transmitted in the OAM mode, and the OAM mode generation unit 120 (Butler circuit). Instruct the signal processing unit 130 to input to the corresponding input port of.
 例えば、信号処理部130は、制御部140からOAMモード1とOAMモード-1の信号を生成するよう指示を受けると、それらの信号を生成し、OAMモード1の信号(OAMモード1の電波で伝送する信号)を、OAMモード生成部120(バトラー回路)のOAMモード1に対応する入力ポートに入力し、OAMモード-1の信号(OAMモード-1の電波で伝送する信号)を、OAMモード生成部120(バトラー回路)のOAMモード-1に対応する入力ポートに入力する。 For example, when the signal processing unit 130 receives an instruction from the control unit 140 to generate OAM mode 1 and OAM mode-1 signals, the signal processing unit 130 generates those signals and generates the OAM mode 1 signal (with the radio wave of OAM mode 1). The signal to be transmitted) is input to the input port corresponding to OAM mode 1 of the OAM mode generator 120 (Butler circuit), and the signal of OAM mode-1 (the signal transmitted by the radio wave of OAM mode-1) is input to the OAM mode. Input to the input port corresponding to OAM mode-1 of the generation unit 120 (Butler circuit).
 上記のとおり、OAMモード生成部120は、バトラー回路である。OAMモード生成部120(バトラー回路)と、UCA110との接続構成例を図8に示す。図8に示す例でのUCA110は、8個のアンテナ素子#1~#8が円形状に配置されたアンテナである。 As described above, the OAM mode generation unit 120 is a butler circuit. FIG. 8 shows an example of a connection configuration between the OAM mode generator 120 (butler circuit) and the UCA 110. The UCA110 in the example shown in FIG. 8 is an antenna in which eight antenna elements # 1 to # 8 are arranged in a circular shape.
 また、図8は、バトラー回路が、N個の入力ポートを有していることを示している。基本的には、出力ポート数が、Nの最大数であり、図8の例のように、8個の出力ポートを有する場合、Nの最大数は8である。なお、「ポート」を「端子」と呼んでもよい。 Also, FIG. 8 shows that the Butler circuit has N input ports. Basically, the number of output ports is the maximum number of N, and when there are eight output ports as in the example of FIG. 8, the maximum number of N is eight. The "port" may be referred to as a "terminal".
 図7、図8のように、UCAとバトラー回路をそれぞれ1つずつ備えることや、アンテナ素子数が8個であること等は一例である。UCAとバトラー回路はそれぞれ複数であってもよい。UCA110のアンテナ素子数は、8個よりも多くてもよいし、少なくてもよい。 As shown in FIGS. 7 and 8, it is an example that one UCA and one butler circuit are provided, and the number of antenna elements is eight. There may be a plurality of UCA and Butler circuits, respectively. The number of antenna elements of the UCA110 may be more than eight or less.
 図8には、一例として、入力ポートAに、OAMモード1で送信しようとする信号が入力され、入力ポートBにOAMモード-1で送信しようとする信号が入力されることを示している。N個の入力ポートのうち、入力ポートAと入力ポートB以外の入力ポートは、OAMモード1と-1以外のOAMモードに対応している。 FIG. 8 shows, as an example, that a signal to be transmitted in OAM mode 1 is input to input port A, and a signal to be transmitted in OAM mode -1 is input to input port B. Of the N input ports, the input ports other than the input port A and the input port B correspond to the OAM modes other than the OAM modes 1 and -1.
 入力ポートAからの入力に対して、各出力ポートから反時計回りに45°(360°/8)ずつの位相差を持った信号が出力され、入力ポートBからの入力に対して、各出力ポートから反時計回りに-45°ずつの位相差を持った信号が出力される。つまり、入力ポートAと入力ポートBの両方に入力がある場合、各出力ポートから異なる位相を持つ2つの信号が合波(多重)された信号が出力される。 A signal with a phase difference of 45 ° (360 ° / 8) counterclockwise is output from each output port for input from input port A, and each output is output for input from input port B. A signal with a phase difference of -45 ° counterclockwise is output from the port. That is, when both the input port A and the input port B have inputs, a signal obtained by combining (multiplexing) two signals having different phases is output from each output port.
 具体的には、UCA110において、便宜上、アンテナ素子#1を基準(位相0°)とすると、UCA110の各アンテナ素子からは、下記の位相を持った2つの信号が合波された信号が出力される。 Specifically, in the UCA 110, when the antenna element # 1 is used as a reference (phase 0 °) for convenience, each antenna element of the UCA 110 outputs a signal obtained by combining two signals having the following phases. To.
 アンテナ素子#1=(0°,0°)、アンテナ素子#2=(45°,-45°)、アンテナ素子#3=(90°,-90°)、アンテナ素子#4=(135°,-135°)、アンテナ素子#5=(180°,-180°)、アンテナ素子#6=(225°,-225°)、アンテナ素子#7=(270°,-270°)、アンテナ素子#8=(315°,-315°)。 Antenna element # 1 = (0 °, 0 °), antenna element # 2 = (45 °, −45 °), antenna element # 3 = (90 °, −90 °), antenna element # 4 = (135 °, -135 °), antenna element # 5 = (180 °, -180 °), antenna element # 6 = (225 °, -225 °), antenna element # 7 = (270 °, -270 °), antenna element # 8 = (315 °, 315 °).
 図8の例では、OAMモード生成部120(バトラー回路)の出力ポートJが、UCA110のアンテナ素子#1に接続され、出力ポートIが、UCA110のアンテナ素子#2に接続され、出力ポートHが、UCA110のアンテナ素子#3に接続され、出力ポートGが、UCA110のアンテナ素子#4に接続され、出力ポートFが、UCA110のアンテナ素子#5に接続され、出力ポートEが、UCA110のアンテナ素子#6に接続され、出力ポートDが、UCA110のアンテナ素子#7に接続され、出力ポートCが、UCA110のアンテナ素子#8に接続される。なお、図示の便宜上、図8では、出力ポートJのみの接続を示している。各出力ポートから出力された信号は、接続されるアンテナ素子に供給され、アンテナ素子から電波として出力される。 In the example of FIG. 8, the output port J of the OAM mode generator 120 (Butler circuit) is connected to the antenna element # 1 of the UCA 110, the output port I is connected to the antenna element # 2 of the UCA 110, and the output port H is , The output port G is connected to the antenna element # 4 of the UCA 110, the output port F is connected to the antenna element # 5 of the UCA 110, and the output port E is the antenna element of the UCA 110. It is connected to # 6, the output port D is connected to the antenna element # 7 of the UCA 110, and the output port C is connected to the antenna element # 8 of the UCA 110. For convenience of illustration, FIG. 8 shows the connection of only the output port J. The signal output from each output port is supplied to the connected antenna element and output as a radio wave from the antenna element.
  <受信装置200>
 次に、受信装置200について説明する。図9は、本実施の形態における受信装置200の構成例を示す図である。図9に示すように、受信装置200は、UCA210、OAMモード分離部220、信号処理部230、制御部240を有する。なお、「UCA210、OAMモード分離部220、信号処理部230」を受信部と呼んでもよい。
<Receiver 200>
Next, the receiving device 200 will be described. FIG. 9 is a diagram showing a configuration example of the receiving device 200 according to the present embodiment. As shown in FIG. 9, the receiving device 200 includes a UCA 210, an OAM mode separating unit 220, a signal processing unit 230, and a control unit 240. The "UCA210, OAM mode separation unit 220, signal processing unit 230" may be referred to as a receiving unit.
 OAMモード分離部220は、バトラー回路を有する。また、OAMモード分離部220は、バトラー回路の各出力ポートから出力される信号強度を測定する測定部221を含む。なお、前述した例1のみの動作を行う場合には、測定部221は不要である。 The OAM mode separation unit 220 has a butler circuit. Further, the OAM mode separation unit 220 includes a measurement unit 221 for measuring the signal strength output from each output port of the butler circuit. The measuring unit 221 is unnecessary when only the operation of Example 1 described above is performed.
 図6に示したS201~S203において、測定部221が各出力ポートから出力される信号強度を測定し、測定結果を制御部240に通知し、制御部240は、信号強度が最大となるOAMモードを選択し、選択したOAMモードを送信装置100にフィードバックする。 In S201 to S203 shown in FIG. 6, the measuring unit 221 measures the signal strength output from each output port, notifies the control unit 240 of the measurement result, and the control unit 240 has an OAM mode in which the signal strength is maximized. Is selected, and the selected OAM mode is fed back to the transmission device 100.
 OAMモード分離部220(バトラー回路)と、UCA210との接続構成例を図10に示す。図10に示す例でのUCA210は、8個のアンテナ素子#1~#8が円形状に配置されたアンテナである。 FIG. 10 shows an example of a connection configuration between the OAM mode separation unit 220 (butler circuit) and the UCA 210. The UCA210 in the example shown in FIG. 10 is an antenna in which eight antenna elements # 1 to # 8 are arranged in a circular shape.
 また、図10に示すバトラー回路は、送信装置100におけるバトラー回路の入力と出力を逆にしたものに相当する。 Further, the butler circuit shown in FIG. 10 corresponds to the one in which the input and the output of the butler circuit in the transmission device 100 are reversed.
 図10に示すように、当該バトラー回路はN個の出力ポートを有している。図9、図10のように、UCAとバトラー回路をそれぞれ1つずつ備えることや、アンテナ素子数が8個であること等は一例である。UCAとバトラー回路はそれぞれ複数であってもよい。UCA210のアンテナ素子数は、8個よりも多くてもよいし、少なくてもよい。 As shown in FIG. 10, the butler circuit has N output ports. As shown in FIGS. 9 and 10, it is an example that one UCA and one butler circuit are provided, and the number of antenna elements is eight. There may be a plurality of UCA and Butler circuits, respectively. The number of antenna elements of the UC A210 may be more than eight or less.
 図10は、一例として、出力ポートAからOAMモード1の信号が出力され、出力ポートBからOAMモード-1の信号が出力されることを示している。N個の出力ポートのうち、出力ポートAと出力ポートB以外の出力ポートは、OAMモード1と-1以外のOAMモードに対応している。 FIG. 10 shows, as an example, that the OAM mode 1 signal is output from the output port A and the OAM mode-1 signal is output from the output port B. Of the N output ports, the output ports other than the output port A and the output port B correspond to the OAM modes other than the OAM modes 1 and -1.
 UCA210の各アンテナ素子とOAMモード分離部220(バトラー回路)の各入力ポートは図示のように接続される(図示の便宜上、#7のみ接続線を描いている)。バトラー回路内では、送信側のバトラー回路とは逆の位相変換等が行われることで、各出力ポートから、その出力ポートに対応したOAMモードの信号が出力される。 Each antenna element of UCA210 and each input port of OAM mode separation unit 220 (Butler circuit) are connected as shown in the figure (for convenience of illustration, only # 7 is drawn with a connection line). In the butler circuit, a phase conversion or the like opposite to that of the butler circuit on the transmitting side is performed, so that an OAM mode signal corresponding to the output port is output from each output port.
 図9に示す信号処理部230は、OAMモード分離部220(バトラー回路)から受信したアナログ信号をデジタル信号に変換(アナログ-デジタル変換)し、復調を行って、データを生成し、出力する。また、信号処理部230はデジタル信号処理による信号分離処理を行う。なお、信号分離の必要がない場合には、信号分離処理を行わなくてもよい。 The signal processing unit 230 shown in FIG. 9 converts an analog signal received from the OAM mode separation unit 220 (Butler circuit) into a digital signal (analog-digital conversion), performs demodulation, generates data, and outputs the data. Further, the signal processing unit 230 performs signal separation processing by digital signal processing. If there is no need for signal separation, the signal separation process may not be performed.
 制御部240は、前述した例2の場合において、図6のS203で送信装置100に対して指示したOAMモードの信号のみを、OAMモード分離部220(バトラー回路)の対応する出力ポートから受信するよう信号処理部230に指示することとしてもよい。信号処理部230は、当該出力ポートから受信する信号を用いて、復調処理等を行う。 In the case of Example 2 described above, the control unit 240 receives only the OAM mode signal instructed to the transmission device 100 in S203 of FIG. 6 from the corresponding output port of the OAM mode separation unit 220 (butler circuit). It may be instructed to the signal processing unit 230. The signal processing unit 230 performs demodulation processing and the like using the signal received from the output port.
 (複数の受信装置200との通信について)
 図2(3)に示したように、送信装置100のUCAから送信されたOAMモードを持つ信号は、受信側の端面において、その強度が強くなる場所と弱くなる場所があり、その場所は、送信装置100と受信装置200との間の距離により異なる。また、この場所はOAMモード毎に異なる。つまり、送信装置100のUCAから送信されるOAMビーム(UCAから送信されるOAMモードのビーム)は、送信装置100と受信装置200との間の距離に応じて、受信電力が弱くなったり強くなったりする場所があり、それはOAMモード毎に異なる。
(Communication with multiple receivers 200)
As shown in FIG. 2 (3), the signal having the OAM mode transmitted from the UCA of the transmitting device 100 has a place where the strength becomes stronger and a place where the strength becomes weaker on the end face on the receiving side. It depends on the distance between the transmitting device 100 and the receiving device 200. Also, this location is different for each OAM mode. That is, the OAM beam transmitted from the UCA of the transmitting device 100 (the beam in the OAM mode transmitted from the UCA) has a weakened or strong received power depending on the distance between the transmitting device 100 and the receiving device 200. There is a place to do it, which is different for each OAM mode.
 図11に、送信装置100のUCAから受信装置200までの距離と、受信強度との関係の例を示す。図11の横軸は、送信装置100のUCAから受信装置200までの距離を示し、縦軸は、受信装置200の位置における受信強度である。上記の距離は、例えば、UCAの面と垂直な方向の距離である。 FIG. 11 shows an example of the relationship between the distance from the UCA of the transmitting device 100 to the receiving device 200 and the receiving strength. The horizontal axis of FIG. 11 shows the distance from the UCA of the transmitting device 100 to the receiving device 200, and the vertical axis is the receiving intensity at the position of the receiving device 200. The above distance is, for example, a distance in the direction perpendicular to the plane of the UCA.
 図11に示す例では、距離1の場所でOAMモード1の受信強度が弱くなり、距離2の場所でOAMモード2の受信強度が弱くなる。なお、本実施の形態において、ある場所(位置)での信号の強度(受信強度)が「弱い」とは、ある閾値よりも受信電力が低いことであってもよいし、他の場所(位置)での受信電力よりも受信電力が低いことであってもよい。また、ある場所(位置)での信号の強度(受信強度)が「強い」とは、ある閾値よりも受信電力が高いことであってもよいし、他の場所(位置)での受信電力よりも受信電力が高いことであってもよい。 In the example shown in FIG. 11, the reception intensity of the OAM mode 1 is weakened at the location of the distance 1, and the reception intensity of the OAM mode 2 is weakened at the location of the distance 2. In the present embodiment, "weak" signal strength (reception strength) at a certain place (position) may mean that the received power is lower than a certain threshold value, or it may be at another place (position). ) May be lower than the received power. Further, "strong" signal strength (reception strength) at a certain place (position) may mean that the received power is higher than a certain threshold value or higher than the received power at another place (position). It may also be that the received power is high.
 上記の特徴を用いて、送信装置100と複数の受信装置200との間で同時に通信を行うことができる。図12を参照して通信の例を説明する。 Using the above features, it is possible to simultaneously communicate between the transmitting device 100 and the plurality of receiving devices 200. An example of communication will be described with reference to FIG.
 図12は、送信装置100と、受信装置200-1と、受信装置200-2とを上空から見た場合の2次元的な状況を示す図である。ここでは、送信装置100のUCA110は、ビルの屋上等にあり、地面側に電波が届くような向きにアンテナが設置されていることを想定している。 FIG. 12 is a diagram showing a two-dimensional situation when the transmitting device 100, the receiving device 200-1 and the receiving device 200-2 are viewed from the sky. Here, it is assumed that the UCA 110 of the transmission device 100 is located on the rooftop of a building or the like, and the antenna is installed in a direction in which radio waves reach the ground side.
 図12の例では、Aで示す点線の円の部分(場所)が、送信装置100から送信されるOAMモード1の信号の強度が弱くなる場所であるとする。なお、ここでは便宜上、OAMモード1の信号の強度が弱くなる場所を円形で示している。 In the example of FIG. 12, it is assumed that the part (location) of the dotted line indicated by A is the location where the strength of the signal of OAM mode 1 transmitted from the transmission device 100 is weakened. Here, for convenience, the place where the signal strength of the OAM mode 1 is weakened is indicated by a circle.
 図10に示すように、受信装置200-2は、送信装置100から送信されるOAMモード1の信号の強度が弱くなる場所に位置している。また、受信装置200-1は、送信装置100から送信されるOAMモード1の信号の強度が強くなる場所に位置している。 As shown in FIG. 10, the receiving device 200-2 is located in a place where the strength of the signal of the OAM mode 1 transmitted from the transmitting device 100 is weakened. Further, the receiving device 200-1 is located at a place where the strength of the signal of the OAM mode 1 transmitted from the transmitting device 100 becomes strong.
 例えば、送信装置100の制御部140が、受信装置200-1と受信装置200-2それぞれの位置を把握することにより、図12に示す状況(受信装置200-1はOAMモード1の受信強度が強、受信装置200-2はOAMモード1の受信強度が弱)を把握する。 For example, when the control unit 140 of the transmitting device 100 grasps the positions of the receiving device 200-1 and the receiving device 200-2, the situation shown in FIG. 12 (the receiving device 200-1 has a reception intensity of OAM mode 1). Strong, the receiving device 200-2 has a weak reception strength in OAM mode 1).
 そして、制御部140の指示に基づいて、送信装置100は、UCA110からOAMモード1で受信装置200-1に対する信号を送信するとともに、他のOAMモード(例えば、受信装置200-1の位置で弱くなり、受信装置200-2の位置で強くなるモード)で、受信装置200-2に対する信号を送信する。受信装置200-1は、送信装置100から送信されたOAMモード1の信号を干渉無しに受信でき、受信装置200-2は、送信装置100から送信された他のモードの信号を干渉無しに受信できる。 Then, based on the instruction of the control unit 140, the transmitting device 100 transmits a signal from the UCA 110 to the receiving device 200-1 in the OAM mode 1, and is weak at another OAM mode (for example, the position of the receiving device 200-1). The signal to the receiving device 200-2 is transmitted in the mode) in which the signal becomes stronger at the position of the receiving device 200-2. The receiving device 200-1 can receive the OAM mode 1 signal transmitted from the transmitting device 100 without interference, and the receiving device 200-2 receives the signal of another mode transmitted from the transmitting device 100 without interference. can.
 上記の制御は、例えば、図6に示すフィードック制御を用いることにより行ってもよい。この場合、各受信装置200は、S203において、干渉量の小さい(あるいは、受信品質の良い、あるいは、受信電力の高い)OAMモードを送信装置100にフィードバックする。送信装置100は、例えば、OAMモード1が受信装置200-1に対して受信品質が良く、OAMモード2が受信装置200-2に対して受信品質が良いことを把握すると、受信装置200-1に対してOAMモード1で信号を送信し、受信装置200-2に対してOAMモード2で信号を送信する。 The above control may be performed, for example, by using the feedock control shown in FIG. In this case, each receiving device 200 feeds back the OAM mode having a small amount of interference (or having good reception quality or high receiving power) to the transmitting device 100 in S203. When the transmitting device 100 grasps, for example, that the OAM mode 1 has good reception quality with respect to the receiving device 200-1 and the OAM mode 2 has good receiving quality with respect to the receiving device 200-2, the transmitting device 200-1 has a good reception quality. In OAM mode 1, a signal is transmitted to the receiver 200-2, and a signal is transmitted to the receiving device 200-2 in OAM mode 2.
 また、例えば、送信装置100が、自身が送信可能な全てのOAMモードの信号を送信し、各受信装置200が、OAMモード毎の受信強度(受信電力、受信品質等でもよい)を送信装置100にフィードバックしてもよい。この場合、送信装置100は、例えば、受信装置200-1に対して受信強度の弱いOAMモードで受信装置200-2に対して信号を送信し、受信装置200-2に対して受信強度の弱いOAMモードで受信装置200-1に対して信号を送信する。これにより、ある受信装置に送信する信号により、他の受信装置への干渉を低減できる。 Further, for example, the transmitting device 100 transmits all the signals of the OAM mode that can be transmitted by itself, and each receiving device 200 sets the receiving intensity (reception power, reception quality, etc.) for each OAM mode to the transmitting device 100. You may give feedback to. In this case, for example, the transmitting device 100 transmits a signal to the receiving device 200-2 in the OAM mode in which the receiving device 200-1 has a weak receiving strength, and the receiving device 100 has a weak receiving strength to the receiving device 200-2. A signal is transmitted to the receiving device 200-1 in OAM mode. As a result, the signal transmitted to a certain receiving device can reduce the interference with another receiving device.
 図2(3)、図11を参照して説明した、OAMモードによる信号強度(電力)の分布の違いや、距離による信号強度(電力)の分布の違いは、送信装置100のUCAのサイズによっても違ってくる。 The difference in the distribution of the signal strength (power) depending on the OAM mode and the difference in the distribution of the signal strength (power) depending on the distance described with reference to FIGS. 2 (3) and 11 depend on the size of the UCA of the transmission device 100. Will also be different.
 例えば、送信装置100が、図13に示すように、複数の異なる直径を持つUCA#1~#3を備えるものとする。この場合、送信装置100は、例えば、受信装置200-x及び受信装置200-yと通信を行う場合において、受信装置200-xの位置でOAMモードの信号が弱くなる直径のUCAから当該OAMモードで受信装置200-yに対する信号を送信し、受信装置200-yの位置でOAMモードの信号が弱くなる直径のUCAから当該OAMモードで受信装置200-xに対する信号を送信する。このような制御についても、前述したフィードバック制御により可能である。 For example, it is assumed that the transmission device 100 includes UCA # 1 to # 3 having a plurality of different diameters, as shown in FIG. In this case, for example, when the transmitting device 100 communicates with the receiving device 200-x and the receiving device 200-y, the OAM mode is from the UCA having a diameter at which the signal in the OAM mode is weakened at the position of the receiving device 200-x. The signal to the receiving device 200-y is transmitted, and the signal to the receiving device 200-x in the OAM mode is transmitted from the UCA having a diameter at which the signal in the OAM mode becomes weak at the position of the receiving device 200-y. Such control is also possible by the feedback control described above.
 例えば、図12に示す例において、送信装置100のUCA#1~#3のうち、UCA#2からOAMモード1の信号を送信した場合に、図12のAで示す円形上の場所でOAMモード1の受信強度が弱くなるとする。また、例えば、UCA#1からOAMモード2の信号を送信した場合に、受信装置200-1の場所でOAMモード2の信号強度が弱くなるとする。 For example, in the example shown in FIG. 12, when the signal of OAM mode 1 is transmitted from UCA # 2 among UCA # 1 to # 3 of the transmission device 100, the OAM mode is located at the circular location shown by A in FIG. It is assumed that the reception strength of 1 becomes weak. Further, for example, when a signal of OAM mode 2 is transmitted from UCA # 1, it is assumed that the signal strength of OAM mode 2 is weakened at the location of the receiving device 200-1.
 この場合、送信装置100は、制御部140の指示に基づいて、UCA#2からOAMモード1で受信装置200-1に対する信号を送信し、UCA#1からOAMモード2で受信装置200-2に対する信号を送信する。これにより、受信装置200-1は、送信装置100から送信されたOAMモード1の信号を低い干渉で受信でき、受信装置200-2は、送信装置100から送信されたOAMモード2の信号を低い干渉で受信できる。 In this case, the transmitting device 100 transmits a signal from UCA # 2 to the receiving device 200-1 in OAM mode 1 based on the instruction of the control unit 140, and from UCA # 1 to the receiving device 200-2 in OAM mode 2. Send a signal. As a result, the receiving device 200-1 can receive the OAM mode 1 signal transmitted from the transmitting device 100 with low interference, and the receiving device 200-2 lowers the OAM mode 2 signal transmitted from the transmitting device 100. Can be received by interference.
 (受信装置200の能力に応じた処理)
 上記のように、OAMの強度がモード毎に、かつ、OAMアンテナのUCAの直径により異なる特徴を用いて、受信装置200への送信に使用するOAMモードを、他の受信装置への干渉が少なくなるように選択する場合において、ある受信装置200に対する信号を送信するためのOAMモードとして、その受信装置200の位置で強くなるOAMモードを選択することが好ましいが必須ではない。受信装置200の信号処理能力(干渉除去能力)に応じて、OAMモードを選択してもよい。
(Processing according to the capacity of the receiver 200)
As described above, the OAM mode used for transmission to the receiving device 200 has less interference with other receiving devices by using the characteristics that the intensity of the OAM differs depending on the mode and the diameter of the UCA of the OAM antenna. As the OAM mode for transmitting a signal to a certain receiving device 200, it is preferable, but not essential, to select an OAM mode that becomes stronger at the position of the receiving device 200. The OAM mode may be selected according to the signal processing capability (interference elimination capability) of the receiving device 200.
 例えば、図12に示したような状況において、受信装置200-1が、信号処理能力が低く、real time処理等の素早い処理が必要であり、受信装置200-2は、受信装置200-1より信号処理能力が高く、干渉除去の信号処理に時間を掛けることができ、real timeの要求が少ない場合を想定する。 For example, in the situation shown in FIG. 12, the receiving device 200-1 has a low signal processing capacity and requires quick processing such as real time processing, and the receiving device 200-2 is more than the receiving device 200-1. It is assumed that the signal processing capacity is high, the signal processing for interference elimination can be taken time, and the request for real time is small.
 送信装置100は、上記のような各受信装置の能力情報を事前に取得する。上記の場合において、送信装置100は、制御部140による制御に基づいて、受信装置200-1の位置で弱くなるOAMモードを用いて信号を受信装置200-2に送信することで、受信装置200-2への信号が干渉として受信装置200-1に届かないようにする。 The transmitting device 100 acquires the capability information of each receiving device as described above in advance. In the above case, the transmitting device 100 transmits a signal to the receiving device 200-2 using the OAM mode in which the signal is weakened at the position of the receiving device 200-1 based on the control by the control unit 140, so that the receiving device 200 Prevent the signal to -2 from reaching the receiving device 200-1 as interference.
 また、送信装置100は、受信装置200-1に対して、受信装置200-1の位置で強くなるOAMモードを使用して信号を送信する。この場合、受信装置200-2には、受信装置200-1へ送信するOAMモードの信号による干渉が生じるが、受信装置200-2は、overloaded MIMOの干渉除去法などの従来の干渉除去方法を用いて、受信装置200-2自身への信号のみを取得することができる。 Further, the transmitting device 100 transmits a signal to the receiving device 200-1 using the OAM mode in which the signal becomes stronger at the position of the receiving device 200-1. In this case, the receiving device 200-2 causes interference due to the OAM mode signal transmitted to the receiving device 200-1, but the receiving device 200-2 uses a conventional interference removing method such as an overloaded MIMO interference removing method. It can be used to acquire only the signal to the receiving device 200-2 itself.
 一方、受信装置200-1は、受信装置200-2向けに送信されるOAMモードからの干渉が少ないので、その干渉除去処理を行うことなく、受信装置200-1自身への信号を取得できる。 On the other hand, since the receiving device 200-1 has less interference from the OAM mode transmitted to the receiving device 200-2, the signal to the receiving device 200-1 itself can be acquired without performing the interference removing process.
 (実施の形態の効果)
 以上説明した本実施の形態に係る技術により、送信装置100は、受信装置200の位置において信号強度が最大となるOAMモードの信号のみを送信することができるので、受信装置200では、最大でも2つのOAMモードの信号を受信することになる。そのため、受信装置200においてOAMモード間干渉に対する信号分離処理を不要にすることができる、あるいは低減することができる。従って、特に能力の低い移動端末を受信装置として使用する場合において、移動端末でのOAMモード多重信号の受信及び広帯域化が可能となる。
(Effect of embodiment)
According to the technique according to the present embodiment described above, the transmitting device 100 can transmit only the OAM mode signal having the maximum signal strength at the position of the receiving device 200. Therefore, the receiving device 200 has a maximum of 2 signals. You will receive one OAM mode signal. Therefore, in the receiving device 200, it is possible to eliminate or reduce the signal separation processing for the interference between OAM modes. Therefore, when a mobile terminal having a particularly low capacity is used as a receiving device, the mobile terminal can receive the OAM mode multiplex signal and widen the bandwidth.
 (実施の形態のまとめ)
 本明細書には、少なくとも下記の各項に記載した無線通信システム、送信装置、受信装置、及び通信方法が記載されている。
(第1項)
 送信装置と受信装置とを備える無線通信システムであって、
 前記送信装置が、前記受信装置の位置における信号強度が最大のOAMモードの信号を前記受信装置に送信し、
 前記受信装置が、前記OAMモードの信号を受信する
 無線通信システム。
(第2項)
 前記送信装置は、複数のOAMモードの信号強度の分布情報に基づいて、前記受信装置の位置における信号強度が最大のOAMモードを決定する
 第1項に記載の無線通信システム。
(第3項)
 前記受信装置は、前記送信装置から受信する複数のOAMモードの信号の信号強度を測定し、信号強度が最大のOAMモードを前記送信装置に通知し、
 前記送信装置は、前記受信装置から通知されたOAMモードの信号を前記受信装置に送信する
 第1項に記載の無線通信システム。
(第4項)
 前記無線通信システムは、第1の受信装置と第2の受信装置を含み、前記送信装置は、前記第1の受信装置の位置における受信強度が弱くなるOAMモードの信号を、前記第1の受信装置の存在位置と異なる位置に存在する前記第2の受信装置に対して送信する
 請求項1ないし3のうちいずれか1項に記載の無線通信システム。
(第5項)
 送信装置と受信装置とを備える無線通信システムにおける前記送信装置であって、
 前記受信装置の位置における信号強度が最大のOAMモードの信号を前記受信装置に送信する送信部
 を備える送信装置。
(第6項)
 複数のOAMモードの信号強度の分布情報に基づいて、前記受信装置の位置における信号強度が最大のOAMモードを決定する制御部
 を備える第5項に記載の送信装置。
(第7項)
 送信装置と受信装置とを備える無線通信システムにおける前記受信装置であって、
 前記送信装置から、複数のOAMモードの信号を受信する受信部と、
 前記受信部により受信した複数のOAMモードの信号の信号強度を測定し、信号強度が最大のOAMモードを前記送信装置に通知する制御部と
 を備える受信装置。
(第8項)
 前記受信部は、バトラー回路を備え、
 前記制御部は、各OAMモードに対応する出力ポートから出力される信号の信号強度から、信号強度が最大のOAMモードを決定する
 第7項に記載の受信装置。
(第9項)
 送信装置と受信装置とを備える無線通信システムにおける通信方法であって、
 前記送信装置が、前記受信装置の位置における信号強度が最大のOAMモードの信号を前記受信装置に送信し、
 前記受信装置が、前記OAMモードの信号を受信する
 通信方法。
(Summary of embodiments)
This specification describes at least the wireless communication system, the transmitting device, the receiving device, and the communication method described in the following items.
(Section 1)
A wireless communication system including a transmitting device and a receiving device.
The transmitting device transmits a signal in OAM mode having the maximum signal strength at the position of the receiving device to the receiving device.
A wireless communication system in which the receiving device receives the OAM mode signal.
(Section 2)
The wireless communication system according to item 1, wherein the transmitting device determines an OAM mode having the maximum signal strength at a position of the receiving device based on distribution information of signal strengths of a plurality of OAM modes.
(Section 3)
The receiving device measures the signal strength of a plurality of OAM mode signals received from the transmitting device, and notifies the transmitting device of the OAM mode having the maximum signal strength.
The wireless communication system according to item 1, wherein the transmitting device transmits an OAM mode signal notified from the receiving device to the receiving device.
(Section 4)
The wireless communication system includes a first receiving device and a second receiving device, and the transmitting device receives an OAM mode signal in which the receiving intensity at the position of the first receiving device is weakened. The wireless communication system according to any one of claims 1 to 3, which is transmitted to the second receiving device located at a position different from the existing position of the device.
(Section 5)
The transmitting device in a wireless communication system including a transmitting device and a receiving device.
A transmitter including a transmitter that transmits a signal in OAM mode having the maximum signal strength at the position of the receiver to the receiver.
(Section 6)
The transmitting device according to item 5, further comprising a control unit for determining the OAM mode having the maximum signal strength at the position of the receiving device based on the distribution information of the signal strengths of the plurality of OAM modes.
(Section 7)
The receiving device in a wireless communication system including a transmitting device and a receiving device.
A receiver that receives a plurality of OAM mode signals from the transmitter,
A receiving device including a control unit that measures the signal strength of a plurality of OAM mode signals received by the receiving unit and notifies the transmitting device of the OAM mode having the maximum signal strength.
(Section 8)
The receiver comprises a butler circuit.
The receiving device according to Item 7, wherein the control unit determines the OAM mode having the maximum signal strength from the signal strength of the signal output from the output port corresponding to each OAM mode.
(Section 9)
A communication method in a wireless communication system including a transmitting device and a receiving device.
The transmitting device transmits a signal in OAM mode having the maximum signal strength at the position of the receiving device to the receiving device.
A communication method in which the receiving device receives the OAM mode signal.
 以上、本実施の形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the present embodiment has been described above, the present invention is not limited to such a specific embodiment, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It is possible.
100 送信装置
110 UCA
120 OAMモード生成部
130 信号処理部
140 制御部
200 受信装置
210 UCA
220 OAMモード分離部
221 測定部
230 信号処理部
240 制御部
100 Transmitter 110 UCA
120 OAM mode generator 130 Signal processing unit 140 Control unit 200 Receiver 210 UCA
220 OAM mode separation unit 221 Measurement unit 230 Signal processing unit 240 Control unit

Claims (8)

  1.  送信装置と受信装置とを備える無線通信システムであって、
     前記送信装置が、前記受信装置の位置における信号強度が最大のOAMモードの信号を前記受信装置に送信し、
     前記受信装置が、前記OAMモードの信号を受信する
     無線通信システム。
    A wireless communication system including a transmitting device and a receiving device.
    The transmitting device transmits a signal in OAM mode having the maximum signal strength at the position of the receiving device to the receiving device.
    A wireless communication system in which the receiving device receives the OAM mode signal.
  2.  前記送信装置は、複数のOAMモードの信号強度の分布情報に基づいて、前記受信装置の位置における信号強度が最大のOAMモードを決定する
     請求項1に記載の無線通信システム。
    The wireless communication system according to claim 1, wherein the transmitting device determines an OAM mode having the maximum signal strength at a position of the receiving device based on distribution information of signal strengths of a plurality of OAM modes.
  3.  前記受信装置は、前記送信装置から受信する複数のOAMモードの信号の信号強度を測定し、信号強度が最大のOAMモードを前記送信装置に通知し、
     前記送信装置は、前記受信装置から通知されたOAMモードの信号を前記受信装置に送信する
     請求項1に記載の無線通信システム。
    The receiving device measures the signal strength of a plurality of OAM mode signals received from the transmitting device, and notifies the transmitting device of the OAM mode having the maximum signal strength.
    The wireless communication system according to claim 1, wherein the transmitting device transmits an OAM mode signal notified from the receiving device to the receiving device.
  4.  前記無線通信システムは、第1の受信装置と第2の受信装置を含み、前記送信装置は、前記第1の受信装置の位置における受信強度が弱くなるOAMモードの信号を、前記第1の受信装置の存在位置と異なる位置に存在する前記第2の受信装置に対して送信する
     請求項1ないし3のうちいずれか1項に記載の無線通信システム。
    The wireless communication system includes a first receiving device and a second receiving device, and the transmitting device receives an OAM mode signal in which the receiving intensity at the position of the first receiving device is weakened. The wireless communication system according to any one of claims 1 to 3, which is transmitted to the second receiving device located at a position different from the existing position of the device.
  5.  送信装置と受信装置とを備える無線通信システムにおける前記送信装置であって、
     前記受信装置の位置における信号強度が最大のOAMモードの信号を前記受信装置に送信する送信部
     を備える送信装置。
    The transmitting device in a wireless communication system including a transmitting device and a receiving device.
    A transmitter including a transmitter that transmits a signal in OAM mode having the maximum signal strength at the position of the receiver to the receiver.
  6.  複数のOAMモードの信号強度の分布情報に基づいて、前記受信装置の位置における信号強度が最大のOAMモードを決定する制御部
     を備える請求項5に記載の送信装置。
    The transmitting device according to claim 5, further comprising a control unit for determining the OAM mode having the maximum signal strength at the position of the receiving device based on the distribution information of the signal strengths of the plurality of OAM modes.
  7.  送信装置と受信装置とを備える無線通信システムにおける前記受信装置であって、
     前記送信装置から、複数のOAMモードの信号を受信する受信部と、
     前記受信部により受信した複数のOAMモードの信号の信号強度を測定し、信号強度が最大のOAMモードを前記送信装置に通知する制御部と
     を備える受信装置。
    The receiving device in a wireless communication system including a transmitting device and a receiving device.
    A receiver that receives a plurality of OAM mode signals from the transmitter,
    A receiving device including a control unit that measures the signal strength of a plurality of OAM mode signals received by the receiving unit and notifies the transmitting device of the OAM mode having the maximum signal strength.
  8.  送信装置と受信装置とを備える無線通信システムにおける通信方法であって、
     前記送信装置が、前記受信装置の位置における信号強度が最大のOAMモードの信号を前記受信装置に送信し、
     前記受信装置が、前記OAMモードの信号を受信する
     通信方法。
    A communication method in a wireless communication system including a transmitting device and a receiving device.
    The transmitting device transmits a signal in OAM mode having the maximum signal strength at the position of the receiving device to the receiving device.
    A communication method in which the receiving device receives the OAM mode signal.
PCT/JP2020/049214 2020-12-28 2020-12-28 Wireless communication system, transmission device, reception device, and communication method WO2022145011A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022572854A JP7563489B2 (en) 2020-12-28 2020-12-28 Wireless communication system, transmitting device, receiving device, and communication method
PCT/JP2020/049214 WO2022145011A1 (en) 2020-12-28 2020-12-28 Wireless communication system, transmission device, reception device, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049214 WO2022145011A1 (en) 2020-12-28 2020-12-28 Wireless communication system, transmission device, reception device, and communication method

Publications (1)

Publication Number Publication Date
WO2022145011A1 true WO2022145011A1 (en) 2022-07-07

Family

ID=82259162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049214 WO2022145011A1 (en) 2020-12-28 2020-12-28 Wireless communication system, transmission device, reception device, and communication method

Country Status (2)

Country Link
JP (1) JP7563489B2 (en)
WO (1) WO2022145011A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212673A (en) * 2016-05-27 2017-11-30 日本電信電話株式会社 Radio communication method and radio communication system
WO2019059406A1 (en) * 2017-09-25 2019-03-28 日本電信電話株式会社 Oam multiplexing communication system and inter-mode interference elimination method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212673A (en) * 2016-05-27 2017-11-30 日本電信電話株式会社 Radio communication method and radio communication system
WO2019059406A1 (en) * 2017-09-25 2019-03-28 日本電信電話株式会社 Oam multiplexing communication system and inter-mode interference elimination method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUGANUMA HIROFUMI; SAITO SHUHEI; OGAWA KAYO; MAEHARA FUMIAKI: "Inter-Mode Interference Suppression Employing Even-Numbered Modes for UCA-Based OAM Multiplexing", 2019 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), IEEE, 9 December 2019 (2019-12-09), pages 1 - 6, XP033735162, DOI: 10.1109/GCWkshps45667.2019.9024598 *

Also Published As

Publication number Publication date
JPWO2022145011A1 (en) 2022-07-07
JP7563489B2 (en) 2024-10-08

Similar Documents

Publication Publication Date Title
US9319124B2 (en) Apparatus and method for supporting multi-antenna transmission in beamformed wireless communication system
EP3691149B1 (en) Oam multiplexing communication system and oam multiplexing communication method
EP2756609B1 (en) Apparatus and method for beam selecting in beamformed wireless communication system
US20130182683A1 (en) Method and apparatus for tracking uplink beams in beamforming-based wireless communication system
CN105308880A (en) Communications apparatus, network control device and methods for efficient beam training
CN105308881A (en) Methods for efficient beam training and communications apparatus and network control device utilizing the same
WO2022145008A1 (en) Transmission device, wireless communication system, and communication method
CN106911371B (en) Beam training method and device
CN101563951A (en) Beacon transmission and reception using directional antennas
CN107852209B (en) Training beam transmission method, device and system
CN110212961A (en) Time-modulation array multimode electromagnetism vortex transmitter and its application method
WO2022145011A1 (en) Wireless communication system, transmission device, reception device, and communication method
CN110691413A (en) Method and equipment for transmitting residual minimum system information control resource set
WO2022145010A1 (en) Wireless communication system, transmission device, reception device, and communication method
JP2023115263A (en) Communication apparatus
JP2012044298A (en) Radio communication system
KR20160080847A (en) System and Method for Multi-User Multiple Polarized Input Multiple Output(MU-mPIMO)
WO2023286163A1 (en) Radio communication system, transmission device, and reception device
JP2014003431A (en) Tracking antenna device and initial phase difference compensation method
US10148338B1 (en) Wireless communication system
WO2023047582A1 (en) Transmission method and transmission device
JP2010239544A (en) Antenna installation method in mimo communication system, communication apparatus, and communication system
US20240014553A1 (en) Transmission apparatus and signal transmission method
WO2023286160A1 (en) Transmitting/receiving device and method for suppressing interference
US20240322453A1 (en) Transmission apparatus and transmission method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20968022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572854

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20968022

Country of ref document: EP

Kind code of ref document: A1