WO2023046081A1 - 高芳烃油料及其制备方法和应用 - Google Patents

高芳烃油料及其制备方法和应用 Download PDF

Info

Publication number
WO2023046081A1
WO2023046081A1 PCT/CN2022/120933 CN2022120933W WO2023046081A1 WO 2023046081 A1 WO2023046081 A1 WO 2023046081A1 CN 2022120933 W CN2022120933 W CN 2022120933W WO 2023046081 A1 WO2023046081 A1 WO 2023046081A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cracking
catalytic cracking
gas
catalyst
Prior art date
Application number
PCT/CN2022/120933
Other languages
English (en)
French (fr)
Inventor
陆明全
陆善祥
李明晖
Original Assignee
上海纳科助剂有限公司
上海仙佳化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111124247.0A external-priority patent/CN113717754B/zh
Priority claimed from CN202111124191.9A external-priority patent/CN113717753B/zh
Priority claimed from CN202111123910.5A external-priority patent/CN113717752B/zh
Priority claimed from CN202111121764.2A external-priority patent/CN113755208B/zh
Priority claimed from CN202111123034.6A external-priority patent/CN113773874B/zh
Priority claimed from CN202111122400.6A external-priority patent/CN113897220B/zh
Application filed by 上海纳科助剂有限公司, 上海仙佳化工有限公司 filed Critical 上海纳科助剂有限公司
Publication of WO2023046081A1 publication Critical patent/WO2023046081A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/04Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one thermal cracking step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G55/00Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process
    • C10G55/02Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only
    • C10G55/06Treatment of hydrocarbon oils, in the absence of hydrogen, by at least one refining process and at least one cracking process plural serial stages only including at least one catalytic cracking step
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/02Stabilising gasoline by removing gases by fractioning

Definitions

  • the invention relates to the field of petroleum refining, in particular to a high-aromatic oil material prepared by catalytic cracking/cracking, a preparation method and application thereof.
  • Catalytic cracking/cracking is one of the most important lightening processes and the main source of profit in the oil refining industry. Its main products are divided into gasoline, diesel, liquefied gas, dry gas, oil slurry and other products through fractionation towers and absorption stabilization systems.
  • the current catalytic cracking/cracking unit basically adopts heavy raw materials, in which the oil slurry yield is high, and full or most of the back refining will lead to a high coke yield in the system, which reduces the catalyst activity, deteriorates the product distribution, and regenerates the system Unbearable, can only be thrown out.
  • the oil slurry thrown out contains a large amount of solids (2-6g/L) such as catalyst powder.
  • the sedimentation separation method can remove the solid impurities in the oil slurry, but the highest efficiency is about 80%, and the sedimentation time is longer; the electrostatic separation method has a higher separation efficiency. , but the properties of the oil slurry and operating conditions have a great influence on the separation effect; the distillation method can completely remove impurities, but the yield of the clarified liquid is low, and the high distillation temperature will accelerate the coking of the oil slurry and affect the operation cycle of the device.
  • CN100549141C discloses a raw material pretreatment method for producing needle coke, wherein, when the raw material oil is catalytic cracking oil slurry or clarified oil, it must be filtered to remove catalyst powder to reduce ash content.
  • Ding Yuwen reported "Application of Oil Slurry Vacuum Heading Device in the Production of Needle Coke Raw Materials", in which only the middle distillate of the vacuum tower is used as the precursor raw material for the production of needle coke; not only the vacuum tower is added, but also the bottom oil Pulp is still difficult to handle. ("Proceedings of Sinopec 2016 FCC Technology Exchange Conference", pages 50-54).
  • Lin Min reported "Application of Oil Slurry Vacuum Heading Technology in Catalytic Cracking Units", in which oil slurry at 320°C was directly fed into a vacuum tower evacuated by a two-stage steam jet pump, and only 30% by weight was distilled.
  • CN112725031A discloses a kind of "oil suitable for producing needle coke and its preparation method and system", in which the needle coke raw material needs to be obtained through four steam stripping, hydrogenation, polycondensation and other processes, and the equipment investment and operation cost are very high. high.
  • CN106924984B discloses a method for controlling the bottom liquid level and reaction severity of the fractionation tower, which solves the fluctuation of the bottom liquid level of the fractionation tower after the catalytic cracking/cracking reaction severity changes, so as to control the coking at the bottom of the fractionation tower.
  • CN106924984B discloses a method for controlling the bottom liquid level and reaction severity of the fractionation tower, which solves the fluctuation of the bottom liquid level of the fractionation tower after the catalytic cracking/cracking reaction severity changes, so as to control the coking at the bottom of the fractionation tower.
  • CN112574777A discloses a process technology of catalytic cracking and cracking unit shutting down oil slurry products, but it does not mention how to improve the reaction depth, nor does it mention specific implementation details and implementation methods. Even if the scheme is feasible, it is only applicable to the deep single-pass cracking without producing oil slurry macromolecular components, not to mention that there is no public report on the method of increasing the reaction depth that can achieve such a purpose.
  • the purpose of the present invention is to solve the above-mentioned and other deficiencies in the prior art.
  • the present invention provides a kind of high-aromatic oil material and its preparation method and application with less investment and low operating cost, and can provide more Liquefied gas is used as a chemical raw material.
  • the present invention provides a method for preparing high aromatics oil, characterized in that, the method comprises: (i) based on 100% by weight of catalytic cracking/cracking feedstock oil, ⁇ 99% by weight of Catalytic cracking/cracking raw oil is sent to a catalytic cracking/cracking reactor containing a catalyst to perform catalytic cracking/cracking reactions to generate oil and gas; (ii) introduce the oil and gas below the washing and desuperheating section of the catalytic cracking/cracking fractionation tower , contact with ⁇ 1% by weight of the remaining catalytic cracking/cracking feed oil in the washing and desuperheating section to elute the catalyst powder in the oil and gas; (iii) leave the eluted catalyst powder from the washing and desuperheating section
  • the final oil and gas rises along the catalytic cracking/cracking fractionation tower, enters the rectification tray section of the fractionation tower, and contacts with the reflux liquid from its top; Section side line extracts liquid
  • the method satisfies at least one condition selected from the following:
  • the catalytic cracking/cracking reaction temperature is 1-100°C higher than the reaction temperature of the current catalytic cracking unit; (ii) the oil and gas entering the high-aromatic oil extraction plate contains additional low-molecular gas; (iii) the high-aromatic oil extraction plate The temperature is 1-150°C higher than that of the extraction plate for refining oil; (iv) the catalytic cracking/cracking catalyst contains a macroporous in-situ crystallization catalytic cracking catalyst; (v) the total pressure ratio of the extraction plate for high aromatic hydrocarbons is back to The total pressure drop of the oil refining extraction plate is ⁇ 0.005MPa, and ⁇ 97% by weight of the oil gas enters the extraction plate of the high aromatic oil material; and (vi) in addition to the high aromatic oil material, the method also produces prolific liquefied gas, Wherein, the catalytic cracking reaction temperature is 1-80°C higher than the reaction temperature of the current catalytic cracking unit.
  • the catalytic cracking/cracking reaction temperature is 5-80°C higher than the reaction temperature of the current catalytic cracking unit, and ⁇ 99% by weight of the oil gas enters the extraction of the high aromatics oil plate;
  • the low-molecular gas is selected from one or more combinations of water vapor, hydrocarbon compounds or mixtures or oxygen-containing organic compounds with a boiling point lower than the high-aromatic oil stock, preferably, the low-molecular gas
  • the additional addition of gas is 1-200% of the reaction oil and gas quality;
  • the temperature of the extraction plate of the high aromatic hydrocarbon oil is 5-120 ° C higher than the temperature of the extraction plate of the re-refined oil;
  • the The macroporous in-situ crystallization catalytic cracking catalyst accounts for 1-100% by weight of the total amount of the catalyst; for the above condition (v), the total pressure of the high-aro
  • the temperature of the high aromatics oil extraction plate is 1-150° C. higher than the temperature of the refined oil extraction plate, preferably 5-120° C.; and/or the oil gas entering the high aromatics oil extraction plate contains additional low molecular weight gas.
  • the catalyst in the step (1) and step (5), after the catalytic cracking/cracking reaction, the catalyst enters the regenerator for regeneration and returns to the catalytic cracking/cracking reactor.
  • the low-molecular gas is selected from one or more combinations of water vapor, hydrocarbon compounds or mixtures with a boiling point lower than high-aromatic oils, or oxygen-containing organic compounds; or the low-molecular gas is obtained from catalytic Cracking/cracking reaction unit and fractionation column high aromatics oil extraction plate can be added at any position below, preferably from the riser gas inlet of the riser reactor and/or the stripping vapor inlet of the catalyst stripping section and/or the fractionation tower bottom stirring vapor inlet And/or the anti-coke steam inlet of the settler and/or the raw oil inlet of the riser reactor.
  • the amount of the additionally added low-molecular gas may account for 1-200% by weight, preferably 2-150% by weight, of the amount of reaction oil and gas originally entering the fractionation tower.
  • the remaining catalytic cracking/cracking feed oil of ⁇ 1% by weight is selected from straight-run atmospheric residue, straight-run vacuum residue, hydrogenated atmospheric residue, hydrogenated vacuum residue Oil, deasphalted oil, heavy crude oil or a combination of more. It is preferably one of straight-run vacuum residue, hydrogenated vacuum residue or a mixture thereof. More preferred are deep-drawn straight-run vacuum residues, hydrogenated vacuum residues, or mixtures thereof.
  • the deep-drawn straight-run vacuum residue and hydrogenated vacuum residue refer to the residue obtained by vacuum distillation of atmospheric residue under higher vacuum degree or lower residual pressure.
  • said ⁇ 1% by weight of remaining catalytic cracking/cracking feed oil is introduced into said catalytic cracking/cracking fractionation tower above, below or both of said washing and desuperheating section.
  • a part of the washed raw oil containing the eluted catalyst powder is circulated back to above or above and below the washing and desuperheating section after being cooled by heat exchange, wherein, The washing raw material oil circulated back to the upper part of the washing and desuperheating section is in countercurrent contact with the oil gas to elute the catalyst powder in the oil gas; the washing raw material oil circulating back to the lower part of the washing and desuperheating section is cooled at the The washing raw oil at the bottom of the tower; another part of the washing raw oil and the catalytic cracking/cracking raw material oil in step (1) are sent to the catalytic cracking/cracking reactor containing the catalyst to carry out the catalytic cracking/cracking reaction.
  • the scrubbing and desuperheating section in the catalytic cracking/cracking fractionation tower, includes 6-20 layers of herringbone baffles or structured grid packing; the rectification tray section includes 26-50 layers trays, and there are 1-4 circulating refluxes in the rectification tray section.
  • high-aromatic oils and diesel oil are sequentially extracted from bottom to top, and gasoline, liquefied gas and dry gas are separated by subsequent gas-liquid separators and absorption stabilization units .
  • the diesel oil is divided into light diesel oil and heavy diesel oil.
  • the catalytic cracking/cracking feed oil is selected from straight-run wax oil, straight-run atmospheric residue, straight-run vacuum residue, hydrogenated wax oil, hydrogenated atmospheric residue, hydrogenated Hydrogen vacuum residue, coker wax oil, coker hydrogenated wax oil, deasphalted oil, shale oil, tar sands oil, heavy crude oil, inferior diesel oil, animal oil, vegetable oil, synthetic oil or a combination of one or more .
  • the catalytic cracking/cracking reactor is all existing catalytic cracking/cracking reactor types, including coaxial or high and low parallel riser reactors, MIP, MIP-CGP, MIP-LTG, MIP-DCR, FDFCC, DCC, CPP, HCC, MGG, MGD, TSRFCC, HSCC, IHCC, etc.
  • the catalyst is selected from bonded Y, ZSM-5, ⁇ molecular sieves and their composite catalysts, in-situ crystallization Y-type catalysts, propylene additives, octane number additives, sulfur reducing A combination of one or more of a catalyst, a nitrogen-reducing catalyst, and an anti-heavy metal catalyst; preferably, the catalyst includes an in-situ crystallization Y-type catalyst and a propylene promoter.
  • the reaction pressure of the catalytic cracking/cracking reaction is 0.1Mpa-0.5Mpa
  • the regeneration temperature of the catalyst is 650-760°C
  • the mass ratio of the catalyst to the catalytic cracking/cracking raw oil is for 4-15.
  • the reaction temperature of the catalytic cracking/cracking reaction is 480°C-650°C
  • the pressure is 0.1Mpa-0.5Mpa
  • the regeneration temperature of the catalyst is 650-780°C
  • the catalyst and catalytic The mass ratio of cracking/cracking feedstock oil is 2-10.
  • the total pressure of the high-aromatic oil extraction plate is lower than the total pressure of the refined oil extraction plate by ⁇ 0.005 MPa, preferably the total pressure of the high aromatic hydrocarbon oil extraction plate is ⁇ 0.01 MPa lower than the total pressure of the refined oil extraction plate .
  • the high aromatics oil contains at least 45% by weight of total aromatics, asphaltenes ⁇ 1% by weight, sulfur content ⁇ 0.5% by weight, density (20°C) ⁇ 1.03g/cm 3 , and ash content ⁇ 20 ⁇ g/g.
  • the present invention provides a high aromatic oil stock, the high aromatic oil stock contains an ash content ⁇ 20 ⁇ g/g.
  • the present invention provides a high aromatic oil stock comprising at least 45% by weight of total aromatics, asphaltenes ⁇ 1% by weight, sulfur content ⁇ 0.5% by weight, density (20°C) ⁇ 1.03g/cm 3 , and ash ⁇ 20 ⁇ g/g.
  • the present invention provides that the high aromatics oil is used in the preparation of needle coke, carbon fibers, carbon black, rubber softeners and fillers, petroleum aromatic plasticizers, heat transfer oils, petroleum sulfonate surfactants, and blended fuel oils. , Application in hydrotreating (cracking) raw materials.
  • catalytic cracking/cracking reaction oil gas is countercurrently contacted with the circulating washing raw material oil and/or part of the catalytic cracking/cracking raw material oil extracted from the bottom of the fractionation tower in the washing and desuperheating section at the bottom of the tower to elute the lower reaction oil gas
  • the catalyst powder in the catalyst powder, the extracted extremely low-ash high-aromatic oil can be directly used to produce high-value-added carbon materials and fine chemical products and blended fuel oil, eliminating the need for catalytic oil slurry for the production of high-value-added carbon materials and Fine chemical products and steps of removing catalyst powder such as filtration, vacuum distillation or solvent extraction, which are necessary for blending fuel oil, greatly save equipment investment and operating costs.
  • the present invention omits the re-refining of low hydrogen/carbon ratio in the prior art and the re-refining of oil slurry, greatly reduces coke, improves the processing capacity of the catalytic cracking unit, significantly improves product distribution, and improves It not only improves the yield of high-efficiency products such as gasoline, diesel and liquefied petroleum gas from catalytic cracking units, but also provides a large amount of high-value-added high-aromatic oil that is in short supply.
  • the present invention increases the catalytic cracking/cracking reaction temperature and selects a catalyst that can crack heavy oil and produce more liquefied gas, which can greatly increase economic benefits and meet the market demand for low-carbon olefins as chemical raw materials.
  • the present invention selects macroporous in-situ crystallization catalytic cracking catalyst, which greatly reduces the yield of heavy distillate oil, improves product distribution, and increases the aromatics content of high-aromatic oils.
  • a set of existing 1,000,000 tons/year catalytic cracking unit can increase the economic benefit more than 200 million yuan at least every year.
  • Fig. 1 is a process schematic diagram of a method for preparing high aromatic hydrocarbon oil in one embodiment of the present invention.
  • Catalytic cracking settler 1. Catalytic cracking settler; 2. Catalytic cracking/cracking fractionation tower; 3. Absorption stabilization unit (gas-liquid separator); 4a. Raw material wax oil; 4b. Raw material heavy oil; 5. Mixed raw material feed line; 6. Reaction Atomizing nozzle; 7. Riser reactor; 8. Lifting gas; 9. Catalyst stripping section; 10. Stripping steam; 11. Reacting oil and gas outlet line; 12 (12a and 12b). ; 13. Washing and desuperheating section; 14. Washing feed oil extraction line at the bottom of the tower; 15. Fractionation tower bottom heat exchanger; 16 (16a and 16b). Washing feed oil circulation line; 17. Washing feed oil enters the reactor line; 18. Rectification tray section of fractionation tower; 19. High aromatic oil extraction line; 20. Heavy diesel oil extraction line; 21. Heavy diesel oil refining line; 22. Light diesel oil extraction line; 23. Gasoline; 24. Liquefied petroleum gas; 25 . dry gas; 26. standby catalyst; 27. regenerated catalyst.
  • connection mode between various systems/devices should be understood in a broad sense.
  • it can be a direct pipeline connection, or a pipeline connection connected with pumping equipment, metering equipment, valve fittings and other conventional conveying, metering, and control equipment.
  • It can be a fixed connection or a detachable connection.
  • catalytic cracking/cracking feed oil refers to the conventional catalytic cracking/cracking feed oil in refinery, including raw wax oil, for example: straight-run wax oil, hydrogenated wax oil, coking wax Oil, coking hydrogenated wax oil, hydrocracking tail oil; raw material heavy oil, such as: straight-run atmospheric residue (normal residue), straight-run vacuum residue (residue reduction), hydrogenated atmospheric residue (hydrogenated Normal residue), hydrogenated vacuum residue (hydrogenated residue reduction), deasphalted oil (DAO), heavy crude oil; also includes unconventional feedstock oil, such as: shale oil, tar sands oil, inferior diesel oil, animal oil , vegetable oil and synthetic oil, waste lubricating oil and low-value oil in refining and petrochemical processes, etc.
  • raw wax oil for example: straight-run wax oil, hydrogenated wax oil, coking wax Oil, coking hydrogenated wax oil, hydrocracking tail oil
  • raw material heavy oil such as: straight-run atmospheric residue (normal residue), straight-run vacuum residue (
  • in-situ crystallization catalytic cracking catalyst refers to spraying and granulating silicon-aluminum materials such as kaolin into microspheres, roasting at high temperature to adjust the ratio of active silicon-aluminum, and under appropriate temperature conditions and suitable liquid
  • Y-type molecular sieves are in situ crystallized inside and outside the above-mentioned microspheres, and are chemically and/or hydrothermally modified into catalysts with catalytic cracking activity.
  • "Macroporous in-situ crystallization catalytic cracking catalyst” refers to the above-mentioned in-situ crystallization catalytic cracking catalyst with abundant pore size distribution of 10-60nm pores. More specifically, pores with a BJH desorption specific surface area of 100 m or more and a pore diameter of 10 nm or more account for more than 50% of the total BJH pore volume.
  • high aromatics oil material refers to the side draw plate (optionally containing additional low molecular gas) of the catalytic cracking/cracking fractionation tower next to the washing and desuperheating section when ⁇ 97% by weight of catalytic cracking/cracking reaction oil gas enters
  • the ash content of the liquid oil extracted from the extraction plate is less than 20 ⁇ g/g.
  • the term "current catalytic cracking/cracking reaction temperature” refers to the reaction temperature in the current catalytic cracking unit, which is generally 500-520°C, and is taken as 510°C in the present invention. If the reaction temperature is higher by 10°C, the benchmark will be increased by 10°C accordingly, and so on.
  • the term "catalyst-to-oil ratio" refers to the mass ratio of the catalyst used in the catalytic cracking/cracking reaction to the catalytic cracking/cracking raw material oil.
  • washed feedstock oil refers to the oil gas from the catalytic cracking/cracking reactor and ⁇ 1% by weight of catalytic cracking/cracking feedstock oil and/or the string of catalytic cracking/cracking feedstock oil in ⁇ 1% by weight
  • part of the oil containing catalyst powder extracted from the bottom of the fractionating tower is extracted from the bottom of the fractionating tower after the countercurrent contact of the washing and desuperheating section.
  • the term “refined oil” refers to the heavy cycle oil that is withdrawn from the side line of the fractionation tower and returned to the catalytic cracking/cracking reaction unit for back refining under the premise that the oil slurry is currently thrown out at the bottom of the fractionation tower of a conventional catalytic cracking unit.
  • the term “refined oil extraction plate temperature” refers to the temperature of the refractory oil extraction plate in the current catalytic cracking/cracking fractionation tower, which is generally 310-330°C, and the embodiment of the present invention is taken as 320°C (which may be called “baseline”). If the temperature of the extraction plate of the fractionation tower is 10°C higher than that of the refining extraction plate, the benchmark shall be increased by 10°C accordingly, and so on.
  • the catalytic cracking/cracking reaction temperature is 1-100°C higher than the current reaction temperature, and ⁇ 97% by weight of the oil gas enters the extraction plate of the high-aromatic oil; preferably the catalytic cracking/cracking reaction temperature is higher than the current one
  • the reaction temperature is 5-80° C., and more than 99% by weight of oil gas enters the high-aromatic oil extraction plate.
  • High aromatic oils contain ⁇ 20 ⁇ g/g ash.
  • the high aromatic oil stock contains at least 45 wt% total aromatics, asphaltenes ⁇ 1 wt%, sulfur content ⁇ 0.5 wt%, density (20°C) > 1.03 g/cm 3 , and ash ⁇ 20 ⁇ g/g.
  • the temperature of the high aromatic hydrocarbon oil extraction plate can be controlled. For example, by adjusting the quality and temperature of the feedstock oil introduced into the fractionation tower, adjusting the heat gain of the heat exchanger 15, adjusting the heat gain of the mid-stage reflux (not shown), etc., the temperature of the high aromatics oil extraction plate can be controlled.
  • the refractory oil outlet of the existing catalytic cracking/cracking fractionation tower can be used as the outlet of the high aromatics oil in the present invention.
  • the high-aromatic oil can be provided with 2-5 extraction outlets on trays of different layers, and the extraction position can be adjusted according to the properties of the extracted oil components.
  • the extraction plate temperature of the high-aromatic oil material is generally 1-150° C., preferably 5-120° C., preferably 5-120° C.
  • the upper limit is selected to ensure that the system does not coke and can run for a long period of time; the lower limit is selected to ensure that ⁇ 97% by weight of the oil and gas enters the extraction plate of the high-aromatic oil, preferably ⁇ 99% by weight of the oil and gas enters the High aromatic oil extraction plate.
  • the mixed feedstock (FCC feedstock oil) containing raw material wax oil and raw material heavy oil enters the riser reactor 7 from the reaction atomization nozzle 6 through the pipelines 4a, 4b and 5, and the regenerative catalyst that is lifted with the lift gas 8
  • the cracking catalyst 27 contacts and undergoes catalytic cracking/cracking reaction to form reaction oil and gas. If a MIP reactor is used, the riser has a corresponding enlarged diameter portion (not shown).
  • the reaction oil gas is separated from the catalyst in the settler 1, and the reaction oil gas is extracted from the top of the settler 1 through the reaction oil gas outlet line 11, and introduced below the washing and desuperheating section 13 of the subsequent fractionation tower 2.
  • the catalytic cracking catalyst is stripped by the stripping steam 10 in the stripping section 9 to remove the occluded oil and gas, and as the spent catalyst 26, enters the regenerator (not shown) for regeneration.
  • the raw material heavy oil from the heavy raw material entering the fractionation tower line 12, 12a, 12b enters the upper and lower parts of the washing and desuperheating section 13 respectively.
  • the washed raw oil extracted from the bottom of the fractionating tower is circulated to the upper and lower parts of the washing and desuperheating section 13 after exchanging heat through the pipeline 14 and the heat exchanger 15 .
  • the raw material heavy oil and circulating scrubbing raw material oil entering above the washing and desuperheating section 13 are fully countercurrently contacted with the above-mentioned reaction oil gas in the washing and desuperheating section to elute the catalyst powder contained in the reaction oil gas.
  • the raw material heavy oil entering the washing and desuperheating section 13 and circulating washing raw material oil adjust the temperature at the bottom of the fractionation tower.
  • the total amount and the ratio of the raw material heavy oil that enters the fractionation tower line 12a, 12b respectively from the heavy raw material and the total amount and the ratio of the circulating washing raw material oil that are introduced through 16a, 16b can be in accordance with the reaction oil gas from the catalytic cracking/cracking reactor.
  • the eluted catalyst powder content was determined. If the amount of catalyst powder to be eluted is relatively large, the proportion of the heavy oil introduced from the heavy raw material into the fractionation tower line 12a and the recycled washed raw oil introduced from the washed raw oil circulation line 16b is relatively high. This can be adjusted in real time as needed during actual operation.
  • the reaction oil gas rises into the rectification tray section 18 of the fractionation tower.
  • the washing raw material oil containing the catalyst powder is drawn out from the bottom of the tower through the washing raw material oil extraction line 14 at the bottom of the tower.
  • a part of the washing raw oil is used as a circulating washing raw oil, and the other part is sent into the riser reactor 7 together with the mixed raw oil from the mixed raw material feed line 5 through the washed raw oil into the reactor line 17 for catalytic cracking/cracking reaction.
  • the reaction oil gas after the elution treatment rises into the rectification tray section 18 of the fractionator, and after being fractionated by, for example, 1-8 rectification trays, it is drawn out from the high aromatics oil extraction line 19 of the fractionator 2 Highly aromatic oils.
  • the heavy diesel oil is extracted from the heavy diesel oil extraction line 20 of the fractionation tower 2 .
  • the gas oil is extracted from the gas oil extraction line 22 of the fractionation tower 2 .
  • the oil gas extracted from the top of the fractionation tower 2 passes through the absorption stabilization unit/gas-liquid separator 3 and is cooled to obtain gasoline 23 , liquefied gas 24 and dry gas 25 .
  • the heavy diesel oil extracted from the heavy diesel oil extraction line 20 can pass through the heavy diesel oil back-refining line 21, and the washed raw material oil from the washed raw material oil entering the reactor line 17 and the mixed raw material oil from the mixed raw material feed line 5 together into the riser reactor 7 for catalytic cracking/cracking reaction again. Heavy diesel oil can also be extracted as a product without refining.
  • the catalytic cracking/cracking raw material oil entering the bottom of the fractionation tower is deasphalted oil (DAO), normal residue, hydrogenated normal residue, reduced residue or hydrogenated reduced residue, more preferably reduced residue or Hydrogenated residue reduction or DAO.
  • DAO deasphalted oil
  • the catalyst in the step (1) and step (5), after the catalytic cracking/cracking reaction, the catalyst enters the regenerator for regeneration and returns to the catalytic cracking/cracking reactor.
  • the temperature of the extraction plate for high aromatics oil is 1-150°C higher than the temperature of the extraction plate for recycled oil, preferably the temperature of the extraction plate for high aromatics oil is 5-120°C higher than the temperature of the extraction plate for refined oil.
  • the oil and gas entering the high-aromatic oil extraction plate contains additional low-molecular gas; the low-molecular gas is selected from water vapor, hydrocarbon compounds or mixtures with a lower boiling point than high-aromatic oil, or oxygen One or more combinations of organic matter.
  • the temperature of the high-aromatic oil extraction plate is 1-120°C higher than the temperature of the recycled oil extraction plate, preferably the temperature of the high-aromatic oil extraction plate is 1-100°C higher than the temperature of the recycled oil extraction plate; at the same time
  • the oil and gas entering the high-aromatic oil extraction plate contains additional low-molecular gas; the low-molecular gas is selected from one or more combinations of water vapor, hydrocarbon compounds or mixtures with a boiling point lower than the high-aromatic oil, or oxygen-containing organic compounds .
  • the low-molecular gas is added from any position below the catalytic cracking/cracking reaction unit and fractionator 2 high-aromatic oil extraction plate, preferably from the lift gas inlet of the riser reactor 7 and/or the stripping steam 10 of the catalyst stripping section 9 and/or the inlet (not shown) of the stirring steam at the bottom of the fractionation column 2 and/or the anti-coking steam inlet (not shown) of the settler 1 and/or the feedstock oil inlet of the riser reactor 7, that is, the reaction atomizing nozzle 6 Add additional low-molecular gas, together with the reaction oil and gas produced in the reaction unit, enter the subsequent high-aromatic oil extraction plate of the fractionation tower.
  • the amount of the additionally added low-molecular gas can account for 1-200% by weight of the amount of reaction oil and gas that originally entered the fractionation tower 2, preferably 1-150% by weight, 1-100% by weight, and 1-50% by weight %.
  • said ⁇ 1% by weight of the remaining catalytic cracking/cracking feed oil is preferably selected from straight-run atmospheric residue, straight-run vacuum residue, hydrogenated atmospheric residue, hydrogenated vacuum residue A combination of one or more of residual oil, deasphalted oil, and heavy crude oil, more preferably a combination of one or more of vacuum residual oil, hydrogenated vacuum residual oil, and DAO. Particularly preferred are deep-drawn straight-run vacuum residues, hydrogenated vacuum residues, or combinations thereof.
  • said ⁇ 1% by weight of remaining catalytic cracking/cracking feed oil is introduced into said catalytic cracking/cracking fractionation tower 2 above, below or both of said washing and desuperheating section.
  • a part of the washed raw oil containing the eluted catalyst powder is circulated back to above or above and below the washing and desuperheating section after being cooled by heat exchange, wherein, The washing raw material oil circulated back to the upper part of the washing and desuperheating section is in countercurrent contact with the oil gas to elute the catalyst powder in the oil gas; the washing raw material oil circulating back to the lower part of the washing and desuperheating section is cooled at the The washing stock oil at the bottom of the tower; another part of the washing stock oil and the catalytic cracking/cracking stock oil in the step (1) are sent into the catalytic cracking/cracking reactor 7 containing the catalyst to carry out the catalytic cracking/cracking reaction;
  • the washing and desuperheating section includes 6-20 layers of herringbone baffles or structured grid packing; the rectifying tray section includes 26-50 Layer trays, and have 1-4 circulating refluxes in the rectification tray section.
  • the catalytic cracking/cracking fractionation tower 2 sequentially extracts high-aromatic oil and diesel oil from bottom to top, and separates them through a subsequent absorption stabilization unit to obtain gasoline, liquefied gas and dry gas.
  • the diesel oil is divided into light diesel oil and heavy diesel oil, and in the catalytic cracking/cracking fractionation tower 2, heavy diesel oil and light diesel oil are sequentially extracted from bottom to top, wherein the heavy diesel oil circulates Back to the catalytic cracking/cracking reactor 7 containing the catalyst for the catalytic cracking/cracking reaction, or as a product output.
  • the total pressure of the high-aromatic oil extraction plate is lower than the total pressure of the refined oil extraction plate by ⁇ 0.005 MPa, preferably the total pressure of the high aromatic hydrocarbon oil extraction plate is ⁇ 0.01 MPa lower than the total pressure of the refined oil extraction plate .
  • the high aromatics oil contains at least 45% by weight of total aromatics, asphaltenes ⁇ 1% by weight, sulfur content ⁇ 0.5% by weight, density (20°C) ⁇ 1.03g/cm 3 , and ash ⁇ 20 ⁇ g/g.
  • the temperature of the high-aromatic oil extraction plate can be controlled. For example, by adjusting the quality and temperature of the feedstock oil introduced into the fractionation tower, adjusting the heat gain of the heat exchanger 15, adjusting the heat gain of the mid-stage reflux (not shown), etc., the temperature of the high aromatics oil extraction plate can be controlled.
  • reaction oil gas enters the extraction plate of the high aromatic hydrocarbon oil material, preferably ⁇ 99% by weight of the oil gas enters the extraction plate of the high aromatic hydrocarbon oil material.
  • High aromatic oils contain ⁇ 20ug/g ash.
  • Preferred high aromatic oils contain at least 45 wt% total aromatics, asphaltenes ⁇ 1 wt%, sulfur content ⁇ 0.5 wt%, density (20°C) > 1.03 g/cm 3 , and ash ⁇ 20 ug/g.
  • the high aromatic hydrocarbon oil material obtained by the above method is used in the preparation of needle coke, carbon fiber, carbon black, rubber softener and filler, petroleum aromatic plasticizer, heat transfer oil, petroleum sulfonate surfactant, blending Fuel oil, raw material for hydrotreating (cracking).
  • the FCC raw oil :
  • Paraffin base wax oil (VGO), vacuum residue (reduced residue), atmospheric residue (normal residue), taken from Yulin Oil Refinery of Yanchang Petrochemical Company;
  • DAO Deasphalted oil
  • CDOS Compact Disc
  • CDC Non-synthetic catalyst
  • CGP-C purchased from Changling Catalyst Factory
  • COKC purchased from Zhoucun Catalyst Factory
  • Propylene additive CP-01B, obtained from Shanghai Naco Auxiliary Co., Ltd.
  • Catalytic cracking catalyst DMMC-1, obtained from Anqing Petrochemical Company; FCP-1 catalytic cracking catalyst, obtained from Shanghai Naco Auxiliary Co., Ltd.
  • the FCC feed oil and the catalytic cracking catalyst are subjected to catalytic cracking/cracking reaction in the riser reactor 7 to form reaction oil gas.
  • the operating conditions of the catalytic cracking/cracking reaction are shown in Table 2 below.
  • the reaction oil gas from the reaction unit is fed to below the washing and desuperheating section of the catalytic cracking/cracking fractionation tower 2, and the reaction oil gas and the FCC feedstock oil are fully contacted in the washing and desuperheating section 13, so as to Catalyst powder contained in the reaction oil gas is eluted.
  • the operating conditions of the fractionation tower are shown in Table 2 below.
  • Example 1 In the fractionation tower, high-aromatic oil, heavy diesel oil (as required) and light diesel oil are sequentially extracted from bottom to top, and gasoline, liquefied gas and dry gas are separated after passing through a subsequent gas-liquid separator/absorption stabilization unit.
  • the product distribution of Example 1 can be seen in Table 2 below.
  • the properties of the high aromatics oil produced in Example 1 are shown in Table 2 below.
  • the catalytic cracking/cracking reaction and the subsequent fractionation operation were carried out in a manner similar to that of Example 1.
  • the difference lies in: the comparative example 1-2 carries out back-refining oil refining, and the catalytic cracking reaction temperature is lower than the catalytic cracking/cracking reaction temperature of the present invention, and heavy diesel oil is not extracted for re-refining.
  • CN100549141C take the paraffin-based catalytic oil slurry and distill under reduced pressure at 20mmHg and 400°C on a continuous distillation device, and the distillate is 75% by weight.
  • Comparative Examples 5-6 The product distribution of Comparative Examples 5-6 can be seen in Table 6 below. Moreover, the properties of the oil slurry prepared in Comparative Examples 5-6 are shown in Table 6 below.
  • Example 7 According to the conditions described in Table 7, the steps similar to those described in Example 1 were used to prepare high aromatics oil.
  • the product distribution of Examples 11-13 and the properties of the prepared high aromatic oil stock are shown in Table 7 below.
  • Its liquefied gas composition is shown in Table 2a.
  • Comparative Example 18-9 carried out back-refining of oil
  • Comparative Example 10 did not use a macroporous in-situ crystallization catalyst to extract high-aromatic oil and heavy diesel back-refining.
  • the product distribution of Comparative Examples 8-10 can be seen in Table 10 below.
  • the properties of the oil slurry prepared in Comparative Examples 8-9 and the high-aromatic oil stock prepared in Comparative Example 10 are shown in Table 10 below.
  • the preparation of high-aromatic oil material is carried out in a step similar to that described in Example 1, the difference is that: the total pressure of the high-aromatic oil material extraction plate in Example 21 is 0.01MPa lower than the total pressure of the recovery oil extraction plate; In ratio 11, the total pressure of the extraction panel for medium and high aromatics oil is higher than that of the extraction panel for re-refinery oil.
  • the product distribution of Example 21 and Comparative Example 11 and the properties of the prepared high aromatics oil are shown in Table 11 below.
  • the high aromatics oil material of the present invention meets the requirements of the raw material used for preparing needle coke.

Abstract

本发明涉及一种高芳烃油料及其制备方法和应用。所述方法包括:(1)使≤99重量%FCC原料油进行催化裂化/裂解反应,产生油气;(2)将所述油气引入分馏塔的洗涤脱过热段的下方,与≥1重量%的剩余FCC原料油进行逆流接触,以洗脱催化剂粉末;(3)洗脱后的油气沿所述分馏塔上升,进入精馏塔板段,与回流液逆流接触;(4)从侧线抽出高芳烃油料,其包含灰分<20μg/g;和(5)包含有催化剂粉末的洗涤原料油和(1)中的FCC原料油一起进行催化裂化/裂解反应,产生油气;(6)重复步骤(2)-(5),形成循环;其中,≥97重量%的所述油气进入所述高芳烃油料抽出板。该方法工艺简单、设备投资少,并且操作成本可以大大降低。

Description

高芳烃油料及其制备方法和应用 技术领域
本发明涉及石油炼制领域,具体涉及一种催化裂化/裂解制备的高芳烃油料及其制备方法和应用。
技术背景
催化裂化/裂解是炼油行业最重要的轻质化过程之一和主要利润来源。其主要产品通过分馏塔和吸收稳定系统分为汽油、柴油、液化气、干气和油浆等产品。目前的催化裂化/裂解装置基本上采用重质原料,其中油浆产率高,全回炼或大部分回炼会导致系统焦炭产率很高,降低了催化剂活性,产品分布变差,再生系统难以承受,只能外甩。外甩的油浆含有大量的催化剂粉末等固体物(2-6g/L)。若脱除催化剂粉末等固体物,这些高芳烃油料可用做生产碳质材料如针状焦等的原料。对其固体含量要求见表1(陈俊武等主编,《催化裂化工艺与工程》(第三版),2015年:679,北京:中国石化出版社)。而脱固则需增建催化油浆脱固净化单元,诸如沉降、过滤、萃取、蒸馏、离心、静电分离等,此时投资和运行成本均很高,且有新的危险废物—带废催化裂化/裂解催化剂粉末的油污或油料产生。陈俊武等得出结论:对于催化裂化油浆净化,“沉降分离法可以将油浆的固体杂质脱除,但效率最高80%左右,并且沉降时间较长;静电分离法有较高的分离效率,但油浆性质和操作条件对分离效果影响很大;蒸馏法可以完全地脱除杂质,但是澄清液的收率较低,而且蒸馏温度过高会加速油浆结焦影响装置运转周期,同时残渣利用途径仍待开发;过滤分离法可将油浆中的固体杂质95%以上脱除,且收率达82%以上,但投资较高,操作复杂。”(《催化裂化工艺与工程》(第三版),2015年:680-681,北京:中国石化出版社)
表1不同石油化工产品对油浆固体含量要求
产品 固体含量/μg/g
炭黑或橡胶填充剂 <500
针状焦 <100
碳纤维 <20
加氢处理(裂化)原料 <20
燃料油调和组分 <200
CN100549141C公开了一种生产针状焦的原料预处理方法,其中,原料油为催化裂化油浆或澄清油时,必须先对其过滤以除去催化剂粉末从而降低灰分。丁昱文报道了“油浆减压拔头装置在生产针状焦原料上的应用”,其中,仅减压塔中间馏分作为生产针状焦的前驱原料;不但增加了减压塔,而且塔底油浆仍难以处理。(《中国石化2016年催化裂化技术交流会论文集》第50-54页)。林敏报道了“油浆减压拔头工艺在催化裂化装置上的应用”,将320℃油浆直接送入两级蒸汽喷射泵抽空的减压塔中,仅馏出30重量%。(《化工管理》2014(11):229-230)。CN112725031A公开了一种“适用于生产针状焦的油料及其制备方法和系统”,其中,需要经四次蒸汽汽提和加氢、缩聚等过程得到针状焦原料,设备投资和运行成本非常高。邹立君报道了一种早期蜡油催化裂化“行之有效的技术改造”,将原料直接进分馏塔塔底和油浆混合换热后直接进提升管反应器。(《北京节能》,1990(3),14-15)。CN106924984B公开了一种控制分馏塔塔底液位和反应苛刻度的方法,其解决催化裂化/裂解反应苛刻度变化后分馏塔底液位波动,以控制分馏塔底结焦。但是依然有大量的带大量催化剂粉末的催化油浆产生。在1993年出版的《催化裂化装置技术问答》(马伯文主编,第161-162页)中就指出,“当(分馏塔底)液面下降过低来不及调节时,……可以暂时将原料油(或反应器进料)直接补充到塔底以维持液面”。因为反应苛刻度提高导致分馏塔塔底液位降低,控制其分馏塔塔底液位和反应苛刻度是一回事。因此,CN106924984B公开的技术实际上早已是公知技术。CN112574777A公开了一种催化裂化、裂解装置停出油浆产品的工艺技术,但其并没有提及如何提高反应深度的方法,更没有提及具体的实施细节和实施方法。即使方案可行,也仅适用于不产生油浆大分子组分的深度单程裂化,更何况目前尚没有见到能达到如此目的的提高反应深度的方法公开报道。
就目前的重质原料催化裂化/裂解装置和过程而言,毫无例外的产生带大量催化剂粉末的油浆组分。因此,目前需要一种新颖的简单有效的方法将催化油浆高收率的变成高附加价值的高芳烃油料。此外,由于炼油能力的过剩,迫切需要向化工型转变,因此在现行催化裂化装置上制备更多的液化气或低碳烯烃等化工原料亦是现实的需求和效益的增长点。
发明内容
本发明的目的在于解决现有技术中存在的上述和其它的不足,具体来说,本发明提供一种高芳烃油料及其投资少、操作成本低的制备方法和应用,同时可以提供更多的液化气作为化工原料。
为了实现上述目的,本发明一方面提供一种制备高芳烃油料的方法,其特征在于,所述方法包括:(i)以100重量%的催化裂化/裂解原料油计,将≤99重量%的催化裂化/裂解原料油送入包含催化剂的催化裂化/裂解反应器,以进行催化裂化/裂解反应,产生油气;(ii)将所述油气引入催化裂化/裂解分馏塔的洗涤脱过热段的下方,与≥1重量%的剩余催化裂化/裂解原料油在所述洗涤脱过热段逆流接触,以洗脱所述油气中的催化剂粉末;(iii)离开所述洗涤脱过热段的洗脱催化剂粉末后的油气沿所述催化裂化/裂解分馏塔上升,进入分馏塔的精馏塔板段,与来自其上部的回流液逆流接触;(iv)在紧邻所述洗涤脱过热段的精馏塔板段侧线抽出液体油料,制得所述高芳烃油料,所述高芳烃油料包含灰分<20μg/g;(v)从分馏塔底抽出的包含有催化剂粉末的洗涤原料油和步骤(1)中的催化裂化/裂解原料油一起送入催化裂化/裂解反应器进行催化裂化/裂解反应,产生油气;和(6)重复步骤(2)-(5),形成循环;其中,≥97重量%的所述油气进入所述高芳烃油料的抽出板。
在本发明实施方式中,所述方法满足选自以下至少一种的条件:
(i)催化裂化/裂解反应温度高于现行催化裂化装置反应温度1-100℃;(ii)进入高芳烃油料抽出板的油气包含额外的低分子气体;(iii)所述高芳烃油料抽出板温度比回炼油抽出板温度高1-150℃;(iv)所述催化裂化/裂解的催化剂包含有大孔原位晶化催化裂化催化剂;(v)所述高芳烃油料抽出板总压比回炼油抽出板总压降低≥0.005MPa,且≥97重量%的所述油气进入所述高芳烃油料的抽出板;和(vi)除了高芳烃油料以外,所述方法还制得多产液化气,其中,催化裂化反应温度高于现行催化裂化装置反应温度1-80℃。
在本发明实施方式中,针对上述条件(i),催化裂化/裂解反应温度高于现行催化裂化装置反应温度5-80℃,且≥99重量%的所述油气进入所述高芳烃油料的抽出板;针对上述条件(ii),所述低分子气体选自水蒸气、沸点低于高芳烃油料的烃类化合物或混合物或含氧有机物的一种或多种组合,优选地,所述低分子气体的额外加入量为反应油气质量的1-200%;针对上述条件(iii),所 述高芳烃油料抽出板温度比回炼油抽出板温度高5-120℃;针对上述条件(iv),所述大孔原位晶化催化裂化催化剂占催化剂总量比例为1-100重量%;针对上述条件(v),所述高芳烃油料抽出板总压比回炼油抽出板总压降低≥0.01MPa,且≥99重量%的所述油气进入所述高芳烃油料的抽出板;针对上述条件(vi),催化裂化反应温度高于现行催化裂化装置反应温度5-70℃,且≥99重量%的所述油气进入所述高芳烃油料的抽出板。
在本发明一个实施方式中,高芳烃油料抽出板温度比回炼油抽出板温度高1-150℃,优选地5-120℃;和/或使进入高芳烃油料抽出板的油气包含额外的低分子气体。在本发明一个实施方式中,所述步骤(1)和步骤(5)中,催化裂化/裂解反应之后,所述催化剂进入再生器进行再生后返回所述催化裂化/裂解反应器。在本发明一个实施方式中,所述低分子气体选自水蒸气、沸点低于高芳烃油料的烃类化合物或混合物或含氧有机物的一种或多种组合;或所述低分子气体从催化裂化/裂解反应单元和分馏塔高芳烃油料抽出板以下任意位置加入,优选从提升管反应器的提升气入口和/或催化剂汽提段汽提蒸气的入口和/或分馏塔底搅拌蒸气的入口和/或沉降器防焦蒸气入口和/或提升管反应器原料油入口加入。
在本发明中,所述额外加入的低分子气体的量可以占原本进入分馏塔的反应油气量的1-200重量%,优选2-150重量%。在本发明一个实施方式中,所述≥1重量%的剩余催化裂化/裂解原料油选自直馏常压渣油、直馏减压渣油、加氢常压渣油、加氢减压渣油、脱沥青油、重质原油中的一种或多种的组合。优选直馏减压渣油、加氢减压渣油的一种或其混合物。更优选深拔的直馏减压渣油、加氢减压渣油或其混合物。所述的深拔的直馏减压渣油和加氢减压渣油是指在更高真空度下或更低残压下真空蒸馏常压渣油得到的渣油。在本发明一个实施方式中,所述≥1重量%的剩余的催化裂化/裂解原料油在所述洗涤脱过热段的上方、下方或两者引入所述催化裂化/裂解分馏塔。在本发明一个实施方式中,所述步骤(2)中包含洗脱下的催化剂粉末的洗涤原料油一部分经热交换降温后循环回到所述洗涤脱过热段的上方或上方和下方,其中,循环回到所述洗涤脱过热段的上方的洗涤原料油与所述油气逆流接触,以洗脱所述油气中的催化剂粉末;循环回到所述洗涤脱过热段的下方的洗涤原料油冷却位于塔底的洗涤原料油;所述洗涤原料油另一部分和步骤(1)中催化裂化/裂解原料油 一起送入包含催化剂的催化裂化/裂解反应器,以进行催化裂化/裂解反应。
在本发明一个实施方式中,所述催化裂化/裂解分馏塔中,洗涤脱过热段包括6-20层的人字形挡板或规整格栅填料;所述精馏塔板段包括26-50层塔板,并且在精馏塔板段具有1-4个循环回流。在本发明一个实施方式中,在所述催化裂化/裂解分馏塔中,从下到上依次抽出高芳烃油料、柴油,经后续气液分离器和吸收稳定单元分离获得汽油、液化气和干气。在本发明一个实施方式中,所述柴油分为轻柴油和重柴油,在所述催化裂化/裂解分馏塔中,从下到上依次抽出重柴油和轻柴油,其中,所述重柴油循环回到包含催化剂的催化裂化/裂解反应器,以进行催化裂化/裂解反应,或作为产品输出。在本发明一个实施方式中,所述催化裂化/裂解原料油选自直馏蜡油、直馏常压渣油、直馏减压渣油,加氢蜡油、加氢常压渣油、加氢减压渣油,焦化蜡油,焦化加氢蜡油、脱沥青油、页岩油、沥青砂油、重质原油、劣质柴油、动物油、植物油、合成油中的一种或多种的组合。
在本发明一个实施方式中,所述催化裂化/裂解反应器为现行所有催化裂化/裂解反应器型式,包括同轴式或高低并列式提升管反应器,MIP,MIP-CGP,MIP-LTG,MIP-DCR,FDFCC,DCC,CPP,HCC,MGG,MGD,TSRFCC,HSCC,IHCC等。在本发明一个实施方式中,所述催化剂选自粘结型Y、ZSM-5、β分子筛及其复合型催化剂,原位晶化Y型催化剂,丙烯助剂,辛烷值助剂,降硫催化剂,降氮催化剂,抗重金属催化剂中的一种或多种的组合;优选所述催化剂包含有原位晶化Y型催化剂和丙烯助剂。
在本发明一个实施方式中,所述催化裂化/裂解反应的反应压力为0.1Mpa~0.5Mpa,所述催化剂的再生温度为650~760℃,所述催化剂与催化裂化/裂解原料油的质量比为4-15。在本发明一个实施方式中,所述催化裂化/裂解反应的反应温度为480℃~650℃,压力为0.1Mpa~0.5Mpa,所述催化剂的再生温度为650~780℃,所述催化剂与催化裂化/裂解原料油的质量比为2-10。
在本发明一个实施方式中,所述高芳烃油料抽出板总压比回炼油抽出板总压降低≥0.005MPa,优选所述高芳烃油料抽出板总压比回炼油抽出板总压降低≥0.01MPa。
在本发明一个实施方式中,所述高芳烃油料包含至少45重%的总芳烃, 沥青质<1重量%,硫含量<0.5重量%,密度(20℃)≥1.03g/cm 3,且灰分<20μg/g。
另一方面,本发明提供一种高芳烃油料,所述高芳烃油料包含的灰分<20μg/g。在本发明一个实施方式中,本发明提供一种高芳烃油料,所述高芳烃油料包含至少45重%的总芳烃,沥青质<1重量%,硫含量<0.5重量%,密度(20℃)≥1.03g/cm 3,且灰分<20μg/g。
再一方面,本发明提供所述高芳烃油料在制备针状焦、碳纤维、炭黑、橡胶软化剂和填充剂、石油芳烃增塑剂、导热油、石油磺酸盐表面活性剂、调和燃料油、加氢处理(裂化)原料中的应用。
与现有技术相比,本发明具有明显的优点:
1.本发明中,将催化裂化/裂解反应油气与从分馏塔塔底抽出的循环洗涤原料油和/或部分催化裂化/裂解原料油在塔底洗涤脱过热段逆流接触,洗脱下反应油气中的催化剂粉末,抽出的极低灰分的高芳烃油料可以直接用于生产高附加价值的碳材料和精细化工产品以及调和燃料油,省去了催化油浆用于生产高附加价值的碳材料和精细化工产品以及调和燃料油必须的过滤、减压蒸馏或溶剂抽提等脱催化剂粉末的步骤,大大节省了设备投资和操作成本。
2.本发明省去了现有技术中针对低氢/碳比的回炼油和油浆的回炼,大大减少了生焦,提高了催化裂化装置的处理能力,显著改善了产品分布,既提高了催化裂化装置的高效益产品如汽油、柴油和液化气的收率,而且又提供了大量紧缺的具有高附加价值的高芳烃油料。
3.本发明提高催化裂化/裂解反应温度和选择既能裂化重油又能多产液化气的催化剂,多产液化气,能够大大增加经济效益,满足市场对化工原料低碳烯烃的需求。
4.本发明选用大孔原位晶化催化裂化催化剂,大幅度减少了重质馏分油的产率,改善了产品分布,提高了高芳烃油料的芳烃含量。
5.按本发明实施例的数据计算,实施本发明,一套现有100万吨/年催化裂化装置,每年至少可以增加2亿元以上的经济效益。
附图说明
图1是本发明一个实施方式中制备高芳烃油料方法的工艺示意图。
编号说明如下:
1.催化裂化沉降器;2.催化裂化/裂解分馏塔;3.吸收稳定单元(气液分离器);4a.原料蜡油;4b.原料重油;5.混合原料进料线;6.反应雾化喷嘴;7.提升管反应器;8.提升气;9.催化剂汽提段;10.汽提蒸气;11.反应油气出口线;12(12a和12b).重质原料进分馏塔线;13.洗涤脱过热段;14.塔底洗涤原料油抽出线;15.分馏塔底换热器;16(16a和16b).洗涤原料油循环线;17.洗涤原料油进反应器线;18.分馏塔精馏塔板段;19.高芳烃油料抽出线;20.重柴油抽出线;21.重柴油回炼线;22.轻柴油抽出线;23.汽油;24.液化气;25.干气;26.待生催化剂;27.再生催化剂。
具体实施方式
本发明将参考其示例性实施方式在下文中更全面地进行描述。对这些示例性实施方式进行描述以使本发明完备和完整,并能够向本领域技术人员完全地展示本发明的范围。此外,在不冲突的情况下,本申请具体实施方式中给出的技术特征可以相互组合,形成完整的技术方案,并处于本发明所公开的范围内。
在本发明中,除非另有明确的规定或限定,各系统/装置之间的连接方式应做广义理解。例如,可以是直接管道连接,也可以是通过连接有泵送设备、计量设备、阀门管件等常规输送、计量、控制设备的管道连接,可以是固定连接,也可以是可拆卸连接。对于本领域的技术人员,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,术语“催化裂化/裂解原料油(FCC原料油)”是指炼油厂常规催化裂化/裂解原料油,包括原料蜡油,例如:直馏蜡油、加氢蜡油、焦化蜡油、焦化加氢蜡油、加氢裂化尾油;原料重油,例如:直馏常压渣油(常渣)、直馏减压渣油(减渣)、加氢常压渣油(加氢常渣)、加氢减压渣油(加氢减渣),脱沥青油(DAO)、重质原油;还包括非常规的原料油,例如:页岩油、沥青砂油、劣质柴油、动物油、植物油和合成油、废润滑油及炼油和石油化工过程中低价值油料等。
在本发明中,术语“原位晶化催化裂化催化剂”是指将高岭土等硅铝材料喷雾造粒为微球,高温焙烧以调整活性硅铝的比例,在适当的温度条 件下和适宜的液相组成中上述微球内外原位晶化出Y型分子筛,并通过化学和/或水热改性为具有催化裂化活性的催化剂。“大孔原位晶化催化裂化催化剂”是指具有丰富的孔径为10-60nm孔分布的上述原位晶化催化裂化催化剂。更具体地说,其BJH脱附比表面积100m 2以上且孔径10nm以上的孔占BJH总孔体积50%以上。
在本发明中,术语“高芳烃油料”是指在≥97重量%的催化裂化/裂解反应油气进入催化裂化/裂解分馏塔紧邻洗涤脱过热段的侧线抽出板(任选包含额外低分子气体)时由该抽出板抽出的液体油料,灰分<20μg/g。
在本发明中,术语“现行催化裂化/裂解反应温度”是指在现行催化裂化装置的反应温度,一般为500-520℃,本发明中取为510℃。若反应温度高出10℃,基准则相应增加10℃,余此类推。
在本发明中,术语“剂油比”是指在催化裂化/裂解反应中所用催化剂与催化裂化/裂解原料油的质量比。
在本发明中,术语“洗涤原料油”是指来自催化裂化/裂解反应器的油气与≥1重量%的催化裂化/裂解原料油和/或在≥1重量%的催化裂化/裂解原料油串入分馏塔洗涤脱过热段上方和/或下方的前提下部分从分馏塔底抽出的包含催化剂粉末的油料在所述洗涤脱过热段逆流接触之后在分馏塔塔底抽出的包含催化剂粉末的油料。
在本发明中,术语“回炼油”是指在常规催化裂化装置分馏塔底现行外甩油浆的前提下分馏塔侧线抽出并返回到催化裂化/裂解反应单元进行回炼的重循环油。术语“回炼油抽出板温度”是指在现行催化裂化/裂解分馏塔回炼油抽出板温度,一般为310-330℃,本发明实施例取为320℃(可称为“基准”)。若分馏塔回炼油抽出板温度高出10℃,基准则相应增加10℃,余此类推。
在本发明中,催化裂化/裂解反应温度高于现行反应温度1-100℃,且≥97重量%的所述油气进入所述高芳烃油料的抽出板;优选催化裂化/裂解反应温度高于现行反应温度5-80℃,且≥99重量%的油气进入所述高芳烃油料抽出板。高芳烃油料包含灰分<20μg/g。优选高芳烃油料包含至少45重%的总芳烃,沥青质<1重量%,硫含量<0.5重量%,密度(20℃)≥1.03g/cm 3,且灰分<20μg/g。
在本发明中,本领域普通技术人员根据常规手段和知识可以明白如何控制 高芳烃油料抽出板温度。例如,通过调节原料油引入分馏塔的质量和温度、调节换热器15的取热量、调节中段回流(未显示)的取热量等,可以控制高芳烃油料抽出板温度。
在本发明中,本领域普通技术人员根据常规手段和知识可以明白如何控制高芳烃油料抽出板总压。例如,通过选用新型塔板或构件以降低分馏塔及后续系统的压降从而达到降低高芳烃油料抽出板总压的目的。
在本发明中,可以使用现行催化裂化/裂解分馏塔的回炼油抽出口作为本发明高芳烃油料的抽出口。在优选的实施方式中,所述高芳烃油料可以在不同层的塔板上设置2-5个抽出口,并且可以根据抽出的油组分性质调节抽出位置。在本发明中,所述高芳烃油料的抽出板温度通常比现行催化裂化/裂解分馏塔的回炼油抽出板温度(下文也称为基准)高1-150℃,优选5-120℃,该温度的上限选择以保证系统中不结焦,能长周期运行;下限的选择为保证≥97重量%的所述油气进入所述高芳烃油料的抽出板,优选≥99重量%的所述油气进入所述高芳烃油料抽出板。
下面将结合附图来详细说明本发明。应该理解的是,本发明的所述附图并不构成对于本发明保护范围的限制。
如图1所示,包含原料蜡油和原料重油的混合原料(FCC原料油)通过管线4a、4b和5从反应雾化喷嘴6进入提升管反应器7中,与提升气8提升的再生催化裂化催化剂27接触并进行催化裂化/裂解反应,形成反应油气。若采用MIP反应器形式,则提升管有相应的扩径部分(未显示)。该反应油气在沉降器1与催化剂分离,反应油气从沉降器1的顶部经由反应油气出口线11抽出,并引入后续的分馏塔2的洗涤脱过热段13的下方。在重力的作用下,所述催化裂化催化剂在汽提段9被汽提蒸气10汽提出吸藏的油气,作为待生催化剂26,进入再生器(未显示)进行再生。
来自重质原料进分馏塔线12、12a、12b的原料重油分别进入洗涤脱过热段13的上方和下方。从分馏塔底抽出的洗涤原料油经管线14和换热器15换热后循环到洗涤脱过热段13的上方和下方。进入洗涤脱过热段13上方的原料重油和循环洗涤原料油与上述反应油气在洗涤脱过热段进行充分的逆流接触,以洗脱反应油气中包含的催化剂粉末。进入洗涤脱过热段13 下方的原料重油和循环洗涤原料油调节分馏塔底的温度。从重质原料进分馏塔线12a、12b分别引入的原料重油总量以及比例和经16a、16b引入的循环洗涤原料油的总量以及比例可以按照来自催化裂化/裂解反应器的反应油气中所需洗脱的催化剂粉末含量进行确定。如果需要洗脱的催化剂粉末量较大,则从重质原料进分馏塔线12a引入的原料重油和洗涤原料油循环线16b引入的循环洗涤原料油的比例较高。这可以在实际操作中根据需要进行实时调整。
洗脱脱过热处理之后,反应油气上升进入分馏塔精馏塔板段18。而包含催化剂粉末的洗涤原料油从塔底经由塔底洗涤原料油抽出线14抽出。该洗涤原料油的一部分作为循环洗涤原料油,另一部分经由洗涤原料油进反应器线17与来自混合原料进料线5的混合原料油一起送入提升管反应器7中,进行催化裂化/裂解反应。
在图1中,洗脱处理之后的反应油气上升进入分馏塔精馏塔板段18,并在经过例如1-8个精馏塔板分馏之后,从分馏塔2的高芳烃油料抽出线19抽出高芳烃油料。在经过例如4-25个精馏塔板分馏之后,从分馏塔2的重柴油抽出线20抽出重柴油。在经过例如4-20个塔板分馏之后,从分馏塔2的轻柴油抽出线22抽出轻柴油。在分馏塔2的顶部抽出的油气经过吸收稳定单元/气液分离器3、冷却之后,获得汽油23、液化气24和干气25。在具体实施方式中,从重柴油抽出线20抽出的重柴油可以经由重柴油回炼线21,与来自洗涤原料油进反应器线17的洗涤原料油以及来自混合原料进料线5的混合原料油一起送入提升管反应器7中,再次进行催化裂化/裂解反应。重柴油亦可不回炼,抽出作为产品。
在本发明具体的实施方式中,优选进入分馏塔底的催化裂化/裂解原料油为脱沥青油(DAO)、常渣、加氢常渣、减渣或加氢减渣,更优选减渣或加氢减渣或DAO。
在本发明一个实施方式中,所述步骤(1)和步骤(5)中,催化裂化/裂解反应之后,所述催化剂进入再生器进行再生后返回所述催化裂化/裂解反应器。
在本发明一个实施方式中,所述高芳烃油料抽出板温度比回炼油抽出板温度高1-150℃,优选所述高芳烃油料抽出板温度比回炼油抽出板温度高5-120℃。
在本发明一个实施方式中,所述进入高芳烃油料抽出板的油气含有额外的低分子气体;所述低分子气体选自水蒸气、沸点低于高芳烃油料的烃类化合物或混合物或含氧有机物的一种或多种组合。
在本发明一个实施方式中,所述高芳烃油料抽出板温度比回炼油抽出板温度高1-120℃,优选所述高芳烃油料抽出板温度比回炼油抽出板温度高1-100℃;同时所述进入高芳烃油料抽出板的油气含有额外的低分子气体;所述低分子气体选自水蒸气、沸点低于高芳烃油料的烃类化合物或混合物或含氧有机物的一种或多种组合。
所述低分子气体从催化裂化/裂解反应单元和分馏塔2高芳烃油料抽出板以下任意位置加入,优选从提升管反应器7的提升气入口和/或催化剂汽提段9的汽提蒸气10的入口和/或分馏塔2的底部搅拌蒸气的入口(未显示)和/或沉降器1的防焦蒸气入口(未显示)和/或提升管反应器7的原料油入口即反应雾化喷嘴6加入额外低分子气体,与反应单元中产生的反应油气一起进入后续的分馏塔高芳烃油料抽出板。
在本发明中,所述额外加入的低分子气体的量可以占原本进入分馏塔2的反应油气量的1-200重量%,优选1-150重量%、1-100重量%、1-50重量%。
在本发明一个实施方式中,所述≥1重量%的剩余的催化裂化/裂解原料油优选自直馏常压渣油、直馏减压渣油、加氢常压渣油、加氢减压渣油、脱沥青油、重质原油中的一种或多种的组合,更优选减压渣油、加氢减压渣油和DAO的一种或多种的组合。特别优选深拔的直馏减压渣油、加氢减压渣油或其组合。
在本发明一个实施方式中,所述≥1重量%的剩余的催化裂化/裂解原料油在所述洗涤脱过热段的上方、下方或两者引入所述催化裂化/裂解分馏塔2。
在本发明一个实施方式中,所述步骤(2)中包含洗脱下的催化剂粉末的洗涤原料油一部分经热交换降温后循环回到所述洗涤脱过热段的上方或上方和下方,其中,循环回到所述洗涤脱过热段的上方的洗涤原料油与所述油气逆流接触,以洗脱所述油气中的催化剂粉末;循环回到所述洗涤脱过热段的下方的洗涤原料油冷却位于塔底的洗涤原料油;所述洗涤原料油另一部分和步骤(1)中催化裂化/裂解原料油一起送入包含催化剂的催化裂化/裂解反应器7,以进行催化裂化/裂解反应;
在本发明一个实施方式中,所述催化裂化/裂解分馏塔2中,洗涤脱过热 段包括6-20层的人字形挡板或规整格栅填料;所述精馏塔板段包括26-50层塔板,并且在精馏塔板段具有1-4个循环回流。
在本发明一个实施方式中,所述催化裂化/裂解分馏塔2中从下到上依次抽出高芳烃油料、柴油,经后续吸收稳定单元分离获得汽油、液化气和干气。
在本发明一个实施方式中,所述柴油分为轻柴油和重柴油,在所述催化裂化/裂解分馏塔2中,从下到上依次抽出重柴油和轻柴油,其中,所述重柴油循环回到包含催化剂的催化裂化/裂解反应器7,以进行催化裂化/裂解反应,或作为产品输出。
在本发明一个实施方式中,所述高芳烃油料抽出板总压比回炼油抽出板总压降低≥0.005MPa,优选所述高芳烃油料抽出板总压比回炼油抽出板总压降低≥0.01MPa。
在本发明一个实施方式中,所述高芳烃油料包含至少45重%的总芳烃,沥青质<1重量%,硫含量<0.5重量%,密度(20℃)≥1.03g/cm 3,且灰分<20μg/g。
在本发明中,本领域普通技术人员根据常规手段和知识可以明白如何控制高芳烃油料抽出板温度。例如,通过调节原料油引入分馏塔的质量和温度、调节换热器15的取热量、调节中段回流(未显示)的取热量等,可以控制高芳烃油料抽出板温度。例如,通过调节引入催化反应单元和分馏塔高芳烃抽出板以下系统的物质质量和温度、调节换热器15的取热量、调节中段回流(未显示)的取热量等,使得≥97重量%的所述反应油气进入所述高芳烃油料的抽出板,优选≥99重量%的所述油气进入所述高芳烃油料抽出板。高芳烃油料包含灰分<20ug/g。优选高芳烃油料包含至少45重%的总芳烃,沥青质<1重量%,硫含量<0.5重量%,密度(20℃)≥1.03g/cm 3,且灰分<20ug/g。
本发明中,由上述方法制得的高芳烃油料应用于制备针状焦、碳纤维、炭黑、橡胶软化剂和填充剂、石油芳烃增塑剂、导热油、石油磺酸盐表面活性剂、调和燃料油、加氢处理(裂化)的原料。
实施例
以下本发明将结合具体实施例做进一步的详细说明。应该理解,其只是用作说明,而绝非对本发明的保护范围构成限制。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件 进行。
在实施例中,所述FCC原料油:
石蜡基:蜡油(VGO)、减压渣油(减渣)、常压渣油(常渣),取自延长石化公司榆林炼油厂;
中间基:VGO、减渣、常渣,取自齐鲁石化公司胜利炼油厂;
中东进口:VGO、减渣、常渣、加氢常压渣油(加氢常渣)、加氢减压渣油(加氢减渣),取自上海石化公司炼油部。
脱沥青油(DAO):取自济南石化公司。
实施例中使用的催化裂化催化剂:
半合成催化剂:CDOS、CDC、CGP-C(购自长岭催化剂厂),COKC(购自周村催化剂厂);
原位晶化催化剂:FCA-100A、FCA-100D、FCA-100M、FCA-100S(降硫催化剂),均取自上海纳科助剂有限公司。
丙烯助剂:CP-01B,取自上海纳科助剂有限公司。
催化裂解催化剂:DMMC-1,取自安庆石化公司;FCP-1催化裂解催化剂,取自上海纳科助剂有限公司。
实施例1
如图1所示,FCC原料油和催化裂化催化剂在提升管反应器7中进行催化裂化/裂解反应,形成反应油气。所述催化裂化/裂解反应的操作条件如下表2所示。
如图1所示,将来自反应单元的该反应油气进料到在催化裂化/裂解分馏塔2的洗涤脱过热段下方,该反应油气与FCC原料油在洗涤脱过热段13中充分接触,以洗脱反应油气中包含的催化剂粉末。所述分馏塔的操作条件如下表2所示。
在所述分馏塔中,从下到上依次抽出高芳烃油料、重柴油(按需要)和轻柴油,经后续气液分离器/吸收稳定单元后分离获得汽油、液化气和干气。实施例1的产品分布可见下表2。并且,实施例1所制得的高芳烃油料的性质如下表2所示。
实施例2-3
按照表2所述的条件,以类似于实施例1所述步骤进行高芳烃油料的制备。实施例2-3的产品分布和制得的高芳烃油料的性质如下表2所示。
表2
Figure PCTCN2022120933-appb-000001
Figure PCTCN2022120933-appb-000002
实施例4-7
按照表3所述的条件,以类似于实施例1所述步骤进行高芳烃油料的制备。实施例4-7的产品分布和制得的高芳烃油料的性质如下表3所示。
表3
Figure PCTCN2022120933-appb-000003
Figure PCTCN2022120933-appb-000004
对比例1-2
按照下表4所述的条件,以类似于实施例1的方式进行催化裂化/裂解反应以及后续的分馏操作。不同之处在于:对比例1-2进行回炼油回炼,并且催化裂化反应温度低于本发明催化裂化/裂解反应温度,不抽出重柴油回炼。
对比例1-2的产品分布和制得的油浆性质如下表4所示。
对比例3
按照CN112574777A的技术方案和下表4所述的条件,以类似于实施例1的方式进行催化裂化/裂解反应以及后续的分馏操作。不同之处在于:对比例3进行回炼油和油浆回炼,并且催化裂化/裂解反应温度低于本发明的催化裂化/裂解反应温度。对比例3的产品分布可见下表4。
表4
Figure PCTCN2022120933-appb-000005
Figure PCTCN2022120933-appb-000006
对比例4
按照CN100549141C实施例的方法,取石蜡基催化油浆在连续蒸馏装置上20mmHg、400℃下减压蒸馏,馏出物为75重量%。
实施例8-10
按照表5所述的条件,以类似于实施例1所述步骤进行高芳烃油料的制备。
实施例8-10的产品分布和制得的高芳烃油料的性质如下表5所示。
表5
Figure PCTCN2022120933-appb-000007
对比例5-6
按照下表6所述的条件,以类似于实施例1的方式进行催化裂化/裂解反应以及后续的分馏操作。不同之处在于:对比例5-6进行回炼油回炼,并且回炼油抽出板温度低于实施例1的高芳烃油料抽出板温度,不抽出重柴油回炼。
对比例5-6的产品分布可见下表6。并且,对比例5-6所制得的油浆性质如下表6所示。
对比例7
按照CN112574777A的技术方案和下表6所述的条件,以类似于实施例1的方式进行催化裂化/裂解反应以及后续的分馏操作。不同之处在于:对比例7进行回炼油和油浆回炼。对比例7的产品分布可见下表6。
表6
Figure PCTCN2022120933-appb-000008
Figure PCTCN2022120933-appb-000009
实施例11-13
按照表7所述的条件,以类似于实施例1所述步骤进行高芳烃油料的制备。实施例11-13的产品分布和制得的高芳烃油料的性质如下表7所示。其液化气组成如表2a所示。
表7
Figure PCTCN2022120933-appb-000010
Figure PCTCN2022120933-appb-000011
实施例14-16
按照表8所述的条件,以类似于实施例1所述步骤进行高芳烃油料的制备。实施例14-16的产品分布和制得的高芳烃油料的性质如下表8所示。
表8
Figure PCTCN2022120933-appb-000012
Figure PCTCN2022120933-appb-000013
实施例17-20
按照表9所述的条件,以类似于实施例1所述步骤进行高芳烃油料的制备。实施例17-20的产品分布和制得的高芳烃油料的性质如下表9所示。
表9
Figure PCTCN2022120933-appb-000014
Figure PCTCN2022120933-appb-000015
对比例8-10
按照下表10所述的条件,以类似于实施例1的方式进行催化裂化/裂解反应以及后续的分馏操作。不同之处在于:对比例18-9进行回炼油回炼,对比例10未选用大孔原位晶化催化剂,抽出高芳烃油料,重柴油回炼。对比例8-10 的产品分布可见下表10。并且,对比例8-9所制得的油浆性质和对比例10所制得的高芳烃油料性质如下表10所示。
表10
Figure PCTCN2022120933-appb-000016
Figure PCTCN2022120933-appb-000017
实施例21和对比例11
按照表11所述的条件,以类似于实施例1所述步骤进行高芳烃油料的制备,区别在于:将实施例21中高芳烃油料抽出板总压比回炼油抽出板总压低0.01MPa;而对比例11中高芳烃油料抽出板总压比回炼油抽出板总压高。实施例21和对比例11的产品分布以及制得的高芳烃油料的性质如下表11所示。
表11
Figure PCTCN2022120933-appb-000018
Figure PCTCN2022120933-appb-000019
应用例1
对比以上各表可知,本发明高芳烃油料满足用于制备针状焦的原料的要求。
表12针状焦对原料性质的要求
性质 指标
密度(20℃):g/cm 3 ≥1.03
硫含量:% ≤0.5
沥青质:% <1.0
芳香分(芳烃含量):% ≥45
灰分:μg/g <100
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种制备高芳烃油料的方法,其特征在于,所述方法包括:
    (1)以100重量%的催化裂化/裂解原料油计,将≤99重量%的催化裂化/裂解原料油送入包含催化剂的催化裂化/裂解反应器,以进行催化裂化/裂解反应,产生油气;
    (2)将所述油气引入催化裂化/裂解分馏塔的洗涤脱过热段的下方,与≥1重量%的剩余催化裂化/裂解原料油在所述洗涤脱过热段逆流接触,以洗脱所述油气中的催化剂粉末;
    (3)离开所述洗涤脱过热段的洗脱催化剂粉末后的油气沿所述催化裂化/裂解分馏塔上升,进入分馏塔的精馏塔板段,与来自其上部的回流液逆流接触;
    (4)在紧邻所述洗涤脱过热段的精馏塔板段侧线抽出液体油料,制得所述高芳烃油料,所述高芳烃油料包含灰分<20μg/g;
    (5)从分馏塔底抽出的包含有催化剂粉末的洗涤原料油和步骤(1)中的催化裂化/裂解原料油一起送入催化裂化/裂解反应器进行催化裂化/裂解反应,产生油气;和
    (6)重复步骤(2)-(5),形成循环;
    其中,其中,≥97重量%的所述油气进入所述高芳烃油料的抽出板。
  2. 根据权利要求1所述的方法,其特征在于,所述方法满足选自以下至少一种的条件:
    (i)催化裂化/裂解反应温度高于现行催化裂化装置反应温度1-100℃;
    (ii)进入高芳烃油料抽出板的油气包含额外的低分子气体;
    (iii)所述高芳烃油料抽出板温度比回炼油抽出板温度高1-150℃;
    (iv)所述催化裂化/裂解的催化剂包含有大孔原位晶化催化裂化催化剂;
    (v)所述高芳烃油料抽出板总压比回炼油抽出板总压降低≥0.005MPa,且≥97重量%的所述油气进入所述高芳烃油料的抽出板;和
    (vi)除了高芳烃油料以外,所述方法还制得多产液化气,其中,催化裂化反应温度高于现行催化裂化装置反应温度1-80℃。
  3. 根据权利要求1所述的方法,其特征在于,针对上述条件(i),催化裂 化/裂解反应温度高于现行催化裂化装置反应温度5-80℃,且≥99重量%的所述油气进入所述高芳烃油料的抽出板;
    针对上述条件(ii),所述低分子气体选自水蒸气、沸点低于高芳烃油料的烃类化合物或混合物或含氧有机物的一种或多种组合,优选地,所述低分子气体的额外加入量为反应油气质量的1-200%;
    针对上述条件(iii),所述高芳烃油料抽出板温度比回炼油抽出板温度高5-120℃;
    针对上述条件(iv),所述大孔原位晶化催化裂化催化剂占催化剂总量比例为1-100重量%,且≥99重量%的所述油气进入所述高芳烃油料的抽出板;
    针对上述条件(v),所述高芳烃油料抽出板总压比回炼油抽出板总压降低≥0.01MPa;
    针对上述条件(vi),催化裂化反应温度高于现行催化裂化装置反应温度5-70℃,且≥99重量%的所述油气进入所述高芳烃油料的抽出板。
  4. 根据权利要求2所述的方法,其特征在于,所述低分子气体从催化裂化/裂解反应单元和分馏塔高芳烃油料抽出板以下任意位置加入。
  5. 根据权利要求1所述的方法,其特征在于,所述≥1重量%的剩余催化裂化/裂解原料油选自直馏常压渣油、直馏减压渣油、加氢常压渣油、加氢减压渣油、脱沥青油、重质原油中的一种或多种的组合,且在所述洗涤脱过热段的上方、下方或两者引入所述催化裂化/裂解分馏塔;或
    所述步骤(2)中包含洗脱下的催化剂粉末的洗涤原料油一部分经热交换降温后循环回到所述洗涤脱过热段的上方或上方和下方;所述洗涤原料油另一部分和步骤(1)中催化裂化/裂解原料油一起送入包含催化剂的催化裂化/裂解反应器,以进行催化裂化/裂解反应;或
    所述催化裂化/裂解分馏塔中,洗涤脱过热段包括6-20层的人字形挡板或规整格栅填料;所述精馏塔板段包括26-50层塔板,并且在精馏塔板段具有1-4个循环回流;在所述催化裂化/裂解分馏塔中,从下到上依次抽出高芳烃油料、柴油,经后续气液分离器和吸收稳定单元分离获得汽油、液化气和干气。
  6. 根据权利要求5所述的方法,其特征在于,所述柴油分为轻柴油和重 柴油,在所述催化裂化/裂解分馏塔中,从下到上依次抽出重柴油和轻柴油,其中,所述重柴油循环回到包含催化剂的催化裂化/裂解反应器,以进行催化裂化/裂解反应,或作为产品输出。
  7. 根据权利要求1所述的方法,其特征在于,所述催化裂化/裂解原料油选自直馏蜡油、直馏常压渣油、直馏减压渣油,加氢蜡油、加氢常压渣油、加氢减压渣油,焦化蜡油,焦化加氢蜡油、脱沥青油、页岩油、沥青砂油、重质原油、劣质柴油、动物油、植物油、合成油中的一种或多种的组合;所述催化裂化/裂解反应器包括同轴式或高低并列式;或
    所述催化剂选自大孔原位晶化催化裂化催化剂、粘结型Y、ZSM-5、β分子筛及其复合型催化剂,原位晶化Y型催化剂,丙烯助剂,辛烷值助剂,降硫催化剂,降氮催化剂,抗重金属催化剂中的一种或多种的组合;优选所述催化剂包含有原位晶化Y型催化剂和丙烯助剂;或
    所述催化裂化/裂解反应的反应压力为0.1Mpa~0.5Mpa,所述催化剂的再生温度为650~760℃,所述催化剂与催化裂化/裂解原料油的质量比为4-15。
  8. 根据权利要求1所述的方法,其特征在于,所述高芳烃油料包含至少45重%的总芳烃,沥青质<1重量%,硫含量<0.5重量%,密度(20℃)≥1.03g/cm 3,且灰分<20μg/g。
  9. 权利要求1-8任一项所述方法制得的高芳烃油料,所述高芳烃油料包含的灰分<20μg/g;或所述高芳烃油料包含至少45重%的总芳烃,沥青质<1重量%,硫含量<0.5重量%,密度(20℃)≥1.03g/cm 3,且灰分<20μg/g。
  10. 权利要求9所述高芳烃油料在制备针状焦、碳纤维、炭黑、橡胶软化剂和填充剂、石油芳烃增塑剂、导热油、石油磺酸盐表面活性剂、调和燃料油、加氢处理(裂化)原料中的应用。
PCT/CN2022/120933 2021-09-24 2022-09-23 高芳烃油料及其制备方法和应用 WO2023046081A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202111121764.2 2021-09-24
CN202111124247.0A CN113717754B (zh) 2021-09-24 2021-09-24 生产高芳烃油料和多产液化气的催化裂化方法
CN202111123034.6 2021-09-24
CN202111124191.9A CN113717753B (zh) 2021-09-24 2021-09-24 高芳烃油料及其制备方法和应用
CN202111123910.5A CN113717752B (zh) 2021-09-24 2021-09-24 高芳烃油料及其制备方法和应用
CN202111124247.0 2021-09-24
CN202111121764.2A CN113755208B (zh) 2021-09-24 2021-09-24 高芳烃油料及其制备方法和应用
CN202111123034.6A CN113773874B (zh) 2021-09-24 2021-09-24 高芳烃油料及其制备方法和应用
CN202111122400.6 2021-09-24
CN202111123910.5 2021-09-24
CN202111122400.6A CN113897220B (zh) 2021-09-24 2021-09-24 高芳烃油料及其制备方法和应用
CN202111124191.9 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023046081A1 true WO2023046081A1 (zh) 2023-03-30

Family

ID=85719303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120933 WO2023046081A1 (zh) 2021-09-24 2022-09-23 高芳烃油料及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2023046081A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1493654A (zh) * 2002-11-01 2004-05-05 石油大学(北京) 催化汽油改质油气的分离方法和装置
CN1782023A (zh) * 2004-11-30 2006-06-07 中国石油化工股份有限公司 烃油催化裂解反应产物的分离方法
CN101381617A (zh) * 2007-09-06 2009-03-11 中国石油化工股份有限公司 一种混合烃类的分馏方法
CN112574777A (zh) * 2020-12-28 2021-03-30 张智超 一种催化裂化、裂解装置停出油浆产品的工艺技术、方法
CN113717752A (zh) * 2021-09-24 2021-11-30 上海纳科助剂有限公司 高芳烃油料及其制备方法和应用
CN113717754A (zh) * 2021-09-24 2021-11-30 上海纳科助剂有限公司 生产高芳烃油料和多产液化气的催化裂化方法
CN113717753A (zh) * 2021-09-24 2021-11-30 上海纳科助剂有限公司 高芳烃油料及其制备方法和应用
CN113755208A (zh) * 2021-09-24 2021-12-07 上海纳科助剂有限公司 高芳烃油料及其制备方法和应用
CN113773874A (zh) * 2021-09-24 2021-12-10 上海纳科助剂有限公司 高芳烃油料及其制备方法和应用
CN113897220A (zh) * 2021-09-24 2022-01-07 上海纳科助剂有限公司 高芳烃油料及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1493654A (zh) * 2002-11-01 2004-05-05 石油大学(北京) 催化汽油改质油气的分离方法和装置
CN1782023A (zh) * 2004-11-30 2006-06-07 中国石油化工股份有限公司 烃油催化裂解反应产物的分离方法
CN101381617A (zh) * 2007-09-06 2009-03-11 中国石油化工股份有限公司 一种混合烃类的分馏方法
CN112574777A (zh) * 2020-12-28 2021-03-30 张智超 一种催化裂化、裂解装置停出油浆产品的工艺技术、方法
CN113717752A (zh) * 2021-09-24 2021-11-30 上海纳科助剂有限公司 高芳烃油料及其制备方法和应用
CN113717754A (zh) * 2021-09-24 2021-11-30 上海纳科助剂有限公司 生产高芳烃油料和多产液化气的催化裂化方法
CN113717753A (zh) * 2021-09-24 2021-11-30 上海纳科助剂有限公司 高芳烃油料及其制备方法和应用
CN113755208A (zh) * 2021-09-24 2021-12-07 上海纳科助剂有限公司 高芳烃油料及其制备方法和应用
CN113773874A (zh) * 2021-09-24 2021-12-10 上海纳科助剂有限公司 高芳烃油料及其制备方法和应用
CN113897220A (zh) * 2021-09-24 2022-01-07 上海纳科助剂有限公司 高芳烃油料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN101161786A (zh) 一种石油烃类的转化方法
CN102102029B (zh) 一种重油催化裂化分级分区转化的方法和装置
CN102102028B (zh) 一种重油分级分区催化裂化的方法和装置
CN105694966B (zh) 一种由催化裂化柴油生产石脑油和清洁汽油的方法
CN113717752B (zh) 高芳烃油料及其制备方法和应用
CN113717753B (zh) 高芳烃油料及其制备方法和应用
CN113717754B (zh) 生产高芳烃油料和多产液化气的催化裂化方法
CN113755208B (zh) 高芳烃油料及其制备方法和应用
CN113773874B (zh) 高芳烃油料及其制备方法和应用
CN101619238A (zh) 一种延迟焦化-减压蒸馏联合加工方法
CN113897220B (zh) 高芳烃油料及其制备方法和应用
CN105505462B (zh) 重油催化裂化方法和装置
WO2023046081A1 (zh) 高芳烃油料及其制备方法和应用
CN102453509B (zh) 一种烃油催化转化方法
CN105505459B (zh) 重油催化裂化方法和装置
CN109988625B (zh) 一种加氢精制和加氢裂化组合工艺
CN114426860A (zh) 一种重油超临界萃取分离方法和装置
CN101875856A (zh) 一种蜡油加氢处理和催化裂化组合方法
CN1141361C (zh) 一种降低汽油烯烃含量的催化裂化方法
CN105505460B (zh) 重油催化裂化方法和装置
CN105419868B (zh) 重油催化裂化方法和装置
CN103224808A (zh) 一种劣质重油流化转化工艺
CN105505463B (zh) 重油催化裂化方法和装置
CN101469275A (zh) 一种劣质原油生产低碳烯烃的方法
CN105505461B (zh) 重油催化裂化方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872125

Country of ref document: EP

Kind code of ref document: A1