WO2023046143A1 - 输送系统以及物理限位装置 - Google Patents

输送系统以及物理限位装置 Download PDF

Info

Publication number
WO2023046143A1
WO2023046143A1 PCT/CN2022/121244 CN2022121244W WO2023046143A1 WO 2023046143 A1 WO2023046143 A1 WO 2023046143A1 CN 2022121244 W CN2022121244 W CN 2022121244W WO 2023046143 A1 WO2023046143 A1 WO 2023046143A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
groove
guide rod
sheath
shell
Prior art date
Application number
PCT/CN2022/121244
Other languages
English (en)
French (fr)
Inventor
贾士奇
徐海洋
尹安远
Original Assignee
上海蓝帆博奥医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海蓝帆博奥医疗科技有限公司 filed Critical 上海蓝帆博奥医疗科技有限公司
Publication of WO2023046143A1 publication Critical patent/WO2023046143A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2466Delivery devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2463Implants forming part of the valve leaflets

Definitions

  • the present disclosure relates to a delivery system and a physical limit device.
  • Limitation generally refers to the limitation of the position of an object, such as stipulating that an object can only be in a certain area, or stipulating that an object cannot be in a certain area.
  • the limit device can be used to accurately limit whether the object reaches the set state, so as to remind the operator or realize automatic state update. For example, an operator needs to be alerted when a transported object is advancing and when the object moves to a certain position.
  • sensors are usually used to realize limit reminders through sound and light, or the operator needs to continuously observe the entire operation process through vision to ensure the accuracy of the operation and the setting state realization.
  • At least one embodiment of the present disclosure provides a delivery system, a delivery method, and a physical limiting device.
  • At least one embodiment of the present disclosure provides a physical limit device, including a first moving part, a second moving part, a guide rod and a safety rod.
  • the guide rod is configured to be driven by the first moving part to move along the axial direction of the guide rod, wherein at least one level of limiting groove is provided on the outer surface of the guide rod, and the at least one level of limiting groove extends along the axial direction of the guide rod as a whole.
  • Each level of limiting groove includes a first part of the groove rail, a second part of the groove rail and a third part of the groove rail connected in sequence, and the second part of the groove rail is arranged at an angle to the first part of the groove rail and the third part of the groove rail respectively.
  • the safety rod includes a first end and a second end opposite to each other along the length direction of the rod, wherein the first end of the safety rod is inserted into the limiting groove, and the safety rod is configured to be movable relative to the guide rod along the limiting groove.
  • the second moving part is connected to the second end of the safety rod, and the second moving part is configured to drive the safety rod to rotate around the axial direction of the guide rod through rotation, so that the first end of the safety rod moves along the second part of the groove track.
  • the first part of the groove rail and the third part of the groove rail are configured to extend along the axial direction of the guide rod, and the second part of the groove rail is configured to extend along the axis of the guide rod. Extending in the circumferential direction, and in the axial direction of the guide rod, the second part of the grooved track is located between the first part of the grooved track and the third part of the grooved track.
  • the limiting groove further includes a fourth part of the groove rail, and the fourth part of the groove rail is configured to allow the first end of the bumper to pass through.
  • the distal end of the fourth part of the groove communicates with the proximal end of the third part of the groove, the proximal end of the fourth part of the groove communicates with at least part of the first part of the groove, and the fourth part of the groove is not parallel to the second part of the groove .
  • the first part of the groove rail, the second part of the groove rail, the third part of the groove rail and the fourth part of the groove rail form a trapezoid or a triangle.
  • At least one level of limiting grooves is N-level limiting grooves, where N is an integer greater than or equal to 2.
  • the first part of the groove track of the i-level limiting groove communicates with the third part of the groove rail of the i-1th level limiting groove, wherein, from the proximal end to the distal end, the values i of each level are sequentially recorded as 1, 2...N.
  • At least one embodiment of the present disclosure provides a delivery system for an artificial prosthesis, including the physical limiting device according to any one of the above embodiments, and the delivery system further includes a first tube assembly and a second tube assembly.
  • the first tube assembly is configured to place a prosthesis.
  • the second tube assembly includes a sheath, and the sheath is sleeved on at least a part of the first tube assembly, and the axes of the sheath and the first tube assembly are respectively parallel to or coaxial with the axis of the guide rod.
  • the sheath tube is fixedly connected with the first moving part, so that the first moving part can drive the sheath tube to move axially relative to the first tube assembly.
  • the safety bar is stationary relative to the first pipe assembly.
  • a delivery system provided in at least one embodiment of the present disclosure further includes a screw, the first moving part includes a first knob, the first knob is sleeved on the screw, and the axial directions of the first knob and the screw are both aligned with the axis of the guide rod. parallel or coaxial.
  • the inside of the first knob is provided with threads matched with the screw rod to realize screw fit, so that when the first knob rotates in the circumferential direction, the relative movement along the axial direction of the first pipe assembly is realized through thread transmission.
  • a delivery system provided by at least one embodiment of the present disclosure further includes a first half shell, a second half shell, a third half shell, and a fourth half shell.
  • the distal end of the screw rod is fixedly connected with the first half-shell and the second half-shell respectively, and the proximal end of the screw rod is fixedly connected with the third half-shell and the fourth half-shell respectively.
  • the first half shell and the second half shell are respectively located on both sides of the central axis of the conveying system and the first half shell and the second half shell are fixedly connected to form the first shell, the third half shell and the fourth half shell The shells are respectively located on both sides of the central axis of the conveying system, and the third half shell and the fourth half shell are fixedly connected to form the second shell.
  • the second tube assembly further includes a stabilization tube, and the distal end of the stabilization tube is sleeved on the outside of at least a part of the sheath.
  • the sheath is a reduced-diameter tube
  • the reduced-diameter tube includes a first sheath part and a second sheath part arranged in sequence from a distal end to a proximal end.
  • the diameter of the first sheath part is greater than that of the second sheath part
  • the distal end of the stabilizing tube is sleeved outside the second sheath part
  • the diameter of the stabilizing tube is smaller than at least part of the diameter of the first sheath part.
  • a delivery system provided by at least one embodiment of the present disclosure further includes a stabilizing tube fixing seat and a sheath tube fixing seat.
  • the stabilizing tube is configured to extend from the far end to the stabilizing tube fixing seat and the proximal end of the stabilizing tube is fixedly connected to the stabilizing tube fixing seat, the stabilizing tube fixing seat is arranged inside the first housing and the stabilizing tube fixing seat is respectively connected to the first half-shell The body and the second half shell are fixedly connected.
  • the sheath tube extends from the distal end to the sheath tube fixing seat, and the proximal end of the second sheath part is fixedly connected with the sheath tube fixing seat, and the sheath tube fixing seat is fixedly connected with the first knob.
  • the guide rod is passed through the screw rod, and the guide rod is fixedly connected with the sheath tube fixing seat, so that the rotation of the first knob can drive the sheath tube fixing seat to move, and drive the sheath tube and the guide rod to move relative to each other along the axial direction of the first tube assembly .
  • the first tube assembly includes an inner tube and a prosthesis connector, the prosthesis connector is disposed on the outer side of the distal end of the inner tube and the prosthesis
  • the body connecting part is fixedly connected with the inner tube; the artificial prosthesis connecting part is provided with a slot matching the artificial prosthesis for embedding and placing of the artificial prosthesis and is detachably connected with the artificial prosthesis.
  • a delivery system provided by at least one embodiment of the present disclosure further includes an inner tube fixing seat.
  • the inner tube is configured to extend from the far end toward the proximal side to the inner tube fixing seat, and the inner tube is fixedly connected to the inner tube fixing seat, the inner tube fixing seat is arranged inside the second housing, and the inner tube fixing seat is respectively connected to the inner tube fixing seat
  • the third half-shell and the fourth half-shell are fixedly connected.
  • the inner tube includes multiple segments of third tube bodies that are sequentially connected along the axial direction of the first tube assembly and have different hardnesses
  • the sheath tube includes segments along the first tube assembly.
  • the assembly is connected in sequence in the axial direction and has multiple segments of fourth tubes with different hardness.
  • the first tube assembly further includes an inner tube emptying part and an end base, the inner tube emptying part is connected to the proximal end of the inner tube, and the end base is connected to the The distal connection of the inner tube.
  • a delivery system provided by at least one embodiment of the present disclosure further includes a safety connector, wherein the second moving part is a second knob, the axis of the second knob is parallel to or coaxial with the axis of the guide rod, and the safety connection The parts are respectively fixedly connected with the second end of the safety rod and the second knob, so that the rotation of the second knob can drive the safety rod to rotate around the axial direction of the guide rod.
  • the second housing is a cylinder and the second knob is nested on the outer surface of the cylinder, so that the second knob is positioned along the axis of the guide rod. It cannot move upward and can rotate around the axial direction of the guide rod.
  • the artificial prosthesis includes an artificial heart valve, a stent graft, or an artificial blood vessel.
  • the delivery system provided by at least one embodiment of the present disclosure, when the first end of the safety rod is inserted into the first part of the groove rail, at least part of the artificial prosthesis is placed in the sheath tube of the second tube assembly and the first part of the groove.
  • the cavity In the cavity between one tube component, the cavity is gradually opened or closed when the sheath of the second tube component moves axially relative to the first tube component, so as to release the artificial prosthesis or retrieve the artificial prosthesis.
  • the artificial prosthesis when the first end of the safety rod is located at the proximal end of the groove rail of the first part, the artificial prosthesis is placed on the sheath tube of the second tube assembly and the first The cavity between the tube assemblies is the first cavity.
  • the first end of the safety rod is limited to the distal end in the first part of the groove, a part of the artificial prosthesis is placed between the sheath tube of the second tube assembly and the third cavity between the first tube assembly is the second cavity. cavity, wherein the space of the second cavity is smaller than the space of the first cavity.
  • At least one embodiment of the present disclosure provides a method for delivering an artificial prosthesis, the method comprising: controlling the movement of the first moving part, driving the guide rod to move along the axial direction of the guide rod and driving the sheath tube of the second tube assembly relative to the first A tube assembly undergoes axial relative movement, wherein the sheath of the second tube assembly is fixedly connected to the first moving part, the first tube assembly is configured to place an artificial prosthesis, and the sheath of the second tube assembly is sheathed on the first On the outer side of at least a part of the tube assembly, the axial directions of the sheath tube of the second tube assembly and the first tube assembly are respectively parallel to or coaxial with the axial direction of the guide rod, and at least one level of limiting groove is opened on the outer surface of the guide rod, At least one level of limiting groove extends along the axial direction of the guide rod.
  • Each level of limiting groove includes a first part of the groove rail, a second part of the groove rail and a third part of the groove rail.
  • the second part of the groove rail is respectively connected to the first part
  • the groove rail and the groove rail of the third part are arranged at an angle; the first end of the bumper rod is inserted into the groove rail of the first part, and the guide rod moves axially to the proximal end, so that the first end of the bumper rod can be limited at the second One end of a part of the groove rail close to the second part of the groove rail (such as the far end in the first part of the groove rail); in response to the artificial prosthesis meeting the target requirements, the rotation of the second moving part is controlled to drive the safety lever to rotate around the axial direction, so that the safety The first end of the rod is rotated from the first part of the groove through the second part of the groove to at least part of the third part of the groove such that the guide rod is in a state where the third part of the groove can pass the first end of the safety rod, Drive
  • a delivery method provided by at least one embodiment of the present disclosure further includes: in response to the fact that the artificial prosthesis does not meet the target requirements, controlling the first moving part to reversely move, so as to drive the sheath tube of the second tube assembly relative to the first tube
  • the component moves axially relative to each other and drives the guide rod to move axially to the distal end.
  • a delivery method provided by at least one embodiment of the present disclosure further includes: in response to the first end of the bumper near the far end in the third part of the groove rail, controlling the first moving part to move in reverse to drive the second
  • the sheath of the tube assembly moves axially relative to the axial direction of the first tube assembly and drives the guide rod to move axially to the distal end, so that the first end of the safety rod passes through the limit groove from the third part of the groove track
  • the fourth part of the groove returns to the first part of the groove, wherein the first end of the fourth part of the groove communicates with the proximal end of the third part of the groove, and the second end of the fourth part of the groove connects with the end of the first part of the groove At least partially communicated, and the fourth part of the groove is not parallel to the second part of the groove, so as to allow the first end of the bumper to move toward the proximal end along the fourth part of the groove.
  • the delivery method further includes: placing at least part of the artificial prosthesis in the second tube when the first end of the safety rod is inserted into the first part of the groove rail.
  • the sheath tube of the component In the cavity between the sheath tube of the component and the first tube component, and drives the sheath tube of the second tube component to move axially relative to the first tube component, so that the cavity is gradually opened or closed to release the artificial prosthesis or recycled artificial prosthesis.
  • the beneficial effects of at least one embodiment of the present disclosure at least include: the device or method of the embodiment of the present disclosure can realize physical limit, can prompt the operator to limit the critical point through tactile sensation, and effectively feedback the physical position Accurate information, so as to achieve simple, efficient and accurate physical limit.
  • FIG. 1 is a schematic structural diagram of a physical limit device provided by some embodiments of the present disclosure
  • 2-3 are schematic diagrams of different viewing angles of the outer surface of the guide rod provided by some embodiments of the present disclosure.
  • Fig. 4a is an omitted schematic diagram of Fig. 1 after retaining the safety device and the second moving part from the perspective of viewing from the proximal end to the distal end along the axial direction provided by some embodiments of the present disclosure;
  • Fig. 4b is a cross-sectional view of Fig. 4a provided by some embodiments of the present disclosure.
  • 5a to 5f are schematic diagrams of the operation method of the physical limit device provided by some embodiments of the present disclosure.
  • Fig. 6 is a schematic diagram of cascading two-stage limiting grooves provided by some embodiments of the present disclosure.
  • Fig. 7 is a schematic diagram of an artificial prosthesis delivery system provided by some embodiments of the present disclosure.
  • Fig. 8 is a partial schematic diagram of a first pipe assembly and a second pipe assembly provided by some embodiments of the present disclosure
  • Fig. 9 is an axial cross-sectional view of a delivery system for an artificial prosthesis provided by some embodiments of the present disclosure.
  • 10a-10c are schematic diagrams of the operation method of the artificial prosthesis delivery system provided by some embodiments of the present disclosure.
  • transcatheter aortic valve replacement is a milestone in the field of diagnosis and treatment of heart valve disease in recent years.
  • the operator needs to accurately grasp the release position and release form of the valve prosthesis.
  • the positioning of the valve prosthesis becomes more difficult.
  • using conventional artificial heart valve implantation devices once the operator completes the positioning and begins to release the valve prosthesis, the entire release process is irreversible, and the operator has almost no chance to adjust the position and shape of the prosthesis, making the error tolerance rate of the operation process extremely low Therefore, the operator needs to grasp the length of the valve released from the delivery system in real time, which is extremely difficult.
  • the first way is to use ultrasound images and digital subtraction angiography to judge the relative position of the prosthesis by comparing the imaging markers and the valve prosthesis. Release situation. In this method, the operator cannot precisely control the release length of the valve due to the delay in visualization.
  • the second way is to obtain information on the release length of the valve by reading the release stroke mark on the handle or tubing. In this method, since there is a certain angle between the observation position of the operator and the stroke mark during the operation process, parallax is caused during the reading process, so the operator cannot obtain accurate information on the release length of the valve.
  • the present disclosure proposes a simple, efficient and accurate physical limiting device, as well as a system and method for using the physical limiting device.
  • At least one embodiment of the present disclosure provides a physical limit device, including: a first moving part; a guide rod configured to be driven by the first moving part to move along the axial direction of the guide rod, wherein a There are at least one level of limiting grooves, and the at least one level of limiting grooves extend along the axial direction of the guide rod as a whole.
  • Each level of limiting grooves includes a first part of the groove track, a second part of the groove rail and a third part of the groove rail.
  • the groove rails of the two parts are respectively arranged at an angle with the groove rails of the first part and the groove rails of the third part;
  • the safety rod is configured to move relative to the guide rod along the extending direction of the limiting groove;
  • the second moving part is fixedly connected with the second end of the safety rod, and the second moving part is configured to drive the safety rod through rotation
  • the axial rotation around the guide rod makes the first end of the safety rod move along the groove track of the second part.
  • At least one embodiment of the present disclosure further provides a method corresponding to the above-mentioned physical limiting device.
  • the physical limit device or method of the above-mentioned embodiments of the present disclosure can realize physical limit, can prompt the operator to limit the critical point through tactile sensation, and effectively feed back accurate information of physical positioning, so as to realize simple, efficient and accurate physical limit.
  • the first axial side is marked as the left side in the illustration and the second axial side is marked as the right side in the illustration.
  • the direction perpendicular to the axial direction involved in the example can be recorded as the up and down direction in the illustration, but the up and down orientations involved in the embodiments of the present disclosure represent the orientation in the illustration and do not affect the orientation in practical applications. The embodiment does not limit this.
  • At least one embodiment of the present disclosure regards the side close to the operator as the proximal end or the proximal end and the side away from the operator as the distal end or the distal end.
  • the distal end and the proximal end in the present disclosure are relative positions, for example, they refer to the opposite sides of some components themselves, or they refer to the opposite sides in a certain direction, that is, the proximal end of the present disclosure means one side, and far means the other side opposite the near end.
  • the meanings and functions of elements or objects of the embodiments of the present disclosure are not limited by their names, and cannot be interpreted in an idealized or extremely formal sense, which will not limit the embodiments of the present disclosure.
  • Fig. 1 is a schematic structural diagram of a physical limit device 100 provided by some embodiments of the present disclosure.
  • the physical limit device 100 includes a first moving part 11 , a guide rod 12 , a safety device 13 and a second moving part 14 .
  • the first moving part 11 is configured to drive the guide rod 12 so that the guide rod 12 moves along the axial direction of the guide rod 12 .
  • the axial direction of the guide rod 12 can be regarded as the axial direction of the entire physical limit device 100 .
  • the first moving part 11 may be a rotating member that rotates around the axial direction of the guide rod 12 .
  • the first moving part 11 converts the rotation into a linear motion through an intermediate piece to drive the guide rod 12 to move along the axial direction of the guide rod 12 .
  • the first moving part 11 is a first knob 111 (such as a manual knob), the axis of the first knob 111 is parallel or coaxial with the axis of the guide rod 12, and the first knob 111 is configured to pass
  • the rotation of itself drives the guide rod 12 to move along the axial direction of the guide rod 12 (specific examples can be found in the following description).
  • the structure of the first moving part 11 is not limited thereto, as long as the parts or assemblies capable of moving the guide rod 12 along the axial direction of the guide rod 12 belong to the protection scope of the embodiments of the present disclosure.
  • the first moving part 11 may also be a part that moves linearly along the axial direction.
  • FIG. 2 and FIG. 3 are three-dimensional schematic diagrams of different viewing angles of the outer surface of the guide rod 12 provided by some embodiments of the present disclosure.
  • FIG. 3 is a schematic view of the state of the guide rod 12 in FIG. 2 after it rotates by a certain angle around the axial direction.
  • At least one level of limiting groove 121 is defined on the outer surface of the guide rod 12 , and the at least one level of limiting groove 121 extends along the axial direction of the guide rod 12 as a whole.
  • Each limit groove 121 includes a first part of the groove rail 121a, a second part of the groove rail 121b and a third part of the groove rail 121c which are connected in sequence.
  • the second part of the groove rail 121b is arranged at an angle to the first part of the groove rail 121a and the third part of the groove rail 121c respectively.
  • the overall extension of the limiting groove 121 along the axial direction of the guide rod 12 does not mean that the first part of the groove rail 121a, the second part of the groove rail 121b and the third part of the groove rail 121c all extend along the axial direction, but means that the first A part of the grooved rail 121a, the second part of the grooved rail 121b and the third part of the grooved rail 121c are sequentially connected to form a whole extending direction along the axial direction of the guide rod 12, wherein the first part of the grooved rail 121a, the second part of the grooved rail 121b Any one of the groove rails 121 c and the third part may not extend along the axial direction of the guide rod 12 , and may also extend substantially along the axial direction of the guide rod 12 .
  • the first part of the grooved rail 121 a and the third part of the grooved rail 121 c are configured to extend along the axial direction parallel to the guide rod 12 .
  • the second partial groove rail 121 b is configured to extend along the circumferential direction of the guide rod 121 .
  • the second part of the groove rail 121b is located between the first part of the groove rail 121a and the third part of the groove rail 121c.
  • the first part of the grooved rail 121a, the second part of the grooved rail 121b and the third part of the grooved rail 121c are all grooves with a certain depth on the outer circumferential surface of the guide rod 12, and the cross-sectional shape and depth of each grooved rail and other elements are not limited.
  • the shape of any part of the groove rail of the limiting groove 121 in the extending direction may not be a straight line segment in the strict sense, for example, it may be substantially straight.
  • the extending direction of the second part of the grooved rail 121 b may not be strictly the circumferential direction of the guide rod 121 , for example, it may be substantially consistent with the circumferential direction of the guide rod 121 .
  • the second part of the grooved rail 121b is arranged at an angle to the first part of the grooved rail 121a and the third part of the grooved rail 121c, which means that on the outer circumferential surface of the guide rod 12, the second part of the grooved rail 121b It is a section of groove rail that is neither parallel to the first part groove rail 121a nor parallel to the third part groove rail 121c.
  • Fig. 4a is an omitted schematic view of Fig. 1 with the safety device 13 and the second moving part 14 retained, viewed from the proximal end to the distal end along the axial direction provided by some embodiments of the present disclosure.
  • Fig. 4b is a sectional view along the section line A-A of Fig. 4a.
  • the safety device 13 comprises a safety rod 131, and the safety rod 131 includes a first end (that is, an end near the guide rod 12 of the safety rod 131) and a second end (that is, An end of the safety rod 131 away from the guide rod 12).
  • the first end of the safety rod 131 is inserted into the first part of the groove rail 121 a of the limiting groove 121 .
  • the safety rod 131 is configured to be movable relative to the guide rod 12 along the extending direction of the limiting slot 121 .
  • the safety rod 131 is stationary and can move relative to the guide rod 12, that is, the relative sliding of the safety rod 131 in different sections of the limiting groove 121 of the guide rod 12 is due to the proximal end of the guide rod 12. move (or move to the far end) and the safety bar 131 is stationary so that the safety bar 131 moves far (or moves to the proximal end) correspondingly relative to the guide rod 12. Therefore, the present disclosure sets the safety bar 131 statically In order to stay still, it utilizes its relative motion with the guide rod to realize the physical limit of the guide rod. The structure is simple, the operation is convenient, and the stability and accuracy are good.
  • the safety bar 131 being stationary refers to being stationary relative to the current operator, and may also refer to being stationary relative to the current environment of the entire conveying system.
  • the first part of the groove rail 121a and the third part of the groove rail 121c are configured to allow the first end of the safety rod 131 to pass through, so as to allow the guide rod 12 to smoothly move along the axial direction of the guide rod, for example, the guide rod 12 moves along the axis of the guide rod.
  • the axial direction of the guide rod moves toward the proximal end (that is, moves to the right along the axial direction), and at this time, the safety rod 131 is relatively from the proximal end of the axial direction toward the shaft in the first part of the groove track 121a and the third part of the groove rail 121c. Pass to the far end.
  • the first end of the safety rod 131 can reach the far end from the proximal end in the groove rail 121a of the first part relative to the guide rod 12, and can be limited in the first part.
  • One end of the groove rail 121a close to the second part of the groove rail 121b (ie, the far end of the first part of the groove rail 121a).
  • the second end of the safety rod 131 is fixedly connected to the second moving part 14 .
  • the safety lever 131 is configured to drive the axial rotation around the physical limit device 100 by rotating the second moving part 14, so that the first end of the safety lever 131 passes from the first part of the groove rail 121a of the limit groove 121 through the second part of the groove rail 121b goes to the third part groove track 121c.
  • the limiting groove 121 further includes a fourth part of the groove rail 121d.
  • the third part of the grooved rail 121c, the fourth part of the grooved rail 121d and the first part of the grooved rail 121a are sequentially connected, and the fourth part of the grooved rail 121d is arranged at an angle to the third part of the grooved rail 121c and the first part of the grooved rail 121a.
  • the far end of the fourth part of the grooved rail 121d communicates with the proximal end of the third part of the grooved rail 121c, and the fourth part of the grooved rail 121d extends toward the side away from the second part of the grooved rail 121b, so that the proximal end of the fourth part of the grooved rail 121d It communicates with at least part of the first part of the groove 121a, and the fourth part of the groove 121d is not parallel to the second part of the groove 121b, so as to allow the first end of the bumper 131 to move proximally along the fourth part of the groove 121d.
  • the fourth part of the grooved track 121d is a chute, such as the chute inclined from the upper left to the lower right in Fig. 5a, which is convenient for recovery.
  • the distance between the proximal end of the fourth part of the grooved track 121d and the straight line where the second part of the grooved track 121b is located is smaller than the distance between the proximal end of the fourth part of the grooved track 121d and the straight line where the second part of the grooved track 121b is located.
  • the fourth part of the grooved rail 121d is configured to allow the first end of the safety rod 131 to pass through, so as to allow the guide rod 12 to smoothly move along the axial direction of the guide rod, for example, the guide rod 12 moves along the direction of the guide rod. move axially to the far end (that is, move to the left along the axial direction), and at this time, the safety rod 131 passes relatively from the axial far end toward the axial proximal end in the fourth part of the groove track 121d, thereby realizing The recovery function of the physical limit device 100 .
  • the first part of the groove rail 121a, the second part of the groove rail 121b, the third part of the groove rail 121c and the fourth part of the groove rail 121 of the limiting groove 121 form a trapezoid, thus, the limiting groove 121 is formed as a whole.
  • "Inter" font This is merely exemplary and not limiting of the present disclosure.
  • the safety device 13 also includes a safety connector 132, the second end of the safety rod 131 is fixedly connected to the safety connector 132, and the safety connector 132 is also fixedly connected to the second moving part 14, so that The movement of the second moving part 14 drives the safety lever 131 to rotate around the axial direction of the physical limiter 100 .
  • the second moving part 14 includes a second knob 141 , for example, the second knob 141 is a manual knob, and the axis of the second knob 141 is parallel to or coaxial with the axis of the guide rod 12 .
  • the second knob 141 is fixedly connected to the safety device 13 through form fit or interference fit. This is merely exemplary and not limiting of the present disclosure.
  • the first end of the safety rod 131 is inserted into the right end of the first part of the groove rail 121 a on the outer surface of the guide rod 12 .
  • the movement of the first moving part 11 is controlled to drive the guide rod 12 to move proximally along the axial direction.
  • the safety lever 131 gradually moves relatively from the proximal end of the first part of the grooved rail 121a to the distal end of the first part of the grooved rail 121a, as shown in FIG. 5b. In this state, the safety lever 131 reaches the limiting position of the first part of the grooved rail 121a.
  • the safety rod 131 can no longer move forward relative to the movement of the guide rod 12 . That is, the first moving part 11 and the guide rod 12 cannot continue to move along the axial direction due to being restricted by the safety rod 131 in the first part of the groove rail 121a, thereby achieving a physical limiting effect. As a result, the operator is prompted with the critical point of the limit through the tactile sense of the first moving part, and the accurate information of physical positioning is effectively fed back, so as to realize simple, efficient and accurate physical limit.
  • the first end of the safety rod 131 is separated from the far end of the first part of the groove rail 121a (ie, the second One end of the part of the groove rail 121b close to the first part of the groove rail 121a) passes through the second part of the groove rail 121b and turns into the third part of the groove rail 121c (for example, turns to the proximal end or middle position of the third part of the groove rail 121c).
  • the guide rod 12 can continue to move toward the proximal end along the axial direction under the drive of the first moving part 11, and then the first end of the safety rod 131 moves from the third part of the groove rail 121c in the third part of the groove rail 121c.
  • the proximal end relatively slides axially toward the distal end of the third part grooved rail 121c, as shown in FIG. 5d.
  • the guide rod 12 also moves in the reverse direction driven by the first moving part 11 that moves in the reverse direction, That is, when the guide rod 12 moves toward the distal end along the axial direction, the safety rod 131 relatively slides toward the proximal end along the axial direction in the third part groove rail 121c.
  • the bumper 131 first reaches the proximal end of the third part of the grooved rail 121c, and then transitions to the distal end of the fourth part of the grooved rail 121d in a chute type, as shown in FIG. 5e.
  • the safety bar 131 continues to slide relatively in the fourth part of the groove rail 121d until it relatively moves to the proximal end in the fourth part of the groove rail 121d and then transitions to the far end in the first part of the groove rail 121a and toward the first part of the groove
  • the distal end of the rail 121a slides relative to each other until finally reaching the proximal end of the first part of the grooved rail 121, thereby completing the return process, as shown in FIG. 5f.
  • the limiting groove 121 in at least one embodiment of the present disclosure adopts the fourth part of the inclined groove rail 121d, and only needs to operate the first moving part 11 (such as the first knob 111) without operating the second.
  • the moving part 14 (such as the second knob 141 ) can drive the second moving part 14 to passively rotate to the initial position (ie reset), making the whole operation process more convenient and efficient.
  • the physical limiting device of the embodiment of the present disclosure may include N-level limiting grooves 121 and N is an integer greater than or equal to 2, the first part of the groove track 121a of the i-level limiting groove 121 is connected The third part of the groove track 121c of the groove 121 is in communication, wherein the numerical value i of each stage from the axial proximal end to the axial distal end is denoted as 1, 2...N in sequence.
  • FIG. 6 is a schematic diagram of the cascading of two-stage limiting grooves 121 provided by some embodiments of the present disclosure.
  • the first-level limiting groove in the two-level limiting groove 121 includes a first part of the groove rail 121 a , a second part of the groove rail 121 b , a third part of the groove rail 121 c and a fourth part of the groove rail 121 d.
  • the second level limiting groove includes a first part of the groove rail 121a', a second part of the groove rail 121b', a third part of the groove rail 121c' and a fourth part of the groove rail 121d'.
  • the left end of the third part of the groove rail 121c of the first stage communicates with the right end of the first part of the groove rail 121a' of the second stage, or forms an integral body, so as to realize the cascade connection of the two-stage limiting grooves 121.
  • the overall shape and structure of the limiting groove for each level can be adjusted as required, for example, the limiting groove is not limited to the trapezoidal shape shown in Figure 2, alternatively, as shown in Figure 6, the limiting groove
  • the first part of the groove rail 121a, the second part of the groove rail 121b, the third part of the groove rail 121c and the fourth part of the groove rail 121 of 121 can also form a triangle. This is merely exemplary and not limiting of the present disclosure.
  • each level of limiting grooves in the two-level limiting grooves 121 is the same.
  • the present disclosure is not limited thereto, for example, the structure of the two-stage limiting groove 121 may also be different.
  • some of the limiting grooves 121 in the multi-level limiting grooves 121 may be trapezoidal, and the other part of the limiting grooves 121 may be triangular in shape.
  • the limiting groove 121 of each stage in the multi-level limiting groove 121 is trapezoidal.
  • the limiting slots 121 of each level of the multi-level limiting slots 121 are triangular in shape.
  • At least one embodiment of the present disclosure can achieve multiple positions or multiple stages of positioning through the cascade of multi-stage limiting grooves, and only one safety device 13 (such as safety lever 131) and a second movement
  • the component 14 for example, the second knob 141
  • the second knob 141 can be realized, which is very simple and efficient, has a wider application range, and has higher limit precision.
  • At least one embodiment of the present disclosure further provides a delivery system for an artificial prosthesis, which includes the physical limiting device of any one of the above embodiments.
  • Fig. 7 is a schematic diagram of the appearance of the artificial prosthesis delivery system provided by some embodiments of the present disclosure.
  • Fig. 8 is a structural diagram of a first tube assembly and a second tube assembly provided by some embodiments of the present disclosure, and
  • Fig. 9 is an internal schematic diagram of a delivery system of an artificial prosthesis provided by some embodiments of the present disclosure.
  • an artificial prosthesis delivery system 200 includes a first tube assembly 21 , a second tube assembly 22 and a physical limiting device 100 .
  • first tube assembly 21 is configured to place a prosthesis. At least a portion of the second pipe assembly 22 is sleeved on at least a portion of the first pipe assembly 21 .
  • the axial direction of the second pipe assembly 22 and the axial direction of the first pipe assembly 21 are respectively parallel to or coaxial with the axial direction of the physical limiting device 100 .
  • the physical limit device 100 includes a first moving part 11 , a guide rod 12 , a safety device 13 and a second moving part 14 .
  • a first moving part 11 a guide rod 12 , a safety device 13 and a second moving part 14 .
  • At least part of the second tube assembly 22 (such as the sheath tube 221 described below) is fixedly connected to the first moving part 11, so that the first moving part 11 drives the second tube assembly 22 relative to the first tube assembly. 21 Axial relative movement occurs.
  • the safety bar 131 is stationary and refers to being stationary relative to the current operator (or may refer to being stationary relative to the current environment of the entire conveying system), thus, the stationary safety bar 131 is also stationary relative to the current operator.
  • the first tube assembly 21 is stationary, that is, the first tube assembly 21 may be stationary relative to the current operator.
  • the physical limit device 100 of the delivery system 200 further includes a screw 15 .
  • the inside of the first moving part 11 (such as the first knob 111) is provided with threads, which are matched with the screw rod 15 to realize screw fit, so that the first moving part 11 can realize relative axially through thread transmission when rotating in the circumferential direction. movement, thereby driving the guide rod 12 to move along the axial direction of the physical limiter 100 .
  • the guide rod 12 is passed through the screw rod 15 and can move relative to the screw rod 15, and the first moving part 11 (for example, the first knob 111) is sleeved on the screw rod 15, and the axial direction of the first moving part 11 and the screw rod 15 are uniform. It is parallel or coaxial with the axial direction of the guide rod 12 .
  • the first moving part 11 (such as the first knob 111) is fixedly connected with an intermediate piece (such as the sheath holder 28 described below), and the middle piece (such as the sheath holder 28 described below) is connected to the guide rod 12 is fixedly connected, so that the first moving part 11 (such as the first knob 111) can realize relative axial movement through screw transmission when rotating, and drive the intermediate piece (such as the sheath tube fixing seat 28 described below) to move, Therefore, the guide rod 12 can be driven to move along the axial direction of the physical limit device 100 .
  • an intermediate piece such as the sheath holder 28 described below
  • the middle piece such as the sheath holder 28 described below
  • the delivery system 200 further includes a first shell including a first half shell 23 and a second half shell 24 , and a second shell including a third half shell 25 and the fourth half-shell 26 .
  • the distal ends of the screw rod 15 are fixedly connected to the first half shell 23 and the second half shell 24 respectively.
  • the first half shell 23 and the second half shell 24 are respectively located on both sides of the central axis of the conveying system 200 (ie, the up and down direction in FIG. 7 ) and the first half shell 23 (ie, the upper shell) and the second half shell
  • the housing 24 ie the lower housing
  • the proximal ends of the screw rod 15 are fixedly connected to the third half-shell 25 and the fourth half-shell 26 respectively.
  • the third half-shell 25 and the fourth half-shell 26 are respectively located on both sides of the central axis of the conveying system 200 (ie, the up-down direction in FIG. 7 ), and the third half-shell 25 (ie, the upper shell) and the fourth half-shell
  • the housing 26 ie the lower housing
  • the first shell and the second shell are respectively assembled from two half shells, which facilitates the installation of the entire conveying system.
  • first half shell 23 and the second half shell 24 may be respectively located on the left and right sides of the axis of the delivery system 200, and/or The third half-shell 25 and the fourth half-shell 26 are respectively located on the left and right sides of the axis of the conveying system 200 .
  • first housing and the second housing are respectively integrated structures.
  • first tube assembly 21 is fixedly connected to the second housing, and both the first tube assembly 21 and the second housing remain stationary (eg, stationary relative to the operator).
  • the first tube assembly 21 includes a prosthesis connector 211 and an inner tube 213 .
  • the inner tube 213 is a multilayer tube 213 for increasing strength, but the present disclosure is not limited thereto.
  • all the inner tubes 213 mentioned below are multi-layer tubes 213 .
  • the artificial prosthesis connector 211 is disposed on at least a part of the outer surface of the multilayer tube 213 and is fixedly connected with the multilayer tube 213 , for example, by glue.
  • the artificial prosthesis connector 211 is disposed on the outer surface of the distal end of the multilayer tube 213 and the artificial prosthesis connector 211 is fixedly connected to the multilayer tube 213 .
  • the groove provided on the outer surface of the artificial prosthesis connector 211 is a T-shaped groove, and the proximal end of the artificial prosthesis is processed with a T-shaped bar of the same shape.
  • this is only an example and not a limitation of the embodiment of the present disclosure, as long as the shape of the slot on the artificial prosthesis connector 211 matches the shape of the artificial prosthesis.
  • the artificial prosthesis includes but is not limited to an artificial heart valve, and the embodiments of the present disclosure are not limited and exhaustive.
  • the artificial prosthesis is a covered stent or artificial vascular prosthesis for treating vascular diseases such as aneurysm.
  • the first tube assembly 21 further includes an end base 212 connected to a distal end of the multilayer tube 213 .
  • end base 212 is a conical head located at the most distal end of the delivery system and detachably connected to the distal end of multi-layer tubing 213 .
  • the distal end of the end base body 212 and the multilayer tube 213 is fixedly connected by threads. This is merely exemplary and not limiting of the present disclosure.
  • the multi-layer tube 213 includes a plurality of sections of third tube bodies that are sequentially connected along the axial direction of the first tube assembly 21 and have different hardnesses.
  • the multi-layer tube 213 is made of multiple layers and sections of polymer materials with different hardness, so as to have a plurality of axially connected straight sections with different hardness, so that the straight section that needs strength has sufficient strength, and the section that needs to be bent has sufficient strength.
  • the straight section is sufficiently flexible so that a delivery system including such a multi-layered tube 213 can enter the arch of the aorta (eg, U-shaped) to deliver a prosthetic heart valve.
  • the second tube assembly 22 includes a sheath tube 221 and a stabilizing tube 222 , the distal end of the stabilizing tube 222 is sheathed outside at least a part of the sheath tube 221 .
  • the sheath tube 221 is a variable-diameter tube structure, and the sheath tube 221 includes a first sheath tube part 221a and a second sheath tube part 221b arranged in sequence from the distal end to the proximal end, that is, the first sheath tube part 221b.
  • One sheath portion 221a is more distally than the second sheath portion 221b.
  • the diameter of the first sheath portion 221a is larger than the diameter of the second sheath portion 221b.
  • the stabilizing tube 222 is sheathed outside at least a part of the second sheath tube part 221b, that is, the diameter of the stabilizing tube 222 is larger than that of the second sheath tube part 221b.
  • the diameter of the stabilizing tube 222 is smaller than the diameter of the first sheath tube part 221a, which can ensure stable and precise movement of the sheath tube 221 to the first sheath tube part 221a.
  • a position where a sheath portion 221a is captured by the distal end of the stabilization tube 222 achieves full deployment of the delivery system.
  • the stabilization tube 222 , the second sheath portion 221 b and the multi-layer tube 213 are sequentially arranged from outside to inside, as shown in FIG. 8 .
  • the sheath tube 221 includes a plurality of sections of fourth tubular bodies that are sequentially connected along the axial direction and have different hardnesses.
  • the different straight sections of the sheath tube 221 adopt different pipe weaving methods to realize the straight sections with different hardness, so that the straight sections that require strength have sufficient strength, and the straight sections that require bending have sufficient flexibility.
  • a delivery system including such a sheath 221 it is possible to access the arch of the aorta (eg like a U-shape) to deliver a prosthetic heart valve.
  • the T-shaped bar of the artificial prosthesis is embedded in the T-shaped groove on the artificial prosthesis connector 211, and then when the sheath tube 221 of the second tube assembly 22 is closed (that is, when the sheath tube 221 moves to the left)
  • the artificial prosthesis is loaded into the cavity formed by the sheath tube 221 and the first tube assembly 21 .
  • This is merely exemplary and not limiting of the present disclosure.
  • the above-mentioned embodiments of the present disclosure realize the loading of the artificial prosthesis through the artificial prosthesis connector provided with the slot, which can be adapted to various types of artificial prosthesis, and can also ensure the smooth release of the artificial prosthesis, with simple structure and convenient operation. Wide range of applications.
  • the first moving part 11 may be, for example, a manual first knob 111 .
  • the axial direction of the first knob 111 is parallel to or coaxial with the axial direction of the guide rod 12 .
  • the guide rod 12 remains coaxial with the axis of the entire delivery system 200 .
  • the delivery system 200 further includes a stabilizing tube fixing seat 27 basically disposed in the first housing.
  • the stabilizing tube fixing base 27 is arranged inside the first housing, and the stabilizing tube 222 extends from the distal end to the stabilizing tube fixing base 27 and the proximal end of the stabilizing tube 222 is fixedly connected with the stabilizing tube fixing base 27 .
  • the stabilizing tube fixing seat 27 is respectively fixedly connected with the first half shell 23 and the second half shell 24 constituting the first shell. Therefore, the stabilizing tube 222 and the stabilizing tube fixing base 27 are fixed relative to the first housing.
  • the stabilizing tube fixing base 27 is fixedly connected to the stabilizing tube 222 through glue, and the stabilizing tube fixing base 27 is fixedly connected to the first half-shell 23 and the second half-shell 24 respectively through form fitting.
  • the stable tube holder 27 is cylindrical, and the inside of the first half-shell 23 (and/or the second half-shell 24) is processed with two ribs and a semicircular opening is arranged on the ribs for stabilizing The tube holder 27 snaps in order to achieve a form fit. This is merely exemplary and not limiting of the present disclosure.
  • delivery system 200 also includes sheath mount 28 .
  • the sheath tube 221 extends from the distal end to the sheath tube fixing seat 28 and the proximal end of the second sheath tube part 221 b of the sheath tube 221 is fixedly connected to the sheath tube fixing seat 28 .
  • the sheath fixing seat 28 is fixedly connected with the first knob 111 .
  • the sheath tube fixing seat 28 is fixedly connected to the sheath tube 221 by glue.
  • the sheath tube fixing seat 28 is fixedly connected with the first knob 111 through form fit.
  • the guide rod 12 is fixedly connected to the sheath tube fixing seat 28 through threads and glue. This is merely exemplary and not limiting of the present disclosure.
  • the delivery system 200 further includes an inner tube fixing seat 29 .
  • the inner tube fixing seat 29 may also be called a multi-layer tube fixing seat 29 . All the inner tube fixing seats 29 mentioned below are described as multi-layer tube fixing seats 29 .
  • the multi-layer tube 213 extends from the far end toward the proximal end until it reaches the multi-layer tube fixing seat 29, and the multi-layer tube fixing seat 29 is fixedly connected with the multi-layer tube 213, and the multi-layer tube fixing seat 29 is arranged on The inside of the second shell and the multi-layer tube fixing seat 29 are fixedly connected with the third half-shell 25 and the fourth half-shell 26 respectively, thus, the first tube assembly 21 realizes the connection through the connector (for example, the multi-layer tube fixing seat 29) Fixed connection with the third half-shell 25 and the fourth half-shell 26 respectively.
  • the multi-layer tube fixing seat 29 is fixedly connected to the multi-layer tube 213 by glue, and the multi-layer tube fixing seat 29 is fixedly connected to the third half-shell 25 and the fourth half-shell 26 respectively through form fit.
  • the third half-shell 25 and the fourth half-shell 26 are stationary relative to the multi-layer tube fixing seat 29 and the multi-layer tube 213 .
  • the second housing formed by the fixed connection of the third half-shell 25 and the fourth half-shell 26 is a cylinder, and the second knob 141 is sleeved on the outer surface of the cylinder, so that the second knob 141 141 is immovable in the axial direction relative to the second housing but rotatable in the axial direction.
  • the multi-layer tube fixing seat 29 can be used to ensure that the first tube assembly remains stationary, so that the second tube assembly 22 can move axially relative to the first tube assembly 21 to ensure the smooth delivery of the artificial prosthesis and recycling.
  • first tube assembly 21 also includes inner tube evacuation 214 .
  • the inner tube emptying part 214 is fixedly connected to the proximal end of the multilayer tube 213 . Since the operator needs to empty the air in the first tube assembly 21 before the operation, and use a syringe to inject physiological saline into the delivery system 200, that is, the inner tube emptying part 214 provides the operator with a device that can be matched with the syringe. The interface is convenient for the operator to carry out the emptying operation.
  • the inner tube emptying member 214 is fixedly connected to the multi-layer tube 213 by glue. Certainly, this is only exemplary, and the embodiment of the present disclosure does not limit the fixed connection manner between the components.
  • the guide rod 12 is arranged inside the screw rod 15 and the guide rod 12 is fixedly connected with the sheath tube fixing seat 28, so that the rotation of the first knob 111 can drive the sheath tube fixing seat 28 to move, thereby driving the sheath tube 221 And the guide rod 12 moves in the axial direction.
  • the sheath tube 221 of the second tube assembly 22 follows the rotation of the first knob 111 and moves proximally along the axial direction, since the stabilizing tube 222 is still (for example, relative to the operator) and the stabilizing tube 222 The diameter is smaller than the diameter of a part of the first sheath tube part 221a, then when the sheath tube 221 moves to the position where the first sheath tube part 221a is caught by the distal end of the stabilizing tube 222, it can be recorded as the sheath tube 221 moves to the rightmost end, At this time, the guide rod 12 is also located at the rightmost end (for example, the position of the guide rod 12 when the safety rod 131 is located at the leftmost end of the third part grooved rail 121c in FIG. 5 d ). This state is the fully open state of the conveying system.
  • the movement of the first knob 111 along the axial direction of the delivery system 200 can be realized due to the characteristics of screw transmission, and because the first knob 111 is connected with the sheath tube fixing seat 28, the sheath tube 221 of the second tube assembly 22 and the The guide rods 12 are all fixedly connected, and when the first knob 111 moves axially, it will drive the sheath tube fixing seat 28 to move axially, thereby also driving the sheath tube 221 to move axially. Since the first tube assembly 21 is fixedly connected to the third half-shell 25 and the fourth half-shell 26 respectively, and remains stationary relative to the operator, the sheath tube 221 of the second tube assembly 22 will move relative to the first tube assembly 21. Axial relative movement occurs so that delivery and release of a prosthesis (eg heart valve) can be accomplished.
  • a prosthesis eg heart valve
  • Figures 10a-10c are schematic diagrams of the operation method of the artificial prosthesis delivery system provided by some embodiments of the present disclosure.
  • At least part of the artificial prosthesis (such as the heart valve 3) (such as the entire artificial prosthesis or a part of the artificial prosthesis) ) is placed in the first cavity A01 between the sheath 221 of the second tube assembly 22 and the first tube assembly 21, and the first cavity A01 is opposite to the first tube assembly 221 of the second tube assembly 22 21 is gradually opened or closed when axial relative movement occurs, so as to release the artificial prosthesis or retrieve the artificial prosthesis.
  • the embodiment of the present disclosure does not limit the proportion of the release part of the artificial prosthesis when the limit position is reached, as long as a part of the artificial prosthesis (that is, 0% to 100% of the artificial prosthesis, excluding 0% and 100%) in the cavity, and the relevant percentages of the artificial prosthesis may depend on different artificial prosthesis conditions, and will not be exhaustive and repeated here.
  • the operator can pause and judge the artificial prosthesis at this time. Whether the target requirements are met, the artificial prosthesis will not be completely released directly due to misoperation, and the operator's hands can be temporarily removed from the delivery device 200 to perform other surgical operations such as angiography.
  • the delivery system for delivering the artificial prosthesis in the above-mentioned embodiments of the present disclosure has a physical limit device, which can effectively feedback to the operator accurate information on the release of the artificial Prompt the operator to limit the critical point (for example, through the tactile sense to prompt the operator to recover the critical point of the position), to achieve simple, efficient and accurate physical limit.
  • the second moving part 14 when the artificial prosthesis is partially released, that is, when the guide rod 12 is limited by the safety rod 131 of the safety device 13, if the operator judges that the artificial prosthesis meets the target requirements, the second moving part 14 The axial rotation of the safety lever 131 makes the far end of the first part of the grooved rail 121a pass through the second part of the grooved rail 121b and then turns into the third part of the grooved rail 121c.
  • the guide rod 12 can be driven by the first knob 111 Continue to move toward the proximal end along the axial direction, and then the safety rod 13 continues to slide in the third part of the groove rail 121c along the axial direction toward the far end of the third part of the groove rail 121c until reaching the third part of the groove rail The most distal end within 121c.
  • the sheath tube 221 of the second tube assembly 22 moves relative to the first tube assembly 21 in the axial direction, and the sheath tube 221 of the second tube assembly 22 and the first tube assembly 21
  • the second cavity A02 between them continues to open (that is, the space of the second cavity A02 becomes smaller and smaller), and the artificial prosthesis is released more until the entire artificial prosthesis is completely released. That is, the artificial prosthesis at this time is detached from the sheath 221, thereby completing the release and implantation of the artificial prosthesis, as shown in FIG. 10c.
  • the safety bar 13 slides relative to the guide bar 12 to reach the farthest end of the third part groove rail 121c, the artificial prosthesis is completely released. This also means that the conveyor system is now fully open.
  • the first knob 111 is controlled to rotate in reverse (that is, the first knob 111 also moves along move axially to the distal end), drive the sheath tube 221 of the second tube assembly 22 to move axially relative to the first tube assembly 21, and drive the guide rod 12 to move axially to the distal end, so that the safety rod 131 Carry out relative movement, and return to the first part of the groove rail 121a from the third part of the groove rail 121c through the fourth part of the groove rail 121d of the limiting groove, and finally reach the proximal end of the first part of the groove rail 121a to realize the delivery system fully closed.
  • the operator when the artificial prosthesis is partially released, that is, when the guide rod 12 is limited by the safety rod 131 of the safety device 13, if the operator judges that the artificial prosthesis does not meet the target requirements, the operator can rotate the artificial prosthesis in the opposite direction.
  • the first knob 111 drives the sheath tube 221 of the second tube assembly 22 to move toward the distal end to close the cavity, thereby realizing recovery of the artificial prosthesis.
  • the operator can move or adjust the position and direction of the entire artificial prosthesis delivery system, or perform other surgical operations such as angiography, and repeat the release and recovery operation of the artificial prosthesis again until it is completely released when the target requirements are met.
  • the delivery system in at least one embodiment of the present disclosure can realize the release implantation of the artificial prosthesis and the recovery of the incompletely released state, and can provide the operator with a larger room for error tolerance, thereby reducing the difficulty of the operator's operation .
  • the delivery system in at least one embodiment of the present disclosure can be recovered when the release position or shape of the artificial prosthesis is not good, and the positioning and release operation can be performed again, and can continue when the release position or shape of the artificial prosthesis is good
  • the release further improves the release accuracy, improves the implantation effect of the artificial prosthesis, and can also improve the safety of recyclability.
  • the delivery method for delivering an artificial prosthesis can realize functions such as delivery of a prosthesis, recovery of a prosthesis, release of a prosthesis, and closure of a delivery system.
  • the delivery method (that is, the operation method of the artificial prosthesis delivery system) may include more or fewer steps, and the sequence relationship between the steps is not limited, It can be determined according to actual needs.
  • the delivery method is implemented based on the delivery device of any of the above-mentioned embodiments.
  • For the content of the solution of the delivery device involved in the delivery method reference may be made to the above-mentioned relevant embodiments, and details are not repeated here.
  • the delivery method for delivering the artificial prosthesis below is mainly explained by taking the delivery of the artificial heart valve prosthesis and the first-level limit groove on the guide rod of the delivery system as an example, but the delivery method of the present disclosure is not limited thereto. This is not a limitation, and exhaustive examples and repeated descriptions will not be made here.
  • the delivery and release functions of the heart valve can be realized.
  • the heart valve can be recovered and closed after the delivery system is released.
  • a method of delivering a prosthetic heart valve prosthesis includes one or more of the following procedures.
  • the first knob 111 when the operator rotates the first knob 111, due to the characteristics of screw transmission, the first knob 111 can move axially along the guide rod 12, and drive the sheath tube fixing seat 28 to move axially, thereby also driving the sheath tube 221 to move axially. , the sheath tube 221 of the second tube assembly 22 and the first tube assembly 21 will move relative to each other in the axial direction.
  • the first knob 111 also drives the guide rod 12 to move proximally, and the safety rod 131 in the first part of the groove rail 121a of the guide rod 12 slides relative to the guide rod 12, and along with the movement of the guide rod 12, The safety rod 131 reaches the first part of the grooved rail 121a from the proximal end in the first part of the grooved rail 121a (the heart valve 3 in the initial state shown in FIG.
  • the operator judges that the heart valve 3 meets the target requirements (for example, the release shape and position of the heart valve 3 are better or normal), then turn the second knob 141 to make the safety lever 131 far away from the first part of the groove rail 121a.
  • the end passes through the second part of the groove rail 121b and turns into the third part of the groove rail 121c, the operator can continue to turn the first knob 111, at this time the guide rod 12 can continue to move proximally under the drive of the moving first knob 111 , then the safety lever 13 relatively slides in the third part of the groove rail 121c until it reaches the far end of the third part of the groove rail 121c, and driven by the first knob 111, the sheath tube 221 of the second tube assembly 22 and the first tube The cavities between the components 21 continue to open, and the heart valve 3 continues to be released until the entire heart valve 3 is completely released, completing the release and implantation of the heart valve 3, as shown in FIG. 10c.
  • the first knob 111 that is, the first knob 111 is also along the axis move toward the distal end
  • the sheath tube 221 of the second tube assembly 22 to move toward the distal end to close the cavity, thereby realizing the recovery of the heart valve 3 .
  • the guide rod 12 when the sheath tube 221 moves to the proximal end (i.e., the rightmost end), the guide rod 12 also moves to the proximal end, that is, the safety bar 131 reaches the farthest end in the third part groove rail 121c, and the delivery system is fully opened, as shown in Figure 10c shown. In this state, if the delivery system needs to be closed, the operator rotates the first knob 111 to drive the sheath tube 221 and the guide rod 12 to move distally along the axial direction.
  • the bumper 131 transitions from the third part of the grooved rail 121c to the fourth part of the grooved rail 121d of the inclined groove type, and then reaches in the first part of the grooved rail 121a until it reaches the nearest end of the first part of the grooved rail 121a, thereby driving the second part of the grooved rail 121a
  • the knob 141 is passively rotated to the initial position (ie reset), at this time the sheath tube 221 moves to the farthest end (ie the leftmost end), the delivery system is completely closed, and can be withdrawn out of the body.
  • the delivery method of at least one embodiment of the present disclosure sets a physical limit structure at a critical position during the release process, which can use tactile and forced termination operations to achieve the accuracy of the operator’s release to the critical position and stop action, without the need to observe the valve at all times release length.
  • the delivery method according to at least one embodiment of the present disclosure can also allow the operator to reset without additional operation of the second moving part when the delivery system is closed.
  • the reset along the chute during the recovery of the delivery system facilitates the operator to close the delivery system after the valve prosthesis is fully released without additional operations, making the entire surgical process safer and more efficient.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

一种输送系统(200)以及物理限位装置(100),该装置(100)包括:第一运动部件(11);导杆(12),沿其轴向运动,导杆(12)的外表面上开设有至少一级限位槽(121),每级限位槽(121)包括依次连通的第一、第二和第三部分槽轨(121a、121b、121c),第二部分槽轨(121b)分别与第一部分槽轨(121a)和第三部分槽轨(121c)呈角度布置;保险杆(131),其第一端插入至第一部分槽轨(121a)内且保险杆(131)配置为沿限位槽(121)可相对于导杆(12)移动;第二运动部件(14),与保险杆(131)的第二端连接且第二运动部件(14)配置为通过转动带动保险杆(131)绕导杆(12)的轴向转动,使得保险杆(131)的第一端沿第二部分槽轨(121b)移动。该装置(100)可通过触觉提示操作者限位临界点,有效地反馈物理定位的准确信息,实现简单高效且精准的物理限位。

Description

输送系统以及物理限位装置
出于所有目的,本申请要求于2021年9月24日递交的中国专利申请第202111121584.4号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种输送系统以及物理限位装置。
背景技术
限位一般是指对物体位置的限定,例如规定物体只能在某个区域,或者规定物体不能在某个区域。限位一般可通过限位装置来准确限定物体是否达到设定状态,以提醒操作人员或者实现自动式状态更新等。例如,在运输物体前进且在该物体运动到某一特定位置时,需要提醒操作人员。在这样的限位提醒的情景,目前通常使用传感器感测并通过声光等方式去实现限位提醒,或者需要操作人员通过视觉持续地观察整个操作过程,才能确保操作的准确性和设定状态的实现。目前在业界缺少有效准确的物理限位装置,尤其是在医疗器械领域的输送系统(例如人工假体输送领域)中,由于医疗器械的操作人员往往需要同时观察患者以及多个器械不同位置的状态,针对任一器械均难以做到操作全过程的持续视觉关注以及视觉效果与手部操作的同步性,因此目前迫切需要准确有效且操作便捷的物理限位装置。
发明内容
本公开至少一实施例提供一种输送系统与输送方法以及物理限位装置。
本公开至少一实施例提供了一种物理限位装置,包括第一运动部件、第二运动部件、导杆和保险杆。导杆配置为由第一运动部件带动沿导杆的轴向运动,其中,导杆的外表面上开设有至少一级限位槽,至少一级限位槽整体沿导杆的轴向延伸,每级限位槽包括依次连通的第一部分槽轨、第二部分槽轨和第三部分槽轨,第二部分槽轨分别与第一部分槽轨和第三部分槽轨呈角度布置。保险杆包括沿杆长方向相对的第一端和第二端,其中,保险杆的第一端插入至限位槽内,且保险杆配置为在沿限位槽可相对于导杆移动。第二运动部件与保 险杆的第二端连接,且第二运动部件配置为通过转动带动保险杆绕导杆的轴向转动,使得保险杆的第一端沿第二部分槽轨移动。
例如,在本公开至少一实施例提供的一种物理限位装置中,第一部分槽轨和第三部分槽轨配置为沿导杆的轴向延伸,第二部分槽轨配置为沿导杆的周向延伸,且在所述导杆的轴向上,所述第二部分槽轨位于所述第一部分槽轨和所述第三部分槽轨之间。
例如,在本公开至少一实施例提供的一种物理限位装置中,限位槽还包括第四部分槽轨,第四部分槽轨配置为可供保险杆的第一端通过。第四部分槽轨的远端与第三部分槽轨的近端连通,第四部分槽轨的近端与第一部分槽轨的至少部分连通,第四部分槽轨与第二部分槽轨不平行。
例如,在本公开至少一实施例提供的一种物理限位装置中,第一部分槽轨、第二部分槽轨、第三部分槽轨和第四部分槽轨围成梯形或者三角形。
例如,在本公开至少一实施例提供的一种物理限位装置中,至少一级限位槽为N级限位槽,N为大于或等于2的整数。第i级限位槽的第一部分槽轨与第i-1级限位槽的第三部分槽轨连通,其中,从近端至远端,各级数值i依次记为1,2…N。
本公开至少一实施例提供了一种人工假体的输送系统,包括如上文任一实施例的物理限位装置,输送系统还包括第一管组件和第二管组件。第一管组件配置为放置人工假体。第二管组件包括鞘管,鞘管套设在第一管组件的至少一部分的外侧,鞘管和第一管组件的轴向分别与导杆的轴向平行或同轴。鞘管与第一运动部件固定连接,使得第一运动部件带动鞘管相对于第一管组件可发生轴向的相对运动。
例如,在本公开至少一实施例提供的一种输送系统中,保险杆相对于第一管组件静止。
例如,本公开至少一实施例提供的一种输送系统还包括螺杆,第一运动部件包括第一旋钮,第一旋钮套设于螺杆上,第一旋钮和螺杆的轴向均与导杆的轴向平行或同轴。第一旋钮的内部设有与螺杆相匹配的螺纹以实现螺旋配合,使得第一旋钮在周向转动时通过螺纹传动实现沿第一管组件的轴向相对运动。
例如,本公开至少一实施例提供的一种输送系统还包括第一半壳体、第二半壳体、第三半壳体和第四半壳体。螺杆的远端分别与第一半壳体和第二半壳体固定连接,螺杆的近端分别与第三半壳体和第四半壳体固定连接。第一半壳 体和第二半壳体分别位于输送系统的中心轴线的两侧且第一半壳体和第二半壳体固定连接形成第一壳体,第三半壳体和第四半壳体分别位于输送系统的中心轴线的两侧且第三半壳体和第四半壳体固定连接形成第二壳体。
例如,在本公开至少一实施例提供的一种输送系统中,第二管组件还包括稳定管,稳定管的远端套设在鞘管的至少一部分的外侧。
例如,在本公开至少一实施例提供的一种输送系统中,鞘管为变径管,变径管包括由远端至近端依次排布的第一鞘管部分和第二鞘管部分。第一鞘管部分的直径大于第二鞘管部分的直径,稳定管的远端套设在第二鞘管部分的外侧,稳定管的直径小于第一鞘管部分的至少部分的直径。
例如,本公开至少一实施例提供的一种输送系统还包括稳定管固定座和鞘管固定座。稳定管配置为从远端延伸至稳定管固定座且稳定管的近端与稳定管固定座固定连接,稳定管固定座设置在第一壳体的内部且稳定管固定座分别与第一半壳体和第二半壳体固定连接。鞘管从远端延伸至鞘管固定座且第二鞘管部分的近端与鞘管固定座固定连接,鞘管固定座与第一旋钮固定连接。导杆穿设于螺杆中,导杆与鞘管固定座固定连接,使得可通过第一旋钮的转动带动鞘管固定座运动,并带动鞘管和导杆沿第一管组件的轴向相对运动。
例如,在本公开至少一实施例提供的一种输送系统中,第一管组件包括内管和人工假体连接件,人工假体连接件设置在内管的远端的外侧面上且人工假体连接件与内管固定连接;人工假体连接件上开设有与人工假体匹配的卡槽以供人工假体嵌入放置且与人工假体可分离式连接。
例如,本公开至少一实施例提供的一种输送系统还包括内管固定座。内管配置为从远端朝向近端一侧延伸至内管固定座,且内管与内管固定座固定连接,内管固定座设置在第二壳体的内部,且内管固定座分别与第三半壳体和第四半壳体固定连接。
例如,在本公开至少一实施例提供的一种输送系统中,内管包括沿着第一管组件的轴向依次连接且具有不同硬度的多段第三管体,鞘管包括沿着第一管组件的轴向依次连接且具有不同硬度的多段第四管体。
例如,在本公开至少一实施例提供的一种输送系统中,第一管组件还包括内管排空件和端部基体,内管排空件与内管的近端连接,端部基体与内管的远端连接。
例如,本公开至少一实施例提供的一种输送系统还包括保险连接件,其 中,第二运动部件为第二旋钮,第二旋钮的轴向与导杆的轴向平行或同轴,保险连接件分别与保险杆的第二端和第二旋钮固定连接,使得可通过第二旋钮的转动带动保险杆绕导杆的轴向转动。
例如,在本公开至少一实施例提供的一种输送系统中,第二壳体为圆柱体且第二旋钮嵌套设在圆柱体的外侧面上,以使得第二旋钮在沿导杆的轴向上无法移动且可绕导杆的轴向转动。
例如,在本公开至少一实施例提供的一种输送系统中,人工假体包括人工心脏瓣膜、覆膜支架或人工血管。
例如,在本公开至少一实施例提供的一种输送系统中,在保险杆的第一端插入至第一部分槽轨内时,人工假体的至少部分置于第二管组件的鞘管和第一管组件之间的空腔内,空腔在第二管组件的鞘管相对于第一管组件发生轴向的相对运动时被逐渐打开或闭合,以释放人工假体或回收人工假体。
例如,在本公开至少一实施例提供的一种输送系统中,在保险杆的第一端位于第一部分槽轨内的近端时,人工假体置于第二管组件的鞘管和第一管组件之间的空腔为第一空腔。在保险杆的第一端限位在第一部分槽轨内的远端时,人工假体的一部分置于第二管组件的鞘管和第一管组件之间的第三空腔为第二空腔,其中,第二空腔的空间小于第一空腔的空间。
本公开至少一实施例提供了一种人工假体的输送方法,该方法包括:控制第一运动部件运动,带动导杆沿导杆的轴向运动且带动第二管组件的鞘管相对于第一管组件发生轴向的相对运动,其中,第二管组件的鞘管与第一运动部件固定连接,第一管组件配置为放置人工假体,第二管组件的鞘管套设在第一管组件的至少一部分的外侧,第二管组件的鞘管和第一管组件的轴向分别与导杆的轴向平行或同轴,导杆的外表面上开设有至少一级限位槽,至少一级限位槽整体沿导杆的轴向延伸,每级限位槽包括依次连通的第一部分槽轨、第二部分槽轨和第三部分槽轨,第二部分槽轨分别与第一部分槽轨和第三部分槽轨呈角度布置;将保险杆的第一端插入至第一部分槽轨内,通过导杆沿轴向向近端运动,使得保险杆的第一端可限位在第一部分槽轨内靠近第二部分槽轨的一端(例如第一部分槽轨内的远端);响应于人工假体满足目标要求,控制第二运动部件转动,带动保险杆绕轴向转动,使得保险杆的第一端从第一部分槽轨经第二部分槽轨转至第三部分槽轨的至少部分,以使导杆在第三部分槽轨可供保险杆的第一端通过的状态下,由第一运动部件带动沿着轴向向近端 运动,且由第一运动部件带动第二管组件的鞘管相对于第一管组件发生轴向的相对运动,其中,第二运动部件与保险杆固定连接。
例如,本公开至少一实施例提供的一种输送方法还包括:响应于人工假体不满足目标要求,控制第一运动部件反向运动,以带动第二管组件的鞘管相对于第一管组件发生轴向的相对运动且带动导杆沿轴向向远端运动。
例如,本公开至少一实施例提供的一种输送方法还包括:响应于保险杆的第一端在第三部分槽轨内的靠近远端处,控制第一运动部件反向运动,带动第二管组件的鞘管相对于第一管组件的轴向发生轴向的相对运动且带动导杆沿轴向向远端运动,使得保险杆的第一端从第三部分槽轨经过限位槽的第四部分槽而返回至第一部分槽轨内,其中,第四部分槽轨的第一端与第三部分槽轨的近端连通,第四部分槽轨的第二端与第一部分槽轨的至少部分连通,且第四部分槽轨与第二部分槽轨不平行,以允许保险杆的第一端沿第四部分槽轨朝近端运动。
例如,在本公开至少一实施例提供的一种输送方法中,输送方法还包括:在保险杆的第一端插入至第一部分槽轨内时,将人工假体的至少部分置于第二管组件的鞘管和第一管组件之间的空腔内,且带动第二管组件的鞘管相对于第一管组件发生轴向的相对运动,使得空腔被逐渐打开或闭合,以释放人工假体或回收人工假体。
与现有技术相比,本公开的至少一实施例的有益效果至少包括:本公开实施例的装置或方法能够实现物理限位,可以通过触觉提示操作者限位临界点,有效地反馈物理定位的准确信息,从而实现简单高效且精准的物理限位。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一些实施例提供的物理限位装置的结构示意图;
图2-图3为本公开一些实施例提供的导杆的外表面的不同视角示意图;
图4a为本公开一些实施例提供的沿轴向从近端向远端观察视角下图1保留保险装置和第二运动部件后的省略示意图;
图4b为本公开一些实施例提供的图4a的剖面图;
图5a至5f为本公开一些实施例提供的物理限位装置的操作方法的示意图;
图6为本公开一些实施例提供的两级限位槽的级联示意图;
图7为本公开一些实施例提供的人工假体输送系统的示意图;
图8为本公开一些实施例提供的第一管组件和第二管组件的局部示意图;
图9为本公开一些实施例提供的人工假体的输送系统的轴向剖面图;
图10a-10c为本公开一些实施例提供的人工假体的输送系统的操作方法的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另有定义,本公开实施例使用的所有术语(包括技术和科学术语)具有与本本公开所属领域的普通技术人员共同理解的相同含义。还应当理解,诸如在通常字典里定义的那些术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非本公开实施例明确地这样定义。
本公开实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。本公开实施例中使用了流程图用来说明根据本公开实施例的方法的步骤。应当理解的是,前面或后面的步骤不一定按照顺序来精确的进行。相反,可以按照倒序或同时处理各种步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步。
发明人发现,随着人口的老龄化,瓣膜性心脏病的发病率明显增加。传统 的治疗方法包括药物保守治疗和外科换瓣手术治疗。药物治疗对预后改善帮助甚微,而外科换瓣手术虽可明显改善患者预后,但对于很多高龄、有开胸病史、心肺功能严重低下的患者,外科手术风险高,甚至失去了手术机会。在此背景下,经导管主动脉瓣置换术是近年来心脏瓣膜病诊治领域里程碑式的进展。
在该手术的人工心脏瓣膜植入过程中,操作者需要准确掌握瓣膜假体释放的位置和释放形态。在确定瓣膜假体位置的过程中,由于造影不清晰,操作不稳定,或其他因素干扰,使得瓣膜假体定位工作变得更加困难。而且,使用常规的人工心脏瓣膜植入装置,一旦操作者完成定位开始释放瓣膜假体,整个释放过程是不可逆的,操作者几乎没有调整假体位置和形态的机会,使得操作过程容错率极低,因此,操作者需要实时掌握瓣膜从输送系统中释放出的长度,难度极高。
操作者了解瓣膜从输送系统中释放出的长度主要有两种方式:第一种方式是借助超声影像和数字减影血管造影,通过对比显影标志物和瓣膜假体的相对位置,判断假体的释放情况。在此方法中,由于显影的延迟,操作者无法精确地控制瓣膜的释放长度。第二种方式是通过读取手柄或管材上的释放行程标识,从而获取瓣膜释放长度的信息。在此方法中,由于手术过程中操作者的观察位置与行程标识存在一定夹角,在读数过程中造成视差,所以操作者也无法获知瓣膜释放长度的准确信息。
由此,本公开提出了一种简单高效且精准的物理限位装置,以及使用该物理限位装置的系统与方法。
本公开至少一实施例提供了一种物理限位装置,包括:第一运动部件;导杆,配置为由第一运动部件带动沿导杆的轴向运动,其中,导杆的外表面上开设有至少一级限位槽,至少一级限位槽整体沿导杆的轴向延伸,每级限位槽包括依次连通的第一部分槽轨、第二部分槽轨和第三部分槽轨,第二部分槽轨分别与第一部分槽轨和第三部分槽轨呈角度布置;保险杆,包括沿杆长方向相对设置的第一端和第二端,其中,保险杆的第一端插入至限位槽内且保险杆配置为在沿限位槽的延伸方向可相对于导杆移动;第二运动部件,与保险杆的第二端固定连接,且第二运动部件配置为通过转动带动保险杆绕导杆的轴向转动,使得保险杆的第一端沿第二部分槽轨移动。
本公开至少一实施例还提供对应于上述物理限位装置的方法。
本公开上述实施例的物理限位装置或方法能够实现物理限位,可以通过触觉提示操作者限位临界点,有效地反馈物理定位的准确信息,从而实现简单高效且精准的物理限位。
下面结合附图对本公开的实施例及其示例进行详细说明。
需要说明的是,为了本文表述方便,本公开的一些实施例将轴向的第一侧记为图示中的左边以及将轴向的第二侧记为图示中的右边,例如,本公开一些实施例中涉及的垂直于轴向的方向可以记为图示中的上下方向,但是本公开的实施例涉及的上下方位均代表图示中的方位,并不影响实际应用中的方位,本公开的实施例对此不作限制。
例如,对于对轴向的限定,为了便于描述,本公开至少一实施例将靠近操作者一侧视为近端或近端侧以及远离操作者一侧视为远端或远端侧。例如,将图示中的左边视为远端以及将图示中的右边视为近端。需要说明的是,本公开的远端和近端等均为相对位置,例如其是表示一些部件本身相对的两侧,或者其是表示某一方向上的相对的两侧,即本公开的近端表示一侧,远端表示与近端相对的另一侧。本公开的实施例的元件或者物件的含义和作用等并不受限于其名称,不能用理想化或极度形式化的意义来解释,这不会对本公开的实施例造成限制。
图1为本公开一些实施例提供的物理限位装置100的结构示意图。
如图1所示,物理限位装置100包括第一运动部件11、导杆12、保险装置13和第二运动部件14。第一运动部件11配置为带动导杆12,使得导杆12沿着导杆12的轴向运动。例如,导杆12的轴向可视为整个物理限位装置100的轴向。
在一些示例中,第一运动部件11可以是绕着导杆12的轴向进行旋转的转动件。例如,第一运动部件11通过中间件将旋转转化为直线运动以带动导杆12沿着导杆12的轴向运动。例如,如图1所示,第一运动部件11为第一旋钮111(例如手动旋钮),第一旋钮111的轴向与导杆12的轴向平行或同轴,第一旋钮111配置为通过自身的转动来带动导杆12沿着导杆12的轴向方向运动(具体示例可见下文描述)。
第一运动部件11的结构不限于此,只要能使导杆12沿着导杆12的轴向运动的部件或组件均属于本公开的实施例的保护范围。例如,第一运动部件11也可以是沿着轴向直线运动的部件。
图2和图3为本公开一些实施例提供的导杆12的外表面的不同视角的立体示意图。图3为图2的导杆12绕轴向旋转一定角度后的状态示意图。
如图2和图3所示,导杆12的外表面上开设有至少一级限位槽121,该至少一级限位槽121整体沿导杆12的轴向延伸。每级限位槽121包括依次连通的第一部分槽轨121a、第二部分槽轨121b和第三部分槽轨121c。第二部分槽轨121b分别与第一部分槽轨121a和第三部分槽轨121c呈角度布置。
需要说明的是,限位槽121整体沿导杆12的轴向延伸并非是指第一部分槽轨121a、第二部分槽轨121b和第三部分槽轨121c均沿轴向延伸,而是指第一部分槽轨121a、第二部分槽轨121b和第三部分槽轨121c依次连通所形成的整体的延伸方向为沿导杆12的轴向,其中,第一部分槽轨121a、第二部分槽轨121b和第三部分槽轨121c中的任一个可以不是沿导杆12的轴向延伸,也可以是大致沿导杆12的轴向延伸。
如图2和图3所示,第一部分槽轨121a和第三部分槽轨121c配置为沿着平行于导杆12的轴向延伸。第二部分槽轨121b配置为沿着导杆121的周向延伸。在沿导杆121的轴向上,第二部分槽轨121b位于第一部分槽轨121a和第三部分槽轨121c之间。
例如,第一部分槽轨121a、第二部分槽轨121b和第三部分槽轨121c均为在导杆12的外侧圆周面上开设的具有一定深度的槽,且每段槽轨的截面形状和深度等要素均不作限定。
在一些示例中,限位槽121的任意部分槽轨在延伸方向上的形状也可以不是严格意义上的直线段,比如是基本呈直线。又例如,第二部分槽轨121b的延伸方向也可以不是严格意义上的导杆121的周向,比如是基本与导杆121的周向一致。
本公开至少一实施例中的第二部分槽轨121b分别与第一部分槽轨121a和第三部分槽轨121c呈角度布置,是指在导杆12的外侧圆周面上,第二部分槽轨121b是一段既不平行于第一部分槽轨121a且也不平行于第三部分槽轨121c的槽轨。
图4a为本公开一些实施例提供的沿轴向从近端向远端观察视角下图1保留保险装置13和第二运动部件14后的省略示意图。图4b为沿图4a的剖面线A-A的剖面图。
如图4a和图4b所示,保险装置13包括保险杆131,保险杆131包括沿 杆长方向相对设置的第一端(即保险杆131的靠近导杆12的一端)和第二端(即保险杆131的远离导杆12的一端)。保险杆131的第一端插入至限位槽121的第一部分槽轨121a内。保险杆131配置为在沿限位槽121的延伸方向可相对于导杆12移动。
在一些示例中,保险杆131静止且可相对于导杆12运动,也即保险杆131在导杆12的限位槽121的不同段槽轨内发生相对滑动是由于导杆12的向近端运动(或向远端运动)且保险杆131静止不动而使得保险杆131相对于导杆12对应地向远端运动(或向近端运动)由此,本公开通过将保险杆131静止设置为静止不动其利用其与导杆的相对运动来实现导杆的物理限位,结构简单,操作方便,稳定性和准确性较好。
需要说明的是,保险杆131静止是指相对于当前的操作者静止不动,也可以指相对于当前的整个输送系统所处的环境静止不动。
由此,第一部分槽轨121a和第三部分槽轨121c配置为可供保险杆131的第一端通过,以允许导杆12顺利地沿着导杆的轴向运动,例如导杆12沿着导杆的轴向向近端运动(即沿着轴向往右运动),此时保险杆131在第一部分槽轨121a和第三部分槽轨121c中相对地从轴向的近端朝着轴向的远端通过。
例如,基于导杆12沿轴向向近端进行运动,使得保险杆131的第一端相对于导杆12可从第一部分槽轨121a内的近端到达远端,并可限位在第一部分槽轨121a内靠近第二部分槽轨121b的一端(即第一部分槽轨121a内的远端)。
在一些示例中,保险杆131的第二端与第二运动部件14固定连接。保险杆131配置为通过转动第二运动部件14以带动绕物理限位装置100的轴向转动,使得保险杆131的第一端从限位槽121的第一部分槽轨121a经第二部分槽轨121b转至第三部分槽轨121c。
如图2所示,限位槽121还包括第四部分槽轨121d。第三部分槽轨121c、第四部分槽轨121d和第一部分槽轨121a依次连通,第四部分槽轨121d分别与第三部分槽轨121c和第一部分槽轨121a呈角度布置。第四部分槽轨121d的远端与第三部分槽轨121c的近端连通,第四部分槽轨121d朝向远离第二部分槽轨121b的一侧延伸,使得第四部分槽轨121d的近端与第一部分槽轨121a的至少部分连通,而且第四部分槽轨121d与第二部分槽轨121b不平行,以允许保险杆131的第一端沿第四部分槽轨121d朝近端运动。由此第四部分 槽轨121d呈斜槽式,例如图5a的自左上向右下倾斜式的斜槽,方便回收作用。
例如,斜槽式的第四部分槽轨121d的近端到第二部分槽轨121b所在直线的距离小于第四部分槽轨121d的近端到第二部分槽轨121b所在直线的距离。
在一些示例中,第四部分槽轨121d配置为可供保险杆131的第一端通过,以允许导杆12顺利地沿着导杆的轴向运动,例如,导杆12沿着导杆的轴向向远端运动(即沿着轴向往左运动),此时保险杆131在第四部分槽轨121d中相对地从轴向的远端朝着轴向的近端通过,由此实现物理限位装置100的回收作用。
如图2所示,限位槽121的第一部分槽轨121a、第二部分槽轨121b、第三部分槽轨121c和第四部分槽轨121围成梯形,由此,限位槽121整体呈“互”字型。此仅仅为示例性的,并不为本公开的限制。
如图4a和图4b所示,保险装置13还包括保险连接件132,保险杆131的第二端与保险连接件132固定连接,保险连接件132还与第二运动部件14固定连接,使得可通过第二运动部件14的运动带动保险杆131绕物理限位装置100的轴向转动。
如图4a和图4b所示,第二运动部件14包括第二旋钮141,例如第二旋钮141为手动旋钮,第二旋钮141的轴向与导杆12的轴向平行或同轴。
在一些示例中,第二旋钮141与保险装置13通过形状配合或过盈配合进行固定连接。此仅仅为示例性的,并不为本公开的限制。
现根据图5a-5f的状态图描述本公开实施例的物理限位装置的使用方法。
如图5a所示,保险杆131的第一端插入至导杆12外表面的第一部分槽轨121a的右端。控制第一运动部件11运动来带动导杆12沿着轴向往近端运动。这时,保险杆131逐渐从第一部分槽轨121a的近端相对地运动到第一部分槽轨121a的远端,如图5b所示。此状态下,保险杆131到达第一部分槽轨121a的限位位置。由于第一部分槽轨121a远端内壁的阻挡作用,保险杆131不能再随着导杆12的运动而继续相对地往前行进。即第一运动部件11和导杆12因受到第一部分槽轨121a内的保险杆131限制而不能再继续沿着轴向方向继续运动,从而实现物理限位作用。由此,通过第一运动部件的触觉提示操作者限位临界点,有效地反馈物理定位的准确信息,实现简单高效且精准 的物理限位。
例如,在实现限位之后,通过转动第二运动部件14让其绕着物理限位装置100的轴向转动,使得保险杆131的第一端从第一部分槽轨121a的远端(即第二部分槽轨121b的靠近第一部分槽轨121a的一端)经过第二部分槽轨121b而转至第三部分槽轨121c内(例如转至第三部分槽轨121c的近端或者中间位置)。这意味着保险杆131和导杆12之间的轴向相对运动被解锁,如图5c所示。此状态下,导杆12在第一运动部件11的带动下可以继续沿着轴向往近端运动,则保险杆131的第一端在第三部分槽轨121c内从第三部分槽轨121c的近端相对地沿着轴向往第三部分槽轨121c的远端滑动,如图5d所示。
例如,在保险杆131到达第三部分槽轨121c的远端之后的返回阶段(也可称为回收阶段),导杆12在反向运动的第一运动部件11的带动下也反向运动,即导杆12沿着轴向往远端运动,则保险杆131在第三部分槽轨121c内相对地沿着轴向往近端滑动。该保险杆131先达到第三部分槽轨121c的近端,然后再过渡到斜槽式的第四部分槽轨121d内的远端,如图5e所示。保险杆131继续在第四部分槽轨121d内相对地滑动,直至相对地运动到第四部分槽轨121d内的近端并再过渡到第一部分槽轨121a内的远端并朝着第一部分槽轨121a的远端相对地滑动,直至最终到达第一部分槽轨121的近端,从而完成返回过程,如图5f所示。
由此,本公开至少一实施例中的限位槽121通过采用斜槽式的第四部分槽轨121d,只需通过操作第一运动部件11(例如第一旋钮111)而无需再操作第二运动部件14(例如第二旋钮141),即可带动第二运动部件14被动地旋转至初始位置(即复位),使得整个操作过程更便捷高效。
需要说明的是,上述参照图1至图5f描述的实施例的物理限位装置仅涉及一级限位槽121,然而,本公开并不限于此,本公开的物理限位装置还可包括两级或者三级以上的限位槽121。
例如,本公开的实施例的物理限位装置可包括N级限位槽121且N为大于等于2的整数,第i级限位槽121的第一部分槽轨121a与第i-1级限位槽121的第三部分槽轨121c连通,其中,由轴向的近端至轴向的远端各级数值i依次记为1,2…N。
图6为本公开一些实施例提供的两级限位槽121的级联示意图。
例如,如图6所示,两级限位槽121中的第一级限位槽包括第一部分槽轨121a、第二部分槽轨121b、第三部分槽轨121c和第四部分槽轨121d。第二级限位槽包括第一部分槽轨121a’、第二部分槽轨121b’、第三部分槽轨121c’和第四部分槽轨121d’。第一级的第三部分槽轨121c的左端和第二级的第一部分槽轨121a’的右端连通,或者形成为一体,从而实现两级限位槽121的级联。在本公开的实施例中,对于三级以上的限位槽121的级联方式以及具体的结构和构造可参照图6的示例,这里不再赘述。
在一些示例中,对于每一级的限位槽的总体形状结构可以根据需要进行调整,例如,限位槽不仅限于图2所示的梯形,可替换地,如图6所示,限位槽121的第一部分槽轨121a、第二部分槽轨121b、第三部分槽轨121c和第四部分槽轨121还可围成三角形。此仅仅为示例性的,并不为本公开的限制。
例如,在图6示例中,两级限位槽121中的每级限位槽的结构相同。当然,本公开并不局限于此,例如两级限位槽121的结构也可不相同。
在一些示例中,多级限位槽121中的一部分级的限位槽121可以呈梯形,另一部分的限位槽121可以呈三角形。在另一些示例中,多级限位槽121中的每一级的限位槽121都呈梯形。又在一些示例中,多级限位槽121中的每一级的限位槽121都呈三角形。
由此,本公开至少一实施例可通过多级限位槽的级联实现多个位置或多个阶段的限位,并且可以只需要一个保险装置13(例如保险杆131)和一个第二运动部件14(例如第二旋钮141)即可实现,十分简单高效,适用范围更广,限位精度更高。
本公开至少一实施例还提供了一种人工假体的输送系统,其包括上述任一实施例的物理限位装置。
图7为本公开一些实施例提供的人工假体的输送系统的外观示意图。图8为本公开一些实施例提供的第一管组件和第二管组件的结构图,且图9为本公开一些实施例提供的人工假体的输送系统的内部示意图。
如图7所示,本公开至少一实施例的人工假体的输送系统200包括第一管组件21、第二管组件22和物理限位装置100。
在一些示例中,第一管组件21配置为放置人工假体。第二管组件22的至少部分套设在第一管组件21的至少一部分的外侧。第二管组件22的轴向和第一管组件21的轴向分别与物理限位装置100的轴向平行或同轴。
物理限位装置100包括第一运动部件11、导杆12、保险装置13和第二运动部件14。下文的输送系统200的物理限位装置100的具体结构与构造以及技术效果请参照图1至图6的描述,为了本文的表述清楚与简洁,这里不再赘述。
在一些示例中,第二管组件22的至少部分(例如下文所述的鞘管221)与第一运动部件11固定连接,使得第一运动部件11带动第二管组件22相对于第一管组件21发生轴向的相对运动。
如上文所述,保险杆131静止是指相对于当前的操作者静止不动(或可以指相对于当前的整个输送系统所处的环境静止不动),由此,保险杆131静止也相对于例如第一管组件21静止不动,也即第一管组件21可以相对于当前的操作者静止不动。
在一些示例中,输送系统200的物理限位装置100还包括螺杆15。第一运动部件11(例如第一旋钮111)的内部设有螺纹,与螺杆15相匹配以实现螺旋配合,使得第一运动部件11在进行周向转动时可通过螺纹传动实现沿轴向的相对运动,从而带动导杆12沿物理限位装置100的轴向运动。
例如,导杆12穿设于螺杆15中且可相对于螺杆15运动,第一运动部件11(例如第一旋钮111)套设在螺杆15上,第一运动部件11和螺杆15的轴向均与导杆12的轴向平行或同轴。第一运动部件11(例如第一旋钮111)与一个中间件(例如下文所述的鞘管固定座28)固定连接,而且该中间件(例如下文所述的鞘管固定座28)与导杆12固定连接,使得第一运动部件11(例如第一旋钮111)在转动时可通过螺纹传动实现沿轴向相对运动,并带动该中间件(例如下文所述的鞘管固定座28)运动,从而可带动导杆12沿物理限位装置100的轴向运动。
在一些示例中,输送系统200还包括第一壳体和第二壳体,第一壳体包括第一半壳体23和第二半壳体24,第二壳体包括第三半壳体25和第四半壳体26。
例如,如图7所示,螺杆15的远端分别与第一半壳体23和第二半壳体24固定连接。第一半壳体23和第二半壳体24分别位于输送系统200的中心轴线的两侧(即图7中的上下方向)且第一半壳体23(即上壳体)和第二半壳体24(即下壳体)通过固定连接形成第一壳体。例如,如图7所示,螺杆15的近端分别与第三半壳体25和第四半壳体26固定连接。第三半壳体25和 第四半壳体26分别位于输送系统200的中心轴线的两侧(即图7中的上下方向)且第三半壳体25(即上壳体)和第四半壳体26(即下壳体)通过固定连接形成第二壳体。
本公开一些实施例中的第一壳体和第二壳体分别由两个半壳体组装而成,这样便于整个输送系统的安装。
需要说明的是,本公开并不局限于此,例如,在其它一些示例中,第一半壳体23与第二半壳体24可以分别位于输送系统200的轴线的左右两侧,且/或第三半壳体25和第四半壳体26分别位于输送系统200的轴线的左右两侧。或者,在又一些示例中,第一壳体和第二壳体分别为一体式结构。
在一些示例中,第一管组件21与第二壳体固定连接,第一管组件21与第二壳体均保持静止不动(例如相对于操作者而言为静止不动)。
以下将参照图8具体描述第一管组件21和第二管组件22的具体结构。
如图8所示,第一管组件21包括人工假体连接件211和内管213。例如,内管213为多层管213,用以增加强度,但本公开不限于此。为了表述方便,下文涉及的所有的内管213均采用多层管213。
在一些示例中,人工假体连接件211设置在多层管213的至少一部分的外侧面上且与多层管213固定连接,例如通过胶水固定连接。例如,人工假体连接件211设置在多层管213的远端的外侧面上且人工假体连接件211与多层管213固定连接。
根据本公开的至少一实施例,人工假体连接件211的外侧面上开设有与人工假体匹配的卡槽以供人工假体嵌入放置且与人工假体可分离式连接。例如,在一些示例中,人工假体连接件211的外侧面开设的卡槽为T字形凹槽,人工假体的近端加工有同样形状的T字形杆。当然,此仅仅为示例性,并不为本公开的实施例的限制,只要是人工假体连接件211上的卡槽形状与人工假体的形状配合即可。
在一些示例中,人工假体包括但不限于人工心脏瓣膜,本公开的实施例不作限制和穷举。例如,在另外一些示例中,人工假体为用于治疗动脉瘤等血管病变的覆膜支架或人工血管假体。
在一些示例中,第一管组件21还包括端部基体212,端部基体212与多层管213的远端连接。例如,端部基体212为锥形头,该锥形头位于输送系统的最远端,并与多层管213的远端可拆卸地连接。例如,如图9所示,端 部基体212与多层管213的远端通过螺纹进行固定连接。此仅仅为示例性的,并不为本公开的限制。
在一些示例中,多层管213包括沿着第一管组件21的轴向依次连接且具有不同硬度的多段第三管体。比如,多层管213由多层多段不同硬度的高分子材料复合而成,从而具有硬度不同的多个轴向连接的直段,从而可以达到需要强度的直段有足够的强度,需要弯曲的直段有足够的柔软性,由此,采用包括这样的多层管213的输送系统可以进入到主动脉的弓部(例如类似U型)以输送人工心脏瓣膜。
在一些示例中,第二管组件22包括鞘管221和稳定管222,稳定管222的远端套设在鞘管221的至少一部分的外侧。
例如,如图8所示,鞘管221是一种变径管结构,该鞘管221包括由远端至近端依次排布的第一鞘管部分221a和第二鞘管部分221b,即第一鞘管部分221a比第二鞘管部分221b更靠近远端。第一鞘管部分221a的直径大于第二鞘管部分221b的直径。
例如,稳定管222套设在第二鞘管部分221b的至少一部分的外侧,即稳定管222的直径大于第二鞘管部分221b的直径。对于第一鞘管部分221a的直径和稳定管222的直径的大小关系,例如,稳定管222的直径小于第一鞘管部分221a的直径,这样可以保证稳定、精准地在鞘管221运动到第一鞘管部分221a被稳定管222的远端卡住的位置实现输送系统完全的打开。
在一些示例中,在沿着径向方向上,稳定管222、第二鞘管部分221b和多层管213由外到内依次布置,如图8所示。
在一些示例中,鞘管221包括沿着轴向依次连接且具有不同硬度的多段第四管体。比如,鞘管221的不同直段采用不同的管材编制方式实现不同硬度的直段,从而可以达到需要强度的直段有足够的强度,需要弯曲的直段有足够的柔软性。由此,采用包括这样的鞘管221的输送系统可以进入主动脉的弓部(例如类似U型)以输送人工心脏瓣膜。
例如,在装载时,人工假体的T字形杆嵌入人工假体连接件211上的T字形凹槽中,随后第二管组件22的鞘管221关闭时(即鞘管221向左运动时)将人工假体装入鞘管221与第一管组件21形成的空腔中。此仅仅为示例性的,并不为本公开的限制。
本公开上述实施例通过设置有卡槽的人工假体连接件实现人工假体的装 载,可以适应于各种类型的人工假体,还可以保障人工假体的顺利释放,结构简单,操作便捷,应用广泛。
以下将参照图9描述输送系统200的详细结构。如图9所示,第一运动部件11可以例如为手动的第一旋钮111。第一旋钮111的轴向与导杆12的轴向平行或同轴。例如,导杆12与整个输送系统200的轴线保持同轴。
如图9所示,输送系统200还包括基本设置在第一壳体内的稳定管固定座27。稳定管固定座27设置在第一壳体的内部,且稳定管222从远端延伸至稳定管固定座27且稳定管222的近端与稳定管固定座27固定连接。稳定管固定座27分别与构成第一壳体的第一半壳体23和第二半壳体24固定连接。由此稳定管222与稳定管固定座27相对于第一壳体固定。
在一些示例中,稳定管固定座27与稳定管222通过胶水固定连接,稳定管固定座27分别与第一半壳体23和第二半壳体24通过形状配合固定连接。例如,稳定管固定座27为圆柱形,第一半壳体23(和/或第二半壳体24)的内部加工有两条筋板且筋板上有半圆形开口,用于将稳定管固定座27卡住,以实现形状配合。此仅仅为示例性的,并不为本公开的限制。
在一些示例中,输送系统200还包括鞘管固定座28。鞘管221从远端延伸至鞘管固定座28且鞘管221的第二鞘管部分221b的近端与鞘管固定座28固定连接。在一些示例中,鞘管固定座28与第一旋钮111固定连接。
例如,鞘管固定座28与鞘管221通过胶水固定连接。例如,鞘管固定座28与第一旋钮111通过形状配合固定连接。例如,导杆12与鞘管固定座28通过螺纹和胶水进行固定连接。此仅仅为示例性的,并不为本公开的限制。
如图8所示,输送系统200还包括内管固定座29。例如,对于内管213为多层管213的情形,相应地,该内管固定座29也可称为多层管固定座29。下文涉及的所有的内管固定座29均描述为多层管固定座29。
例如,多层管213从远端朝向近端一侧进行延伸,直至延伸到多层管固定座29,且多层管固定座29与多层管213固定连接,多层管固定座29设置在第二壳体的内部且多层管固定座29分别与第三半壳体25和第四半壳体26固定连接,由此,第一管组件21实现通过连接件(例如多层管固定座29)分别与第三半壳体25和第四半壳体26固定连接。
在一些示例中,多层管固定座29与多层管213通过胶水固定连接,多层管固定座29分别与第三半壳体25和第四半壳体26通过形状配合进行固定连 接。例如,第三半壳体25和第四半壳体26相对于多层管固定座29与多层管213静止不动。在一些示例中,第三半壳体25和第四半壳体26固定连接形成的第二壳体为圆柱体且第二旋钮141套设在该圆柱体的外侧面上,以使得第二旋钮141相对于第二壳体在轴向方向上无法移动但可绕轴向转动。
本公开上述实施例利用多层管固定座29可以保障第一管组件的静止不动,使得第二管组件22相对于第一管组件21发生轴向的相对运动,保证人工假体的顺利输送和回收。
在一些示例中,第一管组件21还包括内管排空件214。内管排空件214与多层管213的近端固定连接。由于操作者在操作之前需要将第一管组件21内的空气排空,并利用注射器向输送系统200注射生理盐水的方式实现,也即内管排空件214为操作者提供一个可以与注射器匹配的接口,方便操作者进行排空操作。在一些示例中,内管排空件214与多层管213通过胶水固定连接。当然,此仅仅为示例性的,本公开的实施例对该部件之间的固定连接方式并不作限制。
在一些示例中,导杆12设置在螺杆15的内部且导杆12与鞘管固定座28固定连接,使得可通过第一旋钮111的转动来带动鞘管固定座28运动,从而带动鞘管221和导杆12沿轴向运动。
由此,当第二管组件22的鞘管221跟随着第一旋钮111的转动而沿着轴向向近端移动,由于稳定管222静止不动(例如相对于操作者)且稳定管222的直径小于一部分的第一鞘管部分221a的直径,则当鞘管221运动到第一鞘管部分221a被稳定管222的远端卡住的位置时,可记为鞘管221移动到最右端,此时导杆12也位于最右端(例如图5d中保险杆131位于第三部分槽轨121c的最左端时导杆12所在的位置)。该状态为输送系统完全打开的状态。
当旋转第一旋钮111,由于螺纹传动的特性可实现第一旋钮111沿输送系统200轴向的运动,而且由于第一旋钮111与鞘管固定座28、第二管组件22的鞘管221和导杆12都固定连接,则当第一旋钮111沿轴向运动时会带动鞘管固定座28轴向移动,从而也带动鞘管221轴向移动。由于第一管组件21分别与第三半壳体25和第四半壳体26固定连接,相对于操作者都保持静止,因此第二管组件22的鞘管221相对于第一管组件21会发生轴向上的相对运动,从而可以完成人工假体(例如心脏瓣膜)的输送和释放。
图10a-10c为本公开一些实施例提供的人工假体的输送系统的操作方法 的示意图。
首先,如图10a所示,在保险杆131的第一端插入至第一部分槽轨121a内时,人工假体(例如心脏瓣膜3)的至少部分(例如整个人工假体或者人工假体的一部分)置于第二管组件22的鞘管221和第一管组件21之间的第一空腔A01内,且第一空腔A01在第二管组件22的鞘管221相对于第一管组件21发生轴向的相对运动时被逐渐打开或闭合,以释放人工假体或回收人工假体。
其次,如图10b所示,在保险杆131的第一端到达第一部分槽轨121a内靠近第二部分槽轨121b的一端(即第一部分槽轨121a内的远端)时,人工假体置于第二管组件22的鞘管221和第一管组件21之间的第二空腔A02内。如图10b所示,在保险杆131的第一端限位在第一部分槽轨121a内的远端时,人工假体的一部分(例如人工假体的25%)置于第二管组件22的鞘管221和第一管组件21之间的第二空腔A02内,此时,人工假体的其它部分(例如人工假体的75%)被释放至输送系统外。第二空腔A02的空间小于第一空腔A01的空间。当然,本公开的实施例对达到限位位置时人工假体的释放部分的所占比例不作限制,只要满足人工假体的一部分(即人工假体的0%~100%,不包含0%和100%)在空腔内即可,人工假体的相关百分比例可以视不同的人工假体情况而定,这里不再穷举和赘述。
由此可知,在图10a和图10b示例中,第二管组件22的鞘管221和第一管组件21之间形成的空腔正在打开,且人工假体逐渐被释放出来。
例如,当输送装置200达到图10b所示的状态时,即导杆12被保险装置13的保险杆131限位而不能再继续沿着轴向运动,此时操作者可以暂停并判断人工假体是否满足目标要求,而不会因为误操作而导致人工假体直接被完全释放,并且操作者的手可以暂时离开输送装置200以进行血管造影等其它手术操作。
本公开上述实施例的输送人工假体的输送系统具有物理限位装置,可以有效反馈给操作者人工假体的释放情况(例如释放长度、释放形态等是否达到目标要求)的准确信息,通过触觉提示操作者限位临界点(例如通过触觉提示操作者可回收位置临界点),实现简单高效且精准的物理限位。
在一些示例中,当人工假体被部分释放,即导杆12被保险装置13的保险杆131限位时,若操作者判断得出人工假体满足目标要求时,则通过第二 运动部件14的轴向转动,使保险杆131从第一部分槽轨121a的远端经过第二部分槽轨121b而转至第三部分槽轨121c内,此时导杆12可以在第一旋钮111的带动下继续沿着轴向朝着近端运动,则保险杆13在第三部分槽轨121c内继续沿着轴向朝着第三部分槽轨121c远端进行相对地滑动,直至到达第三部分槽轨121c内的最远端。而且在第一运动部件11的带动下使得第二管组件22的鞘管221相对于第一管组件21发生轴向的相对运动,则第二管组件22的鞘管221和第一管组件21之间的第二空腔A02继续打开(即第二空腔A02的空间越来越小),人工假体更多地被释放出来,直至整个人工假体被完全释放。即此时的人工假体从鞘管221中脱离,从而完成人工假体的释放和植入,如图10c所示。
在一些示例中,当保险杆13相对于导杆12滑动到达第三部分槽轨121c的最远端时,人工假体被完全释放。这也意味着,此时的输送系统完全打开。
需要说明的是,若保险杆13相对于导杆12滑动还未到达第三部分槽轨121c的最远端(例如靠近最远端或者在第三部分槽轨121c内的中间位置)时,人工假体已被完全释放,也在本公开的实施例的范围内,本公开的实施例对此不作限制。
在一些示例中,在保险杆131到达第三部分槽轨121c内的远端端并完成人工假体的完全释放后,控制第一旋钮111反向转动(即第一旋钮111也随之沿着轴向向远端移动),带动第二管组件22的鞘管221相对于第一管组件21发生轴向的相对运动,且带动导杆12沿着轴向向远端运动,使得保险杆131进行相对地运动,并从第三部分槽轨121c再经限位槽的第四部分槽轨121d而返回至第一部分槽轨121a内,最终到达第一部分槽轨121a的近端,以实现输送系统完全闭合。
在一些示例中,当人工假体被部分释放,即导杆12被保险装置13的保险杆131限位时,若操作者判断得出人工假体不满足目标要求时,则可通过反向转动第一旋钮111,带动第二管组件22的鞘管221朝向远端移动以进行空腔的闭合,从而实现人工假体的回收。此时,操作者可以移动或调整整个人工假体输送系统的位置、方向等,或者进行血管造影等其它手术操作,并再次重复人工假体的释放和回收操作,直至满足目标要求时完全释放。
由此,本公开至少一实施例中的输送系统可以实现人工假体的释放植入和未完全释放状态下的回收,能够为操作者提供更大的容错空间,从而降低了 操作者的操作难度。本公开至少一实施例中的输送系统可以在人工假体的释放位置或形态不佳时进行回收并可再次进行定位和释放操作,而且可在人工假体的释放位置或形态较佳时继续进行释放,进一步提升了释放精度,提高了人工假体的植入效果,也可提升可回收的安全性。
由此可知,本公开至少一实施例的输送人工假体的输送方法可以实现假体输送、假体回收、假体释放和输送系统闭合等功能。
需要注意的是,在本公开的实施例中,该输送方法(即人工假体的输送系统的操作方法)可以包括更多或更少的步骤,并且各个步骤之间的顺序关系不受限制,可以根据实际需求而定。该输送方法基于上述任一实施例的输送装置实现,关于输送方法涉及的输送装置的方案内容可以参照上文相关实施例所述,这里不做赘述。
下文的输送人工假体的输送方法主要是以输送人工心脏瓣膜假体以及输送系统的导杆上开设有一级限位槽为例进行说明,但是本公开的输送方法并不仅限于此,本公开对此不作限制,在此不做穷举和赘述。
在一些示例中,当操作者旋转第一旋钮111带动第二管组件22的鞘管221沿着轴向朝向近端移动时,可以实现心脏瓣膜的输送和释放功能。当操作者反向旋转第一旋钮111带动第二管组件22的鞘管221沿着轴向朝向远端移动时可以实现心脏瓣膜的回收和输送系统释放后闭合的功能。
在一些示例中,输送人工心脏瓣膜假体的操作方法包括以下过程的一种或多种。
例如,当操作者旋转第一旋钮111,由于螺纹传动的特性可实现第一旋钮111沿导杆12轴向的运动,带动鞘管固定座28轴向移动,从而也带动鞘管221轴向移动,第二管组件22的鞘管221与第一管组件21会发生轴向上的相对运动。
例如,当第二管组件22的鞘管221向近端移动,鞘管221与第一管组件21形成的空腔逐渐打开,空腔内部的心脏瓣膜3会逐步释放。与此同时,第一旋钮111还带动导杆12向近端移动,在导杆12的第一部分槽轨121a内的保险杆131相对于导杆12发生滑动,并随着导杆12的运动,保险杆131从第一部分槽轨121a内的近端(图5a所示的初始状态时的心脏瓣膜3完全位于鞘管221与第一管组件21形成的空腔内)到达第一部分槽轨121a内的远端(如图5b所示),此时由于第一部分槽轨121a内壁的阻挡作用,当继续操 控第一旋钮111时,导杆12被第一部分槽轨121a内的保险杆131限位而不能再继续向近端运动,而且与导杆12固定连接的鞘管221无法继续向近端移动,心脏瓣膜3无法进一步进行释放,这时候通过触觉可以提醒操作者该位置为心脏瓣膜3的可回收的极限位置。例如,此时的心脏瓣膜3处于释放75%的状态,25%仍在鞘管221与第一管组件21形成的空腔内。
例如,当操作者判断得出心脏瓣膜3满足目标要求(例如心脏瓣膜3的释放形态与位置较佳或正常)时,则转动第二旋钮141,使保险杆131从第一部分槽轨121a的远端经过第二部分槽轨121b而转至第三部分槽轨121c内,操作者可以继续转动第一旋钮111,此时导杆12可在运动的第一旋钮111的带动下继续向近端运动,则保险杆13在第三部分槽轨121c内相对滑动直至到达第三部分槽轨121c的远端,而且在第一旋钮111的带动下使第二管组件22的鞘管221和第一管组件21之间的空腔继续打开,心脏瓣膜3继续被释放,直至整个心脏瓣膜3被完全释放,完成心脏瓣膜3的释放和植入,如图10c所示。
例如,当判断得出心脏瓣膜3不满足目标要求(例如心脏瓣膜3的释放形态与位置不佳或不正常),则反向转动第一旋钮111(即第一旋钮111也随之沿着轴向向远端移动),带动第二管组件22的鞘管221向远端移动以进行空腔的闭合,从而实现心脏瓣膜3的回收。
例如,当鞘管221移动到最近端(即最右端),导杆12也移动到最近端,即保险杆131到达第三部分槽轨121c内的最远端,输送系统完全打开,如图10c所示。在此状态下,若需要闭合输送系统,操作者通过旋转第一旋钮111来带动鞘管221和导杆12沿着轴向往远端移动,当鞘管221和导杆12移动到中间位置时,保险杆131从第三部分槽轨121c过渡到斜槽式的第四部分槽轨121d,然后再到达第一部分槽轨121a内,直至到达第一部分槽轨121a的最近端,从而可带动第二旋钮141被动地旋转至初始位置(即复位),此时鞘管221移动到最远端(即最左端),输送系统完全闭合,即可撤回至体外。
本公开至少一实施例的输送方法通过在释放过程中的一临界位置设置了物理限位结构,可以利用触觉和强行终止操作实现操作者释放至临界位置停止动作的精准性,不需要时刻观察瓣膜的释放长度。本公开至少一实施例的输送方法还可在输送系统闭合时,使得操作者无需额外操作第二运动部件即可复位。此外,输送系统回收过程中沿斜槽的复位,便于操作者在完全释放瓣膜 假体后,便捷地实现输送系统的闭合,而无需额外的操作,使整个手术过程更安全高效。
需要说明的是,本公开的实施例中,输送方法的其他相关过程和技术效果可以参考上文中关于输送装置的描述,此处不再赘述。
有以下几点需要说明:
(1)本公开实施例附图只涉及到本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种物理限位装置,包括:
    第一运动部件;
    导杆,配置为由所述第一运动部件带动沿所述导杆的轴向运动,其中,所述导杆的外表面上开设有至少一级限位槽,所述至少一级限位槽整体沿所述导杆的轴向延伸,每级所述限位槽包括依次连通的第一部分槽轨、第二部分槽轨和第三部分槽轨,所述第二部分槽轨分别与所述第一部分槽轨和所述第三部分槽轨呈角度布置;
    保险杆,包括沿杆长方向相对的第一端和第二端,其中,所述第一端插入至所述限位槽内,且所述保险杆配置为沿所述限位槽可相对于所述导杆移动;
    第二运动部件,与所述保险杆的第二端连接,且所述第二运动部件配置为通过转动带动所述保险杆绕所述导杆的轴向转动,使得所述保险杆的第一端沿所述第二部分槽轨移动。
  2. 如权利要求1所述的装置,其中,
    所述第一部分槽轨和所述第三部分槽轨配置为沿所述导杆的轴向延伸,所述第二部分槽轨配置为沿所述导杆的周向延伸,且在所述导杆的轴向上,所述第二部分槽轨位于所述第一部分槽轨和所述第三部分槽轨之间。
  3. 如权利要求1或2所述的装置,其中,
    所述限位槽还包括第四部分槽轨,所述第四部分槽轨配置为可供所述保险杆的第一端通过,所述第四部分槽轨的远端与所述第三部分槽轨的近端连通,所述第四部分槽轨的近端与所述第一部分槽轨的至少部分连通,所述第四部分槽轨与所述第二部分槽轨不平行。
  4. 如权利要求3所述的装置,其中,
    所述第一部分槽轨、所述第二部分槽轨、第三部分槽轨和所述第四部分槽轨围成梯形或者三角形。
  5. 如权利要求3或4所述的装置,其中,
    所述至少一级限位槽为N级限位槽,N为大于或等于2的整数,第i级所述限位槽的第一部分槽轨与第i-1级所述限位槽的第三部分槽轨连通,其中,从所述近端至所述远端,各级数值i依次记为1,2…N。
  6. 一种人工假体的输送系统,包括如权利要求1~5任一所述的物理限位装 置,所述输送系统还包括:
    第一管组件,配置为放置所述人工假体;
    第二管组件,包括鞘管,所述鞘管套设在所述第一管组件的至少一部分的外侧,所述鞘管和所述第一管组件的轴向分别与所述导杆的轴向平行或同轴;
    其中,所述鞘管与所述第一运动部件固定连接,使得所述第一运动部件带动所述鞘管相对于所述第一管组件可发生轴向的相对运动。
  7. 如权利要求6所述的输送系统,其中,
    所述保险杆相对于所述第一管组件静止。
  8. 如权利要求6或7所述的输送系统,还包括螺杆,其中,
    所述第一运动部件包括第一旋钮,所述第一旋钮套设于所述螺杆上,且所述第一旋钮和所述螺杆的轴向均与所述导杆的轴向平行或同轴,所述第一旋钮的内部设有与所述螺杆相匹配的螺纹以实现螺旋配合,使得所述第一旋钮在周向转动时通过螺纹传动实现沿所述第一管组件的轴向相对运动。
  9. 如权利要求8所述的输送系统,还包括第一半壳体、第二半壳体、第三半壳体和第四半壳体,其中,
    所述螺杆的远端分别与所述第一半壳体和所述第二半壳体固定连接,所述螺杆的近端分别与所述第三半壳体和所述第四半壳体固定连接,其中,所述第一半壳体和所述第二半壳体分别位于所述输送系统的中心轴线的两侧且所述第一半壳体和所述第二半壳体固定连接形成第一壳体,所述第三半壳体和所述第四半壳体分别位于所述输送系统的中心轴线的两侧且所述第三半壳体和所述第四半壳体固定连接形成第二壳体。
  10. 如权利要求9所述的输送系统,其中,
    所述第二管组件还包括稳定管,所述稳定管的远端套设在所述鞘管的至少一部分的外侧。
  11. 如权利要求10所述的输送系统,其中,
    所述鞘管为变径管,所述变径管包括由远端至近端依次排布的第一鞘管部分和第二鞘管部分,所述第一鞘管部分的直径大于所述第二鞘管部分的直径,所述稳定管的远端套设在所述第二鞘管部分的外侧,所述稳定管的直径小于所述第一鞘管部分的至少部分的直径。
  12. 如权利要求11所述的输送系统,还包括稳定管固定座和鞘管固定座,其中,
    所述稳定管配置为从远端延伸至所述稳定管固定座且所述稳定管的近端与所述稳定管固定座固定连接,所述稳定管固定座设置在所述第一壳体的内部,且所述稳定管固定座分别与所述第一半壳体和所述第二半壳体固定连接;
    所述鞘管从远端延伸至所述鞘管固定座且所述第二鞘管部分的近端与所述鞘管固定座固定连接,所述鞘管固定座与所述第一旋钮固定连接;
    所述导杆穿设于所述螺杆中,所述导杆与所述鞘管固定座固定连接,使得可通过所述第一旋钮的转动带动所述鞘管固定座运动,并带动所述鞘管和所述导杆沿所述第一管组件的轴向相对运动。
  13. 如权利要求11或12所述的输送系统,其中,
    所述第一管组件包括内管和人工假体连接件,
    所述人工假体连接件设置在所述内管的远端的外侧面上且所述人工假体连接件与所述内管固定连接;
    所述人工假体连接件上开设有与所述人工假体匹配的卡槽以供所述人工假体嵌入放置且与所述人工假体可分离式连接。
  14. 如权利要求13所述的输送系统,还包括内管固定座,其中,
    所述内管配置为从远端朝向近端一侧延伸至所述内管固定座,且所述内管与所述内管固定座固定连接,所述内管固定座设置在所述第二壳体的内部,且所述内管固定座分别与所述第三半壳体和所述第四半壳体固定连接。
  15. 如权利要求13或14所述的输送系统,其中,
    所述内管包括沿着所述第一管组件的轴向依次连接且具有不同硬度的多段第三管体,所述鞘管包括沿着所述第一管组件的轴向依次连接且具有不同硬度的多段第四管体。
  16. 如权利要求13~15中任一所述的输送系统,其中,
    所述第一管组件还包括内管排空件和端部基体,所述内管排空件与所述内管的近端连接,所述端部基体与所述内管的远端连接。
  17. 如权利要求9~16中任一所述的输送系统,还包括保险连接件,其中,
    所述第二运动部件为第二旋钮,所述第二旋钮的轴向与所述导杆的轴向平行或同轴,
    所述保险连接件分别与所述保险杆的第二端和所述第二旋钮固定连接,使得可通过所述第二旋钮的转动带动所述保险杆绕所述导杆的轴向转动。
  18. 如权利要求17所述的输送系统,其中,
    所述第二壳体为圆柱体且所述第二旋钮嵌套设在所述圆柱体的外侧面上,以使得所述第二旋钮在沿所述导杆的轴向上无法移动且可绕所述导杆的轴向转动。
  19. 如权利要求6~18中任一所述的输送系统,其中,
    所述人工假体包括人工心脏瓣膜、覆膜支架或人工血管。
PCT/CN2022/121244 2021-09-24 2022-09-26 输送系统以及物理限位装置 WO2023046143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111121584.4A CN113855325A (zh) 2021-09-24 2021-09-24 输送系统以及物理限位装置
CN202111121584.4 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023046143A1 true WO2023046143A1 (zh) 2023-03-30

Family

ID=78993884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121244 WO2023046143A1 (zh) 2021-09-24 2022-09-26 输送系统以及物理限位装置

Country Status (2)

Country Link
CN (1) CN113855325A (zh)
WO (1) WO2023046143A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113855325A (zh) * 2021-09-24 2021-12-31 上海蓝帆博奥医疗科技有限公司 输送系统以及物理限位装置
CN116058961A (zh) * 2023-03-06 2023-05-05 安徽雷彻科技有限公司 一种可均衡施加能量的耦合紫外激光消融导管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070208214A1 (en) * 2006-03-03 2007-09-06 Acorn Cardiovascular, Inc. Delivery tool for cardiac support device
CN106580375A (zh) * 2016-12-15 2017-04-26 杭州启明医疗器械有限公司 一种导丝调节器以及输送系统控制手柄
US20180200496A1 (en) * 2017-01-19 2018-07-19 Cook Medical Technologies Llc Prosthesis delivery device with detachable connector assembly
CN112656547A (zh) * 2020-12-31 2021-04-16 启晨(上海)医疗器械有限公司 一种压钮式人工瓣膜输送装置及输送方法
CN113855325A (zh) * 2021-09-24 2021-12-31 上海蓝帆博奥医疗科技有限公司 输送系统以及物理限位装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070208214A1 (en) * 2006-03-03 2007-09-06 Acorn Cardiovascular, Inc. Delivery tool for cardiac support device
CN106580375A (zh) * 2016-12-15 2017-04-26 杭州启明医疗器械有限公司 一种导丝调节器以及输送系统控制手柄
US20180200496A1 (en) * 2017-01-19 2018-07-19 Cook Medical Technologies Llc Prosthesis delivery device with detachable connector assembly
CN112656547A (zh) * 2020-12-31 2021-04-16 启晨(上海)医疗器械有限公司 一种压钮式人工瓣膜输送装置及输送方法
CN113855325A (zh) * 2021-09-24 2021-12-31 上海蓝帆博奥医疗科技有限公司 输送系统以及物理限位装置

Also Published As

Publication number Publication date
CN113855325A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2023046143A1 (zh) 输送系统以及物理限位装置
WO2018000948A1 (zh) 输送装置
JP5884225B2 (ja) グラフトカバー引き込みのための引き込み機構および方法
US20140052232A1 (en) Handle assemblies for stent graft delivery systems and associated systems and methods
EP2898857A1 (en) Implant conveying system
US20130035636A1 (en) Delivery and Deployment Catheter for an Implantable Medical Device
CN111067682B (zh) 用于控制植入式器械释放的组件及系统
CN106308986B (zh) 一种用于植入物输送系统的导管手柄
JP6602491B2 (ja) ステント送達システム、そのアセンブリ、およびその使用方法
EP3695814A1 (en) Handle for medical implant delivery system
CN108371573A (zh) 自膨支架输送系统及其输送手柄
WO2021128940A1 (zh) 一种植入物输送系统
CN208611052U (zh) 一种医用植入物释放系统的手柄
EP2386271A1 (en) Plastic stent and stent operation apparatus for the same
CN215960465U (zh) 输送系统以及物理限位装置
JPWO2018092387A1 (ja) カテーテル組立体
CN109700571B (zh) 输送器及其输送系统
CN209075052U (zh) 自膨支架输送系统及其输送手柄
WO2021135352A1 (zh) 一种植入体输送系统及其内管
CN209678757U (zh) 输送装置
CN111408037A (zh) 一种介入类导管快速交换接头及其成型模具和方法
CN216221866U (zh) 人工假体的输送系统
CN113069165A (zh) 阀装载器方法、系统和设备
KR20170041804A (ko) 의료 장비 전개를 위한 손잡이
CN217938474U (zh) 锁紧机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022872187

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022872187

Country of ref document: EP

Effective date: 20240424