WO2023047228A1 - 電子装置および表示システム - Google Patents

電子装置および表示システム Download PDF

Info

Publication number
WO2023047228A1
WO2023047228A1 PCT/IB2022/058439 IB2022058439W WO2023047228A1 WO 2023047228 A1 WO2023047228 A1 WO 2023047228A1 IB 2022058439 W IB2022058439 W IB 2022058439W WO 2023047228 A1 WO2023047228 A1 WO 2023047228A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transistor
electronic device
display
insulator
Prior art date
Application number
PCT/IB2022/058439
Other languages
English (en)
French (fr)
Inventor
加藤清
大貫達也
宮口厚
及川欣聡
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2023549160A priority Critical patent/JPWO2023047228A1/ja
Priority to CN202280061608.8A priority patent/CN117941066A/zh
Priority to KR1020247012016A priority patent/KR20240072185A/ko
Publication of WO2023047228A1 publication Critical patent/WO2023047228A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/48Analogue computers for specific processes, systems or devices, e.g. simulators
    • G06G7/60Analogue computers for specific processes, systems or devices, e.g. simulators for living beings, e.g. their nervous systems ; for problems in the medical field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • This specification describes an electronic device, a display system including the electronic device, and a semiconductor device included in the electronic device.
  • one aspect of the present invention is not limited to the above technical field.
  • Technical fields of one embodiment of the present invention disclosed in this specification and the like include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices, input/output devices, and driving methods thereof. , or methods for producing them, can be mentioned as an example.
  • a wrist-mounted electronic device may have a configuration including a display, various sensors, a CPU for controlling the various sensors, a memory for storing data, and the like (see, for example, Patent Document 1). .
  • SoC System on Chip
  • GPU Graphics Processing Unit
  • An object of one embodiment of the present invention is to provide a novel electronic device, display system, and the like.
  • one embodiment of the present invention is to provide an electronic device, a display system, or the like having a novel configuration in which an increase in heat generation and power consumption can be suppressed in an electronic device including a semiconductor device whose performance is improved by SoC. Make it one of the issues.
  • an object of one embodiment of the present invention is to provide an electronic device or the like and a display system with a novel structure in which the number of data transfers in a CPU can be reduced.
  • one embodiment of the present invention provides an electronic device, a display system, or the like with a novel configuration that achieves both high performance of a semiconductor device and low power consumption or suppression of heat generation of the semiconductor device.
  • One aspect of the present invention is an electronic device including a semiconductor device, wherein the semiconductor device includes a CPU, an accelerator, and a memory device, and the CPU electrically connects a scan flip-flop circuit and a scan flip-flop circuit.
  • a backup circuit connected thereto, the backup circuit having a first transistor, the accelerator having an arithmetic circuit and a data holding circuit electrically connected to the arithmetic circuit, the data holding circuit , a second transistor, a memory device having a memory cell having a third transistor, the first to third transistors having a semiconductor layer having a metal oxide in a channel formation region;
  • An electronic device is an electronic device.
  • One aspect of the present invention is an electronic device including a semiconductor device, wherein the semiconductor device includes a CPU, an accelerator, and a memory device, and the CPU electrically connects a scan flip-flop circuit and a scan flip-flop circuit.
  • a backup circuit connected thereto, the backup circuit having a first transistor, the layer provided with the backup circuit being stacked with the layer provided with the scan flip-flop circuit, and the accelerator performing the operation and a data holding circuit electrically connected to the arithmetic circuit, the data holding circuit having a second transistor, and the layer provided with the data holding circuit being stacked with the layer provided with the arithmetic circuit.
  • the memory device is an electronic device including a memory cell having a third transistor, and the first to third transistors each including a semiconductor layer including metal oxide in a channel formation region.
  • the backup circuit is preferably an electronic device that has a function of holding data held in the scan flip-flop circuit while the supply of power supply voltage is stopped when the CPU is not operating.
  • the data holding circuit is preferably an electronic device having a function of holding data held in the data holding circuit while the supply of power supply voltage is stopped when the accelerator is not in operation.
  • the scan flip-flop circuit and the arithmetic circuit are preferably electronic devices each including a transistor having a semiconductor layer containing silicon in a channel formation region.
  • the memory device is preferably an electronic device in which a peripheral circuit that controls memory cells is provided, and a layer provided with the peripheral circuit is stacked with a layer provided with the memory cell.
  • the arithmetic circuit is preferably a semiconductor device that performs sum-of-products operation.
  • the semiconductor device preferably contains In, Ga, and Zn as the metal oxide.
  • One aspect of the present invention includes a first electronic device and a second electronic device, wherein the first electronic device includes a first display section, first wireless communication means, and a first a sensor, the second electronic device has a second display, a second wireless communication means, and a second sensor; the first wireless communication means; A first electronic device and a second electronic device are connected by interlocking a wireless communication means, and based on any one or more information input to the first sensor and the second sensor 2, based on the function of displaying one or more of augmented reality, virtual reality, alternative reality, or mixed reality on the second display unit, and information input to the first sensor, the second and a function of manipulating an image on a display unit.
  • the first electronic device is preferably a display system, which is the electronic device of one aspect of the present invention.
  • One aspect of the present invention can provide a novel electronic device, display system, and the like.
  • one embodiment of the present invention can provide an electronic device, a display system, or the like with a novel configuration in which an increase in heat generation and power consumption can be suppressed in an electronic device including a semiconductor device whose performance is improved by SoC. can.
  • one embodiment of the present invention can provide an electronic device, a display system, or the like with a novel structure in which the number of data transfers in a CPU can be reduced.
  • one embodiment of the present invention provides an electronic device, a display system, or the like with a novel configuration that achieves both high performance of a semiconductor device and low power consumption or suppression of heat generation of the semiconductor device. can do.
  • one embodiment of the present invention can provide an electronic device, a display system, or the like with a novel configuration that is highly convenient.
  • FIGS. 1A and 1B are diagrams for explaining a configuration example of an electronic device.
  • 2A and 2B are diagrams for explaining a configuration example of an electronic device.
  • FIG. 3 is a diagram illustrating a configuration example of an electronic device.
  • 4A and 4B are diagrams for explaining a configuration example of an electronic device.
  • FIG. 5 is a diagram illustrating a configuration example of an electronic device.
  • 6A and 6B are diagrams for explaining a configuration example of an electronic device.
  • 7A and 7B are diagrams for explaining a configuration example of an electronic device.
  • 8A and 8B are diagrams for explaining a configuration example of an electronic device.
  • 9A and 9B are diagrams for explaining a configuration example of an electronic device.
  • 10A and 10B are diagrams for explaining a configuration example of an electronic device.
  • FIG. 11A to 11F are diagrams illustrating configuration examples of electronic devices.
  • FIG. 12 is a diagram illustrating a configuration example of an electronic device.
  • 13A and 13B are diagrams for explaining a configuration example of an electronic device.
  • 14A to 14C are diagrams illustrating configuration examples of electronic devices.
  • 15A and 15B are diagrams for explaining a configuration example of an electronic device.
  • FIG. 16 is a diagram illustrating a configuration example of an electronic device.
  • 17A to 17C are diagrams illustrating configuration examples of electronic devices.
  • FIG. 18 is a diagram illustrating a configuration example of an electronic device.
  • 19A and 19B are diagrams for explaining a configuration example of an electronic device.
  • 20A and 20B are diagrams showing configuration examples of a display device and a display system.
  • 21A and 21B are diagrams showing configuration examples of a display device and a display system.
  • 22A to 22D are diagrams showing examples of images of a display device and a display system.
  • FIG. 23 is a diagram illustrating an example of how the display system operates.
  • 24A to 24D are diagrams showing examples of images of a display device and a display system.
  • FIG. 25 is a diagram illustrating an example of how the display system operates.
  • 26A and 26B are diagrams for explaining a configuration example of a display device.
  • FIG. 27 is a diagram illustrating a configuration example of a display device.
  • FIG. 28 is a diagram illustrating an operation example of the electronic device.
  • 29A and 29B are schematic diagrams illustrating a configuration example of an electronic device.
  • 30A and 30B are schematic diagrams for explaining a configuration example of an electronic device.
  • 31A and 31B are schematic diagrams illustrating configuration examples of electronic devices.
  • 32A and 32B are diagrams for explaining a configuration example of a display device.
  • 33A and 33B are diagrams for explaining a configuration example of a display device.
  • 34A and 34C are diagrams for explaining a configuration example of a display device.
  • 35A and 35C are diagrams for explaining a configuration example of a display device.
  • 36A and 36B are diagrams illustrating configuration examples of display devices.
  • FIG. 37 is a diagram illustrating a configuration example of a display device.
  • FIG. 38 is a diagram illustrating a configuration example of a display device.
  • FIG. 39 is a diagram illustrating a configuration example of a display device.
  • FIG. 37 is a diagram illustrating a configuration example of a display device.
  • FIG. 38 is a diagram illustrating a configuration example of a display device.
  • FIG. 40 is a diagram illustrating a configuration example of a display device.
  • FIG. 41 is a diagram illustrating a configuration example of a display device.
  • FIG. 42 is a diagram illustrating a configuration example of a display device.
  • FIG. 43 is a diagram illustrating a configuration example of a display device.
  • 44A to 44E are diagrams illustrating configuration examples of electronic devices.
  • the ordinal numbers “first”, “second”, and “third” are added to avoid confusion of constituent elements. Therefore, the number of components is not limited. Also, the order of the components is not limited. Also, for example, the component referred to as “first” in one of the embodiments of this specification etc. is the component referred to as “second” in another embodiment or the scope of claims It is possible. Further, for example, the component referred to as “first” in one of the embodiments of this specification etc. may be omitted in other embodiments or the scope of claims.
  • the power supply potential VDD may be abbreviated as potential VDD, VDD, or the like. This also applies to other components (eg, signals, voltages, circuits, elements, electrodes, wiring, etc.).
  • the code is used for identification such as "_1”, “_2”, “[n]", and “[m,n]”. may be described with the sign of .
  • the second wiring GL is described as wiring GL[2].
  • FIG. 1A is a block diagram illustrating an electronic device according to one embodiment of the present invention.
  • the electronic device 100 shown in FIG. 1A includes a semiconductor device 101 as well as a display 102, a main memory 103, a battery 104, and a sensor 105 as an example.
  • FIG. 1B shows an example of a perspective view of the electronic device 100 corresponding to the block diagram of the electronic device 100 shown in FIG. 1A.
  • the electronic device shown in FIG. 1B is a wristwatch type electronic device, and in addition to the semiconductor device 101, a display 102, a main memory 103, a battery 104, and sensors are contained in a housing 111 to which an operation unit 112 and a band 113 are attached.
  • the configuration in which 105 is housed is shown.
  • the electronic device 100 shown in FIG. 1B has a function as a so-called smart watch.
  • the semiconductor device 101 includes a CPU 10, an accelerator 20, a memory device 30, a DMAC (Direct Memory Access Controller) 41, a power management unit (PMU) 42, a power supply circuit 60, a memory controller 43, a DDR SDRAM (Double Data Rate Synchronous Dynamic Random Access Memory). ) controller 44, USB (Universal Serial Bus) interface circuit 45, display interface circuit 46, bridge circuit 50, interrupt control circuit 51, interface circuit 52, battery control circuit 53, and ADC (Analog-to-digital converter)/DAC ( (digital-to-analog converter) interface circuit 54 .
  • the semiconductor device 101 may include a module (also referred to as a communication module) having a function of communicating with the outside.
  • the communication module may be provided with, for example, a high frequency circuit (RF circuit) to transmit and receive RF signals.
  • a high-frequency circuit is a circuit that mutually converts an electromagnetic signal and an electric signal in the frequency band specified by the laws and regulations of each country, and uses the electromagnetic signal to wirelessly communicate with other communication devices. Several tens of kHz to several tens of GHz are generally used as a practical frequency band.
  • the high-frequency circuit connected to the antenna has a high-frequency circuit section corresponding to a plurality of frequency bands, and the high-frequency circuit section may be configured to have an amplifier (amplifier), a mixer, a filter, a DSP, an RF transceiver, etc. can.
  • LTE Long Term Evolution
  • 5G 5th generation mobile communication system
  • 6th generation Communication standards stipulated by 3GPP (Third Generation Partnership Project) (registered trademark), such as standards corresponding to the next generation mobile communication system (6G), or IEEE (registered trademark) such as Wi-Fi (registered trademark) and Bluetooth (registered trademark)
  • 6G next generation mobile communication system
  • 6G next generation mobile communication system
  • IEEE registered trademark
  • Wi-Fi registered trademark
  • Bluetooth registered trademark
  • the semiconductor device 101 may have another circuit, such as a security circuit.
  • the security circuit is a circuit for enhancing confidentiality of signals, such as transmitting and receiving encrypted signals between the semiconductor device 101 and an external circuit.
  • the CPU 10 has, for example, a CPU core 11, an L1 cache memory device 12, an L2 cache memory device 13, and a bus interface section 14.
  • L1 cache memory device 12 is sometimes referred to as an instruction cache.
  • the L2 cache memory device 13 may be called a data cache.
  • the CPU core 11 has multiple CPU cores.
  • the CPU core has a backup circuit 10M electrically connected to the scan flip-flop circuit.
  • the L1 cache memory device 12 has a function of temporarily storing instructions to be executed by the CPU core 11 .
  • the L2 cache memory device 13 has a function of temporarily storing data processed by the CPU core 11 or data obtained by the processing.
  • the bus interface unit 14 may have a circuit configuration capable of transmitting/receiving signals such as data and addresses to/from a bus for connecting the CPU 10 and other circuits in the semiconductor device 101 .
  • the scan flip-flop circuit in the CPU 10 is composed of a circuit having a transistor (Si transistor) having a semiconductor layer containing silicon in the channel forming region, that is, a Si CMOS.
  • the backup circuit 10M has a transistor (OS transistor) having a semiconductor layer containing a metal oxide in a channel formation region.
  • the backup circuit 10M including the OS transistor can function as an OS memory having a function of holding charge for a long time by turning off the OS transistor.
  • the OS transistor Since the bandgap of metal oxide is 2.5 eV or more, the OS transistor has a very small off current.
  • the off-state current per 1 ⁇ m of channel width is less than 1 ⁇ 10 ⁇ 20 A, less than 1 ⁇ 10 ⁇ 22 A, or 1 ⁇ 10 A at a voltage between the source and the drain of 3.5 V and at room temperature (25° C.). less than -24 A. That is, the ON/OFF current ratio of the drain current can be set to 20 digits or more and 150 digits or less. Therefore, the OS memory has an extremely small amount of charge leaked from the retention node via the OS transistor. Therefore, since the OS memory can function as a non-volatile memory circuit, power gating of the CPU 10 is possible.
  • High-density integrated semiconductor devices may generate heat due to circuit driving.
  • the heat generation raises the temperature of the transistor, which may change the characteristics of the transistor, resulting in a change in field-effect mobility, a decrease in operating frequency, or the like.
  • the OS transistor has higher heat resistance than the Si transistor, the field-effect mobility is less likely to change due to temperature changes, and the operating frequency is less likely to decrease.
  • the OS transistor tends to maintain the characteristic that the drain current increases exponentially with respect to the gate-source voltage even when the temperature rises. Therefore, with the use of the OS transistor, stable operation can be performed in a high temperature environment.
  • Metal oxides applied to OS transistors include Zn oxide, Zn—Sn oxide, Ga—Sn oxide, In—Ga oxide, In—Zn oxide, and In—M—Zn oxide (M is , Ti, Ga, Y, Zr, La, Ce, Nd, Sn or Hf).
  • M is , Ti, Ga, Y, Zr, La, Ce, Nd, Sn or Hf.
  • the transistor can have excellent electrical characteristics such as field-effect mobility by adjusting the ratio of the elements, which is preferable.
  • oxides containing indium and zinc include aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, and tungsten. , magnesium, etc., or a plurality of kinds thereof may be contained.
  • the metal oxide applied to the semiconductor layer is preferably a metal oxide having a crystal part, such as CAAC-OS, CAC-OS, and nc-OS.
  • CAAC-OS is an abbreviation for c-axis-aligned crystal oxide semiconductor.
  • CAC-OS is an abbreviation for Cloud-Aligned Composite Oxide Semiconductor.
  • nc-OS is an abbreviation for nanocrystalline oxide semiconductor.
  • CAAC-OS has a c-axis orientation and a distorted crystal structure in which multiple nanocrystals are connected in the a-b plane direction.
  • the strain refers to a portion where the direction of the lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of nanocrystals are connected.
  • a CAC-OS has a function of allowing electrons (or holes), which are carriers, to flow, and a function of not allowing electrons, which are carriers, to flow. By separating the function of allowing electrons to flow from the function of not allowing electrons to flow, both functions can be maximized. That is, by using the CAC-OS for the channel formation region of the OS transistor, both high on-current and extremely low off-current can be achieved.
  • Metal oxides have a large bandgap, which makes it difficult for electrons to be excited, and the effective mass of holes is large. Therefore, in OS transistors, avalanche decay and the like are less likely to occur than in general Si transistors. . Therefore, it is possible to suppress hot carrier deterioration caused by, for example, avalanche collapse. Since hot carrier deterioration can be suppressed, the OS transistor can be driven with a high drain voltage.
  • An OS transistor is a storage transistor that uses electrons as majority carriers. Therefore, the influence of DIBL (Drain-Induced Barrier Lowering), which is one of the short-channel effects, is small compared to an inversion-type transistor (typically, a Si transistor) having a pn junction. That is, the OS transistor has higher resistance to the short channel effect than the Si transistor.
  • DIBL Drain-Induced Barrier Lowering
  • the OS transistor Since the OS transistor has high resistance to the short-channel effect, the channel length can be reduced without deteriorating the reliability of the OS transistor, so the use of the OS transistor can increase the degree of integration of the circuit.
  • the drain electric field increases as the channel length becomes finer, as described above, an avalanche collapse is less likely to occur in an OS transistor than in a Si transistor.
  • the OS transistor since the OS transistor has high resistance to the short channel effect, it is possible to make the gate insulating film thicker than the Si transistor. For example, even in a minute transistor with a channel length and a channel width of 50 nm or less, a gate insulating film as thick as about 10 nm can be provided in some cases. By thickening the gate insulating film, the parasitic capacitance can be reduced, so that the operating speed of the circuit can be improved. Also, by thickening the gate insulating film, leakage current through the gate insulating film is reduced, which leads to reduction in static current consumption.
  • the CPU 10 can retain data even when the supply of power supply voltage is stopped by having the backup circuit 10M, which is an OS memory. Therefore, power gating of the CPU 10 becomes possible, and a significant reduction in power consumption can be achieved.
  • the backup circuit 10M which is an OS memory, can be stacked with a circuit such as a scan flip-flop circuit that is composed of Si transistors that the CPU core 11 has. Therefore, it can be arranged without increasing the circuit area.
  • the accelerator 20 has a memory circuit 21, an arithmetic circuit 22, and a control circuit 23.
  • the accelerator 20 has a function of executing a program (also called kernel or kernel program) called by the host program.
  • the accelerator 20 can perform, for example, parallel processing of matrix calculations in graphics processing, parallel processing of product-sum calculations in neural networks, parallel processing of floating-point calculations in scientific and technical calculations, and the like. Therefore, the performance of the semiconductor device 101 can be improved as compared with the configuration of only the CPU 10 .
  • the memory circuit 21 has a plurality of data holding circuits 20M.
  • the data holding circuit 20M can have a circuit configuration of NOSRAM.
  • NOSRAM registered trademark
  • a NOSRAM is a memory whose memory cells are two-transistor (2T) or three-transistor (3T) gain cells and whose access transistors are OS transistors. The current flowing between the source and the drain of the OS transistor in the off state, that is, the leak current is extremely small.
  • the NOSRAM can be used as a non-volatile memory by retaining electric charge corresponding to data in the data retention circuit 20M using the characteristic of extremely small leakage current.
  • NOSRAM can read data without destroying it (non-destructive reading), it is suitable for parallel processing of sum-of-products operations in neural networks that repeat only data reading operations in large numbers.
  • the arithmetic circuit 22 has a function of performing arithmetic processing using digital values. Digital values are less susceptible to noise. Therefore, the accelerator 20 is suitable for performing arithmetic processing that requires highly accurate arithmetic results.
  • the arithmetic circuit 22 is preferably composed of a Si CMOS, that is, a transistor (Si transistor) having silicon in a channel formation region. With this structure, the data holding circuit 20M including the OS transistor can be stacked.
  • the control circuit 23 is a circuit configuration for controlling each circuit such as a drive circuit within the accelerator 20 .
  • the arithmetic circuit 22 may be configured to perform arithmetic processing using analog values.
  • the data holding circuit 20M can hold charges according to analog values. With this structure, arithmetic processing using an analog signal output from the data holding circuit 20M including the OS transistor can be performed.
  • analog values can be continuously held as data, and can be configured to output to the CPU 10 the calculation results obtained by calculation in the arithmetic circuit. Since the data can be held continuously, the frequency of data transfer for arithmetic processing can be reduced. Moreover, since the amount of arithmetic processing of the CPU 10 can be reduced, the frequency of data transfer between the memory device 30 and the CPU 10 can also be reduced. That is, with the configuration of one embodiment of the present invention, the number of accesses via the bus 40A and the amount of data to be transferred can be reduced.
  • the memory device 30 functions as an on-chip memory.
  • the on-chip memory is a memory device for storing data or programs to be input/output to/from a circuit included in the semiconductor device 101 , such as the CPU 10 or the accelerator 20 .
  • the memory device 30 has a function of storing data or programs to be input/output to/from a circuit of the semiconductor device 101 , such as the CPU 10 or the accelerator 20 .
  • the memory device 30 has a memory cell array 31 and a peripheral circuit 32 .
  • the memory cell array 31 has memory cells 30M.
  • a DOSRAM or NOSRAM is preferable as a storage circuit applicable to the memory cell 30M.
  • DOSRAM registered trademark
  • DOSRAM is an abbreviation for "Dynamic Oxide Semiconductor RAM” and refers to a RAM having 1T (transistor) 1C (capacitor) type memory cells.
  • DOSRAM like NOSRAM, is a memory that utilizes the fact that the off-state current of an OS transistor is low.
  • DOSRAM is a DRAM formed using OS transistors, and is a memory that temporarily stores information sent from the outside.
  • the memory device 30 can be provided in different stacked layers of the memory cell 30M including the OS transistor and the peripheral circuit 32 including the Si transistor (transistor having silicon in the channel formation region).
  • DOSRAM can reduce the overall circuit area.
  • the DOSRAM can be divided into small memory cell arrays and arranged efficiently.
  • the DOSRAM can have a stacked structure by including OS transistors provided in a plurality of layers.
  • the bus 40A is a bus for transmitting and receiving various signals at high speed between the CPU 10, the accelerator 20, the memory device 30, the DMAC 41, the PMU 42, the memory controller 43, the DDR SDRAM controller 44, the USB interface circuit 45, and the display interface circuit 46.
  • AMBA Advanced Microcontroller Bus Architecture
  • HAB Advanced High-performance Bus
  • the DMAC 41 is a direct memory access controller. By having the DMAC 41 , peripheral devices other than the CPU 10 can access the memory device 30 without the CPU 10 .
  • the PMU 42 has a circuit configuration for controlling power gating of circuits such as the CPU core 11 of the CPU 10 of the semiconductor device 101 .
  • the memory controller 43 has a circuit configuration for writing or reading a program to be executed by the CPU 10 or the accelerator 20 from a program memory outside the semiconductor device 101 .
  • the DDR SDRAM controller 44 has a circuit configuration for writing data to or reading data from the main memory 103 such as a DRAM outside the semiconductor device 101 .
  • the USB interface circuit 45 has a circuit configuration for transmitting and receiving data to and from a circuit outside the semiconductor device 101 via a USB terminal.
  • the USB interface circuit 45 has a circuit configuration for transmitting and receiving signals to and from an external general-purpose device.
  • the display interface circuit 46 has a circuit configuration for transmitting and receiving data to and from the display 102 outside the semiconductor device 101 .
  • the power supply circuit 60 is a circuit for generating voltage used within the semiconductor device 101 .
  • it is a circuit that generates a negative voltage for stabilizing electrical characteristics to be applied to the back gate of an OS transistor.
  • the bus 40B is a bus for transmitting and receiving various signals between the interrupt control circuit 51, the interface circuit 52, the battery control circuit 53, and the ADC/DAC interface circuit 54 at low speed.
  • AMBA-APB Advanced Peripheral Bus
  • Transmission and reception of various signals between the bus 40A and the bus 40B are performed via the bridge circuit 50.
  • the interrupt control circuit 51 has a circuit configuration for performing interrupt processing in response to requests received from peripheral devices.
  • the interface circuit 52 has a circuit configuration for functioning an interface such as UART (Universal Asynchronous Receiver/Transmitter), I2C (Inter-Integrated Circuit), or SPI (Serial Peripheral Interface).
  • UART Universal Asynchronous Receiver/Transmitter
  • I2C Inter-Integrated Circuit
  • SPI Serial Peripheral Interface
  • the battery control circuit 53 has a circuit configuration for transmitting and receiving data relating to charging and discharging of the battery 104 outside the semiconductor device 101 .
  • the ADC/DAC interface circuit 54 has a circuit configuration for transmitting and receiving data to and from a sensor 105 that outputs an analog signal, such as a MEMS (Micro Electro Mechanical Systems) device outside the semiconductor device 101 .
  • a MEMS Micro Electro Mechanical Systems
  • the bus 40B may also be configured to connect other circuits that operate at low speed, such as a timer circuit and a watchdog circuit.
  • the electronic device 100 is configured such that electronic equipment such as a display 102, a main memory 103, a battery 104, and a sensor 105 are housed in a limited volume of a housing 111 in addition to the semiconductor device 101.
  • the CPU 10 is provided with a backup circuit 10M
  • the accelerator 20 is provided with a data holding circuit 20M
  • the memory device 30 is provided with a memory cell 30M having an OS transistor.
  • it is possible to reduce the frequency of data transfer for arithmetic processing in the accelerator 20 and increase the data capacity of the memory device 30 functioning as an on-chip memory.
  • the semiconductor device 101 has a configuration in which a backup circuit 10M is provided in the CPU 10, a configuration in which a data holding circuit 20M is provided in the accelerator 20, and an OS transistor in the memory device 30.
  • a backup circuit 10M is provided in the CPU 10
  • a data holding circuit 20M is provided in the accelerator 20
  • an OS transistor in the memory device 30 By providing the memory cell 30M, it is possible to greatly reduce the sleep power (power during the non-display period) when the electronic device 100 is in the sleep state. can.
  • the electronic device 100 it is possible to reduce the number of data transfers between the on-chip memory, the CPU, and the accelerator.
  • SoC System on Chip
  • power consumption can be reduced, and heat generation can be suppressed by fine-grained power gating.
  • Si transistor with a finer transistor structure By using a Si transistor with a finer transistor structure, a semiconductor device with a reduced size or higher performance can be achieved.
  • an EL display having a light emitting device can be used.
  • the display 102 may have a light receiving device in addition to the light emitting device.
  • Display 102 may also be a liquid crystal display having a liquid crystal device.
  • Display 102 may also be a ⁇ LED display having micro light emitting diode ( ⁇ LED) devices.
  • the substrate constituting the display is attached with a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package), or the substrate constituting the display is a COG (Chip On Glass) method.
  • a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package)
  • COG Chip On Glass
  • a device in which an IC (integrated circuit) is directly mounted is sometimes called a display module or the like.
  • the display 102 may be a display module, or may be configured such that a light-emitting device is directly provided on the semiconductor device 101 to form the display 102 .
  • a DRAM can be used as the main memory 103 .
  • the main memory 103 can be omitted because the memory device 30 can also serve as the main memory 103 by increasing the memory capacity of the memory device 30, which is an on-chip memory.
  • a secondary battery such as a lithium ion battery, a solar battery, or the like can be used.
  • sensors such as an imaging device, a gyro sensor, an acceleration sensor, and a touch panel may be provided.
  • a sensor or the like may be provided that is in contact with a part of the human body and measures the pulse, surface temperature, blood oxygen concentration, or the like.
  • FIG. 2A is a diagram showing an example of arrangement of circuit blocks when the configuration of FIG. 1A is converted to SoC. As in the semiconductor device 101 illustrated in FIG. 2A, each configuration can be arranged by dividing the region on the chip.
  • a circuit 10S corresponds to a circuit composed of Si transistors other than the backup circuit 10M in the CPU 10.
  • FIG. The circuit 20S corresponds to a circuit composed of Si transistors in the accelerator 20 other than the data holding circuit 20M.
  • the circuit 30S corresponds to a circuit composed of Si transistors, which are transistors other than the OS transistors included in the memory cell 30M in the memory device 30.
  • FIG. 10S corresponds to a circuit composed of Si transistors other than the backup circuit 10M in the CPU 10.
  • the circuit 20S corresponds to a circuit composed of Si transistors in the accelerator 20 other than the data holding circuit 20M.
  • the circuit 30S corresponds to a circuit composed of Si transistors, which are transistors other than the OS transistors included in the memory cell 30M in the memory device 30.
  • FIG. 2B is a schematic diagram showing a backup circuit 10M (data holding circuit 20M or memory cell 30M) arranged on the circuit 10S (circuit 20S or circuit 30S).
  • the backup circuit 10M data holding circuit 20M or memory cell 30M
  • the backup circuit 10M has a transistor 201 (OS transistor) having a metal oxide in a semiconductor layer 202 having a channel formation region.
  • the circuit 10S includes a transistor 203 (Si transistor) including silicon in the semiconductor layer 204 having a channel formation region. Therefore, the CPU 10, the accelerator 20, and the memory device 30 can be arranged in the same area by integrating each circuit like the semiconductor device 101 shown in FIG. 2A when the SoC is implemented.
  • a novel electronic device or the like can be provided according to one aspect of the present invention described above.
  • one embodiment of the present invention can provide an electronic device or the like having a novel structure in which an increase in heat generation and power consumption can be suppressed in an electronic device including a semiconductor device whose performance is improved by SoC.
  • one embodiment of the present invention can provide an electronic device or the like with a novel structure in which the number of data transfers in a CPU can be reduced.
  • one embodiment of the present invention can provide an electronic device or the like with a novel structure that achieves both high performance of a semiconductor device and low power consumption or suppression of heat generation in the semiconductor device. can.
  • FIG. 3 shows a configuration example of the CPU 10.
  • the CPU 10 includes a CPU core (CPU Core) 11, an L1 (level 1) cache memory device (L1 Cache) 12, an L2 cache memory device (L2 Cache) 13, a bus interface (Bus I/F) 14, a power switch 15A to 15C, and a level shifter (LS) 15D.
  • the CPU core 11 has flip-flops 16 .
  • the CPU core 11, the L1 cache memory device 12, and the L2 cache memory device 13 are interconnected by the bus interface unit 14.
  • the PMU 42 generates a clock signal GCLK1 and various PG (power gating) control signals (PG control signals) in response to externally input interrupt signals (Interrupts) and signals such as the signal SLEEP1 issued by the CPU 10.
  • a clock signal GCLK1 and a PG control signal are input to the CPU 10 .
  • the PG control signal controls power switches 15A-15C and flip-flop 16.
  • the power switches 15A and 15B respectively control the supply of voltages VDDD and VDD1 to the virtual power line V_VDD (hereinafter referred to as V_VDD line).
  • the power switch 15C controls supply of voltage VDDH to the level shifter (LS) 15D.
  • a voltage VSSS is input to the CPU 10 and the PMU 42 without passing through the power switch.
  • a voltage VDDD is input to the PMU 42 without passing through the power switch.
  • the voltages VDDD and VDD1 are drive voltages for CMOS circuits.
  • Voltage VDD1 is lower than voltage VDDD and is a drive voltage in the sleep state.
  • Voltage VDDH is a drive voltage for the OS transistor and is higher than voltage VDDD.
  • Each of the L1 cache memory device 12, L2 cache memory device 13 and bus interface unit 14 has at least one power domain capable of power gating.
  • a power domain capable of power gating is provided with one or more power switches. These power switches are controlled by PG control signals.
  • the flip-flop 16 is used as a register.
  • the flip-flop 16 is provided with a backup circuit.
  • the flip-flop 16 will be described below.
  • FIG. 4A shows a circuit configuration example of the flip-flop 16 (Flip-flop).
  • the flip-flop 16 has a scan flip-flop circuit (Scan Flip-flop) 17 and a backup circuit (Backup Circuit) 10M.
  • the scan flip-flop circuit 17 has nodes D1, Q1, SD, SE, RT, CK, and a clock buffer circuit 17A.
  • a node D1 is a data input node
  • a node Q1 is a data output node
  • a node SD is a scan test data input node.
  • Node SE is the input node for signal SCE.
  • a node CK is an input node for the clock signal GCLK1.
  • the clock signal GCLK1 is input to the clock buffer circuit 17A.
  • the analog switches of the scan flip-flop circuit 17 are connected to nodes CK1 and CKB1 of the clock buffer circuit 17A.
  • a node RT is an input node for a reset signal.
  • a signal SCE is a scan enable signal and is generated by the PMU 42 .
  • PMU 42 produces signals BK and RC.
  • the level shifter 15D level-shifts the signals BK and RC to generate the signals BKH and RCH.
  • Signals BK and RC are backup and recovery signals.
  • the circuit configuration of the scan flip-flop circuit 17 is not limited to that shown in FIG. 4A.
  • a flip-flop prepared in a standard circuit library can be applied.
  • the backup circuit 10M has nodes SD_IN, SN11, transistors M11 to M13, and a capacitor C11.
  • a node SD_IN is an input node for scan test data and is connected to the node Q1 of the scan flip-flop circuit 17 .
  • a node SN11 is a holding node of the backup circuit 10M.
  • Capacitor C11 is a holding capacitor for holding the voltage of node SN11.
  • the transistor M11 controls the conduction state between the node Q1 and the node SN11.
  • Transistor M12 controls conduction between node SN11 and node SD.
  • Transistor M13 controls conduction between node SD_IN and node SD.
  • the on/off state of the transistors M11 and M13 is controlled by the signal BKH, and the on/off state of the transistor M12 is controlled by the signal RCH.
  • the transistors M11 to M13 are OS transistors.
  • the transistors M11 to M13 are illustrated as having back gates. Back gates of the transistors M11 to M13 are connected to a power line that supplies the voltage VBG1.
  • At least the transistors M11 and M12 are preferably OS transistors.
  • the OS transistor has an extremely small off-state current, which makes it possible to suppress a voltage drop at the node SN11, and consumes almost no power to hold data. Therefore, the backup circuit 10M has nonvolatile characteristics. Since data is rewritten by charging/discharging the capacitor C11, the backup circuit 10M has no limitation on the number of rewrites in principle, and can write and read data with low energy.
  • the backup circuit 10M can be laminated on the scan flip-flop circuit 17 composed of a silicon CMOS circuit.
  • the backup circuit 10M Since the backup circuit 10M has a very small number of elements compared to the scan flip-flop circuit 17, there is no need to change the circuit configuration and layout of the scan flip-flop circuit 17 in order to stack the backup circuit 10M. That is, the backup circuit 10M is a highly versatile backup circuit. Further, since the backup circuit 10M can be provided in the region where the scan flip-flop circuit 17 is formed, the area overhead of the flip-flop 16 can be reduced to zero even if the backup circuit 10M is incorporated. Therefore, power gating of the CPU core 11 becomes possible by providing the backup circuit 10M in the flip-flop 16. FIG. Since the energy required for power gating is small, it is possible to power-gate the CPU core 11 with high efficiency.
  • the backup circuit 10M By providing the backup circuit 10M, the parasitic capacitance due to the transistor M11 is added to the node Q1. has no effect on That is, even if the backup circuit 10M is provided, the performance of the flip-flop 16 does not substantially deteriorate.
  • a clock gating state, a power gating state, and a sleep state can be set.
  • the PMU 42 selects the low power consumption mode of the CPU core 11 based on the interrupt signal, signal SLEEP1, and the like. For example, when transitioning from the normal operating state to the clock gating state, the PMU 42 stops generating the clock signal GCLK1.
  • the PMU 42 when transitioning from a normal operating state to a resting state (non-operating state), the PMU 42 performs voltage and/or frequency scaling. For example, when performing voltage scaling, the PMU 42 turns off the power switch 15A and turns on the power switch 15B in order to input the voltage VDD1 to the CPU core 11 .
  • the voltage VDD1 is a voltage that does not cause the data of the scan flip-flop circuit 17 to disappear.
  • PMU 42 reduces the frequency of clock signal GCLK1.
  • Signals PSE0 to PSE2 are control signals for power switches 15A to 15C and are generated by PMU 42 .
  • the power switch 15A is on/off. The same applies to the signals PSE1 and PSE2.
  • the power switch 15A Before time t1, it is in normal operation.
  • the power switch 15A is on, and the CPU core 11 is supplied with the voltage VDDD.
  • the scan flip-flop circuit 17 performs normal operation.
  • the power switch 15C Since the level shifter 15D does not need to be operated, the power switch 15C is off and the signals SCE, BK and RC are "L”. Since the node SE is "L”, the scan flip-flop circuit 17 stores the data of the node D1.
  • the node SN11 of the backup circuit 10M is "L” at time t1.
  • the PMU 42 stops the clock signal GCLK1 and changes the signals PSE2 and BK to "H".
  • the level shifter 15D becomes active and outputs the "H" signal BKH to the backup circuit 10M.
  • the transistor M11 of the backup circuit 10M is turned on, and the data of the node Q1 of the scan flip-flop circuit 17 is written to the node SN11 of the backup circuit 10M. If the node Q1 of the scan flip-flop circuit 17 is "L”, the node SN11 remains “L”, and if the node Q1 is "H”, the node SN11 becomes "H”.
  • the PMU 42 sets the signals PSE2 and BK to "L” at time t2, and sets the signal PSE0 to "L” at time t3. At time t3, the state of the CPU core 11 shifts to the power gating state. Note that the signal PSE0 may fall at the same timing as the signal BK falls.
  • the PMU 42 changes the signal PSE0 to "H", thereby shifting from the power gating state to the recovery state.
  • the PMU 42 changes the signals PSE2, RC and SCE to "H".
  • the transistor M12 is turned on, and the charge of the capacitor C11 is distributed between the node SN11 and the node SD. If the node SN11 is "H”, the voltage of the node SD rises. Since the node SE is at "H”, the data of the node SD is written into the input-side latch circuit of the scan flip-flop circuit 17.
  • FIG. When clock signal GCLK1 is input to node CK at time t6, data in the input-side latch circuit is written to node Q1. That is, the data of node SN11 is written to node Q1.
  • the PMU 42 sets the signals PSE2, SCE, and RC to "L", and the recovery operation ends.
  • the backup circuit 10M using OS transistors has low dynamic and static power consumption, so it is very suitable for normally-off computing. Even if the flip-flop 16 is mounted, the deterioration of the performance of the CPU core 11 and the increase of the dynamic power can be hardly caused.
  • the CPU core 11 may have a plurality of power domains capable of power gating.
  • a plurality of power domains are provided with one or more power switches for controlling voltage input.
  • the CPU core 11 may have one or more power domains in which power gating is not performed.
  • a power gating control circuit for controlling the flip-flop 16 and power switches 15A to 15C may be provided in a power domain where power gating is not performed.
  • the application of the flip-flop 16 is not limited to the CPU 10.
  • the flip-flop 16 can be applied to a register provided in a power domain capable of power gating.
  • a memory cell 19 shown in FIG. 6A is an example of a circuit diagram of a memory cell applicable to cache memory devices such as the L1 cache memory device 12 and the L2 cache memory device 13 .
  • the memory cell 19S shown in FIG. 6A has the same circuit configuration as a standard 6T type SRAM cell.
  • a backup circuit 19A shown in FIG. 6A is a circuit for saving data in the memory cell 19S.
  • the backup circuit 19A is a circuit for backing up the data of the nodes Q and Qb of the memory cell 19S, and is composed of two 1T1C type cells. Nodes SN1 and SN2 are retention nodes. A gain cell composed of a transistor MW5 and a capacitive element CS5 backs up the data of the node Q. FIG. A gain cell composed of a transistor MW6 and a capacitive element CS6 backs up the data of the node Qb.
  • the backup circuit 19A can be laminated on the memory cell 19S. Thereby, the area overhead of the memory cell 19 due to the provision of the backup circuit 19A can be suppressed. Zero area overhead is possible.
  • the memory cells 19S are electrically connected to power supply lines V_VDM, V_VSM, word lines WL, and bit line pairs (BL, BLB).
  • Power supply lines V_VDM and V_VSM are power supply lines for Vddd and GND, respectively.
  • the backup circuit 19A is electrically connected to the wirings OGL and BGL and the power supply line PL3.
  • a voltage GND is input to the power line PL3.
  • the memory cell 19 operates as an SRAM cell in a normal state. An example operation of the memory cell 19 of FIG. 6A will be described with reference to FIG. 6B. If the memory cell 19 is not accessed for a certain period of time or more, the supply of the voltages Vddd and GND to the power supply lines V_VDM and V_VSM is stopped. The data of the nodes Q and Qb are written to the backup circuit 19A before the supply of the voltage Vddd is stopped. In FIG. 6B, t1, t2, etc. represent times.
  • Memory cell 19 Before time t1, it is in a normal operation state (write state or read state). Memory cell 19 operates similarly to a single port SRAM. Here, it is assumed that nodes Q/Qb are "H"/"L” and nodes SN1/SN2 are "L"/"H” at time t1.
  • the recovery operation is an operation of recovering the data in the memory cell 19S using the data held by the backup circuit 19A.
  • memory cell 19S functions as a sense amplifier for sensing data on node Q/Qb.
  • the reset operation of the nodes Q and Qb is performed.
  • the voltage of the bit line pair (BL, BLB) is precharged to voltage Vpr2.
  • the power supply lines V_VDM line and V_VSM line are precharged to the voltage Vpr2, and the voltages of the nodes Q and Qb are fixed at Vpr2.
  • the transistors MW5 and MW6 are turned on.
  • the charge of the capacitive element CS5 is distributed to the node Q and the node SN1
  • the charge of the capacitive element CS6 is distributed to the node Qb and the node SN2
  • a voltage difference is generated between the node Q and the node Qb.
  • a memory cell 19_1 shown in FIG. 7A is a modification of the memory cell 19 and has a backup circuit 19B instead of the backup circuit 19A.
  • the backup circuit 19B is composed of one 1T1C type memory cell, and has a node SN3, a transistor MW7, and a capacitive element CS7.
  • FIG. 7B is a timing chart showing an operation example of the memory cell 19_1.
  • Memory cell 19_1 operates similarly to memory cell 19 .
  • the description of FIG. 7B incorporates the description of FIG. 6B.
  • the backup circuit 19B is configured to back up only the data of the node Q, but the data of the nodes Q and Qb can be restored by the data held in the node SN3. This is because the voltages of the nodes Q and Qb are precharged to Vpr2, and the charge of one capacitive element CS7 can generate a potential difference between the nodes Q and Qb.
  • FIG. 8A is a block diagram for explaining the accelerator 20.
  • FIG. 8A in addition to the memory circuit 21 having the data holding circuit 20M and the arithmetic circuit 22 described in FIG. Wiring 26 is shown.
  • FIG. 8A shows a write bit line driver 23A, a word line driver 23B, a read bit line driver 23C, and a read driver 23D as an example of a configuration functioning as the control circuit 23.
  • the control circuit 23 may have a precharge circuit, a sense amplifier, a selector, an input buffer, an arithmetic control circuit, and the like.
  • the write bit line driver 23A and word line driver 23B generate, for example, a signal for writing data to the data holding circuit 20M.
  • the read bit line driver 23C and the read driver 23D generate, for example, signals for reading data from the data holding circuit 20M.
  • the memory circuit 21 having the data holding circuit 20M has a function of storing the data processed by the accelerator 20. Specifically, data input to or output from the arithmetic circuit 22, such as weight data used for parallel processing of sum-of-products operations of a neural network, can be stored.
  • the data holding circuit 20M is electrically connected to the arithmetic block 25 of the arithmetic circuit 22 via wiring 26, and has a function of holding a binary or ternary digital value.
  • the transistors are OS transistors, and the data holding circuit 20M is preferably an OS memory. Since the accelerator 20 has the data holding circuit 20M, which is an OS memory, it can hold data even when the supply of the power supply voltage is stopped. As a result, power gating of the accelerator 20 becomes possible, and a significant reduction in power consumption can be achieved.
  • the data holding circuit 20M made up of OS transistors can be stacked with the arithmetic circuit 22 made up of Si CMOS. Therefore, it can be arranged without increasing the circuit area.
  • the data holding circuit 20M and the arithmetic circuit 22 are electrically connected via a wiring 26 provided extending in a direction substantially perpendicular to the surface of the substrate on which the arithmetic circuit 22 is provided. It should be noted that "substantially perpendicular" means a state in which they are arranged at an angle of 85 degrees or more and 95 degrees or less.
  • the data holding circuit 20M can have a circuit configuration of NOSRAM.
  • a NOSRAM can be used as a non-volatile memory by retaining charges corresponding to data in a memory circuit using the characteristic of extremely small leakage current.
  • NOSRAM can read data without destroying it (non-destructive reading), it is suitable for parallel processing of sum-of-products operations in neural networks that repeat only data reading operations in large numbers.
  • the plurality of operation blocks 25 of the operation circuit 22 have the function of performing arithmetic processing using digital values. Digital values are less susceptible to noise. Therefore, the accelerator 20 is suitable for performing arithmetic processing that requires highly accurate arithmetic results.
  • the arithmetic circuit 22 is preferably composed of a Si CMOS, that is, a transistor (Si transistor) having silicon in a channel formation region. With such a structure, it can be stacked with the OS transistor.
  • FIG. 8B illustrates a hierarchical neural network based on the architecture of the Binary Neural Network (BNN)
  • BNN Binary Neural Network
  • FIG. 8B illustrates a hierarchical neural network based on the BNN architecture.
  • FIG. 8B illustrates a fully-connected neural network including a neuron N1, one input layer (I1), three intermediate layers (M1 to M3), and one output layer (O1).
  • the number of neurons in the input layer I1 is 786
  • the number of neurons in the intermediate layers M1 to M3 is 256
  • the number of neurons in the output layer O1 is 10
  • the number of connections in each layer is (784 ⁇ 256)+(256 ⁇ 256)+(256).
  • x256) + (256 x 10) 334336 in total. That is, since the weight parameters required for neural network calculation are about 330 Kbits in total, the memory capacity can be sufficiently implemented even in a small-scale system.
  • the arithmetic block 25 uses the digital value data held in each of the data holding circuits 20M of the memory circuit 21 to perform any one of integer arithmetic, single-precision floating-point arithmetic, double-precision floating-point arithmetic, and the like. have a function.
  • the calculation block 25 has a function of repeatedly executing the same processing such as sum-of-products calculation.
  • the calculation block 25 is configured such that one calculation block 25 is provided for each read bit line of the data holding circuit 20M, that is, for each column (Column-Parallel Calculation). With this configuration, data for one row (up to all bit lines) of the memory circuit 21 can be processed in parallel. Compared to the sum-of-products operation using the CPU 10, there is no restriction on the size of the data bus between the CPU and memory (32 bits, etc.). It is possible to improve the computational efficiency related to enormous computational processing such as deep neural network learning (deep learning), which is an AI technology, and scientific and technical calculations that perform floating point computations.
  • deep neural network learning deep learning
  • the data output from the data holding circuit 20M can be read out after completing the calculation, the number of memory accesses (data transfer between the CPU and the memory or calculations in the CPU) can be reduced, and the power generated by the memory access can be reduced. can be reduced. Furthermore, by shortening the physical distance between the arithmetic circuit 22 and the memory circuit 21, for example, by shortening the wiring distance by stacking, parasitic capacitance generated in the signal line can be reduced, so that power consumption can be reduced.
  • One aspect of the present invention can reduce the number of data transfers between the CPU 10 and the accelerator 20 .
  • a semiconductor device that functions as an accelerator for AI technology which requires a huge amount of calculation and a large number of parameters, has a non-Von Neumann architecture, and consumes extremely little power compared to the Von Neumann architecture, which consumes more power as the processing speed increases. Parallel processing can be done with power.
  • FIG. 9A is a diagram illustrating a circuit configuration example applicable to the memory circuit 21.
  • write word lines WWL_1 to WWL_M write word lines WWL_1 to WWL_M
  • read word lines RWL_1 to RWL_M read word lines
  • write bit lines WBL_1 to WBL_N write bit lines
  • read bit lines are arranged in the matrix direction of M rows and N columns (M and N are natural numbers of 2 or more). Lines RBL_1 through RBL_N are shown.
  • a data holding circuit 20M connected to each word line and bit line is also shown.
  • FIG. 9B is a diagram explaining a circuit configuration example applicable to the data holding circuit 20M.
  • the data holding circuit 20M has a transistor M1, a transistor M2, a transistor M3, and a capacitor C1.
  • One of the source and drain of the transistor M1 is connected to the write bit line WBL.
  • a gate of the transistor M1 is connected to the write word line WWL.
  • the other of the source and drain of transistor M1 is connected to one electrode of capacitor C1 and the gate of transistor M2.
  • One of the source or drain of transistor M2 and the other electrode of capacitor C1 are connected to a wiring that gives a fixed potential, for example, a ground potential.
  • the other of the source or drain of transistor M2 is connected to one of the source or drain of transistor M3.
  • a gate of the transistor M3 is connected to the read word line RWL.
  • the other of the source and drain of the transistor M3 is connected to the read bit line RBL.
  • the read bit line RBL is connected to the operation block 25 via the wiring 26 or the like extending in a direction substantially perpendicular to the substrate surface on which the operation circuit 22 is provided, as described above.
  • the circuit configuration of the data holding circuit 20M shown in FIG. 9B corresponds to a 3-transistor (3T) gain cell NOSRAM.
  • the transistors M1 to M3 are OS transistors.
  • the current flowing between the source and the drain of the OS transistor in the off state, that is, the leak current is extremely small.
  • a NOSRAM can be used as a non-volatile memory by retaining charges corresponding to data in a memory circuit using the characteristic of extremely small leakage current.
  • a memory device 30 shown in FIG. 10A has a memory cell array 31 and peripheral circuits 32 .
  • a control circuit 34 , a row circuit 35 , a column circuit 36 and an input/output circuit 37 are provided as the peripheral circuit 32 .
  • the memory cell array 31 has memory cells 33, read word lines RWL, write word lines WWL, read bit lines RBL, write bit lines WBL, source lines SL, and wirings BGL.
  • the read word line RWL and the write word line WWL may be called the word line RWL and the word line WWL, respectively.
  • a read bit line RBL and a write bit line WBL may be called a bit line RBL and a bit line WBL, respectively.
  • the control circuit 34 controls the entire memory device 30 and writes and reads data.
  • Control circuit 34 processes external command signals (eg, chip enable signal, write enable signal, etc.) to generate control signals for other circuits of peripheral circuit 32 .
  • external command signals eg, chip enable signal, write enable signal, etc.
  • the row circuit 35 has a function of selecting a row to access.
  • row circuitry 35 has a row decoder and a word line driver.
  • the column circuit 36 has a function of precharging the bit lines WBL and RBL, a function of writing data to the bit line WBL, a function of amplifying data on the bit line RBL, a function of reading data from the bit line RBL, and the like.
  • the input/output circuit 37 has a function of holding write data, a function of holding read data, and the like.
  • the configuration of the peripheral circuit 32 is appropriately changed depending on the configuration of the memory cell array 31, read method, write method, and the like.
  • FIG. 10B A circuit configuration example of the memory cell 33 is shown in FIG. 10B.
  • memory cell 33 is a two-transistor (2T) gain cell.
  • the memory cell 33 has transistors MW1 and MR1 and a capacitive element CS1.
  • Transistor MW1 is a write transistor and transistor MR1 is a read transistor.
  • Back gates of the transistors MW1 and MR1 are electrically connected to the wiring BGL.
  • the memory cell 33 Since the OS transistor constitutes the read transistor, the memory cell 33 does not consume power for data retention. Therefore, the memory cell 33 is a low power consumption memory cell capable of holding data for a long period of time, and the memory device 30 can be used as a nonvolatile memory device.
  • the OS transistor and the capacitor can be stacked on the Si transistor. Therefore, the memory cell array 31 can be stacked on the peripheral circuit 32, and the degree of integration of the memory cell array 31 can be improved.
  • FIGS. 11A to 11F Another configuration example of the memory cell will be described with reference to FIGS. 11A to 11F.
  • a memory cell 33A shown in FIG. 11A is a 3T gain cell and has transistors MW2, MR2, MS2, and a capacitive element CS2.
  • Transistors MW2, MR2, and MS2 are a write transistor, read transistor, and select transistor, respectively. Back gates of the transistors MW2, MR2, and MS2 are electrically connected to the wiring BGL.
  • the memory cell 33A is electrically connected to word lines RWL, WWL, bit lines RBL, WBL, capacitance line CDL, and power supply line PL2.
  • a voltage GND low-level side power supply voltage
  • Figs. 11B and 11C show other configuration examples of the 2T gain cell.
  • the read transistor is composed of an n-channel Si transistor.
  • the read transistor is composed of a p-channel Si transistor.
  • FIGS. 11B and 11C a configuration in which an OS transistor and a Si transistor are combined as a transistor in a memory cell may be employed.
  • Figs. 11D and 11E show other configuration examples of the 3T gain cell.
  • the read transistor and the select transistor are composed of n-channel Si transistors.
  • the read transistor and the select transistor are composed of p-channel Si transistors.
  • voltage Vddd high-level side power supply voltage
  • bit lines that also serve as the read bit line RBL and the write bit line WBL may be provided.
  • FIG. 11F An example of a 1T1C (capacitance) type memory cell is shown in FIG. 11F.
  • a memory cell 33F shown in FIG. 11F is electrically connected to a word line WL, a bit line BL, a capacitor line CDL, and a wiring BGL.
  • the memory cell 33F has a transistor MW3 and a capacitive element CS3.
  • a back gate of the transistor MW3 is electrically connected to the wiring BGL.
  • circuit configuration of the memory cell 30M of the memory device 30 in addition to a circuit configuration composed only of OS transistors, a circuit configuration combined with Si transistors can be used.
  • a novel electronic device or the like can be provided according to one aspect of the present invention described above.
  • one embodiment of the present invention can provide an electronic device or the like having a novel structure in which an increase in heat generation and power consumption can be suppressed in an electronic device including a semiconductor device whose performance is improved by SoC.
  • one embodiment of the present invention can provide an electronic device or the like with a novel structure in which the number of data transfers in a CPU can be reduced.
  • one embodiment of the present invention can provide an electronic device or the like with a novel structure that achieves both high performance of a semiconductor device and low power consumption or suppression of heat generation in the semiconductor device. can.
  • FIG. 12 is a diagram explaining an example of the operation when part of the computation of the program executed by the CPU 10 is executed by the accelerator 20.
  • FIG. 12 is a diagram explaining an example of the operation when part of the computation of the program executed by the CPU 10 is executed by the accelerator 20.
  • a host program is executed by the CPU 10 (step S1).
  • step S2 When the CPU 10 confirms an instruction to allocate a data area required for calculation using the accelerator 20 in the memory circuit 21 (step S2), the CPU 10 allocates the data area in the memory circuit 21. (step S3).
  • the CPU 10 transmits input data from the main memory 103 or the memory device 30 to the memory circuit 21 (step S4).
  • the memory circuit 21 receives the input data and stores the input data in the area secured in step S2 (step S5).
  • step S6 When the CPU 10 confirms the instruction to start the kernel program (step S6), the accelerator 20 starts executing the kernel program (step S7).
  • the CPU 10 may be switched from the operating state to the PG state (step S8). In this case, immediately before the accelerator 20 finishes executing the kernel program, the CPU 10 is switched from the PG state to the operating state (step S9). By keeping the CPU 10 in the PG state during the period from step S8 to step S9, power consumption and heat generation of the semiconductor device 101 as a whole can be suppressed.
  • the output data is stored in the memory circuit 21 (step S10).
  • the CPU 10 confirms an instruction to transmit the output data stored in the memory circuit 21 to the main memory 103 or the memory device 30 (step S11). It is transmitted to the memory 103 or the memory device 30 and stored in the main memory 103 or the memory device 30 (step S12).
  • step S13 When the CPU 10 confirms the instruction to release the data area secured on the memory circuit 21 (step S13), the area secured on the memory circuit 21 is released (step S14).
  • step S1 to step S14 By repeating the operations from step S1 to step S14 described above, power consumption and heat generation of the CPU 10 and the accelerator 20 can be suppressed, and part of the calculation of the program executed by the CPU 10 can be executed by the accelerator.
  • FIG. 13A shows a semiconductor device 101 having a CPU 10, an accelerator 20, and a memory device 30 connected to a bus 40A, as well as a main memory 103 composed of a DRAM or the like. Also, in FIG. 13A, the data between the memory device 30 and the CPU 10 is illustrated as data D CPU . Also, in FIG. 13A, the data between the memory device 30 and the accelerator 20 is illustrated as data D ACC .
  • data can be continuously held in the memory circuit 21 having the data holding circuit 20M of the accelerator 20, and the arithmetic result obtained by the arithmetic circuit 22 can be sent to the CPU 10. It can be configured to output. Therefore, the data DACC from the memory device 30 for arithmetic processing can be reduced. Moreover, since the amount of arithmetic processing of the CPU 10 can be reduced, the data D CPU between the memory device 30 and the CPU 10 can also be reduced. That is, with the configuration of one embodiment of the present invention, the number of accesses via the bus 40A and the amount of data to be transferred can be reduced.
  • the backup circuit 10M in the CPU 10, the data holding circuit 20M in the accelerator 20, and the OS transistors of the memory cells 30M in the memory device 30 are stacked with the circuits 10S, 20S, and 30S that can be made of Si CMOS. can be provided. Therefore, it can be arranged without increasing the circuit area.
  • the memory device 30 is an OS memory such as DOSRAM or NOSRAM. As shown in FIG. 13B, layers having OS transistors are stacked to form a memory cell 30M. By doing so, the storage capacity per unit area can be increased. In this case, the main memory 103 provided separately from the semiconductor device 101 can be omitted.
  • FIG. 14A is a diagram illustrating the relationship between processing performance (OPS: Operations Per Second) and power consumption (W).
  • OPS Operations Per Second
  • W power consumption
  • the vertical axis represents processing capacity
  • the horizontal axis represents power consumption.
  • 0.1 TOPS/W Transmission Operations Per Second/W
  • 1 TOPS/W 1 TOPS/W
  • 10 TOPS/W 10 TOPS/W
  • 100 TOPS/W are indicated by dashed lines as indices of computational efficiency. .
  • a region 710 indicates a region including a conventional general-purpose AI accelerator (Von Neumann type), and a region 712 indicates a region including a semiconductor device of one embodiment of the present invention.
  • the area 710 includes, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and an FPGA (Field-Programmable Gate Array).
  • power consumption can be reduced by about two orders of magnitude and processing performance can be improved as compared with a conventional general-purpose AI accelerator (Von Neumann type). It can be improved significantly (eg, 1000 times or more). Note that by using the semiconductor device of one embodiment of the present invention, computation efficiency of 100 TOPS/W or higher can be expected.
  • a conventional general-purpose AI accelerator Von Neumann type
  • FIG. 14B shows an image diagram of power consumption of a semiconductor device with a conventional structure in image recognition
  • FIG. 14C shows an image diagram of power consumption of a semiconductor device using the structure of one embodiment of the present invention in image recognition.
  • the vertical axis represents power and the horizontal axis represents time.
  • power 714 indicates leak power
  • power 716 indicates CPU power
  • power 718 indicates memory power.
  • power 714 indicates leak power
  • power 720 indicates CPU power
  • power 722 indicates accelerator power. Note that the power 722 also includes power used for an arithmetic circuit and a memory device.
  • arrows a, b, and c each represent signals in image recognition. It is assumed that arithmetic processing such as image recognition is started in the semiconductor device when signals of arrow a, arrow b, and arrow c are input.
  • leakage power (power 714) is generated with time.
  • leakage power (power 714) is generated, but during periods when CPU power (power 720) and accelerator power (power 722) are not used, normally-off driving in which leakage power (power 714) does not occur (period shown in FIG. 14C t1). This makes it possible to significantly reduce power consumption. That is, a semiconductor device with extremely low power consumption can be provided.
  • each circuit is integrated into a semiconductor device with extremely low power consumption.
  • one embodiment of the present invention may be a modified example of an SoC in which another device is provided in a layer above a circuit including an OS transistor.
  • FIG. 15A is a schematic diagram of a semiconductor device 101A in which a layer 391 having a variable resistance device 392, which is another memory device different from the OS memory, is provided above the backup circuit 10M, which is a layer having an OS transistor. .
  • a backup circuit 10M having an OS transistor may be provided above a circuit 10S having a CPU core 11 and the like, and a layer 391 having a variable resistance device 392 may be provided thereabove.
  • a data holding circuit 20M can be provided in a layer having an OS transistor above a circuit 20S having an arithmetic circuit 22 and the like.
  • a memory cell 30M in which memory cells 30M are stacked over a circuit 30S having a peripheral circuit 32 and the like can be arranged.
  • a circuit 390 or the like having a Si transistor included in the semiconductor device 101 can be provided.
  • variable resistance device 39 for example, flash memory, ferroelectric memory (FeRAM), magnetoresistive memory (MRAM), phase change memory (PRAM), resistance change memory (ReRAM), etc. can be used.
  • FeRAM ferroelectric memory
  • MRAM magnetoresistive memory
  • PRAM phase change memory
  • ReRAM resistance change memory
  • MRAM magnetoresistive memory
  • STT-MRAM Spin Transfer Torque-Magnetoresistive Random Access Memory
  • An MTJ element consists of a free layer (also called a recording layer, free layer, or movable layer), a fixed layer (also called a magnetization fixed layer, a pinned layer, or a reference layer), an insulating layer ( Also called a barrier layer, a tunnel insulating film, or a nonmagnetic layer).
  • an SoC in which circuits such as a CPU 10, an accelerator 20, and a memory device 30 are tightly coupled has a problem of heat generation. It is suitable because it is small compared to
  • parasitic capacitance can be reduced compared to a laminated structure using a through silicon via (TSV) or the like. . Power consumption required for charging and discharging each wiring can be reduced. Therefore, it is possible to improve the arithmetic processing efficiency.
  • TSV through silicon via
  • FIG. 15B shows a layer 393 having a light emitting device 394, which is another memory device different from the OS memory, above a layer having OS transistors such as the backup circuit 10M, the data retention circuit 20M and the memory cell 30M.
  • a light emitting device 394 a light emitting device such as an organic light emitting diode can be used.
  • an SoC in which circuits such as a CPU 10, an accelerator 20, and a memory device 30 are tightly coupled has a problem of heat generation. and is small.
  • the parasitic capacitance can be reduced compared to a laminated structure using a through silicon via (TSV) or the like. . Power consumption required for charging and discharging each wiring can be reduced. Therefore, it is possible to improve the arithmetic processing efficiency.
  • TSV through silicon via
  • FIG. 16 A part of the cross-sectional structure of the semiconductor device is shown in FIG.
  • a semiconductor device illustrated in FIG. 16 includes a transistor 550 , a transistor 500 , and a capacitor 600 .
  • 17A is a cross-sectional view of the transistor 500 in the channel length direction
  • FIG. 17B is a cross-sectional view of the transistor 500 in the channel width direction
  • FIG. 17C is a cross-sectional view of the transistor 550 in the channel width direction.
  • the transistor 500 corresponds to the Si transistor described in the above embodiment
  • the transistor 550 corresponds to the OS transistor.
  • the transistor 500 is provided above the transistor 550 and the capacitor 600 is provided above the transistors 550 and 500 .
  • the transistor 550 is provided over a substrate 311 and has a conductor 316, an insulator 315, a semiconductor region 313 made up of part of the substrate 311, a low resistance region 314a functioning as a source region or a drain region, and a low resistance region 314b. .
  • the transistor 550 As shown in FIG. 17C, in the transistor 550, the upper surface and side surfaces in the channel width direction of the semiconductor region 313 are covered with the conductor 316 with the insulator 315 interposed therebetween.
  • the transistor 550 Fin-type By making the transistor 550 Fin-type in this way, the effective channel width is increased, so that the on-characteristics of the transistor 550 can be improved. Further, since the contribution of the electric field of the gate electrode can be increased, the off characteristics of the transistor 550 can be improved.
  • the transistor 550 may be either a p-channel type or an n-channel type.
  • a region in which a channel of the semiconductor region 313 is formed, a region in the vicinity thereof, low-resistance regions 314a and 314b serving as a source region or a drain region, and the like preferably contain a semiconductor such as a silicon-based semiconductor. It preferably contains crystalline silicon. Alternatively, a material including Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), or the like may be used. A structure using silicon in which the effective mass is controlled by applying stress to the crystal lattice and changing the lattice spacing may be used. Alternatively, the transistor 550 may be a HEMT (High Electron Mobility Transistor) by using GaAs, GaAlAs, or the like.
  • HEMT High Electron Mobility Transistor
  • the low-resistance region 314a and the low-resistance region 314b are made of an element imparting n-type conductivity such as arsenic or phosphorus, or an element imparting p-type conductivity such as boron in addition to the semiconductor material applied to the semiconductor region 313. contains elements that
  • the conductor 316 functioning as a gate electrode is a semiconductor material such as silicon containing an element imparting n-type conductivity such as arsenic or phosphorus or an element imparting p-type conductivity such as boron, a metal material, or an alloy. material, or a conductive material such as a metal oxide material can be used.
  • the threshold voltage of the transistor can be adjusted by selecting the material of the conductor. Specifically, a material such as titanium nitride or tantalum nitride is preferably used for the conductor. Furthermore, in order to achieve both conductivity and embeddability, it is preferable to use a metal material such as tungsten or aluminum as a laminated conductor, and it is particularly preferable to use tungsten from the viewpoint of heat resistance.
  • the transistor 550 may be formed using an SOI (Silicon Insulator) substrate or the like.
  • the SOI substrate is formed by implanting oxygen ions into a mirror-polished wafer and then heating the wafer to a high temperature to form an oxide layer at a certain depth from the surface and eliminate defects in the surface layer.
  • a SIMOX (Separation by Implanted Oxygen) substrate or a smart cut method, ELTRAN method (registered trademark: Epitaxial Layer Transfer), etc., in which a semiconductor substrate is cleaved by growing microvoids formed by hydrogen ion implantation through heat treatment.
  • an SOI substrate formed by A transistor formed using a single crystal substrate includes a single crystal semiconductor in a channel formation region.
  • An insulator 320 , an insulator 322 , an insulator 324 , and an insulator 326 are stacked in order to cover the transistor 550 .
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 for example, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, aluminum nitride oxide, aluminum nitride, or the like is used. Just do it.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon oxynitride refers to a material whose composition contains more nitrogen than oxygen.
  • aluminum oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • aluminum oxynitride refers to a material whose composition contains more nitrogen than oxygen. indicates
  • the insulator 322 may function as a planarization film that planarizes a step caused by the transistor 550 or the like provided therebelow.
  • the top surface of the insulator 322 may be planarized by a chemical mechanical polishing (CMP) method or the like to improve planarity.
  • CMP chemical mechanical polishing
  • the insulator 324 it is preferable to use a film having a barrier property such that hydrogen, impurities, or the like do not diffuse from the substrate 311, the transistor 550, or the like to the region where the transistor 500 is provided.
  • a film having a barrier property against hydrogen for example, silicon nitride formed by a CVD method can be used.
  • diffusion of hydrogen into a semiconductor element including an oxide semiconductor, such as the transistor 500 might degrade the characteristics of the semiconductor element. Therefore, it is preferable to use a film that suppresses diffusion of hydrogen between the transistor 500 and the transistor 550 .
  • the film that suppresses diffusion of hydrogen is a film from which the amount of desorption of hydrogen is small.
  • the desorption amount of hydrogen can be analyzed using, for example, thermal desorption spectroscopy (TDS).
  • TDS thermal desorption spectroscopy
  • the amount of hydrogen released from the insulator 324 is the amount of hydrogen atoms released per area of the insulator 324 when the surface temperature of the film is in the range of 50° C. to 500° C. in TDS analysis. , 10 ⁇ 10 15 atoms/cm 2 or less, preferably 5 ⁇ 10 15 atoms/cm 2 or less.
  • the insulator 326 preferably has a lower dielectric constant than the insulator 324 .
  • the dielectric constant of insulator 326 is preferably less than 4, more preferably less than 3.
  • the dielectric constant of the insulator 326 is preferably 0.7 times or less, more preferably 0.6 times or less, that of the insulator 324 .
  • the insulator 320, the insulator 322, the insulator 324, and the insulator 326 are embedded with a capacitor 600, a conductor 328 connected to the transistor 500, a conductor 330, or the like.
  • the conductors 328 and 330 function as plugs or wirings.
  • conductors functioning as plugs or wiring may be given the same reference numerals collectively for a plurality of configurations.
  • the wiring and the plug connected to the wiring may be integrated. That is, there are cases where a part of the conductor functions as a wiring and a part of the conductor functions as a plug.
  • each plug and wiring As a material for each plug and wiring (conductor 328, conductor 330, etc.), a single layer or a laminate of conductive materials such as metal material, alloy material, metal nitride material, or metal oxide material is used. be able to. It is preferable to use a high-melting-point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is preferable to use tungsten. Alternatively, it is preferably formed using a low-resistance conductive material such as aluminum or copper. Wiring resistance can be reduced by using a low-resistance conductive material.
  • a wiring layer may be provided over the insulator 326 and the conductor 330 .
  • an insulator 350, an insulator 352, and an insulator 354 are stacked in order.
  • a conductor 356 is formed over the insulators 350 , 352 , and 354 .
  • the conductor 356 functions as a plug or wiring connected to the transistor 550 .
  • the conductor 356 can be provided using a material similar to that of the conductors 328 and 330 .
  • the conductor 356 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 350 having a barrier property against hydrogen.
  • tantalum nitride As a conductor having a barrier property against hydrogen, for example, tantalum nitride or the like may be used. In addition, by stacking tantalum nitride and tungsten having high conductivity, diffusion of hydrogen from the transistor 550 can be suppressed while the conductivity of the wiring is maintained. In this case, it is preferable that the tantalum nitride layer having a barrier property against hydrogen be in contact with the insulator 350 having a barrier property against hydrogen.
  • a wiring layer may be provided over the insulator 354 and the conductor 356 .
  • an insulator 360, an insulator 362, and an insulator 364 are stacked in order.
  • a conductor 366 is formed over the insulators 360 , 362 , and 364 .
  • Conductor 366 functions as a plug or wiring. Note that the conductor 366 can be provided using a material similar to that of the conductors 328 and 330 .
  • the conductor 366 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 360 having a barrier property against hydrogen.
  • a wiring layer may be provided over the insulator 364 and the conductor 366 .
  • an insulator 370, an insulator 372, and an insulator 374 are stacked in order.
  • a conductor 376 is formed over the insulators 370 , 372 , and 374 .
  • Conductor 376 functions as a plug or wiring. Note that the conductor 376 can be provided using a material similar to that of the conductors 328 and 330 .
  • the conductor 376 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 370 having a barrier property against hydrogen.
  • a wiring layer may be provided over the insulator 374 and the conductor 376 .
  • an insulator 380, an insulator 382, and an insulator 384 are stacked in order.
  • a conductor 386 is formed over the insulators 380 , 382 , and 384 .
  • Conductor 386 functions as a plug or wiring. Note that the conductor 386 can be provided using a material similar to that of the conductors 328 and 330 .
  • the insulator 380 for example, an insulator having a barrier property against hydrogen is preferably used like the insulator 324.
  • the conductor 386 preferably contains a conductor having a barrier property against hydrogen.
  • a conductor having a barrier property against hydrogen is formed in the opening of the insulator 380 having a barrier property against hydrogen.
  • the wiring layer including the conductor 356, the wiring layer including the conductor 366, the wiring layer including the conductor 376, and the wiring layer including the conductor 386 are described above. It is not limited to this.
  • the number of wiring layers similar to the wiring layer including the conductor 356 may be three or less, or the number of wiring layers similar to the wiring layer including the conductor 356 may be five or more.
  • An insulator 510 , an insulator 512 , an insulator 514 , and an insulator 516 are laminated in this order on the insulator 384 .
  • Any of the insulator 510, the insulator 512, the insulator 514, and the insulator 516 is preferably a substance having barrier properties against oxygen, hydrogen, or the like.
  • insulators 510 and 514 for example, a film having a barrier property that prevents hydrogen, impurities, or the like from diffusing from the substrate 311, a region where the transistor 550 is provided, or the like to a region where the transistor 500 is provided is used. is preferred. Therefore, a material similar to that of the insulator 324 can be used.
  • Silicon nitride formed by a CVD method can be used as an example of a film having a barrier property against hydrogen.
  • diffusion of hydrogen into a semiconductor element including an oxide semiconductor, such as the transistor 500 might degrade the characteristics of the semiconductor element. Therefore, it is preferable to use a film that suppresses diffusion of hydrogen between the transistor 500 and the transistor 550 .
  • the film that suppresses diffusion of hydrogen is a film from which the amount of desorption of hydrogen is small.
  • a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide for the insulators 510 and 514, which are films having a barrier property against hydrogen.
  • aluminum oxide has a high shielding effect that prevents both oxygen and impurities such as hydrogen and moisture, which are factors that change the electrical characteristics of transistors, from penetrating through the film. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 500 during and after the manufacturing process of the transistor. In addition, release of oxygen from the oxide forming the transistor 500 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 500 .
  • the insulator 512 and the insulator 516 can be made of a material similar to that of the insulator 320 .
  • the insulators 512 and 516 can be formed using a silicon oxide film, a silicon oxynitride film, or the like.
  • the insulator 510, the insulator 512, the insulator 514, and the insulator 516 are embedded with a conductor 518, a conductor forming the transistor 500 (eg, the conductor 503), and the like.
  • the conductor 518 functions as a plug or wiring that is connected to the capacitor 600 or the transistor 550 .
  • the conductor 518 can be provided using a material similar to that of the conductors 328 and 330 .
  • a conductor 518 in a region in contact with the insulator 510 and the insulator 514 is preferably a conductor having barrier properties against oxygen, hydrogen, and water.
  • the transistor 550 and the transistor 500 can be separated by a layer having barrier properties against oxygen, hydrogen, and water, and diffusion of hydrogen from the transistor 550 to the transistor 500 can be suppressed.
  • a transistor 500 is provided above the insulator 516 .
  • transistor 500 includes conductor 503 disposed embedded in insulators 514 and 516 and insulator 520 disposed over insulators 516 and 503 . , insulator 522 over insulator 520, insulator 524 over insulator 522, oxide 530a over insulator 524, and oxide 530a over oxide 530a.
  • Conductors 542a and 542b are arranged apart from each other on oxide 530b, and conductors 542a and 542b are arranged on oxide 530b and between conductors 542a and 542b. It has an insulator 580 that overlaps with an opening, an insulator 545 that is arranged on the bottom and side surfaces of the opening, and a conductor 560 that is arranged on the surface where the insulator 545 is formed.
  • an insulator 544 is preferably arranged between oxides 530a, 530b, conductors 542a and 542b, and an insulator 580.
  • the conductor 560 includes a conductor 560a provided inside the insulator 545 and a conductor 560b provided so as to be embedded inside the conductor 560a. It is preferable to have Insulator 574 is also preferably disposed over insulator 580, conductor 560, and insulator 545, as shown in FIGS. 17A and 17B.
  • oxide 530a and the oxide 530b are sometimes collectively referred to as the oxide 530.
  • the transistor 500 shows a structure in which two layers of the oxide 530a and the oxide 530b are stacked in a region where a channel is formed and in the vicinity thereof, the present invention is not limited to this.
  • a single layer of the oxide 530b or a stacked structure of three or more layers may be provided.
  • the conductor 560 has a two-layer structure in the transistor 500, the present invention is not limited to this.
  • the conductor 560 may have a single layer structure or a laminated structure of three or more layers.
  • the transistor 500 illustrated in FIGS. 16 and 17A is an example, and the structure is not limited to that, and an appropriate transistor may be used depending on the circuit structure, the driving method, and the like.
  • the conductor 560 functions as a gate electrode of the transistor, and the conductors 542a and 542b function as source and drain electrodes, respectively.
  • the conductor 560 is formed to be embedded in the opening of the insulator 580 and the region sandwiched between the conductors 542a and 542b.
  • the placement of conductor 560 , conductor 542 a and conductor 542 b is selected in a self-aligned manner with respect to openings in insulator 580 . That is, in the transistor 500, the gate electrode can be arranged between the source electrode and the drain electrode in a self-aligned manner. Therefore, the conductor 560 can be formed without providing an alignment margin, so that the area occupied by the transistor 500 can be reduced. As a result, miniaturization and high integration of the semiconductor device can be achieved.
  • the conductor 560 is formed in a region between the conductors 542a and 542b in a self-aligning manner, the conductor 560 does not have a region overlapping the conductors 542a or 542b. Accordingly, parasitic capacitance formed between the conductor 560 and the conductors 542a and 542b can be reduced. Therefore, the switching speed of the transistor 500 can be improved and high frequency characteristics can be obtained.
  • the conductor 560 may function as a first gate (also called top gate) electrode.
  • the conductor 503 functions as a second gate (also referred to as a bottom gate) electrode.
  • the threshold voltage of the transistor 500 can be controlled by changing the potential applied to the conductor 503 independently of the potential applied to the conductor 560 .
  • the threshold voltage of the transistor 500 can be made higher than 0 V and the off current can be reduced. Therefore, when a negative potential is applied to the conductor 503, the drain current when the potential applied to the conductor 560 is 0 V can be made smaller than when no potential is applied.
  • the conductor 503 is arranged so as to overlap with the oxide 530 and the conductor 560 .
  • a potential is applied to the conductor 560 and the conductor 503
  • an electric field generated from the conductor 560 is connected to an electric field generated from the conductor 503, and the channel formation region formed in the oxide 530 is covered. can be done.
  • a transistor structure in which a channel formation region is electrically surrounded by an electric field of a pair of gate electrodes is referred to as a surrounded channel (S-channel) structure.
  • the surrounded channel (S-channel) configuration means that the side surfaces and the periphery of the oxide 530 in contact with the conductors 542a and 542b functioning as the source and drain electrodes are the same as the channel formation region. It has the characteristic of being a type.
  • the side surface and the periphery of the oxide 530 that are in contact with the conductors 542a and 542b are in contact with the insulator 544, they can be i-type like the channel formation region.
  • type I can be treated in the same way as high-purity intrinsic, which will be described later.
  • the S-channel configuration disclosed herein is different from the Fin configuration and the planar configuration. By adopting the S-channel structure, the transistor can be improved in resistance to the short channel effect, in other words, a transistor in which the short channel effect is less likely to occur.
  • the conductor 503 has a structure similar to that of the conductor 518.
  • a conductor 503a is formed in contact with the inner walls of the openings of the insulators 514 and 516, and a conductor 503b is further formed inside.
  • the conductor 503 may be provided as a single layer or a laminated structure of three or more layers.
  • the conductor 503a it is preferable to use a conductive material that has a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, and copper atoms (thus, the above impurities are difficult to permeate).
  • a conductive material that has a function of suppressing the diffusion of oxygen eg, at least one of oxygen atoms, oxygen molecules, and the like
  • the function of suppressing the diffusion of impurities or oxygen means the function of suppressing the diffusion of either one or all of the impurities or oxygen.
  • the conductor 503a since the conductor 503a has a function of suppressing the diffusion of oxygen, it is possible to prevent the conductor 503b from being oxidized and reducing its conductivity.
  • the conductor 503b preferably uses a highly conductive material containing tungsten, copper, or aluminum as its main component. Note that although the conductor 503 is illustrated as a laminate of the conductor 503a and the conductor 503b in this embodiment mode, the conductor 503 may have a single-layer structure.
  • the insulators 520, 522, and 524 function as second gate insulating films.
  • the insulator 524 in contact with the oxide 530 preferably contains more oxygen than the stoichiometric composition.
  • the oxygen is easily released from the film by heating.
  • the oxygen released by heating is sometimes referred to as "excess oxygen.”
  • a region containing excess oxygen also referred to as an “excess oxygen region” is preferably formed in the insulator 524 .
  • V OH oxygen vacancies
  • the vacancies (hereinafter sometimes referred to as V OH ) function as donors, and electrons, which are carriers, are generated in some cases.
  • part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron that is a carrier. Therefore, a transistor including an oxide semiconductor containing a large amount of hydrogen is likely to have normally-on characteristics.
  • hydrogen in an oxide semiconductor easily moves due to stress such as heat and an electric field; therefore, when a large amount of hydrogen is contained in the oxide semiconductor, the reliability of the transistor might be deteriorated.
  • an oxide material from which part of oxygen is released by heating is preferably used as the insulator having the excess oxygen region.
  • the oxide that desorbs oxygen by heating means that the desorption amount of oxygen in terms of oxygen atoms is 1.0 ⁇ 10 18 atoms/cm 3 or more, preferably 1, in TDS (Thermal Desorption Spectroscopy) analysis. 0 ⁇ 10 19 atoms/cm 3 or more, more preferably 2.0 ⁇ 10 19 atoms/cm 3 or more, or 3.0 ⁇ 10 20 atoms/cm 3 or more.
  • the surface temperature of the film during the TDS analysis is preferably in the range of 100° C. or higher and 700° C. or lower, or 100° C. or higher and 400° C. or lower.
  • one or more of heat treatment, microwave treatment, and RF treatment may be performed while the insulator having the excess oxygen region and the oxide 530 are in contact with each other.
  • water or hydrogen in the oxide 530 can be removed.
  • a reaction of breaking the bond of VoH occurs, in other words, a reaction of “V 2 O H ⁇ Vo+H” occurs to dehydrogenate the oxide 530 .
  • Part of the hydrogen generated at this time is combined with oxygen to form H 2 O and removed from the oxide 530 or an insulator near the oxide 530 in some cases.
  • some of the hydrogen may be gettered by the conductor 542 .
  • the microwave treatment for example, it is preferable to use an apparatus having a power supply for generating high-density plasma or an apparatus having a power supply for applying RF to the substrate side.
  • a gas containing oxygen and using high-density plasma high-density oxygen radicals can be generated.
  • the oxygen radicals generated by the high-density plasma can be generated.
  • the microwave treatment may be performed at a pressure of 133 Pa or higher, preferably 200 Pa or higher, and more preferably 400 Pa or higher.
  • oxygen and argon are used as gases to be introduced into the apparatus for microwave treatment, and the oxygen flow rate ratio (O 2 /(O 2 +Ar)) is 50% or less, preferably 10% or more and 30%. % or less.
  • heat treatment is preferably performed with the surface of the oxide 530 exposed during the manufacturing process of the transistor 500 .
  • the heat treatment may be performed at, for example, 100° C. to 450° C., more preferably 350° C. to 400° C.
  • the heat treatment is performed in a nitrogen gas atmosphere, an inert gas atmosphere, or an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas.
  • heat treatment is preferably performed in an oxygen atmosphere. Accordingly, oxygen can be supplied to the oxide 530 to reduce oxygen vacancies (V 0 ).
  • the heat treatment may be performed in an atmosphere containing 10 ppm or more, 1% or more, or 10% or more of an oxidizing gas in order to compensate for desorbed oxygen after the heat treatment is performed in a nitrogen gas or inert gas atmosphere. good.
  • heat treatment may be continuously performed in a nitrogen gas or inert gas atmosphere.
  • oxygen vacancies in the oxide 530 can be repaired by supplied oxygen, in other words, a reaction of “Vo+O ⁇ null” can be promoted. Furthermore, the supplied oxygen reacts with the hydrogen remaining in the oxide 530, so that the hydrogen can be removed as H 2 O (dehydrated). Accordingly, hydrogen remaining in the oxide 530 can be suppressed from being recombined with oxygen vacancies to form VOH .
  • the insulator 522 when the insulator 524 has an excess oxygen region, the insulator 522 preferably has a function of suppressing diffusion of oxygen (eg, oxygen atoms, oxygen molecules, etc.) (the oxygen is less permeable).
  • oxygen eg, oxygen atoms, oxygen molecules, etc.
  • the insulator 522 has a function of suppressing diffusion of oxygen, impurities, and the like, oxygen contained in the oxide 530 does not diffuse to the insulator 520 side, which is preferable. Further, the conductor 503 can be prevented from reacting with oxygen contained in the insulator 524, the oxide 530, or the like.
  • Insulator 522 is, for example, aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or It is preferable to use an insulator containing a so-called high-k material such as (Ba, Sr)TiO 3 (BST) in a single layer or stacked layers. As transistors are miniaturized and highly integrated, thinning of the gate insulating film may cause problems such as leakage current. By using a high-k material for the insulator functioning as the gate insulating film, it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness.
  • a so-called high-k material such as (Ba, Sr)TiO 3 (BST)
  • an insulator containing an oxide of one or both of aluminum and hafnium which is an insulating material that has a function of suppressing the diffusion of impurities and oxygen (the oxygen is less likely to permeate).
  • the insulator containing oxides of one or both of aluminum and hafnium aluminum oxide, hafnium oxide, an oxide containing aluminum and hafnium (hafnium aluminate), or the like is preferably used.
  • the insulator 522 is formed using such a material, the insulator 522 suppresses release of oxygen from the oxide 530 or entry of impurities such as hydrogen from the periphery of the transistor 500 into the oxide 530. act as a layer.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided. Silicon oxide, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • the insulator 520 is preferably thermally stable.
  • silicon oxide and silicon oxynitride are preferred because they are thermally stable.
  • the insulator 520 having a stacked structure that is thermally stable and has a high relative dielectric constant can be obtained.
  • the insulator 520, the insulator 522, and the insulator 524 are illustrated as the second gate insulating film having a stacked-layer structure of three layers.
  • the insulating film may have a single layer, two layers, or a laminated structure of four or more layers. In that case, it is not limited to a laminated structure made of the same material, and a laminated structure made of different materials may be used.
  • the transistor 500 uses a metal oxide functioning as an oxide semiconductor for the oxide 530 including the channel formation region.
  • a metal oxide functioning as an oxide semiconductor for the oxide 530 including the channel formation region.
  • In-M-Zn oxide (element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium , hafnium, tantalum, tungsten, magnesium, or the like) may be used.
  • a metal oxide that functions as an oxide semiconductor may be formed by a sputtering method or by an ALD (Atomic Layer Deposition) method. Note that a metal oxide functioning as an oxide semiconductor will be described in detail in other embodiments.
  • the oxide 530 can suppress diffusion of impurities from a component formed below the oxide 530a to the oxide 530b.
  • the oxide 530 preferably has a laminated structure of a plurality of oxide layers with different atomic ratios of metal atoms.
  • the atomic number ratio of the element M among the constituent elements is greater than the atomic number ratio of the element M among the constituent elements in the metal oxide used for the oxide 530b. is preferred.
  • the atomic ratio of the element M to In is preferably higher than the atomic ratio of the element M to In in the metal oxide used for the oxide 530b.
  • the atomic ratio of In to the element M in the metal oxide used for the oxide 530b is preferably higher than the atomic ratio of In to the element M in the metal oxide used for the oxide 530a.
  • the energy of the conduction band bottom of the oxide 530a be higher than the energy of the conduction band bottom of the oxide 530b.
  • the electron affinity of the oxide 530a is preferably smaller than the electron affinity of the oxide 530b.
  • the energy level at the bottom of the conduction band changes gently.
  • the energy level at the bottom of the conduction band at the junction of the oxide 530a and the oxide 530b continuously changes or continuously joins.
  • the oxide 530a and the oxide 530b have a common element (as a main component) other than oxygen, a mixed layer with a low defect level density can be formed.
  • the oxide 530b is an In--Ga--Zn oxide
  • an In--Ga--Zn oxide, a Ga--Zn oxide, gallium oxide, or the like may be used as the oxide 530a.
  • the main route of carriers is the oxide 530b.
  • the oxide 530a has the above structure, the defect level density at the interface between the oxide 530a and the oxide 530b can be reduced. Therefore, the influence of interface scattering on carrier conduction is reduced, and the transistor 500 can obtain a high on-state current.
  • a conductor 542a and a conductor 542b functioning as a source electrode and a drain electrode are provided over the oxide 530b.
  • Conductors 542a and 542b include aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, and ruthenium. , iridium, strontium, and lanthanum, an alloy containing the above-described metal elements as a component, or an alloy in which the above-described metal elements are combined.
  • tantalum nitride, titanium nitride, tungsten, nitride containing titanium and aluminum, nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxide containing strontium and ruthenium, oxide containing lanthanum and nickel, and the like are used. is preferred.
  • tantalum nitride, titanium nitride, nitrides containing titanium and aluminum, nitrides containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, oxides containing strontium and ruthenium, and oxides containing lanthanum and nickel are difficult to oxidize. It is preferable because it is a conductive material or a material that maintains conductivity even after absorbing oxygen.
  • a metal nitride film such as tantalum nitride is preferred because of its barrier properties against hydrogen or oxygen.
  • the conductor 542a and the conductor 542b are shown as a single-layer structure, but they may be laminated with two or more layers.
  • a tantalum nitride film and a tungsten film are preferably stacked.
  • a titanium film and an aluminum film may be stacked.
  • a two-layer structure in which an aluminum film is stacked over a tungsten film, a two-layer structure in which a copper film is stacked over a copper-magnesium-aluminum alloy film, a two-layer structure in which a copper film is stacked over a titanium film, a two-layer structure in which a copper film is stacked over a titanium film, A two-layer structure in which copper films are laminated may be used.
  • a three-layer structure in which a titanium film or a titanium nitride film is laminated, an aluminum film or a copper film is laminated on the titanium film or the titanium nitride film, and a titanium film or a titanium nitride film is formed thereon, a molybdenum film or a
  • a three-layer structure including a molybdenum nitride film, an aluminum film or a copper film laminated on the molybdenum film or the molybdenum nitride film, and a molybdenum film or a molybdenum nitride film formed thereon.
  • a transparent conductive material containing indium oxide, tin oxide, or zinc oxide may be used.
  • regions 543a and 543b may be formed as low-resistance regions at and near the interface between the oxide 530 and the conductor 542a (conductor 542b).
  • the region 543a functions as one of the source region and the drain region
  • the region 543b functions as the other of the source region and the drain region.
  • a channel formation region is formed in a region sandwiched between the regions 543a and 543b.
  • the oxygen concentration of the region 543a may be reduced.
  • a metal compound layer containing the metal contained in the conductor 542a (conductor 542b) and the component of the oxide 530 is formed in the region 543a (region 543b). In such a case, the carrier density of the region 543a (region 543b) increases, and the region 543a (region 543b) becomes a low resistance region.
  • the insulator 544 is provided so as to cover the conductors 542a and 542b and suppress oxidation of the conductors 542a and 542b. At this time, the insulator 544 may be provided so as to cover the side surface of the oxide 530 and be in contact with the insulator 524 .
  • a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, neodymium, lanthanum, magnesium, or the like is used.
  • tungsten titanium, tantalum, nickel, germanium, neodymium, lanthanum, magnesium, or the like
  • silicon nitride oxide, silicon nitride, or the like can be used as the insulator 544 .
  • an insulator containing one or both oxides of aluminum and hafnium such as aluminum oxide, hafnium oxide, or an oxide containing aluminum and hafnium (hafnium aluminate)
  • hafnium aluminate has higher heat resistance than hafnium oxide film. Therefore, it is preferable because it is less likely to be crystallized in heat treatment in a later step.
  • the conductors 542a and 542b are made of a material having oxidation resistance or a material whose conductivity does not significantly decrease even when oxygen is absorbed, the insulator 544 is not an essential component. It may be appropriately designed depending on the required transistor characteristics.
  • the insulator 544 can suppress diffusion of water and impurities such as hydrogen contained in the insulator 580 into the oxide 530b. In addition, oxidation of the conductor 542 due to excess oxygen in the insulator 580 can be suppressed.
  • the insulator 545 functions as a first gate insulating film.
  • the insulator 545 is preferably formed using an insulator that contains excess oxygen and from which oxygen is released by heating, similarly to the insulator 524 described above.
  • silicon oxide with excess oxygen silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide with fluorine added, silicon oxide with carbon added, silicon oxide with carbon and nitrogen added, and vacancies can be used.
  • silicon oxide and silicon oxynitride are preferable because they are stable against heat.
  • the concentration of impurities such as water or hydrogen in the insulator 545 is preferably reduced.
  • the thickness of the insulator 545 is preferably 1 nm or more and 20 nm or less.
  • a metal oxide may be provided between the insulator 545 and the conductor 560 in order to efficiently supply excess oxygen contained in the insulator 545 to the oxide 530 .
  • the metal oxide preferably suppresses oxygen diffusion from the insulator 545 to the conductor 560 .
  • diffusion of excess oxygen from the insulator 545 to the conductor 560 is suppressed. That is, reduction in the amount of excess oxygen supplied to the oxide 530 can be suppressed.
  • oxidation of the conductor 560 due to excess oxygen can be suppressed.
  • a material that can be used for the insulator 544 may be used.
  • the insulator 545 may have a stacked structure similarly to the second gate insulating film. As transistors are miniaturized and highly integrated, thinning of the gate insulating film may cause problems such as leakage current.
  • By forming a laminated structure with a material that is relatively stable it is possible to reduce the gate potential during transistor operation while maintaining the physical film thickness. Moreover, it is possible to obtain a laminated structure that is thermally stable and has a high dielectric constant.
  • the conductor 560 functioning as the first gate electrode is shown as having a two-layer structure in FIGS. 17A and 17B, it may have a single-layer structure or a laminated structure of three or more layers.
  • the conductor 560a has a function of suppressing diffusion of impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (such as N 2 O, NO, NO 2 ), and copper atoms. Materials are preferably used. Alternatively, a conductive material having a function of suppressing diffusion of oxygen (eg, at least one of oxygen atoms and oxygen molecules) is preferably used. Since the conductor 560a has a function of suppressing diffusion of oxygen, oxygen contained in the insulator 545 can suppress oxidation of the conductor 560b and a decrease in conductivity.
  • impurities such as hydrogen atoms, hydrogen molecules, water molecules, nitrogen atoms, nitrogen molecules, nitrogen oxide molecules (such as N 2 O, NO, NO 2 ), and copper atoms. Materials are preferably used. Alternatively, a conductive material having a function of suppressing diffusion of oxygen (eg, at least one of oxygen atoms and oxygen molecules) is preferably used. Since the conductor 560a has
  • the conductive material having a function of suppressing diffusion of oxygen tantalum, tantalum nitride, ruthenium, ruthenium oxide, or the like is preferably used, for example.
  • an oxide semiconductor that can be used for the oxide 530 can be used as the conductor 560a. In that case, by forming the conductor 560b by a sputtering method, the electric resistance value of the conductor 560a can be lowered to make the conductor 560a a conductor. This can be called an OC (Oxide Conductor) electrode.
  • a conductive material containing tungsten, copper, or aluminum as its main component is preferably used for the conductor 560b.
  • the conductor 560b since the conductor 560b also functions as a wiring, a conductor with high conductivity is preferably used.
  • a conductive material whose main component is tungsten, copper, or aluminum can be used.
  • the conductor 560b may have a layered structure, for example, a layered structure of titanium or titanium nitride and the above conductive material.
  • the insulator 580 is provided over the conductors 542a and 542b with the insulator 544 interposed therebetween.
  • Insulator 580 preferably has excess oxygen regions.
  • the insulator 580 may be silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, or oxide with vacancies. It preferably contains silicon, resin, or the like.
  • silicon oxide and silicon oxynitride are preferable because they are thermally stable.
  • silicon oxide and silicon oxide having vacancies are preferable because an excess oxygen region can be easily formed in a later step.
  • the insulator 580 preferably has an excess oxygen region. By providing the insulator 580 from which oxygen is released by heating, oxygen in the insulator 580 can be efficiently supplied to the oxide 530 . Note that the concentration of impurities such as water or hydrogen in the insulator 580 is preferably low.
  • the opening of the insulator 580 is formed so as to overlap a region between the conductors 542a and 542b.
  • the conductor 560 is formed so as to be embedded in the opening of the insulator 580 and the region sandwiched between the conductors 542a and 542b.
  • the conductor 560 can have a shape with a high aspect ratio.
  • the conductor 560 since the conductor 560 is embedded in the opening of the insulator 580, the conductor 560 can be formed without collapsing during the process even if the conductor 560 has a high aspect ratio. can be done.
  • the insulator 574 is preferably provided in contact with the top surface of the insulator 580 , the top surface of the conductor 560 , and the top surface of the insulator 545 .
  • excess oxygen regions can be provided in the insulators 545 and 580 . Accordingly, oxygen can be supplied into the oxide 530 from the excess oxygen region.
  • the insulator 574 can be a metal oxide containing one or more selected from hafnium, aluminum, gallium, yttrium, zirconium, tungsten, titanium, tantalum, nickel, germanium, magnesium, or the like. can be done.
  • aluminum oxide has a high barrier property, and even a thin film of 0.5 nm or more and 3.0 nm or less can suppress the diffusion of hydrogen and nitrogen. Therefore, the aluminum oxide film formed by the sputtering method can function not only as an oxygen supply source but also as a barrier film against impurities such as hydrogen.
  • An insulator 581 functioning as an interlayer film is preferably provided over the insulator 574 .
  • the insulator 581 preferably has a reduced concentration of impurities such as water or hydrogen in the film.
  • conductors 540 a and 540 b are arranged in openings formed in the insulators 581 , 574 , 580 , and 544 .
  • the conductor 540a and the conductor 540b are provided to face each other with the conductor 560 interposed therebetween.
  • the conductors 540a and 540b have the same structure as the conductors 546 and 548, which will be described later.
  • An insulator 582 is provided on the insulator 581 .
  • the insulator 582 preferably uses a substance having a barrier property against oxygen, hydrogen, or the like. Therefore, a material similar to that of the insulator 514 can be used for the insulator 582 .
  • the insulator 582 is preferably formed using a metal oxide such as aluminum oxide, hafnium oxide, or tantalum oxide.
  • aluminum oxide has a high shielding effect that prevents both oxygen and impurities such as hydrogen and moisture, which are factors that change the electrical characteristics of transistors, from penetrating through the film. Therefore, aluminum oxide can prevent impurities such as hydrogen and moisture from entering the transistor 500 during and after the manufacturing process of the transistor. In addition, release of oxygen from the oxide forming the transistor 500 can be suppressed. Therefore, it is suitable for use as a protective film for the transistor 500 .
  • An insulator 586 is provided on the insulator 582 .
  • a material similar to that of the insulator 320 can be used for the insulator 586 .
  • parasitic capacitance generated between wirings can be reduced.
  • a silicon oxide film, a silicon oxynitride film, or the like can be used as the insulator 586 .
  • the insulator 520, the insulator 522, the insulator 524, the insulator 544, the insulator 580, the insulator 574, the insulator 581, the insulator 582, and the insulator 586 include the conductor 546, the conductor 548, and the like. is embedded.
  • the conductors 546 and 548 function as plugs or wirings that connect to the capacitor 600, the transistor 500, or the transistor 550.
  • the conductors 546 and 548 can be formed using a material similar to that of the conductors 328 and 330 .
  • an opening may be formed so as to surround the transistor 500, and an insulator with a high barrier property against hydrogen or water may be formed to cover the opening.
  • an insulator with a high barrier property against hydrogen or water By wrapping the transistor 500 with the above insulator with a high barrier property, entry of moisture and hydrogen from the outside can be prevented.
  • the plurality of transistors 500 may be wrapped together with an insulator having a high barrier property against hydrogen or water. Note that in the case where the opening is formed so as to surround the transistor 500, for example, the opening is formed to reach the insulator 522 or the insulator 514, and the above insulator with a high barrier property is provided so as to be in contact with the insulator 522 or the insulator 514.
  • the transistor 500 it is preferable to form the transistor 500 because it can also be part of the manufacturing process of the transistor 500 .
  • a material similar to that of the insulator 522 or the insulator 514 may be used, for example.
  • a capacitor 600 is provided above the transistor 500 .
  • a capacitor 600 has a conductor 610 , a conductor 620 , and an insulator 630 .
  • a conductor 612 may be provided over the conductor 546 and the conductor 548 .
  • the conductor 612 functions as a plug or wiring connected to the transistor 500 .
  • Conductor 610 functions as an electrode of capacitor 600 . Note that the conductor 612 and the conductor 610 can be formed at the same time.
  • the conductors 612 and 610 are metal films containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, and scandium, or metal nitride films containing any of the above elements as components. (tantalum nitride film, titanium nitride film, molybdenum nitride film, tungsten nitride film) or the like can be used. Alternatively, indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, and silicon oxide are added. Conductive materials such as indium tin oxide can also be applied.
  • the conductor 612 and the conductor 610 have a single-layer structure, but are not limited to this structure, and may have a laminated structure of two or more layers. For example, between a conductor with a barrier property and a conductor with high conductivity, a conductor with a barrier property and a conductor with high adhesion to the conductor with high conductivity may be formed.
  • a conductor 620 is provided so as to overlap with the conductor 610 with an insulator 630 interposed therebetween.
  • the conductor 620 can be made of a conductive material such as a metal material, an alloy material, or a metal oxide material. It is preferable to use a high-melting-point material such as tungsten or molybdenum that has both heat resistance and conductivity, and it is particularly preferable to use tungsten.
  • a low-resistance metal material such as Cu (copper) or Al (aluminum) may be used.
  • An insulator 640 is provided on the conductor 620 and the insulator 630 .
  • the insulator 640 can be provided using a material similar to that of the insulator 320 .
  • the insulator 640 may function as a planarizing film that covers the uneven shape thereunder.
  • Substrates that can be used for the semiconductor device of one embodiment of the present invention include a glass substrate, a quartz substrate, a sapphire substrate, a ceramic substrate, and a metal substrate (for example, a stainless steel substrate, a substrate having a stainless steel foil, and a tungsten substrate). , a substrate having a tungsten foil), a semiconductor substrate (eg, a single crystal semiconductor substrate, a polycrystalline semiconductor substrate, or a compound semiconductor substrate), an SOI (Silicon on Insulator) substrate, and the like. Alternatively, a plastic substrate having heat resistance that can withstand the processing temperature of this embodiment mode may be used.
  • glass substrates include barium borosilicate glass, aluminosilicate glass, aluminoborosilicate glass, soda lime glass, and the like. In addition, crystallized glass or the like can be used.
  • a flexible substrate, a laminated film, paper containing a fibrous material, or a base film can be used as the substrate.
  • flexible substrates, laminated films, substrate films, etc. are as follows.
  • plastics represented by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), and polytetrafluoroethylene (PTFE).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PTFE polytetrafluoroethylene
  • Another example is a synthetic resin such as acrylic.
  • examples include polypropylene, polyester, polyvinyl fluoride, or polyvinyl chloride.
  • examples include polyamide, polyimide, aramid resin, epoxy resin, inorganic deposition film, or paper.
  • a transistor using a semiconductor substrate, a single crystal substrate, an SOI substrate, or the like, a small-sized transistor with little variation in characteristics, size, shape, or the like, high current capability, and small size can be manufactured.
  • a circuit is formed using such transistors, low power consumption of the circuit or high integration of the circuit can be achieved.
  • a flexible substrate may be used as the substrate, and transistors, resistors, and/or capacitors may be formed directly over the flexible substrate.
  • a release layer may be provided between the substrate and the transistors, resistors, and/or capacitors, and the like. The peeling layer can be used for separating from the substrate and transferring to another substrate after partially or entirely completing the semiconductor device on it. At that time, transistors, resistors, and/or capacitors can be transferred to a substrate having poor heat resistance, a flexible substrate, or the like.
  • peeling layer for example, a laminated structure of an inorganic film including a tungsten film and a silicon oxide film, a structure in which an organic resin film such as polyimide is formed over a substrate, a silicon film containing hydrogen, or the like is used. be able to.
  • a semiconductor device may be formed over a substrate and then transferred to another substrate.
  • substrates on which semiconductor devices are transferred include paper substrates, cellophane substrates, aramid film substrates, polyimide film substrates, stone substrates, wood substrates, cloth substrates (natural fibers (silk, cotton, hemp), synthetic fibers (nylon, polyurethane, polyester) or recycled fibers (acetate, cupra, rayon, recycled polyester), leather substrates, rubber substrates, and the like.
  • the transistor 550 illustrated in FIG. 16 is an example, and the structure is not limited to that, and an appropriate transistor may be used depending on the circuit structure, the driving method, and the like.
  • the semiconductor device is a unipolar circuit including only OS transistors (meaning a transistor with the same polarity as n-channel transistors only)
  • a transistor 550 has a structure similar to that of the transistor 500 as shown in FIG. configuration.
  • the backup circuit 10M (the data holding circuit 20M or the memory cell 30M) arranged over the circuit 10S (the circuit 20S or the circuit 30S) described in Embodiment 1.
  • a circuit 10S (circuit 20S or circuit 30S) and a backup circuit 10M (data holding circuit 20M or memory cell 30M) are formed using an oxide semiconductor layer in which a channel forming region is formed.
  • 530 can be a transistor 550 (OS transistor).
  • the circuit 10S (the circuit 20S or the circuit 30S) is composed of Si transistors
  • the silicon substrate on which the Si transistors are provided lacks flexibility, so there is a risk of damage due to forces such as bending and twisting.
  • the semiconductor device 101 can be freely deformed as follows. Moreover, the possibility that the semiconductor device 101 is destroyed by impact can be reduced. Therefore, an electronic device including the semiconductor device 101 can be an electronic device that is excellent in design and can be less likely to be damaged by an impact.
  • ⁇ Display system configuration example> 20A to 20C are diagrams illustrating a configuration example of a display system that is one embodiment of the present invention.
  • the display system that is one aspect of the present invention includes the electronic device 100 described in Embodiment 1 and the like, and a head-mounted electronic device 100X (HMD (also referred to as Head Mounted Display)).
  • HMD head Mounted Display
  • Each of the electronic device 100 and the electronic device 100X has a wireless communication means, and the electronic device 100X has a display region with a higher pixel density (also referred to as definition) than the electronic device 100. , has a function of displaying the screen of the electronic device 100 or a part of the screen on the electronic device 100X using the wireless communication means.
  • a display system has multiple electronic devices.
  • the plurality of electronic devices exchange data using wireless communication means, and process data such as up-conversion or down-conversion to process a portion of the image data displayed on the screen of one of the electronic devices. can be processed and displayed on the other electronic device.
  • process data such as up-conversion or down-conversion to process a portion of the image data displayed on the screen of one of the electronic devices.
  • process data such as up-conversion or down-conversion
  • the electronic device 100 illustrated in FIG. 20A has a display 102, a housing 111, a communication section 106, a semiconductor device 101, a battery 104, a sensor 105, and a band 113.
  • FIG. 20A shows the user's right hand 70R and the user's left hand 70L.
  • the electronic device 100X also includes a housing 81, a control unit 71, a display 72, a battery 74, sensors 75A and 75B (sometimes referred to as sensor 75), a communication unit 76, and a mounting unit .
  • wireless communication between the electronic device 100 and the electronic device 100X can be performed between the communication unit 106 and the communication unit 76 as shown in FIG. 20A.
  • the communication unit 106 has a function of transmitting information to the electronic device 100X according to an operation on the electronic device 100.
  • FIG. The communication unit 76 also has a function of transmitting information to the electronic device 100 according to an operation to the electronic device 100X.
  • the electronic device 100X shown in FIG. 20A has one or both of a function of displaying augmented reality (AR) content and a function of displaying virtual reality (VR) content.
  • AR augmented reality
  • VR virtual reality
  • the electronic device 100X may have a function of displaying content of alternative reality (SR) or mixed reality (MR). Since the electronic device 100X has a function of displaying content such as AR, VR, SR, and MR, it is possible to enhance the sense of immersion for the user.
  • SR alternative reality
  • MR mixed reality
  • the sensor 75A of the electronic device 100X has a function as a camera section that acquires information on the outside of the electronic device 100X.
  • FIG. 20A illustrates how two sensors 75A are arranged outside the housing 81 to acquire information about the user's surroundings.
  • a plurality of sensors 75A as a camera unit that acquires information about the user's surroundings in this way, information that cannot be detected by the naked eye can be obtained through the sensors 75A, compared to grasping information about the user's surroundings with the naked eye. can be obtained. Therefore, the amount of information that the user can obtain can be increased.
  • the data acquired by the sensor 75A can be output to the display 72 or the display 102 of the electronic device 100.
  • the sensor 75B of the electronic device 100X has a function as a camera section that acquires information on the user side of the electronic device 100X.
  • FIG. 20A illustrates a state in which two sensors 75A are arranged inside the housing 81 so as to capture images of the user's eyes, and information around the user's eyes is acquired.
  • a plurality of sensors 75A as camera units for acquiring information on the eyes of the user in this way, it is possible to perform eye tracking of the user. Therefore, on the display 72, it is possible to perform display according to the line of sight of the user.
  • the user can wear the electronic device 100X on the head using the mounting section 82 of the electronic device 100X.
  • the shape is illustrated as a temple of spectacles (also referred to as a joint, a temple, etc.), but the shape is not limited to this.
  • the mounting portion 82 may be worn by the user, and may be, for example, a helmet-type or band-type shape.
  • a distance measuring sensor capable of measuring the distance of an object
  • the sensors 75A and 75B are one aspect of the detection section.
  • the detection unit for example, an image sensor or a distance image sensor such as a lidar (LIDAR: Light Detection and Ranging) can be used.
  • LIDAR Light Detection and Ranging
  • the user can operate an image (also called a data object) displayed on the display 72 of the electronic device 100X like an actual object by intuitive gesture operations. For example, it is possible to pinch an image that is displayed as if it is floating on a plate. You can also throw the pinched image like a frisbee to erase the image. You can also move the pinched image up, down, left, or right. Further, by moving the pinched image back and forth, the image can be enlarged or reduced. Also, the pinched image can be turned upside down. At this time, the axis of rotation can be vertical, horizontal, or oblique. Also, by pinching and pulling the edge of the field of view where nothing is displayed, a plate-like image can be drawn out.
  • an image also called a data object
  • the image can be erased by pushing the plate-like image away from the user.
  • the image can be erased by moving the hand left and right after placing the hand on the edge of the plate-shaped image.
  • Such an operation of erasing an image may be switched to another image after erasing the image.
  • the user may register specific information in the electronic device 100X in advance. For example, the motion of spreading the palm to the motion of connecting the thumb and index finger (the motion of forming a circle with the thumb and index finger) is registered as the first processing information, and based on the first processing information, the second processing is performed. Processing information can be executed.
  • the second processing information data that the user wants to execute arbitrarily can be registered as the second processing information, for example, deleting an image, displaying a specific image, displaying a shortcut icon, or the like. can.
  • a plurality of detection units may be provided in the electronic device or electronic device in order to perform gesture operations using multiple movements, such as actions using both hands, with high accuracy. preferable. As a result, it is possible to detect the three-dimensional position information of a plurality of objects with higher accuracy, so that input by complicated gesture operations becomes possible.
  • the user can operate an image (also called a data object) displayed on the display 72 of the electronic device 100X like an actual object, for example, by gesture operation using both hands. For example, it is possible to pinch two points (for example, top and bottom, left and right, or diagonally) of an image that is displayed as if it were floating on a plate. Also, the image can be enlarged by stretching the image while pinching the image with both hands. Also, the image can be reduced by pinching the image with both hands and shrinking the image. In addition, the image can be erased by pinching the image with both hands or placing hands on both ends of the image and then squeezing the image with both hands.
  • an image also called a data object displayed on the display 72 of the electronic device 100X like an actual object, for example, by gesture operation using both hands. For example, it is possible to pinch two points (for example, top and bottom, left and right, or diagonally) of an image that is displayed as if it were floating on a plate.
  • the image can be enlarged by stretching the
  • the image can be erased by pinching the upper side of the image with both hands and tearing the image left and right. Also, the image can be erased by pinching the image with both hands and bending the image. It is also possible to pinch an image with one hand and perform gesture operations (tap, swipe, pinch-in, pinch-out, etc.) on the image with the other hand. Further, as described above, the user can register in advance a specific action and information on processing associated with the action in the electronic device 100X.
  • the electronic device 100 and the electronic device 100X can be network-connected. Accordingly, it is possible to use the electronic device 100 and the electronic device 100X independently as communication tools. For example, an image or part of an image displayed on the electronic device 100X worn by the first user can be displayed on the electronic device 100X worn by the second user. Alternatively, the image or part of the image displayed on the electronic device 100X worn by the first user can be displayed on the electronic device 100 owned by the second user.
  • Such a display system allows a plurality of users to share the same image data, thereby enhancing communication.
  • a highly convenient display system or an operation method of the display system can be provided.
  • processing that can be executed by electronic device 100 and electronic device 100X described in the present embodiment is an example, and various processing is executed according to application software installed in electronic device 100 or electronic device 100X. sell.
  • FIGS. 20B, 21A, and 21B Next, an electronic device and a display system of one embodiment of the present invention are described with reference to FIGS. 20B, 21A, and 21B.
  • FIG. 20B is a diagram illustrating an electronic device and a display system of one embodiment of the present invention.
  • electronic device 100 has at least display 102 and communication unit 106
  • electronic device 100X has display 72 and communication unit 76 .
  • the electronic device 100 has a display 102, a communication unit 106, a semiconductor device 101, a battery 104, and a sensor 105.
  • the electronic device 100X has a display 72, a communication section 76, a control section 71, a battery 74, and a sensor 75.
  • the electronic device 100 and the electronic device 100X each have the same function, but the configuration is not limited to this.
  • the electronic device 100 and the electronic device 100X may have different functions.
  • the electronic device 100 has a camera section 107 (also referred to as a detection section) and a communication section 108 in addition to the configuration shown in FIG. 21A.
  • the electronic device 100X has a camera section 77 and a headphone section 78 in addition to the configuration shown in FIG. 21A.
  • Camera unit 77 and camera unit 107 may have an imaging unit such as an image sensor.
  • a plurality of cameras may be provided so as to be able to deal with a plurality of angles of view such as telephoto and wide angle.
  • the communication unit 108 may have a function of performing communication with a function different from that of the communication unit 106 .
  • the communication unit 106 has a function of communicating with the communication unit 76, and the communication unit 108 is a third generation mobile communication system (3G), a fourth generation mobile communication system (4G), or a fifth generation mobile communication system. It is only necessary to have a function capable of voice communication using a communication system (5G) or a communication means capable of electronic payment.
  • 3G third generation mobile communication system
  • 4G fourth generation mobile communication system
  • 5G communication system
  • 5G communication means capable of electronic payment.
  • the display 72 shown in FIGS. 20A, 20B, 21A, and 21B preferably has a higher resolution than the display 102.
  • display 102 may have resolutions such as HD (1280 ⁇ 720 pixels), FHD (1920 ⁇ 1080 pixels), and WQHD (2560 ⁇ 1440 pixels).
  • the display 72 preferably has a very high resolution such as WQXGA (2560 ⁇ 1600 pixels), 4K2K (3840 ⁇ 2160 pixels), or 8K4K (7680 ⁇ 4320 pixels). In particular, it is preferable to set the resolution to 4K2K, 8K4K, or higher.
  • the display 72 preferably has a higher pixel density (definition) than the display 102 .
  • the display 102 may have a pixel density of 100 ppi to less than 1000 ppi, preferably 300 ppi to 800 ppi.
  • the display 72 can have a pixel density of 1000 ppi to 10000 ppi, preferably 2000 ppi to 6000 ppi, more preferably 3000 ppi to 5000 ppi.
  • the screen ratio (aspect ratio) of the display 102 and the display 72 is not particularly limited.
  • the display 102 and the display 72 can correspond to various screen ratios such as 1:1 (square), 3:4, 16:9, and 16:10.
  • the display 102 is preferably formed on a glass substrate, and the display 72 is preferably formed on a silicon substrate.
  • the display 102 By forming the display 102 over a glass substrate, manufacturing costs can be reduced.
  • the display 102 when the display 102 is formed on a glass substrate, it may be difficult to increase the pixel density of the display 102 (typically 1000 ppi or more) due to manufacturing equipment. Therefore, in the electronic device and the display system of one embodiment of the present invention, by forming the display 72 over a silicon substrate, the pixel density of the display 72 can be increased (typically, 1000 ppi or more). In other words, the display 72 can supplement and display an image with a definition that the display 102 cannot handle.
  • a display system of one aspect of the present invention has two electronic devices with different resolutions or different pixel densities.
  • image data displayable by one electronic device into image data suitable for the other electronic device, part or all of the image data may be compressed or decompressed.
  • the user By increasing the resolution or definition of the display 72, the user cannot perceive the pixels (such as lines that may occur between the pixels cannot be seen), thereby increasing the sense of immersion, presence, and depth. can feel.
  • the electronic device 100 shown in FIG. 20A has a period during which the display does not display, and functions as input/output means (eg, controller) of the electronic device 100X during this period.
  • the usage period of the battery 104 included in the electronic device 100 can be extended. That is, the display system which is one embodiment of the present invention can save power.
  • the battery 104 for example, a lithium ion secondary battery can be used.
  • FIGS. 20A, 20B, 21A, and 21B are described below.
  • the display 102 and the display 72 each have a display function.
  • the display 102 and the display 72 for example, one or a plurality of devices selected from liquid crystal display devices, light emitting devices including organic EL, and light emitting devices including light emitting diodes such as micro LEDs can be used. Considering productivity and luminous efficiency, it is preferable to use a light-emitting device including an organic EL as the display 102 and the display 72 .
  • the communication unit 106 and the communication unit 76 each have a function of communicating wirelessly or by wire. It is preferable that the communication units 106 and 76 have a function of communicating wirelessly, because the number of components such as cables for connection can be omitted.
  • Communication means (communication methods) between the communication unit 106 and the communication unit 76 include, for example, the Internet, which is the basis of the World Wide Web (WWW), intranet, extranet, PAN (Personal Area Network), LAN (Local Area Network). ), CAN (Campus Area Network), MAN (Metropolitan Area Network), WAN (Wide Area Network), GAN (Global Area Network), and other computer networks to communicate with each other.
  • WWW World Wide Web
  • intranet intranet
  • extranet extranet
  • PAN Personal Area Network
  • LAN Local Area Network
  • CAN Campus Area Network
  • MAN Micropolitan Area Network
  • WAN Wide Area Network
  • GAN Global Area Network
  • LTE Long Term Evolution
  • GSM Global System for Mobile Communication: registered trademark
  • EDGE Enhanced Data Rates for GSM Evolution
  • CDMA2000 Codes 0 Division 0
  • W-CDMA registered trademark
  • IEEE specifications standardized by IEEE such as Wi-Fi (registered trademark), Bluetooth (registered trademark), and ZigBee (registered trademark).
  • the semiconductor device 101 and the control unit 71 each have a function of controlling the display.
  • the semiconductor device 101 and the control unit 71 have, for example, a CPU, a GPU, and a memory.
  • Arithmetic circuits such as the CPU and GPU can perform image processing, for example, can perform amp-conversion processing or down-conversion processing of image data. Thereby, image data with low resolution can be up-converted or image data with high resolution can be down-converted in accordance with the resolution of the display, and an image with high display quality can be displayed on the display.
  • Battery 104 and battery 74 each have a function of supplying power to the display.
  • a primary battery or a secondary battery can be used.
  • a lithium ion secondary battery can be used suitably, for example.
  • Each of the sensors 105 and 75 has a function of acquiring one or more of the user's visual, auditory, tactile, gustatory, and olfactory information. More specifically, the sensor 105 can detect force, displacement, position, velocity, acceleration, angular velocity, number of rotations, distance, light, magnetism, temperature, sound, time, electric field, current, voltage, power, radiation, humidity, It has the ability to measure tilt, vibration, odor, and infrared.
  • the sensor 75 preferably has a function of measuring electroencephalograms.
  • it may have a plurality of electrodes that contact the head and have a mechanism for measuring electroencephalograms from weak currents flowing through the electrodes. Since the sensor 75 has the function of measuring brain waves, the image of the display 102 or part of the image of the display 102 can be displayed on the display 72 as the user thinks. In this case, since the user does not need to use both hands to operate the electronic device, the user can perform input operations and the like without holding anything in both hands (both hands are free).
  • FIG. 22A shows the user 130 performing a gesture operation while wearing the glasses-type electronic device 100X.
  • the display of the electronic device 100 is turned off, the power consumption of the electronic device 100 can be suppressed.
  • the electronic device 100 is worn on the arm of the user 130, the user 130 can operate the display system with both hands free.
  • the operation of the display system is information obtained by the sensor 75A on the electronic device 100X side, or information based on the trajectory of the arm movement obtained by applying an acceleration sensor as the sensor 105 provided in the electronic device 100. , can be used.
  • FIG. 22B shows an example of the image 140 that appears in the field of view of the user 130 in the room shown in FIG. 22A.
  • image information 141 is shown superimposed on an image of the actual indoor scenery such as the floor, walls, and doors.
  • image information 141 is part of an image displayed on the display of electronic device 100 .
  • the user 130 can also operate the electronic device 100 paired with the electronic device 100X while wearing the electronic device 100X.
  • the electronic device 100X recognizes this action as a gesture operation, and changes the position of the image information 141. do.
  • the image information 141 can change its position following the movement of the left hand 130L, as shown in FIG. 22B. At this time, not only can the image information 141 be moved left and right, up and down, and back and forth, but also the image information 141 can be rotated according to the movement of the left hand 130L.
  • FIG. 22C shows a state in which the user 130 is making a gesture motion, which is different from that shown in FIG. 22A.
  • the electronic device 100 with the display turned off is in the same manner as described above.
  • FIG. 22D shows the image 140 that appears in the field of view of the user 130 in the room shown in FIG. 22C.
  • the image information 141 can be discarded by the user 130 performing the motion of grasping the space where the image information 141 is shown and then performing the motion of throwing the object like throwing a frisbee. At this time, the image information 141 moves away from the user 130 and appears to disappear at a certain point, or is pushed out of the field of view. In this manner, the content image displayed within the field of view can be discarded (closed) by the user's 130 gesture operation.
  • the electronic device and display system of one embodiment of the present invention can be operated with new operation methods and operation methods.
  • FIG. 23 is a flowchart of a method of operating the display system.
  • step S01 the operation is started. At this time, it is assumed that the electronic device 100 is in an activated state (operable state) and the electronic device 100X is in a power-on state.
  • step S02 the electronic device 100X is attached.
  • the electronic device 100X recognizes that it is attached, and the system starts up.
  • step S02 for example, when the electronic device 100X is in the form of goggles, the image of the front camera may be provided to the user, or the image of other content may be displayed.
  • step S03 pairing between the electronic device 100 and the electronic device 100X is performed.
  • bidirectional data can be exchanged between the electronic device 100 and the electronic device 100X.
  • step S04 the first image displayed on the display 102 of the electronic device 100 is displayed on the display of the electronic device 100X. Thereby, the user can see information displayed on the electronic device 100X without looking at the screen of the electronic device 100.
  • FIG. 1 the first image displayed on the display 102 of the electronic device 100 is displayed on the display of the electronic device 100X.
  • the first image is not displayed as it is, but is displayed on the display of the electronic device 100X so as to have an optimum size. Moreover, it is preferable to display a second image obtained by performing image processing such as up-conversion or down-conversion on the first image on the electronic device 100X.
  • step S05 information is transmitted from the electronic device 100X to the electronic device 100.
  • the information includes a code indicating that display of the first image is completed.
  • step S06 the electronic device 100 turns off the display 102 based on the received information.
  • the electronic device 100 keeps the touch sensor of the display 102 active.
  • the display 102 of the electronic device 100 functions as input means (touch pad) and the like.
  • step S07 the electronic device 100X detects a gesture motion by the user with the detection unit of the electronic device 100X, and acquires gesture information corresponding to the gesture motion.
  • step S08 the electronic device 100X executes various processes based on the gesture information. For example, image processing can be performed on image information displayed on the display of the electronic device 100X, and the image information after the image processing can be displayed on the display.
  • Step S10 corresponds to, for example, removing the electronic device 100X, turning off the electronic device 100 or the electronic device 100X, or canceling the pairing between the electronic device 100 and the electronic device 100X. .
  • FIGS. 24A, 24B, 24C, and 24C are shown in FIGS. 24A, 24B, 24C, and 24C for the operation method that the user can experience and the image that can be presented to the user by the display system of one embodiment of the present invention. Description will be made with reference to FIG. 24D.
  • FIG. 24A shows the user 130 performing a gesture operation while wearing the glasses-type electronic device 100X. At this time, since the display of the electronic device 100 is turned off, the power consumption of the electronic device 100 can be suppressed. In addition, since the electronic device 100 is worn on the arm of the user 130, the user 130 can operate the display system with both hands free.
  • FIG. 24B shows an example of the image 140 that appears in the field of view of the user 130 in the room shown in FIG. 24A.
  • image information 141 is shown superimposed on an image of the actual indoor scenery such as the floor, walls, and doors.
  • image information 141 is part of an image displayed on the display of electronic device 100 .
  • the user 130 can also operate the electronic device 100 paired with the electronic device 100X while wearing the electronic device 100X.
  • the electronic device 100X recognizes this action as a gesture operation, and the image information is displayed.
  • the shape of 141 is made changeable.
  • the image information 141 is deformed to contract.
  • image information 141 can be enlarged.
  • the image information 141 can also be moved or rotated by following the movements of the left hand 130L and the right hand 130R.
  • the movement of left hand 130L and right hand 130R can use information based on the locus of movement of the left and right arms on which electronic device 100 is worn.
  • FIG. 24C shows a state in which the user 130 is making a gesture action, which is different from that shown in FIG. 24A.
  • Electronic device 100 with the display turned off is worn on the arm of user 130 in the same manner as described above.
  • FIG. 24D shows an image 140 that appears in the field of view of the user 130 in the room shown in FIG. 24C.
  • the image information 141 can be discarded by the user 130 performing an action of grasping the space where the image information 141 is shown with the left hand 130L and the right hand 130R and then performing an action of opening left and right.
  • the image information 141 is displayed so as to be broken left and right. In this manner, the content image displayed within the field of view can be discarded (closed) by the user's 130 gesture operation.
  • the electronic device and the display system of one embodiment of the present invention can be operated with a new operation method.
  • FIG. 25 is a flow chart of a method of operating the display system.
  • step S11 the operation is started. At this time, it is assumed that the electronic device 100 is in an activated state (operable state) and the electronic device 100X is in a power-on state.
  • step S12 the electronic device 100X is attached.
  • the electronic device 100X recognizes that it is attached, and the system starts up.
  • step S12 for example, when the electronic device 100X is in the form of goggles, the image of the front camera may be provided to the user, or the image of other content may be displayed.
  • step S13 pairing between the electronic device 100 and the electronic device 100X is executed.
  • bidirectional data can be exchanged between the electronic device 100 and the electronic device 100X.
  • step S14 the first image displayed on the display 102 of the electronic device 100 is displayed on the display of the electronic device 100X. Thereby, the user can see information displayed on the electronic device 100X without looking at the screen of the electronic device 100.
  • FIG. 1 the first image displayed on the display 102 of the electronic device 100 is displayed on the display of the electronic device 100X.
  • the first image is not displayed as it is, but is displayed on the display of the electronic device 100X so as to have an optimum size. Moreover, it is preferable to display a second image obtained by performing image processing such as up-conversion or down-conversion on the first image on the electronic device 100X.
  • step S15 information is transmitted from the electronic device 100X to the electronic device 100.
  • the information includes a code indicating that display of the first image is completed.
  • step S16 the electronic device 100 turns off the display 102 based on the received information.
  • the electronic device 100 keeps the touch sensor of the display 102 active.
  • the display 102 of the electronic device 100 functions as input means (touch pad) and the like.
  • step S17 the electronic device 100X detects gesture motions by the user by means of a plurality of detection units of the electronic device 100X.
  • Electronic device 100X acquires gesture information corresponding to the gesture motion based on information (also referred to as input data) output from the plurality of detection units.
  • step S18 the electronic device 100X executes various processes based on the gesture information. For example, image processing can be performed on image information displayed on the display of the electronic device 100X, and the image information after the image processing can be displayed on the display.
  • Step S19 corresponds to, for example, removing the electronic device 100X, turning off the electronic device 100 or the electronic device 100X, or canceling the pairing between the electronic device 100 and the electronic device 100X. .
  • an electronic device with a new configuration or a display system with a new configuration can be provided. Further, with the use of the electronic device and the display system of one embodiment of the present invention, a method for operating an electronic device with a new structure or a method for operating a display system with a new structure can be provided.
  • ⁇ Display configuration example> The configuration of the display 72 shown in FIG. 20A will be described with reference to FIGS. 26A, 26B and 27. FIG. Note that the configuration example of the display described below can be applied not only to the display 72 but also to the display 102 .
  • 26A and 26B are schematic perspective views of a display (display device 200) applicable to the display 72 illustrated in FIG. 20A.
  • the display device 200 has substrates 211 and 212 .
  • the display device 200 has a display portion including elements provided between a substrate 211 and a substrate 212 .
  • the display section is an area for displaying an image in the display device 200 .
  • the display portion is a region in which a plurality of pixels 210 including pixel circuits 251 and light emitting devices 261 connected to the pixel circuits 251 are provided.
  • the pixels 210 by arranging the pixels 210 in a matrix of 1920 ⁇ 1080, it is possible to realize a display that can be displayed at a so-called full high-definition (also called “2K resolution”, “2K1K”, or “2K”) resolution.
  • full high-definition also called “2K resolution”, “2K1K”, or “2K”
  • ultra high definition also called “4K resolution”, “4K2K”, or “4K”.
  • the pixels 210 are arranged in a matrix of 7680 ⁇ 4320, it is possible to display at a resolution of so-called Super Hi-Vision (also called “8K resolution”, “8K4K”, or “8K”).
  • a display capable of full-color display with a resolution of 16K or even 32K is possible.
  • the pixel density (definition) in the display device 200 is preferably 1000 ppi or more and 10000 ppi or less. For example, it may be 2000 ppi or more and 6000 ppi or less, or 3000 ppi or more and 5000 ppi or less.
  • the screen ratio (aspect ratio) of the display device 200 is not particularly limited.
  • the display device 200 can support various screen ratios such as 1:1 (square), 4:3, 16:9, and 16:10.
  • a display element may be replaced with “device”.
  • a display element, a light-emitting element, and a liquid crystal element can be interchanged with, for example, a display device, a light-emitting device, and a liquid crystal device.
  • the display device 200 receives various signals and power supply potential from the outside via the terminal section 214, and can perform display.
  • a plurality of layers are provided between the substrate 211 and the substrate 212, and each layer is provided with a transistor for circuit operation or a display element for emitting light.
  • a pixel circuit having a function of controlling light emission of a display element a driver circuit having a function of controlling the pixel circuit, a functional circuit having a function of controlling the driver circuit, and the like are provided.
  • FIG. 26B shows a perspective view schematically showing the structure of each layer provided between the substrate 211 and the substrate 212. As shown in FIG.
  • a layer 220 is provided on the substrate 211 .
  • Layer 220 has drive circuitry 230 and functional circuitry 240 .
  • Layer 220 has transistor 203 with silicon in semiconductor layer 204 with a channel forming region.
  • the substrate 211 is, for example, a silicon substrate.
  • a silicon substrate is preferable because it has higher thermal conductivity than a glass substrate.
  • the transistor 201 can be, for example, a transistor including single crystal silicon in a channel formation region (also referred to as a "c-Si transistor").
  • a transistor including single crystal silicon in a channel formation region also referred to as a "c-Si transistor”
  • the on current of the transistor can be increased. Therefore, the circuit included in the layer 220 can be driven at high speed, which is preferable.
  • the Si transistor can be formed by microfabrication with a channel length of 3 nm to 10 nm, the display device 200 can be provided in which an accelerator such as a CPU, a GPU, an application processor, and the like are provided integrally with the display portion.
  • a transistor including polycrystalline silicon in a channel formation region may be used as the transistor provided in the layer 220.
  • poly-Si transistor low-temperature polysilicon
  • LTPS low-temperature polysilicon
  • a transistor including LTPS in a channel formation region is also referred to as an "LTPS transistor.”
  • the drive circuit 230 has, for example, a gate driver circuit, a source driver circuit, and the like. In addition, an arithmetic circuit, a memory circuit, a power supply circuit, and the like may be provided. Since the gate driver circuit, the source driver circuit, and other circuits can be arranged so as to overlap the display portion, the display of the display device 200 can be improved compared to the case where these circuits and the display portion are arranged side by side. The width of a non-display region (also referred to as a frame) existing on the outer periphery of the display device 200 can be made extremely narrow, and the size of the display device 200 can be reduced.
  • a non-display region also referred to as a frame
  • the functional circuit 240 has, for example, the function of an application processor for controlling each circuit in the display device 200 and generating signals for controlling each circuit.
  • the functional circuit 240 may also have a circuit for correcting image data, such as an accelerator such as a CPU or GPU.
  • the functional circuit 240 also includes an LVDS (Low Voltage Differential Signaling) circuit, a MIPI (Mobile Industry Processor Interface) circuit, and/or a D/A It may have a (Digital to Analog) conversion circuit or the like.
  • the functional circuit 240 may also include a circuit for compressing/decompressing image data and/or a power supply circuit. In other words, the functional circuit 240 can be configured to have a part of the function of the control section 71 as well.
  • a layer 250 is provided on the layer 220 .
  • Layer 250 has pixel circuits 255 that include a plurality of pixel circuits 251 .
  • Layer 250 includes transistor 201 including a metal oxide (also referred to as an oxide semiconductor) in semiconductor layer 202 having a channel formation region. Note that the layer 250 can be stacked over the layer 220 .
  • a Si transistor may be provided in layer 250 .
  • the pixel circuit 251 may include a transistor including single crystal silicon or polycrystal silicon in a channel formation region.
  • LTPS may be used as the polycrystalline silicon.
  • layer 250 can be formed on another substrate and attached to layer 220 .
  • the pixel circuit 251 may be composed of a plurality of types of transistors using different semiconductor materials.
  • the transistors may be provided in different layers for each type of transistor.
  • the pixel circuit 251 includes a Si transistor and an OS transistor
  • the Si transistor and the OS transistor may be overlapped. By overlapping the transistors, the area occupied by the pixel circuit 251 is reduced. Therefore, the definition of the display device 200 can be improved.
  • a structure in which an LTPS transistor and an OS transistor are combined is sometimes called an LTPO.
  • the OS transistor has the characteristic of having a very low off current. Therefore, it is particularly preferable to use an OS transistor as a transistor provided in the pixel circuit because analog data written to the pixel circuit can be held for a long time.
  • a layer 260 is provided on the layer 250 .
  • a substrate 212 is provided over the layer 260 .
  • the substrate 212 is preferably a light-transmitting substrate or a layer made of a light-transmitting material.
  • a layer 260 is provided with a plurality of light emitting devices 261 . Note that the layer 260 can be stacked over the layer 250 .
  • an organic electroluminescence element also referred to as an organic EL element
  • the light emitting device 261 is not limited to this, and an inorganic EL element made of an inorganic material, for example, may be used.
  • the light emitting device 261 may have inorganic compounds such as quantum dots. For example, by using quantum dots in the light-emitting layer, it can function as a light-emitting material.
  • the display device 200 of one embodiment of the present invention can have a structure in which a light-emitting device 261, a pixel circuit 251, a driver circuit 230, and a function circuit 240 are stacked; ratio (effective display area ratio) can be extremely high.
  • the pixel aperture ratio can be 40% or more and less than 100%, preferably 50% or more and 95% or less, and more preferably 60% or more and 95% or less.
  • the pixel circuits 251 can be arranged at an extremely high density, and the definition of pixels can be extremely increased.
  • the display portion of the display device 200 (the region where the pixel circuit 251 and the light-emitting device 261 are stacked) has a resolution of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, still more preferably 6000 ppi or more. Pixels can be arranged with a resolution of 30000 ppi or less.
  • Such a display device 200 has extremely high definition, it can be suitably used for devices for VR such as a head-mounted display, or glasses-type devices for AR. For example, even in the case of a configuration in which the display portion of the display device 200 is viewed through an optical member such as a lens, the display device 200 has an extremely high-definition display portion. A highly immersive display can be performed without being visually recognized.
  • the diagonal size of the display portion is 0.1 inch or more and 5.0 inches or less, preferably 0.5 inch or more and 2.0 inches. Below, more preferably, it can be 1 inch or more and 1.7 inches or less. For example, the diagonal size of the display may be 1.5 inches or near 1.5 inches. By setting the diagonal size of the display portion to 2.0 inches or less, preferably around 1.5 inches, it is possible to perform processing in one exposure process of an exposure device (typically a scanner device). , can improve the productivity of the manufacturing process.
  • an exposure device typically a scanner device
  • the display device 200 can be applied to electronic devices other than wearable electronic devices.
  • the diagonal size of the display may exceed 2.0 inches.
  • the configuration of the transistors used in the pixel circuit 251 may be selected as appropriate according to the diagonal size of the display portion.
  • the diagonal size of the display portion is preferably 0.1 inch or more and 3 inches or less.
  • the diagonal size of the display portion is preferably 0.1 inch or more and 30 inches or less, more preferably 1 inch or more and 30 inches or less.
  • the diagonal size of the display portion is preferably 0.1 inch or more and 50 inches or less, and more preferably 1 inch or more and 50 inches or less. preferable.
  • the diagonal size of the display portion is preferably 0.1 inch or more and 200 inches or less, more preferably 50 inches or more and 100 inches or less.
  • a single-crystal Si transistor is much more difficult to increase in size than the size of a single-crystal Si substrate.
  • the LTPS transistor uses a laser crystallizer in the manufacturing process, it is difficult to cope with an increase in size (typically, a screen size exceeding 30 inches in diagonal size).
  • the OS transistor is free from restrictions on the use of a laser crystallization apparatus or the like in the manufacturing process, or can be manufactured at a relatively low process temperature (typically 450° C. or lower), and thus has a relatively large area. (Typically, it is possible to correspond to a display panel of 50 inches or more and 100 inches or less in diagonal size).
  • LTPO can be applied to the diagonal size of the display area (typically, 1 inch or more and 50 inches or less) in the area between the case where the LTPS transistor is used and the case where the OS transistor is used. Become.
  • the display device 200 shown in FIG. 27 is a block diagram illustrating a plurality of wirings connecting the pixel circuit 251, the driving circuit 230 and the functional circuit 240, bus wirings in the display device 200, and the like.
  • a layer 250 has a plurality of pixel circuits 251 arranged in a matrix.
  • the driver circuit 230 and the functional circuit 240 are arranged on the layer 220 .
  • the drive circuit 230 has a source driver circuit 231, a digital-analog converter circuit 232, a gate driver circuit 233, and a level shifter 234, for example.
  • the functional circuit 240 has, as an example, a storage device 241 , a GPU (AI accelerator) 242 , an EL correction circuit 243 , a timing controller 244 , a CPU 245 , a sensor controller 246 and a power supply circuit 247 .
  • Functional circuit 240 has the function of an application processor.
  • the circuit included in the drive circuit 230 and the circuit included in the function circuit 240 are each electrically connected to the bus line BSL as an example. .
  • the source driver circuit 231 has a function of transmitting image data to the pixel circuit 251 included in the pixel 210 . Therefore, the source driver circuit 231 is electrically connected to the pixel circuit 251 through the wiring SL. Note that a plurality of source driver circuits 231 are preferably provided. By arranging the plurality of source driver circuits 231 for each section of the display portion in which the pixel circuit 251 is provided, it is possible to perform driving with a different driving frequency for each section of the display portion.
  • the digital-to-analog conversion circuit 232 has a function of converting image data digitally processed by a GPU, correction circuit, etc. into analog data.
  • the image data converted into analog data is amplified by an amplifier circuit such as an operational amplifier and transmitted to the pixel circuit 251 via the source driver circuit 231 .
  • the digital-analog conversion circuit 232 may be included in the source driver circuit 231, or the image data may be transmitted in the order of the source driver circuit 231, the digital-analog conversion circuit 232, and the pixel circuit 251.
  • the gate driver circuit 233 has a function of selecting a pixel circuit to which image data is to be sent in the pixel circuit 251 . Therefore, the gate driver circuit 233 is electrically connected to the pixel circuit 251 through the wiring GL. Note that it is preferable that a plurality of gate driver circuits 233 are provided corresponding to the source driver circuits 231 . By arranging the plurality of gate driver circuits 233 for each section of the display section in which the pixel circuit 251 is provided, it is possible to perform driving with a different driving frequency for each section of the display section.
  • the level shifter 234 has a function of converting signals input to the source driver circuit 231, the digital-to-analog conversion circuit 232, the gate driver circuit 233, etc. to appropriate levels.
  • the storage device 241 has a function of storing image data to be displayed on the pixel circuit 251 .
  • the storage device 241 can be configured to store image data as digital data or analog data.
  • the storage device 241 be a non-volatile memory.
  • a NAND memory or the like can be applied as the storage device 241 .
  • the storage device 241 is preferably a volatile memory.
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • the GPU 242 has, for example, a function of performing processing for outputting image data read from the storage device 241 to the pixel circuit 251 .
  • the GPU 242 since the GPU 242 is configured to perform pipeline processing in parallel, image data to be output to the pixel circuit 251 can be processed at high speed.
  • GPU 242 may also function as a decoder for restoring encoded images.
  • the functional circuit 240 may include a plurality of circuits that can improve the display quality of the display device 200 .
  • a correction circuit color toning, dimming
  • the functional circuit 240 may be provided with an EL correction circuit.
  • the functional circuit 240 includes an EL correction circuit 243 as an example.
  • Artificial intelligence may also be used for the image correction described above.
  • the current (or voltage applied to the pixel circuit) is monitored and acquired, the displayed image is acquired by an image sensor, etc., and the current (or voltage) and the image are calculated by artificial intelligence (for example, , an artificial neural network, etc.), and the output result may be used to determine whether or not to correct the image.
  • artificial intelligence for example, , an artificial neural network, etc.
  • artificial intelligence calculations can be applied not only to image correction, but also to up-conversion processing to increase the resolution of image data.
  • the GPU 242 in FIG. 27 illustrates blocks for performing various correction calculations (color unevenness correction 242a, up-conversion 242b, etc.).
  • Algorithms for up-converting image data include the Nearest neighbor method, Bilinear method, Bicubic method, RAISR (Rapid and Accurate Image Super-Resolution) method, ANR (Anchored Neighborhood Regression) method, A+ method, SuperN (SRCN -Resolution (Convolutional Neural Network) method or the like can be selected.
  • the up-conversion process may be configured such that the algorithm used for the up-conversion process is changed for each region determined according to the gaze point. For example, the up-conversion processing of the gaze point and the area near the gaze point is performed with a slow but high-precision algorithm, and the up-conversion processing of areas other than the subject area is performed with a fast but low-accuracy algorithm. Just do it. With this configuration, the time required for up-conversion processing can be shortened. Also, the power consumption required for up-conversion processing can be reduced.
  • up-conversion processing not only up-conversion processing, but also down-conversion processing that lowers the resolution of image data may be performed. If the resolution of the image data is higher than the resolution of the display device 200, part of the image data may not be displayed on the display section. In such a case, the entire image data can be displayed on the display unit by performing down-conversion processing.
  • the timing controller 244 has a function of controlling the drive frequency for displaying images. For example, when displaying a still image on the display device 200, power consumption of the display device 200 can be reduced by lowering the driving frequency by the timing controller 244. FIG.
  • the CPU 245 has a function of performing general-purpose processing such as, for example, operating system execution, data control, various calculations, and program execution.
  • the CPU 245 has a role of issuing commands such as, for example, an image data write operation or read operation in the storage device 241, an image data correction operation, and an operation to a sensor, which will be described later.
  • the CPU 245 may have a function of transmitting a control signal to at least one of the circuits included in the functional circuit 240 .
  • the sensor controller 246 has a function of controlling sensors. Further, in FIG. 27, a wiring SNCL is illustrated as a wiring for electrically connecting to the sensor.
  • the sensor can be, for example, a touch sensor that can be provided in the display unit of the display device 200 .
  • the sensor may be, for example, an illuminance sensor.
  • the power supply circuit 247 has a function of generating a voltage to be supplied to circuits included in the pixel circuit 251, the drive circuit 230, and the function circuit 240.
  • the power supply circuit 247 may have a function of selecting a circuit that supplies voltage.
  • the power supply circuit 247 can reduce power consumption of the entire display device 200 by stopping voltage supply to the CPU 245, the GPU 242, and the like while a still image is being displayed.
  • the display device of one embodiment of the present invention can have a structure in which a display element, a pixel circuit, a driver circuit, and a functional circuit are stacked.
  • a driver circuit and a functional circuit which are peripheral circuits, can be arranged so as to overlap with the pixel circuit, and the width of the frame can be extremely narrowed, so that the display device can be miniaturized.
  • the display device of one embodiment of the present invention has a structure in which circuits are stacked, the wiring that connects the circuits can be shortened; thus, the display device can be lightweight. .
  • the display device of one embodiment of the present invention can have high pixel definition, the display device can have excellent display quality.
  • FIG. 28 is a flowchart for explaining an operation example of an electronic device 100X having a display 72 to which the display device 200 is applicable.
  • the movement of the electronic device 100X is detected by the sensor 75A or, alternatively, the acceleration sensor, and the first information (information on the movement of the housing 81) is obtained (step E11).
  • An image of the user's eye is captured using the sensor 75A or the like to acquire second information (information related to the user's line of sight) (step E12).
  • step E13 drawing processing of 360-degree omnidirectional image data is performed based on the first information
  • step E13 The schematic diagram shown in FIG. 29A illustrates the user 130 positioned at the center of the 360-degree omnidirectional image data 422 .
  • the user can visually recognize an image 424A in a direction 423A displayed on the display device 200 of the electronic device 100X.
  • FIG. 29B shows how the user 130 moves the head from the schematic diagram of FIG. 29A and visually recognizes the image 424B in the direction 423B.
  • the user 130 can recognize the space represented by the 360-degree omnidirectional image data 422 by changing the image 424A to the image 424B according to the movement of the housing of the electronic device 100X.
  • the user 130 moves the housing of the electronic device 100X according to the movement of the head.
  • the image obtained from the 360-degree omnidirectional image data 422 according to the movement of the electronic device 100X can be processed with high drawing processing power, so that the user 130 can recognize the virtual space that is in line with the real world space. .
  • a plurality of areas corresponding to the gaze point G are determined for the area of the display section of the display device based on the second information (step E14). For example, a first area S1 including the gaze point G is determined, and a second area S2 adjacent to the first area S1 is determined. Also, the outside of the second area is defined as a third area S3.
  • step E14 A specific example will be given for step E14.
  • the discriminative visual field is a region in which visual functions such as visual acuity and color discrimination are the best, and refers to a region including a fixation point within about 5° of the center of the visual field.
  • the effective visual field is the area where specific information can be instantly identified only by eye movement, and the area adjacent to the outside of the discriminative visual field within about 30 degrees horizontally and within about 20 degrees vertically of the center of the visual field (gazing point). Point.
  • the stable fixation field is a region where specific information can be identified without difficulty with head movement, and refers to the area adjacent to the outside of the effective visual field within about 90° horizontally and within about 70° vertically of the center of the visual field. .
  • the induced visual field is a region in which the existence of a specific object can be recognized, but the discrimination ability is low, and refers to the area adjacent to the stable fixation field within about 100° horizontally and within about 85° vertically of the center of the visual field.
  • the auxiliary visual field is an area where the ability to discriminate a specific object is extremely low and the presence of a stimulus can be recognized. refers to the area adjacent to the outside of the .
  • the image quality from the discriminative field of view to the effective field of view is important.
  • the image quality of the discriminative field of view is important.
  • FIG. 30A is a schematic diagram showing how the user 130 observes the image 424 displayed on the display unit of the display device 200 of the electronic device 100X from the front (image display surface).
  • the image 424 illustrated in FIG. 30A also corresponds to the display.
  • a gaze point G beyond the line of sight 423 of the user 130 is shown.
  • first area S1 the area including the discriminative visual field on the image 424
  • second area S2 the area including the effective visual field
  • a region including the stable fixation field, the guidance field, and/or the auxiliary field of view is defined as a "third region S3".
  • the boundaries (contours) of the first area S1 and the second area S2 are indicated by curved lines, but the present invention is not limited to this.
  • the boundary (outline) between the first area S1 and the second area S2 may be rectangular or polygonal.
  • the shape may be a combination of a straight line and a curved line.
  • the display unit of the display device 200 may be divided into two areas, the area including the discriminative visual field and the effective visual field as the first area S1, and the other area as the second area S2. In this case, the third region S3 is not formed.
  • FIG. 31A is a top view of an image 424 displayed on the display unit of the display device 200 of the electronic device 100X
  • FIG. 31B is a horizontal view of the image 424 displayed on the display unit of the display device 200 of the electronic device 100X. It is the figure seen from.
  • the horizontal angle of the first region S1 is indicated as “angle ⁇ x1”
  • the horizontal angle of the second region S2 is indicated as “angle ⁇ x2” (see FIG. 31A)
  • the vertical angle of the first region S1 is indicated as "angle ⁇ y1”
  • the vertical angle of the second region S2 is indicated as "angle ⁇ y2" (see FIG. 31B).
  • the area of the first region S1 can be expanded. In this case, part of the effective field of view is included in the first area S1. Further, for example, by setting the angle ⁇ x2 to 45° and the angle ⁇ y2 to 35°, the area of the second region S2 can be increased. In this case, part of the stable fixation field is included in the second region S2.
  • each of the angles ⁇ x1 and ⁇ y1 is preferably 5° or more and less than 20°.
  • the gaze point G also moves. Therefore, the first area S1 and the second area S2 also move.
  • the amount of change in line of sight 423 exceeds a certain amount, it is determined that line of sight 423 is moving. That is, when the amount of change in the point of gaze G exceeds a certain amount, it is determined that the point of gaze G is moving.
  • the amount of change in the line of sight 423 is equal to or less than a certain amount, it is determined that the movement of the line of sight 423 has stopped, and the first area S1 to the third area S3 are determined. That is, when the amount of change in the point of gaze G is equal to or less than a certain amount, it is determined that the point of gaze G has stopped moving, and the first area S1 to the third area S3 are determined.
  • the driving circuit 230 is controlled according to the plurality of areas (first area S1 to third area S3) (step E15).
  • FIG. 32A and 32B show a configuration example of the pixel circuit 251 and a light emitting device 261 connected to the pixel circuit 251.
  • FIG. FIG. 32A is a diagram showing the connection of each element
  • FIG. 32B is a diagram schematically showing the vertical relationship of a layer 220 including a driver circuit, a layer 250 including a plurality of transistors included in a pixel circuit, and a layer 260 including a light emitting device. be.
  • a pixel circuit 251 shown as an example in FIGS. 32A and 32B includes a transistor 452A, a transistor 452B, a transistor 452C, and a capacitor 453.
  • the transistors 452A, 452B, and 452C can be OS transistors.
  • Each of the OS transistors, the transistor 452A, the transistor 452B, and the transistor 452C, preferably has a back gate electrode. can be configured to provide
  • the transistor 452B includes a gate electrode electrically connected to the transistor 452A, a first electrode electrically connected to the light emitting device 261, and a second electrode electrically connected to the wiring ANO.
  • the wiring ANO is wiring for applying a potential for supplying current to the light emitting device 261 .
  • the transistor 452A has a first terminal electrically connected to the gate electrode of the transistor 452B, a second terminal electrically connected to a wiring SL functioning as a source line, and a wiring GL1 functioning as a gate line. and a gate electrode having a function of controlling a conducting state or a non-conducting state based on the potential.
  • the transistor 452C is turned on based on the potentials of the first terminal electrically connected to the wiring V0, the second terminal electrically connected to the light emitting device 261, and the wiring GL2 functioning as a gate line. or a gate electrode having a function of controlling a non-conducting state.
  • the wiring V0 is a wiring for applying a reference potential and a wiring for outputting current flowing through the pixel circuit 251 to the driving circuit 230 or the function circuit 240 .
  • the capacitor 453 includes a conductive film electrically connected to the gate electrode of the transistor 452B and a conductive film electrically connected to the second electrode of the transistor 452C.
  • the light emitting device 261 includes a first electrode electrically connected to the first electrode of the transistor 452B and a second electrode electrically connected to the wiring VCOM.
  • a wiring VCOM is a wiring for applying a potential for supplying a current to the light emitting device 261 .
  • the intensity of light emitted by the light emitting device 261 can be controlled according to the image signal applied to the gate electrode of the transistor 452B. Variation in the gate-source voltage of the transistor 452B can be suppressed by the reference potential of the wiring V0 applied through the transistor 452C.
  • a current value that can be used to set pixel parameters can also be output from the wiring V0.
  • the wiring V0 can function as a monitor line for outputting the current flowing through the transistor 452B or the light-emitting device 261 to the outside.
  • the current output to the wiring V0 is converted into a voltage by a source follower circuit or the like and output to the outside. Alternatively, it can be converted into a digital signal by an AD converter or the like and output to the functional circuit 240 or the like.
  • the light-emitting device described in one embodiment of the present invention refers to a self-luminous display element such as an organic EL element (also referred to as an OLED (Organic Light Emitting Diode)).
  • the light-emitting device electrically connected to the pixel circuit can be a self-luminous light-emitting device such as LED (Light Emitting Diode), micro LED, QLED (Quantum-dot Light Emitting Diode), semiconductor laser, etc. is.
  • the wiring that electrically connects the pixel circuit 251 and the driver circuit 230 can be shortened, so that the wiring resistance of the wiring can be reduced. Therefore, since data can be written at high speed, the display device 200 can be driven at high speed. Accordingly, a sufficient frame period can be ensured even if the number of pixel circuits 251 included in the display device 200 is increased, so that the pixel density of the display device 200 can be increased. Further, by increasing the pixel density of the display device 200, the definition of the image displayed by the display device 200 can be increased. For example, the pixel density of the display device 200 can be 1000 ppi or more, or 5000 ppi or more, or 7000 ppi or more. Therefore, the display device 200 can be a display device for AR or VR, for example, and can be suitably applied to an electronic device, such as an HMD, in which the distance between the display unit and the user is short.
  • an electronic device such as an HMD
  • FIG. 33A and 33B show perspective views of a display device 200A that is a modification of the display device 200.
  • FIG. FIG. 33B is a perspective view for explaining the structure of each layer included in the display device 200A. In order to reduce the repetition of the description, mainly the points different from the display device 200 will be described.
  • a pixel circuit group 255 including a plurality of pixel circuits 251 and a driving circuit 230 are overlapped.
  • the pixel circuit group 255 is divided into a plurality of sections 259 and the driving circuit 230 is divided into a plurality of sections 239 in the region overlapping the display section 213 .
  • a plurality of partitions 239 each have a source driver circuit and a gate driver circuit.
  • FIG. 34A shows a configuration example of the pixel circuit group 255 included in the display device 200A.
  • FIG. 34B shows a configuration example of the drive circuit 230 included in the display device 200A.
  • the partitions 259 and 239 are each arranged in a matrix of m rows and n columns (m and n are integers equal to or greater than 1). In this specification and the like, the partition 259 on the first row and the first column is indicated as partition 259[1,1], and the partition 259 on the mth row and nth column is indicated as partition 259[m,n].
  • partition 239 in the first row and first column is indicated as partition 239[1,1]
  • partition 239 in the mth row and nth column is indicated as partition 239[m,n].
  • 34A and 34B show the case where m is 4 and n is 8. FIG. That is, the pixel circuit group 255 and the driving circuit 230 are each divided into 32 parts.
  • Each of the plurality of partitions 259 has a plurality of pixel circuits 251, a plurality of wirings SL, and a plurality of wirings GL.
  • one of the plurality of pixel circuits 251 is electrically connected to at least one of the plurality of wirings SL and at least one of the plurality of wirings GL.
  • One of the partitions 259 and one of the partitions 239 are overlapped (see FIG. 34C).
  • the section 259[i,j] (i is an integer of 1 or more and m or less and j is an integer of 1 or more and n or less) and the section 239[i,j] are overlapped.
  • the source driver circuit 231 included in the section 239[i, j] is electrically connected to the wiring SL included in the section 259[i, j].
  • the gate driver circuit 233 included in the section 239[i,j] is electrically connected to the wiring GL included in the section 259[i,j].
  • the gate driver circuit 233 included in the section 239[i,j] has a function of controlling the plurality of pixel circuits 251 included in the section 259[i,j].
  • the pixel circuits 251 included in the partitions 259[i,j] By overlapping the partitions 259[i,j] and the partitions 239[i,j], the pixel circuits 251 included in the partitions 259[i,j], the source driver circuits 231 included in the partitions 239[i,j], and the The connection distance (wiring length) with the gate driver circuit 233 can be extremely shortened. As a result, since wiring resistance and parasitic capacitance are reduced, the time required for charging and discharging is shortened, and high-speed driving can be realized. Also, power consumption can be reduced. In addition, miniaturization and weight reduction can be realized.
  • the display device 200A has a configuration in which each section 239 has a source driver circuit 231 and a gate driver circuit 233 . Therefore, it is possible to divide the display unit 213 into each section 259 corresponding to the section 239 and rewrite the image. For example, in the display unit 213, only the image data of the section where the image has changed can be rewritten, and the image data of the section where the image has not changed can be retained, thereby realizing a reduction in power consumption.
  • one of the display sections 213 divided into each section 59 is called a sub-display section 219 .
  • the display device 200A described with reference to FIGS. 33 and 34 shows the case where the display section 213 is divided into 32 sub-display sections 219 (see FIG. 33A).
  • the sub-display portion 219 includes a plurality of pixels 210 shown in FIG. 32 and the like.
  • one sub-display portion 219 includes one of the partitions 259 including a plurality of pixel circuits 251 and a plurality of light emitting devices 261 .
  • one section 239 has a function of controlling a plurality of pixels 210 included in one sub-display section 219 .
  • the display device 200A can arbitrarily set the drive frequency (frame frequency, frame rate, refresh rate, etc.) during image display for each sub-display section 219 by means of the timing controller 244 of the functional circuit 240 .
  • Functional circuit 240 has the function of controlling the operation of each of the plurality of partitions 239 and the plurality of partitions 259 . That is, the functional circuit 240 has a function of controlling the driving frequency and operation timing of each of the plurality of sub-display portions 219 arranged in matrix. In addition, functional circuit 240 has a function of adjusting synchronization between the sub-displays.
  • the display device in the electronic device of one embodiment of the present invention can reduce power consumption by stacking pixel circuits and driver circuits and varying the driving frequency of each sub-display portion 219 according to the movement of the line of sight. can.
  • FIG. 35A shows a display section 213 having sub-display sections 219 of 4 rows and 8 columns. Also, FIG. 35A shows the first area S1 to the third area S3 centering on the gaze point G. As shown in FIG. The display device 200A distributes each of the plurality of sub display portions 219 to either a first section 229A overlapping with the first area S1 or the second area S2 or a second section 229B overlapping with the third area S3. That is, the display device 200A distributes each of the multiple sections 239 to the first section 229A or the second section 229B.
  • the first section 229A overlapping the first area S1 and the second area S2 is the sub-display section 219 including the area overlapping the gaze point G
  • the second section 229B is located outside the first section 229A
  • the function circuit 240 controls the operation of the drive circuits (the source driver circuits 231 and the gate driver circuits 233 ) of each of the plurality of partitions 239 .
  • the second section 229B is a section that overlaps with the third region S3 that includes the above-described stable fixation field, guidance field, and auxiliary field of view, and is a section with low discriminating power for the user. Therefore, even if the number of times of rewriting image data per unit time (hereinafter, also referred to as "the number of times of image rewriting”) is smaller in the second section 229B than in the first section 229A during image display, the user's sense of realism is reduced.
  • the power consumption of the display device can be reduced.
  • lowering the drive frequency also lowers the display quality.
  • the display quality during moving image display is degraded.
  • by setting the driving frequency of the second section 229B lower than the driving frequency of the first section 229A the power consumption of the section with low visibility to the user is reduced, and A decrease in display quality can be suppressed. According to one embodiment of the present invention, it is possible to achieve both maintenance of display quality and reduction of power consumption.
  • the driving frequency of the first section 229A should be 30 Hz or more and 500 Hz or less, preferably 60 Hz or more and 500 Hz or less.
  • the drive frequency of the second section 229B is preferably equal to or lower than the drive frequency of the first section 229A, more preferably 1/2 or less of the drive frequency of the first section 229A, and more preferably 1/5 or less of the drive frequency of the first section 229A. .
  • the third section 229C is set outside the second section 229B (see FIG. 35C), and the drive frequency of the sub display section 219 included in the third section 229C is set to It may be lower than the second section 229B.
  • the drive frequency of the third section 229C is preferably equal to or less than the drive frequency of the second section 229B, more preferably 1/2 or less of the drive frequency of the second section 229B, and more preferably 1/5 or less of the drive frequency of the second section 229B. .
  • Power consumption can be further reduced by significantly reducing the number of times the image is rewritten. Also, rewriting of image data may be stopped as necessary. Power consumption can be further reduced by stopping rewriting of image data.
  • a transistor with an extremely small off current As the transistor forming the pixel circuit 251 , it is preferable to use a transistor with an extremely small off current as the transistor forming the pixel circuit 251 .
  • an OS transistor is suitable for the transistor forming the pixel circuit 251 . Since the OS transistor has extremely low off-state current, image data supplied to the pixel circuit 251 can be retained for a long time. In particular, it is preferable to use an OS transistor for the transistor 452A.
  • an image may be displayed that is significantly different in brightness, contrast, color tone, etc. from the previous image.
  • there is a difference in the timing of image switching between the first section 229A and the section having a drive frequency lower than that of the first section 229A. is greatly different, and the actual display quality may be impaired.
  • the image is rewritten in the sections other than the first section 229A at the same drive frequency as the first section 229A, and then the drive frequencies of the sections other than the first section 229A are changed. should be lowered.
  • the sections other than the first section 229A are also rewritten with the same drive frequency as the first section 229A, and it is determined that the amount of change is within the certain amount. If so, the drive frequency of the sections other than the first section 229A may be reduced. Also, when it is determined that the amount of change in the point of gaze G is small, the driving frequency of the sections other than the first section 229A may be further lowered.
  • the divisions set in the display unit 213 are not limited to the first division 229A, the second division 229B, and the third division 229C. Four or more sections may be set in the display section 213 . By setting a plurality of sections in the display unit 213 and lowering the driving frequency in stages, it is possible to further reduce substantial deterioration in display quality.
  • the above-described up-conversion processing may be performed on the image displayed in the first section 229A.
  • the display quality can be improved.
  • the above-described up-conversion processing may be performed on the images displayed in the sections other than the first section 229A. By displaying the up-converted image in the sections other than the first section 229A, it is possible to further reduce the substantial decrease in display quality when the driving frequency of the sections other than the first section 229A is lowered. .
  • the image displayed in the first section 229A may be upconverted using a high-precision algorithm, and the image displayed in sections other than the first section 229A may be upconverted using a low-precision algorithm. Even in such a case, it is possible to further reduce the substantial deterioration in display quality when the driving frequency of the sections other than the first section 229A is lowered.
  • high-speed rewriting can be realized by rewriting image data for each sub-display unit 219 at the same time in all sub-display units 219 . That is, high-speed rewriting can be realized by rewriting image data for each section 239 at the same time for all sections 239 .
  • the source driver circuit writes image data to all pixels of one row at the same time while the pixels of one row are selected by the gate driver circuit. For example, if the display section 213 is not divided into the sub-display section 219 and the resolution is 4000 ⁇ 2000, the source driver circuit selects 4000 pixels while the gate driver circuit selects one row of pixels. It is necessary to write image data to pixels. When the frame frequency is 120 Hz, the duration of one frame is approximately 8.3 msec. Therefore, the gate driver needs to select 2000 rows in about 8.3 msec, and the time for selecting one row of gate lines, that is, the time for writing image data per pixel is about 4.17 ⁇ sec. That is, the higher the resolution of the display unit and the higher the frame frequency, the more difficult it becomes to secure sufficient time for rewriting image data.
  • the display section 213 is divided into four in the row direction. Therefore, in one sub-display portion 219, the writing time of image data per pixel can be four times longer than when the display portion 213 is not divided. According to one embodiment of the present invention, even when the frame frequency is set to 240 Hz, or even 360 Hz, it is easy to secure time to rewrite image data, so that a display device with high display quality can be realized.
  • the display portion 213 is divided into four in the row direction, the length of the wiring SL electrically connecting the source driver circuit and the pixel circuit is reduced to one fourth. become. Therefore, the resistance value and the parasitic capacitance of the wiring SL are each reduced to 1/4, and the time required for writing (rewriting) image data can be shortened.
  • the display portion 213 is divided into eight in the column direction. become 1. Therefore, the resistance value and the parasitic capacitance of the wiring GL are each reduced to 1/8, signal deterioration and delay are improved, and it becomes easy to ensure the rewrite time of the image data.
  • the display device 200A since it is easy to secure sufficient image data writing time, it is possible to realize high-speed rewriting of the display image. Therefore, a display device with high display quality can be realized. In particular, a display device excellent in displaying moving images can be realized.
  • the display device of this embodiment can be a high-definition display panel.
  • the display device of one embodiment of the present invention is a display unit of an information terminal (wearable device) such as a wristwatch type and a bracelet type, a device for VR such as a head-mounted display, and a glasses type for AR. It can be used for a display unit of a wearable device that can be worn on the head of the device.
  • Display module A perspective view of the display module 980 is shown in FIG. 36A.
  • the display module 980 has a display device 200A and an FPC 990 .
  • the display panel included in the display module 980 is not limited to the display device 200A, and may be any one of display devices 200B to 200F, which will be described later.
  • the display module 980 has substrates 991 and 992 .
  • the display module 980 has a display section 981 .
  • the display unit 981 is an area for displaying images.
  • FIG. 36B shows a perspective view schematically showing the configuration on the substrate 991 side.
  • a circuit portion 982 , a pixel circuit portion 983 on the circuit portion 982 , and a pixel portion 984 on the pixel circuit portion 983 are stacked over the substrate 991 .
  • a terminal portion 985 for connecting to the FPC 990 is provided on a portion of the substrate 991 that does not overlap with the pixel portion 984 .
  • the terminal portion 985 and the circuit portion 982 are electrically connected by a wiring portion 986 composed of a plurality of wirings.
  • the pixel section 984 has a plurality of periodically arranged pixels 984a. An enlarged view of one pixel 984a is shown on the right side of FIG. 36B. Pixel 984a has a light emitting device 410R that emits red light, a light emitting device 410G that emits green light, and a light emitting device 410B that emits blue light.
  • the pixel circuit section 983 has a plurality of pixel circuits 983a arranged periodically.
  • One pixel circuit 983a is a circuit that controls light emission of three light emitting devices included in one pixel 984a.
  • One pixel circuit 983a may be provided with three circuits for controlling light emission of one light-emitting device.
  • the pixel circuit 983a can have at least one selection transistor, one current control transistor (driving transistor), and a capacitor for each light emitting device. At this time, a gate signal is inputted to the gate of the selection transistor, and a source signal is inputted to the source thereof. This realizes an active matrix display panel.
  • the circuit section 982 has a circuit that drives each pixel circuit 983 a of the pixel circuit section 983 .
  • a circuit that drives each pixel circuit 983 a of the pixel circuit section 983 For example, it is preferable to have one or both of a gate line driver circuit and a source line driver circuit.
  • at least one of an arithmetic circuit, a memory circuit, a power supply circuit, and the like may be provided.
  • the transistor provided in the circuit portion 982 may form part of the pixel circuit 983a.
  • the pixel circuit 983a may include a transistor included in the pixel circuit portion 983 and a transistor included in the circuit portion 982 .
  • the FPC 990 functions as wiring for supplying a video signal, power supply potential, etc. to the circuit section 982 from the outside. Also, an IC may be mounted on the FPC 990 .
  • the aperture ratio (effective display area ratio) of the display portion 981 is extremely high. can be higher.
  • the aperture ratio of the display portion 981 can be 40% or more and less than 100%, preferably 50% or more and 95% or less, more preferably 60% or more and 95% or less.
  • the pixels 984a can be arranged at extremely high density, and the definition of the display portion 981 can be extremely high.
  • pixels 984a may be arranged with a resolution of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, and still more preferably 6000 ppi or more, and 20000 ppi or less, or 30000 ppi or less. preferable.
  • a display module 980 Since such a display module 980 has extremely high definition, it can be suitably used for devices for VR such as head-mounted displays, or glasses-type devices for AR. For example, even in the case of a configuration in which the display portion of the display module 980 is viewed through a lens, the display module 980 has an extremely high-definition display portion 981, so pixels cannot be viewed even if the display portion is enlarged with the lens. , a highly immersive display can be performed. Moreover, the display module 980 is not limited to this, and can be suitably used for electronic equipment having a relatively small display portion. For example, it can be suitably used for a display part of a wearable electronic device such as a wristwatch.
  • Display device 200A A display device 200A shown in FIG.
  • the substrate 801 corresponds to the substrate 991 in FIGS. 36A and 36B.
  • a transistor 810 is a transistor having a channel formation region in the substrate 801 .
  • a semiconductor substrate such as a single crystal silicon substrate can be used, for example.
  • Transistor 810 includes a portion of substrate 801 , conductive layer 811 , low-resistance region 812 , insulating layer 813 , and insulating layer 814 .
  • the conductive layer 811 functions as a gate electrode.
  • An insulating layer 813 is located between the substrate 801 and the conductive layer 811 and functions as a gate insulating layer.
  • a low-resistance region 812 is a region in which the substrate 801 is doped with impurities and functions as either a source or a drain.
  • the insulating layer 814 is provided to cover the side surface of the conductive layer 811 and functions as an insulating layer.
  • a device isolation layer 815 is provided between two adjacent transistors 810 so as to be embedded in the substrate 801 .
  • An insulating layer 961 is provided to cover the transistor 810 and a capacitor 840 is provided over the insulating layer 961 .
  • the capacitor 840 has a conductive layer 941, a conductive layer 945, and an insulating layer 943 positioned therebetween.
  • the conductive layer 941 functions as one electrode of the capacitor 840
  • the conductive layer 945 functions as the other electrode of the capacitor 840
  • the insulating layer 943 functions as the dielectric of the capacitor 840 .
  • the conductive layer 941 is provided on the insulating layer 961 and embedded in the insulating layer 954 .
  • Conductive layer 941 is electrically connected to one of the source and drain of transistor 810 by plug 971 embedded in insulating layer 961 .
  • An insulating layer 943 is provided over the conductive layer 941 .
  • the conductive layer 945 is provided in a region overlapping with the conductive layer 941 with the insulating layer 943 provided therebetween.
  • An insulating layer 955a is provided to cover the capacitor 840, an insulating layer 955b is provided over the insulating layer 955a, and an insulating layer 955c is provided over the insulating layer 955b.
  • An inorganic insulating film can be preferably used for each of the insulating layer 955a, the insulating layer 955b, and the insulating layer 955c.
  • a silicon oxide film is preferably used for the insulating layers 955a and 955c
  • a silicon nitride film is preferably used for the insulating layer 955b.
  • the insulating layer 955b can function as an etching protection film.
  • an example in which the insulating layer 955c is partly etched to form a recess is shown; however, the insulating layer 955c does not have to be provided with the recess.
  • a light emitting device 410R, a light emitting device 410G, and a light emitting device 410B are provided on the insulating layer 955c.
  • the light-emitting device is separately manufactured for each light-emitting color, so there is little change in chromaticity between low-luminance light emission and high-luminance light emission.
  • the organic layers 412R, 412G, and 412B are separated from each other, crosstalk between adjacent sub-pixels can be suppressed even in a high-definition display panel. Therefore, a display panel with high definition and high display quality can be realized.
  • An insulating layer 425, a resin layer 426, and a layer 428 are provided in regions between adjacent light emitting devices.
  • the pixel electrode 411R, the pixel electrode 411G, and the pixel electrode 411B of the light-emitting device are composed of the insulating layer 955a, the insulating layer 955b, and the plug 956 embedded in the insulating layer 955c, the conductive layer 941 embedded in the insulating layer 954, and the pixel electrode 411B. , is electrically connected to one of the source or drain of the transistor 810 by a plug 971 embedded in the insulating layer 961 .
  • the height of the upper surface of the insulating layer 955c and the height of the upper surface of the plug 956 match or substantially match.
  • Various conductive materials can be used for the plug.
  • a protective layer 421 is provided on the light emitting devices 410R, 410G, and 410B.
  • a substrate 470 is bonded onto the protective layer 421 with an adhesive layer 471 .
  • a display device 200B shown in FIG. 38 has a structure in which a transistor 810A and a transistor 810B each having a channel formed in a semiconductor substrate are stacked.
  • the description of the same parts as those of the previously described display panel may be omitted.
  • the display device 200B has a structure in which a substrate 801B provided with a transistor 810B, a capacitor 840, and a light-emitting device and a substrate 801A provided with a transistor 810A are bonded together.
  • an insulating layer 845 is provided on the lower surface of the substrate 801B, and an insulating layer 846 is provided on the insulating layer 961 provided on the substrate 801A.
  • the insulating layers 845 and 846 are insulating layers that function as protective layers and can suppress diffusion of impurities into the substrate 801B and the substrate 801A.
  • an inorganic insulating film that can be used for the protective layer 421 or the insulating layer 832 can be used.
  • a plug 843 penetrating through the substrate 801B and the insulating layer 845 is provided on the substrate 801B.
  • the substrate 801B is provided with a conductive layer 842 below the insulating layer 845 .
  • the conductive layer 842 is embedded in the insulating layer 835, and the lower surfaces of the conductive layer 842 and the insulating layer 835 are planarized. Also, the conductive layer 842 is electrically connected to the plug 843 .
  • a conductive layer 841 is provided on an insulating layer 846 on the substrate 801A.
  • the conductive layer 841 is embedded in the insulating layer 836, and top surfaces of the conductive layer 841 and the insulating layer 836 are planarized.
  • the same conductive material is preferably used for the conductive layers 841 and 842 .
  • a metal film containing an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, or a metal nitride film (titanium nitride film, molybdenum nitride film, tungsten nitride film) containing the above elements as components etc. can be used.
  • a Cu—Cu (copper-copper) direct bonding technique (a technique for achieving electrical continuity by connecting Cu (copper) pads) can be applied.
  • a display device 200 ⁇ /b>C shown in FIG. 39 has a configuration in which a conductive layer 841 and a conductive layer 842 are bonded via bumps 847 .
  • the conductive layers 841 and 842 can be electrically connected.
  • the bumps 847 can be formed using a conductive material containing gold (Au), nickel (Ni), indium (In), tin (Sn), or the like, for example. Also, for example, solder may be used as the bumps 847 . Further, an adhesive layer 848 may be provided between the insulating layer 845 and the insulating layer 846 . Further, when the bump 847 is provided, the insulating layer 835 and the insulating layer 836 may be omitted.
  • Display device 200D A display device 200D shown in FIG. 40 is mainly different from the display device 200A in that the configuration of transistors is different.
  • the transistor 820 is a transistor (OS transistor) in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer in which a channel is formed.
  • OS transistor a transistor in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer in which a channel is formed.
  • a transistor 820 includes a semiconductor layer 821 , an insulating layer 823 , a conductive layer 824 , a pair of conductive layers 825 , an insulating layer 826 , and a conductive layer 827 .
  • the substrate 831 corresponds to the substrate 991 in FIGS. 36A and 36B.
  • An insulating layer 832 is provided on the substrate 831 .
  • the insulating layer 832 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing from the substrate 831 into the transistor 820 and oxygen from the semiconductor layer 821 toward the insulating layer 832 side.
  • a film into which hydrogen or oxygen is less likely to diffuse than a silicon oxide film such as an aluminum oxide film, a hafnium oxide film, or a silicon nitride film, can be used.
  • a conductive layer 827 is provided over the insulating layer 832 and an insulating layer 826 is provided to cover the conductive layer 827 .
  • the conductive layer 827 functions as a first gate electrode of the transistor 820, and part of the insulating layer 826 functions as a first gate insulating layer.
  • An oxide insulating film such as a silicon oxide film is preferably used for at least a portion of the insulating layer 826 that is in contact with the semiconductor layer 821 .
  • the top surface of the insulating layer 826 is preferably planarized.
  • the semiconductor layer 821 is provided on the insulating layer 826 .
  • the semiconductor layer 821 preferably includes a metal oxide (also referred to as an oxide semiconductor) film exhibiting semiconductor characteristics.
  • a pair of conductive layers 825 is provided over and in contact with the semiconductor layer 821 and functions as a source electrode and a drain electrode.
  • An insulating layer 828 is provided to cover the top and side surfaces of the pair of conductive layers 825, the side surface of the semiconductor layer 821, and the like, and an insulating layer 964 is provided over the insulating layer 828.
  • the insulating layer 828 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the semiconductor layer 821 from the insulating layer 964 or the like and oxygen from leaving the semiconductor layer 821 .
  • an insulating film similar to the insulating layer 832 can be used as the insulating layer 832.
  • An opening reaching the semiconductor layer 821 is provided in the insulating layer 828 and the insulating layer 964 .
  • An insulating layer 823 in contact with the top surface of the semiconductor layer 821 and a conductive layer 824 are embedded in the opening.
  • the conductive layer 824 functions as a second gate electrode, and the insulating layer 823 functions as a second gate insulating layer.
  • the top surface of the conductive layer 824, the top surface of the insulating layer 823, and the top surface of the insulating layer 964 are planarized so that their heights are the same or substantially the same, and an insulating layer 829 and an insulating layer 965 are provided to cover them. ing.
  • the insulating layers 964 and 965 function as interlayer insulating layers.
  • the insulating layer 829 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the transistor 820 from the insulating layer 965 or the like.
  • As the insulating layer 829 an insulating film similar to the insulating layers 828 and 832 can be used.
  • a plug 974 electrically connected to one of the pair of conductive layers 825 is provided so as to be embedded in the insulating layers 965 , 829 and 964 .
  • the plug 974 includes a conductive layer 974a covering the side surfaces of the openings of the insulating layers 965, the insulating layers 829, the insulating layers 964, and the insulating layer 828 and part of the top surface of the conductive layer 825, and the conductive layer 974a. It is preferable to have a conductive layer 974b in contact with the top surface. At this time, a conductive material into which hydrogen and oxygen are difficult to diffuse is preferably used for the conductive layer 974a.
  • a display device 200E illustrated in FIG. 41 has a structure in which a transistor 820A and a transistor 820B each including an oxide semiconductor as a semiconductor in which a channel is formed are stacked.
  • the display device 200D can be used for the structure of the transistor 820A, the transistor 820B, and their peripherals.
  • transistors each including an oxide semiconductor are stacked here, the structure is not limited to this.
  • a structure in which three or more transistors are stacked may be employed.
  • a display device 200F illustrated in FIG. 42 has a structure in which a transistor 810 in which a channel is formed over a substrate 801 and a transistor 820 including a metal oxide in a semiconductor layer in which the channel is formed are stacked.
  • An insulating layer 961 is provided to cover the transistor 810 , and a conductive layer 951 is provided over the insulating layer 961 .
  • An insulating layer 962 is provided to cover the conductive layer 951 , and the conductive layer 952 is provided over the insulating layer 962 .
  • the conductive layers 951 and 952 each function as wirings.
  • An insulating layer 963 and an insulating layer 832 are provided to cover the conductive layer 952 , and the transistor 820 is provided over the insulating layer 832 .
  • An insulating layer 965 is provided to cover the transistor 820 and a capacitor 840 is provided over the insulating layer 965 . Capacitor 840 and transistor 820 are electrically connected by plug 974 .
  • the transistor 820 can be used as a transistor forming a pixel circuit. Further, the transistor 810 can be used as a transistor forming a pixel circuit or a transistor forming a driver circuit (a gate line driver circuit or a source line driver circuit) for driving the pixel circuit. Further, the transistors 810 and 820 can be used as transistors included in various circuits such as an arithmetic circuit and a memory circuit.
  • a display device 200G illustrated in FIG. 43 has a structure in which a transistor 820A including a metal oxide in a semiconductor layer in which a channel is formed and a transistor 820B including a metal oxide in a semiconductor layer in which a channel is formed are stacked. .
  • transistors having different compositions of constituent elements in the metal oxide of the semiconductor layer can be used. Therefore, a display device using OS transistors with different transistor characteristics can be provided.
  • the upper layer transistor 820A can be used as a pixel circuit transistor that drives a light emitting device
  • the lower layer transistor 820B can be used as a driver circuit transistor.
  • the circuits provided directly under the light-emitting devices can be arranged with higher density, so that the size of the display panel can be reduced compared to the case where the driver circuits are provided around the display region. becomes possible.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • Electronic devices using the semiconductor device include display devices such as televisions and monitors, lighting devices, desktop or notebook personal computers, word processors, and recording media such as DVDs (Digital Versatile Discs).
  • DVDs Digital Vers
  • mobile objects that are propelled by electric motors using power from power storage devices are also included in the category of electronic devices.
  • the mobile body include an electric vehicle (EV), a hybrid vehicle (HEV) having both an internal combustion engine and an electric motor, a plug-in hybrid vehicle (PHEV), a tracked vehicle in which the tires and wheels are changed to endless tracks, and an electrically assisted vehicle.
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • a tracked vehicle in which the tires and wheels are changed to endless tracks and an electrically assisted vehicle.
  • motorized bicycles including bicycles, motorcycles, electric wheelchairs, golf carts, small or large ships, submarines, helicopters, aircraft, rockets, artificial satellites, space probes, planetary probes, and spacecraft.
  • Electronic devices are sensors (force, displacement, position, velocity, acceleration, angular velocity, number of revolutions, distance, light, liquid, magnetism, temperature, chemicals, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared)).
  • the electronic device can have various functions. For example, functions to display various information (still images, moving images, text images, etc.) on the display, touch panel functions, functions to display calendars, dates or times, functions to execute various software (programs), wireless communication means, a function of reading a program or data recorded on a recording medium, or the like.
  • FIG. 44A shows an example of a band-type information terminal.
  • An information terminal 750 includes a housing 751, a semiconductor device 101, a sensor 752, and the like.
  • the information terminal 750 may have a secondary battery, a display device, and the like inside.
  • the semiconductor device according to one embodiment of the present invention for the information terminal 750, the information terminal 750 can function as an IoT device that is resistant to shock, small in size, and consumes low power.
  • FIG. 44B is a diagram showing an example of usage of the information terminal 750 shown in FIG. 44A.
  • the information terminal 750 can be used by being wrapped around the user's head or neck.
  • a sensor (not shown) is provided inside the band-type information terminal 750 and information obtained from the sensor is processed by a semiconductor device.
  • a semiconductor device By adopting such a configuration, it is possible to improve the convenience of the IoT device, which is resistant to impact and excels in miniaturization and low power consumption.
  • FIG. 44C is a diagram showing another example of usage of the information terminal 750 shown in FIG. 44A.
  • the information terminal 750 can be used by being wrapped around the user's arm.
  • a sensor (not shown) is provided inside the band-type information terminal 750, information obtained from the sensor is processed by a semiconductor device, and an antenna 753 or the like provided in the band-type information terminal 750 is used to transmit external information.
  • FIGS. 44D and 44E illustrate a dog or cat with an information terminal 750 attached.
  • Collar 754 and lead 755 shown in FIGS. 44D and 44E have sensors, semiconductor device 101, etc., similar to information terminal 750 described in FIGS. 44B and 44C.
  • the content (may be part of the content) described in one embodiment may be another content (may be part of the content) described in the embodiment, and/or one or more
  • the contents described in another embodiment (or part of the contents) can be applied, combined, or replaced.
  • electrode or “wiring” in this specification and the like does not functionally limit these components.
  • an “electrode” may be used as part of a “wiring” and vice versa.
  • electrode or “wiring” includes the case where a plurality of “electrodes” or “wiring” are integrally formed.
  • a voltage is a potential difference from a reference potential.
  • the reference potential is a ground voltage
  • the voltage can be translated into a potential.
  • Ground potential does not necessarily mean 0V. Note that the potential is relative, and the potential applied to the wiring or the like may be changed depending on the reference potential.
  • a switch is one that has the function of being in a conducting state (on state) or a non-conducting state (off state) and controlling whether or not to allow current to flow.
  • a switch has a function of selecting and switching a path through which current flows.
  • the channel length refers to, for example, a region in which a semiconductor (or a portion of the semiconductor in which current flows when the transistor is on) overlaps with a gate in a top view of a transistor, or a channel is formed.
  • the channel width refers to, for example, a region where a semiconductor (or a portion of the semiconductor where current flows when the transistor is on) overlaps with a gate electrode, or a region where a channel is formed. is the length of the part where the drain and the drain face each other.
  • a and B are connected includes not only direct connection between A and B, but also electrical connection.
  • a and B are electrically connected means that when there is an object having some kind of electrical action between A and B, an electric signal can be exchanged between A and B. What to say.
  • 10M backup circuit
  • 12: L1 cache memory device 13: L2 cache memory device
  • 14 bus interface unit
  • 20M data holding circuit
  • 20: accelerator 21: memory circuit
  • 22 arithmetic circuit
  • 30M memory cell
  • 30: memory device 31: memory cell array
  • 45 USB Interface Circuit
  • 51: Interrupt Control Circuit 52: Interface Circuit
  • 54 DAC Interface Circuit
  • 60 Power Supply Circuit
  • 100 electronic device, 101: semiconductor device, 102: display, 103: main memory
  • 104 battery
  • 105: sensor 111: housing
  • 112 operation unit
  • 113 band

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Physiology (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

新規な構成の電子装置を提供すること。 半導体装置を有する電子装置において、半導体装置は、CPUと、アクセラレータと、メモリ装置と、を有する。CPUは、スキャンフリップフロップ回路と、スキャンフリップフロップ回路に電気的に接続されたバックアップ回路と、を有する。バックアップ回路は、第1のトランジスタを有する。アクセラレータは、演算回路と、演算回路に電気的に接続されたデータ保持回路を有する。データ保持回路は、第2のトランジスタを有する。メモリ装置は、第3のトランジスタを有するメモリセルを有する。第1のトランジスタ乃至第3のトランジスタは、チャネル形成領域に金属酸化物を有する半導体層を有する。

Description

電子装置および表示システム
 本明細書は、電子装置、当該電子装置を有する表示システム、および当該電子装置が有する半導体装置等について説明する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。
 モバイル通信などを行うウェアラブル型の電子装置が普及している。例えば、腕装着型の電子装置では、ディスプレイの他、各種センサおよび各種センサを制御するためのCPU、およびデータを記憶するためのメモリ等を有する構成があり得る(例えば、特許文献1を参照)。
 このような電子装置では、大量のデータを高速に処理するため、半導体装置の性能向上に関する技術開発が活発である。高性能化を実現する技術としては、例えば、GPU(Graphics Processing Unit)等のアクセラレータとCPUとを密結合させた、所謂SoC(System on Chip)化がある。
国際公開第2016/036472号
 SoC化によって高性能化した半導体装置を有する電子装置では、発熱、及び消費電力の増加が問題となってくる。半導体装置の消費電力増加の要因としては、CPUにおけるデータ転送回数が支配的である。そのため、半導体装置の消費電力または発熱を抑制するためには、データ転送回数の増加を抑制することが重要となる。または、半導体装置の消費電力または発熱を抑制するためには、CPUとメモリとの間のデータ転送回数を削減することが重要となる。しかしながら、半導体装置の高性能化は、半導体装置の低消費電力化または発熱の抑制の要求とトレードオフの関係になる。つまり、半導体装置の高性能化と、半導体装置の低消費電力化または発熱の抑制と、の両立が難しかった。
 本発明の一態様は、新規な電子装置および表示システム等を提供することを課題の一つとする。または、本発明の一態様は、SoC化によって高性能化した半導体装置を有する電子装置において、発熱、及び消費電力の増加を抑制できる、新規な構成の電子装置および表示システム等を提供することを課題の一とする。または、本発明の一態様は、CPUにおけるデータ転送回数を抑制することができる、新規な構成の電子装置等および表示システムを提供することを課題の一とする。または、本発明の一態様は、半導体装置の高性能化と、半導体装置の低消費電力化または発熱の抑制と、の両立を図ることのできる、新規な構成の電子装置および表示システム等を提供することを課題の一とする。または、本発明の一態様は、利便性に優れた新規な構成の電子装置および表示システム等を提供することを課題の一とする。
 複数の課題の記載は、互いの課題の存在を妨げるものではない。本発明の一形態は、例示した全ての課題を解決する必要はない。また、列記した以外の課題が、本明細書の記載から、自ずと明らかとなり、このような課題も、本発明の一形態の課題となり得る。
 本発明の一態様は、半導体装置を有する電子装置において、半導体装置は、CPUと、アクセラレータと、メモリ装置と、を有し、CPUは、スキャンフリップフロップ回路と、スキャンフリップフロップ回路に電気的に接続されたバックアップ回路と、を有し、バックアップ回路は、第1のトランジスタを有し、アクセラレータは、演算回路と、演算回路に電気的に接続されたデータ保持回路を有し、データ保持回路は、第2のトランジスタを有し、メモリ装置は、第3のトランジスタを有するメモリセルを有し、第1のトランジスタ乃至第3のトランジスタは、チャネル形成領域に金属酸化物を有する半導体層を有する、電子装置である。
 本発明の一態様は、半導体装置を有する電子装置において、半導体装置は、CPUと、アクセラレータと、メモリ装置と、を有し、CPUは、スキャンフリップフロップ回路と、スキャンフリップフロップ回路に電気的に接続されたバックアップ回路と、を有し、バックアップ回路は、第1のトランジスタを有し、バックアップ回路が設けられる層は、スキャンフリップフロップ回路が設けられる層と積層して設けられ、アクセラレータは、演算回路と、演算回路に電気的に接続されたデータ保持回路を有し、データ保持回路は、第2のトランジスタを有し、データ保持回路が設けられる層は、演算回路が設けられる層と積層して設けられ、メモリ装置は、第3のトランジスタを有するメモリセルを有し、第1のトランジスタ乃至第3のトランジスタは、チャネル形成領域に金属酸化物を有する半導体層を有する、電子装置である。
 本発明の一態様において、バックアップ回路は、CPUの非動作時において、スキャンフリップフロップ回路に保持されたデータを電源電圧の供給が停止した状態で保持する機能を有する、電子装置が好ましい。
 本発明の一態様において、データ保持回路は、アクセラレータの非動作時において、データ保持回路に保持されたデータを電源電圧の供給が停止した状態で保持する機能を有する、電子装置が好ましい。
 本発明の一態様において、スキャンフリップフロップ回路および演算回路は、チャネル形成領域にシリコンを有する半導体層を有するトランジスタを有する、電子装置が好ましい。
 本発明の一態様において、メモリ装置は、メモリセルを制御する周辺回路を有し、周辺回路が設けられる層は、メモリセルが設けられる層と積層して設けられる、電子装置が好ましい。
 本発明の一態様において、演算回路は、積和演算を行う回路である、半導体装置が好ましい。
 本発明の一態様において、金属酸化物は、Inと、Gaと、Znと、を含む、半導体装置が好ましい。
 本発明の一態様は、第1の電子装置と、第2の電子装置と、を有し、第1の電子装置は、第1の表示部と、第1の無線通信手段と、第1のセンサと、を有し、第2の電子装置は、第2の表示部と、第2の無線通信手段と、第2のセンサと、を有し、第1の無線通信手段と、第2の無線通信手段と、を連動させ第1の電子装置と、第2の電子装置とを、接続し、第1のセンサ、及び第2のセンサに入力されるいずれか一または複数の情報をもとに、第2の表示部に拡張現実、仮想現実、代替現実、または複合現実のいずれか一または複数の表示を行う機能と、第1のセンサに入力された情報をもとに、第2の表示部の画像を操作する機能と、を有する、表示システムである。
 本発明の一態様において、上記第1の電子装置は、本発明の一態様の電子装置である、表示システムが好ましい。
 なおその他の本発明の一態様については、以下で述べる実施の形態における説明、および図面に記載されている。
 本発明の一態様は、新規な電子装置および表示システム等を提供することができる。または、本発明の一態様は、SoC化によって高性能化した半導体装置を有する電子装置において、発熱、及び消費電力の増加を抑制できる、新規な構成の電子装置および表示システム等を提供することができる。または、本発明の一態様は、CPUにおけるデータ転送回数を抑制することができる、新規な構成の電子装置および表示システム等を提供することができる。または、本発明の一態様は、半導体装置の高性能化と、半導体装置の低消費電力化または発熱の抑制と、の両立を図ることのできる、新規な構成の電子装置および表示システム等を提供することができる。または、本発明の一態様は、利便性に優れた新規な構成の電子装置および表示システム等を提供することができる。
 複数の効果の記載は、他の効果の存在を妨げるものではない。また、本発明の一形態は、必ずしも、例示した効果の全てを有する必要はない。また、本発明の一形態について、上記以外の課題、効果、および新規な特徴については、本明細書の記載および図面から自ずと明らかになるものである。
図1Aおよび図1Bは、電子装置の構成例を説明する図である。
図2Aおよび図2Bは、電子装置の構成例を説明する図である。
図3は、電子装置の構成例を説明する図である。
図4Aおよび図4Bは、電子装置の構成例を説明する図である。
図5は、電子装置の構成例を説明する図である。
図6Aおよび図6Bは、電子装置の構成例を説明する図である。
図7Aおよび図7Bは、電子装置の構成例を説明する図である。
図8Aおよび図8Bは、電子装置の構成例を説明する図である。
図9Aおよび図9Bは、電子装置の構成例を説明する図である。
図10Aおよび図10Bは、電子装置の構成例を説明する図である。
図11A乃至図11Fは、電子装置の構成例を示す図である。
図12は、電子装置の構成例を示す図である。
図13Aおよび図13Bは、電子装置の構成例を説明する図である。
図14A乃至図14Cは、電子装置の構成例を説明する図である。
図15Aおよび図15Bは、電子装置の構成例を説明する図である。
図16は、電子装置の構成例を説明する図である。
図17A乃至図17Cは、電子装置の構成例を説明する図である。
図18は、電子装置の構成例を説明する図である。
図19Aおよび図19Bは、電子装置の構成例を説明する図である。
図20A乃至図20Bは、表示装置、及び表示システムの構成例を示す図である。
図21A、及び図21Bは、表示装置、及び表示システムの構成例を示す図である。
図22A乃至図22Dは、表示装置、及び表示システムの画像の一例を示す図である。
図23は、表示システムの動作方法の一例を示す図である。
図24A乃至図24Dは、表示装置、及び表示システムの画像の一例を示す図である。
図25は、表示システムの動作方法の一例を示す図である。
図26Aおよび図26Bは、表示装置の構成例を説明する図である。
図27は、表示装置の構成例を説明する図である。
図28は、電子装置の動作例を説明する図である。
図29Aおよび図29Bは、電子装置の構成例を説明する模式図である。
図30Aおよび図30Bは、電子装置の構成例を説明する模式図である。
図31Aおよび図31Bは、電子装置の構成例を説明する模式図である。
図32Aおよび図32Bは、表示装置の構成例を説明する図である。
図33Aおよび図33Bは、表示装置の構成例を説明する図である。
図34Aおよび図34Cは、表示装置の構成例を説明する図である。
図35Aおよび図35Cは、表示装置の構成例を説明する図である。
図36A及び図36Bは、表示装置の構成例を示す図である。
図37は、表示装置の構成例を示す図である。
図38は、表示装置の構成例を示す図である。
図39は、表示装置の構成例を示す図である。
図40は、表示装置の構成例を示す図である。
図41は、表示装置の構成例を示す図である。
図42は、表示装置の構成例を示す図である。
図43は、表示装置の構成例を示す図である。
図44A乃至図44Eは、電子装置の構成例を説明する図である。
 以下に、本発明の実施の形態を説明する。ただし、本発明の一形態は、以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明の一形態は、以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 なお本明細書等において、「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものである。従って、構成要素の数を限定するものではない。また、構成要素の順序を限定するものではない。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素が、他の実施の形態、あるいは特許請求の範囲において「第2」に言及された構成要素とすることもありうる。また例えば、本明細書等の実施の形態の一において「第1」に言及された構成要素を、他の実施の形態、あるいは特許請求の範囲において省略することもありうる。
 図面において、同一の要素または同様な機能を有する要素、同一の材質の要素、あるいは同時に形成される要素等には同一の符号を付す場合があり、その繰り返しの説明は省略する場合がある。
 本明細書において、例えば、電源電位VDDを、電位VDD、VDD等と省略して記載する場合がある。これは、他の構成要素(例えば、信号、電圧、回路、素子、電極、配線等)についても同様である。
 また、複数の要素に同じ符号を用いる場合、特に、それらを区別する必要があるときには、符号に“_1”、“_2”、“[n]”、“[m,n]”等の識別用の符号を付記して記載する場合がある。例えば、2番目の配線GLを配線GL[2]と記載する。
(実施の形態1)
 本発明の一態様である電子装置の構成例について、図1A乃至図11Fを参照して説明する。
<電子装置の構成例>
 図1Aは、本発明の一態様の電子装置を説明するためのブロック図である。図1Aに示す電子装置100は、半導体装置101の他、一例としてディスプレイ102、メインメモリ103、バッテリー104、およびセンサ105を図示している。また図1Bは、図1Aに示す電子装置100のブロック図に対応する電子装置100の斜視図の一例を示す。図1Bに示す電子装置は、腕時計型の電子装置であり、操作部112およびバンド113が取り付けられた筐体111内に、半導体装置101の他、ディスプレイ102、メインメモリ103、バッテリー104、およびセンサ105が納められた構成を図示している。なお、図1Bに示す電子装置100は、いわゆるスマートウォッチとしての機能を有する。
 半導体装置101は、CPU10、アクセラレータ20、メモリ装置30、DMAC(Direct Memory Access Controller)41、パワーマネジメントユニット(PMU)42、電源回路60、メモリコントローラ43、DDR SDRAM(Double Data Rate Synchronous Dynamic Random Access Memory)コントローラ44、USB(Universal Serial Bus)インターフェース回路45、ディスプレイインターフェース回路46、ブリッジ回路50、割り込み制御回路51、インターフェース回路52、バッテリー制御回路53、およびADC(Analog−to−digital converter)/DAC(Digital−to−analog converter)インターフェース回路54を有する。なお、図1Aには図示していないが、半導体装置101に、外部との通信機能を有するモジュール(通信モジュールともいう)を有していてもよい。当該通信モジュールには、例えば高周波回路(RF回路)を設け、RF信号の送受信を行えばよい。高周波回路は、各国法制により定められた周波数帯域の電磁信号と電気信号とを相互に変換し、当該電磁信号を用いて無線で他の通信機器との間で通信を行うための回路である。実用的な周波数帯域として数10kHz乃至数10GHzが一般に用いられている。アンテナと接続される高周波回路には、複数の周波数帯域に対応した高周波回路部を有し、高周波回路部は、増幅器(アンプ)、ミキサ、フィルタ、DSP、RFトランシーバ等を有する構成とすることができる。無線通信を行う場合、通信プロトコル又は通信技術として、LTE(Long Term Evolution)(登録商標)、第4世代移動通信システムに対応したLTE−Advanced、第5世代移動通信システム(5G)、または第6世代移動通信システム(6G)に対応した規格等の、3GPP(Third Generation Partnership Project)(登録商標)により定められた通信規格、またはWi−Fi(登録商標)、Bluetooth(登録商標)等のIEEE(Institute of Electrical and Electronics Engineers)(登録商標)により定められた通信規格など用いることができる。
 なお半導体装置101は、別の回路、例えばセキュリティー回路などを有していてもよい。セキュリティー回路は、半導体装置101と外部の回路との間で暗号化して信号を送受信するなど、信号の秘匿性を高めるための回路である。
 CPU10は、一例として、CPUコア11、L1キャッシュメモリ装置12、L2キャッシュメモリ装置13、およびバスインターフェース部14を有する。L1キャッシュメモリ装置12は、命令キャッシュと呼ぶ場合がある。L2キャッシュメモリ装置13は、データキャッシュという場合がある。
 CPUコア11は、複数のCPUコアを有する。CPUコアは、スキャンフリップフロップ回路に電気的に接続されたバックアップ回路10Mを有する。L1キャッシュメモリ装置12は、CPUコア11で実行する命令を一時的に記憶する機能を有する。L2キャッシュメモリ装置13は、CPUコア11で処理するデータまたは処理によって得られたデータを一時的に記憶する機能を有する。バスインターフェース部14は、CPU10と、半導体装置101内の他の回路とを接続するためのバスと、データ、アドレス等の信号を送受信することができる回路構成であればよい。
 なおCPU10におけるスキャンフリップフロップ回路は、チャネル形成領域にシリコンを有する半導体層を有するトランジスタ(Siトランジスタ)を有する回路、すなわちSi CMOSで構成される。一方、バックアップ回路10Mは、チャネル形成領域に金属酸化物を有する半導体層を有するトランジスタ(OSトランジスタ)を有する構成とする。OSトランジスタを有するバックアップ回路10Mは、OSトランジスタをオフ状態とすることで、長時間の電荷の保持を行う機能を有するOSメモリとして機能させることができる。
 金属酸化物のバンドギャップは2.5eV以上あるため、OSトランジスタは極小のオフ電流をもつ。一例として、ソースとドレイン間の電圧が3.5V、室温(25℃)下において、チャネル幅1μm当たりのオフ電流を1×10−20A未満、1×10−22A未満、あるいは1×10−24A未満とすることができる。すなわち、ドレイン電流のオン/オフ電流比を20桁以上150桁以下とすることができる。そのため、OSメモリは、OSトランジスタを介して保持ノードからリークする電荷量が極めて少ない。従って、OSメモリは不揮発性メモリ回路として機能できるため、CPU10のパワーゲーティングが可能となる。
 高密度で集積化された半導体装置は、回路の駆動による熱が発生する場合がある。この発熱により、トランジスタの温度が上がることで、当該トランジスタの特性が変化して、電界効果移動度の変化または動作周波数の低下などが起こることがある。OSトランジスタは、Siトランジスタよりも耐熱性が高いため、温度変化による電界効果移動度の変化が起こりにくく、また動作周波数の低下も起こりにくい。さらに、OSトランジスタは、温度が高くなっても、ドレイン電流がゲート−ソース間電圧に対して指数関数的に増大する特性を維持しやすい。そのため、OSトランジスタを用いることにより、高い温度環境下での安定した動作を行うことができる。
 OSトランジスタに適用される金属酸化物としては、Zn酸化物、Zn−Sn酸化物、Ga−Sn酸化物、In−Ga酸化物、In−Zn酸化物、In−M−Zn酸化物(Mは、Ti、Ga、Y、Zr、La、Ce、Nd、SnまたはHf)などがある。特にMとしてGaを用いる金属酸化物をOSトランジスタに採用する場合、元素の比率を調整することで電界効果移動度等の電気特性に優れたトランジスタとすることができるため、好ましい。また、インジウムおよび亜鉛を含む酸化物に、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
 OSトランジスタの信頼性、電気特性の向上のため、半導体層に適用される金属酸化物は、CAAC−OS、CAC−OS、nc−OSなどの結晶部を有する金属酸化物であることが好ましい。CAAC−OSとは、c−axis−aligned crystalline oxide semiconductorの略称である。CAC−OSとは、Cloud−Aligned Composite oxide semiconductorの略称である。nc−OSとは、nanocrystalline oxide semiconductorの略称である。
 CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域との間で格子配列の向きが変化している箇所を指す。
 CAC−OSは、キャリアとなる電子(または正孔)を流す機能と、キャリアとなる電子を流さない機能とを有する。電子を流す機能と、電子を流さない機能とを分離させることで、双方の機能を最大限に高めることができる。つまり、CAC−OSをOSトランジスタのチャネル形成領域に用いることで、高いオン電流と、極めて低いオフ電流との双方を実現できる。
 金属酸化物は、バンドギャップが大きく、電子が励起されにくいこと、ホールの有効質量が大きいことなどから、OSトランジスタは、一般的なSiトランジスタと比較して、アバランシェ崩壊等が生じにくい場合がある。従って、例えばアバランシェ崩壊に起因するホットキャリア劣化等を抑制できる。ホットキャリア劣化を抑制できることで、高いドレイン電圧でOSトランジスタを駆動することができる。
 OSトランジスタは、電子を多数キャリアとする蓄積型トランジスタである。そのため、pn接合を有する反転型トランジスタ(代表的には、Siトランジスタ)と比較して短チャネル効果の一つであるDIBL(Drain−Induced Barrier Lowering)の影響が小さい。つまり、OSトランジスタは、Siトランジスタよりも短チャネル効果に対する高い耐性を有する。
 OSトランジスタは、短チャネル効果に対する耐性が高いために、OSトランジスタの信頼性を劣化させずに、チャネル長を縮小できるので、OSトランジスタを用いることで回路の集積度を高めることができる。チャネル長が微細化するのに伴いドレイン電界が強まるが、上述したように、OSトランジスタはSiトランジスタよりもアバランシェ崩壊が起きにくい。
 また、OSトランジスタは、短チャネル効果に対する耐性が高いために、Siトランジスタよりもゲート絶縁膜を厚くすることが可能となる。例えば、チャネル長及びチャネル幅が50nm以下の微細なトランジスタにおいても、10nm程度の厚いゲート絶縁膜を設けることが可能な場合がある。ゲート絶縁膜を厚くすることで、寄生容量を低減することができるので、回路の動作速度を向上できる。またゲート絶縁膜を厚くすることで、ゲート絶縁膜を介したリーク電流が低減されるため、静的消費電流の低減につながる。
 以上より、CPU10は、OSメモリであるバックアップ回路10Mを有することで電源電圧の供給が停止してもデータを保持できる。そのため、CPU10のパワーゲーティングが可能となり、消費電力の大幅な低減を図ることができる。またOSメモリであるバックアップ回路10Mは、スキャンフリップフロップ回路等のCPUコア11が有するSiトランジスタで構成される回路と、積層して設けることができる。そのため、回路面積の増加を招くことなく、配置することができる。
 アクセラレータ20は、メモリ回路21、演算回路22、および制御回路23を有する。アクセラレータ20は、ホストプログラムから呼び出されたプログラム(カーネル、またはカーネルプログラムとも呼ばれる。)を実行する機能を有する。アクセラレータ20は、例えば、グラフィック処理における行列演算の並列処理、ニューラルネットワークの積和演算の並列処理、科学技術計算における浮動小数点演算の並列処理などを行うことができる。そのため、CPU10のみの構成と比べ、半導体装置101の高性能化を図ることができる。
 メモリ回路21は、複数のデータ保持回路20Mを有する。データ保持回路20Mは、NOSRAMの回路構成とすることができる。「NOSRAM(登録商標)」とは、「Nonvolatile Oxide Semiconductor Random Access Memory(RAM)」の略称である。NOSRAMは、メモリセルが2トランジスタ型(2T)、又は3トランジスタ型(3T)ゲインセルであり、アクセストランジスタがOSトランジスタであるメモリのことをいう。OSトランジスタはオフ状態でソースとドレインとの間を流れる電流、つまりリーク電流が極めて小さい。NOSRAMは、リーク電流が極めて小さい特性を用いてデータに応じた電荷をデータ保持回路20M内に保持することで、不揮発性メモリとして用いることができる。特にNOSRAMは保持しているデータを破壊することなく読み出しすること(非破壊読み出し)が可能なため、データ読み出し動作のみを大量に繰り返す、ニューラルネットワークの積和演算の並列処理に適している。
 演算回路22は、デジタル値を用いた演算処理を行う機能を有する。デジタル値はノイズの影響を受けにくい。そのためアクセラレータ20は、高い精度の演算結果が要求される演算処理を行うのに適している。なお演算回路22は、Si CMOS、すなわちシリコンをチャネル形成領域に有するトランジスタ(Siトランジスタ)で構成されることが好ましい。当該構成とすることでOSトランジスタを有するデータ保持回路20Mと積層して設けることができる。制御回路23は、アクセラレータ20内の駆動回路などの各回路を制御するための回路構成である。
 なお演算回路22は、アナログ値を用いた演算処理を行う構成でもよい。データ保持回路20Mは、アナログ値に応じた電荷を保持することが可能である。当該構成とすることでOSトランジスタを有するデータ保持回路20Mが出力するアナログ信号を利用した演算処理を行う構成とすることができる。
 アクセラレータ20において、アナログ値をデータとして保持しつづけることができるとともに、演算回路で演算して得られる演算結果をCPU10に出力する構成とすることができる。データとして保持しつづけることができるため、演算処理のためのデータの転送頻度を削減することができる。またCPU10の演算処理量を削減することができるため、メモリ装置30とCPU10との間のデータの転送頻度も削減することができる。つまり本発明の一態様の構成では、バス40Aを介したアクセス数の低減、転送するデータ量の削減を図ることができる。
 メモリ装置30は、オンチップメモリとして機能する。オンチップメモリは、半導体装置101が有する回路、例えばCPU10またはアクセラレータ20に入出力するデータまたはプログラムを記憶するためのメモリ装置である。メモリ装置30は、半導体装置101が有する回路、例えばCPU10またはアクセラレータ20に入出力するデータまたはプログラムを記憶する機能を有する。
 メモリ装置30は、メモリセルアレイ31と、周辺回路32と、を有する。メモリセルアレイ31は、メモリセル30Mを有する。メモリセル30Mに適用可能な記憶回路としては、DOSRAMあるいはNOSRAMが好ましい。DOSRAM(登録商標)とは、「Dynamic Oxide Semiconductor RAM」の略称であり、1T(トランジスタ)1C(容量)型のメモリセルを有するRAMを指す。DOSRAMは、NOSRAMと同様に、OSトランジスタのオフ電流が低いことを利用したメモリである。
 DOSRAMは、OSトランジスタを用いて形成されたDRAMであり、外部から送られてくる情報を一時的に格納するメモリである。DOSRAMとすることでメモリ装置30は、OSトランジスタを含むメモリセル30Mと、Siトランジスタ(チャネル形成領域にシリコンを有するトランジスタ)を含む周辺回路32と、積層された異なる層に設けることができるため、DOSRAMは、全体の回路面積を小さくすることができる。また、DOSRAMは、メモリセルアレイを細かく分けて、効率的に配置することができる。またDOSRAMは、複数の層に設けられるOSトランジスタを有する構成とすることで、積層して設ける構成とすることができる。
 バス40Aは、CPU10、アクセラレータ20、メモリ装置30、DMAC41、PMU42、メモリコントローラ43、DDR SDRAMコントローラ44、USBインターフェース回路45、およびディスプレイインターフェース回路46の間の各種信号を高速で送受信するためのバスである。一例としては、AMBA(Advanced Microcontoroller Bus Artcitecture)−AHB(Advanced High−perfermance Bus)をバスとして用いることができる。
 DMAC41は、ダイレクトメモリアクセスコントローラである。DMAC41を有することで、CPU10以外の周辺機器は、CPU10を介さずにメモリ装置30にアクセスすることができる。
 PMU42は、半導体装置101が有するCPU10のCPUコア11等の回路のパワーゲーティングを制御するための回路構成を有する。
 メモリコントローラ43は、半導体装置101の外部にあるプログラムメモリからCPU10またはアクセラレータ20で実行するためのプログラムを書き込みまたは読み出しを行うための回路構成を有する。
 DDR SDRAMコントローラ44は、半導体装置101の外部にあるDRAM等のメインメモリ103との間でデータを書き込みまたは読み出しを行うための回路構成を有する。
 USBインターフェース回路45は、半導体装置101の外部にある回路とUSB端子を介してデータの送受信を行うための回路構成を有する。USBインターフェース回路45は、外部の汎用機器との間で信号を送受信するための回路構成を有する。
 ディスプレイインターフェース回路46は、半導体装置101の外部にあるディスプレイ102とデータの送受信を行うための回路構成を有する。
 電源回路60は、半導体装置101内で用いる電圧を生成するための回路である。例えば、OSトランジスタのバックゲートに与える、電気的特性を安定化するための負電圧を生成する回路である。
 バス40Bは、割り込み制御回路51、インターフェース回路52、バッテリー制御回路53、およびADC/DACインターフェース回路54の間の各種信号を低速で送受信するためのバスである。一例としては、AMBA−APB(Advanced Peripheral Bus)をバスとして用いることができる。バス40Aとバス40Bとの間の各種信号の送受信は、ブリッジ回路50を介して行う。
 割り込み制御回路51は、周辺機器から受け取る要求に対して、割り込み処理を行うための回路構成を有する。
 インターフェース回路52は、UART(Universal Asynchronous Receiver/Transmitter)、I2C(Inter−Integrated Circuit)、またはSPI(Serial Peripheral Interface)などのインターフェースを機能させるための回路構成を有する。
 バッテリー制御回路53は、半導体装置101の外部にあるバッテリー104の充放電に関するデータを送受信するための回路構成を有する。
 ADC/DACインターフェース回路54は、半導体装置101の外部にあるMEMS(Micro Electro Mechanical Systems)デバイス等のアナログ信号を出力するセンサ105との間でデータを送受信するための回路構成を有する。
 なおバス40Bには、タイマー回路、ウオッチドッグ回路など、低速で動作する他の回路が接続される構成もあり得る。
 図1Bに図示するように電子装置100では、筐体111の限られた容積において、半導体装置101の他、ディスプレイ102、メインメモリ103、バッテリー104、およびセンサ105といった電子備品が納められる構成となる。半導体装置101において、CPU10内にバックアップ回路10Mを設ける構成、アクセラレータ20内にデータ保持回路20Mを設ける構成、およびメモリ装置30内にOSトランジスタを有するメモリセル30Mを設ける構成とすることで、CPU10のパワーゲーティングの他、アクセラレータ20での演算処理のためのデータの転送頻度の削減、およびオンチップメモリとして機能するメモリ装置30のデータ容量の増加を図ることができる。
 また図1Bに図示するように電子装置100では、半導体装置101において、CPU10内にバックアップ回路10Mを設ける構成、アクセラレータ20内にデータ保持回路20Mを設ける構成、およびメモリ装置30内にOSトランジスタを有するメモリセル30Mを設ける構成とすることで、電子装置100をスリープ状態とした際のスリープ電力(非表示期間における電力)を大幅に削減できるため、バッテリーの容量が小さくても利便性を高めることができる。
 また図1Bに図示するように電子装置100では、オンチップメモリ、CPU、およびアクセラレータ間のデータ転送回数の低減を図ることができる。加えて、オンチップメモリ、CPU、およびアクセラレータを密結合させた、所謂SoC(System on Chip)化した際に消費電力の低減に加え、細粒度のパワーゲーティングによる発熱の抑制を図ることができるため、より微細なトランジスタ構造のSiトランジスタを用いることによって小型化または高性能化が図られた半導体装置とすることができる。
 なおディスプレイ102は、例えば発光デバイスを有するELディスプレイを用いることができる。また、ディスプレイ102は、発光デバイスの他、受光デバイスを有していてもよい。またディスプレイ102は、液晶デバイスを有する液晶ディスプレイとしてもよい。またディスプレイ102は、マイクロ発光ダイオード(μLED)デバイスを有するμLEDディスプレイとしてもよい。
 本明細書等では、ディスプレイを構成する基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)などのコネクターが取り付けられたもの、またはディスプレイを構成する基板にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されものを、表示モジュールなどと呼ぶ場合がある。ディスプレイ102は、表示モジュールでもよいし、半導体装置101上に発光デバイスを直接設け、ディスプレイ102とする構成であってもよい。
 メインメモリ103としては、例えばDRAMを用いることができる。メインメモリ103は、オンチップメモリであるメモリ装置30のメモリ容量を大きくすることで、メモリ装置30がメインメモリ103を兼ねることが可能となるため、省略することもできる。
 バッテリー104としては、例えばリチウムイオン電池などの二次電池、太陽電池などを用いることができる。
 センサ105としては、例えば過充電を防止するための制御回路、撮像素子、ジャイロセンサー、加速度センサなどのセンサ、タッチパネルなどを設けてもよい。また、人体の一部に接して脈拍、表面温度、または血中酸素濃度などを測定するセンサ等を設けてもよい。ジャイロセンサー、または加速度センサなどのセンサを搭載することで電子装置の向き、動きなどによってオン状態とオフ状態を切り替えて省電力化を図ることができる。また、タッチパネルを搭載することで、タッチパネルの所望の位置をタッチすることで電子装置の操作、情報の入力などを行うことができる。
 図2Aは、図1Aの構成をSoC化した際の回路ブロックの配置の一例を示す図である。図2Aに図示する半導体装置101のように各構成は、チップ上で領域を区切って配置することができる。
 なお図1Aで説明したバックアップ回路10M、データ保持回路20M、およびメモリセル30Mは、回路10S、回路20S、および回路30S上にそれぞれ配置することができる。回路10Sは、CPU10におけるバックアップ回路10M以外のSiトランジスタで構成される回路に相当する。回路20Sは、アクセラレータ20におけるデータ保持回路20M以外のSiトランジスタで構成される回路に相当する。回路30Sは、メモリ装置30におけるメモリセル30Mが有するOSトランジスタ以外のトランジスタであるSiトランジスタで構成される回路に相当する。
 図2Bは、回路10S(回路20Sまたは回路30S)上に配置される、バックアップ回路10M(データ保持回路20Mまたはメモリセル30M)を示す模式図である。図2Bに示すように、バックアップ回路10M(データ保持回路20Mまたはメモリセル30M)は、チャネル形成領域を有する半導体層202に金属酸化物を有するトランジスタ201(OSトランジスタ)を有する。また、回路10S(回路20Sまたは回路30S)は、チャネル形成領域を有する半導体層204にシリコンを有するトランジスタ203(Siトランジスタ)を有する。そのため、CPU10、アクセラレータ20、およびメモリ装置30は、SoC化した際、図2Aに図示する半導体装置101のように各回路を一体化して同じ領域内に配置することができる。
 以上説明した本発明の一態様により、新規な電子装置等を提供することができる。または、本発明の一態様は、SoC化によって高性能化した半導体装置を有する電子装置において、発熱、及び消費電力の増加を抑制できる、新規な構成の電子装置等を提供することができる。または、本発明の一態様は、CPUにおけるデータ転送回数を抑制することができる、新規な構成の電子装置等を提供することができる。または、本発明の一態様は、半導体装置の高性能化と、半導体装置の低消費電力化または発熱の抑制と、の両立を図ることのできる、新規な構成の電子装置等を提供することができる。
<CPU10の構成例>
 パワーゲーティングが可能なCPUコアを有するCPU10の一例について説明する。
 図3に、CPU10の構成例を示す。CPU10は、CPUコア(CPU Core)11、L1(レベル1)キャッシュメモリ装置(L1 Cache)12、L2キャッシュメモリ装置(L2 Cache)13、バスインターフェース部(Bus I/F)14、パワースイッチ15A乃至15C、およびレベルシフタ(LS)15Dを有する。CPUコア11はフリップフロップ16を有する。
 バスインターフェース部14によって、CPUコア11、L1キャッシュメモリ装置12、およびL2キャッシュメモリ装置13が相互に接続される。
 外部から入力される割り込み信号(Interrupts)、CPU10が発行する信号SLEEP1等の信号に応じて、PMU42はクロック信号GCLK1、および各種のPG(パワーゲーティング)制御信号(PG control signals)の生成を行う。クロック信号GCLK1、およびPG制御信号はCPU10に入力される。PG制御信号は、パワースイッチ15A乃至15Cおよびフリップフロップ16を制御する。
 パワースイッチ15A、15Bは、仮想電源線V_VDD(以下、V_VDD線と呼ぶ)への電圧VDDD、VDD1の供給をそれぞれ制御する。パワースイッチ15Cは、レベルシフタ(LS)15Dへの電圧VDDHの供給を制御する。CPU10およびPMU42には、パワースイッチを介さずに電圧VSSSが入力される。PMU42には、パワースイッチを介さずに電圧VDDDが入力される。
 電圧VDDD、VDD1はCMOS回路用の駆動電圧である。電圧VDD1は電圧VDDDよりも低く、スリープ状態での駆動電圧である。電圧VDDHはOSトランジスタ用の駆動電圧であり、電圧VDDDよりも高い。
 L1キャッシュメモリ装置12、L2キャッシュメモリ装置13およびバスインターフェース部14それぞれは、パワーゲーティング可能なパワードメインを少なくとも1つ有する。パワーゲーティング可能なパワードメインには、1または複数のパワースイッチが設けられている。これらのパワースイッチは、PG制御信号によって制御される。
 フリップフロップ16は、レジスタに用いられる。フリップフロップ16には、バックアップ回路が設けられている。以下、フリップフロップ16について説明する。
 図4Aにフリップフロップ16(Flip−flop)の回路構成例を示す。フリップフロップ16はスキャンフリップフロップ回路(Scan Flip−flop)17、およびバックアップ回路(Backup Circuit)10Mを有する。
 スキャンフリップフロップ回路17は、ノードD1、Q1、SD、SE、RT、CK、およびクロックバッファ回路17Aを有する。
 ノードD1はデータ(data)入力ノードであり、ノードQ1はデータ出力ノードであり、ノードSDはスキャンテスト用データの入力ノードである。ノードSEは信号SCEの入力ノードである。ノードCKはクロック信号GCLK1の入力ノードである。クロック信号GCLK1はクロックバッファ回路17Aに入力される。スキャンフリップフロップ回路17のアナログスイッチは、クロックバッファ回路17AのノードCK1、CKB1に接続される。ノードRTはリセット信号(reset signal)の入力ノードである。
 信号SCEは、スキャンイネーブル信号であり、PMU42で生成される。PMU42は信号BK、RCを生成する。レベルシフタ15Dは信号BK、RCをレベルシフトし、信号BKH、RCHを生成する。信号BK、RCはバックアップ信号、リカバリ信号である。
 スキャンフリップフロップ回路17の回路構成は、図4Aに限定されない。標準的な回路ライブラリに用意されているフリップフロップを適用することができる。
 バックアップ回路10Mは、ノードSD_IN、SN11、トランジスタM11乃至M13、および容量C11を有する。
 ノードSD_INは、スキャンテストデータの入力ノードであり、スキャンフリップフロップ回路17のノードQ1に接続される。ノードSN11は、バックアップ回路10Mの保持ノードである。容量C11はノードSN11の電圧を保持するための保持容量である。
 トランジスタM11はノードQ1とノードSN11間の導通状態を制御する。トランジスタM12はノードSN11とノードSD間の導通状態を制御する。トランジスタM13はノードSD_INとノードSD間の導通状態を制御する。トランジスタM11、M13のオンオフは信号BKHで制御され、トランジスタM12のオンオフは信号RCHで制御される。
 トランジスタM11乃至M13は、OSトランジスタである。トランジスタM11乃至M13はバックゲートを有する構成を図示している。トランジスタM11乃至M13のバックゲートは、電圧VBG1を供給する電源線に接続されている。
 少なくともトランジスタM11、M12がOSトランジスタであることが好ましい。オフ電流が極めて小さいというOSトランジスタの特長によって、ノードSN11の電圧の低下を抑えることができること、データの保持に電力を殆んど消費しないことから、バックアップ回路10Mは不揮発性の特性をもつ。容量C11の充放電によってデータを書き換えるため、バックアップ回路10Mは原理的には書き換え回数に制約はなく、データの書き込みおよび読み出しを低エネルギーで行うことができる。
 バックアップ回路10Mの全てのトランジスタはOSトランジスタであることが非常に好ましい。図4Bに示すように、シリコンCMOS回路で構成されるスキャンフリップフロップ回路17上にバックアップ回路10Mを積層することができる。
 バックアップ回路10Mは、スキャンフリップフロップ回路17と比較して素子数が非常に少ないので、バックアップ回路10Mを積層するためにスキャンフリップフロップ回路17の回路構成およびレイアウトを変更する必要がない。つまり、バックアップ回路10Mは、汎用性が非常に高いバックアップ回路である。また、スキャンフリップフロップ回路17が形成されている領域内にバックアップ回路10Mを設けることができるので、バックアップ回路10Mを組み込んでも、フリップフロップ16の面積オーバーヘッドはゼロにすることが可能である。よって、バックアップ回路10Mをフリップフロップ16に設けることで、CPUコア11のパワーゲーティングが可能となる。パワーゲーティングに必要なエネルギーが少ないため、CPUコア11を高効率にパワーゲーティングすることが可能である。
 バックアップ回路10Mを設けることによって、トランジスタM11による寄生容量がノードQ1に付加されることになるが、ノードQ1に接続される論理回路による寄生容量と比較して小さいので、スキャンフリップフロップ回路17の動作に影響はない。つまり、バックアップ回路10Mを設けても、フリップフロップ16の性能は実質的に低下しない。
 CPUコア11の低消費電力状態として、例えば、クロックゲーティング状態、パワーゲーティング状態、休止状態(非動作)を設定することができる。PMU42は、割り込み信号、信号SLEEP1等に基づき、CPUコア11の低消費電力モードを選択する。例えば、通常動作状態からクロックゲーティング状態に移行する場合、PMU42はクロック信号GCLK1の生成を停止する。
 例えば、通常動作状態から休止状態(非動作状態)に移行する場合は、PMU42は、電圧および/または周波数スケーリングを行う。例えば、電圧スケーリングを行う場合、PMU42は、電圧VDD1をCPUコア11に入力するため、パワースイッチ15Aをオフにし、パワースイッチ15Bをオンにする。電圧VDD1は、スキャンフリップフロップ回路17のデータを消失させない電圧である。周波数スケーリングを行う場合、PMU42はクロック信号GCLK1の周波数を低下させる。
 CPUコア11を通常動作状態からパワーゲーティング状態に移行する場合には、スキャンフリップフロップ回路17のデータをバックアップ回路10Mにバックアップする動作が行われる。CPUコア11をパワーゲーティング状態から通常動作状態に復帰する際には、バックアップ回路10Mのデータをスキャンフリップフロップ回路17に書き戻すリカバリ動作が行われる。
 図5に、CPUコア11のパワーゲーティングシーケンスの一例を示す。なお、図5において、t1~t7は時刻を表している。信号PSE0乃至PSE2は、パワースイッチ15A乃至15Cの制御信号であり、PMU42で生成される。信号PSE0が“H”/“L”のとき、パワースイッチ15Aはオン/オフである。信号PSE1、PSE2についても同様である。
 時刻t1以前は、通常動作状態(Normal Operation)である。パワースイッチ15Aはオンであり、CPUコア11には電圧VDDDが入力される。スキャンフリップフロップ回路17は通常動作を行う。このとき、レベルシフタ15Dは動作させる必要がないため、パワースイッチ15Cはオフであり、信号SCE、BK、RCは“L”である。ノードSEが“L”であるため、スキャンフリップフロップ回路17はノードD1のデータを記憶する。なお、図5の例では、時刻t1において、バックアップ回路10MのノードSN11は“L”である。
 バックアップ(Backup)時の動作を説明する。時刻t1で、PMU42はクロック信号GCLK1を停止し、信号PSE2、BKを“H”にする。レベルシフタ15Dはアクティブになり、“H”の信号BKHをバックアップ回路10Mに出力する。
 バックアップ回路10MのトランジスタM11がオンになり、スキャンフリップフロップ回路17のノードQ1のデータがバックアップ回路10MのノードSN11に書き込まれる。スキャンフリップフロップ回路17のノードQ1が“L”であれば、ノードSN11は“L”のままであり、ノードQ1が“H”であれば、ノードSN11は“H”になる。
 PMU42は、時刻t2で信号PSE2、BKを“L”にし、時刻t3で信号PSE0を“L”にする。時刻t3で、CPUコア11の状態はパワーゲーティング状態に移行する。なお、信号BKを立ち下げるタイミングで信号PSE0を立ち下げてもよい。
 パワーゲーティング(Power−gating)時の動作を説明する。信号PSE0が“L”になることで、V_VDD線の電圧が低下するため、ノードQ1のデータは失われる。ノードSN11は、時刻t3でのノードQ1のデータを保持し続ける。
 リカバリ(Recovery)時の動作を説明する。時刻t4で、PMU42が信号PSE0を“H”にすることで、パワーゲーティング状態からリカバリ状態に移行する。V_VDD線の充電が開始され、V_VDD線の電圧がVDDDになった状態(時刻t5)で、PMU42は信号PSE2、RC、SCEを“H”にする。
 トランジスタM12はオンになり、容量C11の電荷がノードSN11とノードSDとに分配される。ノードSN11が“H”であれば、ノードSDの電圧は上昇する。ノードSEは“H”であるので、スキャンフリップフロップ回路17の入力側ラッチ回路にノードSDのデータが書き込まれる。時刻t6でノードCKにクロック信号GCLK1が入力されると、入力側ラッチ回路のデータがノードQ1に書き込まれる。つまり、ノードSN11のデータがノードQ1に書き込まれたことになる。
 時刻t7で、PMU42は信号PSE2、SCE、RCを“L”にし、リカバリ動作が終了する。
 OSトランジスタを用いたバックアップ回路10Mは、動的および静的消費電力双方が小さいため、ノーマリオフ・コンピューティングに非常に好適である。フリップフロップ16を搭載しても、CPUコア11の性能低下、動的電力の増加をほとんど発生させないようにできる。
 なお、CPUコア11は複数のパワーゲーティング可能なパワードメインを有してもよい。複数のパワードメインには、電圧の入力を制御するための1または複数のパワースイッチが設けられる。また、CPUコア11は、1または複数のパワーゲーティングが行われないパワードメインを有していてもよい。例えば、パワーゲーティングが行われないパワードメインに、フリップフロップ16、パワースイッチ15A乃至15Cの制御を行うためのパワーゲーティング制御回路を設けてもよい。
 なお、フリップフロップ16の適用はCPU10に限定されない。演算装置において、パワーゲーティング可能なパワードメインに設けられるレジスタに、フリップフロップ16を適用できる。
<キャッシュメモリ装置の構成例>
 上記CPU10の構成例において、CPUコア11内にバックアップ回路を有する構成例を図示したが、L1キャッシュメモリ装置12およびL2キャッシュメモリ装置13がバックアップ回路を有する構成とすることもできる。図6Aに示すメモリセル19は、L1キャッシュメモリ装置12、L2キャッシュメモリ装置13などのキャッシュメモリ装置に適用可能なメモリセルの回路図の一例である。図6Aに示すメモリセル19Sは、標準的な6T型SRAMセルと同じ回路構成である。図6Aに示すバックアップ回路19Aは、メモリセル19Sのデータを退避するための回路である。
 バックアップ回路19Aは、メモリセル19SのノードQ、Qbのデータをバックアップするための回路であり、2個の1T1C型セルで構成される。ノードSN1、SN2は保持ノードである。トランジスタMW5、容量素子CS5とでなるゲインセルは、ノードQのデータをバックアップする。トランジスタMW6、容量素子CS6とでなるゲインセルは、ノードQbのデータをバックアップする。
 トランジスタMW5、MW6がOSトランジスタであるので、メモリセル19Sにバックアップ回路19Aを積層して設けることができる。これにより、バックアップ回路19Aを設けたことによるメモリセル19の面積オーバーヘッドを抑えることができる。面積オーバーヘッドをゼロにすることが可能である。
 メモリセル19Sは、電源線V_VDM、V_VSM、ワード線WL、およびビット線対(BL、BLB)に電気的に接続されている。電源線V_VDM、V_VSMは、それぞれ、Vddd、GND用の電源線である。バックアップ回路19Aは、配線OGL、BGL、電源線PL3に電気的に接続される。電源線PL3には電圧GNDが入力される。
 メモリセル19は、通常状態ではSRAMセルとして動作する。図6Bを参照して、図6Aのメモリセル19の動作例を説明する。メモリセル19に一定時間以上アクセスがない場合、電源線V_VDM、V_VSMへの電圧Vddd、GNDの供給が停止される。電圧Vdddの供給を停止する前に、バックアップ回路19AにノードQ、Qbのデータが書き込まれる。図6Bにおいて、t1、t2等は時刻を表している。
 時刻t1以前では、通常動作状態(書き込み状態または読み出し状態)である。メモリセル19は、シングルポートSRAMと同様に動作する。ここでは、時刻t1でノードQ/Qbは“H”/“L”であり、ノードSN1/SN2は“L”/“H”であるとしている。
 時刻t1で配線OGLに“H”が入力される。これにより、バックアップ動作が開始し、トランジスタMW5、MW6はオンとなる。ノードSN1の電圧はGNDからVdddに上昇し、ノードSN2の電圧はVdddからGNDに低下する。時刻t2で、配線OGLが“L”となることで、バックアップ動作が終了する。ノードSN1/SN2には、t1でのノードQ/Qbのデータが書き込まれる。
 時刻t2で、パワーゲーティングが開始する。電源線V_VDM線の電圧がVdddからGNDに低下する。電源線V_VDMと電源線V_VSMの電圧差が小さくなることで、メモリセル19Sは非アクティブになる。メモリセル19Sのデータは消失するが、バックアップ回路19Aはデータを保持し続ける。ここではパワーゲーティングの期間、ビット線BL、BLBをフローティング状態にしている。
 リカバリ動作とは、バックアップ回路19Aが保持しているデータによって、メモリセル19Sのデータをリカバリする動作である。リカバリ動作では、メモリセル19Sは、ノードQ/Qbのデータを検知するためのセンスアンプとして機能する。
 まず、ノードQ、Qbのリセット動作が行われる。時刻t3で、ビット線対(BL、BLB)の電圧は電圧Vpr2にプリチャージされる。かつ、ワード線WLが選択状態であるため、電源線V_VDM線、V_VSM線は電圧Vpr2にプリチャージされ、ノードQ、Qbの電圧はVpr2に固定される。
 時刻t4で、配線OGLが“H”になると、トランジスタMW5、MW6はオンになる。容量素子CS5の電荷がノードQ、ノードSN1に分配され、容量素子CS6の電荷がノードQb、ノードSN2に分配され、ノードQとノードQbに電圧差が生じる。
 時刻t5で、電圧VDM、GNDの供給を再開する。メモリセル19Sが活性状態になると、ノードQとノードQbの電圧差を増幅する。最終的にノードQ、SN1の電圧はVdddとなり、ノードQb、SN2の電圧はGNDとなる。つまり、ノードQ/Qbの状態は、時刻t1での状態(“H”/“L”)に復帰する。
 図7Aに示すメモリセル19_1は、メモリセル19の変形例であり、バックアップ回路19Aに代えてバックアップ回路19Bを有する。バックアップ回路19Bは、1個の1T1C型メモリセルで構成されており、ノードSN3、トランジスタMW7、容量素子CS7を有する。
 図7Bは、メモリセル19_1の動作例を示すタイミングチャートである。メモリセル19_1は、メモリセル19と同様に動作する。図7Bの説明は、図6Bの説明を援用する。
 バックアップ回路19Bは、ノードQのデータのみをバックアップする構成であるが、ノードSN3の保持データによって、ノードQ、Qbのデータを復元することができる。それは、予めノードQ、Qbの電圧をVpr2にするプリチャージを行っているからであり、1個の容量素子CS7の電荷によって、ノードQとノードQbに電位差を生じさせることができる。
<アクセラレータ20の構成例>
 図8Aは、アクセラレータ20を説明するためのブロック図である。図8Aでは、図1Aで説明したデータ保持回路20Mを有するメモリ回路21、演算回路22の他、制御回路23(23A乃至23D)、演算ブロック25、およびメモリ回路21と演算回路22とを接続する配線26を図示している。
 図8Aでは、制御回路23として機能する構成の一例として、書き込みビット線ドライバ23A、ワード線ドライバ23B、読み出しビット線ドライバ23C、読み出しドライバ23Dを図示している。なお制御回路23は、プリチャージ回路、センスアンプ、セレクタ、入力バッファおよび演算制御回路などを有してもよい。
 書き込みビット線ドライバ23Aおよびワード線ドライバ23Bは、一例としては、データ保持回路20Mにデータを書き込むための信号を生成する。読み出しビット線ドライバ23Cおよび読み出しドライバ23Dは、一例としては、データ保持回路20Mからデータを読み出すための信号を生成する。
 データ保持回路20Mを有するメモリ回路21は、アクセラレータ20が処理するデータを記憶する機能を有する。具体的には、ニューラルネットワークの積和演算の並列処理に用いる重みデータ等、演算回路22に入力するあるいは演算回路22から出力されるデータを記憶することができる。
 データ保持回路20Mは、演算回路22が有する演算ブロック25と、配線26を介して電気的に接続され、2値または3値のデジタル値を保持する機能を有する。データ保持回路20Mにおいて、トランジスタはOSトランジスタであり、データ保持回路20MはOSメモリが好適である。アクセラレータ20は、OSメモリであるデータ保持回路20Mを有することで電源電圧の供給が停止してもデータを保持できる。そのため、アクセラレータ20のパワーゲーティングが可能となり、消費電力の大幅な低減を図ることができる。
 OSトランジスタで構成されるデータ保持回路20Mは、Si CMOSで構成することができる演算回路22と積層して設けることができる。そのため、回路面積の増加を招くことなく、配置することができる。データ保持回路20Mと演算回路22とは、演算回路22が設けられる基板表面に対して概略垂直な方向に延在して設けられる配線26を介して電気的に接続される。なお「概略垂直」とは、85度以上95度以下の角度で配置されている状態をいう。
 データ保持回路20Mは、NOSRAMの回路構成とすることができる。NOSRAMは、リーク電流が極めて小さい特性を用いてデータに応じた電荷をメモリ回路内に保持することで、不揮発性メモリとして用いることができる。特にNOSRAMは保持しているデータを破壊することなく読み出しすること(非破壊読み出し)が可能なため、データ読み出し動作のみを大量に繰り返す、ニューラルネットワークの積和演算の並列処理に適している。
 演算回路22が有する複数の演算ブロック25では、デジタル値を用いた演算処理を行う機能を有する。デジタル値はノイズの影響を受けにくい。そのためアクセラレータ20は、高い精度の演算結果が要求される演算処理を行うのに適している。なお演算回路22は、Si CMOS、すなわちシリコンをチャネル形成領域に有するトランジスタ(Siトランジスタ)で構成されることが好ましい。当該構成とすることでOSトランジスタと積層して設けることができる。
 データ保持回路20Mにおいて、デジタル値に応じたデータを保持し出力する構成とすることで、Binary Neural Network(BNN)のアーキテクチャに基づく、階層型のニューラルネットワークを適用することができる。図8Bには、BNNのアーキテクチャに基づく、階層型のニューラルネットワークを図示する。図8Bでは、ニューロンN1、入力層1層(I1)、中間層3層(M1乃至M3)、出力層1層(O1)の全結合型のニューラルネットワークを図示している。入力層I1におけるニューロン数を786、中間層M1乃至M3におけるニューロン数を256、出力層O1におけるニューロン数を10とすると、各層の結合数は(784×256)+(256×256)+(256×256)+(256×10)で計334336個となる。つまり、ニューラルネットワーク計算に必要な重みパラメータが合計330Kビット程度であるため、小規模システムでも十分実装可能なメモリ容量とすることができる。
 演算ブロック25は、メモリ回路21のデータ保持回路20Mのそれぞれに保持されたデジタル値のデータを用いて、整数演算、単精度浮動小数点演算、倍精度浮動小数点演算などの処理のいずれか一を行う機能を有する。演算ブロック25は、積和演算といった同じ処理を繰り返し実行する機能を有する。
 なお演算ブロック25は、データ保持回路20Mの読出ビット線毎、つまり一列(Column)毎に1つの演算ブロック25を設ける構成とする(Column−Parallel Calculation)。当該構成とすることで、メモリ回路21の1行分(最大で全ビット線)のデータを並列で演算処理することができる。CPU10を用いた積和演算に比べて、CPUとメモリ間のデータバスサイズ(32ビット、など)に制限されないことから、Column−Parallel Calculationでは、演算の並列度を大幅に上げることができるため、AI技術であるディープニューラルネットワークの学習(深層学習)、浮動小数点演算を行う科学技術計算などの膨大な演算処理に係る演算効率の向上を図ることができる。加えてデータ保持回路20Mから出力されるデータの演算を完了させて読み出すことができるため、メモリアクセス(CPUとメモリ間のデータ転送またはCPUでの演算)の回数を削減でき、メモリアクセスで生じる電力を削減することができる。さらに、演算回路22とメモリ回路21の物理的な距離を近づけること、例えば積層によって配線距離が短くできることで、信号線に生じる寄生容量を削減できるため、低消費電力化が可能である。
 本発明の一態様は、CPU10とアクセラレータ20との間のデータ転送回数を削減することができる。計算量とパラメータ数が膨大なAI技術などのアクセラレータとして機能する半導体装置は非ノイマン型アーキテクチャを有し、処理速度の増加に伴って消費電力が大きくなるノイマン型アーキテクチャと比較して、極めて少ない消費電力で並列処理を行うことができる。
 図9Aは、メモリ回路21に適用可能な回路構成例について説明する図である。図9Aでは、M行N列(M、Nは2以上の自然数)の行列方向に並べて配置された書き込みワード線WWL_1乃至WWL_M、読み出しワード線RWL_1乃至RWL_M、書き込みビット線WBL_1乃至WBL_N、および読み出しビット線RBL_1乃至RBL_Nを図示している。また各ワード線およびビット線に接続されたデータ保持回路20Mを図示している。
 図9Bは、データ保持回路20Mに適用可能な回路構成例について説明する図である。データ保持回路20Mは、トランジスタM1、トランジスタM2、トランジスタM3、容量C1を有する。
 トランジスタM1のソースまたはドレインの一方は、書き込みビット線WBLに接続される。トランジスタM1のゲートは、書き込みワード線WWLに接続される。トランジスタM1のソースまたはドレインの他方は、容量C1の一方の電極およびトランジスタM2のゲートに接続される。トランジスタM2のソースまたはドレインの一方および容量C1の他方の電極は、固定電位、たとえばグラウンド電位を与える配線に接続される。トランジスタM2のソースまたはドレインの他方は、トランジスタM3のソースまたはドレインの一方に接続される。トランジスタM3のゲートは、読み出しワード線RWLに接続される。トランジスタM3のソースまたはドレインの他方は、読み出しビット線RBLに接続される。読み出しビット線RBLは、上述したように、演算回路22が設けられる基板表面に対して概略垂直な方向に延在して設けられる配線26等を介して、演算ブロック25に接続される。
 図9Bに示すデータ保持回路20Mの回路構成は、3トランジスタ型(3T)ゲインセルのNOSRAMに相当する。トランジスタM1乃至トランジスタM3は、OSトランジスタである。OSトランジスタはオフ状態でソースとドレインとの間を流れる電流、つまりリーク電流が極めて小さい。NOSRAMは、リーク電流が極めて小さい特性を用いてデータに応じた電荷をメモリ回路内に保持することで、不揮発性メモリとして用いることができる。
<メモリ装置30の構成例>
 ここでは、OSトランジスタを有するメモリセル30Mが設けられるメモリ装置30の構成例について説明する。
 図10Aに示すメモリ装置30は、メモリセルアレイ31および周辺回路32を有する。周辺回路32として、制御回路34、行回路35、列回路36、および入出力回路37が設けられている。
 メモリセルアレイ31は、メモリセル33、読み出しワード線RWL、書き込みワード線WWL、読み出しビット線RBL、書き込みビット線WBL、ソース線SL、配線BGLを有する。なお、読み出しワード線RWL、書き込みワード線WWLをそれぞれ、ワード線RWL、ワード線WWLと呼ぶ場合がある。読み出しビット線RBL、書き込みビット線WBLをそれぞれ、ビット線RBL、ビット線WBLと呼ぶ場合がある。
 制御回路34はメモリ装置30全体を統括的に制御し、データの書き込み、データの読み出しを行う。制御回路34は、外部からのコマンド信号(例えば、チップイネーブル信号、書き込みイネーブル信号など)を処理して、周辺回路32のそのほかの回路への制御信号を生成する。
 行回路35は、アクセスする行を選択する機能を有する。例えば、行回路35は、行デコーダ、およびワード線ドライバを有する。列回路36は、ビット線WBL、RBLをプリチャージする機能、ビット線WBLにデータを書き込む機能、ビット線RBLのデータを増幅する機能、ビット線RBLからデータを読み出す機能等を有する。入出力回路37は、書き込みデータを保持する機能、読み出されたデータを保持する機能等を有する。
 周辺回路32の構成は、メモリセルアレイ31の構成、読み出し方法、および書き込み方法等によって、適宜変更される。
 図10Bにメモリセル33の回路構成例を示す。ここでは、メモリセル33は2トランジスタ型(2T)ゲインセルである。メモリセル33は、トランジスタMW1、MR1、容量素子CS1を有する。トランジスタMW1は書き込みトランジスタであり、トランジスタMR1は読み出しトランジスタである。トランジスタMW1、MR1のバックゲートは配線BGLに電気的に接続されている。
 OSトランジスタで読み出しトランジスタを構成しているので、メモリセル33は、データ保持に電力を消費しない。従って、メモリセル33は長期間データを保持可能な低消費電力なメモリセルであり、メモリ装置30を、不揮発性記憶装置として用いることができる。OSトランジスタ、および容量はSiトランジスタに積層して設けることが可能である。よって、メモリセルアレイ31を周辺回路32に積層して設けることが可能であり、メモリセルアレイ31の集積度を向上することができる。
 図11A乃至図11Fを参照して、メモリセルの他の構成例を説明する。
 図11Aに示すメモリセル33Aは、3T型ゲインセルであり、トランジスタMW2、MR2、MS2、および容量素子CS2を有する。トランジスタMW2、MR2、MS2はそれぞれ、書き込みトランジスタ、読み出しトランジスタ、選択トランジスタである。トランジスタMW2、MR2、MS2のバックゲートは配線BGLに電気的に接続されている。メモリセル33Aは、ワード線RWL、WWL、ビット線RBL、WBL、容量線CDL、電源線PL2に電気的に接続されている。例えば、容量線CDL、電源線PL2には、電圧GND(低レベル側電源電圧)が入力される。
 図11B、図11Cに2T型ゲインセルの他の構成例を示す。図11Bに示すメモリセル33Bでは、読み出しトランジスタがnチャネル型Siトランジスタで構成されている。図11Cに示すメモリセル33Cでは、読み出しトランジスタがpチャネル型Siトランジスタで構成されている。図11B、図11Cに示すように、メモリセル内のトランジスタとしてOSトランジスタとSiトランジスタとを組み合わせた構成としてもよい。
 図11D、図11Eに3T型ゲインセルの他の構成例を示す。図11Dに示すメモリセル33Dでは、読み出しトランジスタ、選択トランジスタがnチャネル型Siトランジスタで構成されている。図11Eに示すメモリセル33Eでは、読み出しトランジスタ、選択トランジスタがpチャネル型Siトランジスタで構成されている。図11Eの例では、電源線PL2には、電圧Vddd(高レベル側電源電圧)が入力される。
 上述のゲインセルにおいて、読み出しビット線RBL、書き込みビット線WBLを兼ねるビット線を設けてもよい。
 図11Fに1T1C(容量)型メモリセルの例を示す。図11Fに示すメモリセル33Fは、ワード線WL、ビット線BL、容量線CDL、配線BGLに電気的に接続されている。メモリセル33Fは、トランジスタMW3、容量素子CS3を有する。トランジスタMW3のバックゲートは配線BGLに電気的に接続されている。
 メモリ装置30のメモリセル30Mの回路構成としては、OSトランジスタのみで構成される回路構成の他、Siトランジスタと組み合わせた回路構成など、の構成とすることができる。
 以上説明した本発明の一態様により、新規な電子装置等を提供することができる。または、本発明の一態様は、SoC化によって高性能化した半導体装置を有する電子装置において、発熱、及び消費電力の増加を抑制できる、新規な構成の電子装置等を提供することができる。または、本発明の一態様は、CPUにおけるデータ転送回数を抑制することができる、新規な構成の電子装置等を提供することができる。または、本発明の一態様は、半導体装置の高性能化と、半導体装置の低消費電力化または発熱の抑制と、の両立を図ることのできる、新規な構成の電子装置等を提供することができる。
(実施の形態2)
 本実施の形態では、上記実施の形態1で説明した電子装置100において、CPU10で実行するプログラムの演算の一部をアクセラレータ20で実行する場合の、動作の一例を説明する。なお本実施の形態において、上記実施の形態と同じ符号が付される構成についての繰り返しの説明を省略する場合がある。
 図12は、CPU10で実行するプログラムの演算の一部をアクセラレータ20で実行する場合の、動作の一例を説明する図である。
 CPU10にて、ホストプログラムが実行される(ステップS1)。
 CPU10は、アクセラレータ20を用いて演算を行う際に必要とされるデータ用領域を、メモリ回路21に確保するとの命令を確認した場合(ステップS2)、該データ用領域を、メモリ回路21に確保する(ステップS3)。
 次に、CPU10は、メインメモリ103あるいはメモリ装置30から上記メモリ回路21へ入力データを送信する(ステップS4)。上記メモリ回路21は該入力データを受信し、該入力データを、ステップS2で確保された領域に格納する(ステップS5)。
 CPU10は、カーネルプログラムを起動するとの命令を確認した場合(ステップS6)、アクセラレータ20は、カーネルプログラムの実行を開始する(ステップS7)。
 アクセラレータ20がカーネルプログラムの実行を開始した直後、CPU10を、演算を行う状態からPG状態へと切り替えてもよい(ステップS8)。その場合、アクセラレータ20がカーネルプログラムの実行を終了する直前に、CPU10は、PG状態から演算を行う状態へ切り替えられる(ステップS9)。ステップS8からステップS9までの期間、CPU10をPG状態にすることで、半導体装置101全体として消費電力および発熱を抑制することができる。
 アクセラレータ20がカーネルプログラムの実行を終了すると、出力データが上記メモリ回路21に格納される(ステップS10)。
 カーネルプログラムの実行が終了した後、CPU10は、メモリ回路21に格納された出力データをメインメモリ103あるいはメモリ装置30へ送信するとの命令を確認した場合(ステップS11)、上記の出力データが上記メインメモリ103あるいはメモリ装置30へ送信され、上記メインメモリ103あるいはメモリ装置30に格納される(ステップS12)。
 CPU10は、メモリ回路21上に確保されたデータ用領域を解放するとの指示を確認した場合(ステップS13)、上記メモリ回路21上に確保された領域が解放される(ステップS14)。
 以上のステップS1からステップS14までの動作を繰り返すことにより、CPU10およびアクセラレータ20の消費電力および発熱を抑制しつつ、CPU10で実行するプログラムの演算の一部をアクセラレータで実行することができる。
 本実施の形態は、他の実施の形態の記載と適宜組み合わせることができる。
(実施の形態3)
 本実施の形態では、上記実施の形態1で説明した電子装置100の構成において、CPU10、アクセラレータ20、およびメモリ装置30を密結合させた半導体装置101の構成例および変形例について説明する。
 図13Aでは、バス40Aに接続されたCPU10、アクセラレータ20、およびメモリ装置30を有する半導体装置101の他、DRAMなどで構成されるメインメモリ103を図示している。また図13Aでは、メモリ装置30とCPU10との間のデータをデータDCPUとして図示している。また図13Aでは、メモリ装置30とアクセラレータ20との間のデータをデータDACCとして図示している。
 上述したように本発明の一態様の構成では、アクセラレータ20のデータ保持回路20Mを有するメモリ回路21においてデータとして保持しつづけることができるとともに、演算回路22で演算して得られる演算結果をCPU10に出力する構成とすることができる。そのため、演算処理のためのメモリ装置30からのデータDACCを削減することができる。またCPU10の演算処理量を削減することができるため、メモリ装置30とCPU10との間のデータDCPUも削減することができる。つまり本発明の一態様の構成では、バス40Aを介したアクセス数の低減、転送するデータ量の削減を図ることができる。
 なおCPU10におけるバックアップ回路10M、アクセラレータ20におけるデータ保持回路20M、およびメモリ装置30におけるメモリセル30Mが有するOSトランジスタは、Si CMOSで構成することができる回路10S、回路20S、および回路30Sと積層して設けることができる。そのため、回路面積の増加を招くことなく、配置することができる。
 またメモリ装置30は、DOSRAMあるいはNOSRAMといったOSメモリとすることで、図13Bに図示するように、OSトランジスタを有する層を積層してメモリセル30Mを形成し、高集積化されたメモリ装置30とすることで、単位面積あたりの記憶容量を大きくすることができる。この場合、半導体装置101と別に設けるメインメモリ103を省略することも可能である。
 図14Aは、処理性能(OPS:Operations Per Second)と、消費電力(W)との関係を説明する図である。なお、図14Aにおいて、縦軸が処理能力を、横軸が消費電力を、それぞれ表している。また、図14A中には、演算効率の指標として、0.1TOPS/W(Tera Operations Per Second/W)、1TOPS/W、10TOPS/W、及び100TOPS/Wを、破線にてそれぞれ明示してある。
 また、図14Aにおいて、領域710が従来の汎用AIアクセラレータ(ノイマン型)が含まれる領域を、領域712が本発明の一態様の半導体装置が含まれる領域を、それぞれ示している。なお、領域710には、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、FPGA(Field−Programmable Gate Array)などが含まれる。
 図14Aに示すように、本発明の一態様の半導体装置を適用することで、従来の汎用AIアクセラレータ(ノイマン型)よりも、2桁程度の消費電力を低減することができ、且つ処理性能を大幅(例えば1000倍以上)に向上させることができる。なお、本発明の一態様の半導体装置を適用することで、100TOPS/W以上の演算効率が期待できる。
 ここで、従来構成と、本発明の一態様の半導体装置を適用する構成との具体例について、図14B、及び図14Cを用いて説明する。図14Bが、画像認識における従来構成の半導体装置の消費電力のイメージ図を表し、図14Cが、画像認識における本発明の一態様の構成を用いる半導体装置の消費電力のイメージ図を表している。
 なお、図14B、及び図14Cにおいて、縦軸が電力を、横軸が時間を、それぞれ表している。また、図14Bにおいて、電力714がリーク電力を、電力716がCPU電力を、電力718がメモリ電力を、それぞれ示している。また、図14Cにおいて、電力714がリーク電力を、電力720がCPU電力を、電力722がアクセラレータ電力を、それぞれ示している。なお、電力722には、演算回路、及びメモリ装置に用いられる電力も含まれる。
 また、図14B、及び図14Cにおいて、矢印a、矢印b、及び矢印cは、それぞれ画像認識における信号を表している。なお、矢印a、矢印b、及び矢印cの信号が入力された際に、半導体装置にて、画像認識などの演算処理が開始されると仮定する。
 図14Bに示すように、従来構成の半導体装置の場合、時間に対して一定のリーク電力(電力714)が生じている。一方で、図14Cに示すように、本発明の一態様の半導体装置を適用する構成の場合、CPU電力(電力720)、及びアクセラレータ電力(電力722)を使用している間はリーク電力(電力714)が生じているが、CPU電力(電力720)、及びアクセラレータ電力(電力722)を使用していない期間は、リーク電力(電力714)が発生しないノーマリーオフ駆動(図14C中に示す期間t1)とすることができる。これにより、消費電力を大幅に低減することが可能となる。すなわち、極低消費電力な半導体装置を提供することができる。
 上述したようにメモリ装置30を含め、半導体装置101が有するCPU10およびアクセラレータ20が有する回路の一部をOSトランジスタで構成することで、各回路を一体化した極低消費電力な半導体装置とすることができる。なお本発明の一態様は、OSトランジスタを有する回路の上層に別のデバイスを設け、SoCとする変形例としてもよい。
 一例として図15Aは、OSメモリとは異なる別のメモリデバイスである可変抵抗デバイス392を有する層391を、OSトランジスタを有する層であるバックアップ回路10Mの上層に設けた半導体装置101Aの模式図である。
 図15Aに図示するように、CPU10において、CPUコア11などを有する回路10Sの上層にOSトランジスタを有するバックアップ回路10Mを設け、その上層に可変抵抗デバイス392を有する層391を設ける構成とすることができる。また図15Aに図示するように、アクセラレータ20において、演算回路22などを有する回路20Sの上層にOSトランジスタを有する層にデータ保持回路20Mを設ける構成とすることができる。同様に、周辺回路32などを有する回路30S上にメモリセル30Mを積層して設けられるメモリセル30Mを配置することができる。その他、半導体装置101が有する、Siトランジスタを有する回路390等を設ける構成とすることができる。
 なお可変抵抗デバイス392は、例えば、フラッシュメモリ、強誘電体メモリ(FeRAM)、磁気抵抗メモリ(MRAM)、相変化メモリ(PRAM)、抵抗変化型メモリ(ReRAM)などを用いることができる。
 磁気抵抗メモリ(MRAM)は、磁気トンネル接合(Magnetic Tunnel Junction:以下、MTJ)素子を使用したメモリであるSTT−MRAM(Spin Transfer Torque−Magnetoresistive Random Access Memory)を用いることができる。MTJ素子は、強磁性膜の単層または積層で構成される自由層(記録層、フリー層、可動層ともいう)、固定層(磁化固定層、ピン層、参照層ともいう)、絶縁層(障壁層、トンネル絶縁膜、非磁性層ともいう)を有する。
 図15Aに図示するように、CPU10、アクセラレータ20およびメモリ装置30等の各回路を密結合させたSoCの場合、発熱の問題があるが、OSトランジスタは熱による電気特性の変動量がSiトランジスタと比べて小さいため、好適である。また、図15Aに図示するように三次元方向において回路を集積化することによって、シリコン貫通電極(Through Silicon Via:TSV)などを用いた積層構造などと比較して寄生容量を小さくすることができる。各配線の充放電に要する消費電力を削減することができる。そのため、演算処理効率の向上を図ることができる。
 また別の一例として図15Bは、OSメモリとは異なる別のメモリデバイスである発光デバイス394を有する層393を、バックアップ回路10M、データ保持回路20Mおよびメモリセル30MといったOSトランジスタを有する層の上層に設けた半導体装置101Bの模式図である。発光デバイス394としては、有機発光ダイオードなどの発光デバイスを用いることができる。
 図15Bに図示するようにCPU10、アクセラレータ20およびメモリ装置30等の各回路を密結合させたSoCの場合、発熱の問題があるが、OSトランジスタは熱による電気特性の変動量がSiトランジスタと比べて小さいため、好適である。また、図15Bに図示するように三次元方向において回路を集積化することによって、シリコン貫通電極(Through Silicon Via:TSV)などを用いた積層構造などと比較して寄生容量を小さくすることができる。各配線の充放電に要する消費電力を削減することができる。そのため、演算処理効率の向上を図ることができる。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態および実施例などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態4)
 本実施の形態では、上記実施の形態で説明した電子装置が有する半導体装置に適用可能なトランジスタの構成について説明する。一例として、異なる電気特性を有するトランジスタを積層して設ける構成について説明する。当該構成とすることで、半導体装置の設計自由度を高めることができる。また、異なる電気特性を有するトランジスタを積層して設けることで、半導体装置の集積度を高めることができる。
 半導体装置の断面構造の一部を図16に示す。図16に示す半導体装置は、トランジスタ550と、トランジスタ500と、容量600と、を有している。図17Aはトランジスタ500のチャネル長方向の断面図であり、図17Bはトランジスタ500のチャネル幅方向の断面図であり、図17Cはトランジスタ550のチャネル幅方向の断面図である。例えば、トランジスタ500は上記実施の形態に示したSiトランジスタに相当し、トランジスタ550はOSトランジスタに相当する。
 図16では、トランジスタ500はトランジスタ550の上方に設けられ、容量600はトランジスタ550、およびトランジスタ500の上方に設けられている。
 トランジスタ550は、基板311上に設けられ、導電体316、絶縁体315、基板311の一部からなる半導体領域313、ソース領域またはドレイン領域として機能する低抵抗領域314a、および低抵抗領域314bを有する。
 図17Cに示すように、トランジスタ550は、半導体領域313の上面およびチャネル幅方向の側面が絶縁体315を介して導電体316に覆われている。このように、トランジスタ550をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ550のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ550のオフ特性を向上させることができる。
 なお、トランジスタ550は、pチャネル型、あるいはnチャネル型のいずれでもよい。
 半導体領域313のチャネルが形成される領域、その近傍の領域、ソース領域、またはドレイン領域となる低抵抗領域314a、および低抵抗領域314bなどにおいて、シリコン系半導体などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成としてもよい。またはGaAsとGaAlAs等を用いることで、トランジスタ550をHEMT(High Electron Mobility Transistor)としてもよい。
 低抵抗領域314a、および低抵抗領域314bは、半導体領域313に適用される半導体材料に加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を付与する元素を含む。
 ゲート電極として機能する導電体316は、ヒ素、リンなどのn型の導電性を付与する元素、もしくはホウ素などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。
 なお、導電体の材料によって仕事関数が決まるため、当該導電体の材料を選択することで、トランジスタのしきい値電圧を調整することができる。具体的には、導電体に窒化チタン、窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め込み性を両立するために導電体にタングステン、アルミニウムなどの金属材料を積層として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
 トランジスタ550は、SOI(Silicon on Insulator)基板などを用いて形成してもよい。
 また、SOI基板としては、鏡面研磨ウエハに酸素イオンを注入した後、高温加熱することにより、表面から一定の深さに酸化層を形成させるとともに、表面層に生じた欠陥を消滅させて形成されたSIMOX(Separation by Implanted Oxygen)基板、または水素イオン注入により形成された微小ボイドの熱処理による成長を利用して半導体基板を劈開するスマートカット法、ELTRAN法(登録商標:Epitaxial Layer Transfer)などを用いて形成されたSOI基板を用いてもよい。単結晶基板を用いて形成されたトランジスタは、チャネル形成領域に単結晶半導体を有する。
 トランジスタ550を覆って、絶縁体320、絶縁体322、絶縁体324、および絶縁体326が順に積層して設けられている。
 絶縁体320、絶縁体322、絶縁体324、および絶縁体326として、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミニウムなどを用いればよい。
 なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。また、本明細書中において、酸化窒化アルミニウムとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 絶縁体322は、その下方に設けられるトランジスタ550などによって生じる段差を平坦化する平坦化膜としての機能を有していてもよい。例えば、絶縁体322の上面は、平坦性を高めるために化学機械研磨(CMP)法等を用いた平坦化処理により平坦化されていてもよい。
 また、絶縁体324には、基板311、またはトランジスタ550などから、トランジスタ500が設けられる領域に、水素、不純物などが拡散しないようなバリア性を有する膜を用いることが好ましい。
 水素に対するバリア性を有する膜の一例として、例えば、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ550との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 水素の脱離量は、例えば、昇温脱離ガス分析法(TDS)などを用いて分析することができる。例えば、絶縁体324の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体324の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
 なお、絶縁体326は、絶縁体324よりも誘電率が低いことが好ましい。例えば、絶縁体326の比誘電率は4未満が好ましく、3未満がより好ましい。また例えば、絶縁体326の比誘電率は、絶縁体324の比誘電率の0.7倍以下が好ましく、0.6倍以下がより好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
 また、絶縁体320、絶縁体322、絶縁体324、および絶縁体326には容量600、またはトランジスタ500と接続する導電体328、および導電体330等が埋め込まれている。なお、導電体328、および導電体330は、プラグまたは配線としての機能を有する。また、プラグまたは配線としての機能を有する導電体は、複数の構成をまとめて同一の符号を付与する場合がある。また、本明細書等において、配線と、配線と接続するプラグとが一体物であってもよい。すなわち、導電体の一部が配線として機能する場合、および導電体の一部がプラグとして機能する場合もある。
 各プラグ、および配線(導電体328、導電体330等)の材料としては、金属材料、合金材料、金属窒化物材料、または金属酸化物材料などの導電性材料を、単層または積層して用いることができる。耐熱性と導電性を両立するタングステン、モリブデンなどの高融点材料を用いることが好ましく、タングステンを用いることが好ましい。または、アルミニウム、銅などの低抵抗導電性材料で形成することが好ましい。低抵抗導電性材料を用いることで配線抵抗を低くすることができる。
 絶縁体326、および導電体330上に、配線層を設けてもよい。例えば、図16では、絶縁体350、絶縁体352、および絶縁体354が順に積層して設けられている。また、絶縁体350、絶縁体352、および絶縁体354には、導電体356が形成されている。導電体356は、トランジスタ550と接続するプラグ、または配線としての機能を有する。なお導電体356は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体350は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体356は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体350が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 なお、水素に対するバリア性を有する導電体としては、例えば、窒化タンタル等を用いるとよい。また、窒化タンタルと導電性が高いタングステンを積層することで、配線としての導電性を保持したまま、トランジスタ550からの水素の拡散を抑制することができる。この場合、水素に対するバリア性を有する窒化タンタル層が、水素に対するバリア性を有する絶縁体350と接する構成であることが好ましい。
 絶縁体354、および導電体356上に、配線層を設けてもよい。例えば、図16では、絶縁体360、絶縁体362、および絶縁体364が順に積層して設けられている。また、絶縁体360、絶縁体362、および絶縁体364には、導電体366が形成されている。導電体366は、プラグまたは配線としての機能を有する。なお導電体366は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体360は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体366は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体360が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体364、および導電体366上に、配線層を設けてもよい。例えば、図16では、絶縁体370、絶縁体372、および絶縁体374が順に積層して設けられている。また、絶縁体370、絶縁体372、および絶縁体374には、導電体376が形成されている。導電体376は、プラグまたは配線としての機能を有する。なお導電体376は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体370は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体376は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体370が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体374、および導電体376上に、配線層を設けてもよい。例えば、図16では、絶縁体380、絶縁体382、および絶縁体384が順に積層して設けられている。また、絶縁体380、絶縁体382、および絶縁体384には、導電体386が形成されている。導電体386は、プラグまたは配線としての機能を有する。なお導電体386は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 なお、例えば、絶縁体380は、絶縁体324と同様に、水素に対するバリア性を有する絶縁体を用いることが好ましい。また、導電体386は、水素に対するバリア性を有する導電体を含むことが好ましい。特に、水素に対するバリア性を有する絶縁体380が有する開口部に、水素に対するバリア性を有する導電体が形成される。当該構成により、トランジスタ550とトランジスタ500とは、バリア層により分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 上記において、導電体356を含む配線層、導電体366を含む配線層、導電体376を含む配線層、および導電体386を含む配線層、について説明したが、本実施の形態に係る半導体装置はこれに限られるものではない。導電体356を含む配線層と同様の配線層を3層以下にしてもよいし、導電体356を含む配線層と同様の配線層を5層以上にしてもよい。
 絶縁体384上には絶縁体510、絶縁体512、絶縁体514、および絶縁体516が、順に積層して設けられている。絶縁体510、絶縁体512、絶縁体514、および絶縁体516のいずれかは、酸素、水素などに対してバリア性のある物質を用いることが好ましい。
 例えば、絶縁体510、および絶縁体514には、例えば、基板311、またはトランジスタ550を設ける領域などから、トランジスタ500を設ける領域に、水素、不純物などが拡散しないようなバリア性を有する膜を用いることが好ましい。したがって、絶縁体324と同様の材料を用いることができる。
 水素に対するバリア性を有する膜の一例として、CVD法で形成した窒化シリコンを用いることができる。ここで、トランジスタ500等の酸化物半導体を有する半導体素子に、水素が拡散することで、当該半導体素子の特性が低下する場合がある。したがって、トランジスタ500と、トランジスタ550との間に、水素の拡散を抑制する膜を用いることが好ましい。水素の拡散を抑制する膜とは、具体的には、水素の脱離量が少ない膜とする。
 また、水素に対するバリア性を有する膜として、例えば、絶縁体510、および絶縁体514には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、例えば、絶縁体512、および絶縁体516には、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体512、および絶縁体516として、酸化シリコン膜または酸化窒化シリコン膜などを用いることができる。
 また、絶縁体510、絶縁体512、絶縁体514、および絶縁体516には、導電体518、およびトランジスタ500を構成する導電体(例えば、導電体503)等が埋め込まれている。なお、導電体518は、容量600、またはトランジスタ550と接続するプラグ、または配線としての機能を有する。導電体518は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 特に、絶縁体510、および絶縁体514と接する領域の導電体518は、酸素、水素、および水に対するバリア性を有する導電体であることが好ましい。当該構成により、トランジスタ550とトランジスタ500とは、酸素、水素、および水に対するバリア性を有する層で、分離することができ、トランジスタ550からトランジスタ500への水素の拡散を抑制することができる。
 絶縁体516の上方には、トランジスタ500が設けられている。
 図17Aおよび図17Bに示すように、トランジスタ500は、絶縁体514および絶縁体516に埋め込まれるように配置された導電体503と、絶縁体516および導電体503の上に配置された絶縁体520と、絶縁体520の上に配置された絶縁体522と、絶縁体522の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530aと、酸化物530aの上に配置された酸化物530bと、酸化物530b上に互いに離れて配置された導電体542aおよび導電体542bと、導電体542aおよび導電体542b上に配置され、導電体542aと導電体542bの間に重畳して開口が形成された絶縁体580と、開口の底面および側面に配置された絶縁体545と、絶縁体545の形成面に配置された導電体560と、を有する。
 また、図17Aおよび図17Bに示すように、酸化物530a、酸化物530b、導電体542a、および導電体542bと、絶縁体580の間に絶縁体544が配置されることが好ましい。また、図17Aおよび図17Bに示すように、導電体560は、絶縁体545の内側に設けられた導電体560aと、導電体560aの内側に埋め込まれるように設けられた導電体560bと、を有することが好ましい。また、図17Aおよび図17Bに示すように、絶縁体580、導電体560、および絶縁体545の上に絶縁体574が配置されることが好ましい。
 なお、本明細書などにおいて、酸化物530a、および酸化物530bをまとめて酸化物530という場合がある。
 なお、トランジスタ500では、チャネルが形成される領域と、その近傍において、酸化物530a、および酸化物530bの2層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物530bの単層、または3層以上の積層構成を設ける構成にしてもよい。
 また、トランジスタ500では、導電体560を2層の積層構成として示しているが、本発明はこれに限られるものではない。例えば、導電体560が、単層構成であってもよいし、3層以上の積層構成であってもよい。また、図16、および図17Aに示すトランジスタ500は一例であり、その構成に限定されず、回路構成、駆動方法などに応じて適切なトランジスタを用いればよい。
 ここで、導電体560は、トランジスタのゲート電極として機能し、導電体542aおよび導電体542bは、それぞれソース電極またはドレイン電極として機能する。上記のように、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に埋め込まれるように形成される。導電体560、導電体542aおよび導電体542bの配置は、絶縁体580の開口に対して、自己整合的に選択される。つまり、トランジスタ500において、ゲート電極を、ソース電極とドレイン電極の間に、自己整合的に配置させることができる。よって、導電体560を位置合わせのマージンを設けることなく形成することができるので、トランジスタ500の占有面積の縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。
 さらに、導電体560が、導電体542aと導電体542bの間の領域に自己整合的に形成されるので、導電体560は、導電体542aまたは導電体542bと重畳する領域を有さない。これにより、導電体560と導電体542aおよび導電体542bとの間に形成される寄生容量を低減することができる。よって、トランジスタ500のスイッチング速度を向上させ、高い周波数特性を有せしめることができる。
 導電体560は、第1のゲート(トップゲートともいう)電極として機能する場合がある。また、導電体503は、第2のゲート(ボトムゲートともいう)電極として機能する場合がある。その場合、導電体503に印加する電位を、導電体560に印加する電位と、連動させず、独立して変化させることで、トランジスタ500のしきい値電圧を制御することができる。特に、導電体503に負の電位を印加することにより、トランジスタ500のしきい値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体503に負の電位を印加したほうが、印加しない場合よりも、導電体560に印加する電位が0Vのときのドレイン電流を小さくすることができる。
 導電体503は、酸化物530、および導電体560と、重なるように配置する。これにより、導電体560、および導電体503に電位を印加した場合、導電体560から生じる電界と、導電体503から生じる電界と、がつながり、酸化物530に形成されるチャネル形成領域を覆うことができる。
 本明細書等において、一対のゲート電極(第1のゲート電極、および第2のゲート電極)の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構成を、surrounded channel(S−channel)構成とよぶ。また、本明細書等において、surrounded channel(S−channel)構成は、ソース電極およびドレイン電極として機能する導電体542aおよび導電体542bに接する酸化物530の側面および周辺が、チャネル形成領域と同じくI型であるといった特徴を有する。また、導電体542aおよび導電体542bに接する酸化物530の側面および周辺は、絶縁体544と接しているため、チャネル形成領域と同様にI型となりうる。なお、本明細書等において、I型とは後述する、高純度真性と同様として扱うことができる。また、本明細書等で開示するS−channel構成は、Fin型構成およびプレーナ型構成とは異なる。S−channel構成を採用することで、短チャネル効果に対する耐性を高める、別言すると短チャネル効果が発生し難いトランジスタとすることができる。
 また、導電体503は、導電体518と同様の構成であり、絶縁体514および絶縁体516の開口の内壁に接して導電体503aが形成され、さらに内側に導電体503bが形成されている。なお、トランジスタ500では、導電体503aおよび導電体503bを積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体503は、単層、または3層以上の積層構成として設ける構成にしてもよい。
 ここで、導電体503aは、水素原子、水素分子、水分子、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。
 例えば、導電体503aが酸素の拡散を抑制する機能を持つことにより、導電体503bが酸化して導電率が低下することを抑制することができる。
 また、導電体503が配線の機能を兼ねる場合、導電体503bは、タングステン、銅、またはアルミニウムを主成分とする、導電性が高い導電性材料を用いることが好ましい。なお、本実施の形態では導電体503を導電体503aと導電体503bの積層で図示したが、導電体503は単層構成であってもよい。
 絶縁体520、絶縁体522、および絶縁体524は、第2のゲート絶縁膜としての機能を有する。
 ここで、酸化物530と接する絶縁体524は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。当該酸素は、加熱により膜中から放出されやすい。本明細書などでは、加熱により放出される酸素を「過剰酸素」と呼ぶ場合がある。つまり、絶縁体524には、過剰酸素を含む領域(「過剰酸素領域」ともいう。)が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物530に接して設けることにより、酸化物530中の酸素欠損(V:oxygen vacancyともいう)を低減し、トランジスタ500の信頼性を向上させることができる。なお、酸化物530中の酸素欠損に水素が入った場合、当該欠陥(以下、VHと呼ぶ場合がある。)はドナーとして機能し、キャリアである電子が生成されることがある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成する場合がある。従って、水素が多く含まれている酸化物半導体を用いたトランジスタは、ノーマリーオン特性となりやすい。また、酸化物半導体中の水素は、熱、電界などのストレスによって動きやすいため、酸化物半導体に多くの水素が含まれると、トランジスタの信頼性が悪化する恐れもある。本発明の一態様においては、酸化物530中のVHをできる限り低減し、高純度真性または実質的に高純度真性にすることが好ましい。このように、VHが十分低減された酸化物半導体を得るには、酸化物半導体中の水分、水素などの不純物を除去すること(「脱水」または「脱水素化処理」ともいう。)と、酸化物半導体に酸素を供給して酸素欠損を補償すること(「加酸素化処理」ともいう。)が重要である。VHなどの不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm以上、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
 また、上記過剰酸素領域を有する絶縁体と、酸化物530と、を接して加熱処理、マイクロ波処理、またはRF処理のいずれか一または複数の処理を行っても良い。当該処理を行うことで、酸化物530中の水、または水素を除去することができる。例えば、酸化物530において、VoHの結合が切断される反応が起きる、別言すると「VH→Vo+H」という反応が起きて、脱水素化することができる。このとき発生した水素の一部は、酸素と結合してHOとして、酸化物530、または酸化物530近傍の絶縁体から除去される場合がある。また、水素の一部は、導電体542にゲッタリングされる場合がある。
 また、上記マイクロ波処理は、例えば、高密度プラズマを発生させる電源を有する装置、または、基板側にRFを印加する電源を有する装置を用いると好適である。例えば、酸素を含むガスを用い、且つ高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを、効率よく酸化物530、または酸化物530近傍の絶縁体中に導入することができる。また、上記マイクロ波処理は、圧力を133Pa以上、好ましくは200Pa以上、さらに好ましくは400Pa以上とすればよい。また、マイクロ波処理を行う装置内に導入するガスとしては、例えば、酸素と、アルゴンとを用い、酸素流量比(O/(O+Ar))が50%以下、好ましくは10%以上30%以下で行うとよい。
 また、トランジスタ500の作製工程中において、酸化物530の表面が露出した状態で、加熱処理を行うと好適である。当該加熱処理は、例えば、100℃以上450℃以下、より好ましくは350℃以上400℃以下で行えばよい。なお、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。例えば、加熱処理は酸素雰囲気で行うことが好ましい。これにより、酸化物530に酸素を供給して、酸素欠損(V)の低減を図ることができる。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素ガスもしくは不活性ガスの雰囲気で加熱処理した後に、脱離した酸素を補うために、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で行ってもよい。または、酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理した後に、連続して窒素ガスもしくは不活性ガスの雰囲気で加熱処理を行っても良い。
 なお、酸化物530に加酸素化処理を行うことで、酸化物530中の酸素欠損を、供給された酸素により修復させる、別言すると「Vo+O→null」という反応を促進させることができる。さらに、酸化物530中に残存した水素に供給された酸素が反応することで、当該水素をHOとして除去する(脱水化する)ことができる。これにより、酸化物530中に残存していた水素が酸素欠損に再結合してVHが形成されるのを抑制することができる。
 また、絶縁体524が、過剰酸素領域を有する場合、絶縁体522は、酸素(例えば、酸素原子、酸素分子など)の拡散を抑制する機能を有する(上記酸素が透過しにくい)ことが好ましい。
 絶縁体522が、酸素、不純物などの拡散を抑制する機能を有することで、酸化物530が有する酸素は、絶縁体520側へ拡散することがなく、好ましい。また、導電体503が、絶縁体524、酸化物530などが有する酸素と反応することを抑制することができる。
 絶縁体522は、例えば、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁膜として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
 特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい)絶縁性材料であるアルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウム、ハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体522を形成した場合、絶縁体522は、酸化物530からの酸素の放出、またはトランジスタ500の周辺部から酸化物530への水素等の不純物の混入を抑制する層として機能する。
 または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体520は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、好適である。また、high−k材料の絶縁体を酸化シリコン、または酸化窒化シリコンと組み合わせることで、熱的に安定かつ比誘電率の高い積層構成の絶縁体520を得ることができる。
 なお、図17Aおよび図17Bのトランジスタ500では、3層の積層構成からなる第2のゲート絶縁膜として、絶縁体520、絶縁体522、および絶縁体524が図示されているが、第2のゲート絶縁膜は、単層、2層、または4層以上の積層構成を有していてもよい。その場合、同じ材料からなる積層構成に限定されず、異なる材料からなる積層構成でもよい。
 トランジスタ500は、チャネル形成領域を含む酸化物530に、酸化物半導体として機能する金属酸化物を用いる。例えば、酸化物530として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。
 酸化物半導体として機能する金属酸化物の形成は、スパッタリング法で行なってもよいし、ALD(Atomic Layer Deposition)法で行なってもよい。なお、酸化物半導体として機能する金属酸化物については、他の実施の形態で詳細に説明する。
 また、酸化物530においてチャネル形成領域として機能する金属酸化物は、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
 酸化物530は、酸化物530b下に酸化物530aを有することで、酸化物530aよりも下方に形成された構成物から、酸化物530bへの不純物の拡散を抑制することができる。
 なお、酸化物530は、各金属原子の原子数比が異なる複数の酸化物層の積層構成を有することが好ましい。具体的には、酸化物530aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物530bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物530aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物530bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物530bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物530aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。
 また、酸化物530aの伝導帯下端のエネルギーが、酸化物530bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物530a電子親和力が、酸化物530bの電子親和力より小さいことが好ましい。
 ここで、酸化物530aおよび酸化物530bの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物530aおよび酸化物530bの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物530aと酸化物530bとの界面において形成される混合層の欠陥準位密度を低くするとよい。
 具体的には、酸化物530aと酸化物530bが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物530bがIn−Ga−Zn酸化物の場合、酸化物530aとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
 このとき、キャリアの主たる経路は酸化物530bとなる。酸化物530aを上述の構成とすることで、酸化物530aと酸化物530bとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ500は高いオン電流を得られる。
 酸化物530b上には、ソース電極、およびドレイン電極として機能する導電体542a、および導電体542bが設けられる。導電体542a、および導電体542bとしては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。更に、窒化タンタルなどの金属窒化物膜は、水素または酸素に対するバリア性があるため好ましい。
 また、図17Aでは、導電体542a、および導電体542bを単層構成として示したが、2層以上の積層構成としてもよい。例えば、窒化タンタル膜とタングステン膜を積層するとよい。また、チタン膜とアルミニウム膜を積層してもよい。また、タングステン膜上にアルミニウム膜を積層する二層構成、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構成、チタン膜上に銅膜を積層する二層構成、タングステン膜上に銅膜を積層する二層構成としてもよい。
 また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構成、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構成等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
 また、図17Aに示すように、酸化物530の、導電体542a(導電体542b)との界面とその近傍には、低抵抗領域として、領域543a、および領域543bが形成される場合がある。このとき、領域543aはソース領域またはドレイン領域の一方として機能し、領域543bはソース領域またはドレイン領域の他方として機能する。また、領域543aと領域543bに挟まれる領域にチャネル形成領域が形成される。
 酸化物530と接するように上記導電体542a(導電体542b)を設けることで、領域543a(領域543b)の酸素濃度が低減する場合がある。また、領域543a(領域543b)に導電体542a(導電体542b)に含まれる金属と、酸化物530の成分とを含む金属化合物層が形成される場合がある。このような場合、領域543a(領域543b)のキャリア密度が増加し、領域543a(領域543b)は、低抵抗領域となる。
 絶縁体544は、導電体542a、および導電体542bを覆うように設けられ、導電体542a、および導電体542bの酸化を抑制する。このとき、絶縁体544は、酸化物530の側面を覆い、絶縁体524と接するように設けられてもよい。
 絶縁体544として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、ネオジム、ランタンまたは、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。また、絶縁体544として、窒化酸化シリコンまたは窒化シリコンなども用いることができる。
 特に、絶縁体544として、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウム、およびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱処理において、結晶化しにくいため好ましい。なお、導電体542a、および導電体542bが耐酸化性を有する材料、または、酸素を吸収しても著しく導電性が低下しない材料である場合、絶縁体544は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
 絶縁体544を有することで、絶縁体580に含まれる水、および水素などの不純物が酸化物530bに拡散することを抑制することができる。また、絶縁体580が有する過剰酸素により、導電体542が酸化するのを抑制することができる。
 絶縁体545は、第1のゲート絶縁膜として機能する。絶縁体545は、上述した絶縁体524と同様に、過剰に酸素を含み、かつ加熱により酸素が放出される絶縁体を用いて形成することが好ましい。
 具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
 過剰酸素を含む絶縁体を絶縁体545として設けることにより、絶縁体545から、酸化物530bのチャネル形成領域に効果的に酸素を供給することができる。また、絶縁体524と同様に、絶縁体545中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体545の膜厚は、1nm以上20nm以下とするのが好ましい。
 また、絶縁体545が有する過剰酸素を、効率的に酸化物530へ供給するために、絶縁体545と導電体560との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体545から導電体560への酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物を設けることで、絶縁体545から導電体560への過剰酸素の拡散が抑制される。つまり、酸化物530へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体560の酸化を抑制することができる。当該金属酸化物としては、絶縁体544に用いることができる材料を用いればよい。
 なお、絶縁体545は、第2のゲート絶縁膜と同様に、積層構成としてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁膜の薄膜化により、リーク電流などの問題が生じる場合があるため、ゲート絶縁膜として機能する絶縁体を、high−k材料と、熱的に安定している材料との積層構成とすることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。また、熱的に安定かつ比誘電率の高い積層構成とすることができる。
 第1のゲート電極として機能する導電体560は、図17Aおよび図17Bでは2層構成として示しているが、単層構成でもよいし、3層以上の積層構成であってもよい。
 導電体560aは、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子などの少なくとも一)の拡散を抑制する機能を有する導電性材料を用いることが好ましい。導電体560aが酸素の拡散を抑制する機能を持つことにより、絶縁体545に含まれる酸素により、導電体560bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、導電体560aとして、酸化物530に適用できる酸化物半導体を用いることができる。その場合、導電体560bをスパッタリング法で成膜することで、導電体560aの電気抵抗値を低下させて導電体にすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
 また、導電体560bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体560bは、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体560bは積層構成としてもよく、例えば、チタンまたは窒化チタンと上記導電性材料との積層構成としてもよい。
 絶縁体580は、絶縁体544を介して、導電体542a、および導電体542b上に設けられる。絶縁体580は、過剰酸素領域を有することが好ましい。例えば、絶縁体580として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素、および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などを有することが好ましい。特に、酸化シリコン、および酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
 絶縁体580は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体580を設けることで、絶縁体580中の酸素を酸化物530へと効率良く供給することができる。なお、絶縁体580中の水または水素などの不純物濃度が低減されていることが好ましい。
 絶縁体580の開口は、導電体542aと導電体542bの間の領域に重畳して形成される。これにより、導電体560は、絶縁体580の開口、および導電体542aと導電体542bに挟まれた領域に、埋め込まれるように形成される。
 半導体装置を微細化するに当たり、ゲート長を短くすることが求められるが、導電体560の導電性が下がらないようにする必要がある。そのために導電体560の膜厚を大きくすると、導電体560はアスペクト比が高い形状となりうる。本実施の形態では、導電体560を絶縁体580の開口に埋め込むように設けるため、導電体560をアスペクト比の高い形状にしても、工程中に導電体560を倒壊させることなく、形成することができる。
 絶縁体574は、絶縁体580の上面、導電体560の上面、および絶縁体545の上面に接して設けられることが好ましい。絶縁体574をスパッタリング法で成膜することで、絶縁体545、および絶縁体580へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物530中に酸素を供給することができる。
 例えば、絶縁体574として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、またはマグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
 特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。したがって、スパッタリング法で成膜した酸化アルミニウムは、酸素供給源であるとともに、水素などの不純物のバリア膜としての機能も有することができる。
 また、絶縁体574の上に、層間膜として機能する絶縁体581を設けることが好ましい。絶縁体581は、絶縁体524などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。
 また、絶縁体581、絶縁体574、絶縁体580、および絶縁体544に形成された開口に、導電体540a、および導電体540bを配置する。導電体540aおよび導電体540bは、導電体560を挟んで対向して設ける。導電体540aおよび導電体540bは、後述する導電体546、および導電体548と同様の構成である。
 絶縁体581上には、絶縁体582が設けられている。絶縁体582は、酸素、水素などに対してバリア性のある物質を用いることが好ましい。したがって、絶縁体582には、絶縁体514と同様の材料を用いることができる。例えば、絶縁体582には、酸化アルミニウム、酸化ハフニウム、酸化タンタルなどの金属酸化物を用いることが好ましい。
 特に、酸化アルミニウムは、酸素、およびトランジスタの電気特性の変動要因となる水素、水分などの不純物、の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミニウムは、トランジスタの作製工程中および作製後において、水素、水分などの不純物のトランジスタ500への混入を防止することができる。また、トランジスタ500を構成する酸化物からの酸素の放出を抑制することができる。そのため、トランジスタ500に対する保護膜として用いることに適している。
 また、絶縁体582上には、絶縁体586が設けられている。絶縁体586は、絶縁体320と同様の材料を用いることができる。また、これらの絶縁体に、比較的誘電率が低い材料を適用することで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体586として、酸化シリコン膜、酸化窒化シリコン膜などを用いることができる。
 また、絶縁体520、絶縁体522、絶縁体524、絶縁体544、絶縁体580、絶縁体574、絶縁体581、絶縁体582、および絶縁体586には、導電体546、および導電体548等が埋め込まれている。
 導電体546、および導電体548は、容量600、トランジスタ500、またはトランジスタ550と接続するプラグ、または配線としての機能を有する。導電体546、および導電体548は、導電体328、および導電体330と同様の材料を用いて設けることができる。
 また、トランジスタ500の形成後、トランジスタ500を囲むように開口を形成し、当該開口を覆うように、水素、または水に対するバリア性が高い絶縁体を形成してもよい。上述のバリア性の高い絶縁体でトランジスタ500を包み込むことで、外部から水分、および水素が侵入するのを防止することができる。または、複数のトランジスタ500をまとめて、水素、または水に対するバリア性が高い絶縁体で包み込んでもよい。なお、トランジスタ500を囲むように開口を形成する場合、例えば、絶縁体522または絶縁体514に達する開口を形成し、絶縁体522または絶縁体514に接するように上述のバリア性の高い絶縁体を形成すると、トランジスタ500の作製工程の一部を兼ねられるため、好適である。なお、水素、または水に対するバリア性が高い絶縁体としては、例えば、絶縁体522または絶縁体514と同様の材料を用いればよい。
 続いて、トランジスタ500の上方には、容量600が設けられている。容量600は、導電体610と、導電体620と、絶縁体630とを有する。
 また、導電体546、および導電体548上に、導電体612を設けてもよい。導電体612は、トランジスタ500と接続するプラグ、または配線としての機能を有する。導電体610は、容量600の電極としての機能を有する。なお、導電体612、および導電体610は、同時に形成することができる。
 導電体612、および導電体610には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル膜、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。または、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
 本実施の形態では、導電体612、および導電体610を単層構成で示したが、当該構成に限定されず、2層以上の積層構成でもよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。
 絶縁体630を介して、導電体610と重畳するように、導電体620を設ける。なお、導電体620は、金属材料、合金材料、または金属酸化物材料などの導電性材料を用いることができる。耐熱性と導電性を両立するタングステン、モリブデンなどの高融点材料を用いることが好ましく、特にタングステンを用いることが好ましい。また、導電体などの他の構成と同時に形成する場合は、低抵抗金属材料であるCu(銅)、Al(アルミニウム)等を用いればよい。
 導電体620、および絶縁体630上には、絶縁体640が設けられている。絶縁体640は、絶縁体320と同様の材料を用いて設けることができる。また、絶縁体640は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
 本構成を用いることで、酸化物半導体を有するトランジスタを用いた半導体装置において、微細化または高集積化を図ることができる。
 本発明の一態様の半導体装置に用いることができる基板としては、ガラス基板、石英基板、サファイア基板、セラミック基板、金属基板(例えば、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板など)、半導体基板(例えば、単結晶半導体基板、多結晶半導体基板、または化合物半導体基板など)SOI(SOI:Silicon on Insulator)基板、などを用いることができる。また、本実施の形態の処理温度に耐えうる耐熱性を有するプラスチック基板を用いてもよい。ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノシリケートガラス、またはアルミノホウケイ酸ガラス、またはソーダライムガラスなどがある。他にも、結晶化ガラスなどを用いることができる。
 または、基板として、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、または基材フィルムなどを用いることができる。可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、以下のものがあげられる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリテトラフルオロエチレン(PTFE)に代表されるプラスチックがある。または、一例としては、アクリル等の合成樹脂などがある。または、一例としては、ポリプロピレン、ポリエステル、ポリフッ化ビニル、またはポリ塩化ビニルなどがある。または、一例としては、ポリアミド、ポリイミド、アラミド樹脂、エポキシ樹脂、無機蒸着フィルム、または紙類などがある。特に、半導体基板、単結晶基板、またはSOI基板などを用いてトランジスタを製造することによって、特性、サイズ、または形状などのばらつきが少なく、電流能力が高く、サイズの小さいトランジスタを製造することができる。このようなトランジスタによって回路を構成すると、回路の低消費電力化、または回路の高集積化を図ることができる。
 また、基板として、可撓性基板を用い、可撓性基板上に直接、トランジスタ、抵抗、および/または容量などを形成してもよい。または、基板と、トランジスタ、抵抗、および/または容量などの間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板より分離し、他の基板に転載するために用いることができる。その際、トランジスタ、抵抗、および/または容量などは耐熱性の劣る基板、可撓性の基板などにも転載できる。なお、上述の剥離層には、例えば、タングステン膜と酸化シリコン膜との無機膜の積層構成の構成、基板上にポリイミド等の有機樹脂膜が形成された構成、水素を含むシリコン膜等を用いることができる。
 つまり、ある基板上に半導体装置を形成し、その後、別の基板に半導体装置を転置してもよい。半導体装置が転置される基板の一例としては、上述したトランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、石材基板、木材基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、またはゴム基板などがある。これらの基板を用いることにより、可撓性を有する半導体装置の製造、壊れにくい半導体装置の製造、耐熱性の付与、軽量化、または薄型化を図ることができる。
 可撓性を有する基板上に半導体装置を設けることで、重量の増加を抑え、且つ破損しにくい半導体装置を提供することができる。
 なお、図16に示すトランジスタ550は一例であり、その構成に限定されず、回路構成、駆動方法などに応じて適切なトランジスタを用いればよい。例えば、半導体装置をOSトランジスタのみの単極性回路(nチャネル型トランジスタのみ、などと同極性のトランジスタを意味する)とする場合、図18に示すように、トランジスタ550の構成を、トランジスタ500と同様の構成にすればよい。
 図18に示す構成を半導体装置101に適用することで、実施の形態1で説明した回路10S(回路20Sまたは回路30S)上に配置される、バックアップ回路10M(データ保持回路20Mまたはメモリセル30M)が共に、OSトランジスタとすることができる。具体的には、図19Aに図示するように、回路10S(回路20Sまたは回路30S)およびバックアップ回路10M(データ保持回路20Mまたはメモリセル30M)が、チャネル形成領域が形成される半導体層が酸化物530を有するトランジスタ550(OSトランジスタ)とすることができる。
 回路10S(回路20Sまたは回路30S)をSiトランジスタで構成する場合、Siトランジスタが設けられるシリコン基板が可撓性に乏しいため、曲げ、捻りなどの力により破壊されてしまう虞がある。一方、図18および図19Aに示すOSトランジスタで半導体装置101を構成する回路を形成する場合、OSトランジスタをポリイミド樹脂などの可撓性を有する基板上に設ける構成とすることで、図19Bに示すように自在に変形できる半導体装置101とすることができる。また半導体装置101が衝撃により破壊されるといった虞を低減することができる。そのため、当該半導体装置101を有する電子装置は、デザイン性に優れ、且つ衝撃に対して半導体装置が破損されることを低減できる電子装置とすることができる。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態および実施例などに示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態5)
 本実施の形態では、本発明の一態様である電子装置と、異なる別の電子装置と、を組み合わせて用いる表示システムについて、図20乃至図25を用いて説明する。
<表示システムの構成例>
 図20A乃至図20Cは、本発明の一態様である表示システムの構成例を説明する図面である。
 図20Aに示すように、本発明の一態様である表示システムは、上記実施の形態1などで説明した電子装置100と、頭部装着型の電子装置100X(HMD(Head Mounted Displayともいう)と、を有する。電子装置100、及び電子装置100Xは、それぞれ無線通信手段を有する。また、電子装置100Xは、電子装置100よりもディスプレイの画素密度(精細度ともいう)が高い領域を有する。また、上記の無線通信手段を用いて、電子装置100の画面、または当該画面の一部を、電子装置100Xに表示する機能を有する。
 図20Aに示すように、本発明の一態様である表示システムは、複数の電子装置を有する。また、当該複数の電子装置は、無線通信手段を用いてデータのやりとりを行い、データをアップコンバート、またはダウンコンバートなどの加工方法により、一方の電子装置の画面に表示される画像データの一部を加工して、他方の電子装置に表示することができる。このような、表示システムとすることにより、使用者の利便性が向上する、各電子装置に最適な画質で画像を表示可能となる、または電子装置の消費電力を低減させることができる。
 また、図20Aに図示する電子装置100は、ディスプレイ102と、筐体111と、通信部106と、半導体装置101と、バッテリー104、センサ105、バンド113と、を有する。なお、図20Aでは、使用者の右手70Rと、使用者の左手70Lと、を示している。また、電子装置100Xは、筐体81と、制御部71、ディスプレイ72と、バッテリー74、センサ75Aおよび75B(センサ75という場合がある)、通信部76と、装着部82と、を有する。なお、電子装置100と電子装置100Xとの間の無線通信は、図20Aに示すように、通信部106と、通信部76と、の間で行うことができる。なお、通信部106は、電子装置100への操作に応じて、電子装置100Xに情報を送信する機能を有する。また、通信部76は、電子装置100Xへの操作に応じて、電子装置100に情報を送信する機能を有する。
 図20Aに示す電子装置100Xは、拡張現実(AR:Augmented Reality)のコンテンツを表示する機能、及び仮想現実(VR:Virtual Reality)のコンテンツを表示する機能のいずれか一または双方を有する。なお、電子装置100Xは、AR、VRの他に、代替現実(SR:Substitutional Reality)、または複合現実(MR:Mixed Reality)のコンテンツを表示する機能を有していてもよい。電子装置100Xが、AR、VR、SR、MRなどのコンテンツを表示する機能を有することで、使用者の没入感を高めることが可能となる。
 なお、電子装置100Xが有するセンサ75Aは、電子装置100Xの外側の情報を取得するカメラ部としての機能を有する。一例として、図20Aではセンサ75Aを筐体81の外側に2つ配置し、使用者側の周囲の情報を取得する様子を図示している。このように使用者の周囲の情報を取得するカメラ部としてセンサ75Aを複数配置することで、肉眼で使用者の周囲の情報を把握すると比較して、センサ75Aを介して肉眼では検知できない情報を取得することができる。そのため、使用者が得られる情報量を増やすことができる。例えば、センサ75Aが取得したデータは、ディスプレイ72、または電子装置100が有するディスプレイ102に出力することができる。
 また電子装置100Xが有するセンサ75Bは、電子装置100Xの使用者側の情報を取得するカメラ部としての機能を有する。一例として、図20Aではセンサ75Aを筐体81の内側において使用者の眼を撮像できるように2つ配置し、使用者の眼の周囲の情報を取得する様子を図示している。このように使用者の眼の情報を取得するカメラ部としてセンサ75Aを複数配置することで、使用者のアイトラッキング(視線追跡)を行う構成とすることができる。そのため、ディスプレイ72において、使用者の視線に応じた表示を行うことができる。
 使用者は、電子装置100Xが有する装着部82により、電子装置100Xを頭部に装着することができる。なお、図20Aにおいては、メガネのつる(ジョイント、テンプルなどともいう)のような形状として例示しているがこれに限定されない。装着部82は、使用者が装着できればよく、例えば、ヘルメット型、またはバンド型の形状としてもよい。
 なお、ここではセンサ75Aをカメラ部として用いる例を示したが、対象物の距離を測定することのできる測距センサ(以下、検知部ともよぶ)を用いてもよい。すなわち、センサ75Aおよび75Bは、検知部の一態様である。検知部としては、例えばイメージセンサ、ライダー(LIDAR:Light Detection and Ranging)などの距離画像センサを用いることができる。カメラによって得られた画像と、距離画像センサによって得られた画像とを用いることにより、より多くの情報を取得し、より高精度なジェスチャー操作を可能とすることができる。
 使用者は、直感的なジェスチャー操作により、電子装置100Xのディスプレイ72に表示された画像(データ・オブジェクトともいう)を、実際の物体のように操作することができる。例えば、板状に浮かぶように表示された画像を手でつまむことができる。また、つまんだ画像をフリスビーのように投げて画像を消すことができる。また、つまんだ画像を上下左右に動かすことができる。また、つまんだ画像を前後に動かすことで、当該画像を拡大または縮小することができる。また、つまんだ画像の表裏を反転させることができる。このとき、回転軸は縦方向、横方向、または斜め方向とすることができる。また、何も表示されていない視野の端をつまんで引っ張ることで、板状の画像を引き出すことができる。また、板状の画像を使用者から離れる向きに押すことで、画像を消すことができる。また、板状の画像の端に手を添えたあとで、手を左右に動かすことで、画像を消すことができる。このような、画像を消す動作は、画像を消したのちに他の画像に切り替わってもよい。また、電子装置100Xに使用者が事前に特定の情報を登録してもよい。例えば、手のひらを広げる動作から、親指と人差し指とを繋げる動作(親指と人差し指とで丸を作る動作)などを第1の処理情報として登録し、当該第1の処理情報に基づいて、第2の処理情報を実行することができる。なお、第2の処理情報としては、例えば、画像を消す、特定の画像を表示させる、ショートカットアイコンなどを表示させるなど、使用者が任意に実行したいデータを第2の処理情報として登録することができる。
 また、電子装置を操作するために、使用者が両手を使った動作など、複数の動きを用いたジェスチャー操作を高精度に行うために、電子装置、または電子機器に検知部を複数設けることが好ましい。これにより、複数の対象物の3次元的な位置情報をより高精度に検出することができるため、複雑なジェスチャー操作による入力が可能となる。
 使用者は、例えば両手を使ったジェスチャー操作により、電子装置100Xのディスプレイ72の表示された画像(データ・オブジェクトともいう)を、実際の物体のように操作することができる。例えば、板状に浮かぶように表示された画像の2か所(例えば上下、左右、または斜めなど)をつまむことができる。また、画像を両手でつまんだ状態で、画像を引き延ばすことで拡大することができる。また、画像を両手でつまんだ状態で、画像を縮めることで縮小することができる。また、画像を両手でつまんだ後、または、画像の両端に手を添えた後で、両手で画像をつぶすことで、画像を消すことができる。また、画像の上側の辺を両手でつまんで、画像を左右に破くことで、画像を消すことができる。また、画像を両手でつまんで、画像を折り曲げることで、画像を消すことができる。また、画像を片手でつまんで、他方の手で、画像に対してジェスチャー操作(タップ、スワイプ、ピンチイン、ピンチアウトなど)を行うこともできる。また、上述のように、電子装置100Xに使用者が事前に特定の動作と、その動作に関連付けられた処理の情報を登録することもできる。
 本発明の一態様の表示システムは、電子装置100と、電子装置100Xとがそれぞれネットワーク接続が可能であることが好ましい。これにより、電子装置100、電子装置100Xのそれぞれを独立に、コミュニケーションツールとして利用することが可能である。例えば、第1の使用者が装着する電子装置100Xに表示された画像または画像の一部を、第2の使用者が装着する電子装置100Xに表示させることができる。または、第1の使用者装着する電子装置100Xに表示された画像または画像の一部を、第2の使用者が所持する電子装置100に表示させることができる。このような表示システムとすることで、複数の使用者が同じ画像データを共有することができるため、コミュニケーション性を高めることができる。本発明の一態様の表示システムを用いることで、利便性が高い表示システム、または表示システムの動作方法を提供することができる。
 なお、本実施の形態で挙げる、電子装置100、及び電子装置100Xが実行しうる処理は一例であり、電子装置100、または電子装置100Xに組み込まれるアプリケーションソフトウェアに応じて、様々な処理が実行されうる。
 次に、図20B、図21A、及び図21Bを用いて、本発明の一態様の電子装置、及び表示システムについて、説明を行う。
 図20Bは、本発明の一態様の電子装置、及び表示システムを説明する図である。図20Bに示すように、電子装置100は、少なくともディスプレイ102と、通信部106と、を有し、電子装置100Xは、ディスプレイ72と、通信部76と、を有する。
 また、図21Aに示すように、電子装置100は、ディスプレイ102と、通信部106と、半導体装置101と、バッテリー104と、センサ105と、を有する。また、図21Aに示すように、電子装置100Xは、ディスプレイ72と、通信部76と、制御部71と、バッテリー74と、センサ75と、を有する。
 なお、図20B、及び図21Aにおいては、電子装置100と、電子装置100Xとは、それぞれ同じ機能を有する構成について例示したがこれに限定されない。例えば、図21Bに示すように、電子装置100と、電子装置100Xとは、異なる機能を有していてもよい。
 図21Bにおいて、電子装置100は、図21Aに示す構成に加えて、カメラ部107(検知部ともいう)と、通信部108と、を有する。また、電子装置100Xは、図21Aに示す構成に加えて、カメラ部77と、ヘッドホン部78と、を有する。カメラ部77およびカメラ部107としては、イメージセンサなどの撮像部を有していればよい。また、望遠、広角などの複数の画角に対応可能なように複数のカメラを設けてもよい。また、通信部108としては、通信部106と異なる機能の通信を行う機能を有していればよい。例えば、通信部106は、通信部76との通信を行う機能を有し、通信部108は、第3世代移動通信システム(3G)、第4世代移動通信システム(4G)、または第5世代移動通信システム(5G)などを利用した音声通話が可能な機能、または電子決済などが可能な通信手段を有していればよい。
 また、図20A、図20B、図21A、及び図21Bに示す、ディスプレイ72は、ディスプレイ102よりも解像度が高いと好ましい。例えば、ディスプレイ102は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)といった解像度とすることができる。また、ディスプレイ72は、WQXGA(画素数2560×1600)、4K2K(画素数3840×2160)、8K4K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K2K、8K4K、又はそれ以上の解像度とすることが好ましい。
 また、ディスプレイ72は、ディスプレイ102よりも画素密度(精細度)が高いと好ましい。例えば、ディスプレイ102は、100ppi以上1000ppi未満、好ましくは300ppi以上800ppi以下の画素密度とすることができる。また、ディスプレイ72としては、1000ppi以上10000ppi以下、好ましくは2000ppi以上6000ppi以下、さらに好ましくは3000ppi以上5000ppi以下の画素密度とすることができる。
 なお、ディスプレイ102、及びディスプレイ72の画面比率(アスペクト比)については、特に限定はない。例えば、ディスプレイ102、及びディスプレイ72としては、それぞれ1:1(正方形)、3:4、16:9、16:10など様々な画面比率に対応することができる。
 なお、ディスプレイ102は、ガラス基板上に形成され、ディスプレイ72は、シリコン基板上に形成されると好ましい。ディスプレイ102をガラス基板上に形成することで、製造コストを抑えることができる。一方で、ディスプレイ102をガラス基板上に形成する場合、製造装置の関係上、ディスプレイ102の画素密度を高くする(代表的には1000ppi以上)ことが困難な場合がある。そこで、本発明の一態様の電子装置、及び表示システムにおいては、ディスプレイ72をシリコン基板上に形成することで、ディスプレイ72の画素密度を高くする(代表的には1000ppi以上)ことができる。別言すると、ディスプレイ102で対応できない精細度の画像を、ディスプレイ72が補って表示することができる。
 本発明の一態様の表示システムは、異なる解像度、または異なる画素密度を有する2つの電子装置を有する。一方の電子装置で表示可能な画像データを、他方の電子装置に適した画像データとするために、画像データの一部または全部を圧縮または伸長すればよい。
 ディスプレイ72の解像度または精細度を高くすることで、使用者が画素を認識することができない(画素の間に生じうる線がみえない等)ため、没入感、臨場感、及び奥行き感をより高く感じることができる。
 また、図20Aに示す電子装置100は、ディスプレイが表示しない期間を有し、当該期間において、電子装置100Xの入出力手段(例えば、コントローラー)として機能する。このような機能を有することで、電子装置100が有するバッテリー104の使用期間を長くすることができる。すなわち、本発明の一態様である表示システムは、省電力化することが可能である。なお、バッテリー104としては、例えば、リチウムイオン二次電池などを用いることができる。
 次に、図20A、図20B、図21A、及び図21Bに示す本発明の一態様の電子装置、及び表示システムの各構成について、以下、説明を行う。
<ディスプレイ>
 ディスプレイ102、及びディスプレイ72は、それぞれ表示する機能を有する。ディスプレイ102、及びディスプレイ72としては、例えば、液晶表示デバイス、有機ELを含む発光デバイス、及びマイクロLEDなどの発光ダイオードを含む発光デバイスの中から選ばれる一または複数を用いることができる。生産性、及び発光効率を考慮した場合、ディスプレイ102、及びディスプレイ72としては、有機ELを含む発光デバイスを用いると好適である。
<通信部>
 通信部106、及び通信部76は、それぞれ無線または有線で通信する機能を有する。通信部106、及び通信部76は、特に無線で通信する機能を有すると、接続のためのケーブルなどの部品点数を省略できるため好適である。
 通信部106、及び通信部76が、無線で通信する機能を有する場合、通信部106、及び通信部76は、アンテナを介して通信を行うことができる。通信部106と通信部76との間の通信手段(通信方法)としては、例えばWorld Wide Web(WWW)の基盤であるインターネット、イントラネット、エクストラネット、PAN(Personal Area Network)、LAN(Local Area Network)、CAN(Campus Area Network)、MAN(Metropolitan Area Network)、WAN(Wide Area Network)、GAN(Global Area Network)等のコンピュータネットワークに各装置を接続させ、通信を行うことができる。無線通信を行う場合、通信プロトコル又は通信技術として、LTE(Long Term Evolution)、GSM(Global System for Mobile Communication:登録商標)、EDGE(Enhanced Data Rates for GSM Evolution)、CDMA2000(Code Division Multiple Access 2000)、W−CDMA(登録商標)などの通信規格、またはWi−Fi(登録商標)、Bluetooth(登録商標)、ZigBee(登録商標)等のIEEEにより通信規格化された仕様を用いることができる。
<半導体装置および制御部>
 半導体装置101、及び制御部71は、それぞれディスプレイを制御する機能を有する。半導体装置101、及び制御部71としては、例えばCPU、GPU、およびメモリなどを有する。なお、CPUおよびGPUといった演算回路は、画像処理を行うことができ、例えば、画像データのアンプコンバート処理、またはダウンコンバート処理を行うことができる。これにより、ディスプレイの解像度に合わせて、解像度の小さい画像データをアップコンバートする、または、解像度の大きい画像データをダウンコンバートすることができ、表示品位の高い画像をディスプレイに表示させることができる。
<バッテリー>
 バッテリー104、及びバッテリー74は、それぞれディスプレイに電力を供給する機能を有する。バッテリー104、及びバッテリー74は、例えば、一次電池、または二次電池を用いることができる。なお、当該二次電池としては、例えば、リチウムイオン二次電池を好適に用いることができる。
<センサ部>
 センサ105、及びセンサ75は、それぞれ、使用者の視覚、聴覚、触覚、味覚、及び嗅覚、のいずれか一または複数の情報を取得する機能を有する。より具体的には、センサ105、は、力、変位、位置、速度、加速度、角速度、回転数、距離、光、磁気、温度、音声、時間、電場、電流、電圧、電力、放射線、湿度、傾度、振動、におい、及び赤外線を測定する機能を有する。
 また、センサ75は、上記のセンサ105が有する機能に加え、脳波を測定できる機能を有すると好ましい。例えば、頭部に接触する電極を複数有し、当該電極に流れる微弱な電流から、脳波を測定する機構を有していればよい。センサ75が脳波を測定できる機能を有することで、使用者が考えたところに、ディスプレイ102の画像、またはディスプレイ102の画像の一部をディスプレイ72に表示させることができる。この場合、使用者は、両手を用いて電子装置を操作する必要がないため、両手に何も持たない(両手がフリーの状態)で、入力操作などを行うことができる。
[画像の例1]
 次に、本発明の一態様の電子装置、及び表示システムの画像の一例について、図22A、図22B、図22C、及び図22Dを用いて説明を行う。
 以下では、本発明の一態様の表示システムによって、使用者が体験できる操作方法と、使用者に提示することのできる画像と、の一例について説明する。
 図22Aには、使用者130が眼鏡型の電子装置100Xを装着した状態で、ジェスチャー操作をしている様子を示している。このとき、電子装置100のディスプレイは消灯しているため、電子装置100の電力消費を抑えることができる。また、電子装置100は、使用者130の腕に装着した状態であるため、使用者130は両手が自由な状態で、表示システムの操作をすることができる。このとき、表示システムの操作は、電子装置100X側にあるセンサ75Aで取得する情報、または電子装置100に設けられるセンサ105として加速度センサを適用することで得られる、腕の動きの軌跡に基づく情報、を利用することができる。
 図22Bは、図22Aに示す、室内にいる使用者130の視界に映る画像140の例を示している。図22Bに示す画像140中には、床、壁、ドアなどの現実の室内の風景を撮像した画像に重ねて、画像情報141が示されている。ここでは、画像情報141は、電子装置100のディスプレイに表示される画像の一部である。使用者130は、電子装置100Xを装着した状態で、電子装置100Xとペアリングされた電子装置100を操作することもできる。
 また、使用者130が左手130Lで、画像情報141が示されている空間を掴む動作を行うと、電子装置100Xはこの動作をジェスチャー操作と認識し、画像情報141の位置を変更可能な状態とする。この状態において、使用者130の左手130Lが動くと、図22Bに示すように、画像情報141は、左手130Lの動きに追従して位置を変更することができる。このとき、左手130Lの動きに応じて、左右、上下、及び前後に画像情報141を移動させることができるだけでなく、画像情報141を回転させることもできる。
 図22Cには、上記図22Aとは異なる動作で、使用者130がジェスチャー動作をしている様子を示している。使用者130のポケットには、上記と同様に、ディスプレイが消灯した状態の電子装置100が入っている。
 図22Dは、図22Cに示す、室内にいる使用者130の視界に映る画像140を示している。使用者130が、画像情報141が示されている空間を掴む動作を行った後に、フリスビーを投げるように、物体を放り投げる動作を行うことで、画像情報141を破棄することができる。このとき、画像情報141は、使用者130から見て離れる方向に移動し、ある時点で消失するように表示される、または、視界の外側にはじき出される。このように、使用者130のジェスチャー動作により、視界内に表示されたコンテンツ画像を、破棄する(閉じる)ことができる。
 このように、本発明の一態様の電子装置、及び表示システムは、新たな操作方法、動作方法で動作させることもできる。
 次に、本発明の一態様の表示システムの動作方法の一例について、図23を用いて説明を行う。
[表示システムの動作方法例1]
 以下では、表示システムの動作方法の一例について説明する。図23は、表示システムの動作方法にかかるフローチャートである。
 ステップS01において、動作が開始される。このとき、電子装置100は起動状態(操作が可能な状態)であり、電子装置100Xは、電源が入った状態であるとする。
 ステップS02において、電子装置100Xが装着される。電子装置100Xは、自身が装着されたことを認識し、システムが起動する。ステップS02において、例えば、電子装置100Xがゴーグル型の形態である場合、前方のカメラの画像が使用者に提供されてもよい、または他のコンテンツの画像が表示されていてもよい。
 ステップS03において、電子装置100と、電子装置100Xとのペアリングが実行される。ペアリングが完了すると、電子装置100と、電子装置100Xとの間で双方向にデータのやりとりが可能な状態となる。
 ステップS04において、電子装置100のディスプレイ102に表示されている第1の画像を、電子装置100Xのディスプレイに表示する。これにより、使用者は、電子装置100の画面を見ることなく、電子装置100Xに表示される情報を見ることができる。
 このとき、電子装置100と電子装置100Xとで、ディスプレイの画素密度が異なるため、第1の画像をそのまま表示するのではなく、電子装置100Xのディスプレイに表示したときに、最適な大きさとなるように、第1の画像に対してアップコンバートまたはダウンコンバートなどの画像処理を施した第2の画像を、電子装置100Xで表示することが好ましい。
 ステップS05において、電子装置100Xから電子装置100に対して、情報を送信する。例えば、情報には、第1の画像の表示が完了したことを意味するコードなどが含まれる。
 ステップS06において、電子装置100は、受信した上記情報に基づいて、ディスプレイ102を消灯する。このとき、電子装置100は、ディスプレイ102のタッチセンサはアクティブな状態を維持する。これにより、電子装置100のディスプレイ102は、入力手段(タッチパッド)などとして機能する。
 ステップS07において、電子装置100Xは、電子装置100Xが有する検知部によって、使用者によるジェスチャー動作を検知し、当該ジェスチャー動作に対応するジェスチャー情報を取得する。
 ステップS08において、電子装置100Xは、ジェスチャー情報に基づいて、様々な処理を実行する。例えば、電子装置100Xのディスプレイに表示された画像情報に対して画像処理を行い、画像処理を行った後の画像情報を、当該ディスプレイに表示させることができる。
 ステップS09において、処理が終了する。ステップS10としては、例えば電子装置100Xを取り外すこと、電子装置100または電子装置100Xの電源をオフにすること、または電子装置100と電子装置100Xとのペアリングが解除されること、などが相当する。
 以上が、本発明の一態様の表示システムの動作方法例についての説明である。
[画像の例2]
 次に、本発明の一態様の表示システムによって、使用者が体験できる操作方法、及び使用者に提示することのできる画像について、上記とは異なる例を、図24A、図24B、図24C、及び図24Dを用いて説明を行う。
 図24Aには、使用者130が眼鏡型の電子装置100Xを装着した状態で、ジェスチャー操作をしている様子を示している。このとき、電子装置100のディスプレイは消灯しているため、電子装置100の電力消費を抑えることができる。また、電子装置100は、使用者130の腕に装着された状態であるため、使用者130は両手が自由な状態で、表示システムの操作をすることができる。
 図24Bは、図24Aに示す、室内にいる使用者130の視界に映る画像140の例を示している。図24Bに示す画像140中には、床、壁、ドアなどの現実の室内の風景を撮像した画像に重ねて、画像情報141が示されている。ここでは、画像情報141は、電子装置100のディスプレイに表示される画像の一部である。使用者130は、電子装置100Xを装着した状態で、電子装置100Xとペアリングされた電子装置100を操作することもできる。
 また、図24Bに示すように、使用者130が左手130Lと右手130Rで画像情報141が示されている空間を掴む動作を行うと、電子装置100Xはこの動作をジェスチャー操作と認識し、画像情報141の形状を変更可能な状態とする。この状態において、左手130Lと右手130Rとが近づくと、図24Bに示すように、画像情報141が縮小するように変形する。一方、左手130Lと右手130Rとが遠ざかると、画像情報141を拡大させることができる。このとき、左手130Lと右手130Rの動きに追従して、画像情報141を移動、または回転させることもできる。このとき、左手130Lと右手130Rの動きは、電子装置100を装着した左右の腕の動きの軌跡に基づく情報、を利用することができる。
 図24Cには、上記図24Aとは異なる動作で、使用者130がジェスチャー動作をしている様子を示している。使用者130の腕には、上記と同様に、ディスプレイが消灯した状態の電子装置100が装着されている。
 図24Dは、図24Cに示す、室内にいる使用者130の視界に映る画像140を示している。使用者130が、左手130Lと右手130Rで画像情報141が示されている空間を掴む動作を行った後に、左右に開く動作を行うことで、画像情報141を破棄することができる。このとき、図24Dに示すように、画像情報141は、左右に破れるように表示される。このように、使用者130のジェスチャー動作により、視界内に表示されたコンテンツ画像を、破棄する(閉じる)ことができる。
 このように、本発明の一態様の電子装置、及び表示システムは、新たな操作方法で動作させることもできる。
[表示システムの動作方法例2]
 以下では、表示システムの動作方法の一例について説明する。図25は、表示システムの動作方法にかかるフローチャートである。
 ステップS11において、動作が開始される。このとき、電子装置100は起動状態(操作が可能な状態)であり、電子装置100Xは、電源が入った状態であるとする。
 ステップS12において、電子装置100Xが装着される。電子装置100Xは、自身が装着されたことを認識し、システムが起動する。ステップS12において、例えば、電子装置100Xがゴーグル型の形態である場合、前方のカメラの画像が使用者に提供されてもよい、または他のコンテンツの画像が表示されていてもよい。
 ステップS13において、電子装置100と、電子装置100Xとのペアリングが実行される。ペアリングが完了すると、電子装置100と、電子装置100Xとの間で双方向にデータのやりとりが可能な状態となる。
 ステップS14において、電子装置100のディスプレイ102に表示されている第1の画像を、電子装置100Xのディスプレイに表示する。これにより、使用者は、電子装置100の画面を見ることなく、電子装置100Xに表示される情報を見ることができる。
 このとき、電子装置100と電子装置100Xとで、ディスプレイの画素密度が異なるため、第1の画像をそのまま表示するのではなく、電子装置100Xのディスプレイに表示したときに、最適な大きさとなるように、第1の画像に対してアップコンバートまたはダウンコンバートなどの画像処理を施した第2の画像を、電子装置100Xで表示することが好ましい。
 ステップS15において、電子装置100Xから電子装置100に対して、情報を送信する。例えば、情報には、第1の画像の表示が完了したことを意味するコードなどが含まれる。
 ステップS16において、電子装置100は、受信した上記情報に基づいて、ディスプレイ102を消灯する。このとき、電子装置100は、ディスプレイ102のタッチセンサはアクティブな状態を維持する。これにより、電子装置100のディスプレイ102は、入力手段(タッチパッド)などとして機能する。
 ステップS17において、電子装置100Xは、電子装置100Xが有する複数の検知部によって、使用者によるジェスチャー動作を検知する。電子装置100Xは、複数の検知部から出力される情報(入力データともいう)に基づいて、当該ジェスチャー動作に対応するジェスチャー情報を取得する。
 ステップS18において、電子装置100Xは、ジェスチャー情報に基づいて、様々な処理を実行する。例えば、電子装置100Xのディスプレイに表示された画像情報に対して画像処理を行い、画像処理を行った後の画像情報を、当該ディスプレイに表示させることができる。
 ステップS19において、処理が終了する。ステップS19としては、例えば電子装置100Xを取り外すこと、電子装置100または電子装置100Xの電源をオフにすること、または電子装置100と電子装置100Xとのペアリングが解除されること、などが相当する。
 以上が、本発明の一態様の表示システムの動作方法例についての説明である。
 以上のように、本発明の一態様の電子装置、及び表示システムを用いることで、新規な構成の電子装置、または新規な構成の表示システムを提供することができる。また、本発明の一態様の電子装置、及び表示システムを用いることで、新規な構成の電子装置の操作方法、または新規な構成の表示システムの操作方法を提供することができる。
<ディスプレイの構成例>
 図20Aに図示するディスプレイ72の構成について図26Aおよび図26Bおよび図27を参照して説明する。なお以下で説明するディスプレイの構成例は、ディスプレイ72のみならず、ディスプレイ102にも適用することができる。
 図26Aおよび図26Bは、図20Aに図示するディスプレイ72に適用可能なディスプレイ(表示装置200)の斜視概略図である。
 表示装置200は、基板211、基板212を有する。表示装置200は、基板211と基板212との間に設けられる素子で構成される表示部を有する。表示部は、表示装置200における画像を表示する領域である。表示部は、画素回路251および画素回路251に接続される発光デバイス261で構成される画素210が複数設けられる領域である。
 また、画素210を1920×1080のマトリクス状に配置すると、いわゆるフルハイビジョン(「2K解像度」、「2K1K」、または「2K」などとも言われる。)の解像度で表示可能な表示を実現できる。また、例えば、画素210を3840×2160のマトリクス状に配置すると、いわゆるウルトラハイビジョン(「4K解像度」、「4K2K」、または「4K」などとも言われる。)の解像度で表示できる。また、例えば、画素210を7680×4320のマトリクス状に配置すると、いわゆるスーパーハイビジョン(「8K解像度」、「8K4K」、または「8K」などとも言われる。)の解像度で表示できる。画素210を増やすことで、16Kさらには32Kの解像度でフルカラー表示可能な表示も可能である。
 また、表示装置200における画素密度(精細度)は、1000ppi以上10000ppi以下が好ましい。例えば、2000ppi以上6000ppi以下であってもよいし、3000ppi以上5000ppi以下であってもよい。
 なお、表示装置200における画面比率(アスペクト比)については、特に限定はない。表示装置200は、例えば、1:1(正方形)、4:3、16:9、16:10など様々な画面比率に対応することができる。
 なお、本明細書等において、素子という用語を「デバイス」と言い換えることができる場合がある。例えば、表示素子、発光素子、および液晶素子は、例えば表示デバイス、発光デバイス、および液晶デバイスと言い換えることができる。
 表示装置200は、端子部214を介して外部より各種信号および電源電位が入力され、表示を行うことができる。基板211と基板212との間には、複数の層が設けられ、各層には回路動作を行うためのトランジスタ、または光を射出する表示素子が設けられる。複数の層においては、表示素子の発光を制御する機能を有する画素回路、画素回路を制御する機能を有する駆動回路、駆動回路を制御する機能を有する機能回路等が設けられる。
 図26Bに、基板211と基板212との間に設けられる各層の構成を模式的に示した斜視図を示している。
 基板211上には、層220が設けられる。層220は、駆動回路230および機能回路240を有する。層220は、チャネル形成領域を有する半導体層204にシリコンを有するトランジスタ203を有する。基板211は、一例としては、シリコン基板である。シリコン基板は、ガラス基板と比較して熱伝導性が高いため好ましい。駆動回路230と機能回路240を同じ層に設けることで、駆動回路230と機能回路240を電気的に接続する配線を短くすることができる。よって、機能回路240が駆動回路230を制御するための制御信号の充放電時間が短くなり、消費電力を低減できる。
 トランジスタ201は、例えばチャネル形成領域に単結晶シリコンを有するトランジスタ(「c−Siトランジスタ」ともいう。)とすることができる。特に、層220に設けられるトランジスタとして、チャネル形成領域に単結晶シリコンを有するトランジスタを用いると、当該トランジスタのオン電流を大きくすることができる。よって、層220が有する回路を高速に駆動させることができるため、好ましい。またSiトランジスタは、チャネル長が3nm乃至10nmといった微細加工で形成することができるため、CPU、GPUなどのアクセラレータ、アプリケーションプロセッサなどが表示部と一体に設けられた表示装置200とすることができる。
 また、層220に設けられるトランジスタとして、チャネル形成領域に多結晶シリコンを有するトランジスタ(「Poly−Siトランジスタ)ともいう。)を用いてもよい。多結晶シリコンとしては、低温ポリシリコン(LTPS:Low Temperature Poly Silicon)を用いてもよい。なお、チャネル形成領域にLTPSを有するトランジスタを「LTPSトランジスタ」ともいう。
 駆動回路230は、例えば、ゲートドライバ回路、ソースドライバ回路等を有する。このほか、演算回路、メモリ回路、および電源回路等を有していてもよい。ゲートドライバ回路、ソースドライバ回路、およびその他の回路を、表示部に重ねて配置することが可能となるため、これら回路と、表示部とを並べて配置する場合と比較して、表示装置200の表示部の外周に存在する非表示領域(額縁ともいう)の幅を極めて狭くすることができ、表示装置200の小型化が実現できる。
 機能回路240は、例えば、表示装置200における各回路の制御、および各回路を制御するための信号を生成するためのアプリケーションプロセッサの機能を有する。また機能回路240は、CPU、GPUなどのアクセラレータなどの画像データを補正するための回路を有していてもよい。また機能回路240は、画像データ等を表示装置200の外部から受信するためのインターフェースとしての機能を有するLVDS(Low Voltage Differential Signaling)回路、MIPI(Mobile Industry Processor Interface)回路、および/またはD/A(Digital to Analog)変換回路等を有していてもよい。また機能回路240は、画像データを圧縮・伸長するための回路、および/または電源回路等を有していてもよい。換言すれば、機能回路240は、制御部71の機能を一部兼ねる構成とすることができる。
 層220上には、層250が設けられる。層250は、複数の画素回路251を含む画素回路群255を有する。層250は、チャネル形成領域を有する半導体層202に金属酸化物(酸化物半導体ともいう)を有するトランジスタ201を有する。なお層250は、層220上に積層して設けることができる。
 層250にSiトランジスタを設けてもよい。例えば、画素回路251をチャネル形成領域に単結晶シリコンまたは多結晶シリコンを有するトランジスタを含んで構成してもよい。多結晶シリコンとしては、LTPSを用いてもよい。例えば、別の基板に層250を形成し、層220と貼り合わせることも可能である。
 また、例えば、画素回路251を異なる半導体材料を用いた複数種類のトランジスタで構成してもよい。画素回路251が、異なる半導体材料を用いた複数種類のトランジスタで構成される場合、トランジスタの種類毎に異なる層にトランジスタを設けてもよい。例えば、画素回路251が、Siトランジスタと、OSトランジスタで構成される場合、SiトランジスタとOSトランジスタを重ねて設けてもよい。トランジスタを重ねて設けることで、画素回路251の占有面積が低減される。よって、表示装置200の精細度を高めることができる。なお、LTPSトランジスタとOSトランジスタを、組み合わせる構成をLTPOと呼称する場合がある。
 OSトランジスタは、オフ電流が非常に低いという特性を有する。よって、特に画素回路に設けられるトランジスタとしてOSトランジスタを用いると、画素回路に書き込まれたアナログデータを長期間保持することができるため好ましい。
 層250上には、層260が設けられる。層260上には、基板212が設けられる。基板212は、透光性を有する基板あるいは透光性を有する材料でなる層であることが好ましい。層260は、複数の発光デバイス261が設けられる。なお層260は、層250上に積層して設ける構成とすることができる。発光デバイス261としては、例えば有機エレクトロルミネセンス素子(有機EL素子ともいう)などを用いることができる。ただし、発光デバイス261は、これに限定されず、例えば無機材料からなる無機EL素子を用いても良い。なお、「有機EL素子」と「無機EL素子」をまとめて「EL素子」と呼ぶ場合がある。発光デバイス261は、量子ドットなどの無機化合物を有していてもよい。例えば、量子ドットを発光層に用いることで、発光材料として機能させることもできる。
 図26Bに示すように本発明の一態様の表示装置200は、発光デバイス261と、画素回路251と、駆動回路230、機能回路240と、を積層した構成とすることができるため、画素の開口率(有効表示面積比)を極めて高くすることができる。例えば画素の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素回路251を極めて高密度に配置することが可能で、画素の精細度を極めて高くすることができる。例えば、表示装置200の表示部(画素回路251および発光デバイス261が積層されて設けられる領域)では、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下の精細度で、画素を配置することが可能となる。
 このような表示装置200は、極めて高精細であることから、ヘッドマウントディスプレイなどのVR向け機器、またはメガネ型のAR向け機器に好適に用いることができる。例えば、レンズ等の光学部材を通して表示装置200の表示部を視認する構成の場合であっても、表示装置200は極めて高精細な表示部を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。
 なお、表示装置200を装着型のVRまたはAR用の表示装置として用いる場合、表示部の対角サイズは、0.1インチ以上5.0インチ以下、好ましくは0.5インチ以上2.0インチ以下、さらに好ましくは、1インチ以上1.7インチ以下とすることができる。例えば、表示部の対角サイズを1.5インチ、または1.5インチ近傍にしてもよい。表示部の対角サイズを2.0インチ以下、好ましくは1.5インチ近傍とすることで、露光装置(代表的にはスキャナー装置)の1回の露光処理で処理することが可能となるため、製造プロセスの生産性を向上させることができる。
 また、本発明の一態様に係る表示装置200は、装着型の電子装置以外にも適用できる。この場合、表示部の対角サイズは2.0インチを越えてもかまわない。表示部の対角サイズに応じて、画素回路251に用いるトランジスタの構成を適宜選択してもよい。例えば、画素回路251に単結晶Siトランジスタを用いる場合、表示部の対角のサイズは0.1インチ以上3インチ以下が好ましい。また、画素回路251にLTPSトランジスタを用いる場合、表示部の対角のサイズは0.1インチ以上30インチ以下が好ましく、1インチ以上30インチ以下がより好ましい。また、画素回路251にLTPO(LTPSトランジスタと、OSトランジスタとを、組み合わせる構成)を用いる場合、表示部の対角のサイズは0.1インチ以上50インチ以下が好ましく1インチ以上50インチ以下がより好ましい。また、画素回路251にOSトランジスタを用いる場合、表示部の対角のサイズは0.1インチ以上200インチ以下が好ましく、50インチ以上100インチ以下がより好ましい。
 単結晶Siトランジスタは、単結晶Si基板の大きさより、大型化が非常に困難である。また、LTPSトランジスタは、製造工程にてレーザ結晶化装置を用いるため、大型化(代表的には、対角のサイズにて30インチを超える画面サイズ)への対応が難しい。一方でOSトランジスタは、製造工程にてレーザ結晶化装置などを用いる制約がない、または比較的低温のプロセス温度(代表的には450℃以下)で製造することが可能なため、比較的大面積(代表的には、対角のサイズにて50インチ以上100インチ以下)の表示パネルまで対応することが可能である。また、LTPOについては、LTPSトランジスタを用いる場合と、OSトランジスタを用いる場合との間の領域の表示部の対角サイズ(代表的には、1インチ以上50インチ以下)に適用することが可能となる。
 駆動回路230および機能回路240の具体的な構成例について、図27を参照して説明する。図27に示す表示装置200は、画素回路251、駆動回路230および機能回路240を接続する複数の配線、および表示装置200内のバス配線等を図示して示すブロック図である。
 図27に示す表示装置200において、層250は、複数の画素回路251がマトリクス状に配置されている。
 また、図27に示す表示装置200において、層220は、駆動回路230および機能回路240が配置されている。駆動回路230は、一例として、ソースドライバ回路231、デジタルアナログ変換回路232、ゲートドライバ回路233、およびレベルシフタ234を有する。機能回路240は、一例として、記憶装置241、GPU(AIアクセラレータ)242、EL補正回路243、タイミングコントローラ244、CPU245、センサコントローラ246、および電源回路247を有する。機能回路240は、アプリケーションプロセッサの機能を有する。
 また、図27の表示装置200では、駆動回路230に含まれる回路、および機能回路240に含まれる回路のそれぞれには、一例として、バス配線BSLが電気的に接続されている構成となっている。
 ソースドライバ回路231は、一例として、画素210が有する画素回路251に対して、画像データを送信する機能を有する。そのため、ソースドライバ回路231は、配線SLを介して、画素回路251に電気的に接続されている。なおソースドライバ回路231は、複数設けられることが好ましい。複数のソースドライバ回路231は、画素回路251が設けられる表示部の区画ごとに配置することで、表示部の区画ごとに異なる駆動周波数の駆動を行う構成とすることができる。
 デジタルアナログ変換回路232は、一例として、GPU、補正回路などによってデジタル処理された画像データをアナログデータに変換する機能を有する。アナログデータに変換された画像データはオペアンプなどの増幅回路により増幅され、ソースドライバ回路231を介して、画素回路251に送信される。なお、デジタルアナログ変換回路232は、ソースドライバ回路231に含まれていてもよいし、ソースドライバ回路231、デジタルアナログ変換回路232、画素回路251の順に画像データが送信される構成としてもよい。
 ゲートドライバ回路233は、一例として、画素回路251において、画像データの送信先となる画素回路を選択する機能を有する。そのため、ゲートドライバ回路233は、配線GLを介して、画素回路251に電気的に接続されている。なおゲートドライバ回路233は、ソースドライバ回路231と対応して、複数設けられることが好ましい。複数のゲートドライバ回路233は、画素回路251が設けられる表示部の区画ごとに配置することで、表示部の区画ごとに異なる駆動周波数の駆動を行う構成とすることができる。
 レベルシフタ234は、一例として、ソースドライバ回路231、デジタルアナログ変換回路232、ゲートドライバ回路233などに対して入力される信号を適切なレベルに変換する機能を有する。
 記憶装置241は、一例として、画素回路251に表示させる画像データを保存する機能を有する。なお、記憶装置241は、画像データをデジタルデータまたはアナログデータとして保存する構成とすることができる。
 また、記憶装置241に画像データを保存する場合、記憶装置241としては不揮発性メモリとすることが好ましい。この場合、記憶装置241としては、例えば、NAND型メモリなどを適用することができる。
 また、記憶装置241にGPU242、EL補正回路243、CPU245などで生じる一時データを保存する場合、記憶装置241としては揮発性メモリとすることが好ましい。この場合、記憶装置241としては、例えば、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)などを適用することができる。
 GPU242は、一例として、記憶装置241から読み出された画像データを、画素回路251に出力するための処理を行う機能を有する。特に、GPU242は、並列にパイプライン処理を行う構成となっているため、画素回路251に出力する画像データを高速に処理することができる。また、GPU242は、エンコードされた画像を復元するためのデコーダとしての機能も有することができる。
 また、機能回路240には、表示装置200の表示品位を高めることができる回路が複数含まれていてもよい。当該回路としては、例えば、表示される画像の色ムラを検出して、当該色ムラを補正して最適な画像にする補正回路(調色、調光)を設けてもよい。また、表示素子に有機ELが用いられた発光デバイスが適用されている場合、機能回路240には、EL補正回路を設けてもよい。機能回路240には、一例として、EL補正回路243を含めている。
 また、上記で説明した画像補正には、人工知能を用いてもよい。例えば、画素回路に流れる電流(または画素回路に印加される電圧)をモニタリングして取得し、表示された画像をイメージセンサなどで取得し、電流(または電圧)と画像を人工知能の演算(例えば、人工ニューラルネットワークなど)の入力データとして扱い、その出力結果で当該画像の補正の有無を判断させてもよい。
 また、人工知能の演算は、画像補正だけでなく、画像データの解像度を高めるアップコンバート処理にも適用できる。一例として、図27のGPU242は、各種補正の演算(色ムラ補正242a、アップコンバート242bなど)を行うためのブロックを図示している。
 画像データのアップコンバート処理を行なうためのアルゴリズムとしては、Nearest neighbor法、Bilinear法、Bicubic法、RAISR(Rapid and Accurate Image Super−Resolution)法、ANR(Anchored Neighborhood Regression)法、A+法、SRCNN(Super−Resolution Convolutional Neural Network)法などから選択して行うことができる。
 アップコンバート処理は、注視点に応じて決定される領域ごとに、アップコンバート処理に用いるアルゴリズムを変える構成としてもよい。例えば、注視点および注視点近傍の領域のアップコンバート処理を、処理速度が遅いが高精度なアルゴリズムで行ない、当該領域以外の領域のアップコンバート処理を、処理速度は速いが低精度なアルゴリズムで行なえばよい。当該構成とすることで、アップコンバート処理に必要な時間を短縮できる。また、アップコンバート処理に必要な消費電力を低減できる。
 また、アップコンバート処理に限らず、画像データの解像度を下げるダウンコンバート処理を行なってもよい。画像データの解像度が表示装置200の解像度よりも大きい場合、画像データの一部が表示部に表示されない場合がある。このような場合、ダウンコンバート処理を行なうことで、当該画像データ全体を表示部に表示できる。
 タイミングコントローラ244は、一例として、画像を表示させる駆動周波数を制御する機能を有する。例えば、表示装置200で静止画を表示させる場合、タイミングコントローラ244によって駆動周波数を下げることで、表示装置200の消費電力を低減できる。
 CPU245は、一例として、オペレーティングシステムの実行、データの制御、各種演算、およびプログラムの実行など、汎用の処理を行う機能を有する。CPU245は、例えば、記憶装置241における画像データの書き込み動作または読み出し動作、画像データの補正動作、後述するセンサへの動作、などの命令を行う役割を有する。また、例えば、CPU245は、機能回路240に含まれる回路の少なくとも一に制御信号を送信する機能を有してもよい。
 センサコントローラ246は、一例として、センサを制御する機能を有する。また、図27では、当該センサに電気的に接続するための配線として、配線SNCLを図示している。
 当該センサとしては、例えば、表示装置200の表示部に備えることができるタッチセンサとすることができる。または、当該センサとしては、例えば、照度センサとすることができる。
 電源回路247は、一例として、画素回路251、駆動回路230および機能回路240に含まれている回路などに対して供給する電圧を生成する機能を有する。なお、電源回路247は、電圧を供給する回路を選択する機能を有してもよい。例えば、電源回路247は、静止画を表示させている期間では、CPU245、GPU242などに対しての電圧供給を停止することによって、表示装置200全体の消費電力を低減することができる。
 以上説明したように本発明の一態様の表示装置は、表示素子と、画素回路と、駆動回路および機能回路と、を積層した構成とすることができる。周辺回路である駆動回路および機能回路を画素回路と重ねて配置することができ、額縁の幅を極めて狭くすることができるため、小型化が図られた表示装置とすることができる。また本発明の一態様の表示装置は、各回路を積層した構成とすることにより、各回路間を接続する配線を短くすることができるため、軽量化が図られた表示装置とすることができる。また本発明の一態様の表示装置は、画素の精細度を高めることができるため、表示品位に優れた表示装置とすることができる。
<電子装置の動作例>
 表示装置200の動作例について、図面を用いて説明する。図28は、表示装置200を適用可能なディスプレイ72を有する電子装置100Xの動作例を説明するためのフローチャートである。
 センサ75Aまたはあるいは加速度センサなどによって電子装置100Xの動きを検出し、第1情報(筐体81の動きに関する情報)を取得する(ステップE11)。
 センサ75Aなどを用いて使用者の眼を撮像し、第2情報(使用者の視線に関する情報)を取得する(ステップE12)。
 次いで電子装置100Xでは、第1情報を基に360度全方位の画像データの描画処理を行う(ステップE13)。
 ステップE13について、具体例を挙げて説明する。図29Aに示す模式図は、360度全方位の画像データ422の中心に位置する使用者130を図示している。使用者は電子装置100Xの表示装置200に表示される方向423Aにある画像424Aを視認できる。
 また図29Bに示す模式図は、図29Aの模式図から使用者130が頭部を動かして、方向423Bにある画像424Bを視認する様子を表している。使用者130は電子装置100Xの筐体の動きに応じて、画像424Aが画像424Bに変化することで、360度全方位の画像データ422で表される空間を認識することができる。
 図29A、図29Bに図示するように、使用者130は頭部の動きに応じた電子装置100Xの筐体を動かすことになる。電子装置100Xの動きに応じて、360度全方位の画像データ422から得られる画像は、高い描画処理能力で処理するほど使用者130は実世界の空間に即した仮想空間を認識することができる。
 次いで電子装置100Xでは、第2情報を基に表示装置における表示部の領域について、注視点Gに応じた複数の領域を決定する(ステップE14)。例えば、注視点Gを含む第1領域S1を決定し、第1領域S1に隣接する第2領域S2を決定する。また、第2領域の外側を第3領域S3とする。
 ステップE14について、具体例を挙げて説明する。
 一般に、人間の視野は、個人差はあるが、大きく次の5つに分類される。弁別視野とは、視力、色の識別などの視機能が最も優れている領域であり、視野の中心の約5°以内の注視点を含む領域を指す。有効視野とは、眼球運動だけで瞬時に特定情報を識別できる領域であり、視野の中心(注視点)の水平約30°以内、垂直約20°以内で、弁別視野の外側で隣接する領域を指す。安定注視野とは、頭部運動を伴って無理なく特定情報を識別できる領域であり、視野の中心の水平約90°以内、垂直約70°以内で、有効視野の外側で隣接する領域を指す。誘導視野とは、特定対象の存在はわかるが、識別能力は低い領域であり、視野の中心の水平約100°以内、垂直約85°以内で、安定注視野の外側で隣接する領域を指す。補助視野とは、特定対象の識別能力が著しく低く、刺激の存在がわかる程度の領域であり、視野の中心の水平約100°~200°以内、垂直約85°~130°以内で、誘導視野の外側で隣接する領域を指す。
 上記のことから、画像424において、弁別視野から有効視野までの画質が重要であることがわかる。特に、弁別視野の画質が肝要である。
 図30Aは、使用者130が、電子装置100Xの表示装置200の表示部に表示される画像424を正面(画像表示面)から観察している様子を示す模式図である。図30Aに図示する画像424は、表示部にも対応する。また画像424上に、使用者130の視線423の先にある注視点Gを示している。本明細書等では、画像424上の弁別視野が含まれる領域を「第1領域S1」、有効視野が含まれる領域を「第2領域S2」とする。また、安定注視野、誘導視野、および/または補助視野が含まれる領域を「第3領域S3」とする。
 なお図30Aでは、第1領域S1および第2領域S2の境界(輪郭)を曲線で示しているが、これに限定されない。図30Bに示すように、第1領域S1および第2領域S2の境界(輪郭)を矩形としてもよいし、多角形としてもよい。また、直線と曲線が組み合わされた形状であってもよい。また表示装置200の表示部を2つの領域に分け、弁別視野と有効視野が含まれる領域を第1領域S1とし、その他の領域を第2領域S2としてもよい。この場合、第3領域S3は形成されない。
 図31Aは、電子装置100Xの表示装置200の表示部に表示される画像424を上から見た図であり、図31Bは電子装置100Xの表示装置200の表示部に表示される画像424を横から見た図である。本明細書等では、第1領域S1の水平方向の角度を「角度θx1」、第2領域S2の水平方向の角度を「角度θx2」と示す(図31A参照。)。また、本明細書等では、第1領域S1の垂直方向の角度を「角度θy1」、第2領域S2の垂直方向の角度を「角度θy2」と示す(図31B参照。)。
 例えば、角度θx1を10°、角度θy1を10°に設定することで、第1領域S1の面積を広げることができる。この場合、第1領域S1に有効視野の一部が含まれる。また、例えば、角度θx2を45°、角度θy2を35°に設定することで、第2領域S2の面積を広げることができる。この場合、第2領域S2に安定注視野の一部が含まれる。
 なお、注視点Gの位置は、使用者130のゆらぎにより多少変動する。このため、角度θx1と角度θy1は、それぞれ5°以上20°未満が好ましい。第1領域S1の面積を弁別視野よりも広く設定することで、表示装置200の動作が安定し、画像の視認性が向上する。
 使用者130の視線423が移動すると、注視点Gも移動する。よって、第1領域S1および第2領域S2も移動する。例えば、視線423の変動量が一定量を超えた場合、視線423が移動していると判断する。すなわち、注視点Gの変動量が一定量を超えた場合、注視点Gが移動していると判断する。また、視線423の変動量が一定量以下になった場合、視線423の移動が停止したと判断し、第1領域S1乃至第3領域S3が決定される。すなわち、注視点Gの変動量が一定量以下になった場合、注視点Gの移動が停止したと判断し、第1領域S1乃至第3領域S3が決定される。
 機能回路240において、複数の領域(第1領域S1乃至第3領域S3)に応じた駆動回路230の制御を行う(ステップE15)。
<画素回路の構成例>
 図32Aおよび図32Bでは、画素回路251の構成例、および画素回路251に接続される発光デバイス261について示す。図32Aは各素子の接続を示す図、図32Bは、駆動回路を備える層220、画素回路が有する複数のトランジスタを備える層250、発光デバイスを備える層260の上下関係を模式的に示す図である。
 図32Aおよび図32Bに一例として示す画素回路251は、トランジスタ452A、トランジスタ452B、トランジスタ452C、および容量453を備える。トランジスタ452A、トランジスタ452B、トランジスタ452Cは、OSトランジスタで構成することができる。トランジスタ452A、トランジスタ452B、トランジスタ452Cの各OSトランジスタは、バックゲート電極を備えていることが好ましく、この場合、バックゲート電極にゲート電極と同じ信号を与える構成、バックゲート電極にゲート電極と異なる信号を与える構成とすることができる。
 トランジスタ452Bは、トランジスタ452Aと電気的に接続されるゲート電極と、発光デバイス261と電気的に接続される第1の電極と、配線ANOと電気的に接続される第2の電極と、を備える。配線ANOは、発光デバイス261に電流を供給するための電位を与えるための配線である。
 トランジスタ452Aは、トランジスタ452Bのゲート電極と電気的に接続される第1の端子と、ソース線として機能する配線SLと電気的に接続される第2の端子と、ゲート線として機能する配線GL1の電位に基づいて、導通状態または非導通状態を制御する機能を有するゲート電極と、を備える。
 トランジスタ452Cは、配線V0と電気的に接続される第1の端子と、発光デバイス261と電気的に接続される第2の端子と、ゲート線として機能する配線GL2の電位に基づいて、導通状態または非導通状態を制御する機能を有するゲート電極と、を備える。配線V0は、基準電位を与えるための配線、および画素回路251を流れる電流を駆動回路230または機能回路240に出力するための配線である。
 容量453は、トランジスタ452Bのゲート電極と電気的に接続される導電膜と、トランジスタ452Cの第2の電極と電気的に接続される導電膜を備える。
 発光デバイス261は、トランジスタ452Bの第1の電極に電気的に接続される第1の電極と、配線VCOMに電気的に接続される第2の電極と、を備える。配線VCOMは、発光デバイス261に電流を供給するための電位を与えるための配線である。
 これにより、トランジスタ452Bのゲート電極に与えられる画像信号に応じて発光デバイス261が射出する光の強度を制御することができる。またトランジスタ452Cを介して与えられる配線V0の基準電位によって、トランジスタ452Bのゲート−ソース間電圧のばらつきを抑制することができる。
 また配線V0から、画素パラメータの設定に用いることのできる電流値を出力することができる。より具体的には、配線V0は、トランジスタ452Bに流れる電流、または発光デバイス261に流れる電流を、外部に出力するためのモニター線として機能させることができる。配線V0に出力された電流は、ソースフォロア回路などにより電圧に変換され、外部に出力される。または、A−Dコンバータなどによりデジタル信号に変換され、機能回路240等に出力することができる。
 なお本発明の一態様で説明する発光デバイスは、有機EL素子(OLED(Organic Light Emitting Diode)ともいう)などの自発光型の表示素子をいう。なお画素回路に電気的に接続される発光デバイスは、LED(Light Emitting Diode)、マイクロLED、QLED(Quantum−dot Light Emitting Diode)、半導体レーザ等の、自発光性の発光デバイスとすることが可能である。
 なお図32Bに一例として示す構成では、画素回路251と、駆動回路230と、を電気的に接続する配線を短くすることができるため、当該配線の配線抵抗を小さくすることができる。よって、データの書き込みを高速に行うことができるため、表示装置200を高速に駆動させることができる。これにより、表示装置200が有する画素回路251を多くしても十分なフレーム期間を確保することができるため、表示装置200の画素密度を高めることができる。また、表示装置200の画素密度を高めることにより、表示装置200により表示される画像の精細度を高めることができる。例えば、表示装置200の画素密度を、1000ppi以上とすることができ、または5000ppi以上とすることができ、または7000ppi以上とすることができる。よって、表示装置200は、例えばAR、またはVR用の表示装置とすることができ、HMD等、表示部と使用者の距離が近い電子機器に好適に適用することができる。
<変形例>
 図33Aおよび図33Bに表示装置200の変形例である表示装置200Aの斜視図を示す。図33Bは表示装置200Aが有する各層の構成を説明するための斜視図である。説明の繰り返しを減らすため、主に表示装置200と異なる点について説明する。
 表示装置200Aは、複数の画素回路251を含む画素回路群255と駆動回路230が重ねて設けられている。表示装置200Aでは、表示部213と重なる領域において、画素回路群255は複数の区画259に分けられ、駆動回路230は複数の区画239に分けられる。複数の区画239はそれぞれがソースドライバ回路とゲートドライバ回路を有する。
 図34Aに、表示装置200Aが有する画素回路群255の構成例を示す。図34Bに、表示装置200Aが有する駆動回路230の構成例を示す。区画259および区画239は、それぞれm行n列(mおよびnは、それぞれ1以上の整数。)のマトリクス状に配置されている。本明細書等において、1行1列目の区画259を区画259[1,1]と示し、m行n列目の区画259を区画259[m,n]と示す。同様に、1行1列目の区画239を区画239[1,1]と示し、m行n列目の区画239を区画239[m,n]と示す。図34Aおよび図34Bは、mが4で、nが8の場合を示している。すなわち、画素回路群255と駆動回路230が、それぞれ32分割されている。
 複数の区画259のそれぞれは、複数の画素回路251、複数の配線SL、および複数の配線GLを有する。複数の区画259のそれぞれにおいて、複数の画素回路251の一は、複数の配線SLの少なくとも一、および複数の配線GLの少なくとも一と、電気的に接続される。
 区画259の一と区画239の一は重ねて設けられる(図34C参照。)。例えば、区画259[i,j](iは1以上m以下の整数。jは1以上n以下の整数。)と区画239[i,j]は重ねて設けられる。区画239[i,j]が有するソースドライバ回路231は、区画259[i,j]が有する配線SLと電気的に接続する。区画239[i,j]が有するゲートドライバ回路233は、区画259[i,j]が有する配線GLと電気的に接続する。区画239[i,j]が有するゲートドライバ回路233は、区画259[i,j]が有する複数の画素回路251を制御する機能を有する。
 区画259[i,j]と区画239[i,j]を重ねて設けることで、区画259[i,j]が有する画素回路251と、区画239[i,j]が有するソースドライバ回路231およびゲートドライバ回路233との接続距離(配線長)を極めて短くできる。その結果、配線抵抗および寄生容量が減るため、充放電にかかる時間が少なくなり、高速駆動が実現できる。また、消費電力を低減できる。また、小型化および軽量化が実現できる。
 また、表示装置200Aは、区画239毎にソースドライバ回路231およびゲートドライバ回路233を有する構成である。よって、区画239に対応する区画259毎に表示部213を分割し、画像の書き換えを行うことができる。例えば、表示部213のうち、画像に変化が生じた区画のみ画像データを書き換え、変化のない区画は画像データを保持することが可能となり、消費電力の低減が実現できる。
 本実施の形態などでは、区画59毎に分割された表示部213の1つを副表示部219と呼ぶ。図33および図34を用いて説明した表示装置200Aでは、表示部213が32個の副表示部219に分割される場合を示している(図33A参照)。副表示部219は図32等に示した画素210を複数含む。具体的には、1つの副表示部219は、複数の画素回路251を含む区画259の1つと、複数の発光デバイス261と、を含む。また、1つの区画239は、1つの副表示部219に含まれる複数の画素210を制御する機能を有する。
 また、表示装置200Aは、機能回路240が有するタイミングコントローラ244によって、画像表示時の駆動周波数(フレーム周波数、フレームレート、またはリフレッシュレートなど)を副表示部219毎に任意に設定できる。機能回路240は、複数の区画239および複数の区画259それぞれの動作を制御する機能を有する。すなわち、機能回路240は、マトリクス状に配置された複数の副表示部219それぞれの駆動周波数および動作タイミングを制御する機能を有する。また、機能回路240は、副表示部間の同期調整を行なう機能を有する。
 本発明の一態様の電子装置における表示装置は、画素回路と駆動回路を積層し、視線の動きに応じて副表示部219毎の駆動周波数を異ならせることで、低消費電力化を図ることができる。
 図35Aに、4行8列の副表示部219を有する表示部213を示す。また図35Aでは、注視点Gを中心にする第1領域S1乃至第3領域S3を示している。表示装置200Aは、複数の副表示部219のそれぞれを、第1領域S1または第2領域S2と重なる第1区画229Aと、第3領域S3と重なる第2区画229Bのいずれかに振り分ける。すなわち、表示装置200Aは、複数の区画239のそれぞれを、第1区画229Aまたは第2区画229Bに振り分ける。この場合、第1領域S1および第2領域S2と重なる第1区画229Aは、注視点Gと重なる領域を含む副表示部219であり、第2区画229Bは第1区画229Aの外側に位置し、使用者の注視点Gから遠い位置にある副表示部219である。(図35B参照)。
 複数の区画239それぞれが有する駆動回路(ソースドライバ回路231およびゲートドライバ回路233)の動作は機能回路240により制御される。例えば、第2区画229Bは、前述した安定注視野、誘導視野、および補助視野が含まれる第3領域S3と重なる区画であり、使用者の識別力が低い区画である。よって、画像表示時において、単位時間当たりの画像データの書き換え回数(以下、「画像書き換え回数」ともいう。)を、第1区画229Aより第2区画229Bを少なくしても、使用者が感じる実質的な表示品位(以下、「実質的な表示品位」ともいう。)の低下は少ない。すなわち、第2区画229Bの駆動周波数を第1区画229Aの駆動周波数よりも低くしても、実質的な表示品位の低下は少ない。
 駆動周波数を低くすると、表示装置の消費電力を低減できる。その一方で、駆動周波数を低くすると、表示品位も低下する。特に、動画表示時の表示品位が低下する。本発明の一態様によれば、第2区画229Bの駆動周波数を第1区画229Aの駆動周波数よりも低くすることで、使用者の視認性が低い区画の消費電力を低減しつつ、実質的な表示品位の低下を抑制できる。本発明の一態様によれば、表示品位の維持と消費電力の低減を両立できる。
 第1区画229Aの駆動周波数は、30Hz以上500Hz以下、好ましくは60Hz以上500Hz以下とすればよい。第2区画229Bの駆動周波数は第1区画229Aの駆動周波数以下が好ましく、第1区画229Aの駆動周波数の1/2以下がより好ましく、第1区画229Aの駆動周波数の1/5以下がより好ましい。
 また、第3領域S3に重なる副表示部219のうち、第2区画229Bの外側に第3区画229Cに設定し(図35C参照)、第3区画229Cに含まれる副表示部219の駆動周波数を第2区画229Bよりも低くしてもよい。第3区画229Cの駆動周波数は第2区画229Bの駆動周波数以下が好ましく、第2区画229Bの駆動周波数の1/2以下がより好ましく、第2区画229Bの駆動周波数の1/5以下がより好ましい。画像書き換え回数を著しく少なくすることで、消費電力をさらに低減できる。また、必要に応じて、画像データの書き換えを停止してもよい。画像データの書き換えを停止することで、消費電力をさらに低減できる。
 このような駆動方法を行なう場合、画素回路251を構成するトランジスタにオフ電流が極めて少ないトランジスタを用いると好適である。例えば、画素回路251を構成するトランジスタにOSトランジスタと好適である。OSトランジスタはオフ電流が著しく低いため、画素回路251に供給された画像データを長期間保持できる。特にトランジスタ452AにOSトランジスタを用いると好適である。
 また、表示部213に表示する映像シーンが変わる場合など、直前の画像よりも明るさ、コントラスト、または色調などが大きく異なる画像が表示される場合がある。このような場合、第1区画229Aと、第1区画229Aよりも駆動周波数が低い区画の間で、画像が切り換わるタイミングにずれが生じるため、両区間の間で明るさ、コントラスト、または色調などが大きく異なり、実質的な表示品位が損なわれる恐れがある。このように映像シーンが変わる場合などでは、−旦、第1区画229A以外の区画も第1区画229Aと同じ駆動周波数で画像の書き換えを行ない、その後に第1区画229A以外の区画の駆動周波数を低下させればよい。
 また、注視点Gの変動量が一定量を越えたと判断した場合、第1区画229A以外の区画も第1区画229Aと同じ駆動周波数で画像の書き換えを行ない、変動量が一定量以内であると判断した場合に、第1区画229A以外の区画の駆動周波数を低下させてもよい。また、注視点Gの変動量が少ないと判断した場合、第1区画229A以外の区画の駆動周波数をさらに低下させてもよい。
 なお、表示部213に設定する区画は、第1区画229A、第2区画229B、および第3区画229Cの3つに限定されない。表示部213に4以上の区画を設定してもよい。表示部213に複数の区画を設定し、段階的に駆動周波数を低くすることで、実質的な表示品位の低下をより少なくすることができる。
 また、第1区画229Aに表示する画像に対して、前述したアップコンバート処理を行なってもよい。第1区画229Aにアップコンバート処理された画像を表示することで、表示品位を高めることができる。また、第1区画229A以外の区画に表示する画像に対して、前述したアップコンバート処理を行なってもよい。第1区画229A以外の区画にアップコンバート処理された画像を表示することで、第1区画229A以外の区画の駆動周波数を低下させた場合の実質的な表示品位の低下をより少なくすることができる。
 なお、第1区画229Aに表示する画像のアップコンバート処理を高精度なアルゴリズムで行ない、第1区画229A以外の区画に表示する画像のアップコンバート処理を低精度なアルゴリズムで行なってもよい。このような場合においても、第1区画229A以外の区画の駆動周波数を低下させた場合の実質的な表示品位の低下をより少なくすることができる。
 また、副表示部219毎に行う画像データの書き換えを、全ての副表示部219で同時に行うことで、高速書き換えが実現できる。すなわち、区画239毎に行う画像データの書き換えを、全ての区画239で同時に行うことで、高速書き換えが実現できる。
 一般に、ソースドライバ回路は、線順次駆動の場合、ゲートドライバ回路が1行分の画素を選択している間に、1行分の全ての画素に、同時に画像データを書き込む。例えば、表示部213が副表示部219に分割されておらず、解像度が4000×2000である場合、ゲートドライバ回路が1行分の画素を選択している間に、ソースドライバ回路は4000個の画素に画像データを書き込む必要がある。フレーム周波数が120Hzの場合、1フレームの時間は約8.3msecである。よって、ゲートドライバは2000行を約8.3msecで選択する必要があり、ゲート線1行が選択される時間、つまり、1画素当たりの画像データの書き込み時間は約4.17μsecとなる。すなわち、表示部の解像度が高くなるほど、また、フレーム周波数が高くなるほど、十分な画像データの書き換え時間の確保が難しくなる。
 本実施の形態で例示した表示装置200Aは、表示部213が行方向に4分割されている。よって、1つの副表示部219において、1画素当たりの画像データの書き込み時間を、表示部213が分割されていない場合より4倍長くできる。本発明の一態様によれば、フレーム周波数を240Hz、さらには360Hzにした場合でも画像データの書き換え時間の確保が容易になるため、表示品位の高い表示装置が実現できる。
 また、本実施の形態で例示した表示装置200Aは、表示部213が行方向に4分割されているため、ソースドライバ回路と画素回路を電気的に接続する配線SLの長さが4分の1になる。このため、配線SLの抵抗値および寄生容量がそれぞれ4分の1になり、画像データの書き込み(書き換え)に必要な時間を短くすることができる。
 加えて、本実施の形態で例示した表示装置200Aは、表示部213が列方向に8分割されているため、ゲートドライバ回路と画素回路を電気的に接続する配線GLの長さが8分の1になる。このため、配線GLの抵抗値および寄生容量がそれぞれ8分の1になり、信号の劣化および遅延が改善し、画像データの書き換え時間の確保が容易になる。
 本発明の一態様に係る表示装置200Aによれば、十分な画像データの書き込み時間の確保が容易であるため、表示画像の高速書き換えが実現できる。よって、表示品位の高い表示装置が実現できる。特に、動画表示に優れた表示装置が実現できる。
 本実施の形態で例示した構成例、およびそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
(実施の形態6)
 本実施の形態では、本発明の一態様の電子装置のディスプレイに適用できる表示モジュールの構成例について説明する。
 本実施の形態の表示装置は、高精細な表示パネルとすることができる。例えば、本発明の一態様の表示装置は、腕時計型、及び、ブレスレット型などの情報端末機(ウェアラブル機器)の表示部、並びに、ヘッドマウントディスプレイなどのVR向け機器、及び、メガネ型のAR向け機器などの頭部に装着可能なウェアラブル機器の表示部に用いることができる。
[表示モジュール]
 図36Aに、表示モジュール980の斜視図を示す。表示モジュール980は、表示装置200Aと、FPC990と、を有する。なお、表示モジュール980が有する表示パネルは表示装置200Aに限られず、後述する表示装置200B乃至表示装置200Fのいずれかであってもよい。
 表示モジュール980は、基板991及び基板992を有する。表示モジュール980は、表示部981を有する。表示部981は、画像を表示する領域である。
 図36Bに、基板991側の構成を模式的に示した斜視図を示している。基板991上には、回路部982と、回路部982上の画素回路部983と、画素回路部983上の画素部984と、が積層されている。また、基板991上の画素部984と重ならない部分に、FPC990と接続するための端子部985が設けられている。端子部985と回路部982とは、複数の配線により構成される配線部986により電気的に接続されている。
 画素部984は、周期的に配列した複数の画素984aを有する。図36Bの右側に、1つの画素984aの拡大図を示している。画素984aは、赤色の光を発する発光デバイス410R、緑色の光を発する発光デバイス410G、及び、青色の光を発する発光デバイス410Bを有する。
 画素回路部983は、周期的に配列した複数の画素回路983aを有する。1つの画素回路983aは、1つの画素984aが有する3つの発光デバイスの発光を制御する回路である。1つの画素回路983aには、1つの発光デバイスの発光を制御する回路が3つ設けられる構成としてもよい。例えば、画素回路983aは、1つの発光デバイスにつき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量素子と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソースにはソース信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示パネルが実現されている。
 回路部982は、画素回路部983の各画素回路983aを駆動する回路を有する。例えば、ゲート線駆動回路、及び、ソース線駆動回路の一方または双方を有することが好ましい。このほか、演算回路、メモリ回路、及び電源回路等の少なくとも一つを有していてもよい。また、回路部982に設けられるトランジスタが画素回路983aの一部を構成してもよい。すなわち、画素回路983aが、画素回路部983が有するトランジスタと、回路部982が有するトランジスタと、により構成されていてもよい。
 FPC990は、外部から回路部982にビデオ信号及び電源電位等を供給するための配線として機能する。また、FPC990上にICが実装されていてもよい。
 表示モジュール980は、画素部984の下側に画素回路部983及び回路部982の一方または双方が積層された構成とすることができるため、表示部981の開口率(有効表示面積比)を極めて高くすることができる。例えば表示部981の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素984aを極めて高密度に配置することが可能で、表示部981の精細度を極めて高くすることができる。例えば、表示部981には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下の精細度で、画素984aが配置されることが好ましい。
 このような表示モジュール980は、極めて高精細であることから、ヘッドマウントディスプレイなどのVR向け機器、またはメガネ型のAR向け機器に好適に用いることができる。例えば、レンズを通して表示モジュール980の表示部を視認する構成の場合であっても、表示モジュール980は極めて高精細な表示部981を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。また、表示モジュール980はこれに限られず、比較的小型の表示部を有する電子機器に好適に用いることができる。例えば腕時計などの装着型の電子機器の表示部に好適に用いることができる。
[表示装置200A]
 図37Aに示す表示装置200Aは、基板801、発光デバイス410R、410G、410B、容量840、及び、トランジスタ810を有する。
 基板801は、図36A及び図36Bにおける基板991に相当する。
 トランジスタ810は、基板801にチャネル形成領域を有するトランジスタである。基板801としては、例えば単結晶シリコン基板などの半導体基板を用いることができる。トランジスタ810は、基板801の一部、導電層811、低抵抗領域812、絶縁層813、及び、絶縁層814を有する。導電層811は、ゲート電極として機能する。絶縁層813は、基板801と導電層811の間に位置し、ゲート絶縁層として機能する。低抵抗領域812は、基板801に不純物がドープされた領域であり、ソースまたはドレインの一方として機能する。絶縁層814は、導電層811の側面を覆って設けられ、絶縁層として機能する。
 また、基板801に埋め込まれるように、隣接する2つのトランジスタ810の間に素子分離層815が設けられている。
 また、トランジスタ810を覆って絶縁層961が設けられ、絶縁層961上に容量840が設けられている。
 容量840は、導電層941と、導電層945と、これらの間に位置する絶縁層943を有する。導電層941は、容量840の一方の電極として機能し、導電層945は、容量840の他方の電極として機能し、絶縁層943は、容量840の誘電体として機能する。
 導電層941は絶縁層961上に設けられ、絶縁層954に埋め込まれている。導電層941は、絶縁層961に埋め込まれたプラグ971によってトランジスタ810のソースまたはドレインの一方と電気的に接続されている。絶縁層943は導電層941を覆って設けられる。導電層945は、絶縁層943を介して導電層941と重なる領域に設けられている。
 容量840を覆って、絶縁層955aが設けられ、絶縁層955a上に絶縁層955bが設けられ、絶縁層955b上に絶縁層955cが設けられている。
 絶縁層955a、絶縁層955b、及び絶縁層955cには、それぞれ無機絶縁膜を好適に用いることができる。例えば、絶縁層955a及び絶縁層955cに酸化シリコン膜を用い、絶縁層955bに窒化シリコン膜を用いることが好ましい。これにより、絶縁層955bは、エッチング保護膜として機能させることができる。本実施の形態では、絶縁層955cの一部がエッチングされ、凹部が形成されている例を示すが、絶縁層955cに凹部が設けられていなくてもよい。
 絶縁層955c上に発光デバイス410R、発光デバイス410G、及び、発光デバイス410Bが設けられている。
 表示装置200Aは、発光色ごとに、発光デバイスを作り分けているため、低輝度での発光と高輝度での発光で色度の変化が小さい。また、有機層412R、412G、412Bがそれぞれ離隔しているため、高精細な表示パネルであっても、隣接する副画素間におけるクロストークの発生を抑制することができる。したがって、高精細であり、かつ、表示品位の高い表示パネルを実現することができる。
 隣り合う発光デバイスの間の領域には、絶縁層425、樹脂層426、及び層428が設けられる。
 発光デバイスの画素電極411R、画素電極411G、及び、画素電極411Bは、絶縁層955a、絶縁層955b、及び、絶縁層955cに埋め込まれたプラグ956、絶縁層954に埋め込まれた導電層941、及び、絶縁層961に埋め込まれたプラグ971によってトランジスタ810のソースまたはドレインの一方と電気的に接続されている。絶縁層955cの上面の高さと、プラグ956の上面の高さは、一致または概略一致している。プラグには各種導電材料を用いることができる。
 また、発光デバイス410R、410G、及び410B上には保護層421が設けられている。保護層421上には、接着層471によって基板470が貼り合わされている。
 隣接する2つの画素電極411間には、画素電極411の上面端部を覆う絶縁層が設けられていない。そのため、隣り合う発光デバイスの間隔を極めて狭くすることができる。したがって、高精細、または、高解像度の表示装置とすることができる。
[表示装置200B]
 図38に示す表示装置200Bは、それぞれ半導体基板にチャネルが形成されるトランジスタ810Aと、トランジスタ810Bとが積層された構成を有する。なお、以降の表示パネルの説明では、先に説明した表示パネルと同様の部分については説明を省略することがある。
 表示装置200Bは、トランジスタ810B、容量840、発光デバイスが設けられた基板801Bと、トランジスタ810Aが設けられた基板801Aとが、貼り合された構成を有する。
 ここで、基板801Bの下面に絶縁層845が設けられ、基板801A上に設けられた絶縁層961の上には絶縁層846を設けられている。絶縁層845、846は、保護層として機能する絶縁層であり、基板801B及び基板801Aに不純物が拡散することを抑制することができる。絶縁層845、846としては、保護層421または絶縁層832に用いることができる無機絶縁膜を用いることができる。
 基板801Bには、基板801B及び絶縁層845を貫通するプラグ843が設けられる。ここで、プラグ843の側面を覆って、保護層として機能する絶縁層844を設けることが好ましい。
 また、基板801Bは、絶縁層845の下側に、導電層842が設けられる。導電層842は、絶縁層835に埋め込まれており、導電層842と絶縁層835の下面は平坦化されている。また、導電層842はプラグ843と電気的に接続されている。
 一方、基板801Aには、絶縁層846上に導電層841が設けられている。導電層841は、絶縁層836に埋め込まれており、導電層841と絶縁層836の上面は平坦化されている。
 導電層841及び導電層842としては、同じ導電材料を用いることが好ましい。例えば、Al、Cr、Cu、Ta、Ti、Mo、Wから選ばれた元素を含む金属膜、又は上述した元素を成分とする金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。特に、導電層841及び導電層842に、銅を用いることが好ましい。これにより、Cu−Cu(カッパー・カッパー)直接接合技術(Cu(銅)のパッド同士を接続することで電気的導通を図る技術)を適用することができる。
[表示装置200C]
 図39に示す表示装置200Cは、導電層841と導電層842を、バンプ847を介して接合する構成を有する。
 図39に示すように、導電層841と導電層842の間にバンプ847を設けることで、導電層841と導電層842を電気的に接続することができる。バンプ847は、例えば、金(Au)、ニッケル(Ni)、インジウム(In)、錫(Sn)などを含む導電材料を用いて形成することができる。また例えば、バンプ847として半田を用いる場合がある。また、絶縁層845と絶縁層846の間に、接着層848を設けてもよい。また、バンプ847を設ける場合、絶縁層835及び絶縁層836を設けない構成にしてもよい。
[表示装置200D]
 図40に示す表示装置200Dは、トランジスタの構成が異なる点で、表示装置200Aと主に相違する。
 トランジスタ820は、チャネルが形成される半導体層に、金属酸化物(酸化物半導体ともいう)が適用されたトランジスタ(OSトランジスタ)である。
 トランジスタ820は、半導体層821、絶縁層823、導電層824、一対の導電層825、絶縁層826、及び、導電層827を有する。
 基板831は、図36A及び図36Bにおける基板991に相当する。
 基板831上に、絶縁層832が設けられている。絶縁層832は、基板831から水または水素などの不純物がトランジスタ820に拡散すること、及び半導体層821から絶縁層832側に酸素が脱離することを防ぐバリア層として機能する。絶縁層832としては、例えば酸化アルミニウム膜、酸化ハフニウム膜、窒化シリコン膜などの、酸化シリコン膜よりも水素または酸素が拡散しにくい膜を用いることができる。
 絶縁層832上に導電層827が設けられ、導電層827を覆って絶縁層826が設けられている。導電層827は、トランジスタ820の第1のゲート電極として機能し、絶縁層826の一部は、第1のゲート絶縁層として機能する。絶縁層826の少なくとも半導体層821と接する部分には、酸化シリコン膜等の酸化物絶縁膜を用いることが好ましい。絶縁層826の上面は、平坦化されていることが好ましい。
 半導体層821は、絶縁層826上に設けられる。半導体層821は、半導体特性を示す金属酸化物(酸化物半導体ともいう)膜を有することが好ましい。一対の導電層825は、半導体層821上に接して設けられ、ソース電極及びドレイン電極として機能する。
 一対の導電層825の上面及び側面、並びに半導体層821の側面等を覆って絶縁層828が設けられ、絶縁層828上に絶縁層964が設けられている。絶縁層828は、半導体層821に絶縁層964等から水または水素などの不純物が拡散すること、及び半導体層821から酸素が脱離することを防ぐバリア層として機能する。絶縁層828としては、上記絶縁層832と同様の絶縁膜を用いることができる。
 絶縁層828及び絶縁層964に、半導体層821に達する開口が設けられている。当該開口の内部に、半導体層821の上面に接する絶縁層823と、導電層824とが埋め込まれている。導電層824は、第2のゲート電極として機能し、絶縁層823は第2のゲート絶縁層として機能する。
 導電層824の上面、絶縁層823の上面、及び絶縁層964の上面は、それぞれ高さが一致または概略一致するように平坦化処理され、これらを覆って絶縁層829及び絶縁層965が設けられている。
 絶縁層964及び絶縁層965は、層間絶縁層として機能する。絶縁層829は、トランジスタ820に絶縁層965等から水または水素などの不純物が拡散することを防ぐバリア層として機能する。絶縁層829としては、上記絶縁層828及び絶縁層832と同様の絶縁膜を用いることができる。
 一対の導電層825の一方と電気的に接続するプラグ974は、絶縁層965、絶縁層829、及び絶縁層964に埋め込まれるように設けられている。ここで、プラグ974は、絶縁層965、絶縁層829、絶縁層964、及び絶縁層828のそれぞれの開口の側面、及び導電層825の上面の一部を覆う導電層974aと、導電層974aの上面に接する導電層974bとを有することが好ましい。このとき、導電層974aとして、水素及び酸素が拡散しにくい導電材料を用いることが好ましい。
[表示装置200E]
 図41に示す表示装置200Eは、それぞれチャネルが形成される半導体に酸化物半導体を有するトランジスタ820Aと、トランジスタ820Bとが積層された構成を有する。
 トランジスタ820A、トランジスタ820B、及びその周辺の構成については、上記表示装置200Dを援用することができる。
 なお、ここでは、酸化物半導体を有するトランジスタを2つ積層する構成としたが、これに限られない。例えば3つ以上のトランジスタを積層する構成としてもよい。
[表示装置200F]
 図42に示す表示装置200Fは、基板801にチャネルが形成されるトランジスタ810と、チャネルが形成される半導体層に金属酸化物を含むトランジスタ820とが積層された構成を有する。
 トランジスタ810を覆って絶縁層961が設けられ、絶縁層961上に導電層951が設けられている。また導電層951を覆って絶縁層962が設けられ、絶縁層962上に導電層952が設けられている。導電層951及び導電層952は、それぞれ配線として機能する。また、導電層952を覆って絶縁層963及び絶縁層832が設けられ、絶縁層832上にトランジスタ820が設けられている。また、トランジスタ820を覆って絶縁層965が設けられ、絶縁層965上に容量840が設けられている。容量840とトランジスタ820とは、プラグ974により電気的に接続されている。
 トランジスタ820は、画素回路を構成するトランジスタとして用いることができる。また、トランジスタ810は、画素回路を構成するトランジスタ、または当該画素回路を駆動するための駆動回路(ゲート線駆動回路、ソース線駆動回路)を構成するトランジスタとして用いることができる。また、トランジスタ810及びトランジスタ820は、演算回路または記憶回路などの各種回路を構成するトランジスタとして用いることができる。
 このような構成とすることで、発光デバイスの直下に画素回路だけでなく駆動回路等を形成することができるため、表示領域の周辺に駆動回路を設ける場合に比べて、表示パネルを小型化することが可能となる。
[表示装置200G]
 図43に示す表示装置200Gは、チャネルが形成される半導体層に金属酸化物を含むトランジスタ820Aと、チャネルが形成される半導体層に金属酸化物を含むトランジスタ820Bと、が積層された構成を有する。当該構成とすることで、半導体層の金属酸化物における構成元素の組成を異ならせたトランジスタを用いることができる。そのため、トランジスタ特性の異なるOSトランジスタを用いた表示装置とすることができる。例えば上層のトランジスタ820Aは、発光デバイスを駆動する画素回路のトランジスタとして用い、下層のトランジスタ820Bは、駆動回路のトランジスタとして用いることができる。
 このような構成とすることで、発光デバイスの直下に設けられる回路をより高密度に配置することができるため、表示領域の周辺に駆動回路を設ける場合に比べて、表示パネルを小型化することが可能となる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態7)
 本実施の形態では上述した半導体装置を備えた電子装置の例について図44を用いて説明を行う。
 本発明の一態様に係る半導体装置を用いた電子装置として、テレビ、モニター等の表示装置、照明装置、デスクトップ型或いはノート型のパーソナルコンピュータ、ワードプロセッサ、DVD(Digital Versatile Disc)などの記録媒体に記憶された静止画又は動画を再生する画像再生装置、ポータブルCDプレーヤ、ラジオ、テープレコーダ、ヘッドホンステレオ、ステレオ、置き時計、壁掛け時計、コードレス電話子機、トランシーバ、携帯電話、自動車電話、携帯型ゲーム機、タブレット型端末、パチンコ機などの大型ゲーム機、電卓、携帯可能な情報端末(「携帯情報端末」ともいう。)、電子手帳、電子書籍端末、電子翻訳機、音声入力機器、ビデオカメラ、デジタルスチルカメラ、電気シェーバ、電子レンジ等の高周波加熱装置、電気炊飯器、電気洗濯機、電気掃除機、温水器、扇風機、毛髪乾燥機、エアコンディショナー、加湿器、除湿器などの空調設備、食器洗い器、食器乾燥器、衣類乾燥器、布団乾燥器、電気冷蔵庫、電気冷凍庫、電気冷凍冷蔵庫、DNA保存用冷凍庫、懐中電灯、チェーンソーなどの工具、煙感知器、透析装置などの医療機器などが挙げられる。さらに、誘導灯、信号機、ベルトコンベア、エレベータ、エスカレータ、産業用ロボット、電力貯蔵システム、電力の平準化、スマートグリッドのための蓄電装置などの産業機器が挙げられる。
 また、蓄電装置からの電力を用いて電動機により推進する移動体なども、電子装置の範疇に含まれるものとする。上記移動体として、例えば、電気自動車(EV)、内燃機関と電動機を併せ持ったハイブリッド車(HEV)、プラグインハイブリッド車(PHEV)、これらのタイヤ車輪を無限軌道に変えた装軌車両、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、ゴルフ用カート、小型又は大型船舶、潜水艦、ヘリコプター、航空機、ロケット、人工衛星、宇宙探査機、惑星探査機、宇宙船などが挙げられる。
 電子装置は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)などを有していてもよい。
 電子装置は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信手段、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
 図44Aに、バンド型の情報端末の一例を示す。情報端末750は、筐体751、半導体装置101、センサ752などを備える。また、情報端末750は、その内部に二次電池と、表示装置、などを有していてもよい。本発明の一態様に係る半導体装置を情報端末750に用いることで、情報端末750を、衝撃に強く、小型化および低消費電力化に優れたIoT機器として機能させることができる。
 図44Bは、図44Aで図示した情報端末750の利用形態の一例を示す図である。情報端末750は、使用者の頭部または首などに巻き付けて用いることが可能である。例えば、バンド型の情報端末750の内側にセンサ(図示せず)を設け、当該センサより得られる情報を半導体装置で処理するなどの構成があり得る。当該構成とすることで、衝撃に強く、小型化および低消費電力化に優れたIoT機器の利便性を向上させることができる。
 図44Cは、図44Aで図示した情報端末750の利用形態の別の一例を示す図である。情報端末750は、使用者の腕部などに巻き付けて用いることが可能である。例えば、バンド型の情報端末750の内側にセンサ(図示せず)を設け、当該センサより得られる情報を半導体装置で処理し、バンド型の情報端末750に設けられたアンテナ753等により、外部の通信機器と得られたデータの送受信を行う構成があり得る。当該構成とすることで、衝撃に強く、小型化および低消費電力化に優れたIoT機器の利便性を向上させることができる。
 また図44Bおよび図44Cで説明した本発明の一態様の電子装置の利用形態は、犬または猫などの動物に取り付ける構成であってもよい。例えば、図44Dおよび図44Eには、情報端末750が取り付けられた犬または猫の様子を図示したものである。図44Dおよび図44Eに図示する首輪754およびリード755は、図44Bおよび図44Cで説明した情報端末750と同様にセンサおよび半導体装置101等を有する。当該構成とすることで、衝撃に強く、小型化および低消費電力化に優れたIoT機器の利便性を向上させることができる。
 本実施の形態に示す構成、構造、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
(本明細書等の記載に関する付記)
 以上の実施の形態、及び実施の形態における各構成の説明について、以下に付記する。
 各実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて、本発明の一態様とすることができる。また、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
 なお、ある一つの実施の形態の中で述べる内容(一部の内容でもよい)は、その実施の形態で述べる別の内容(一部の内容でもよい)、及び/又は、一つ若しくは複数の別の実施の形態で述べる内容(一部の内容でもよい)に対して、適用、組み合わせ、又は置き換えなどを行うことが出来る。
 なお、実施の形態の中で述べる内容とは、各々の実施の形態において、様々な図を用いて述べる内容、又は明細書に記載される文章を用いて述べる内容のことである。
 なお、ある一つの実施の形態において述べる図(一部でもよい)は、その図の別の部分、その実施の形態において述べる別の図(一部でもよい)、及び/又は、一つ若しくは複数の別の実施の形態において述べる図(一部でもよい)に対して、組み合わせることにより、さらに多くの図を構成させることが出来る。
 また本明細書等において、ブロック図では、構成要素を機能毎に分類し、互いに独立したブロックとして示している。しかしながら実際の回路等においては、構成要素を機能毎に切り分けることが難しく、一つの回路に複数の機能が係わる場合、または複数の回路にわたって一つの機能が関わる場合があり得る。そのため、ブロック図のブロックは、明細書で説明した構成要素に限定されず、状況に応じて適切に言い換えることができる。
 また、図面において、大きさ、層の厚さ、又は領域は、説明の便宜上任意の大きさに示したものである。よって、必ずしもそのスケールに限定されない。なお図面は明確性を期すために模式的に示したものであり、図面に示す形状又は値などに限定されない。例えば、ノイズによる信号、電圧、若しくは電流のばらつき、又は、タイミングのずれによる信号、電圧、若しくは電流のばらつきなどを含むことが可能である。
 本明細書等において、トランジスタの接続関係を説明する際、「ソース又はドレインの一方」(又は第1電極、又は第1端子)、「ソース又はドレインの他方」(又は第2電極、又は第2端子)という表記を用いる。これは、トランジスタのソースとドレインは、トランジスタの構造又は動作条件等によって変わるためである。なおトランジスタのソースとドレインの呼称については、ソース(ドレイン)端子、またはソース(ドレイン)電極等、状況に応じて適切に言い換えることができる。
 また、本明細書等において「電極」または「配線」の用語は、これらの構成要素を機能的に限定するものではない。例えば、「電極」は「配線」の一部として用いられることがあり、その逆もまた同様である。さらに、「電極」または「配線」の用語は、複数の「電極」または「配線」が一体となって形成されている場合なども含む。
 また、本明細書等において、電圧と電位は、適宜言い換えることができる。電圧は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電圧(接地電圧)とすると、電圧を電位に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
 なお本明細書等において、「膜」、「層」などの語句は、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
 本明細書等において、スイッチとは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有するものをいう。または、スイッチとは、電流を流す経路を選択して切り替える機能を有するものをいう。
 本明細書等において、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲートとが重なる領域、またはチャネルが形成される領域における、ソースとドレインとの間の距離をいう。
 本明細書等において、チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。
 本明細書等において、AとBとが接続されている、とは、AとBとが直接接続されているものの他、電気的に接続されているものを含むものとする。ここで、AとBとが電気的に接続されているとは、AとBとの間で、何らかの電気的作用を有する対象物が存在するとき、AとBとの電気信号の授受を可能とするものをいう。
10M:バックアップ回路、10:CPU、11:CPUコア、12:L1キャッシュメモリ装置、13:L2キャッシュメモリ装置、14:バスインターフェース部、20M:データ保持回路、20:アクセラレータ、21:メモリ回路、22:演算回路、23:制御回路、30M:メモリセル、30:メモリ装置、31:メモリセルアレイ、32:周辺回路、40A:バス、40B:バス、41:DMAC、42:PMU、43:メモリコントローラ、44:コントローラ、45:USBインターフェース回路、46:ディスプレイインターフェース回路、50:ブリッジ回路、51:割り込み制御回路、52:インターフェース回路、53:バッテリー制御回路、54:DACインターフェース回路、60:電源回路、100:電子装置、101:半導体装置、102:ディスプレイ、103:メインメモリ、104:バッテリー、105:センサ、111:筐体、112:操作部、113:バンド

Claims (10)

  1.  半導体装置を有する電子装置において、
     前記半導体装置は、
     CPUと、アクセラレータと、メモリ装置と、を有し、
     前記CPUは、スキャンフリップフロップ回路と、前記スキャンフリップフロップ回路に電気的に接続されたバックアップ回路と、を有し、
     前記バックアップ回路は、第1のトランジスタを有し、
     前記アクセラレータは、演算回路と、前記演算回路に電気的に接続されたデータ保持回路を有し、
     前記データ保持回路は、第2のトランジスタを有し、
     前記メモリ装置は、第3のトランジスタを有するメモリセルを有し、
     前記第1のトランジスタ乃至第3のトランジスタは、チャネル形成領域に金属酸化物を有する半導体層を有する、電子装置。
  2.  半導体装置を有する電子装置において、
     前記半導体装置は、
     CPUと、アクセラレータと、メモリ装置と、を有し、
     前記CPUは、スキャンフリップフロップ回路と、前記スキャンフリップフロップ回路に電気的に接続されたバックアップ回路と、を有し、
     前記バックアップ回路は、第1のトランジスタを有し、
     前記バックアップ回路が設けられる層は、前記スキャンフリップフロップ回路が設けられる層と積層して設けられ、
     前記アクセラレータは、演算回路と、前記演算回路に電気的に接続されたデータ保持回路を有し、
     前記データ保持回路は、第2のトランジスタを有し、
     前記データ保持回路が設けられる層は、前記演算回路が設けられる層と積層して設けられ、
     前記メモリ装置は、第3のトランジスタを有するメモリセルを有し、
     前記第1のトランジスタ乃至第3のトランジスタは、チャネル形成領域に金属酸化物を有する半導体層を有する、電子装置。
  3.  請求項1または2において、
     前記バックアップ回路は、前記CPUの非動作時において、前記スキャンフリップフロップ回路に保持されたデータを電源電圧の供給が停止した状態で保持する機能を有する、電子装置。
  4.  請求項1乃至3のいずれか一において、
     前記データ保持回路は、前記アクセラレータの非動作時において、前記データ保持回路に保持されたデータを電源電圧の供給が停止した状態で保持する機能を有する、電子装置。
  5.  請求項1乃至4のいずれか一において、
     前記スキャンフリップフロップ回路および前記演算回路は、チャネル形成領域にシリコンを有する半導体層を有するトランジスタを有する、電子装置。
  6.  請求項1乃至5のいずれか一において、
     前記メモリ装置は、前記メモリセルを制御する周辺回路を有し、
     前記周辺回路が設けられる層は、前記メモリセルが設けられる層と積層して設けられる、電子装置。
  7.  請求項1乃至6のいずれか一において、
     前記演算回路は、積和演算を行う回路である、電子装置。
  8.  請求項1乃至7のいずれか一において、
     前記金属酸化物は、Inと、Gaと、Znと、を含む、電子装置。
  9.  第1の電子装置と、第2の電子装置と、を有し、
     前記第1の電子装置は、
     第1の表示部と、第1の無線通信手段と、第1のセンサと、を有し、
     前記第2の電子装置は、
     第2の表示部と、第2の無線通信手段と、第2のセンサと、を有し、
     前記第1の無線通信手段と、前記第2の無線通信手段と、を連動させ前記第1の電子装置と、前記第2の電子装置とを、接続し、
     前記第1のセンサ、及び前記第2のセンサに入力されるいずれか一または複数の情報をもとに、
     前記第2の表示部に拡張現実、仮想現実、代替現実、または複合現実のいずれか一または複数の表示を行う機能と、
     前記第1のセンサに入力された情報をもとに、前記第2の表示部の画像を操作する機能と、を有する、表示システム。
  10.  請求項9において、
     前記第1の電子装置は、請求項1乃至8のいずれか一に記載の電子装置である、表示システム。
PCT/IB2022/058439 2021-09-22 2022-09-08 電子装置および表示システム WO2023047228A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023549160A JPWO2023047228A1 (ja) 2021-09-22 2022-09-08
CN202280061608.8A CN117941066A (zh) 2021-09-22 2022-09-08 电子装置及显示系统
KR1020247012016A KR20240072185A (ko) 2021-09-22 2022-09-08 전자 장치 및 표시 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-153758 2021-09-22
JP2021153758 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023047228A1 true WO2023047228A1 (ja) 2023-03-30

Family

ID=85719338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/058439 WO2023047228A1 (ja) 2021-09-22 2022-09-08 電子装置および表示システム

Country Status (4)

Country Link
JP (1) JPWO2023047228A1 (ja)
KR (1) KR20240072185A (ja)
CN (1) CN117941066A (ja)
WO (1) WO2023047228A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125247A (ja) * 2011-12-16 2013-06-24 Sony Corp ヘッドマウントディスプレイ及び情報表示装置
JP2019036280A (ja) * 2017-08-11 2019-03-07 株式会社半導体エネルギー研究所 グラフィックスプロセッシングユニット、コンピュータ、電子機器及び並列計算機
JP2019046199A (ja) * 2017-09-01 2019-03-22 株式会社半導体エネルギー研究所 プロセッサ、および電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3189409B1 (en) 2014-09-02 2020-01-29 Apple Inc. Reduced-size interfaces for managing alerts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125247A (ja) * 2011-12-16 2013-06-24 Sony Corp ヘッドマウントディスプレイ及び情報表示装置
JP2019036280A (ja) * 2017-08-11 2019-03-07 株式会社半導体エネルギー研究所 グラフィックスプロセッシングユニット、コンピュータ、電子機器及び並列計算機
JP2019046199A (ja) * 2017-09-01 2019-03-22 株式会社半導体エネルギー研究所 プロセッサ、および電子機器

Also Published As

Publication number Publication date
JPWO2023047228A1 (ja) 2023-03-30
KR20240072185A (ko) 2024-05-23
CN117941066A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
JP7004453B2 (ja) グラフィックスプロセッシングユニット
JP2023171396A (ja) 半導体装置
CN111052396B (zh) 半导体装置及显示装置
JP2024079705A (ja) 半導体装置
WO2019207404A1 (ja) 半導体装置
JP7241068B2 (ja) 半導体装置
JP7547437B2 (ja) 半導体装置
JP2023118912A (ja) タッチパネル
JPWO2019003045A1 (ja) 記憶装置
WO2023047228A1 (ja) 電子装置および表示システム
WO2021084367A1 (ja) 表示装置
WO2020217130A1 (ja) 半導体装置および電子機器
WO2021064502A1 (ja) 半導体装置
JP2019054028A (ja) 半導体装置、及び表示装置
WO2021111248A1 (ja) 操作装置および情報処理システム
WO2024171007A1 (ja) 半導体装置、および表示装置
WO2023111763A1 (ja) 半導体装置、表示装置、データ処理システム及び半導体装置の制御システム
WO2023073488A1 (ja) 表示装置
WO2024127199A1 (ja) 電子機器
WO2024141888A1 (ja) 半導体装置、および表示装置
WO2024141884A1 (ja) 半導体装置、及び電子機器
WO2024201263A1 (ja) 半導体装置、及び半導体装置の作製方法
WO2022172124A1 (ja) 表示装置、電子機器
WO2024121683A1 (ja) 半導体装置
WO2022185143A1 (ja) 半導体装置、表示装置、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872295

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061608.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023549160

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247012016

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22872295

Country of ref document: EP

Kind code of ref document: A1