WO2023046155A1 - 一种有机包覆层及含有该包覆层的电极活性材料、电极和电池 - Google Patents

一种有机包覆层及含有该包覆层的电极活性材料、电极和电池 Download PDF

Info

Publication number
WO2023046155A1
WO2023046155A1 PCT/CN2022/121281 CN2022121281W WO2023046155A1 WO 2023046155 A1 WO2023046155 A1 WO 2023046155A1 CN 2022121281 W CN2022121281 W CN 2022121281W WO 2023046155 A1 WO2023046155 A1 WO 2023046155A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
coating layer
active material
organic coating
electrode active
Prior art date
Application number
PCT/CN2022/121281
Other languages
English (en)
French (fr)
Inventor
董德锐
张赵帅
赵伟
李素丽
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Publication of WO2023046155A1 publication Critical patent/WO2023046155A1/zh
Priority to US18/398,713 priority Critical patent/US20240145701A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of electrochemical energy storage batteries, in particular to an organic coating layer, an electrode active material containing the coating layer, an electrode and a battery containing the electrode active material.
  • Lithium battery is one of the fastest growing batteries at present.
  • the safety of lithium batteries has become increasingly prominent.
  • Many spontaneous combustion accidents in mobile phones and cars are caused by a short circuit inside the battery that generates a lot of heat, causing the internal electrolyte to decompose.
  • people's requirements for the energy density of lithium-ion batteries are getting higher and higher, it is also a great challenge to the existing lithium-ion battery system.
  • the traditional lithium iron phosphate positive electrode can no longer meet the daily needs, and the nickel content of the ternary positive electrode material is also increasing.
  • the nickel content of the ternary material increases, the cycle stability and high temperature stability of the material decrease.
  • the commonly used modification method is surface coating. It can avoid the direct contact between the electrolyte and the lithium-rich material, reduce the occurrence of side reactions between the electrode material and the electrolyte, reduce the transfer resistance during charge and discharge, inhibit the release of surface oxygen and the transformation of the material structure, thereby improving the cycle performance of the material and Rate performance is currently the most widely used and most studied modification method.
  • the negative electrode From the perspective of the negative electrode, whether it is a commercial graphite negative electrode or a silicon-based negative electrode material with broad prospects in the future, there is a tendency for the negative electrode to expand in volume during the cycle, especially if the silicon negative electrode material is used. Silicon-based negative electrode materials have the problem of poor conductivity. In the process of de-lithiation/intercalation in practical applications, there is a large volume expansion effect. This structural expansion and contraction change destroys the stability of the electrode structure, causing silicon particles to easily Cracking and pulverization will lead to the collapse and peeling of the electrode material structure, causing the electrode material to lose electrical contact, eventually leading to a rapid decline in the specific capacity of the negative electrode, and deteriorating the cycle performance of the lithium battery.
  • the conductivity of silicon oxide is poor, and its properties are close to that of insulators, so the kinetic performance of its electrochemical reaction is poor, and the initial charge and discharge efficiency is low. Therefore, coating electrode materials is a necessary and effective means.
  • the current commercial coating methods are relatively simple, and the commonly used inorganic coatings have poor lithium-conducting ability, so they cannot meet the needs of the next generation of lithium-ion batteries.
  • the present application provides an organic coating layer, which has both high mechanical strength and strong viscoelasticity, and has excellent lithium conduction ability and self-repairing function, so that it can be well Inhibit the occurrence of interface side reactions and electrode expansion.
  • There are crosslinking sites that can crosslink the amorphous polymer block in the organic coating layer which also includes dynamic forces such as hydrogen bonds and coordination bonds, which can significantly improve the tear resistance of the polymer material. It also significantly increases the strength, ductility and toughness of elastomeric materials.
  • the polymer in the organic coating layer can also act synergistically with the lithium salt, so that the electrode of the present application has excellent ion conductivity, thereby improving the lithium ion conductivity at the interface.
  • Another purpose of the present application is to provide a method for preparing an organic coating layer.
  • the coating layer prepared by it can quickly self-repair at room temperature and under heating conditions, and the effect of improving battery performance is remarkable.
  • the preparation method is simple and suitable for Industrial application.
  • Another object of the present application is to provide a battery comprising the positive and negative electrode active materials with the above-mentioned organic coating layer. It can quickly self-heal, so it can not only solve the interface side reaction between the solid electrolyte and the electrode, but also inhibit the electrode deformation caused by the electrode expansion during the battery cycle, so as to improve the battery cycle performance.
  • the application provides an organic coating layer, the coating layer includes a lithiated polymer; the lithiated polymer is a polymer obtained by further lithiation treatment of a polymer of diisocyanate and alcohol compound things.
  • R 1 is a C6-C18 hydrocarbon group.
  • Described diisocyanate is selected from toluene diisocyanate (TDI), isophorone diisocyanate (IPDI), diphenylmethane diisocyanate (MDI), dicyclohexylmethane diisocyanate (HMDI), hexamethylene diisocyanate ( HDI), lysine diisocyanate (LDI) and xylene diisocyanate (MPI).
  • TDI toluene diisocyanate
  • IPDI isophorone diisocyanate
  • MDI diphenylmethane diisocyanate
  • HMDI dicyclohexylmethane diisocyanate
  • HDI hexamethylene diisocyanate
  • LLI lysine diisocyanate
  • MPI xylene diisocyanate
  • the alcohol compound is at least one selected from diols.
  • diol has a conventional meaning in the art, and the term “diol” refers to an alcohol containing two carboxyl groups in the molecule.
  • the alcohol compound is pentylene glycol.
  • the lithiation reagent used in the lithiation treatment is at least one selected from lithium hydride, butyllithium, ethyllithium, phenyllithium and methyllithium.
  • the molar ratio of the diisocyanate, the alcohol compound in terms of -OH (hydroxyl group) and the lithiation agent in terms of Li + is Exemplary are 1:1.5:1.5, 1:2:2, 1:2.5:2.5.
  • the molar ratio of the diisocyanate, the alcohol compound in terms of -OH (hydroxyl group) and the lithiation agent in terms of Li + is
  • the term "B in A” means that the amount of A in B is the subject of quantification.
  • the alcohol compound in terms of -OH (hydroxyl) means that when calculating the molar ratio, the molar amount of -OH (hydroxyl) is used instead of the molar amount of the alcohol compound itself, for example: when using In the case of 1 mol of pentylene glycol, "pentylene glycol in terms of -OH (hydroxyl group)" is 2 mol.
  • the lithiated polymer has a structural formula shown in Formula 2 below:
  • n is the degree of polymerization.
  • n is Exemplary are 2, 10, 100, 1 ⁇ 10 3 , 1 ⁇ 10 4 , 1 ⁇ 10 5 , 1 ⁇ 10 6 , 1.9 ⁇ 10 6 .
  • the organic coating further comprises an ion conductor.
  • the content of the ion conductor is Exemplary are 3wt%, 4wt%, 5wt%, 6wt%, 7wt%, 8wt%.
  • the ionic conductor comprises at least a lithium salt.
  • the ionic conductor is selected from a combination of lithium salts and at least one of the following: inorganic fillers, magnesium salts and sodium salts.
  • the lithium salt is selected from lithium dioxalate borate, lithium difluorooxalate borate, lithium hexafluoroarsenate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, lithium nitrate, lithium difluorosulfonimide , lithium perchlorate, lithium hexafluorophosphate, lithium bistrifluoromethylsulfonimide (LiTFSI) and lithium difluorophosphate.
  • the inorganic filler is selected from Li 7 La 3 Zr 2 O 12 , Al 2 O 3 , TiO 2 , Li 6.28 La 3 Zr 2 Al 0.24 O 12 , Li 6.75 La 3 Nb 0.25 Zr 1.75 O 12 , Li At least one of 6.75 La 3 Zr 1.75 Ta 0.25 O 12 (LLZTO), BaTiO 3 , ZrO 2 , SiO 2 , Li 1.5 A1 0.5 Ge 1.5 (PO 4 ) 3 and montmorillonite.
  • LLZTO 6.75 La 3 Zr 1.75 Ta 0.25 O 12
  • BaTiO 3 , ZrO 2 , SiO 2 Li 1.5 A1 0.5 Ge 1.5 (PO 4 ) 3 and montmorillonite.
  • the magnesium salt is selected from at least one of Mg(TFSI) 2 and MgClO 4 .
  • the sodium salt is selected from at least one of NaDFOB, NaTFSI and NaPF 6 .
  • the present application also provides a composition for preparing the above-mentioned organic coating layer, and the composition includes the following components: diisocyanate, alcohol compound and lithiation agent.
  • the diisocyanate, alcohol compound and lithiation reagent have the meanings and options as described above.
  • the content of the diisocyanate is Exemplary are 15wt%, 20wt%, 25wt%, 30wt%, 35wt%.
  • the content of the alcohol compound is Exemplary are 15wt%, 20wt%, 25wt%, 30wt%, 35wt%.
  • the content of the lithiation agent is Exemplary is 25wt%, 30wt%, 35wt%, 40wt%, 45wt%, 50wt%, 55wt%, 60wt% o
  • the composition may also optionally include an ion conductor.
  • the content of the ion conductor is Exemplary are 3wt%, 4wt%, 5wt%, 6wt%, 7wt%, 8wt%.
  • the composition may also optionally include a catalyst.
  • the ionic conductor comprises at least a lithium salt.
  • the content of the catalyst is Exemplary are 0.001wt%, 0.005wt%, 0.01wt%, 0.05wt%, 0.1wt%, 0.5wt%, 1wt%.
  • the catalyst is at least one selected from dibutyltin dilaurate (DBTDL), stannous octoate and zinc oxalate.
  • DBTDL dibutyltin dilaurate
  • stannous octoate stannous octoate
  • zinc oxalate zinc oxalate
  • the organic coating is a polymerized product of the composition described above.
  • the present application also provides a method for preparing the above-mentioned organic coating layer, which includes the following steps: under the action of a catalyst, polymerize a composition comprising the following components to obtain the lithiated polymer: diisocyanate, alcohol compound and Lithium Reagent.
  • the composition may also optionally include an ion conductor.
  • the polymerization is carried out in a solvent.
  • the solvent includes but not limited to acetonitrile (abbreviated as ACN), dimethylsulfoxide (abbreviated as DMSO), tetrahydrofuran (abbreviated as THF), dimethylformamide (abbreviated as DMF), dimethylacetamide (abbreviated as DMAC), at least one of organic solvents such as ethanol and acetone.
  • ACN acetonitrile
  • DMSO dimethylsulfoxide
  • THF tetrahydrofuran
  • DMF dimethylformamide
  • DMAC dimethylacetamide
  • organic solvents such as ethanol and acetone.
  • the preparation method of the organic coating layer comprises the following steps:
  • step 2) reacting the reaction product of step 1) with a lithiation reagent to prepare a lithiation-treated polymer.
  • the polymerization temperature is 70-90°C, exemplarily 70°C, 75°C, 80°C, 85°C, 90°C; the polymerization time is Exemplary are 24h, 36h, 48h; the polymerization is carried out under an inert atmosphere (such as nitrogen or argon).
  • the temperature of the reaction (lithiation treatment) is 70-90°C, exemplarily 70°C, 75°C, 80°C, 85°C, 90°C;
  • the reaction (lithiation treatment) ) time is for example more than 24h, preferably Exemplary are 24h, 36h, 48h.
  • the preparation method further includes step 3): adding an ion conductor to prepare the organic coating layer.
  • step 3) may also include heating and curing under vacuum conditions after adding the ion conductor.
  • the heating curing temperature is The heat curing time is Another example is that the heating and curing temperature is The heat curing time is
  • the present application also provides an electrode active material, which includes an active material and the above-mentioned organic coating layer coated on the surface of the active material.
  • the thickness of the organic coating layer can be preferably Exemplary is lnm, 5nm, 8nm, 10nm, 20nm, 30nm, 50nm, 100nm or any point value within the range composed of the aforementioned pairwise values.
  • the active material may be a positive active material or a negative active material.
  • the mass ratio of the positive electrode active material or the negative electrode active material to the organic coating layer is Exemplary are 100:0.1, 100:0.2, 100:0.5, 100:1, 100:2, 100:3, 100:4, 100:5.
  • the positive electrode active material is selected from lithium iron phosphate (LiFePO 4 ), lithium cobaltate (LiCoO 2 ), lithium nickel cobalt manganese oxide (L z Ni x Co y Mn 1-xy O 2 , wherein: 0.95 ⁇ z ⁇ 1.05, x>0, y>0, x+y ⁇ l), lithium manganate (LiMnO 2 ), lithium nickel cobalt aluminate (L z Ni x Co y Al 1-xy O 2 , where: 0.95 ⁇ z ⁇ 1.05, x>0, y>0, 0.8 ⁇ x+y ⁇ l, lithium nickel cobalt manganese aluminate (Li z Ni x CO y Mn w Al 1-xyw O 2 , where: 0.95 ⁇ z ⁇ 1.05, x >0, y>0, w>0, 0.8 ⁇ x+y+w ⁇ l), nickel-cobalt-aluminum-tungsten materials, lithium-rich manga
  • the negative electrode active material is selected from carbon materials, metallic bismuth, metallic lithium, metallic copper, metallic indium, nitrides, lithium-based alloys, magnesium-based alloys, indium-based alloys, boron-based materials, silicon-based materials, tin-based materials, antimony-based alloys, gallium-based alloys, germanium-based alloys, aluminum-based alloys, lead-based alloys, zinc-based alloys, titanium oxides, iron oxides, chromium oxides, molybdenum oxides and phosphides, etc. at least one of .
  • carbon materials graphite, amorphous carbon, mesocarbon microspheres
  • silicon-based materials silicon-based materials
  • nano-silicon nano-silicon
  • lithium titanate Li 4 Ti 5 O 12
  • the present application also provides a preparation method of the above-mentioned electrode active material, the method comprising: under the action of a catalyst, the composition comprising the following components is polymerized to obtain the electrode active material: diisocyanate, alcohol compound, lithiation reagent and active substance.
  • the composition may also optionally include an ion conductor.
  • the polymerization is carried out in a solvent.
  • the solvent includes but not limited to acetonitrile (abbreviated as ACN), dimethylsulfoxide (abbreviated as DMSO), tetrahydrofuran (abbreviated as THF), dimethylformamide (abbreviated as DMF), dimethylacetamide (abbreviated as DMAC), at least one of organic solvents such as ethanol and acetone.
  • ACN acetonitrile
  • DMSO dimethylsulfoxide
  • THF tetrahydrofuran
  • DMF dimethylformamide
  • DMAC dimethylacetamide
  • organic solvents such as ethanol and acetone.
  • the preparation method of the electrode active material includes, for example: first dissolving the diisocyanate in a solvent, then adding an alcohol compound and a catalyst, heating and stirring under an inert atmosphere; then mixing the product with a lithiation reagent and an active material, heating and curing to prepare the electrode active material.
  • the preparation method of the electrode active material comprises the following steps:
  • step S2 reacting the polymer prepared in step S1 with a lithiation reagent, and obtaining a lithiation-treated polymer through lithiation treatment;
  • the temperature of the polymerization is Exemplarily, it can be 70°C, 75°C, 80°C, 85°C, 90°C; the polymerization time is Exemplary are 24h, 36h, 48h; the polymerization is carried out under an inert atmosphere (such as nitrogen or argon).
  • the preparation method of the electrode active material further includes removing impurities from the polymer prepared in step S1, so as to remove redundant isocyanate groups.
  • the alcohol solvent is added to the polymer prepared in step S1, stirred (such as ) to remove excess isocyanate groups to obtain a polymer solution.
  • the alcoholic solvent may be methanol or ethanol or the like.
  • the temperature of the reaction (lithiation treatment) is Exemplary are 70°C, 75°C, 80°C, 85°C, 90°C;
  • the time for the reaction (lithiation treatment) is, for example, more than 24h, preferably Exemplary are 24h, 36h, 48h.
  • step S3 for example, the temperature of heating and curing is The heat curing time is Another example is that the heating and curing temperature is The heat curing time is
  • the present application also provides an electrode, which contains the above-mentioned electrode active material.
  • the electrode may be positive or negative. Preferably it is a positive electrode.
  • the electrodes optionally further contain a conductive agent and/or a binder.
  • the mass ratio of the electrode active material to the binder and the conductive agent in the electrode is In this mass ratio, the sum of the mass parts of the electrode active material, the mass parts of the binder and the conductive agent is equal to 100, exemplarily 60:20:20, 70:20:10, 80:10:10, 90:5:5, 92:3:5, 94:2:4, 95:3:2, 99:0.5:0.5, 99:0.1:0.9, 99:0.9:0.1.
  • the adhesive can be one, two or more of polyvinylidene fluoride (PVDF), sodium carboxymethyl cellulose (CMC), and styrene-butadiene rubber (SBR); Vinyl fluoride.
  • PVDF polyvinylidene fluoride
  • CMC sodium carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • the conductive agent may be at least one of conductive carbon black (Super-P) and conductive graphite (KS-6).
  • the present application also provides the application of the above-mentioned electrode active material and/or electrode in a battery.
  • the battery is a secondary battery, a solid state battery or a gel battery.
  • the secondary battery may be various ion secondary batteries such as lithium, sodium, magnesium, aluminum or zinc.
  • the solid-state battery may be an all-solid-state battery, a quasi-solid-state battery or a semi-solid-state battery.
  • exemplary is at least one of a button battery, an aluminum case battery, a pouch battery and a solid lithium ion battery.
  • the present application also provides a battery, which contains the above-mentioned electrode active material and/or electrode.
  • the battery also includes an electrolyte and/or an electrolytic solution.
  • the battery includes the positive electrode and the negative electrode of the above-mentioned organic coating layer, and an electrolyte is contained between the positive electrode and the negative electrode.
  • the battery includes the above-mentioned positive electrode with an organic coating layer, a separator, and a negative electrode, and an electrolyte solution is contained between the positive electrode, the separator, and the negative electrode.
  • the battery includes a positive electrode and a negative electrode of the above-mentioned organic coating layer, and an electrolyte is contained between the positive electrode and the negative electrode.
  • the battery includes a positive electrode, a separator, and a negative electrode of the above-mentioned organic coating layer, and an electrolyte solution is contained between the positive electrode, the separator, and the negative electrode.
  • the battery includes the above-mentioned positive electrode of the organic coating layer and the above-mentioned negative electrode of the organic coating layer, and an electrolyte is contained between the positive electrode and the negative electrode.
  • the battery includes the above-mentioned positive electrode of the organic coating layer, a separator and the above-mentioned negative electrode of the organic coating layer, and an electrolyte solution is contained between the positive electrode, the separator and the negative electrode.
  • the present application also provides a method for preparing the above-mentioned battery, for example, including sequentially stacking a positive electrode, an electrolyte, and a negative electrode together, and the battery can be obtained after vacuum packaging.
  • Another example includes sequentially laminating the positive electrode, the separator and the negative electrode together, injecting electrolyte solution, and vacuum packaging to obtain the battery.
  • the organic coating layer of the present application is used as a lithium ion conductor, which is beneficial to Li + transport during charging and discharging, and its coating effect can reduce the direct contact between the active material and the electrolyte without affecting Li + diffusion, thereby reducing Occurrence of side reactions. And coating on the surface of the electrode active material can effectively alleviate the damage, collapse or aggregation of the electrode active material due to corrosion, so as to improve the structural stability of the electrode active material.
  • the organic coating layer of the present application has excellent chain segment motion ability, and has certain rigidity and elasticity, thus can not break when subjected to greater stress in the cycle process, thereby can effectively inhibit negative electrode material
  • the expansion of the electrode during the cycle can further improve the safety performance of the battery.
  • the organic coating layer of the present application can be applied to various ion secondary batteries, all-solid-state batteries, and quasi-solid-state batteries such as lithium, sodium, magnesium, aluminum, and zinc by adjusting the types and/or proportions of the components Or gel batteries and other types, and the interface performance is good, and the cycle performance is excellent.
  • Fig. 1 is a schematic diagram of the structure of an electrode coated with an organic coating layer; in the figure: 1, a positive electrode active material or a negative electrode active material; 2, an organic coating layer.
  • FIG. 2 is a TEM image of the positive electrode material coated with an organic coating layer in Example 1.
  • FIG. 2 is a TEM image of the positive electrode material coated with an organic coating layer in Example 1.
  • Fig. 3 is a 1C/1C cycle performance diagram of the lithium ion battery in the embodiment at 25°C.
  • Battery EIS test The battery is in an environment of 25 ° C, 50% S0C state, obtained by EIS AC impedance test method, amplitude: 5Mv; test frequency:
  • Battery cycle test After the battery is assembled, use the LAND battery test system to conduct a cycle performance test at 25°C with a charge and discharge current of 1C/1C.
  • IPDI isophorone diisocyanate
  • Preparation of the positive electrode sheet using conductive carbon black as the conductive agent, PVDF as the binder, and NMP as the solvent, after stirring evenly, add the positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 coated with the above organic coating layer.
  • the solid component contains 90wt% organic coating layer-coated positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 , 5wt% binder PVDF and 5wt% conductive carbon black.
  • the current collector is 10 ⁇ m Al foil.
  • Preparation of the negative electrode sheet use conductive carbon black as the conductive agent, SBR as the binder, and NMP as the solvent, stir evenly and add the artificial graphite negative electrode active material.
  • the solid content contained 95wt% silicon oxide, 2wt% binder SBR and 3wt% conductive carbon black.
  • the 6 ⁇ m copper foil is the current collector.
  • Preparation of lithium-ion battery use artificial graphite as the negative electrode (coating amount of 8mg/cm 2 ), and the above-mentioned positive electrode sheet (coating amount of 14mg/cm 2 ) and commercial electrolyte of LiPF 6 system, assembled by winding A soft-packed lithium-ion battery is used to assist the commonly used tabs and aluminum-plastic film seals.
  • Test conditions The cycle performance test is carried out under the charge and discharge current of 1C/1C, and the voltage test range is 2.8-4.3V. The test results are shown in Table 1.
  • FIG. 2 is a TEM image of the positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 coated with the organic coating layer prepared in Example 1.
  • Two white dashed lines in Figure 2 divide Figure 2 into three parts, where the upper left of the dotted line is the background, the part between the two dotted lines is the cladding layer, and the lower right of the dotted line is the positive electrode material. It can be seen from the figure: organic coating The layer was successfully coated on the surface of the active material.
  • Preparation of the positive electrode sheet using conductive carbon black as the conductive agent, PVDF as the binder, and NMP as the solvent, after stirring evenly, add LiCoO 2 coated with the above-mentioned organic coating layer.
  • the solid component contained 94wt% of LiCoO 2 covered by the organic coating layer, 2wt% of binder PVDF and 4wt% of conductive carbon black.
  • the 10 ⁇ m aluminum foil is the current collector.
  • Preparation of the negative electrode sheet use conductive carbon black as the conductive agent, SBR as the binder, and NMP as the solvent, stir evenly and add silicon oxide negative electrode active material.
  • the solid content contained 95wt% silicon oxide, 2wt% binder SBR and 3wt% conductive carbon black.
  • the 6 ⁇ m copper foil is the current collector.
  • lithium-ion battery with the negative electrode of silicon oxide material (the coating amount is 5 mg/cm 2 ), and the above-mentioned positive electrode sheet (the coating amount is 23 mg/cm 2 ) and the commercial electrolyte of LiPF 6 system, by winding Assembled into a soft-packed lithium-ion battery, assisting the commonly used tabs and square aluminum shell sealing, the current collector is 13 ⁇ m A1 foil.
  • Test conditions the cycle performance test was carried out under the charge and discharge current of 1C/1C, the voltage test range was 2.5-4.45V, the test method was the same as that of Example 1, and the test results were shown in Table 1.
  • HMDI dicyclohexylmethane diisocyanate
  • the solid component contains 95wt% of LiFePO 4 positive electrode active material coated with an organic coating layer, 2wt% of binder PVDF, 1.5wt% of carbon nanotubes and 1.5wt% of Super-P.
  • the current collector is 9 ⁇ m Al foil.
  • Preparation of solid electrolyte Polycaprolactone, LiTFSI, and succinonitrile are used as raw materials, dissolved in THF at a ratio of 8:3:2, and then coated on the substrate to form a film. After drying, the thickness of the polymer solid electrolyte is 30 ⁇ m.
  • lithium-ion battery Assemble the all-solid-state lithium battery with metal lithium foil (20 ⁇ m thick), and the above-mentioned positive electrode sheet (coating amount is 13 mg/cm 2 ) and the above-mentioned polymer solid electrolyte (30 ⁇ m), positive electrode, solid-state
  • the electrolyte and the negative electrode are superimposed in sequence to assist the commonly used tabs and aluminum-plastic film sealing materials.
  • Test conditions The cycle performance test is carried out under the charge and discharge current of 1C/1C, and the voltage test range is 2.0-3.65V. The test results are shown in Table 1.
  • HDI hexamethylene diisocyanate
  • the positive electrode sheet carbon black is used as the conductive agent, PVDF is used as the binder, and the positive electrode active material, nickel-cobalt-aluminate lithium, is added after stirring evenly.
  • the solid component contained 90wt% LiNi 0.6 Co 0.2 Al 0.2 O 2 , 5wt% binder PVDF and 5wt% conductive carbon black.
  • the current collector is 10 ⁇ m Al foil.
  • negative pole sheet mix 80% graphite and 20% SiO x covered by the above-mentioned organic coating layer as negative active material (92%), use carbon nanotubes and SP as conductive agent (5%), and PVDF as Binder (3%); current collector is 8 ⁇ m copper foil.
  • Preparation of lithium-ion battery take silicon-carbon composite material (SiO x +80% graphite coated by 20% organic coating layer) as negative electrode (coating amount is 6mg/cm 2 ), and the above-mentioned positive electrode sheet (coating amount 15mg/cm 2 ) and commercial LiPF 6 electrolyte to assemble the battery, and assemble it into a soft-packed lithium-ion battery by lamination, assisting commonly used tabs and aluminum-plastic film sealing materials.
  • silicon-carbon composite material SiO x +80% graphite coated by 20% organic coating layer
  • positive electrode sheet coating amount 15mg/cm 2
  • commercial LiPF 6 electrolyte to assemble the battery, and assemble it into a soft-packed lithium-ion battery by lamination, assisting commonly used tabs and aluminum-plastic film sealing materials.
  • Test conditions The cycle performance test is carried out under the charge and discharge current of 1C/1C, and the voltage test range is 3.0-4.2V. The test results are shown in Table 1.
  • TDI toluene diisocyanate
  • the positive pole piece Preparation of the positive pole piece: acetylene black is used as the conductive agent, PVDF-HFP is used as the binder, and after stirring evenly, the positive active material nickel cobalt lithium manganese oxide is added.
  • the solid component contained 95wt% LiNi 0.5 Co 0.3 Mn 0.2 O 2 , 2wt% binder PVDF-HFP and 3wt% acetylene black.
  • the current collector is 9 ⁇ m Al foil.
  • the silicon oxide SiO x coated with the above-mentioned organic coating layer is used as the negative electrode active material (85%), with single-walled carbon nanotubes (3%) and SP as the conductive agent (4%), and PVDF as the Binder (8%).
  • Preparation of lithium-ion battery use the above-mentioned silicon oxide SiO x material coated with the organic coating layer as the negative electrode (6mg/cm 2 ), and the above-mentioned positive electrode sheet (21mg/cm 2 ) and commercial LiPF 6 electrolyte to assemble the battery , assembled into a soft-packed lithium-ion battery by stacking, assisting commonly used tabs and aluminum-plastic film sealing materials.
  • Test conditions The cycle performance test is carried out under the charge and discharge current of 1C/1C, and the voltage test range is 2.7-4.35V. The test results are shown in Table 1.
  • Figure 3 is an example and comparative examples Cycling performance diagram of medium lithium-ion battery at 1C/1C at 25°C.
  • the cycle performance of the battery made of the positive electrode material coated with the organic coating layer in Example 1-3 is significantly better than that of the battery made of the uncoated positive electrode material in Comparative Example 1-3.
  • Cycle performance The cycle performance of the battery made of the negative electrode material covered by the organic coating layer in Examples 4 and 5 is significantly better than that of the battery made of the uncoated negative electrode material in Comparative Examples 4 and 5.
  • the present application also tested the battery prepared in Example 2 for 700 cycles, and the results showed that the battery prepared in Example 2 still had a capacity retention rate of 92.3% after 700 cycles.
  • the positive electrode material covered by the organic coating layer of the present application reduces the direct contact between the active material and the electrolyte while not affecting the diffusion of Li + , thereby reducing the occurrence of side reactions and effectively alleviating the corrosion of the positive electrode material. Destruction, collapse or aggregation, thereby improving the structural stability of the positive electrode material and the cycle stability of the battery, and at the same time effectively inhibiting the expansion of the silicon-based negative electrode during the cycle process, so as to further improve the safety performance of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开一种有机包覆层及含有该包覆层的电极活性材料、含有该电极活性材料的电极和电池,所述电极包覆层为聚合物包覆层,所述聚合物是由二异氰酸酯和醇类化合物的聚合物进一步经过锂化处理得到的聚合物,所述包覆层中还包括离子导体。包覆层中存在可将无定形的聚合物嵌段交联的交联位点,其中还包括氢键、配位键等动态作用力,因而可以显著提高聚合物材料的抗撕裂能力,也显著提高了弹性体材料的强度、延展性和韧性,并具有自修复功能,因而能够很好地抑制界面副反应的发生和电极膨胀,以提升电池的循环性能。同时包覆层中的聚合物还可以与锂盐形成协同作用,使本申请的电极具有优异的离子电导率,进而提升了界面处的锂离子传导能力。

Description

一种有机包覆层及含有该包覆层的电极活性材料、电极和电池 技术领域
本申请涉及电化学储能电池技术领域,具体涉及一种有机包覆层及含有该包覆层的电极活性材料、含有该电极活性材料的电极和电池。
发明背景
锂电池是目前发展最快的电池之一。然而随着锂电池市场需求量的增大,锂电池安全性日益凸显。许多手机和汽车的自燃事故都是由于电池内部发生短路产生大量热,导致内部电解液分解而引起的。同时随着人们对锂离子电池的能量密度要求越来越高,对现有的锂离子电池体系也是一种极大的挑战。
从正极角度来说,传统的磷酸铁锂正极已不能满足日常需求,而三元正极材料的镍含量也在不断提高。然而,随着三元材料镍含量的提高,材料的循环稳定性、高温稳定性都在降低。目前,为了解决富锂材料的循环性能和倍率性能较差的问题,常用的改性方法是表面包覆。它可以避免电解液与富锂材料的直接接触,减少电极材料与电解液的副反应发生,降低充放电过程中的转移电阻,抑制表面氧的释放和材料结构转变,从而提高材料的循环性能和倍率性能,是目前使用最广泛、研究最多的改性方法。从负极角度来说,无论是商业化的石墨负极还是未来具有广阔前景的硅基负极材料,都存在着在循环过程中负极易发生体积膨胀,尤其是使用硅负极材料。硅基负极材料存在导电性差的问题,在实际应用的脱/嵌锂过程中,存在着较大的体积膨胀效应,这种结构上的膨胀收缩变化破坏了电极结构的稳定性,导致硅颗粒易破裂粉化,从而致使电极材料结构的坍塌和剥落,使电极材料失去电接触,最终导致负极的比容量迅速衰减,使锂电池循环性能变差。其中,氧化亚硅的导电性较差,其性质接近于绝缘体,因而其电化学反应的动力学性能较差,且首次充放电效率较低。因此,对电极材料进行包覆是一种必要且有效的手段。但目前商业化的包覆手段较为单一,且常用的无机包覆的导锂能力较差,因而不能满足下一代锂离子电池的需求。
因此,亟需开发一种具有优异导锂能力且更耐用的有机包覆层,以提升固态电池的安全性、使用寿命和循环性能。
发明内容
为了改善上述技术问题,本申请提供一种有机包覆层,所述有机包覆层兼 具高机械强度和较强的粘弹性,具有优异的导锂能力和自修复功能,从而能够很好地抑制界面副反应的发生和电极膨胀。该有机包覆层中存在可将无定形的聚合物嵌段交联的交联位点,其中还包括氢键、配位键等动态作用力,可以显著提高聚合物材料的抗撕裂能力,也显著提高弹性体材料的强度、延展性和韧性。另外,该有机包覆层中的聚合物还可以与锂盐协同作用,使本申请的电极具有优异的离子电导率,进而提升了界面处的锂离子传导能力。
本申请的又一目的是提供一种有机包覆层的制备方法,由其制得的包覆层在室温和加热条件下均可以快速自修复,电池性能提升效果显著,且制备方法简单,适合产业化应用。
本申请的再一目的在于提供一种包含具有上述有机包覆层的正负极活性材料的电池,在电池循环过程中,所述具有有机包覆层的正负极即使在出现微小缺陷后也可迅速自愈合,因而不仅可以解决固态电解质与电极之间的界面副反应,还可以抑制电池在循环过程中电极膨胀引起的电极形变问题,以提升电池循环性能。
为了实现上述目的,本申请采用以下技术方案:
本申请提供一种有机包覆层,所述包覆层包括锂化处理的聚合物;所述锂化处理的聚合物是由二异氰酸酯和醇类化合物的聚合物进一步经过锂化处理得到的聚合物。
根据本申请,所述二异氰酸酯的结构式如下式1所示:
Figure PCTCN2022121281-appb-000001
其中,R 1为C6-C18的烃基。
所述二异氰酸酯选自甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)、二苯基甲烷二异氰酸酯(MDI)、二环己基甲烷二异氰酸酯(HMDI)、六亚甲基二异氰酸酯(HDI)、赖氨酸二异氰酸酯(LDI)和二甲苯烷二异氰酸酯(MPI)中的至少一种。
根据本申请,所述醇类化合物选自二醇中的至少一种。
在本申请中,术语“二醇”具有本领域常规含义,术语“二醇”是指分子中含有两个羧基的醇。
根据本申请,所述醇类化合物为戊乙二醇。
根据本申请,所述锂化处理采用的锂化试剂选自氢化锂、丁基锂、乙基锂、苯基锂和甲基锂中的至少一种。
根据本申请,所述锂化处理的聚合物中,所述二异氰酸酯、以-OH(羟基)计的所述醇类化合物和以Li +计的所述锂化试剂的摩尔比为
Figure PCTCN2022121281-appb-000002
Figure PCTCN2022121281-appb-000003
示例性为1:1.5:1.5、1:2:2、1:2.5:2.5。
优选地,所述锂化处理的聚合物中,所述二异氰酸酯、以-OH(羟基)计的所述醇类化合物和以Li +计的所述锂化试剂的摩尔比为
Figure PCTCN2022121281-appb-000004
Figure PCTCN2022121281-appb-000005
在本文中,术语“以A计的B”指的是以B中A的量作为量化的对象。例如,“以-OH(羟基)计的所述醇类化合物”指的是,在计算摩尔比时,使用-OH(羟基)的摩尔量代替醇类化合物本身的摩尔量,举例为:当使用1mol的戊乙二醇时,“以-OH(羟基)计的戊乙二醇”为2mol。
根据本申请,所述锂化处理的聚合物具有下式2所示的结构式:
Figure PCTCN2022121281-appb-000006
式2中,n为聚合度。
根据本申请,n为
Figure PCTCN2022121281-appb-000007
示例性为2、10、100、1×10 3、1×10 4、1×10 5、1×10 6、1.9×10 6
根据本申请,所述有机包覆层还包括离子导体。
根据本申请,以所述有机包覆层的总重量为基准,所述离子导体的含量为
Figure PCTCN2022121281-appb-000008
示例性为3wt%、4wt%、5wt%、6wt%、7wt%、8wt%。
根据本申请,所述离子导体至少包括锂盐。
优选地,所述离子导体选自锂盐和下述物质中的至少一种的组合:无机填料、镁盐和钠盐。
根据本申请,所述锂盐选自二草酸硼酸锂、二氟草酸硼酸锂、六氟砷酸锂、四氟硼酸锂、三氟甲基磺酸锂、硝酸锂、双氟磺酰亚胺锂、高氯酸锂、六氟磷酸锂、双三氟甲基磺酰亚胺锂(LiTFSI)和二氟磷酸锂中的至少一种。
根据本申请,所述无机填料选自Li 7La 3Zr 2O 12、Al 2O 3、TiO 2、Li 6.28La 3Zr 2Al 0.24O 12、Li 6.75La 3Nb 0.25Zr 1.75O 12、Li 6.75La 3Zr 1.75Ta 0.25O 12(LLZTO)、BaTiO 3、ZrO 2、SiO 2、Li 1.5A1 0.5Ge 1.5(PO 4) 3和蒙脱土中的至少一种。
根据本申请,所述镁盐选自Mg(TFSI) 2和MgClO 4中的至少一种。
根据本申请,所述钠盐选自NaDFOB、NaTFSI和NaPF 6中的至少一种。
本申请还提供一种用于制备上述有机包覆层的组合物,该组合物包括以下组分:二异氰酸酯、醇类化合物和锂化试剂。
根据本申请,所述二异氰酸酯、醇类化合物和锂化试剂具有如上文所述的含义和选择。
根据本申请,以所述组合物的总重量为基准,所述二异氰酸酯的含量为
Figure PCTCN2022121281-appb-000009
Figure PCTCN2022121281-appb-000010
示例性为15wt%、20wt%、25wt%、30wt%、35wt%。
根据本申请,以所述组合物的总重量为基准,所述醇类化合物的含量为
Figure PCTCN2022121281-appb-000011
示例性为15wt%、20wt%、25wt%、30wt%、35wt%。
根据本申请,以所述组合物的总重量为基准,所述锂化试剂的含量为
Figure PCTCN2022121281-appb-000012
Figure PCTCN2022121281-appb-000013
示例性为25wt%、30wt%、35wt%、40wt%、45wt%、50wt%、55wt%、60wt% o
根据本申请,所述组合物中,还任选地包括离子导体。
根据本申请,以所述组合物的总重量为基准,所述离子导体的含量为
Figure PCTCN2022121281-appb-000014
Figure PCTCN2022121281-appb-000015
示例性为3wt%、4wt%、5wt%、6wt%、7wt%、8wt%。
根据本申请,所述组合物中,还任选地包括催化剂。
优选地,所述离子导体至少包括锂盐。
例如,以所述组合物的总重量为基准,所述催化剂的含量为
Figure PCTCN2022121281-appb-000016
示例性为0.001wt%、0.005wt%、0.01wt%、0.05wt%、0.1wt%、0.5wt%、1wt%。
示例性地,所述催化剂选自二月桂酸二丁基锡(DBTDL)、辛酸亚锡和草酸锌中的至少一种。
根据本申请,所述有机包覆层是上述组合物的聚合产物。
本申请还提供上述有机包覆层的制备方法,其包括以下步骤:在催化剂作用下,将包括以下组分的组合物经聚合得到所述锂化处理的聚合物:二异氰酸酯、醇类化合物和锂化试剂。
根据本申请,所述有机包覆层中各组分的定义和含量如前所述。
根据本申请,所述组合物中,还任选地包括离子导体。
根据本申请,所述聚合在溶剂中进行。
示例性地,所述溶剂包括但不限于乙腈(简称ACN)、二甲基亚砜(简称DMSO)、四氢呋喃(简称THF)、二甲基甲酰胺(简称DMF)、二甲基乙酰胺(简称DMAC)、乙醇和丙酮等有机溶剂中的至少一种。
在本申请的一个实施方式中,所述有机包覆层的制备方法包括以下步骤:
1)将二异氰酸酯和醇类化合物聚合,得到聚合物;
2)将步骤1)的反应产物与锂化试剂反应,制备得到锂化处理的聚合物。
根据本申请,步骤1)中,所述聚合的温度为70-90℃,示例性地可以为70℃、75℃、80℃、85℃、90℃;所述聚合的时间为
Figure PCTCN2022121281-appb-000017
示例性为24h、36h、48h;所述聚合是在惰性气氛(如氮气或氩气)下进行的。
根据本申请,步骤2)中,所述反应(锂化处理)的温度为70-90℃,示例性为70℃、75℃、80℃、85℃、90℃;所述反应(锂化处理)的时间例如为24h 以上,优选为
Figure PCTCN2022121281-appb-000018
示例性为24h、36h、48h。
根据本申请,所述制备方法还包括步骤3):再加入离子导体,以制备得到所述有机包覆层。
根据本申请,步骤3)中还可以包括,在加入离子导体后,在真空条件下加热固化。例如加热固化的温度为
Figure PCTCN2022121281-appb-000019
加热固化的时间为
Figure PCTCN2022121281-appb-000020
又例如加热固化的温度为
Figure PCTCN2022121281-appb-000021
加热固化的时间为
Figure PCTCN2022121281-appb-000022
本申请还提供一种电极活性材料,所述电极活性材料包括活性物质和包覆于所述活性物质表面的上述有机包覆层。
根据本申请,所述有机包覆层的厚度可以为
Figure PCTCN2022121281-appb-000023
优选为
Figure PCTCN2022121281-appb-000024
示例性为lnm、5nm、8nm、10nm、20nm、30nm、50nm、l00nm或者是前述两两数值组成的范围内的任一点值。
根据本申请,所述活性物质可以为正极活性物质或负极活性物质。
根据本申请,所述电极活性材料中,正极活性物质或负极活性物质与有机包覆层的质量比为
Figure PCTCN2022121281-appb-000025
示例性为100:0.1、100:0.2、100:0.5、100:1、100:2、100:3、100:4、100:5。
优选地,所述正极活性物质选自磷酸铁锂(LiFePO 4)、钻酸锂(LiCoO 2)、镍钴锰酸锂(Li zNi xCo yMn 1-x-yO 2,其中:0.95≤z≤1.05,x>0,y>0,x+y<l)、锰酸锂(LiMnO 2)、镍钴铝酸锂(Li zNi xCo yAl 1-x-yO 2,其中:0.95≤z≤1.05,x>0,y>0,0.8≤x+y<l、镍钴锰铝酸锂(Li zNi xCO yMn wAl 1-x-y-wO 2,其中:0.95≤z≤1.05,x>0,y>0,w>0,0.8≤x+y+w<l)、镍钴铝钨材料、富锂锰基固溶体正极材料、镍钴酸锂(LiNi xCo yO 2,其中:x>0,y>0,x+y=l)、镍钛镁酸锂(LiNi xTi yMg zO 2,其中:x>0,y>0,z>0,x+y+z=l)、镍酸锂(Li 2NiO 2)、尖晶石锰酸锂(LiMn 2O 4)和镍钴钨材料中的至少一种。
优选地,所述负极活性物质选自碳材料、金属铋、金属锂、金属铜、金属铟、氮化物、锂基合金、镁基合金、铟基合金、硼基材料、硅基材料、锡基材料、锑基合金、镓基合金、锗基合金、铝基合金、铅基合金、锌基合金、钛的氧化物、铁的氧化物、铬的氧化物、钼的氧化物和磷化物等中的至少一种。
更优选地,所述负极活性物质包括但不限于金属锂、锂合金Li xM(M=In、B、Al、Ga、Sn、Si、Ge、Pb、As、Bi、Sb、Cu、Ag、Zn)、碳材料(石墨、无定形碳、中间相碳微球)、硅基材料(硅碳材料、纳米硅)、锡基材料和钛酸锂(Li 4Ti 5O 12)中的至少一种。
本申请还提供上述电极活性材料的制备方法,所述方法包括:在催化剂作用下,将包括以下组分的组合物经聚合得到所述电极活性材料:二异氰酸酯、醇类化合物、锂化试剂和活性物质。
根据本申请,所述组合物中各组分的定义和含量如前所述。
根据本申请,所述组合物中,还任选地包括离子导体。
根据本申请,所述聚合在溶剂中进行。
示例性地,所述溶剂包括但不限于乙腈(简称ACN)、二甲基亚砜(简称DMSO)、四氢呋喃(简称THF)、二甲基甲酰胺(简称DMF)、二甲基乙酰胺(简称DMAC)、乙醇和丙酮等有机溶剂中的至少一种。
根据本申请,所述电极活性材料的制备方法例如包括:先将二异氰酸酯溶于溶剂中,然后加入醇类化合物和催化剂,惰性气氛下加热搅拌;再将产物与锂化试剂和活性物质混合,加热固化,制备得到所述电极活性材料。
在本申请的一个实施方式中,所述电极活性材料的制备方法,包括以下步骤:
S1:将二异氰酸酯和醇类化合物聚合,得到聚合物;
S2:将步骤S1制得的聚合物与锂化试剂反应,经过锂化处理得到锂化处理的聚合物;
S3:再加入离子导体和活性物质,在真空条件下加热固化,以制备得到所述电极活性材料。
根据本申请,步骤S1中,所述聚合的温度为
Figure PCTCN2022121281-appb-000026
示例性地可以为70℃、75℃、80℃、85℃、90℃;所述聚合的时间为
Figure PCTCN2022121281-appb-000027
示例性为24h、36h、48h;所述聚合是在惰性气氛(如氮气或氩气)下进行的。
根据本申请,所述电极活性材料的制备方法还包括对步骤S1制得的聚合物进行除杂,以除去多余的异氰酸酯基团。例如,将醇类溶剂加入步骤S1制得的聚合物中,搅拌(如
Figure PCTCN2022121281-appb-000028
),以除去多余的异氰酸酯基团,得到聚合物溶液。例如,所述醇类溶剂可以为甲醇或乙醇等。
根据本申请,步骤S2中,所述反应(锂化处理)的温度为
Figure PCTCN2022121281-appb-000029
示例性为70℃、75℃、80℃、85℃、90℃;所述反应(锂化处理)的时间例如为24h以上,优选为
Figure PCTCN2022121281-appb-000030
示例性为24h、36h、48h。
根据本申请,步骤S3中,例如加热固化的温度为
Figure PCTCN2022121281-appb-000031
加热固化的时间为
Figure PCTCN2022121281-appb-000032
又例如加热固化的温度为
Figure PCTCN2022121281-appb-000033
加热固化的时间为
Figure PCTCN2022121281-appb-000034
本申请还提供一种电极,所述电极含有上述电极活性材料。
根据本申请,所述电极可以为正极或负极。优选为正极。
根据本申请,所述电极中还任选地含有导电剂和/或粘接剂。
优选地,所述电极中电极活性材料与粘接剂、导电剂的质量比为
Figure PCTCN2022121281-appb-000035
Figure PCTCN2022121281-appb-000036
该质量比中,所述电极活性材料的质量份、所述粘接剂的质量份与所述导电剂的质量份加和等于100,示例性为60:20:20、70:20:10、80:10:10、90:5:5、92:3:5、94:2:4、95:3:2、99:0.5:0.5、99:0.1:0.9、99:0.9:0.1。
例如,所述粘接剂可以为聚偏氟乙烯(PVDF)、羧甲基纤维素钠(CMC)、和丁苯橡胶(SBR)中的一种、两种或更多种;优选为聚偏氟乙烯。
例如,所述导电剂可以为导电碳黑(Super-P)和导电石墨(KS-6)中的至少一种。
本申请还提供上述电极活性材料和/或电极在电池中的应用。
根据本申请,所述电池为二次电池、固态电池或凝胶电池。
例如,所述二次电池可以为锂、钠、镁、铝或锌等各类离子二次电池。
例如,所述固态电池可以为全固态电池、准固态电池或半固态电池。示例性为纽扣电池、铝壳电池、软包电池和固态锂离子电池中的至少一种。
本申请还提供一种电池,所述电池中含有上述电极活性材料和/或电极。
根据本申请,所述电池还包括电解质和/或电解液。
根据本申请一个示例性的实施方案,所述电池包含上述有机包覆层的正极、负极,所述正极与所述负极之间含有电解质。
根据本申请一个示例性的实施方案,所述电池包含上述有机包覆层的正极、隔膜和负极,所述正极、所述隔膜与所述负极之间含有电解液。
根据本申请一个示例性的实施方案,所述电池包含正极、上述有机包覆层的负极,所述正极与所述负极之间含有电解质。
根据本申请一个示例性的实施方案,所述电池包含正极、隔膜和上述有机包覆层的负极,所述正极、所述隔膜与所述负极之间含有电解液。
根据本申请一个示例性的实施方案,所述电池包含上述有机包覆层的正极、上述有机包覆层的负极,所述正极与所述负极之间含有电解质。
根据本申请一个示例性的实施方案,所述电池包含上述有机包覆层的正极、隔膜和上述有机包覆层的负极,所述正极、所述隔膜与所述负极之间含有电解液。
本申请还提供上述电池的制备方法,例如,包括依次将正极、电解质和负极层叠在一起,经真空封装后即可得到所述电池。
又例如,包括依次将正极、隔膜和负极层叠在一起,注入电解液,经真空封装后即可得到所述电池。
本申请的有益效果
(1)本申请的有机包覆层作为锂离子导体,充放电过程中有利于Li +传输,其包覆效果能在不影响Li +扩散的同时减少活性物质与电解液的直接接触,进而减少副反应的发生。且包覆在电极活性物质表面可以有效缓解电极活性物质受腐蚀而被破坏、坍塌或聚集,以提高电极活性物质的结构稳定性。
(2)本申请的有机包覆层具有优异的链段运动能力,且具有一定的刚性及弹性,因而能在循环过程中受到较大应力时也不会发生断裂,从而可以有效抑制负 极材料在循环过程中电极的膨胀问题,以进一步提升电池的安全性能。
(3)本申请的有机包覆层可以通过调整组分的种类和/或配比,以适用于锂、钠、镁、铝、锌等各类离子二次电池、全固态电池、准固态电池或凝胶电池等多类型,且界面性能良好,循环性能优异。
附图简要说明
图1为有机包覆层包覆电极结构示意图;图中:1、正极活性物质或负极活性物质;2、有机包覆层。
图2为实施例1有机包覆层包覆正极材料的TEM图像。
图3为实施例中锂离子电池的在25℃条件下1C/1C循环性能图。
实施本发明的方式
下文将结合具体实施例对本申请的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本申请,而不应被解释为对本申请保护范围的限制。凡基于本申请上述内容所实现的技术均涵盖在本申请旨在保护的范围内。
除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
电池EIS测试:电池在25℃的环境中,50%S0C状态,通过EIS交流阻抗测试方法得到,振幅:5Mv;测试频率:
Figure PCTCN2022121281-appb-000037
电池循环次数测试:电池组装完之后,使用LAND蓝电电池测试系统,25℃条件下以1C/1C充放电电流大小下进行循环性能测试。
实施例1
制备有机包覆层包覆电极活性物质:
(1)将1.5g异佛尔酮二异氰酸酯(IPDI)溶于100ml无水DMF中,在氩气氛围下搅拌混合;
(2)将1.6g戊乙二醇和5μL二月桂酸二丁基锡(DBTDL)加入上述溶液,80℃下搅拌24h;
(3)将3ml甲醇加入上述溶液,搅拌1h,除去多余的异氰酸酯基团;
(4)在上述溶液中加入3g氢化锂,在80℃条件下搅拌24h,进行锂化反应;
(5)在上述溶液中加入0.3g LiTFSI锂盐和0.2g Li 6.75La 3Zr 1.75Ta 0.25O 12(LLZTO)粉末,500g正极活性物质LiNi 0.8Co 0.1Mn 0.1O 2粉末,搅拌均匀,在真空条件下加热固化,即可得到有机包覆层包覆的LiNi 0.8Co 0.1Mn 0.1O 2正极活性物质,有 机包覆层的厚度为2-3nm,具体结构图如示意图1所示。
制备正极极片:以导电碳黑为导电剂,PVDF为粘结剂,NMP为溶剂,搅拌均匀后加入上述有机包覆层包覆的正极活性物质LiNi 0.8Co 0.1Mn 0.1O 2。混合物中,固体成分包含90wt%有机包覆层包覆的正极活性物质LiNi 0.8Co 0.1Mn 0.1O 2、5wt%的粘结剂PVDF和5wt%的导电炭黑。集流体为10μm的Al箔。
制备负极极片:以导电碳黑为导电剂,SBR为粘结剂,NMP为溶剂,搅拌均匀后加入人工石墨负极活性材料。混合物中,固体成分包含95wt%的氧化亚硅、2wt%的粘结剂SBR和3wt%的导电炭黑。6μm的铜箔为集流体。
制备锂离子电池:以人工石墨为负极(涂覆量为8mg/cm 2),以及上述的正极极片(涂覆量为14mg/cm 2)和LiPF 6体系的商用电解液,通过卷绕组装成软包锂离子电池,辅助常用的极耳和铝塑膜密封。
测试条件:以1C/1C充放电电流大小下进行循环性能测试,电压测试区间2.8-4.3V,测试结果如表1所示。
图2为实施例1制得的有机包覆层包覆的正极活性物质LiNi 0.8Co 0.1Mn 0.1O 2的TEM图像。图2中两条白色虚线将图2分成三部分,其中虚线左上方为背景,两条虚线中间所夹部分为包覆层,虚线右下方为正极材料,从图中可以看出:有机包覆层成功包覆于活性物质表面。
实施例2
制备有机包覆层包覆电极活性物质:
(1)将1.5g二甲苯烷二异氰酸酯(MPI)溶于100ml无水DMF中,在氩气氛围下搅拌混合;
(2)将1.6g戊乙二醇和5μL二月桂酸二丁基锡(DBTDL)加入上述溶液,80℃下搅拌24h;
(3)将3ml甲醇加入上述溶液,搅拌1h,除去多余的异氰酸酯基团;
(4)在上述溶液中加入3g氢化锂,在80℃条件下搅拌24h,进行锂化反应;
(5)在上述溶液中加入0.3g LiTFSI锂盐和0.2g LLZTO粉末,500g正极活性物质LiCoO 2粉末,搅拌均匀,在真空条件下加热固化,即可得到有机包覆层包覆的LiCoO 2正极活性物质,有机包覆层的厚度为2-3nm。
制备正极极片:以导电碳黑为导电剂,PVDF为粘结剂,NMP为溶剂,搅拌均匀后加入上述有机包覆层包覆的LiCoO 2。混合物中,固体成分包含94wt%有机包覆层包覆的LiCoO 2、2wt%的粘结剂PVDF和4wt%的导电炭黑。 10μm的铝箔为集流体。
制备负极极片:以导电碳黑为导电剂,SBR为粘结剂,NMP为溶剂,搅拌均匀后加入氧化亚硅负极活性材料。混合物中,固体成分包含95wt%的氧化亚硅、2wt%的粘结剂SBR和3wt%的导电炭黑。6μm的铜箔为集流体。
制备锂离子电池:以氧化亚硅材料负极(涂覆量为5mg/cm 2),以及上述的正极极片(涂覆量为23mg/cm 2)和LiPF 6体系的商用电解液,通过卷绕组装成软包锂离子电池,辅助常用的极耳和方形铝壳密封,集流体为13μm的A1箔。
测试条件:以1C/1C充放电电流大小下进行循环性能测试,电压测试区间2.5-4.45V,测试方法同实施例1,测试结果如表1所示。
实施例3
制备有机包覆层包覆电极活性物质:
(1)将1.5g二环己基甲烷二异氰酸酯(HMDI)溶于100ml无水DMF中,在氩气氛围下搅拌混合;
(2)将1.6g戊乙二醇和5μL二月桂酸二丁基锡(DBTDL)加入上述溶液,80℃下搅拌24h;
(3)将3ml甲醇加入上述溶液,搅拌1h,除去多余的异氰酸酯基团;
(4)在上述溶液中加入3g氢化锂,在80℃条件下搅拌24h,进行锂化反应;
(5)在上述溶液中加入0.3g LiTFSI锂盐和0.2g LLZTO粉末,500g正极活性物质LiFePO 4粉末,搅拌均匀,在真空条件下加热固化,即可得到有机包覆层包覆的LiFePO 4正极活性物质,有机包覆层的厚度为2-3nm。
制备正极极片:碳黑为导电剂,PVDF-HFP为粘结剂,搅拌均匀后加入上述有机包覆层包覆的LiFePO 4正极活性物质。混合物中,固体成分包含95wt%有机包覆层包覆的LiFePO 4正极活性物质、2wt%的粘结剂PVDF、1.5wt%的碳纳米管和1.5wt%的Super-P。集流体为9μm的Al箔。
制备固态电解质:以聚己内酯、LiTFSI、丁二腈为原料,按照8:3:2的比例溶解在THF中,然后在基底上涂布成膜,烘干后聚合物固态电解质的厚度为30μm。
制备锂离子电池:以金属锂箔作为负极(20μm厚),以及上述的正极极片(涂覆量为13mg/cm 2)和上述聚合物固态电解质(30μm)组装全固态锂电池,正极、固态电解质、负极依次叠加,辅助常用的极耳和铝塑膜密封材料。
测试条件:以1C/1C充放电电流大小下进行循环性能测试,电压测试区间 2.0-3.65V,测试结果如表1所示。
实施例4
制备有机包覆层包覆电极活性物质:
(1)将1.5g六亚甲基二异氰酸酯(HDI)溶于100ml无水DMF中,在氩气氛围下搅拌混合;
(2)将1.6g戊乙二醇和5μL二月桂酸二丁基锡(DBTDL)加入上述溶液,80℃下搅拌24h;
(3)将3ml甲醇加入上述溶液,搅拌1h,除去多余的异氰酸酯基团;
(4)在上述溶液中加入3g氢化锂,在80℃条件下搅拌24h,进行锂化反应;
(5)在上述溶液中加入0.3g LiTFSI锂盐和0.2g LLZTO粉末,500g氧化亚硅SiO x粉末,搅拌均匀,在真空条件下加热固化,即可得到有机包覆层包覆的氧化亚硅SiO x负极活性物质,有机包覆层的厚度为2-3nm。
制备正极极片:碳黑为导电剂,PVDF为粘结剂,搅拌均匀后加入正极活性材料镍钴铝酸锂。混合物中,固体成分包含90wt%LiNi 0.6Co 0.2Al 0.2O 2、5wt%的粘结剂PVDF和5wt%的导电炭黑。集流体为10μm的Al箔。
制备负极极片:将80%石墨和20%上述有机包覆层包覆的SiO x混合均匀后作为负极活性物质(92%),以碳纳米管和SP作为导电剂(5%),PVDF作为粘结剂(3%);集流体为8μm的铜箔。
制备锂离子电池:以硅碳复合材料(20%有机包覆层包覆的SiO x+80%石墨)为负极(涂覆量为6mg/cm 2),以及上述的正极极片(涂覆量为15mg/cm 2)和商业化LiPF 6电解液组装电池,通过叠片组装成软包锂离子电池,辅助常用的极耳和铝塑膜密封材料。
测试条件:以1C/1C充放电电流大小下进行循环性能测试,电压测试区间3.0-4.2V,测试结果如表1所示。
实施例5
制备有机包覆层包覆电极活性物质:
(1)将1.5g甲苯二异氰酸酯(TDI)溶于100ml无水DMF中,在氩气氛围下搅拌混合;
(2)将1.6g戊乙二醇和5μL二月桂酸二丁基锡(DBTDL)加入上述溶液,80℃下搅拌24h;
(3)将3ml甲醇加入上述溶液,搅拌1h,除去多余的异氰酸酯基团;
(4)在上述溶液中加入3g氢化锂,在80℃条件下搅拌24h,进行锂化反应;
(5)在上述溶液中加入0.3g LiTFSI锂盐和0.2g LLZTO粉末,500g氧化亚硅SiO x粉末,搅拌均匀,在真空条件下加热固化,即可得到有机包覆层包覆的氧化亚硅SiO x负极活性物质,有机包覆层的厚度为2-3nm。
制备正极极片:乙炔黑为导电剂,PVDF-HFP为粘结剂,搅拌均匀后加入正极活性材料镍钴锰酸锂。混合物中,固体成分包含95wt%的LiNi 0.5Co 0.3Mn 0.2O 2、2wt%的粘结剂PVDF-HFP和3wt%的乙炔黑。集流体为9μm的Al箔。
制备负极极片:将上述有机包覆层包覆的氧化亚硅SiO x作为负极活性物质(85%),以单壁碳纳米管(3%)和SP作为导电剂(4%),PVDF作为粘结剂(8%)。
制备锂离子电池:以上述有机包覆层包覆的氧化亚硅SiO x材料为负极(6mg/cm 2),以及上述的正极极片(21mg/cm 2)和商业化LiPF 6电解液组装电池,通过叠片组装成软包锂离子电池,辅助常用的极耳和铝塑膜密封材料。
测试条件:以1C/1C充放电电流大小下进行循环性能测试,电压测试区间2.7-4.35V,测试结果如表1所示。
对比例
Figure PCTCN2022121281-appb-000038
中,除无有机聚合物材料包覆层外,其他制备工艺及所用材料均与实施例
Figure PCTCN2022121281-appb-000039
相同。
图3为实施例
Figure PCTCN2022121281-appb-000040
及对比例
Figure PCTCN2022121281-appb-000041
中锂离子电池在25℃条件下1C/1C下的循环性能图。从图3中可以看出,实施例1-3由有机包覆层包覆的正极材料制得的电池的循环性能明显优于对比例1-3由未包覆的正极材料制得的电池的循环性能;实施例4和5由有机包覆层包覆的负极材料制得的电池的循环性能明显优于对比例4和5由未包覆的负极材料制得的电池的循环性能。本申请还对实施例2制得的电池进行了循环700次测试,结果显示实施例2制得的电池在循环700次以后,仍具有92.3%的容量保持率。由此表明:本申请有机包覆层包覆的正极材料在不影响Li +扩散的同时减少了活性物质与电解液的直接接触,进而减少副反应的发生并有效缓解了正极材料受腐蚀而被破坏、坍塌或聚集,进而提高了正极材料的结构稳定性及电池的循环稳定性,同时还有效抑制了硅基负极在循环过程中电极的膨胀问题,以进一步提升了电池地安全性能。
表1电池的性能测试数据列表
项目 电池内阻 比容量发挥占理论比 500圈循环容 500圈电池膨
    容量的比例(%,25℃) 量保持率 胀率
实施例1 42mΩ 99.1% 93.4% 5.2%
对比例1 71mΩ 92.3% 89.2% 7.8%
实施例2 55mΩ 98.6% 94.6% 4.3%
对比例2 76mΩ 93.1% 90.1% 5.5%
实施例3 48mΩ 95.6% 89.8% 6.0%
对比例3 98mΩ 88.2% 62.1% 6.9%
实施例4 36mΩ 97.6% 91.6% 5.1%
对比例4 66mΩ 90.1% 85.4% 10.4%
实施例5 43mΩ 97.4% 88.8% 7.6%
对比例5 97mΩ 92.1% 81.4% 28.4%
以上,对本申请的实施方式进行了说明。但是,本申请不限定于上述实施方式。凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种有机包覆层,其特征在于,所述包覆层包括锂化处理的聚合物,所述锂化处理的聚合物是由二异氰酸酯和醇类化合物的聚合物进一步经过锂化处理得到的聚合物。
  2. 如权利要求1所述的有机包覆层,其特征在于,所述二异氰酸酯选自甲苯二异氰酸酯、异佛尔酮二异氰酸酯、二苯基甲烷二异氰酸酯、二环己基甲烷二异氰酸酯、六亚甲基二异氰酸酯、赖氨酸二异氰酸酯和二甲苯烷二异氰酸酯中的至少一种;
    和/或,所述醇类化合物选自二醇中的至少一种,优选为戊乙二醇;
    和/或,所述锂化处理采用的锂化试剂选自氢化锂、丁基锂、乙基锂、苯基锂和甲基锂中的至少一种。
  3. 如权利要求1或2所述的有机包覆层,其特征在于,所述锂化处理的聚合物中,所述二异氰酸酯、以-OH计的所述醇类化合物和以Li +计的所述锂化试剂的摩尔比为
    Figure PCTCN2022121281-appb-100001
  4. 如权利要求1-3任一项所述的有机包覆层,其特征在于,所述锂化处理的聚合物中,所述二异氰酸酯、以-OH计的所述醇类化合物和以Li +计的所述锂化试剂的摩尔比为
    Figure PCTCN2022121281-appb-100002
  5. 如权利要求1-4任一项所述的有机包覆层,其特征在于,所述锂化处理的聚合物具有下式2所示的结构:
    Figure PCTCN2022121281-appb-100003
    其中,n为聚合度,n为
    Figure PCTCN2022121281-appb-100004
  6. 如权利要求1-5任一项所述的有机包覆层,其特征在于,所述有机包覆层还包括离子导体;
    优选地,以所述有机包覆层的总重量为基准,所述离子导体的含量为
    Figure PCTCN2022121281-appb-100005
    更优选地,所述离子导体至少包括锂盐。
  7. 如权利要求1-6任一项所述的有机包覆层,其特征在于,所述离子导体选自锂盐和下述物质中的至少一种的组合:无机填料、镁盐和钠盐;
    优选地,所述锂盐与无机填料、镁盐和钠盐中的至少一种的质量比为
    Figure PCTCN2022121281-appb-100006
    Figure PCTCN2022121281-appb-100007
    优选地,所述锂盐选自二草酸硼酸锂、二氟草酸硼酸锂、六氟砷酸锂、四氟硼酸锂、三氟甲基磺酸锂、硝酸锂、双氟磺酰亚胺锂、高氯酸锂、六氟磷酸锂、双三氟甲基磺酰亚胺锂和二氟磷酸锂中的至少一种;
    优选地,所述无机填料选自Li 7La 3Zr 2O 12、Al 2O 3、TiO 2、Li 6.28La 3Zr 2Al 0.24O 12、Li 6.75La 3Nb 0.25Zr 1.75O 12、Li 6.75La 3Zr 1.75Ta 0.25O 12(LLZTO)、BaTiO 3、ZrO 2、SiO 2、Li 1.5A1 0.5Ge 1.5(PO 4) 3和蒙脱土中的至少一种;
    优选地,所述镁盐选自Mg(TFSI) 2、MgClO 4中的至少一种;
    优选地,所述钠盐选自NaDFOB、NaTFSI、NaPF 6中的至少一种。
  8. 一种电极活性材料,其特征在于,所述电极活性材料包含活性物质和包覆于所述活性物质表面的权利要求1-7任一项所述的有机包覆层。
  9. 如权利要求8所述的电极活性材料,其特征在于,所述有机包覆层的厚度为
    Figure PCTCN2022121281-appb-100008
    优选为
    Figure PCTCN2022121281-appb-100009
  10. 如权利要求8或9所述的电极活性材料,其特征在于,所述活性物质为正极活性物质或负极活性物质;
    优选地,所述正极活性物质或所述负极活性物质与所述有机包覆层的质量比为
    Figure PCTCN2022121281-appb-100010
  11. 如权利要求8-10任一项所述的电极活性材料,其特征在于,所述正极活性物质选自磷酸铁锂、钻酸锂、镍钴锰酸锂、锰酸锂、镍钴铝酸锂、镍钴锰铝酸锂、镍钴铝钨材料、富锂锰基固溶体正极材料、镍钴酸锂、镍钛镁酸锂、镍酸锂、尖晶石锰酸锂和镍钴钨材料中的至少一种;
    和/或,所述负极活性物质选自碳材料、金属铋、金属锂、金属铜、金属铟、氮化物、锂基合金、镁基合金、铟基合金、硼基材料、硅基材料、锡基材料、锑基合金、镓基合金、锗基合金、铝基合金、铅基合金、锌基合金、钛的氧化物、铁的氧化物、铬的氧化物、钼的氧化物和磷化物等中的至少一种。
  12. 如权利要求8-11任一项所述的电极活性材料,其特征在于,所述负极活性物质包括金属锂、锂合金、碳材料、硅基材料、锡基材料和钛酸锂中的至少一种;
    优选地,所述锂合金为Li xM,M=In、B、Al、Ga、Sn、Si、Ge、Pb、As、Bi、Sb、Cu、Ag或Zn;
    优选地,所述碳材料选自石墨、无定形碳和中间相碳微球中的至少一种;
    优选地,所述硅基材料为硅碳材料和/或纳米硅。
  13. 一种电极,其特征在于,所述电极含有权利要求1-7任一项所述的有机包覆层和/或权利要求8-12任一项所述的电极活性材料。
  14. 如权利要求13所述的电极,其特征在于,所述电极还含有导电剂和/或粘接剂;
    优选地,所述电极活性材料、所述粘接剂和所述导电剂的质量比为
    Figure PCTCN2022121281-appb-100011
    Figure PCTCN2022121281-appb-100012
  15. 一种电池,其特征在于,所述电池中包括权利要求1-7任一项所述的有机包覆层、权利要求8-12任一项所述的电极活性材料和权利要求13或14所述的电极中的至少一种。
PCT/CN2022/121281 2021-09-26 2022-09-26 一种有机包覆层及含有该包覆层的电极活性材料、电极和电池 WO2023046155A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/398,713 US20240145701A1 (en) 2021-09-26 2023-12-28 Organic coating layer, electrode active material including the same, electrode, and battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111130948.5A CN113823799B (zh) 2021-09-26 2021-09-26 一种有机包覆层及含有该包覆层的电极活性材料和锂离子电池
CN202111130948.5 2021-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/398,713 Continuation-In-Part US20240145701A1 (en) 2021-09-26 2023-12-28 Organic coating layer, electrode active material including the same, electrode, and battery

Publications (1)

Publication Number Publication Date
WO2023046155A1 true WO2023046155A1 (zh) 2023-03-30

Family

ID=78921316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121281 WO2023046155A1 (zh) 2021-09-26 2022-09-26 一种有机包覆层及含有该包覆层的电极活性材料、电极和电池

Country Status (3)

Country Link
US (1) US20240145701A1 (zh)
CN (1) CN113823799B (zh)
WO (1) WO2023046155A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113823799B (zh) * 2021-09-26 2023-10-20 珠海冠宇电池股份有限公司 一种有机包覆层及含有该包覆层的电极活性材料和锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016170958A (ja) * 2015-03-12 2016-09-23 Tdk株式会社 リチウムイオン二次電池用正極活物質材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池
CN106611838A (zh) * 2015-10-27 2017-05-03 宁德新能源科技有限公司 改性的负极活性材料、负极片及二次电池
CN110148709A (zh) * 2019-05-25 2019-08-20 珠海冠宇电池有限公司 一种包含导电导锂复合材料包覆正极材料的正极极片的制备方法及锂离子电池
CN112803008A (zh) * 2021-03-12 2021-05-14 合肥国轩高科动力能源有限公司 一种包覆改性高镍三元正极材料的制备方法、制得的材料
CN112940156A (zh) * 2021-01-25 2021-06-11 珠海冠宇电池股份有限公司 一种预锂化聚合物及其制备方法和应用
CN113823799A (zh) * 2021-09-26 2021-12-21 珠海冠宇电池股份有限公司 一种有机包覆层及含有该包覆层的电极活性材料和锂离子电池
CN113871710A (zh) * 2021-09-26 2021-12-31 珠海冠宇电池股份有限公司 一种固态电解质及包括该固态电解质的固态电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316875A (en) * 1991-07-19 1994-05-31 Matsushita Electric Industrial Co., Ltd. Secondary battery with nonaqueous electrolyte and method of manufacturing same
JP4399871B2 (ja) * 1997-07-23 2010-01-20 株式会社ジーエス・ユアサコーポレーション 非水二次電池の製造方法
CA2853800C (en) * 2011-10-28 2020-03-24 Lubrizol Advanced Materials, Inc. Polyurethane based electrolyte systems for electrochemical cells
CN104078707B (zh) * 2014-07-16 2016-06-29 广州天赐高新材料股份有限公司 一种锂电池用聚合物电解质材料制备方法及应用
JP2016069388A (ja) * 2014-09-26 2016-05-09 三洋化成工業株式会社 ポリマー電解質組成物、リチウム金属二次電池用負極及びリチウムイオン二次電池用電解質並びにそれらを用いたリチウム金属二次電池及びリチウムイオン二次電池
KR102365133B1 (ko) * 2015-01-15 2022-02-17 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016170958A (ja) * 2015-03-12 2016-09-23 Tdk株式会社 リチウムイオン二次電池用正極活物質材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池
CN106611838A (zh) * 2015-10-27 2017-05-03 宁德新能源科技有限公司 改性的负极活性材料、负极片及二次电池
CN110148709A (zh) * 2019-05-25 2019-08-20 珠海冠宇电池有限公司 一种包含导电导锂复合材料包覆正极材料的正极极片的制备方法及锂离子电池
CN112940156A (zh) * 2021-01-25 2021-06-11 珠海冠宇电池股份有限公司 一种预锂化聚合物及其制备方法和应用
CN112803008A (zh) * 2021-03-12 2021-05-14 合肥国轩高科动力能源有限公司 一种包覆改性高镍三元正极材料的制备方法、制得的材料
CN113823799A (zh) * 2021-09-26 2021-12-21 珠海冠宇电池股份有限公司 一种有机包覆层及含有该包覆层的电极活性材料和锂离子电池
CN113871710A (zh) * 2021-09-26 2021-12-31 珠海冠宇电池股份有限公司 一种固态电解质及包括该固态电解质的固态电池

Also Published As

Publication number Publication date
CN113823799A (zh) 2021-12-21
CN113823799B (zh) 2023-10-20
US20240145701A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
WO2017141735A1 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP4740753B2 (ja) 充放電するリチウム電池、及び充放電するリチウム電池の負極に含まれる負極活物質の製造方法
JP7217432B2 (ja) 正極材料およびそれを用いた電池
US20220093964A1 (en) Anode active material for lithium secondary battery, manufacturing method thereof, and lithium secondary battery including the same
US10741842B2 (en) Solid-state battery
US20120021298A1 (en) All-solid lithium ion secondary battery and electrode therefor
CN117038880A (zh) 用于锂二次电池的正极活性材料及包括其的锂二次电池
CN113707883B (zh) 一种有机包覆层及含有该包覆层的电极活性材料和锂离子电池
JP2021108305A (ja) 正極及び該正極を含むリチウム電池
US9190647B2 (en) Nonaqueous electrolyte secondary battery with high temperature and storage characteristics
KR20200092310A (ko) 전기 화학 소자용 도전재 페이스트, 전기 화학 소자 정극용 슬러리 조성물 및 그 제조 방법, 전기 화학 소자용 정극, 그리고 전기 화학 소자
KR20140104268A (ko) 전지용 바인더, 이를 채용한 음극과 리튬전지
CN113809333B (zh) 一种有机包覆层及含有该包覆层的电极材料和锂离子电池
CN116995235A (zh) 一种负极粘接剂、负极极片、锂离子电池及其制备方法
WO2023046155A1 (zh) 一种有机包覆层及含有该包覆层的电极活性材料、电极和电池
JP2012089464A (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
JP2003308880A (ja) リチウム二次電池の製造方法
KR20180046204A (ko) 보호 음극, 이를 포함하는 리튬전지, 및 보호 음극 제조 방법
WO2024055730A1 (zh) 正极片、电芯和电池
CN115863750B (zh) 一种固态锂离子电池
JP7405081B2 (ja) 全固体二次電池用バインダー組成物、全固体二次電池電極合材層用スラリー組成物、全固体二次電池固体電解質層用スラリー組成物、および全固体二次電池
US20220320517A1 (en) Binder composition for negative electrode, negative electrode, and secondary battery
KR20130092439A (ko) 전지용 복합바인더, 이를 채용한 음극과 리튬전지
CN112652761A (zh) 一种可放电至0v的三元锂离子电池及其制备方法
US20240039036A1 (en) Flexible solid electrolyte membrane for all-solid-state battery, all-solid-state battery comprising the same, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE