WO2023045933A1 - 眼底相机故障检测方法、装置及存储介质 - Google Patents

眼底相机故障检测方法、装置及存储介质 Download PDF

Info

Publication number
WO2023045933A1
WO2023045933A1 PCT/CN2022/119977 CN2022119977W WO2023045933A1 WO 2023045933 A1 WO2023045933 A1 WO 2023045933A1 CN 2022119977 W CN2022119977 W CN 2022119977W WO 2023045933 A1 WO2023045933 A1 WO 2023045933A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
motor
camera
fundus camera
normal
Prior art date
Application number
PCT/CN2022/119977
Other languages
English (en)
French (fr)
Inventor
郭韩跃
胡丁山
常献刚
和超
张大磊
Original Assignee
北京鹰瞳科技发展股份有限公司
上海鹰瞳医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京鹰瞳科技发展股份有限公司, 上海鹰瞳医疗科技有限公司 filed Critical 北京鹰瞳科技发展股份有限公司
Publication of WO2023045933A1 publication Critical patent/WO2023045933A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination

Definitions

  • the present application relates to the field of computer technology, in particular to a fundus camera fault detection method, device and storage medium.
  • the fundus camera is a sophisticated intelligent medical device used to take images of the retina of the human eye.
  • the fundus camera With the rapid development of computer vision technology, the application of fundus retinal images in the auxiliary diagnosis and treatment of diseases is becoming more and more extensive, making the fundus camera also become Indispensable medical equipment in the medical field.
  • Hand-held fundus cameras such as a portable fundus camera in application number 2020305266667, have become the first choice of many medical workers due to their advantages of lightness and portability, easy operation and easy learning.
  • each fundus camera is mainly detected manually.
  • a large amount of labor costs are required, and the detection cost is relatively high.
  • Embodiments of the present application provide a fundus camera fault detection method, device, and storage medium to solve the technical problem of high cost of fundus camera fault detection in the prior art.
  • a fundus camera fault detection method is disclosed.
  • the fundus camera is equipped with a lens holder, and the lens holder is used to isolate external light during fault detection.
  • the method includes:
  • the fault detection instruction is used to instruct the fundus camera to perform fault detection on a target hardware module in the fundus camera, and the target hardware module includes an infrared lamp;
  • a fundus camera fault detection device comprising:
  • the camera lens holder is used to protect the fundus camera and isolate external light when the fundus camera performs fault detection, and the inner wall of the middle groove inside the lens holder is provided with characteristic dots of non-reflective material;
  • the fundus camera includes: a processor and a program stored on the memory and operable on the processor.
  • the program is executed by the processor, the steps of the fundus camera fault detection method in the first aspect are implemented.
  • a computer-readable storage medium stores a program, and when the program is executed by the processor, the fundus camera failure detection as in the first aspect is implemented method steps.
  • the server can push detection instructions to multiple fundus cameras in batches. After receiving the detection instructions, the fundus camera automatically completes the fault detection of the key hardware modules in the fundus camera with the help of the lens holder, and will detect The result is reported to the server.
  • the existing lens holder can be used to realize the automatic detection of the fundus camera without manual participation, which reduces the detection cost.
  • Fig. 1 is the flow chart of the fundus camera fault detection method of an embodiment of the present application
  • Fig. 2 is an example diagram of a fundus camera and a lens holder according to an embodiment of the present application
  • Fig. 3 is a flow chart of a fundus camera fault detection method according to another embodiment of the present application.
  • Fig. 4 is an example diagram of the relationship between the field of view of the lens and the spatial position of the feature circles according to an embodiment of the present application;
  • Fig. 5 is a flowchart of a fault detection method for a fundus camera according to yet another embodiment of the present application.
  • Embodiments of the present application provide a fundus camera fault detection method, device, and storage medium.
  • a fundus camera fault detection method provided in an embodiment of the present application is introduced below.
  • Fig. 1 is a flowchart of a fault detection method for a fundus camera according to an embodiment of the present application.
  • the method is applied to a fundus camera, and the fundus camera is equipped with a lens holder, which is used to isolate external light during fault detection, as shown in FIG. 1, the method may include the following steps: step 101, step 102, step 103 and step 104, wherein,
  • step 101 a fault detection instruction is received, wherein the fault detection instruction is used to instruct the fundus camera to perform fault detection on a target hardware module in the fundus camera, and the target hardware module includes an infrared lamp.
  • the fault detection instruction may originate from the server.
  • the server can send fault detection instructions to multiple fundus cameras in batches.
  • the lens holder can also be used to protect the fundus camera.
  • characteristic dots of non-reflective material may also be provided on the inner wall of the middle groove inside the lens holder.
  • FIG. 2 shows an example diagram of the lens holder, the fundus camera, and the lens holder worn on the fundus camera, wherein the inner wall of the middle groove inside the lens holder is provided with characteristic dots of non-reflective material.
  • the characteristic dots may be black dots.
  • step 102 in response to the fault detection instruction, the infrared lamp is instructed to emit infrared light with a preset brightness.
  • the infrared lamp may be instructed to emit infrared light of a single brightness, or the infrared lamp may be instructed to emit infrared light of multiple different brightnesses.
  • step 103 the camera head of the fundus camera is started to collect infrared images under infrared light.
  • the fundus camera when the fundus camera receives a fault detection instruction, it activates the camera, and collects infrared images through the camera to complete the detection of the infrared lamp.
  • the camera captures an infrared image with a single brightness.
  • the camera collects infrared images of various brightnesses.
  • the infrared light can be instructed to emit the first infrared light, the second infrared light and the third infrared light in sequence.
  • the camera captures the first infrared image under the first infrared light, the second infrared image under the second infrared light image, and the third infrared image under the third infrared light, wherein the brightness of the first infrared light is L1, the brightness of the second infrared light is L2, and the brightness of the third infrared light is L3, and L1, L2 and L3 are different , L1, L2 and L3 can correspond to three brightness levels of the infrared lamp: low, medium and high.
  • step 104 it is determined whether the infrared lamp is normal based on the infrared image.
  • the camera captures the first infrared image under the first infrared light, and the image under the second infrared light.
  • the second infrared image, and the third infrared image under the third infrared light; at this time, the above-mentioned step 104 may specifically include the following steps (not shown in the figure): step 1041 and step 1042, wherein,
  • step 1041 the infrared brightness M1 in the first infrared image, the infrared brightness M2 in the second infrared image, and the infrared brightness M3 in the third infrared image are acquired.
  • any detection algorithm in the related art may be used to obtain the infrared brightness M1 of the first infrared image, the infrared brightness M2 of the second infrared image, and the infrared brightness M3 of the third infrared image.
  • step 1042 compare M1 with L1, M2 with L2, and M3 with L3, if the differences are all within the preset range, then determine that the infrared lamp is normal, otherwise determine that the infrared lamp is faulty.
  • the difference between M1 and L1 is less than ⁇ L1, and the difference between M2 and L2 is less than ⁇ L2, and the difference between M3 and L3 is less than ⁇ L3, it is determined that the infrared lamp is normal, otherwise it is determined that the infrared lamp is faulty , where ⁇ L1, ⁇ L2 and ⁇ L3 are preset thresholds.
  • the number indicating the brightness of the infrared light emitted by the infrared lamp includes but is not limited to 3. In practical applications, the number of infrared brightness can be selected according to the needs. The embodiment of the application does not limit this.
  • the detection result of the infrared lamp may be sent to the server.
  • the server can push detection instructions to multiple fundus cameras in batches. After receiving the detection instructions, the fundus camera automatically completes the fault detection of key hardware modules in the fundus camera with the help of the lens holder. detection and report the detection results to the server.
  • the existing lens holder can be used to realize the automatic detection of the fundus camera without manual participation, which reduces the detection cost.
  • the target hardware module may further include a motor assembly.
  • the infrared lamp when the infrared lamp is determined to be normal, the fault detection of the motor assembly is completed through the infrared lamp and the camera.
  • the method provided by the embodiment of the present application may also add the following steps after step 104 on the basis of the embodiment shown in FIG. 1: step 105, wherein,
  • step 105 in the normal working state of the infrared lamp, instruct the motor assembly to move the lens field of view of the camera to the position of the characteristic circle, and determine whether the motor assembly is normal according to the imaging information of the characteristic circle within the lens field of view.
  • the motor assembly may include: a first motor, a second motor and/or a third motor, wherein the first motor is used to adjust the left and right movement of the camera, the second motor is used to adjust the vertical movement of the camera, and the third motor It is used to adjust the forward and backward movement of the camera.
  • the camera is installed on the main board, and the motor component adjusts the movement of the camera by driving the main board to move.
  • step 105 may include the following steps (not shown in the figure): step 1051 and step 1052 .
  • step 1051 instruct the motor assembly to move the lens field of view of the camera to the position of the characteristic dot, and detect whether there is an image of the characteristic dot in the lens field of view, and if not, determine that the first motor or the second motor is faulty.
  • Figure 4 shows the initial spatial positional relationship between the feature circle and the camera lens field of view. If the infrared light is normal, it indicates that the first motor and the second motor move, and the camera lens field of view is moved to the feature circle. Location.
  • step 1052 if there is an image of the characteristic dot in the field of view of the lens, instruct the first motor to move a distance of ⁇ x1 in the horizontal direction relative to the current position, obtain the horizontal change amount ⁇ x2 of the characteristic dot in the field of view of the lens, and determine ⁇ Whether x1 and ⁇ x2 satisfy the first preset linear relationship, if so, determine that the first motor is normal, otherwise determine that the first motor is faulty; and/or
  • the third motor when the first motor and the second motor are determined to be normal, the third motor can also be faulted by instructing the third motor to move back and forth and observing the change of the radius of the characteristic dot in the lens field of view. detection.
  • ⁇ x1 and ⁇ x2 do not satisfy the first preset linear relationship, it indicates that the first motor is idling or damaged, and at this time it is determined that the first motor is faulty.
  • ⁇ y1 and ⁇ y2 do not satisfy the second preset linear relationship, it indicates that the second motor is idling or damaged, and at this time it is determined that the second motor is faulty.
  • ⁇ z and ⁇ r do not satisfy the third preset linear relationship, it indicates that the third motor is idling or damaged, and at this time it is determined that the third motor is faulty.
  • the detection result of the motor assembly may be sent to the server.
  • the fault detection of the first motor by instructing the first motor to move left and right and observing the change of the left and right positions of the characteristic dots in the field of view of the camera lens, the fault detection of the first motor can be performed.
  • the fault detection of the second motor By instructing the second motor to move up and down, and observing the change of the upper and lower positions of the characteristic dots in the field of view of the camera lens, the fault detection of the second motor can be carried out.
  • the fault detection of the third motor can be performed by instructing the third motor to move back and forth and observing the change of the radius of the characteristic dot in the field of view of the camera lens.
  • the target hardware module may further include a Hall sensor component.
  • the Hall sensor component when the motor component is determined to be normal, the Hall sensor component can be completed by the motor component. fault detection.
  • the method provided by the embodiment of the present application may also be based on the embodiment shown in FIG. 3, and the following steps may be added after step 105: step 106, wherein,
  • step 106 in the normal working state of the motor assembly, instruct the motor assembly to move the Hall sensor assembly to the corresponding magnet sensing area, and determine whether the Hall sensor assembly is normal according to whether the Hall sensor assembly detects a magnetic field change .
  • the Hall sensor assembly is installed on the main board, and the motor assembly adjusts the movement of the Hall sensor assembly by driving the main board to move.
  • the Hall sensor assembly may include: three sets of Hall sensors, which are respectively arranged on the left side, the right side and the bottom of the camera.
  • the motor assembly when detecting the Hall sensor on the left side of the camera, the motor assembly is instructed to drive the Hall sensor on the left side of the camera to move to the left boundary magnet area. If the Hall sensor on the left side of the camera detects a change in the magnetic field , it is determined that the Hall sensor on the left side of the camera is normal, otherwise it is determined that the Hall sensor on the left side of the camera is faulty.
  • the motor assembly when detecting the Hall sensor on the right side of the camera, the motor assembly is instructed to drive the Hall sensor on the right side of the camera to move to the right boundary magnet area. If the Hall sensor on the right side of the camera detects a change in the magnetic field , it is determined that the Hall sensor on the right side of the camera is normal, otherwise it is determined that the Hall sensor on the right side of the camera is faulty.
  • the motor assembly when detecting the Hall sensor at the bottom of the camera, the motor assembly is instructed to drive the Hall sensor at the bottom of the camera to move to the bottom magnet area. If the Hall sensor at the bottom of the camera detects a change in the magnetic field, it is determined that the The Hall sensor at the bottom is normal, otherwise the Hall sensor at the bottom of the camera is faulty.
  • the detection result of the Hall sensor may be sent to the server.
  • the detection sequence of the target hardware module is: first detect the infrared lamp, then detect the motor assembly, and finally detect Hall sensor components.
  • a detection result may be sent to the server after each target hardware module is detected; or a complete detection result may be sent to the server after all target hardware modules are detected.
  • the detection result includes normal and fault.
  • the target hardware module may further include: a flashlight; at this time, on the basis of any method embodiment above, the following step may be added: instruct the flashlight to emit visible light with a preset brightness, according to Visible light images collected by the camera under visible light to determine whether the flash is normal.
  • the specific detection method of the flashlight is similar to that of the infrared light, and will not be repeated here.
  • the detection sequence of the flashlight may be before or after the detection of the infrared light, which is not limited in this embodiment of the present application.
  • the present application also provides a fundus camera fault detection device, including: a camera lens holder and a fundus camera, wherein,
  • the camera lens holder is used to protect the fundus camera and isolate the external light when the fundus camera performs fault detection.
  • the inner wall of the middle groove inside the lens holder is provided with a characteristic dot of non-reflective material;
  • the fundus camera includes: a processor and a program stored in a memory and operable on the processor.
  • the program is executed by the processor, the steps of any one of the fundus camera fault detection methods above are realized.
  • the present application also provides a computer-readable storage medium, where a program is stored on the computer-readable storage medium, and when the program is executed by a processor, it can realize the The steps in the fundus camera fault detection method described above.
  • embodiments of the embodiments of the present application may be provided as methods, devices, or computer program products. Therefore, the embodiment of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, embodiments of the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to the embodiments of the present application. It should be understood that each procedure and/or block in the flowchart and/or block diagram, and a combination of procedures and/or blocks in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions may be provided to a general purpose computer, special purpose computer, embedded processor or processor of other programmable data processing terminal equipment to produce a machine such that instructions executed by the computer or processor of other programmable data processing terminal equipment Produce means for realizing the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing terminal to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the The instruction means implements the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

本申请公开一种眼底相机故障检测方法、装置及存储介质,该方法包括:接收故障检测指令,所述故障检测指令用于指示眼底相机对所述眼底相机中的目标硬件模块进行故障检测,所述眼底相机佩戴有镜头卡套,所述镜头卡套用于在故障检测时隔绝外界光线,所述目标硬件模块包括红外灯;响应于所述故障检测指令,指示所述红外灯发射预设亮度的红外光;启动所述眼底相机的摄像头在所述红外光下采集红外图像;基于所述红外图像确定所述红外灯是否正常。

Description

眼底相机故障检测方法、装置及存储介质
相关申请的交叉引用
本申请要求在2021年09月23日提交中国专利局、申请号为202111117662.3、名称为“眼底相机故障检测方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,特别涉及一种眼底相机故障检测方法、装置及存储介质。
背景技术
眼底相机是一种用于拍摄人眼视网膜图像的精密智能医疗设备,随着计算机视觉技术的快速发展,眼底视网膜图像在疾病的辅助诊断和治疗中的应用越来越广泛,使得眼底相机也成为医疗领域中不可或缺的医疗设备。手持式眼底相机,例如申请号2020305266667中的一种便携式眼底相机,以其轻巧携带、方便操作以及简单易学等优点,成为很多众多医疗工作者的首要选择。
目前,对于申请号2020305266667及其类似结构的眼底相机,为避免后续拍摄的眼底视网膜图像不佳或者眼底相机无法正常使用,出厂前需要对眼底相机损坏情况进行检测。现有技术中,主要由人工对每台眼底相机进行检测。然而,随着相机出厂数量的增加,需要大量的人工成本,检测成本较高。
发明内容
本申请实施例提供一种眼底相机故障检测方法、装置及存储介质,以解决现有技术中存在的眼底相机故障检测成本较高的技术问题。
根据本申请的第一方面,公开了一种眼底相机故障检测方法,眼底相机佩戴有镜头卡套,所述镜头卡套用于在故障检测时隔绝外界光线,所述方法 包括:
接收故障检测指令,所述故障检测指令用于指示所述眼底相机对所述眼底相机中的目标硬件模块进行故障检测,所述目标硬件模块包括红外灯;
响应于所述故障检测指令,指示所述红外灯发射预设亮度的红外光;
启动所述眼底相机的摄像头在所述红外光下采集红外图像;
基于所述红外图像确定所述红外灯是否正常。
根据本申请的第二方面,公开了一种眼底相机故障检测装置,所述装置包括:
相机镜头卡套,用于保护眼底相机以及在所述眼底相机进行故障检测时隔绝外界光线,所述镜头卡套内侧的中间凹槽内壁上设置有不反光材质的特征圆点;以及
眼底相机,包括:处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面中眼底相机故障检测方法的步骤。
根据本申请的第三方面,公开了一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被所述处理器执行时实现如第一方面中眼底相机故障检测方法的步骤。
本申请实施例中,可以通过服务器批量推送检测指令到多台眼底相机,眼底相机在接收到检测指令后,借助于镜头卡套,自动完成对眼底相机中关键硬件模块的故障检测,并将检测结果上报到服务器。与现有技术相比,本申请实施例中,利用现有的镜头卡套,就可以实现对眼底相机的自动检测,而无需人工参与,降低了检测成本。
附图说明
图1是本申请的一个实施例的眼底相机故障检测方法的流程图;
图2是本申请的一个实施例的眼底相机及镜头卡套的示例图;
图3是本申请的再一个实施例的眼底相机故障检测方法的流程图;
图4是本申请的一个实施例的镜头视野与特征圆点在空间位置上的关系的示例图;
图5是本申请的再一个实施例的眼底相机故障检测方法的流程图。
具体实施例
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本申请实施例所必须的。
本申请实施例提供了一种眼底相机故障检测方法、装置及存储介质。
下面对本申请实施例提供的一种眼底相机故障检测方法进行介绍。
图1是本申请的一个实施例的眼底相机故障检测方法的流程图,该方法应用于眼底相机,该眼底相机佩戴有镜头卡套,该镜头卡套用于在故障检测时隔绝外界光线,如图1所示,该方法可以包括以下步骤:步骤101、步骤102、步骤103和步骤104,其中,
在步骤101中,接收故障检测指令,其中,故障检测指令用于指示眼底相机对眼底相机中的目标硬件模块进行故障检测,目标硬件模块包括红外灯。
本申请实施例中,故障检测指令可以来源于服务器。在进行相机故障检测时,服务器可以批量地向多台眼底相机发送故障检测指令。
本申请实施例中,镜头卡套还可以用于保护眼底相机。
本申请实施例中,镜头卡套内侧的中间凹槽内壁上还可以设置有不反光材质的特征圆点。
为了便于理解,首先对本申请实施例中涉及到的眼底相机和镜头卡套进行介绍。在一个例子中,图2示出了镜头卡套、眼底相机以及眼底相机佩戴上镜头卡套的示例图,其中,镜头卡套内侧的中间凹槽内壁上设置有不反光材质的特征圆点。
本申请实施例中,特征圆点可以为黑色圆点。
在步骤102中,响应于故障检测指令,指示红外灯发射预设亮度的红外 光。
本申请实施例中,可以指示红外灯发射单一亮度的红外光,也可以指示红外灯发射多种不同亮度的红外光。
在步骤103中,启动眼底相机的摄像头在红外光下采集红外图像。
本申请实施例中,眼底相机在接收到故障检测指令时,启动摄像头,通过摄像头采集红外图像,来完成对红外灯的检测。
本申请实施例中,当红外灯发射单一亮度的红外光时,摄像头采集到单一亮度的红外图像。
本申请实施例中,当红外灯发射多种不同亮度的红外光时,摄像头采集到多种不同亮度的红外图像。具体地,可以指示红外灯依次发射第一红外光、第二红外光和第三红外光,此时,摄像头采集到第一红外光下的第一红外图像、第二红外光下的第二红外图像,以及第三红外光下的第三红外图像,其中,第一红外光的亮度为L1、第二红外光的亮度为L2、第三红外光的亮度为L3,L1、L2和L3不相同,L1、L2和L3可以对应于红外灯的三个亮度等级:低、中和高。
在步骤104中,基于红外图像确定红外灯是否正常。
本申请实施例中,可以基于红外光的预设亮度与红外图像的红外亮度的差值,确定红外灯是否正常。如果差值在一定范围内,则确定红外灯正常,否则确定红外灯异常。
在本申请提供的一个实施方式中,当红外灯依次发射第一红外光、第二红外光和第三红外光时,摄像头采集到第一红外光下的第一红外图像、第二红外光下的第二红外图像,以及第三红外光下的第三红外图像;此时,上述步骤104具体可以包括以下步骤(图中未示出):步骤1041和步骤1042,其中,
在步骤1041中,获取第一红外图像中的红外亮度M1、第二红外图像中的红外亮度M2和第三红外图像中的红外亮度M3。
本申请实施例中,可以采用相关技术中的任一种检测算法,来获取第一红外图像的红外亮度M1、第二红外图像的红外亮度M2和第三红外图像的红外亮度M3。
在步骤1042中,将M1与L1、M2与L2以及M3与L3进行比较,如果 差值均处于预设范围内,则确定红外灯正常,否则确定红外灯故障。
本申请实施例中,如果M1与L1的差值小于△L1,且M2与L2的差值小于△L2,且M3与L3的差值小于△L3,则确定红外灯正常,否则确定红外灯故障,其中,△L1、△L2和△L3为预设阈值。
需要说明的是,本申请实施例中,在检测红外灯时,指示红外灯发射红外线亮度的个数包括但不限于3个,在实际应用中,可以根据需要,选择红外线亮度的个数,本申请实施例对此不作限定。
本申请实施例中,在按成检测后,可以将红外灯的检测结果发送给服务器。
由上述实施例可见,该实施例中,可以通过服务器批量推送检测指令到多台眼底相机,眼底相机在接收到检测指令后,借助于镜头卡套,自动完成对眼底相机中关键硬件模块的故障检测,并将检测结果上报到服务器。与现有技术相比,本申请实施例中,利用现有的镜头卡套,就可以实现对眼底相机的自动检测,而无需人工参与,降低了检测成本。
在本申请提供的再一个实施例中,目标硬件模块还可以包括马达组件,本申请实施例中,在确定红外灯正常的情况下,通过红外灯和摄像头来完成对马达组件的故障检测。此时,如图3所示,本申请实施例提供的方法,还可以在图1所示实施例的基础上,在步骤104之后增加以下步骤:步骤105,其中,
在步骤105中,在红外灯正常工作状态下,指示马达组件将摄像头的镜头视野移动至特征圆点的位置,根据特征圆点在镜头视野内的成像信息,确定马达组件是否正常。
本申请实施例中,马达组件可以包括:第一马达、第二马达和/或第三马达,其中,第一马达用于调节摄像头左右运动,第二马达用于调节摄像头垂直运动,第三马达用于调节摄像头前后运动。其中,摄像头安装在主板上,马达组件通过带动主板运动,来调节摄像头的运动。
本申请实施例中,可以基于马达组件相对于当前位置的移动信息与镜头视野内特征圆点的变化信息的关系,确定马达组件是否正常。
具体地,上述步骤105可以包括以下步骤(图中未示出):步骤1051和步骤1052。
在步骤1051中,指示马达组件将摄像头的镜头视野移动至特征圆点的位置,检测镜头视野内是否有特征圆点的影像,如果没有,则确定第一马达或第二马达故障。
在一个例子中,图4示出了特征圆点与摄像头镜头视野的初始空间位置关系,如果红外灯正常,则指示第一马达和第二马达运动,将摄像头的镜头视野移动至特征圆点的位置。
在步骤1052中,如果镜头视野内有特征圆点的影像,则指示第一马达在水平方向上相对于当前位置移动△x1距离,获取镜头视野内特征圆点的水平变化量△x2,确定△x1与△x2是否满足第一预设线性关系,如果是,则确定第一马达正常,否则确定第一马达故障;和/或
指示第二马达在垂直方向上相对于当前位置移动△y1距离,获取镜头视野内特征圆点的垂直变化量△y2,确定△y1与△y2是否满足第二预设线性关系,如果是,则确定第二马达正常,否则确定第二马达故障;和/或
指示第三马达在前后方向上相对于当前位置移动△z距离,获取镜头视野内特征圆点的半径变化量△r,确定△z与△r是否满足第三预设线性关系,如果是,则确定第三马达正常,否则确定第三马达故障。
本申请实施例中,在确定第一马达和第二马达正常的情况下,还可以通过指示第三马达前后运动,观察特征圆点在镜头视野中半径的变化情况,来对第三马达进行故障检测。
本申请实施例中,如果△x1与△x2不满足第一预设线性关系,则表明第一马达存在空转或损坏的情况,此时确定第一马达故障。
本申请实施例中,如果△y1与△y2不满足第二预设线性关系,则表明第二马达存在空转或损坏的情况,此时确定第二马达故障。
本申请实施例中,如果△z与△r不满足第三预设线性关系,则表明第三马达存在空转或损坏的情况,此时确定第三马达故障。
本申请实施例中,在完成检测后,可以将马达组件的检测结果发送给服务器。
可见,本申请实施例中,可以通过指示第一马达左右运动,观察特征圆点在摄像头镜头视野中左右位置的变化情况,来对第一马达进行故障检测。可以通过指示第二马达上下运动,观察特征圆点在摄像头镜头视野中上下位 置的变化情况,来对第二马达进行故障检测。可以通过指示第三马达前后运动,观察特征圆点在摄像头镜头视野中半径的变化情况,来对第三马达进行故障检测。
在本申请提供的再一个实施例中,目标硬件模块可以还包括霍尔感应器组件,本申请实施例中,在确定马达组件正常的情况下,可以通过马达组件来完成对霍尔感应器组件的故障检测。此时,如图5所示,本申请实施例提供的方法,还可以图3所示实施例的基础上,在步骤105之后增加以下步骤:步骤106,其中,
在步骤106中,在马达组件正常工作状态下,指示马达组件将霍尔感应器组件移动至对应的磁铁感应区,根据霍尔感应器组件是否检测到磁场变化,确定霍尔感应器组件是否正常。
本申请实施例中,霍尔感应器组件安装在主板上,马达组件通过带动主板运动,来调节霍尔感应器组件的运动。
本申请实施例中,在马达组件将霍尔感应器组件移动至对应的磁铁感应区的情况下,如果霍尔感应器组件检测到磁场变化,则确定霍尔感应器组件正常,否则确定霍尔感应器组件故障。
本申请实施例中,霍尔感应器组件可以包括:三组霍尔感应器,分别设置在摄像头的左侧、右侧和底部。
本申请实施例中,在检测摄像头左侧的霍尔感应器时,指示马达组件带动摄像头左侧的霍尔感应器运动到左边界磁铁区域,如果摄像头左侧的霍尔感应器检测到磁场变化,则确定摄像头左侧的霍尔感应器正常,否则确定摄像头左侧的霍尔感应器故障。
本申请实施例中,在检测摄像头右侧的霍尔感应器时,指示马达组件带动摄像头右侧的霍尔感应器运动到右边界磁铁区域,如果摄像头右侧的霍尔感应器检测到磁场变化,则确定摄像头右侧的霍尔感应器正常,否则确定摄像头右侧的霍尔感应器故障。
本申请实施例中,在检测摄像头底部的霍尔感应器时,指示马达组件带动摄像头底部的霍尔感应器运动到底部磁铁区域,如果摄像头底部的霍尔感应器检测到磁场变化,则确定摄像头底部的霍尔感应器正常,否则确定摄像头底部的霍尔感应器故障。
本申请实施例中,在完成检测后,可以将霍尔感应器的检测结果发送给服务器。
在本申请提供的再一个实施例中,当目标硬件模块包括:红外灯、马达组件和霍尔感应器时,目标硬件模块的检测顺序依次为:先检测红外灯、再检测马达组件,最后检测霍尔感应器组件。
本申请实施例中,可以每检测完一个目标硬件模块,向服务器发送一个检测结果;也可以在所有目标硬件模块检测完成后,向服务器发送完整的检测结果。
本申请实施例中,检测结果包括正常和故障。
在本申请提供的再一个实施例中,目标硬件模块还可以包括:闪光灯;此时,还可以在上述任一方法实施例的基础上,增加以下步骤:指示闪光灯发射预设亮度的可见光,根据摄像头在可见光下采集到的可见光图像,确定闪光灯是否正常。其中,闪光灯具体检测方式与红外灯类似,在此不再赘述。闪光灯的检测顺序可以在红外灯检测之前,也可以在之后,本申请实施例对此不作限定。
在本申请提供的再一个实施例中,本申请还提供了一种眼底相机故障检测装置,包括:相机镜头卡套和眼底相机,其中,
相机镜头卡套,用于保护眼底相机以及在眼底相机进行故障检测时隔绝外界光线,镜头卡套内侧的中间凹槽内壁上设置有不反光材质的特征圆点;
眼底相机,包括:处理器及存储在存储器上并可在处理器上运行的程序,该程序被处理器执行时实现上述任一眼底相机故障检测方法的步骤。
根据本申请的再一个实施例,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有程序,所述程序被处理器执行时实现如上述任意一个实施例所述的眼底相机故障检测方法中的步骤。
本申请中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例 可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者 终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种眼底相机故障检测方法、装置及存储介质,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种眼底相机故障检测方法,其中,眼底相机佩戴有镜头卡套,所述镜头卡套用于在故障检测时隔绝外界光线,所述方法包括:
    接收故障检测指令,所述故障检测指令用于指示所述眼底相机对所述眼底相机中的目标硬件模块进行故障检测,所述目标硬件模块包括红外灯;
    响应于所述故障检测指令,指示所述红外灯发射预设亮度的红外光;
    启动所述眼底相机的摄像头在所述红外光下采集红外图像;
    基于所述红外图像确定所述红外灯是否正常。
  2. 根据权利要求1所述的方法,其中,所述镜头卡套内侧的中间凹槽内壁上设置有不反光材质的特征圆点,所述目标硬件模块还包括马达组件,所述方法还包括:
    在所述红外灯正常工作状态下,指示所述马达组件将所述摄像头的镜头视野移动至所述特征圆点的位置,根据所述特征圆点在所述镜头视野内的成像信息,确定所述马达组件是否正常。
  3. 根据权利要求2所述的方法,其中,所述目标硬件模块还包括霍尔感应器组件,所述方法还包括:
    在所述马达组件正常工作状态下,指示所述马达组件将所述霍尔感应器组件移动至对应的磁铁感应区,根据所述霍尔感应器组件是否检测到磁场变化,确定所述霍尔感应器组件是否正常。
  4. 根据权利要求1所述的方法,其中,所述基于所述红外图像确定所述红外灯是否正常,包括:
    基于所述红外光的预设亮度与所述红外图像的红外亮度的差值,确定所述红外灯是否正常。
  5. 根据权利要求4所述的方法,其中,所述指示所述红外灯发射预设亮度的红外光,启动所述眼底相机的摄像头在所述红外光下采集红外图像,基于所述红外图像确定所述红外灯是否正常,包括:
    指示所述红外灯依次发射第一红外光、第二红外光和第三红外光,其中,所述第一红外光的亮度为L1、所述第二红外光的亮度为L2、所述第三红外光的亮度为L3,L1、L2和L3不相同;
    启动所述眼底相机的摄像头在所述第一红外光下采集第一红外图像,在 所述第二红外光下采集第二红外图像,以及在所述第三红外光下采集第三红外图像;
    获取所述第一红外图像的红外亮度M1、所述第二红外图像的红外亮度M2和所述第三红外图像的红外亮度M3;
    将所述M1与所述L1、所述M2与所述L2以及所述M3与所述L3进行比较;
    如果差值均处于预设范围内,则确定所述红外灯正常,否则确定所述红外灯故障。
  6. 根据权利要求2所述的方法,其中,所述指示所述马达组件将所述摄像头的镜头视野移动至所述特征圆点的位置,根据所述特征圆点在所述镜头视野内的成像信息,确定所述马达组件是否正常,包括:
    基于所述马达组件相对于当前位置的移动信息与所述镜头视野内所述特征圆点的变化信息的关系,确定所述马达组件是否正常。
  7. 根据权利要求6所述的方法,其中,所述马达组件包括:第一马达、第二马达和/或第三马达,其中,所述第一马达用于调节所述摄像头左右运动,所述第二马达用于调节所述摄像头垂直运动,所述第三马达用于调节所述摄像头前后运动,所述基于所述马达组件相对于当前位置的移动信息与所述镜头视野内所述特征圆点的变化信息的关系,确定所述马达组件是否正常,包括:
    检测所述镜头视野内是否有所述特征圆点的影像,如果没有,则确定所述第一马达或第二马达故障;
    如果所述镜头视野内有所述特征圆点的影像,则指示所述第一马达在水平方向上相对于当前位置移动△x1距离,获取所述镜头视野内所述特征圆点的水平变化量△x2,确定所述△x1与所述△x2是否满足第一预设线性关系,如果是,则确定所述第一马达正常,否则确定所述第一马达故障;和/或
    指示所述第二马达在垂直方向上相对于当前位置移动△y1距离,获取所述镜头视野内所述特征圆点的垂直变化量△y2,确定所述△y1与所述△y2是否满足第二预设线性关系,如果是,则确定所述第二马达正常,否则确定所述第二马达故障;和/或
    指示所述第三马达在前后方向上相对于当前位置移动△z距离,获取所述 镜头视野内所述特征圆点的半径变化量△r,确定所述△z与所述△r是否满足第三预设线性关系,如果是,则确定所述第三马达正常,否则确定所述第三马达故障。
  8. 根据权利要求1所述的方法,其中,所述目标硬件模块还包括:闪光灯;
    指示所述闪光灯发射预设亮度的可见光,根据所述摄像头在所述可见光下采集到的可见光图像,确定所述闪光灯是否正常。
  9. 一种眼底相机故障检测装置,其中,所述装置包括:
    相机镜头卡套,用于保护眼底相机以及在所述眼底相机进行故障检测时隔绝外界光线,所述镜头卡套内侧的中间凹槽内壁上设置有不反光材质的特征圆点;以及
    眼底相机,包括:处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如权利要求1至8中任一项所述的眼底相机故障检测方法的步骤。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有程序,所述程序被所述处理器执行时实现如权利要求1至8中任一项所述的眼底相机故障检测方法的步骤。
PCT/CN2022/119977 2021-09-23 2022-09-20 眼底相机故障检测方法、装置及存储介质 WO2023045933A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111117662.3A CN114025151B (zh) 2021-09-23 2021-09-23 眼底相机故障检测方法、装置及存储介质
CN202111117662.3 2021-09-23

Publications (1)

Publication Number Publication Date
WO2023045933A1 true WO2023045933A1 (zh) 2023-03-30

Family

ID=80054861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119977 WO2023045933A1 (zh) 2021-09-23 2022-09-20 眼底相机故障检测方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN114025151B (zh)
WO (1) WO2023045933A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114025151B (zh) * 2021-09-23 2023-11-14 北京鹰瞳科技发展股份有限公司 眼底相机故障检测方法、装置及存储介质
CN116687338B (zh) * 2023-08-01 2023-11-03 杭州目乐医疗科技股份有限公司 眼底相机状态检测方法、眼底相机与存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006893A (ja) * 2003-06-19 2005-01-13 Canon Inc 眼科装置のジョイスティック
CN107404647A (zh) * 2016-05-20 2017-11-28 中兴通讯股份有限公司 镜头状态检测方法及装置
CN109218711A (zh) * 2018-09-14 2019-01-15 Oppo(重庆)智能科技有限公司 闪光灯的检测方法、系统及电子设备
CN112190228A (zh) * 2020-10-14 2021-01-08 上海鹰瞳医疗科技有限公司 眼底相机及其检测方法
CN114025151A (zh) * 2021-09-23 2022-02-08 北京鹰瞳科技发展股份有限公司 眼底相机故障检测方法、装置及存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH087480B2 (ja) * 1988-08-31 1996-01-29 キヤノン株式会社 画像形成装置
JPH089222A (ja) * 1994-06-17 1996-01-12 Canon Inc 視線検出機能付き撮像装置
JP2009133979A (ja) * 2007-11-29 2009-06-18 Olympus Corp 撮像装置
KR101538978B1 (ko) * 2014-03-25 2015-07-24 (주)그린아이티코리아 감시 카메라 장치 및 이를 이용한 적외전 led 광원의 이상을 감지하는 방법
EP3288177A1 (en) * 2016-08-22 2018-02-28 Axis AB Fault detection for a pan-tilt camera
CN108989710B (zh) * 2018-07-16 2020-09-04 维沃移动通信有限公司 一种红外补光模块失效检测方法、终端设备及计算机可读存储介质
US20210247436A1 (en) * 2020-02-10 2021-08-12 Darryl Mendivil Real-Time Fault Detection and Infrared Inspection System
CN112190227B (zh) * 2020-10-14 2022-01-11 北京鹰瞳科技发展股份有限公司 眼底相机及其使用状态检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005006893A (ja) * 2003-06-19 2005-01-13 Canon Inc 眼科装置のジョイスティック
CN107404647A (zh) * 2016-05-20 2017-11-28 中兴通讯股份有限公司 镜头状态检测方法及装置
CN109218711A (zh) * 2018-09-14 2019-01-15 Oppo(重庆)智能科技有限公司 闪光灯的检测方法、系统及电子设备
CN112190228A (zh) * 2020-10-14 2021-01-08 上海鹰瞳医疗科技有限公司 眼底相机及其检测方法
CN114025151A (zh) * 2021-09-23 2022-02-08 北京鹰瞳科技发展股份有限公司 眼底相机故障检测方法、装置及存储介质

Also Published As

Publication number Publication date
CN114025151B (zh) 2023-11-14
CN114025151A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2023045933A1 (zh) 眼底相机故障检测方法、装置及存储介质
CN105979134B (zh) 图像处理装置、图像处理方法和图像处理系统
CN105666505A (zh) 具备扩展现实对应显示器的机器人系统
EP3351958B1 (en) Object position detection apparatus
US11600021B2 (en) System and method for calibration between coordinate systems of 3D camera and medical imaging apparatus and application thereof
JP6210748B2 (ja) 三次元位置計測装置、及び三次元位置計測装置のキャリブレーションずれ判定方法
WO2019196560A1 (zh) 图像处理装置测试方法、装置、设备及存储介质
JP2013530466A (ja) ステレオカメラシステムの光学式自己診断
CN1584729A (zh) 图像投影方法和设备
CN110198409B (zh) 终端的控制方法及控制装置、终端及计算机可读存储介质
JP2008235504A (ja) 組立品検査装置
CN111783640A (zh) 检测方法、装置、设备以及存储介质
TWI526879B (zh) 互動系統、遙控器及其運作方法
JP2017161965A (ja) 顔画像処理装置
CN106774992A (zh) 虚拟现实空间定位特征点识别方法
US20220265228A1 (en) Radiation imaging system, radiation imaging method, image processing apparatus, and storage medium
KR20150066845A (ko) 깊이맵 센서를 이용한 조립공정에서의 조립공정 검사장치, 방법 및 시스템
CN108760059B (zh) 激光投射器的检测方法、检测装置及检测系统
CN1132554C (zh) 具有视点检测功能的电子设备
JP2006021300A (ja) 推定装置および把持装置
US10670373B2 (en) Firearm training system
CN111582157B (zh) 一种人体识别方法、装置、设备及计算机可读存储介质
CN115239811A (zh) 一种基于双目视觉检测的定位方法、系统、计算机及存储介质
JP2005296383A (ja) 視線検出装置
WO2021037788A1 (en) Device for detecting drug influence based on visual data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE