WO2023045877A1 - 数据传输的方法和通信装置 - Google Patents

数据传输的方法和通信装置 Download PDF

Info

Publication number
WO2023045877A1
WO2023045877A1 PCT/CN2022/119665 CN2022119665W WO2023045877A1 WO 2023045877 A1 WO2023045877 A1 WO 2023045877A1 CN 2022119665 W CN2022119665 W CN 2022119665W WO 2023045877 A1 WO2023045877 A1 WO 2023045877A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
ppdu
ltf
eht
data
Prior art date
Application number
PCT/CN2022/119665
Other languages
English (en)
French (fr)
Inventor
宫博
狐梦实
刘辰辰
于健
淦明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023045877A1 publication Critical patent/WO2023045877A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and more specifically, to a data transmission method and a communication device.
  • wireless local area network wireless local area network
  • 802.11a/g wireless local area network
  • 802.11ac wireless local area network
  • 802.11ax 802.11ax standard
  • 802.11be standard 802.11be standard
  • the maximum bandwidth resource supported by the 802.11ax standard is 160MHz, while the maximum bandwidth resource supported by the 802.11be standard is 320M MHz.
  • 160MHz bandwidth resource is optional, for 802.11be standard non-AP STA, 160MHz and The 320MHz bandwidth resource is also optional.
  • EHT ultra-high throughput
  • HE high-efficiency non-AP STA
  • EHT non-AP STA still continue to work in the bandwidth of 80MHz or 160MHz.
  • the EHT AP that supports large bandwidth can send the corresponding physical protocol data unit (PPDU) to multiple non-AP STAs at the same time. , that is, EHT AP can send aggregated PPDU (aggregated PPDU, A-PPDU) to HE non-AP STA and EHT non-AP STA.
  • PPDU physical protocol data unit
  • the embodiment of the present application provides a data transmission method and a communication device.
  • the present application can effectively reduce the total PAPR of the downlink transmission of the A-PPDU.
  • a method for data transmission including: determining the polymer physical layer protocol data unit A-PPDU, the A-PPDU includes at least two PPDUs belonging to different protocols, the A-PPDU includes a first sequence, and the first sequence Including N subsequences, any subsequence of N subsequences is the phase rotation parameter corresponding to the HE LTF sequence and/or EHT LTF sequence by the high-efficiency long training field HE LTF sequence and/or the ultra-high throughput long training field EHT LTF sequence
  • the N phase rotation parameters corresponding to the N subsequences include at least one phase rotation parameter with a value of -1, and N is a positive integer greater than or equal to 2; send A-PPDU.
  • phase rotation on each subsequence of the first sequence included in the A-PPDU, and the corresponding N phase rotation parameters include at least one phase rotation parameter with a value of -1, in this way, each subsequence can be changed
  • the superimposition manner among the corresponding subcarriers in this way, the present application can effectively reduce the total PAPR of the downlink transmission of the A-PPDU.
  • the A-PPDU includes HE PPDU and EHT PPDU.
  • phase rotation By performing phase rotation on the subsequences of the first sequence included in the A-PPDU composed of HE PPDU and EHT PPDU, and the corresponding N phase rotation parameters include at least one phase rotation parameter with a value of -1, so, This application can effectively reduce the total PAPR of downlink transmission of A-PPDU composed of HE PPDU and EHT PPDU.
  • sending the A-PPDU includes: sending the A-PPDU in a bandwidth resource of 320 MHz.
  • the HE LTF sequence corresponding to a part of the subsequence of the first sequence may be located on a bandwidth resource of 160MHz lower than 320MHz, and the EHT sequence corresponding to another part of the subsequence of the first sequence
  • the LTF sequence may be located on a bandwidth resource of 320MHz up to 160MHz.
  • the HE LTF sequence corresponding to a partial subsequence of the first sequence may be located on a bandwidth resource of 160MHz higher than 320MHz
  • the EHT LTF sequence corresponding to another subsequence of the first sequence may be located on a bandwidth resource of 160MHz lower than 320MHz.
  • N 4
  • the N phase rotation parameters include at least one of the following groups:
  • the superimposition mode between the subcarriers corresponding to each subsequence can be changed.
  • the present application can effectively reduce the total PAPR of the downlink transmission of the A-PPDU.
  • the method further includes: determining the second data sequence, the second data sequence is determined by the difference sequence and the first data sequence; sending the second data sequence, wherein, The first data sequence is the original data sequence, the second data sequence is the data sequence to be sent, and the difference sequence is determined by the first sequence.
  • the first data sequence is the original data sequence, which can be understood as: a data sequence generated by a network device according to a physical service data unit (physical service data unit, PSDU) transmitted by a media access control (MAC).
  • PSDU physical service data unit
  • MAC media access control
  • the difference sequence is determined by the first sequence, and it can be understood that the first sequence determined by the network device to be sent to the terminal device is not necessarily the same as the LTF sequence determined by the terminal device.
  • the first sequence is: ⁇ HE LTF 160_P1*1, HE LTF 160_P2*-1, EHT LTF 160_P1*-1, EHT LTF 160_P2*-1 ⁇
  • the LTF sequence recognized by the terminal device is ⁇ HE LTF 160
  • the difference sequence [HE LTF 160_P1*1./HE LTF 160_P1, HE LTF 160_P2*-1./HE LTF 160_P2, EHT LTF 160_P1*-1./EHT LTF 160_P1, EHT LTF 160_P2* -1./EHT LTF 160_P2].
  • the HE LTF 160_P1 means that when the bandwidth resource is 160MHz, the sequence refers to the first part of the HE LTF sequence sent on the 160MHz bandwidth resource, and the sequence of the first part occupies the lower 80MHz bandwidth resource of the 160MHz bandwidth resource.
  • HE LTF 160_P2 etc., you can refer to the description of HE LTF 160_P1, and its detailed content can be found in the specific description later, which is omitted here.
  • the LTF sequence recognized by the terminal device is ⁇ HE LTF 160, EHT LTF 160 ⁇
  • the first sequence is ⁇ HE LTF 160_P1*1, HE LTF 160_P2*-1, EHT LTF 160_P1*-1, EHT LTF 160_P2* -1 ⁇
  • the LTF sequence actually sent by the network device is ⁇ HE LTF 160_P1*1, HE LTF 160_P2*-1 ⁇
  • the network device needs to determine the difference between the two sequence
  • the LTF sequence actually sent by the network device is ⁇ EHT LTF 160_P1*-1, EHT LTF 160_P2*-1 ⁇
  • the network device also needs to determine the difference sequence between the two .
  • the difference sequence between the two can be regarded as composed of two values of the phase rotation parameter -1 and 1.
  • the sequence ⁇ HE LTF 160 ⁇ includes 10 numbers
  • the sequence ⁇ HE LTF 160_P1*1, HE LTF 160_P2*-1 ⁇ also includes 10 numbers
  • the sequence ⁇ HE LTF 160_P1*1 ⁇ includes 5 numbers
  • the sequence ⁇ HE LTF 160_P2*-1 ⁇ includes 5 numbers
  • the corresponding difference sequence is ⁇ 1, 1, 1, 1, 1, -1, -1, -1, -1, -1 ⁇
  • the sequence ⁇ EHT LTF 160 ⁇ includes 10 numbers
  • the sequence ⁇ EHT LTF 160_P1*-1, EHT LTF 160_P2*-1 ⁇ also includes 10 numbers
  • the sequence ⁇ EHT LTF 160_P1*-1 ⁇ includes 5 numbers
  • the sequence ⁇ EHT LTF 160_P2*-1 ⁇ includes 5 numbers
  • the corresponding difference sequence is ⁇ -1, -1, -1, -1, -1, -1, -1, -1 ⁇ .
  • the difference sequence between the sequence ⁇ HE LTF 160, EHT LTF 160 ⁇ and the first sequence ⁇ HE LTF 160_P1*1, HE LTF 160_P2*-1, EHT LTF 160_P1*-1, EHT LTF 160_P2*-1 ⁇ is ⁇ 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ⁇ .
  • the network device uses elements of the difference sequence to multiply corresponding elements in the first data sequence, thereby determining the second data sequence.
  • the network device adjusts the transmission mode of the LTF sequence
  • the network device also needs to perform corresponding processing on the transmission of the data sequence, so that the problem of the inconsistency between the transmission sequence and the known sequence of the terminal device can be solved, so as to realize the transmission of the terminal device.
  • Transparent transmission of equipment, and the terminal equipment does not need to make any changes or changes.
  • a method for data transmission including: determining a polymer physical layer protocol data unit A-PPDU, where the A-PPDU includes at least two PPDUs belonging to different protocols, and the A-PPDU includes a first sequence, the first sequence Including high-efficiency long training field HE LTF sequence or ultra-high throughput long training field EHT LTF sequence; send A-PPDU.
  • this application can effectively reduce the total PAPR of the A-PPDU.
  • the A-PPDU includes HE PPDU and EHT PPDU.
  • the present application can effectively reduce the total PAPR of the downlink transmission of the A-PPDU composed of HE PPDU and EHT PPDU.
  • the sending the A-PPDU includes: sending the A-PPDU in a bandwidth resource of 320 MHz.
  • the first sequence is an EHT LTF sequence sent on the 320MHz bandwidth resource.
  • the sending the A-PPDU includes: sending the A-PPDU in a bandwidth resource of 160 MHz.
  • the first sequence is an EHT LTF sequence or an HE LTF sequence.
  • the EHT LTF sequence actually sent by the network device may be half of the EHT LTF sequence corresponding to the 320MHz bandwidth resource, for example, the first sequence is ⁇ EHT LTF 320_P1, EHT LTF 320_P2 ⁇ , alternatively, this first sequence is ⁇ EHT LTF 320_P3, EHT LTF 320_P4 ⁇ .
  • the method further includes: determining the second data sequence based on the difference sequence and the first data sequence, where the difference sequence is determined by the first sequence; sending the second data sequence, wherein , the first data sequence is the original data sequence, and the second data sequence is the data sequence to be sent.
  • the difference sequence is determined by the first sequence, which can be understood as: after the network device determines the first sequence to be sent to the terminal device, the LTF sequence recognized by the terminal device is different from the first sequence. For example, if the terminal device determines that the LTF sequence sent by the network device is ⁇ HE LTF 80, EHT LTF 80 ⁇ , there is a difference sequence between the two.
  • the first sequence is composed of HE LTF sequence or EHT LTF sequence
  • the first sequence is sent by the network device to the terminal device, but the terminal device will recognize a second sequence, in other words, the second sequence can be regarded as The LTF sequence predefined by the protocol, there is a difference sequence between the first sequence and the second sequence, and the difference sequence is composed of the quotient obtained by dividing each element of the first sequence with the corresponding element in the second sequence .
  • the network device After determining the difference sequence between the first sequence and the second sequence, the network device multiplies each element in the first data sequence by the corresponding element in the difference sequence, and then determines the second data sequence, in other words, the network device After adjusting the transmission method of the LTF sequence, the network device performs the above-mentioned processing on the transmission of the data sequence, which solves the problem that the transmission sequence is inconsistent with the known sequence of the terminal device, thereby realizing transparent transmission to the terminal device, and the terminal device does not Any changes or changes are required.
  • a data transmission method including: receiving an aggregated physical layer protocol data unit A-PPDU, where the A-PPDU includes at least two PPDUs belonging to different protocols, and the A-PPDU includes a first sequence, the first sequence Including N subsequences, any subsequence of N subsequences is the phase rotation parameter corresponding to the HE LTF sequence and/or EHT LTF sequence by the high-efficiency long training field HE LTF sequence and/or the ultra-high throughput long training field EHT LTF sequence
  • the N phase rotation parameters corresponding to the N subsequences include at least one phase rotation parameter with a value of -1, and N is a positive integer greater than or equal to 2.
  • the A-PPDU includes HE PPDU and EHT PPDU.
  • receiving the A-PPDU includes: receiving the A-PPDU in a bandwidth resource of 320 MHz.
  • N 4
  • the N phase rotation parameters include at least one of the following groups:
  • the method further includes: receiving a second data sequence, the second data sequence is determined by the difference sequence and the first data sequence, wherein the first data sequence is the original The data sequence, the second data sequence is the data sequence to be sent, and the difference sequence is determined by the first sequence.
  • a method for data transmission including: receiving an aggregate physical layer protocol data unit A-PPDU, the A-PPDU includes at least two PPDUs belonging to different protocols, the A-PPDU includes a first sequence, the first sequence Including the high-efficiency long training field HE LTF sequence or the ultra-high throughput long training field EHT LTF sequence.
  • the A-PPDU includes HE PPDU and EHT PPDU.
  • receiving the A-PPDU includes: receiving the A-PPDU in a bandwidth resource of 320 MHz.
  • receiving the A-PPDU includes: receiving the A-PPDU in a bandwidth resource of 160 MHz.
  • the method further includes: receiving a second data sequence, the second data sequence is determined based on the difference sequence and the first data sequence, the difference sequence is determined by the first sequence, wherein, the first data sequence is the original data sequence, and the second data sequence is the data sequence to be sent.
  • a communication device including: a processing unit, configured to determine a polymer physical layer protocol data unit A-PPDU, where the A-PPDU includes at least two PPDUs belonging to different protocols, where the A-PPDU includes a first sequence,
  • the first sequence includes N subsequences, and any subsequence of the N subsequences is corresponding to the HE LTF sequence and/or the EHT LTF sequence by the high-efficiency long training field HE LTF sequence and/or the ultra-high throughput long training field EHT LTF sequence
  • the phase rotation is obtained under the phase rotation parameter, and the N phase rotation parameters corresponding to the N subsequences include at least one phase rotation parameter with a value of -1, and N is a positive integer greater than or equal to 2;
  • the transceiver unit is used to send A- PPDUs.
  • the A-PPDU includes HE PPDU and EHT PPDU.
  • the transceiver unit is configured to send the A-PPDU in a bandwidth resource of 320 MHz.
  • N 4
  • the N phase rotation parameters include at least one of the following groups:
  • the processing unit is further configured to determine the second data sequence, and the second data sequence is determined by the difference sequence and the first data sequence; the transceiver unit is also configured to send The second data sequence, wherein the first data sequence is the original data sequence, the second data sequence is the data sequence to be sent, and the difference sequence is determined by the first sequence.
  • a communication device including: a processing unit, configured to determine a polymer physical layer protocol data unit A-PPDU, where the A-PPDU includes at least two PPDUs belonging to different protocols, where the A-PPDU includes a first sequence,
  • the first sequence includes a high-efficiency long training field HE LTF sequence or an ultra-high throughput long training field EHT LTF sequence; the transceiver unit is used to send the A-PPDU.
  • the A-PPDU includes HE PPDU and EHT PPDU.
  • the transceiver unit is configured to send the A-PPDU in a bandwidth resource of 320 MHz.
  • the transceiver unit is configured to send the A-PPDU in a bandwidth resource of 160 MHz.
  • the processing unit is further configured to determine the second data sequence based on the difference sequence and the first data sequence, and the difference sequence is determined by the first sequence; the transceiver unit is further configured to Sending the second data sequence, wherein the first data sequence is the original data sequence, and the second data sequence is the data sequence to be sent.
  • a communication device including: a transceiver unit, configured to receive a polymer physical layer protocol data unit A-PPDU, where the A-PPDU includes at least two PPDUs belonging to different protocols, and the A-PPDU includes a first sequence,
  • the first sequence includes N subsequences, and any subsequence of the N subsequences is corresponding to the HE LTF sequence and/or the EHT LTF sequence by the high-efficiency long training field HE LTF sequence and/or the ultra-high throughput long training field EHT LTF sequence
  • the phase rotation parameter the product of N phase rotation parameters corresponding to N subsequences is a negative number, and N is a positive integer greater than or equal to 2.
  • the A-PPDU includes HE PPDU and EHT PPDU.
  • the transceiver unit is configured to receive the A-PPDU in a bandwidth resource of 320 MHz.
  • N 4
  • the N phase rotation parameters include at least one of the following groups:
  • the transceiver unit is configured to receive the second data sequence, the second data sequence is determined by the difference sequence and the first data sequence, wherein the first data sequence is the original The data sequence, the second data sequence is the data sequence to be sent, and the difference sequence is determined by the first sequence.
  • a communication device including: a transceiver unit, configured to receive a polymer physical layer protocol data unit A-PPDU, where the A-PPDU includes at least two PPDUs belonging to different protocols, and the A-PPDU includes a first sequence,
  • the first sequence includes a high-efficiency long training field HE LTF sequence or an ultra-high throughput long training field EHT LTF sequence.
  • the A-PPDU includes HE PPDU and EHT PPDU.
  • the transceiver unit is configured to receive the A-PPDU in a bandwidth resource of 320 MHz.
  • the transceiver unit is configured to receive the A-PPDU in a bandwidth resource of 160 MHz.
  • the transceiver unit is configured to receive the second data sequence, the second data sequence is determined based on the difference sequence and the first data sequence, the difference sequence is determined by the first sequence, wherein, the first data sequence is the original data sequence, and the second data sequence is the data sequence to be sent.
  • a communication device including a processor, the processor is coupled with a memory, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions in the memory, so that the first aspect and The method described in any one of the possible implementation manners of the first aspect is executed; or, the method described in any one of the second aspect and any possible implementation manners of the second aspect is executed; or , so that the method described in any one of the third aspect and any possible implementation manner of the third aspect is executed; or, making the fourth aspect and any one of the method described in any possible implementation manner of the fourth aspect method is executed.
  • the communication device further includes a transceiver, and the transceiver is configured to execute the method described in any one of the first aspect and any possible implementation manner of the first aspect; or, execute the second aspect The method described in any one of the possible implementations of the third aspect and the second aspect; or, perform the method described in any one of the third aspect and any possible implementation of the third aspect; or, perform The method described in any one of the fourth aspect and any possible implementation manner of the fourth aspect.
  • a chip system in a tenth aspect, includes a logic circuit and a communication interface, the communication interface is used to receive or send A-PPDU, and the logic circuit is used to execute any one of the first aspect and the first aspect. Or, perform the method described in any one of the second aspect and any possible implementation manner of the second aspect; or, perform the third aspect and the method of the third aspect The method described in any one of the possible implementation manners; or, performing the fourth aspect and the method described in any one of the possible implementation manners of the fourth aspect.
  • a communication system in an eleventh aspect, includes a communication device on the access point side and a communication device on the station side, and the communication device on the access point side is used to implement the first aspect and any of the first aspect
  • the method described in any one of the possible implementation manners, or the communication device on the access point side is used to execute the method described in any one of the second aspect and any possible implementation manner of the second aspect;
  • the communication device on the site side is used to perform the third aspect and the method described in any possible implementation manner of the third aspect, or the communication device on the site side is used to perform the fourth aspect and any of the fourth aspects.
  • a computer-readable storage medium storing computer programs or instructions, the computer programs or instructions are used to implement the first aspect and any one of the possible implementation modes of the first aspect. or, for realizing the second aspect and the method described in any one of the possible implementations of the second aspect; or, for realizing the third aspect and any one of the possible implementations of the third aspect.
  • a computer program product is provided, and when the computer program product is run on a computer, the computer is made to perform the method described in any one of the first aspect and any possible implementation manner of the first aspect ; Or, perform the method described in any one of the second aspect and any possible implementation of the second aspect; or, perform any one of the third aspect and any of the possible implementations of the third aspect The method described above; or, performing the method described in any one of the fourth aspect and any possible implementation manner of the fourth aspect.
  • FIG. 1 is a schematic diagram of an application scenario provided by this application.
  • Fig. 2 is a schematic diagram of the structure of an LTF.
  • Fig. 3 is a schematic diagram of an A-PPDU aggregation type.
  • FIG. 4 is a schematic diagram of an LTF sequence transmission manner applied to an A-PPDU.
  • Fig. 5 is a schematic flow chart of a data transmission method provided by the present application.
  • Fig. 6 is a schematic flowchart of another data transmission method provided by the present application.
  • Fig. 7 is a structural block diagram of a communication device provided by the present application.
  • Fig. 8 is a structural block diagram of another communication device provided by the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • 5G new radio
  • NR new radio
  • the terminal equipment in the embodiment of the present application may refer to user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless Communication Device, User Agent, or User Device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in public land mobile network (PLMN), etc.,
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Functional handheld devices computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in public land mobile network (PLMN), etc.
  • PLMN public land mobile network
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a base station (base transceiver station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, BTS) in a WCDMA system.
  • BTS base transceiver station
  • NodeB base station
  • NB can also be an evolved base station (evolutional nodeB, eNB or eNodeB) in the LTE system, can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or the network device can It is a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a 5G network or a network device in a PLMN network, etc., which are not limited in this embodiment of the present application.
  • evolutional nodeB, eNB or eNodeB in the LTE system
  • CRAN cloud radio access network
  • the network device can It is a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a 5G network or a network device in a PLMN network, etc., which are not limited in this embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario provided by this application.
  • the AP can be a communication server, router, switch, or any of the above-mentioned network devices
  • the STA can be a mobile phone, a computer, or any of the above-mentioned terminal devices.
  • this paper refers to the station of access point type as access point (access point, AP), and the station of non-access point type as station (STA).
  • the access point can be the access point for the terminal equipment (such as mobile phone) to enter the wired (or wireless) network. It is mainly deployed in the home, inside the building, and inside the park. Can be deployed outdoors.
  • the access point is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the access point may be a terminal device (such as a mobile phone) or a network device (such as a router) with a Wi-Fi chip.
  • the access point may be a device supporting the 802.11be standard.
  • the access point may also be a device supporting multiple WLAN standards of the 802.11 family such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation.
  • the access point in this application may be HEAP or EHTAP, and may also be an access point applicable to a certain future generation of Wi-Fi standards.
  • a station may be a wireless communication chip, a wireless sensor, or a wireless communication terminal, etc., and may also be called a user.
  • the site can be a mobile phone supporting the Wi-Fi communication function, a tablet computer supporting the Wi-Fi communication function, a set-top box supporting the Wi-Fi communication function, a smart TV supporting the Wi-Fi communication function, an Smart wearable devices, in-vehicle communication devices supporting Wi-Fi communication functions, computers supporting Wi-Fi communication functions, etc.
  • the station may support the 802.11be standard.
  • the station can also support WLAN standards of the 802.11 family such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, 802.11a, and 802.11be next generation.
  • the access point in this application can be a HESTA or an EHTSTA, and can also be a STA that is applicable to a certain future generation of Wi-Fi standards.
  • access points and stations can be devices applied in the Internet of Vehicles, IoT nodes and sensors in the Internet of Things (IoT), smart cameras in smart homes, smart remote controls, smart water meters, And sensors in smart cities, etc.
  • IoT Internet of Things
  • the wireless communication system provided by the embodiment of the present application may be a WLAN or a cellular network, and the method may be implemented by a communication device in the wireless communication system or a chip or a processor in the communication device, and the communication device may be a device that supports multiple links
  • a wireless communication device that transmits in parallel is called, for example, a multi-link device or a multi-band device. Compared with devices that only support single-link transmission, multi-link devices have higher transmission efficiency and higher throughput.
  • a multi-link device includes one or more affiliated STAs (affiliated STAs).
  • An affiliated STA is a logical station that can work on one link. Wherein, the affiliated station can be AP or non-AP STA.
  • the multi-link device whose affiliated site is AP can be called multi-link AP or multi-link AP device or AP multi-link device (AP multi-link device), and the affiliated site is non-
  • the multi-link device of the AP STA may be called a multi-link STA or a multi-link STA device or an STA multi-link device (STA multi-link device).
  • the AP can simultaneously send corresponding PPDUs to multiple non-AP STAs, that is, send A- PPDU, for example, the AP can send the HE PPDU to the HE non-AP STA, and also send the EHT PPDU to the EHT non-AP STA, so that the throughput of the BSS supporting the large bandwidth EHT AP can be improved.
  • LTF can be used for channel estimation. Different bandwidths have respective different LTF sequence designs. Wherein, the value carried by each subcarrier under each bandwidth constitutes the LTF sequence of the bandwidth.
  • channel estimation for each stream may be performed by sending multiple orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • Data subcarrier used for actual data transmission
  • Pilot subcarrier used to provide phase information and parameter tracking
  • Unused subcarriers neither data subcarriers nor pilot subcarriers, including central direct current (DC) subcarriers, guard bands and empty subcarriers.
  • DC central direct current
  • the transmission mode of the data subcarriers can be described as follows: in order to keep the LTF sequences of each stream orthogonal, elements of the P matrix can be multiplied by elements of the LTF sequences. Taking the number of elements of the LTF sequence as 4*4 as an example, the corresponding P matrix is:
  • Fig. 2 is a schematic diagram of the structure of an LTF. Specifically, the kth subcarrier carries the kth element LTF k of the LTF sequence, and the LTF of the nth OFDM symbol corresponding to the mth space-time stream is multiplied by the element in the mth row and nth column of the P matrix , so after experiencing the channel H k , the frequency domain signal Y k received by the non-AP STA can be expressed as:
  • the P matrix is an orthogonal matrix ( I is the identity matrix, * is the conjugate transpose of the matrix), so the channel on the kth subcarrier In this way, a multiple input multiple output (MIMO) channel corresponding to the kth subcarrier can be estimated.
  • MIMO multiple input multiple output
  • a resource unit includes both data subcarriers and pilot subcarriers.
  • the above LTF construction method is only for data subcarriers.
  • pilot subcarriers the corresponding LTF construction method is similar to the LTF construction method of data subcarriers, but the difference between the two is that the LTF construction method of pilot subcarriers
  • the LTF sequence can be divided into 1x sequence, 2x sequence and 4x sequence according to the number of zero elements spaced between two non-zero elements. Wherein, at least 3 zero elements are separated between two non-zero elements of the LTF1x sequence. There is at least one zero element between two non-zero elements of the LTF2x sequence. There are consecutive non-zero elements in the LTF4x sequence. Among them, since the non-zero elements in the LTF4x sequence are the densest, the result of channel estimation obtained by using the LTF4x sequence to perform channel estimation is the most accurate.
  • LTF1x, LTF2x and LTF4x sequences under different bandwidths.
  • the 802.11ax standard specifies the LTF1x sequence, LTF2x and LTF4x sequence in bandwidths of 20 MHz, 40 MHz, 80 MHz and 160 MHz respectively.
  • the 802.11be standard specifies the same LTF sequence as the 802.11ax protocol. Only the LTF1x sequence, LTF2x and LTF4x sequence are designed for the newly added 320MHz bandwidth.
  • Fig. 3 is a schematic diagram of an A-PPDU aggregation type. Specifically, as shown in Figure 3, the A-PPDU aggregation types include the following:
  • Type 1 means: the aggregation mode of HE PPDU and EHT PPDU when the bandwidth resource is 320MHz, and the main 160MHz is located at the lower 160MHz of 320MHz, and the HE PPDU is located on the main 160MHz of the 320MHz bandwidth resource.
  • Type 2 means: the aggregation method of HE PPDU and EHT PPDU when the bandwidth resource is 320MHz, and the main 160MHz is located at the upper 160MHz of 320MHz, and the HE PPDU is located on the main 160MHz of the 320MHz bandwidth resource.
  • Type 3 means: the aggregation method of HE PPDU and EHT PPDU when the bandwidth resource is 160MHz, and the HE PPDU is located at the lower 80MHz of 160MHz, and the EHT PPDU is located at the upper 80MHz of 160MHz.
  • Type 4 means: the aggregation method of HE PPDU and EHT PPDU when the bandwidth resource is 160MHz, and the HE PPDU is located at the upper 80MHz of 160MHz, and the EHT PPDU is located at the lower 80MHz of 160MHz.
  • the HE STA can only be located at the main 160MHz.
  • the main 160MHz is the lower 160MHz or the upper 160MHz of 320MHz, which is specifically notified by the AP to the non-AP STA.
  • the lower 160MHz of the 320MHz bandwidth resource is configured according to the tone plan of the 802.11ax standard, and the upper 160MHz of the 320MHz bandwidth resource is configured according to the tone plan of the 802.11be standard.
  • the upper 160MHz of the 320MHz bandwidth resource is configured according to the tone plan of the 802.11ax standard, and the lower 160MHz of the 320MHz bandwidth resource is configured according to the tone plan of the 802.11be standard.
  • the lower 80MHz of the 160MHz bandwidth resource is configured according to the tone plan of the 802.11ax standard, and the upper 80MHz of the 160MHz bandwidth resource is configured according to the tone plan of the 802.11be standard.
  • the upper 80MHz of the 160MHz bandwidth resource is configured according to the tone plan of the 802.11ax standard, and the lower 80MHz of the 160MHz bandwidth resource is configured according to the tone plan of the 802.11be standard.
  • the HE PPDU adopts the HE pilot configuration mode
  • the EHT PPDU adopts the EHT pilot configuration mode
  • the embodiment of the present application does not involve changing the pilot position of the HE PPDU and/or EHT PPDU, but generally involves changing the transmission mode of the LTF sequence of the HE PPDU and/or EHT PPDU.
  • the LTF sequence involved in the embodiment of the present application may be the LTF2x sequence or the LTF4x sequence, which is not specifically limited in the embodiment of the present application.
  • Orthogonal Frequency Division Multiple Access (OFDMA).
  • OFDMA is the evolution of Orthogonal Frequency Division Multiple Access (OFDM) technology, and is the combination of OFDM and Frequency Division Multiple Access (FDMA) technology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • the OFDMA multiple access system divides the transmission bandwidth into a series of orthogonal non-overlapping subcarrier sets, and allocates different subcarrier sets to different users to realize multiple access.
  • the OFDMA system can dynamically allocate available bandwidth resources to users in need, and it is easy to realize optimal utilization of system resources. Since different users occupy non-overlapping subcarrier sets, under ideal synchronization conditions, the system has no interference between multiple households, that is, no multiple access interference (MAI).
  • MAI multiple access interference
  • OFDM uses frequency domain equalization technology
  • the accuracy of channel estimation has a great impact on communication performance.
  • OFDM system has the disadvantage of high PAPR, especially in large bandwidth, more subcarriers lead to more serious PAPR , high PAPR will lead to nonlinear distortion of the signal and degrade system performance. Therefore, in order to perform channel estimation more accurately, keeping a low PAPR is an important index for LTF sequence design, but in the scenario of A-PPDU downlink transmission, the low PAPR of the LTF sequence cannot be effectively guaranteed.
  • FIG. 4 is a schematic diagram of an LTF sequence transmission manner applied to an A-PPDU.
  • HE LTF is sent according to the pilot position of HE LTF sequence in the bandwidth part occupied by HE PPDU Sequence; when AP sends EHT PPDU to EHT non-AP STA, it sends EHT LTF sequence according to the pilot position of EHT LTF sequence in the bandwidth part occupied by EHT PPDU.
  • the embodiment of the present application provides a data transmission method and a communication device.
  • the present application can effectively reduce the total cost of the downlink transmission of the A-PPDU.
  • the PAPR The PAPR.
  • EHT LTF 320 means that when the bandwidth resource is 320MHz, this sequence refers to the EHT LTF sequence sent on the 320MHz bandwidth resource, which occupies all the bandwidth resources of the 320MHz bandwidth resource.
  • EHT LTF 320_P1 means that when the bandwidth resource is 320MHz, this sequence refers to the first part of the EHT LTF sequence sent on the 320MHz bandwidth resource, and the sequence of the first part occupies the first 80MHz bandwidth resource of the 320MHz bandwidth resource.
  • EHT LTF 320_P2 means that when the bandwidth resource is 320MHz, this sequence refers to the second part of the EHT LTF sequence sent on the 320MHz bandwidth resource, and the sequence of the second part occupies the second 80MHz bandwidth resource of the 320MHz bandwidth resource.
  • EHT LTF 320_P3 means that when the bandwidth resource is 320MHz, this sequence refers to the third part of the EHT LTF sequence sent on the 320MHz bandwidth resource, and the sequence of the third part occupies the third 80MHz bandwidth resource of the 320MHz bandwidth resource.
  • EHT LTF 320_P4 means that when the bandwidth resource is 320MHz, this sequence refers to the fourth part of the EHT LTF sequence sent on the 320MHz bandwidth resource, and the sequence of the fourth part occupies the fourth 80MHz bandwidth resource of the 320MHz bandwidth resource.
  • EHT LTF 160 means that when the bandwidth resource is 160MHz, this sequence refers to the EHT LTF sequence sent on the 160MHz bandwidth resource, which occupies all the bandwidth resources of the 160MHz bandwidth resource.
  • EHT LTF 160_P1 means that when the bandwidth resource is 160MHz, the sequence refers to the first part of the EHT LTF sequence sent on the 160MHz bandwidth resource, and the sequence of the first part occupies the lower 80MHz bandwidth resource of the 160MHz bandwidth resource.
  • EHT LTF 160_P2 means that when the bandwidth resource is 160MHz, this sequence refers to the second part of the EHT LTF sequence sent on the 160MHz bandwidth resource, and the sequence of the second part occupies the upper 80MHz bandwidth resource of the 160MHz bandwidth resource.
  • EHT LTF 80 means that when the bandwidth resource is 80MHz, this sequence refers to the EHT LTF sequence sent on the 80MHz bandwidth resource, which occupies all the bandwidth resources of the 80MHz bandwidth resource.
  • HE LTF 160 means that when the bandwidth resource is 160MHz, this sequence refers to the HE LTF sequence sent on the 160MHz bandwidth resource, which occupies all the bandwidth resources of the 160MHz bandwidth resource.
  • HE LTF 160_P1 means that when the bandwidth resource is 160MHz, the sequence refers to the first part of the HE LTF sequence sent on the 160MHz bandwidth resource, and the sequence of the first part occupies the lower 80MHz bandwidth resource of the 160MHz bandwidth resource.
  • HE LTF 160_P2 means that when the bandwidth resource is 160MHz, the sequence refers to the second part of the HE LTF sequence sent on the 160MHz bandwidth resource, and the sequence of the second part occupies the upper 80MHz bandwidth resource of the 160MHz bandwidth resource.
  • HE LTF 80 means that when the bandwidth resource is 80MHz, this sequence refers to the HE LTF sequence sent on the 80MHz bandwidth resource, which occupies all the bandwidth resources of the 80MHz bandwidth resource.
  • Fig. 5 is a schematic diagram of a data transmission method provided by the present application.
  • the execution subject of the method #500 is a network device.
  • the A-PPDU includes at least two PPDUs belonging to different protocols
  • the A-PPDU includes a first sequence
  • the first sequence includes N subsequences
  • any subsequence of the N subsequences is composed of HE LTF sequence and /or the EHT LTF sequence is obtained by performing phase rotation under the phase rotation parameters corresponding to the HE LTF sequence and/or EHT LTF sequence
  • the N phase rotation parameters corresponding to the N subsequences include at least one phase rotation parameter with a value of -1
  • N is a positive integer greater than or equal to 2.
  • the A-PPDU includes multiple PPDUs belonging to different protocols.
  • the A-PPDU includes HE PPDU and EHT PPDU, or, the A-PPDU includes very high throughput (very high throughput, VHT) PPDU and high throughput (high throughput, HT) PPDU, or, the A -PPDU may also include HE PPDU, EHT PPDU, VHT PPDU and HT PPDU, which are not specifically limited in this embodiment of the application.
  • the first sequence included in the A-PPDU includes multiple segments of LTF sequences.
  • the first sequence includes N subsequences.
  • the sequence lengths between any two LTF sequences in the N subsequences may be consistent or inconsistent, wherein, N is a positive integer greater than or equal to 2.
  • each LTF sequence in the N subsequences may belong to the same type, for example, all are EHT LTF sequences, or may belong to different types, for example, a part of the subsequences is a HE LTF sequence, and another part of the LTF sequence
  • the subsequence is an EHT LTF sequence, which is not specifically limited in the embodiments of the present application.
  • the N subsequences of the first sequence are obtained by performing phase rotation on the HE LTF sequence and/or EHT LTF sequence corresponding to each subsequence under the corresponding phase rotation parameters.
  • the first sequence includes four subsequences, which are respectively the first subsequence, the second subsequence, the third generation subsequence and the fourth subsequence
  • the first phase rotation parameter corresponds to the first subsequence
  • the second phase rotation parameter corresponds to the second subsequence
  • the third phase rotation parameter corresponds to the third subsequence
  • the fourth phase rotation parameter corresponds to the fourth subsequence.
  • the network device uses the first phase rotation parameter to perform phase rotation on the first subsequence to obtain the phase rotated first subsequence, and uses the second phase rotation parameter to perform phase rotation on the second subsequence to obtain For the second subsequence after phase rotation, use the third phase rotation parameter to perform phase rotation on the third subsequence to obtain the third subsequence after phase rotation, and use the fourth phase rotation parameter to perform phase rotation on the fourth subsequence Thus, the fourth subsequence after phase rotation is obtained.
  • the above-mentioned first subsequence can be a HE LTF sequence
  • the second subsequence can be a HE LTF sequence
  • the third subsequence can be an EHT LTF sequence
  • the fourth subsequence can be an EHT LTF sequence
  • the above-mentioned The first subsequence can be EHT LTF sequence
  • the second subsequence can be EHT LTF sequence
  • the third subsequence can be HE LTF sequence
  • the fourth subsequence can be HE LTF sequence
  • the first subsequence mentioned above It can be an EHT LTF sequence
  • the second subsequence can be an EHT LTF sequence
  • the third subsequence can be an EHT LTF sequence
  • the fourth subsequence can be an EHT LTF sequence, which is not specifically limited in the embodiment of this application.
  • the first sequence includes not limited to the four subsequences described above, and may also include more subsequences.
  • This embodiment of the present application does not specifically limit it, but each subsequence included in the first sequence is phased
  • the result of rotation where the phase rotation parameter corresponding to each subsequence can be 1 or -1, and at least one of the N phase rotation parameters of each phase rotation parameter corresponding to each subsequence has a value of -1
  • the phase rotation parameter of is
  • the terminal device receives the A-PPDU sent from the network device.
  • the present application can effectively reduce the total PAPR of the downlink transmission of the A-PPDU.
  • the number of phase rotation parameters with a value of -1 among the N phase rotation parameters is less than or equal to N.
  • the A-PPDU includes HE PPDU and EHT PPDU.
  • each corresponding phase rotation parameter includes at least one phase rotation parameter with a value of -1
  • the present application It can effectively reduce the total PAPR of downlink transmission of A-PPDU composed of HE PPDU and EHT PPDU.
  • the network device sends the A-PPDU in a bandwidth resource of 320 MHz.
  • the HE LTF sequence corresponding to a part of the subsequence of the first sequence can be located on a bandwidth resource of 160MHz lower than 320MHz, and the EHT LTF sequence corresponding to another part of the subsequence of the first sequence can be Located on the 320MHz high 160MHz bandwidth resources. More specifically, the above deployment manner may correspond to type 1 shown in FIG. 3 .
  • the HE LTF sequence corresponding to a partial subsequence of the first sequence may be located on a bandwidth resource of 160MHz higher than 320MHz, and the EHT LTF sequence corresponding to another subsequence of the first sequence may be located on a bandwidth resource of 160MHz lower than 320MHz.
  • the above deployment manner may correspond to type 2 shown in FIG. 3 .
  • the four phase rotation parameters include at least one group as follows:
  • the first phase rotation parameter the second phase rotation parameter, the third phase rotation parameter and the fourth phase rotation parameter.
  • the first phase rotation parameter the second phase rotation parameter, the third HE LTF subsequence and the fourth HE LTF subsequence.
  • the superposition mode between subcarriers can be changed.
  • the present application can effectively reduce the total PAPR of downlink transmission of A-PPDU.
  • the EHT LTF sequence is half of the EHT LTF sequence corresponding to the 320MHz bandwidth resource.
  • half of the EHT LTF sequence can be the second half of the EHT LTF sequence corresponding to the 320MHz bandwidth resource.
  • Half of the EHT LTF sequence can also be It can be the first half of the EHT LTF sequence corresponding to the 320MHz bandwidth resource. For details, see the 5th and 6th rows of Table 5, and the 4th and 5th rows of Table 6.
  • Table 3 shows the PAPR values corresponding to different LTF sequence transmission modes when the LTF sequence is an LTF4x sequence. It should be understood that 3*996, 2*996 and 4*996 in the first row of Table 3 refer to specific configuration forms of tones of multiple resource units (MRU).
  • MRU multiple resource units
  • Table 3 shows the comparison between PAPR values corresponding to different LTF sequence formation methods under the same configuration form.
  • the configuration form is 4*996
  • the LTF sequence of A-PPDU is composed of ⁇ HE LTF 160, EHT LTF160 ⁇ (this sequence can also be understood as the transmission of the existing A-PPDU LTF sequence method)
  • the corresponding PAPR value is 9.45
  • the first sequence includes ⁇ HE LTF 160_P1*a, HE LTF 160_P2*b, EHT LTF 160_P1*c, EHT LTF 160_P2*d ⁇
  • its corresponding PAPR value is 7.31
  • a sequence includes ⁇ EHT LTF 320_P1*a, EHT LTF 320_P2*b, EHT LTF 320_P3*c, EHT LTF 320_P4*d ⁇ , and its corresponding PAPR value is 6.15
  • the first sequence includes ⁇ HE LTF 160_P1, HE LTF 160_P2, EHT LTF 320_P3,
  • the first sequence includes ⁇ HE LTF 160_P1, HE LTF 160_P2, EHT LTF 320_P3, EHT LTF 320_P4 ⁇ , its corresponding first phase rotation parameter, second phase rotation parameter, third phase rotation parameter and fourth
  • the combination of phase rotation parameters is ⁇ 1,1,1,1 ⁇ or ⁇ -1,-1,-1,-1 ⁇ .
  • a, b, c and d shown in the 3rd row, the 4th row and the 6th row of Table 3 correspond to the above-mentioned first phase rotation parameter, second phase rotation parameter, third phase rotation parameter and Fourth phase rotation parameter.
  • PAPR values corresponding to several combinations of the first sequence shown in Table 3 are only for reference, which represent approximate values of PAPRs corresponding to various combinations.
  • ⁇ -1, -1, -1, -1 ⁇ and ⁇ 1, 1, 1, 1 ⁇ are two equivalent combinations, which are described in a unified manner here. It is no longer described in .
  • Table 4 shows the PAPR values corresponding to different LTF sequence transmission modes when the LTF sequence is an LTF2x sequence. It should be understood that 3*996, 2*996 and 4*996 in the first row of Table 4 refer to the specific configuration form of the tone of the MRU.
  • Table 4 shows the comparison between PAPR values corresponding to different LTF sequence formation methods under the same configuration form.
  • the configuration form is 4*996
  • the LTF sequence of A-PPDU is composed of ⁇ HE LTF 160, EHT LTF160 ⁇ (this sequence can also be understood as the transmission of the existing A-PPDU LTF sequence method)
  • the corresponding PAPR value is 9.78
  • the first sequence includes ⁇ HE LTF 160_P1*a, HE LTF 160_P2*b, EHT LTF 160_P1*c, EHT LTF 160_P2*d ⁇ , and its corresponding PAPR value is 6.92
  • a sequence includes ⁇ HE LTF 160_P1, HE LTF 160_P2, EHT LTF 320_P3, EHT LTF 320_P4 ⁇ , and its corresponding PAPR value is 8.53.
  • the first sequence includes ⁇ HE LTF 160_P1, HE LTF 160_P2, EHT LTF 320_P3, EHT LTF 320_P4 ⁇ , its corresponding first phase rotation parameter, second phase rotation parameter, third phase rotation parameter and fourth
  • the combination of phase rotation parameters is ⁇ 1,1,1,1 ⁇ or ⁇ -1,-1,-1,-1 ⁇ .
  • a, b, c and d shown in row 3 of Table 4 correspond to the above-mentioned first phase rotation parameter, second phase rotation parameter, third phase rotation parameter and fourth phase rotation parameter.
  • PAPR values corresponding to several combinations of the first sequence shown in Table 4 are only for reference, which represent approximate values of PAPRs corresponding to various combinations.
  • the present application can effectively reduce the total PAPR value of downlink transmission of A-PPDU.
  • Table 5 shows the PAPR values corresponding to different LTF sequence transmission modes when the LTF sequence is an LTF4x sequence. It should be understood that 3*996, 2*996 and 4*996 in the first row of Table 5 refer to the specific configuration form of the tone of the MRU.
  • Table 5 shows the comparison between PAPR values corresponding to different LTF sequence formation methods under the same configuration form.
  • the configuration form is 4*996
  • the LTF sequence of A-PPDU is composed of ⁇ EHT LTF 160, HE LTF160 ⁇ (this sequence can also be understood as the transmission of the existing A-PPDU LTF sequence method)
  • the corresponding PAPR value is 9.43
  • the first sequence includes ⁇ EHT LTF 160_P1*a, EHT LTF 160_P2*b, HE LTF 160_P1*c, HE LTF 160_P2*d ⁇
  • its corresponding PAPR value is 7.14
  • a sequence includes ⁇ EHT LTF 320_P1*a, EHT LTF 320_P2*b, EHT LTF 320_P3*c, EHT LTF 320_P4*d ⁇ , and its corresponding PAPR value is 6.59
  • the first sequence includes ⁇ EHT LTF 320_P1, EHT LTF 320_P2, HE LTF
  • a, b, c and d shown in the 3rd and 4th rows of Table 5 correspond to the above-mentioned first phase rotation parameter, second phase rotation parameter, third phase rotation parameter and fourth phase rotation parameter .
  • the combination of the first phase rotation parameter, the second phase rotation parameter, the third phase rotation parameter and the fourth phase rotation parameter corresponding to row 5 of Table 5 is ⁇ 1, 1, 1, 1 ⁇ or ⁇ -1, -1, -1, -1 ⁇ .
  • the combination of the first phase rotation parameter, the second phase rotation parameter, the third phase rotation parameter and the fourth phase rotation parameter corresponding to the sixth row of Table 5 is ⁇ 1, -1, -1, 1 ⁇ or ⁇ 1, -1, 1, -1 ⁇ or ⁇ -1, 1, 1, -1 ⁇ or ⁇ -1, 1, -1, 1 ⁇ .
  • PAPR values corresponding to several combinations of the first sequence shown in Table 5 are only for reference, which represent approximate values of PAPRs corresponding to various combinations.
  • Table 6 shows the PAPR values corresponding to different LTF sequence transmission modes when the LTF sequence is an LTF2x sequence. It should be understood that 3*996, 2*996 and 4*996 in the first row of Table 6 refer to the specific configuration form of the tone of the MRU.
  • Table 6 shows the comparison between PAPR values corresponding to different LTF sequence formation methods under the same configuration form.
  • the configuration form is 4*996
  • the LTF sequence of A-PPDU is composed of ⁇ EHT LTF 160, HE LTF160 ⁇ (this sequence can also be understood as the transmission of the existing A-PPDU LTF sequence method)
  • the corresponding PAPR value is 9.78
  • the first sequence includes ⁇ EHT LTF 160_P1*a, EHT LTF 160_P2*b, HE LTF 160_P1*c, HE LTF 160_P2*d ⁇ , and its corresponding PAPR value is 7.26
  • a sequence includes ⁇ EHT LTF 320_P1, EHT LTF 320_P2, HE LTF 160_P1, HE LTF 160_P2 ⁇ , and its corresponding PAPR value is 8.61
  • the first sequence includes ⁇ EHT LTF 320_P1*a, EHT LTF 320_P2*b, HE LTF 160_P1* c
  • a, b, c and d shown in the third row of Table 6 correspond to the above-mentioned first phase rotation parameter, second phase rotation parameter, third phase rotation parameter and fourth phase rotation parameter.
  • the combination of the first phase rotation parameter, the second phase rotation parameter, the third phase rotation parameter and the fourth phase rotation parameter corresponding to the fourth row of Table 6 is ⁇ 1, 1, 1, 1 ⁇ or ⁇ -1, -1, -1, -1 ⁇ .
  • the combination of the first phase rotation parameter, the second phase rotation parameter, the third phase rotation parameter and the fourth phase rotation parameter corresponding to the fifth row of Table 6 is ⁇ 1, 1, -1, -1 ⁇ or ⁇ -1, -1, 1, 1 ⁇ or ⁇ 1, 1, -1, 1 ⁇ or ⁇ -1, -1, 1, -1 ⁇ .
  • PAPR values corresponding to several combinations of the first sequence shown in Table 6 are only for reference, which represent approximate values of PAPRs corresponding to various combinations.
  • PAPR value obtained by adopting the technical solution of the embodiment of the present application shown in Figure 3 to Table 6 is the PAPR corresponding to the specific combination of the first sequence and the N phase rotation parameters listed above approximate value.
  • the method also includes:
  • the terminal device receives the second data sequence from the network device.
  • the first data sequence is the original data sequence
  • the second data sequence is the data sequence to be sent
  • the difference sequence is determined by the first sequence
  • the fact that the first data sequence is the original data sequence may be understood as: a generated data sequence transmitted by the network device according to the MAC.
  • the difference sequence is determined by the first sequence, and it can be understood that the first sequence determined by the network device to be sent to the terminal device is not necessarily the same as the LTF sequence determined by the terminal device.
  • the first sequence is: ⁇ HE LTF 160_P1*1, HE LTF 160_P2*-1, EHT LTF 160_P1*-1, EHT LTF 160_P2*-1 ⁇
  • the LTF sequence recognized by the terminal device is ⁇ HE LTF 160
  • the difference sequence [HE LTF 160_P1*1./HE LTF 160_P1, HE LTF 160_P2*-1./HE LTF 160_P2, EHT LTF 160_P1*-1./EHT LTF 160_P1, EHT LTF 160_P2* -1./EHT LTF 160_P2].
  • the LTF sequence recognized by the terminal device is ⁇ HE LTF 160, EHT LTF 160 ⁇
  • the first sequence is ⁇ HE LTF 160_P1*1, HE LTF 160_P2*-1, EHT LTF 160_P1*-1, EHT LTF 160_P2* -1 ⁇
  • the LTF sequence actually sent by the network device is ⁇ HE LTF 160_P1*1, HE LTF 160_P2*-1 ⁇ , and the network device needs to determine the difference between the two sequence.
  • the actual LTF sequence sent by the network device is ⁇ EHT LTF 160_P1*-1, EHT LTF 160_P2*-1 ⁇ , and the network device also needs to determine the difference sequence between the two.
  • the sequence ⁇ EHT LTF 160 ⁇ and the sequence ⁇ EHT LTF 160_P1*-1, EHT LTF 160_P2*-1 ⁇ , and the sequence ⁇ HE LTF 160 ⁇ and ⁇ HE LTF 160_P1*1, HE LTF 160_P2*-1 ⁇ The difference sequence between the two can be regarded as composed of two values of the phase rotation parameter -1 and 1.
  • the sequence ⁇ HE LTF 160 ⁇ includes 10 numbers
  • the sequence ⁇ HE LTF 160_P1*1, HE LTF 160_P2*-1 ⁇ also includes 10 numbers
  • the sequence ⁇ HE LTF 160_P1*1 ⁇ includes 5 numbers
  • the sequence ⁇ HE LTF 160_P2*-1 ⁇ includes 5 numbers
  • the corresponding difference sequence is ⁇ 1, 1, 1, 1, 1, 1, -1, -1, -1, -1 ⁇ .
  • sequence ⁇ EHT LTF 160 ⁇ includes 10 numbers
  • sequence ⁇ EHT LTF 160_P1*-1, EHT LTF 160_P2*-1 ⁇ also includes 10 numbers
  • sequence ⁇ EHT LTF 160_P1*-1 ⁇ includes 5 numbers
  • sequence ⁇ EHT LTF 160_P2*-1 ⁇ includes 5 numbers
  • the corresponding difference sequence is ⁇ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ⁇ .
  • the difference sequence between the sequence ⁇ HE LTF 160, EHT LTF 160 ⁇ and the first sequence ⁇ HE LTF 160_P1*1, HE LTF 160_P2*-1, EHT LTF 160_P1*-1, EHT LTF 160_P2*-1 ⁇ is ⁇ 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 ⁇ .
  • second data sequence first data sequence.*Gapseq, in other words, each element in the first data sequence needs to correspond to each of the Gapseq Elements are multiplied one-to-one, thus obtaining the second data sequence.
  • the network device uses elements of the difference sequence to multiply corresponding elements in the first data sequence, thereby determining the second data sequence.
  • the network device adjusts the transmission mode of the LTF sequence
  • the network device also needs to perform corresponding processing on the transmission of the data sequence, so that the problem of the inconsistency between the transmission sequence and the known sequence of the terminal device can be solved, so as to realize the transmission of the terminal device.
  • Transparent transmission of equipment, and the terminal equipment does not need to make any changes or changes.
  • the network device adjusts the transmission mode of the LTF sequence, it performs corresponding processing on the transmission of the data sequence, thus solving the problem that the transmission sequence is inconsistent with the known sequence of the terminal device, thereby realizing transparency to the terminal device transmission, and the terminal equipment does not require any modification or modification.
  • Fig. 6 is a schematic diagram of another data transmission method provided by the present application.
  • the execution subject of the method #600 is a network device.
  • the A-PPDU includes at least two PPDUs belonging to different protocols, the A-PPDU includes a first sequence, and the first sequence includes a HE LTF sequence or an EHT LTF sequence.
  • the A-PPDU includes multiple PPDUs belonging to different protocols.
  • the A-PPDU includes HE PPDU and EHT PPDU, or, the A-PPDU includes VHT PPDU and HT PPDU, or, the A-PPDU can also include HE PPDU, EHT PPDU, VHT PPDU and HT PPDU. Examples are not specifically limited.
  • the first sequence included in the A-PPDU includes a HE LTF sequence or an EHT LTF sequence.
  • the A-PPDU includes multiple PPDUs belonging to different protocols, it means that each PPDU will have a corresponding LTF sequence.
  • the LTF sequences corresponding to the multiple PPDUs are directly combined and sent, It will cause a larger PAPR. Therefore, when the first sequence included in the A-PPDU includes the HE LTF sequence or the EHT LTF sequence, in this way, the total PAPR of the A-PPDU can be effectively reduced.
  • the terminal device receives the A-PPDU from the network device.
  • the network device By changing the composition of the LTF sequence for the downlink transmission of the A-PPDU, in other words, the network device only sends the HE LTF sequence or the EHT LTF sequence, so that the present application can effectively reduce the total PAPR of the downlink transmission of the A-PPDU.
  • Table 7 shows the PAPR values corresponding to different LTF sequence transmission modes when the LTF sequence is an LTF4x sequence. It should be understood that 3*996, 2*996 and 4*996 in the first row of Table 7 refer to the specific configuration form of the tone of the MRU.
  • Table 7 shows the comparison between PAPR values corresponding to different LTF sequence formation methods under the same configuration form.
  • the configuration form is 4*996
  • EHT LTF160 ⁇ this sequence can also be understood as the transmission of the existing A-PPDU LTF sequence way
  • its corresponding PAPR value is 9.45
  • the first sequence includes ⁇ EHT LTF 320 ⁇
  • its corresponding PAPR value is 8.36.
  • the LTF sequence obtained by adopting the scheme of the embodiment of the present application can form a lower PAPR value.
  • Table 8 shows the PAPR values corresponding to different LTF sequence transmission modes when the LTF sequence is an LTF2x sequence. It should be understood that 3*996, 2*996 and 4*996 in the first row of Table 8 refer to the specific configuration form of the tone of the MRU.
  • Table 8 shows the comparison between PAPR values corresponding to different LTF sequence formation methods under the same configuration form.
  • the configuration form is 4*996
  • EHT LTF160 ⁇ this sequence can also be understood as the transmission of the existing A-PPDU LTF sequence way
  • its corresponding PAPR value is 9.78
  • the first sequence includes ⁇ EHT LTF 320 ⁇
  • its corresponding PAPR value is 7.366.
  • the LTF sequence obtained by adopting the scheme of the embodiment of the present application can form a lower PAPR value.
  • Table 9 shows the PAPR values corresponding to different LTF sequence transmission modes when the LTF sequence is an LTF4x sequence. It should be understood that 3*996, 2*996 and 4*996 in the first row of Table 9 refer to the specific configuration form of the tone of the MRU.
  • Table 9 shows the comparison between PAPR values corresponding to different LTF sequence formation methods under the same configuration form.
  • the configuration form is 4*996
  • the LTF sequence of A-PPDU is composed of ⁇ EHT LTF 160, HE LTF160 ⁇ (this sequence can also be understood as the transmission of the existing A-PPDU LTF sequence way)
  • its corresponding PAPR value is 9.43
  • the first sequence includes ⁇ EHT LTF 320 ⁇ , its corresponding PAPR value is 8.36.
  • the LTF sequence obtained by adopting the scheme of the embodiment of the present application can form a lower PAPR value.
  • Table 10 shows the PAPR values corresponding to different LTF sequence transmission modes when the LTF sequence is an LTF2x sequence. It should be understood that 3*996, 2*996 and 4*996 in the first row of Table 10 refer to the specific configuration form of the tone of the MRU.
  • Table 10 shows the comparison between PAPR values corresponding to different LTF sequence formation methods under the same configuration form.
  • the configuration form is 4*996
  • the LTF sequence of A-PPDU is composed of ⁇ EHT LTF 160, HE LTF160 ⁇ (this sequence can also be understood as the transmission of the existing A-PPDU LTF sequence way)
  • its corresponding PAPR value is 9.78
  • the first sequence includes ⁇ EHT LTF 320 ⁇ , its corresponding PAPR value is 7.68.
  • the LTF sequence obtained by adopting the scheme of the embodiment of the present application can form a lower PAPR value.
  • the present application when changing the composition of the first sequence of the A-PPDU downlink transmission, the present application can effectively reduce the total PAPR value of the A-PPDU downlink transmission.
  • Table 11 shows the PAPR values corresponding to different LTF sequence transmission modes when the LTF sequence is an LTF4x sequence. It should be understood that 2*996 in the first row of Table 11 refers to the specific configuration form of the tone of the MRU.
  • the LTF sequence of A-PPDU is composed of ⁇ HE LTF 80, EHT LTF 80 ⁇ (this sequence can also be understood as the existing A-PPDU LTF sequence
  • the corresponding PAPR value is 9.26; when the first sequence is composed of ⁇ EHT LTF 320_P1, EHT LTF 320_P2 ⁇ , the corresponding PAPR value is 6.17; when the first sequence is composed of ⁇ HE LTF 160 ⁇ , and its corresponding PAPR value is 7.14.
  • the present application when changing the composition of the first sequence of the A-PPDU downlink transmission, the present application can effectively reduce the total PAPR value of the A-PPDU downlink transmission.
  • EHT LTF 320_P1 ⁇ EHT LTF 320_P1
  • EHTLTF320_P2 ⁇ 7.24 ⁇ HELTF160 ⁇ 7.23
  • Table 12 shows the PAPR values corresponding to different LTF sequence transmission modes when the LTF sequence is an LTF2x sequence. It should be understood that 2*996 in the first row of Table 12 refers to the specific configuration form of the tone of the MRU.
  • the LTF sequence of A-PPDU is composed of ⁇ HE LTF 80, EHT LTF 80 ⁇ (this sequence can also be understood as the existing A-PPDU LTF sequence
  • the corresponding PAPR value is 8.92; when the first sequence is composed of ⁇ EHT LTF 320_P1, EHT LTF 320_P2 ⁇ , the corresponding PAPR value is 7.24; when the first sequence is composed of ⁇ HE LTF 160 ⁇ , and its corresponding PAPR value is 7.23.
  • the present application when changing the composition of the first sequence of the A-PPDU downlink transmission, the present application can effectively reduce the total PAPR value of the A-PPDU downlink transmission.
  • Table 13 shows the PAPR values corresponding to different LTF sequence transmission modes when the LTF sequence is an LTF4x sequence. It should be understood that 2*996 in the first row of Table 13 refers to the specific configuration form of the tone of the MRU.
  • the corresponding PAPR value is 9.26.
  • the corresponding PAPR value is 6.56; when the first sequence is composed of ⁇ HE LTF 160 ⁇ , the corresponding PAPR value is 7.38.
  • the present application when changing the composition of the first sequence of the A-PPDU downlink transmission, the present application can effectively reduce the total PAPR value of the A-PPDU downlink transmission.
  • Table 14 shows the PAPR values corresponding to different LTF sequence transmission modes when the LTF sequence is an LTF2x sequence. It should be understood that 2*996 in the first row of Table 14 refers to the specific configuration form of the tone of the MRU.
  • the LTF sequence of A-PPDU is composed of ⁇ EHT LTF 80, HE LTF 80 ⁇ (this sequence can also be understood as the existing A-PPDU LTF sequence
  • the corresponding PAPR value is 8.92; when the first sequence is composed of ⁇ EHT LTF 320_P1, EHT LTF 320_P2 ⁇ , the corresponding PAPR value is 7.58; when the first sequence is composed of ⁇ HE LTF 160 ⁇ , and its corresponding PAPR value is 7.49. From the above comparison, it can be seen that, compared with the existing LTF sequence construction method, the LTF sequence obtained by adopting the scheme of the embodiment of the present application can form a lower PAPR value.
  • the present application when changing the composition of the first sequence of the A-PPDU downlink transmission, the present application can effectively reduce the total PAPR value of the A-PPDU downlink transmission.
  • the A-PPDU includes HE PPDU and EHT PPDU.
  • the present application can effectively reduce the total PAPR of the downlink transmission of the A-PPDU composed of HE PPDU and EHT PPDU.
  • the network device sends the A-PPDU in a bandwidth resource of 320 MHz.
  • this first sequence is an EHT LTF sequence.
  • the network device sends the A-PPDU in a bandwidth resource of 160 MHz.
  • the first sequence is an EHT LTF sequence or a HE LTF sequence.
  • the EHT LTF sequence actually sent by the network device may be half of the EHT LTF sequence corresponding to the 320MHz bandwidth resource, for example, the first sequence is ⁇ EHT LTF 320_P1, EHT LTF 320_P2 ⁇ , alternatively, this first sequence is ⁇ EHT LTF 320_P3, EHT LTF 320_P4 ⁇ .
  • the method also includes:
  • S630 Determine a second data sequence based on the difference sequence and the first data sequence, where the difference sequence is determined by the first sequence.
  • the terminal device receives the second data sequence from the network device.
  • the first data sequence is the original data sequence
  • the second data sequence is the data sequence to be sent.
  • the difference sequence can be understood as Gapseq, and the meaning of Gapseq can refer to the foregoing content, and will not be repeated here.
  • the difference sequence is determined by the first sequence, which can be understood as: after the network device determines the first sequence to be sent to the terminal device, the LTF sequence recognized by the terminal device is different from the first sequence. For example, if the terminal device determines that the LTF sequence sent by the network device is ⁇ HE LTF 80, EHT LTF 80 ⁇ , there is a difference sequence between the two.
  • the first sequence is composed of HE LTF sequence or EHT LTF sequence
  • the first sequence is actually sent by the network device to the terminal device, but the terminal device will recognize a second sequence, in other words, the second sequence can be viewed as
  • the LTF sequence is predefined for the protocol. Therefore, there is a difference sequence between the first sequence and the second sequence, and the difference sequence is obtained by dividing each element of the first sequence with the corresponding element in the second sequence business composition.
  • the network device After determining the difference sequence, the network device multiplies each element of the first data sequence by a corresponding element in the difference sequence, and then determines the second data sequence. In this way, the network device can realize transparent transmission to the terminal device.
  • the network device Since the function of the LTF sequence is to provide a reference for the data part, after adjusting the transmission method of the LTF sequence, the network device also needs to process the data field accordingly, so as to solve the problem between the sequence actually sent by the network device and the terminal device.
  • the problem of inconsistency of the known sequence so as to realize the transparent transmission from the network device to the terminal device.
  • Fig. 7 is a schematic block diagram of a communication device 700 provided by the present application.
  • the communication device 700 may include: a transceiver unit 710 and a processing unit 720 .
  • the communication device 700 may be the network device in the above method embodiment, or may be a chip for implementing the functions of the network device in the above method embodiment.
  • the communication device 700 may correspond to a network device according to the embodiment of the present application, and the communication device 700 may include a unit for executing the method performed by the network device in FIG. 5 to FIG. 6 .
  • each unit in the communication device 700 and the above-mentioned other operations and/or functions are to implement the corresponding processes in FIG. 5 to FIG. 6 .
  • the communications apparatus 700 can implement actions, steps or methods related to network devices in S510, S520, S530, and S540 in the foregoing method embodiments.
  • the communication device 700 may be the terminal device in the above method embodiment, or may be a chip for implementing the functions of the terminal device in the above method embodiment.
  • the communication apparatus 700 may correspond to a terminal device according to the embodiment of the present application, and the communication apparatus 700 may include a unit for executing the methods performed by the terminal device in FIG. 5 and FIG. 6 . Moreover, each unit in the communication device 700 and the above-mentioned other operations and/or functions are for realizing the corresponding processes in FIG. 5 and FIG. 6 respectively. It should be understood that the specific process for each unit to perform the above corresponding steps has been described in detail in the above method embodiments, and for the sake of brevity, details are not repeated here.
  • transceiver unit 710 in the communication device 700 may correspond to the transceiver 820 in the communication device 800 shown in FIG. 8, and the processing unit 720 in the communication device 700 may correspond to the communication device shown in FIG. Processor 810 in device 800 .
  • the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the transceiver unit 710 is used to realize the signal sending and receiving operation of the communication device 700
  • the processing unit 720 is used to realize the signal processing operation of the communication device 700 .
  • the communication device 700 further includes a storage unit 730, and the storage unit 730 is used for storing instructions.
  • FIG. 8 is a schematic block diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 includes: at least one processor 810 and a transceiver 820 .
  • the processor 810 is coupled with the memory for executing instructions stored in the memory to control the transceiver 820 to send signals and/or receive signals.
  • the communications device 800 further includes a memory 830 for storing instructions.
  • processor 810 and the memory 830 may be combined into one processing device, and the processor 810 is configured to execute program codes stored in the memory 830 to implement the above functions.
  • the memory 830 may also be integrated in the processor 810, or be independent of the processor 810.
  • the transceiver 820 may include a receiver (or called a receiver) and a transmitter (or called a transmitter).
  • the transceiver 820 may further include antennas, and the number of antennas may be one or more.
  • the transceiver 1020 may be a communication interface or an interface circuit.
  • the chip When the communication device 800 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a processing device, including a processor and an interface.
  • the processor may be used to execute the methods in the foregoing method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system chip (system on chip, SoC). It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller unit) , MCU), can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • microcontroller micro controller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, no detailed description is given here.
  • the embodiment of the present application further provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the network device in the above method embodiment are stored.
  • the computer program when executed by a computer, the computer can implement the method performed by the network device in the foregoing method embodiments.
  • the embodiment of the present application further provides a computer-readable storage medium, on which computer instructions for implementing the method executed by the terminal device in the foregoing method embodiments are stored.
  • the computer program when executed by a computer, the computer can implement the method performed by the terminal device in the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product including instructions, which, when executed by a computer, enable the computer to implement the method executed by the network device or the method executed by the terminal device in the above method embodiments.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of the present application, as long as the program that records the code of the method provided in the embodiment of the present application can be executed according to the method provided in the embodiment of the present application Just communicate.
  • the subject of execution of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • Usable media may include, but are not limited to, magnetic media or magnetic storage devices (for example, floppy disks, hard disks (such as removable hard disks), magnetic tapes), optical media (for example, optical disks, compact discs, etc.) , CD), digital versatile disc (digital versatile disc, DVD, etc.), smart cards and flash memory devices (such as erasable programmable read-only memory (EPROM), card, stick or key drive, etc. ), or semiconductor media (such as solid state disk (SSD), U disk, read-only memory (ROM), random access memory (RAM), etc. can store programs The medium of the code.
  • SSD solid state disk
  • U disk read-only memory
  • RAM random access memory
  • Various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile memory and nonvolatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct memory bus random access memory (direct rambus RAM, DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • Direct memory bus random access memory direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components
  • the memory storage module may be integrated in the processor.
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or can be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to implement the solutions provided in this application.
  • each functional unit in each embodiment of the present application may be integrated into one unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • a computer can be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer can be a personal computer, a server, or a network device, etc.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g. Coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • Coaxial cable, optical fiber, digital subscriber line or wireless (such as infrared, wireless, microwave, etc.)
  • a corresponds to B means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Communication Control (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据传输的方法和通信装置,方法包括:确定聚合物理层协议数据单元A-PPDU,该A-PPDU包括至少两个属于不同协议的PPDU,该A-PPDU包括第一序列,该第一序列包括N段子序列,该N段子序列的任一段子序列是由高效长训练字段HE LTF序列和/或超高吞吐量长训练字段EHT LTF序列在HE LTF序列和/或EHT LTF序列对应的相位旋转参数下进行相位旋转所得,该N段子序列对应的N个相位旋转参数中包括至少一个值为-1的相位旋转参数,该N为大于或等于2的正整数;发送A-PPDU。通过调整A-PPDU的LTF序列的发送方式,本申请能够实现降低A-PPDU的下行传输的总PAPR。

Description

数据传输的方法和通信装置
本申请要求于2021年09月23提交国家知识产权局、申请号为202111116352.X、申请名称为“数据传输的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,更具体地,涉及一种数据传输的方法和通信装置。
背景技术
自802.11a/g标准始,无线局域网(wireless local area network,WLAN)先后经历了802.11n标准、802.11ac标准、802.11ax标准以及802.11be标准等标准演变过程。
不同的WLAN标准支持不同的规格,例如,802.11ax标准支持的最大带宽资源为160MHz,而802.11be标准支持的最大带宽资源为320M MHz。对于802.11ax标准的非接入点(non access point,non-AP)站点(station,STA)而言,160MHz的带宽资源是可选的,对于802.11be标准的non-AP STA而言,160MHz和320MHz的带宽资源也是可选的。这就意味着,在超高吞吐量(extreme high throughput,EHT)AP的场景中,高效(high efficient,HE)non-AP STA和EHT non-AP STA仍继续工作于80MHz或者160MHz的带宽。
为了提升大带宽的基础服务集(basic service set,BSS)的吞吐量,支持大带宽的EHT AP可以同时给多个non-AP STA发送对应的物理层协议数据单元(physical protocol data unit,PPDU),即EHT AP可以向HE non-AP STA与EHT non-AP STA发送聚合PPDU(aggregated PPDU,A-PPDU)。
然而,在A-PPDU的下行传输过程中,如果简单地将A-PPDU所包括的长训练字段(long training filed,LTF)序列直接发送,这会产生较大的峰均功率比(peak to average power ratio,PAPR)。
发明内容
本申请实施例提供一种数据传输的方法和通信装置,通过调整A-PPDU的下行传输的LTF序列的发送方式,本申请能够实现有效降低A-PPDU的下行传输的总的PAPR。
第一方面,提供了一种数据传输的方法,包括:确定聚合物理层协议数据单元A-PPDU,A-PPDU包括至少两个属于不同协议的PPDU,A-PPDU包括第一序列,第一序列包括N段子序列,N段子序列的任一段子序列是由高效长训练字段HE LTF序列和/或超高吞吐量长训练字段EHT LTF序列在HE LTF序列和/或EHT LTF序列对应的相位旋转参数下进行相位旋转所得,N段子序列对应的N个相位旋转参数中包括至少一个值为-1的相位旋转参数,N为大于或等于2的正整数;发送A-PPDU。
应理解,通过对A-PPDU包括的第一序列的各段子序列作相位旋转,且对应的N个 相位旋转参数之中包括至少一个值为-1的相位旋转参数,如此,可以改变各个子序列对应的子载波间的叠加方式,如此,本申请能够实现有效降低A-PPDU的下行传输的总的PAPR。
结合第一方面,在第一方面的某些实现方式中,A-PPDU包括HE PPDU和EHT PPDU。
通过对由HE PPDU和EHT PPDU构成的A-PPDU包括的第一序列的各段子序列作相位旋转,且对应的N个相位旋转参数之中包括至少一个值为-1的相位旋转参数,如此,本申请能够实现有效降低由HE PPDU和EHT PPDU构成的A-PPDU的下行传输的总的PAPR。
结合第一方面,在第一方面的某些实现方式中,该发送A-PPDU,包括:在320MHz的带宽资源发送A-PPDU。
在一种实现方式中,当带宽资源为320MHz时,第一序列的部分子序列所对应的HE LTF序列可以位于320MHz的低160MHz的带宽资源上,第一序列的另一部分子序列所对应的EHT LTF序列可以位于320MHz的高160MHz的带宽资源上。或者,第一序列的部分子序列所对应的HE LTF序列可以位于320MHz的高160MHz的带宽资源上,第一序列的另一部分子序列所对应的EHT LTF序列可以位于320MHz的低160MHz的带宽资源上。
结合第一方面,在第一方面的某些实现方式中,N=4,N个相位旋转参数包括如下至少一组:
{1,-1,-1,-1},{1,-1,1,1},{1,1,-1,1},{1,1,1,-1},{-1,1,1,1},{-1,1,-1,-1},{-1,-1,1,-1},{-1,-1,-1,1},{1,-1,-1,1},{1,-1,1,-1},{-1,1,1,-1},{-1,1,-1,1},{1,1,-1,-1},{-1,-1,1,1}。
通过上述的几种组合方式,可以改变各个子序列对应的子载波间的叠加方式,如此,本申请能够有效降低A-PPDU的下行传输的总的PAPR。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:确定第二数据序列,第二数据序列是由差序列与第一数据序列确定;发送第二数据序列,其中,第一数据序列为原数据序列,第二数据序列为待发送的数据序列,差序列由第一序列确定。
应理解,第一数据序列为原数据序列可以理解为:网络设备根据介质访问层(media access control,MAC)传递的物理层服务数据单元(physical service data unit,PSDU)生成的数据序列。
应理解,差序列可以视为:例如,将序列A视为实发LTF序列,序列B视为需要发送的LTF序列,则序列A与序列B之间的差序列Gapseq=A./B,其中./的含义为序列A的元素和序列B的元素之间对应相除,并规定,序列A的元素0与序列B的元素0之间相除所得的商为1。
应理解,差序列由第一序列确定,可以理解为:网络设备确定向终端设备发送的第一序列并不一定与终端设备认定的LTF序列相同。
示例性地,第一序列为:{HE LTF 160_P1*1,HE LTF 160_P2*-1,EHT LTF 160_P1*-1,EHT LTF 160_P2*-1},终端设备认定的LTF序列为{HE LTF 160,EHT LTF 160}时,则差序列=[HE LTF 160_P1*1./HE LTF 160_P1,HE LTF 160_P2*-1./HE LTF 160_P2,EHT LTF 160_P1*-1./EHT LTF 160_P1,EHT LTF 160_P2*-1./EHT LTF 160_P2]。应理解,该HE LTF 160_P1是指当带宽资源为160MHz时,该序列是指在160MHz带宽资源上发送的HE LTF序列的第一部分,该第一部分的序列占据160MHz带宽资源的低80MHz带宽资源。关于HE LTF 160_P2等可以参考HE LTF 160_P1的描述,且其的详细内容可以详见后文的具体 描述,在此简略不述。
具体而言,终端设备认定的LTF序列为{HE LTF 160,EHT LTF 160},第一序列为{HE LTF 160_P1*1,HE LTF 160_P2*-1,EHT LTF 160_P1*-1,EHT LTF 160_P2*-1},则对于终端设备认定的序列{HE LTF 160},网络设备实际发送的LTF序列为{HE LTF 160_P1*1,HE LTF 160_P2*-1},网络设备需要确定二者之间的差序列;对于终端设备认定的序列{EHT LTF 160},网络设备实际发送的LTF序列为{EHT LTF 160_P1*-1,EHT LTF 160_P2*-1},网络设备也需要确定二者之间的差序列。对于序列{EHT LTF 160}和序列{EHT LTF 160_P1*-1,EHT LTF 160_P2*-1},以及序列{HE LTF 160}和{HE LTF 160_P1*1,HE LTF 160_P2*-1}而言,二者之间的差序列可以视为是由相位旋转参数-1和1两个数值组成的。例如,若序列{HE LTF 160}包括10个数字,序列{HE LTF 160_P1*1,HE LTF 160_P2*-1}也包括10个数字,且序列{HE LTF 160_P1*1}包括5个数字,序列{HE LTF 160_P2*-1}包括5个数字,则该对应的差序列为{1,1,1,1,1,-1,-1,-1,-1,-1};若序列{EHT LTF 160}包括10个数字,序列{EHT LTF 160_P1*-1,EHT LTF 160_P2*-1}也包括10个数字,且序列{EHT LTF 160_P1*-1}包括5个数字,序列{EHT LTF 160_P2*-1}包括5个数字,则该对应的差序列为{-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}。因此,序列{HE LTF 160,EHT LTF 160}与第一序列{HE LTF 160_P1*1,HE LTF 160_P2*-1,EHT LTF 160_P1*-1,EHT LTF 160_P2*-1}之间的差序列为{1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}。
因此,第二数据序列与第一数据序列满足如下关系:第二数据序列=第一数据序列.*Gapseq,换言之,第一数据序列中的每个元素需要和Gapseq中的每个对应元素做一对一的相乘,如此便得到了第二数据序列。
具体地说,网络设备在确定差序列之后,其使用差序列的元素对第一数据序列中的对应元素做相乘,从而确定第二数据序列。
应理解,网络设备在调整了LTF序列的发送方式之后,网络设备也需要对数据序列的传输进行相应的处理,如此便可以解决发送序列与终端设备的已知序列不一致的问题,从而实现对终端设备的透明传输,且终端设备不需要作任何的更改或者改变。
第二方面,提供了一种数据传输的方法,包括:确定聚合物理层协议数据单元A-PPDU,A-PPDU包括至少两个属于不同协议的PPDU,A-PPDU包括第一序列,第一序列包括高效长训练字段HE LTF序列或者超高吞吐量长训练字段EHT LTF序列;发送A-PPDU。
通过改变A-PPDU的下行传输的LTF序列的构成,换言之,只发送HE LTF序列或者EHT LTF序列,如此,本申请能够实现有效降低A-PPDU的总的PAPR。
结合第二方面,在第二方面的某些实现方式中,A-PPDU包括HE PPDU和EHT PPDU。
通过改变由HE PPDU和EHT PPDU构成的A-PPDU包括的第一序列的具体构成,本申请能够实现有效降低由HE PPDU和EHT PPDU构成的A-PPDU的下行传输的总的PAPR。
结合第二方面,在第二方面的某些实现方式中,该发送A-PPDU,包括:在320MHz的带宽资源发送A-PPDU。
在一种实现方式中,当带宽资源为320MHz时,第一序列为在320MHz的带宽资源上发送的EHT LTF序列。
结合第二方面,在第二方面的某些实现方式中,该发送A-PPDU,包括:在160MHz 的带宽资源发送A-PPDU。
在一种实现方式中,当带宽资源为160MHz时,该第一序列是EHT LTF序列或者HE LTF序列。
可选地,当第一序列为EHT LTF序列时,该网络设备实际发送的EHT LTF序列可以是320MHz带宽资源对应的EHT LTF序列的一半EHT LTF序列,例如,第一序列是{EHT LTF 320_P1,EHT LTF 320_P2},或者,该第一序列是{EHT LTF 320_P3,EHT LTF 320_P4}。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:基于差序列与第一数据序列确定第二数据序列,差序列由第一序列确定;发送第二数据序列,其中,第一数据序列为原数据序列,第二数据序列为待发送的数据序列。
应理解,差序列由第一序列确定,可以理解为:当网络设备确定向终端设备发送的第一序列之后,由于终端设备认定的LTF序列并不同于第一序列。例如,终端设备认定网络设备发送的LTF序列为{HE LTF 80,EHT LTF 80},则二者之间存在差序列。
示例性地,第一序列为:{EHT LTF 320_P1,EHT LTF 320_P2},终端设备认定的序列为{HE LTF 80,EHT LTF 80}时,则差序列=[EHT LTF 320_P1./HE LTF 80,EHT LTF 320_P2./EHT LTF 80]。
具体而言,第一序列是由HE LTF序列或者EHT LTF序列组成,且第一序列是由网络设备发送给终端设备的,但是终端设备会认定一个第二序列,换言之,第二序列可以视为协议预定义的LTF序列,第一序列与第二序列之间存在一个差序列,该差序列是由第一序列的每个元素与第二序列中的对应元素之间相除所得到的商组成。
网络设备在确定第一序列与第二序列之间的差序列之后,对第一数据序列中的每个元素与差序列中的对应元素作相乘,继而确定第二数据序列,换言之,网络设备在调整了LTF序列的发送方式之后,网络设备对数据序列的传输进行上述处理,如此解决了发送序列与终端设备的已知序列不一致的问题,从而实现对终端设备的透明传输,且终端设备不需要做任何的更改或者变动。
第三方面,提供了一种数据传输的方法,包括:接收聚合物理层协议数据单元A-PPDU,A-PPDU包括至少两个属于不同协议的PPDU,A-PPDU包括第一序列,第一序列包括N段子序列,N段子序列的任一段子序列是由高效长训练字段HE LTF序列和/或超高吞吐量长训练字段EHT LTF序列在HE LTF序列和/或EHT LTF序列对应的相位旋转参数下进行相位旋转所得,N段子序列对应的N个相位旋转参数中包括至少一个值为-1的相位旋转参数,N为大于或等于2的正整数。
结合第三方面,在第三方面的某些实现方式中,A-PPDU包括HE PPDU和EHT PPDU。
结合第三方面,在第三方面的某些实现方式中,该接收A-PPDU,包括:在320MHz的带宽资源接收A-PPDU。
结合第三方面,在第三方面的某些实现方式中,N=4,N个相位旋转参数包括如下至少一组:
{1,-1,-1,-1},{1,-1,1,1},{1,1,-1,1},{1,1,1,-1},{-1,1,1,1},{-1,1,-1,-1},{-1,-1,1,-1},{-1,-1,-1,1},{1,-1,-1,1},{1,-1,1,-1},{-1,1,1,-1},{-1,1,-1,1},{1,1,-1,-1},{-1,-1,1,1}。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:接收第二数据序列,第二数据序列是由差序列与第一数据序列确定,其中,第一数据序列为原数据序列,第二 数据序列为待发送的数据序列,差序列由第一序列确定。
第四方面,提供了一种数据传输的方法,包括:接收聚合物理层协议数据单元A-PPDU,A-PPDU包括至少两个属于不同协议的PPDU,A-PPDU包括第一序列,第一序列包括高效长训练字段HE LTF序列或者超高吞吐量长训练字段EHT LTF序列。
结合第四方面,在第四方面的某些实现方式中,A-PPDU包括HE PPDU和EHT PPDU。
结合第四方面,在第四方面的某些实现方式中,该接收A-PPDU,包括:在320MHz的带宽资源接收A-PPDU。
结合第四方面,在第四方面的某些实现方式中,该接收A-PPDU,包括:在160MHz的带宽资源接收A-PPDU。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:接收第二数据序列,第二数据序列是基于差序列与第一数据序列确定,差序列由第一序列确定,其中,第一数据序列为原数据序列,第二数据序列为待发送的数据序列。
第五方面,提供了一种通信装置,包括:处理单元,用于确定聚合物理层协议数据单元A-PPDU,A-PPDU包括至少两个属于不同协议的PPDU,A-PPDU包括第一序列,第一序列包括N段子序列,N段子序列的任一段子序列是由高效长训练字段HE LTF序列和/或超高吞吐量长训练字段EHT LTF序列在HE LTF序列和/或EHT LTF序列对应的相位旋转参数下进行相位旋转所得,N段子序列对应的N个相位旋转参数中包括至少一个值为-1的相位旋转参数,N为大于或等于2的正整数;收发单元,用于发送A-PPDU。
结合第五方面,在第五方面的某些实现方式中,A-PPDU包括HE PPDU和EHT PPDU。
结合第五方面,在第五方面的某些实现方式中,收发单元,用于在320MHz的带宽资源发送A-PPDU。
结合第五方面,在第五方面的某些实现方式中,N=4,N个相位旋转参数包括如下至少一组:
{1,-1,-1,-1},{1,-1,1,1},{1,1,-1,1},{1,1,1,-1},{-1,1,1,1},{-1,1,-1,-1},{-1,-1,1,-1},{-1,-1,-1,1},{1,-1,-1,1},{1,-1,1,-1},{-1,1,1,-1},{-1,1,-1,1},{1,1,-1,-1},{-1,-1,1,1}。
结合第五方面,在第五方面的某些实现方式中,处理单元,还用于确定第二数据序列,第二数据序列是由差序列与第一数据序列确定;收发单元,还用于发送第二数据序列,其中,第一数据序列为原数据序列,第二数据序列为待发送的数据序列,差序列由第一序列确定。
第六方面,提供了一种通信装置,包括:处理单元,用于确定聚合物理层协议数据单元A-PPDU,A-PPDU包括至少两个属于不同协议的PPDU,A-PPDU包括第一序列,第一序列包括高效长训练字段HE LTF序列或者超高吞吐量长训练字段EHT LTF序列;收发单元,用于发送A-PPDU。
结合第六方面,在第六方面的某些实现方式中,A-PPDU包括HE PPDU和EHT PPDU。
结合第六方面,在第六方面的某些实现方式中,收发单元,用于在320MHz的带宽资源发送A-PPDU。
结合第六方面,在第六方面的某些实现方式中,收发单元,用于在160MHz的带宽资源发送A-PPDU。
结合第六方面,在第六方面的某些实现方式中,处理单元,还用于基于差序列与第一 数据序列确定第二数据序列,差序列由第一序列确定;收发单元,还用于发送第二数据序列,其中,第一数据序列为原数据序列,第二数据序列为待发送的数据序列。
第七方面,提供了一种通信装置,包括:收发单元,用于接收聚合物理层协议数据单元A-PPDU,A-PPDU包括至少两个属于不同协议的PPDU,A-PPDU包括第一序列,第一序列包括N段子序列,N段子序列的任一段子序列是由高效长训练字段HE LTF序列和/或超高吞吐量长训练字段EHT LTF序列在HE LTF序列和/或EHT LTF序列对应的相位旋转参数下进行相位旋转所得,N段子序列对应的N个相位旋转参数的乘积为负数,N为大于或等于2的正整数。
结合第七方面,在第七方面的某些实现方式中,A-PPDU包括HE PPDU和EHT PPDU。
结合第七方面,在第七方面的某些实现方式中,收发单元,用于在320MHz的带宽资源接收A-PPDU。
结合第七方面,在第七方面的某些实现方式中,N=4,N个相位旋转参数包括如下至少一组:
{1,-1,-1,-1},{1,-1,1,1},{1,1,-1,1},{1,1,1,-1},{-1,1,1,1},{-1,1,-1,-1},{-1,-1,1,-1},{-1,-1,-1,1},{1,-1,-1,1},{1,-1,1,-1},{-1,1,1,-1},{-1,1,-1,1},{1,1,-1,-1},{-1,-1,1,1}。
结合第七方面,在第七方面的某些实现方式中,收发单元,用于接收第二数据序列,第二数据序列是由差序列与第一数据序列确定,其中,第一数据序列为原数据序列,第二数据序列为待发送的数据序列,差序列由第一序列确定。
第八方面,提供了一种通信装置,包括:收发单元,用于接收聚合物理层协议数据单元A-PPDU,A-PPDU包括至少两个属于不同协议的PPDU,A-PPDU包括第一序列,第一序列包括高效长训练字段HE LTF序列或者超高吞吐量长训练字段EHT LTF序列。
结合第八方面,在第八方面的某些实现方式中,A-PPDU包括HE PPDU和EHT PPDU。
结合第八方面,在第八方面的某些实现方式中,收发单元,用于在320MHz的带宽资源接收A-PPDU。
结合第八方面,在第八方面的某些实现方式中,收发单元,用于在160MHz的带宽资源接收A-PPDU。
结合第八方面,在第八方面的某些实现方式中,收发单元,用于接收第二数据序列,第二数据序列是基于差序列与第一数据序列确定,差序列由第一序列确定,其中,第一数据序列为原数据序列,第二数据序列为待发送的数据序列。
第九方面,提供了一种通信装置,包括处理器,该处理器与存储器耦合,该存储器用于存储计算机程序或指令,该处理器用于执行存储器中的计算机程序或指令,使得第一方面以及第一方面的任一种可能实现方式中任一项所述的方法被执行;或者,使得第二方面以及第二方面的任一种可能实现方式中任一项所述的方法被执行;或者,使得第三方面以及第三方面的任一种可能实现方式中任一项所述的方法被执行;或者,使得第四方面以及第四方面的任一种可能实现方式中任一项所述的方法被执行。
在一种可能的实现方式中,该通信装置还包括收发器,该收发器用于执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法;或者,执行第三方面以及第三方面的任一种可能实现方式中任一项所述的方法;或者,执行第四方面以及第四方面的任一种可能实 现方式中任一项所述的方法。
第十方面,提供了一种芯片系统,该芯片系统包括逻辑电路和通信接口,该通信接口用于接收或者发送A-PPDU,该逻辑电路用于执行执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法;或者,执行第三方面以及第三方面的任一种可能实现方式中任一项所述的方法;或者,执行第四方面以及第四方面的任一种可能实现方式中任一项所述的方法。
第十一方面,提供了一种通信系统,该通信系统包括接入点侧的通信装置和站点侧的通信装置,该接入点侧的通信装置用于执行第一方面以及第一方面的任一种可能实现方式中任一项所述的方法,或者,接入点侧的通信装置用于执行第二方面以及第二方面的任一种可能实现方式中任一项所述的方法;该站点侧的通信装置用于执行第三方面以及第三方面的任一种可能实现方式中任一项所述的方法,或者,站点侧的通信装置用于执行第四方面以及第四方面的任一种可能实现方式中任一项所述的方法。
第十二方面,提供了一种计算机可读存储介质,存储有计算机程序或指令,该计算机程序或指令用于实现第一方面以及第一方面的任一种可能实现方式中任一项所述的方法;或者,用于实现第二方面以及第二方面的任一种可能实现方式中任一项所述的方法;或者,用于实现第三方面以及第三方面的任一种可能实现方式中任一项所述的方法;或者,用于实现第四方面以及第四方面的任一种可能实现方式中任一项所述的方法。
第十三方面,提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如第一方面以及第一方面的任一种可能实现方式任一项所述的方法;或者,执行如第二方面以及第二方面的任一种可能实现方式中任一项所述的方法;或者,执行如第三方面以及第三方面的任一种可能实现方式中任一项所述的方法;或者,执行如第四方面以及第四方面的任一种可能实现方式中任一项所述的方法。
附图说明
图1是本申请提供的一种应用场景的示意图。
图2是一种LTF的构造示意图。
图3是一种A-PPDU的聚合类型的示意图。
图4是一种应用于A-PPDU的LTF序列发送方式的示意图。
图5是本申请提供的一种数据传输的方法的示意流程图。
图6是本申请提供的另一种数据传输的方法的示意流程图。
图7是本申请提供的一种通信装置的结构框图。
图8是本申请提供的另一种通信装置的结构框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution, LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)以及未来的通信系统等。
本申请实施例中的终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例不做限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM系统或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者PLMN网络中的网络设备等,本申请实施例不做限定。
图1是本申请提供的一种应用场景的示意图。在图1中,AP可以是通信服务器、路由器、交换机,也可以是上述的网络设备的任一种,STA可以是手机、计算机,也可以是上述的终端设备的任一种,本申请实施例不做限定。为便于描述,本文将接入点类型的站点称为接入点(access point,AP),非接入点类的站点称为站点(STA)。
其中,接入点可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体的,接入点可以是带有Wi-Fi芯片的终端设备(如手机)或者网络设备(如路由器)。接入点可以为支持802.11be制式的设备。接入点也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b、802.11a以及802.11be下一代等802.11家族的多种WLAN制式的设备。本申请中的接入点可以是HEAP或EHTAP,还可以是适用未来某代Wi-Fi标准的接入点。
站点可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。例如,站点可以为支持Wi-Fi通讯功能的移动电话、支持Wi-Fi通讯功能的平板电脑、支持Wi-Fi通讯功能的机顶盒、支持Wi-Fi通讯功能的智能电视、支持Wi-Fi通讯功能的智能可穿戴设备、支持Wi-Fi通讯功能的车载通信设备和支持Wi-Fi通讯功能的计算机等等。可选地,站点可以支持802.11be制式。站点也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b、802.11a、802.11be下一代等802.11家族的WLAN制式。
本申请中的接入点可以是HESTA或EHTSTA,还可以是适用未来某代Wi-Fi标准的STA。
例如,接入点和站点可以是应用于车联网中的设备,物联网(internet of things,IoT) 中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。
应理解,本申请实施例的技术方案不仅适用于AP与一个或多个STA通信,也适用于AP之间的相互通信,也还适用于STA之间的相互通信。为便于描述,本申请实施例仅以AP与一个或多个STA通信为例进行说明,但是该描述方式对本申请实施例的技术方案的实际应用范围不具备任何的限定作用。在此统一说明,后文不再赘述。
本申请实施例提供的无线通信系统可以为WLAN或蜂窝网,该方法可以由无线通信系统中的通信设备或通信设备中的芯片或处理器实现,该通信设备可以是一种支持多条链路并行进行传输的无线通信设备,例如,称为多链路设备(multi-link device)或多频段设备(multi-band device)。相比于仅支持单条链路传输的设备来说,多链路设备具有更高的传输效率和更高的吞吐量。多链路设备包括一个或多个隶属的站点STA(affiliated STA),隶属的STA是一个逻辑上的站点,可以工作在一条链路上。其中,隶属的站点可以为AP或non-AP STA。为描述方便,本申请将隶属的站点为AP的多链路设备可以称为多链路AP或多链路AP设备或AP多链路设备(AP multi-link device),隶属的站点为non-AP STA的多链路设备可以称为多链路STA或多链路STA设备或STA多链路设备(STA multi-link device)。
在图1所示的示意图中,若AP支持大带宽(例如,160MHz或者320MHz),或者说,AP是EHT AP,则AP可以同时给多个non-AP STA发送对应的PPDU,即发送A-PPDU,示例性地,AP可以向HE non-AP STA发送HE PPDU的同时,也向EHT non-AP STA发送EHT PPDU,如此能够提高支持大带宽的EHT AP的BSS的吞吐量。
在对本申请实施例的技术方案进行描述之前,下文将对与本申请实施例的技术方案相关的技术术语进行简单的描述。
第一,长训练字段(long training field,LTF)序列。
LTF能够用于信道估计。不同的带宽具有各自不同的LTF序列设计。其中,每个带宽下的每个子载波所承载的数值构成了该带宽的LTF序列。
在多流(stream)场景中,针对各流的信道估计可以通过发送多个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号进行。
目前存在三种类型的子载波,分别是:
1)数据子载波:用于实际数据的传输;
2)导频子载波:用于提供相位信息和参数跟踪;
3)未使用子载波:既不属于数据子载波,也不属于导频子载波,其包括中央直流(direct current,DC)子载波、保护频带和空子载波。
其中,数据子载波的发送方式可描述如下:为保持各流的LTF序列正交,可以使用P矩阵的元素乘以LTF序列的元素。以LTF序列的元素个数为4*4为例,则对应的P矩阵为:
Figure PCTCN2022119665-appb-000001
图2是一种LTF的构造示意图。具体而言,第k个子载波上承载LTF序列的第k个元素LTF k,且第m个空时流对应的第n个OFDM符号的LTF与P矩阵中的第m行第n 列元素相乘,故对于在经历信道H k后,non-AP STA接收到的频域信号Y k可表示为:
Y k=H kP 4*4LTF k
由于P矩阵为正交矩阵(
Figure PCTCN2022119665-appb-000002
I为单位矩阵,*是矩阵的共轭转置),故第k个子载波上的信道
Figure PCTCN2022119665-appb-000003
如此,就可以估计出第k个子载波上对应的多输入多输出(multiple input multiple output,MIMO)信道。
应理解,一个资源单元(resource unit,RU)既包括数据子载波,也包括导频子载波。上述的LTF构造方式仅针对数据子载波,对于导频子载波而言,其对应的LTF构造方式类似与数据子载波的LTF构造方式,但二者的区别仅在于,导频子载波的LTF构造方式使用R矩阵,而非P矩阵,其中R矩阵与P矩阵的对应关系是:R(m,n)=P(1,n),即R矩阵的每一行都等于P矩阵的第一行。有关P矩阵与R矩阵的具体内容请参见802.11ac标准,在此不予赘述。
LTF序列根据两个非零元素之间间隔的零元素的个数可以分为1x序列、2x序列和4x序列。其中,LTF1x序列的两个非零元素之间至少间隔3个零元素。LTF2x序列的两个非零元素之间至少间隔1个零元素。LTF4x序列存在连续的非零元素。其中,因为LTF4x序列中的非零元素最为密集,因此,采用LTF4x序列执行信道估计而所获得的信道估计的结果是最为准确的。
示例性地,基于80MHz带宽资源的LTF2x序列与LTF4x序列的示例性构造方式分别如下表1与表2所示:
表1:HE LTF2x序列
Figure PCTCN2022119665-appb-000004
Figure PCTCN2022119665-appb-000005
Figure PCTCN2022119665-appb-000006
表2:HE LTF4x序列
Figure PCTCN2022119665-appb-000007
Figure PCTCN2022119665-appb-000008
应理解,不同的WLAN标准规定了不同带宽下的LTF1x、LTF2x和LTF4x序列。示例性地,802.11ax标准分别规定了20MHz、40MHz、80MHz、160MHz带宽下的LTF1x序列、LTF2x和LTF4x序列。802.11be标准对LTF序列的规定与802.11ax协议规定的一致,仅对新增320MHz带宽进行了LTF1x序列、LTF2x和LTF4x序列设计。
第二,A-PPDU的聚合类型。
图3是一种A-PPDU的聚合类型的示意图。具体如图3所示,A-PPDU的聚合类型包括如下几种:
类型1表示:带宽资源为320MHz,且主160MHz位于320MHz的低160MHz时的HE PPDU和EHT PPDU的聚合方式,且HE PPDU位于320MHz带宽资源的主160MHz上。
类型2表示:带宽资源为320MHz,且主160MHz位于320MHz的高160MHz时的HE PPDU和EHT PPDU的聚合方式,且HE PPDU位于320MHz带宽资源的主160MHz上。
类型3表示:带宽资源为160MHz,且HE PPDU位于160MHz的低80MHz、EHT PPDU位于160MHz的高80MHz时的HE PPDU和EHT PPDU的聚合方式。
类型4表示:带宽资源为160MHz,且HE PPDU位于160MHz的高80MHz、EHT PPDU位于160MHz的低80MHz时的HE PPDU和EHT PPDU的聚合方式。
应理解,由于MAC调度的限制,HE STA只能位于主160MHz。其中,主160MHz是位于320MHz的低160MHz或者高160MHz,这具体是由AP告知non-AP STA。
应理解,对于类型1,320MHz带宽资源的低160MHz是按照802.11ax标准的tone plan进行导频配置,320MHz带宽资源的高160MHz是按照802.11be标准的tone plan进行导频配置。对于类型2,320MHz带宽资源的高160MHz是按照802.11ax标准的tone plan进行导频 配置,320MHz带宽资源的低160MHz是按照802.11be标准的tone plan进行导频配置。对于类型3,160MHz带宽资源的低80MHz是按照802.11ax标准的tone plan进行导频配置,160MHz带宽资源的高80MHz是按照802.11be标准的tone plan进行导频配置。对于类型4,160MHz带宽资源的高80MHz是按照802.11ax标准的tone plan进行导频配置,160MHz带宽资源的低80MHz是按照802.11be标准的tone plan进行导频配置。
应理解,在上述的几种A-PPDU聚合类型中,HE PPDU采用HE导频配置方式,EHT PPDU采用EHT导频配置方式。
应理解,图3所示的几种A-PPDU的聚合类型仅作为示例性理解,本申请实施例的技术方案不一定局限于图3所示的几种A-PPDU的聚合方式,还可以适用于其他的尚未示出的A-PPDU的聚合类型,本申请实施例不做具体限定。
需要说明的是,本申请实施例不涉及变更HE PPDU和/或EHT PPDU的导频位置,一般地涉及改变HE PPDU和/或EHT PPDU的LTF序列的发送方式。
还需要说明的是,本申请实施例涉及的LTF序列可以是LTF2x序列,也可以是LTF4x序列,本申请实施例不作具体限定。
第三,正交频分多址(orthogonal frequency division multiple access,OFDMA)。
OFDMA是正交频分多址(orthogonal frequency division multiple,OFDM)技术的演进,是OFDM与频分多址(frequency division multiple access,FDMA)技术的结合。
具体而言,OFDMA多址接入系统将传输带宽划分成正交的互不重叠的一系列子载波集,将不同的子载波集分配给不同的用户实现多址。OFDMA系统可动态地把可用带宽资源分配给需要的用户,很容易实现系统资源的优化利用。由于不同用户占用互不重叠的子载波集,在理想同步情况下,系统无多户间干扰,即无多址干扰(multiple access interference,MAI)。
由于OFDM采用频域均衡技术,因此信道估计的精确程度对通信性能有极大的影响,然而OFDM系统具有高PAPR的缺点,尤其是在大带宽下,更多的子载波导致更为严重的PAPR,高PAPR将会导致信号非线性失真,降低系统性能。因此,为了更加精确地进行信道估计,保持低的PAPR是LTF序列设计的重要指标,而在A-PPDU的下行传输的场景中,LTF序列的低的PAPR还不能得到有效保证。
图4是一种应用于A-PPDU的LTF序列发送方式的示意图。具体而言,在由HE PPDU和EHT PPDU构成的A-PPDU下行传输中,AP向HE non-AP STA发送HE PPDU时,在HE PPDU占用的带宽部分按照HE LTF序列的导频位置发送HE LTF序列;AP向EHT non-AP STA发送EHT PPDU时,在EHT PPDU占用的带宽部分按照EHT LTF序列的导频位置发送EHT LTF序列。
然而,如果直接将HE PPDU和EHT PPDU分别对应的LTF序列合并发送,这会产生较大的PAPR。
鉴于上述技术问题,本申请实施例提供了一种数据传输的方法和通信装置,通过调整A-PPDU的下行传输的LTF序列的发送方式,本申请能够实现有效降低A-PPDU的下行传输的总的PAPR。
下文将结合图5至图6对本申请提供的数据传输的方法进行描述。
为了更好地理解本申请实施例的技术方案,在本申请实施例中给出技术方案相关的部分技术术语的解释仅为示例,在此不做限定。
首先,EHT LTF 320是指当带宽资源为320MHz时,该序列是指在320MHz带宽资源上发送的EHT LTF序列,其占据320MHz带宽资源的全部带宽资源。EHT LTF 320_P1是指当带宽资源为320MHz时,该序列是指在320MHz带宽资源上发送的EHT LTF序列的第一部分,该第一部分的序列占据320MHz带宽资源的第一个80MHz带宽资源。EHT LTF 320_P2是指当带宽资源为320MHz时,该序列是指在320MHz带宽资源上发送的EHT LTF序列的第二部分,该第二部分的序列占据320MHz带宽资源的第二个80MHz带宽资源。EHT LTF 320_P3是指当带宽资源为320MHz时,该序列是指在320MHz带宽资源上发送的EHT LTF序列的第三部分,该第三部分的序列占据320MHz带宽资源的第三个80MHz带宽资源。EHT LTF 320_P4是指当带宽资源为320MHz时,该序列是指在320MHz带宽资源上发送的EHT LTF序列的第四部分,该第四部分的序列占据320MHz带宽资源的第四个80MHz带宽资源。EHT LTF 160是指当带宽资源为160MHz时,该序列是指在160MHz带宽资源上发送的EHT LTF序列,其占据160MHz带宽资源的全部带宽资源。EHT LTF 160_P1是指当带宽资源为160MHz时,该序列是指在160MHz带宽资源上发送的EHT LTF序列的第一部分,该第一部分的序列占据160MHz带宽资源的低80MHz带宽资源。EHT LTF 160_P2是指当带宽资源为160MHz时,该序列是指在160MHz带宽资源上发送的EHT LTF序列的第二部分,该第二部分的序列占据160MHz带宽资源的高80MHz带宽资源。EHT LTF 80是指当带宽资源为80MHz时,该序列是指在80MHz带宽资源上发送的EHT LTF序列,其占据80MHz带宽资源的全部带宽资源。
其次,HE LTF 160是指当带宽资源为160MHz时,该序列是指在160MHz带宽资源上发送的HE LTF序列,其占据160MHz带宽资源的全部带宽资源。HE LTF 160_P1是指当带宽资源为160MHz时,该序列是指在160MHz带宽资源上发送的HE LTF序列的第一部分,该第一部分的序列占据160MHz带宽资源的低80MHz带宽资源。HE LTF 160_P2是指当带宽资源为160MHz时,该序列是指在160MHz带宽资源上发送的HE LTF序列的第二部分,该第二部分的序列占据160MHz带宽资源的高80MHz带宽资源。HE LTF 80是指当带宽资源为80MHz时,该序列是指在80MHz带宽资源上发送的HE LTF序列,其占据80MHz带宽资源的全部带宽资源。
图5是本申请提供的一种数据传输的方法的示意图。该方法#500的执行主体是网络设备。
S510,确定A-PPDU,A-PPDU包括至少两个属于不同协议的PPDU,A-PPDU包括第一序列,第一序列包括N段子序列,N段子序列的任一段子序列是由HE LTF序列和/或EHT LTF序列在HE LTF序列和/或EHT LTF序列对应的相位旋转参数下进行相位旋转所得,N段子序列对应的N个相位旋转参数中包括至少一个值为-1的相位旋转参数,N为大于或等于2的正整数。
应理解,A-PPDU包括多个属于不同协议的PPDU。示例性地,该A-PPDU包括HE PPDU和EHT PPDU,或者,该A-PPDU包括非常高吞吐率(very high throughput,VHT)PPDU和高吞吐量(high throughput,HT)PPDU,或者,该A-PPDU也可以包括HE PPDU、EHT PPDU、VHT PPDU和HT PPDU,本申请实施例不作具体限定。
应理解,该A-PPDU所包括的第一序列包括多段LTF序列。例如,第一序列包括N段子序列。其中,该N段子序列中的任意两段LTF序列之间的序列长度可以保持一致,也可以保持不一致,其中,N为大于或等于2的正整数。
应理解,该N段子序列中的每段LTF序列可以是属于相同的类型,例如,都是EHT LTF序列,也可以是属于不同的类型,例如,一部分的子序列是HE LTF序列,另一部分的子序列是EHT LTF序列,本申请实施例不作具体限定。
由前文可知,网络设备将A-PPDU包括的LTF序列直接发送时,则很容易导致A-PPDU的下行传输的总的PAPR较高,因此需要调整A-PPDU的下行传输的LTF序列的发送方式。
具体地,第一序列的N段子序列是通过每段子序列对应的HE LTF序列和/或EHT LTF序列在对应的相位旋转参数下进行相位旋转所得。
示例性地,当第一序列包括四段子序列时,分别是第一段子序列、第二段子序列、第三代子序列和第四段子序列,相应地,则存在第一相位旋转参数、第二相位旋转参数、第三相位旋转参数和第四相位旋转参数,第一相位旋转参数与第一段子序列对应,第二相位旋转参数与第二段子序列对应,第三相位旋转参数与第三段子序列对应,第四相位旋转参数与第四段子序列对应。
更具体地,网络设备使用第一相位旋转参数对第一段子序列进行相位旋转从而得到经相位旋转后的第一段子序列,使用第二相位旋转参数对第二段子序列进行相位旋转从而得到经相位旋转后的第二段子序列,使用第三相位旋转参数对第三段子序列进行相位旋转从而得到经相位旋转后的第三段子序列,使用第四相位旋转参数对第四段子序列进行相位旋转从而得到经相位旋转后的第四段子序列。
应理解,上述的第一段子序列可以是HE LTF序列,第二段子序列可以是HE LTF序列,第三段子序列可以是EHT LTF序列,第四段子序列可以是EHT LTF序列;或者,上述的第一段子序列可以是EHT LTF序列,第二段子序列可以是EHT LTF序列,第三段子序列可以是HE LTF序列,第四段子序列可以是HE LTF序列,或者,上述的第一段子序列可以是EHT LTF序列,第二段子序列可以是EHT LTF序列,第三段子序列可以是EHT LTF序列,第四段子序列可以是EHT LTF序列,本申请实施例不作具体限定。
需要说明的是,第一序列包括不限于上述所描述的四段子序列,也可以包括更多的子序列,本申请实施例不作具体限定,但是第一序列所包括的每段子序列均是经过相位旋转所得,其中,每段子序列所对应的相位旋转参数可以是1,也可以是-1,且每段子序列所对应的每个相位旋转参数的N个相位旋转参数中至少存在一个值为-1的相位旋转参数。
S520,发送A-PPDU。
对应地,终端设备接收来自网络设备发送的A-PPDU。
通过对A-PPDU包括的第一序列的各段子序列作相位旋转,且对应的N个相位旋转参数之中包括至少一个值为-1的相位旋转参数,如此,可以改变各个子序列对应的子载波间的叠加方式,如此,本申请能够实现有效降低A-PPDU的下行传输的总的PAPR。
应理解,该N个相位旋转参数中值为-1的相位旋转参数的数量小于或等于N。
作为一种可能的实现方式,该A-PPDU包括HE PPDU和EHT PPDU。
如此,通过对由HE PPDU和EHT PPDU构成的A-PPDU包括的第一序列的各段子序列作相位旋转,且对应的各个相位旋转参数中包括至少一个值为-1的相位旋转参数,本申请能够实现有效降低由HE PPDU和EHT PPDU构成的A-PPDU的下行传输的总的PAPR。
作为一种可能的实现方式,网络设备在320MHz的带宽资源发送该A-PPDU。
具体而言,当带宽资源为320MHz时,第一序列的部分子序列所对应的HE LTF序列可以位于320MHz的低160MHz的带宽资源上,第一序列的另一部分子序列所对应的EHT LTF 序列可以位于320MHz的高160MHz的带宽资源上。更具体的说,上述的部署方式可以对应于图3所示的类型1。
或者,第一序列的部分子序列所对应的HE LTF序列可以位于320MHz的高160MHz的带宽资源上,第一序列的另一部分子序列所对应的EHT LTF序列可以位于320MHz的低160MHz的带宽资源上。更具体地说,上述的部署方式可以对应着图3所示的类型2。
作为一种可能的实现方式,当N=4时,4个相位旋转参数包括如下至少一组:
{1,-1,-1,-1};{1,-1,1,1};{1,1,-1,1};{1,1,1,-1};
{-1,1,1,1};{-1,1,-1,-1};{-1,-1,1,-1};{-1,-1,-1,1};
{1,-1,-1,1},{1,-1,1,-1},{-1,1,1,-1},{-1,1,-1,1};
{1,1,-1,-1},{-1,-1,1,1}。
具体而言,当第一序列包括第一段HE LTF子序列、第二段HE LTF子序列、第三段EHT LTF子序列和第四段EHT LTF子序列时,则第一相位旋转参数、第二相位旋转参数、第三相位旋转参数和第四相位旋转参数之间的组合方式如下所示:
{HE LTF 160_P1*1,HE LTF 160_P2*-1,EHT LTF 160_P1*-1,EHT LTF 160_P2*-1};
{HE LTF 160_P1*1,HE LTF 160_P2*-1,EHT LTF 160_P1*1,EHT LTF 160_P2*1};
{HE LTF 160_P1*1,HE LTF 160_P2*1,EHT LTF 160_P1*-1,EHT LTF 160_P2*1};
{HE LTF 160_P1*1,HE LTF 160_P2*1,EHT LTF 160_P1*1,EHT LTF 160_P2*-1};
{HE LTF 160_P1*-1,HE LTF 160_P2*1,EHT LTF 160_P1*1,EHT LTF 160_P2*1};
{HE LTF 160_P1*-1,HE LTF 160_P2*1,EHT LTF 160_P1*-1,EHT LTF 160_P2*-1};
{HE LTF 160_P1*-1,HE LTF 160_P2*-1,EHT LTF 160_P1*1,EHT LTF 160_P2*-1};
{HE LTF 160_P1*-1,HE LTF 160_P2*-1,EHT LTF 160_P1*-1,EHT LTF 160_P2*1}。
应理解,上述的几种组合形式仅是作为示例性描述,并未囊括前述的所有的组合形式。
又或者,当第一序列包括第一段EHT LTF子序列、第二段EHT LTF子序列、第三段HE LTF子序列和第四段HE LTF子序列时,则第一相位旋转参数、第二相位旋转参数、第三相位旋转参数和第四相位旋转参数之间的组合方式如下所示:
{EHT LTF 160_P1*1,EHT LTF 160_P2*-1,HE LTF 160_P1*-1,HE LTF 160_P2*-1};
{EHT LTF 160_P1*1,EHT LTF 160_P2*-1,HE LTF 160_P1*1,HE LTF 160_P2*1};
{EHT LTF 160_P1*1,EHT LTF 160_P2*1,HE LTF 160_P1*-1,HE LTF 160_P2*1};
{EHT LTF 160_P1*1,EHT LTF 160_P2*1,HE LTF 160_P1*1,HE LTF 160_P2*-1};
{EHT LTF 160_P1*-1,EHT LTF 160_P2*1,HE LTF 160_P1*1,HE LTF 160_P2*1};
{EHT LTF 160_P1*-1,EHT LTF 160_P2*1,HE LTF 160_P1*-1,HE LTF 160_P2*-1};
{EHT LTF 160_P1*-1,EHT LTF 160_P2*-1,HE LTF 160_P1*1,HE LTF 160_P2*-1};
{EHT LTF 160_P1*-1,EHT LTF 160_P2*-1,HE LTF 160_P1*-1,HE LTF 160_P2*1}。
应理解,上述的几种组合形式仅是作为示例性描述,并未囊括前述的所有的组合形式。
通过上述的N段子序列与对应的N个相位旋转参数之间的组合,可以改变子载波间的叠加方式,如此,本申请能够有效降低A-PPDU的下行传输的总的PAPR。
作为一种可能的实现方式,当第一序列包括EHT LTF序列和HE LTF序列时,该EHT LTF序列是320MHz带宽资源对应的EHT LTF序列的一半EHT LTF序列。例如,一半EHT LTF序列可以是320MHz带宽资源对应的EHT LTF序列的后一半EHT LTF序列,具体可以详见表3的第5行和第6行、表4的第4行,一半EHT LTF序列也可以是320MHz 带宽资源对应的EHT LTF序列的前一半EHT LTF序列,具体可以详见表5的第5行和第6行、表6的第4行和第5行。
下文将对采用本申请实施例的相位旋转参数方案所得到的有益效果进行描述。
表3:A-PPDU的聚合类型1
Figure PCTCN2022119665-appb-000009
表3所示的是当LTF序列为LTF4x序列时,不同的LTF序列发送方式所对应的PAPR值。应理解,表3第一行中的3*996、2*996和4*996是指多个资源单元(multiple resource unit,MRU)的tone的具体配置形式。
应理解,表3示出了在相同的配置形式下,不同的LTF序列构成方式所对应的PAPR值之间的比较。示例性地,当配置形式是4*996时,A-PPDU的LTF序列是由{HE LTF 160,EHT LTF160}构成时(也可以将该序列理解为现有的A-PPDU的LTF序列的发送方式),其对应的PAPR值是9.45;第一序列包括{HE LTF 160_P1*a,HE LTF 160_P2*b,EHT LTF 160_P1*c,EHT LTF 160_P2*d},其对应的PAPR值是7.31;第一序列包括{EHT LTF 320_P1*a,EHT LTF 320_P2*b,EHT LTF 320_P3*c,EHT LTF 320_P4*d},其对应的PAPR值是6.15;第一序列包括{HE LTF 160_P1,HE LTF 160_P2,EHT LTF 320_P3,EHT LTF 320_P4},其对应的PAPR值是8.52;第一序列包括{HE LTF 160_P1*a,HE LTF 160_P2*b,EHT LTF 320_P3*c,EHT LTF 320_P4*d},其对应的PAPR值是7.65。通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的相位旋转方案所得到的LTF序列能够形成较低的PAPR值。
应理解,当第一序列包括{HE LTF 160_P1,HE LTF 160_P2,EHT LTF 320_P3,EHT LTF 320_P4}时,其对应的第一相位旋转参数、第二相位旋转参数、第三相位旋转参数和 第四相位旋转参数之间的组合为{1,1,1,1}或者{-1,-1,-1,-1}。
应理解,表3的第3行、第4行和第6行所示的a、b、c和d分别对应于上述的第一相位旋转参数、第二相位旋转参数、第三相位旋转参数和第四相位旋转参数。
应理解,表3所示的第一序列的几种组合方式所对应的PAPR值仅作为参考,其表示各种组合方式所对应的PAPR的近似值。
需要说明的是,{-1,-1,-1,-1}与{1,1,1,1}是等价的两种组合方式,在此对其做统一说明,在后续的实施例中不再对其做说明。
由此可知,通过对第一序列的各段子序列进行相位旋转,可以改变子载波间的叠加方式,如此,本申请能够有效降低A-PPDU的下行传输的总的PAPR值。
表4:A-PPDU的聚合类型1
Figure PCTCN2022119665-appb-000010
表4所示的是当LTF序列为LTF2x序列时,不同的LTF序列发送方式所对应的PAPR值。应理解,表4第一行中的3*996、2*996和4*996是指MRU的tone的具体配置形式。
应理解,表4示出了在相同的配置形式下,不同的LTF序列构成方式所对应的PAPR值之间的比较。示例性地,当配置形式是4*996时,A-PPDU的LTF序列是由{HE LTF 160,EHT LTF160}构成时(也可以将该序列理解为现有的A-PPDU的LTF序列的发送方式),其对应的PAPR值是9.78;第一序列包括{HE LTF 160_P1*a,HE LTF 160_P2*b,EHT LTF 160_P1*c,EHT LTF 160_P2*d},其对应的PAPR值是6.92;第一序列包括{HE LTF 160_P1,HE LTF 160_P2,EHT LTF 320_P3,EHT LTF 320_P4},其对应的PAPR值是8.53。通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的相位旋转方案所得到的LTF序列能够形成较低的PAPR值。
应理解,当第一序列包括{HE LTF 160_P1,HE LTF 160_P2,EHT LTF 320_P3,EHT LTF 320_P4}时,其对应的第一相位旋转参数、第二相位旋转参数、第三相位旋转参数和第四相位旋转参数之间的组合为{1,1,1,1}或者{-1,-1,-1,-1}。应理解,表4的第3行所示的a、b、c和d对应于上述的第一相位旋转参数、第二相位旋转参数、第三相位旋转参数和第四相位旋转参数。
应理解,表4所示的第一序列的几种组合方式所对应的PAPR值仅作为参考,其表示各种组合方式对应的PAPR的近似值。
由此可知,通过对第一序列的各段子序列进行相位旋转,可以改变各个子序列对应的 子载波间的叠加方式,如此,本申请能够有效降低A-PPDU的下行传输的总的PAPR值。
表5:A-PPDU的聚合类型2
Figure PCTCN2022119665-appb-000011
表5所示的是当LTF序列为LTF4x序列时,不同的LTF序列发送方式所对应的PAPR值。应理解,表5第一行中的3*996、2*996和4*996是指MRU的tone的具体配置形式。
应理解,表5示出了在相同的配置形式下,不同的LTF序列构成方式所对应的PAPR值之间的比较。示例性地,当配置形式是4*996时,A-PPDU的LTF序列是由{EHT LTF 160,HE LTF160}构成时(也可以将该序列理解为现有的A-PPDU的LTF序列的发送方式),其对应的PAPR值是9.43;第一序列包括{EHT LTF 160_P1*a,EHT LTF 160_P2*b,HE LTF 160_P1*c,HE LTF 160_P2*d},其对应的PAPR值是7.14;第一序列包括{EHT LTF 320_P1*a,EHT LTF 320_P2*b,EHT LTF 320_P3*c,EHT LTF 320_P4*d},其对应的PAPR值是6.59;第一序列包括{EHT LTF 320_P1,EHT LTF 320_P2,HE LTF 160_P1,HE LTF 160_P2},其对应的PAPR值是8.6;第一序列包括{EHT LTF 320_P1*a,EHT LTF 320_P2*b,HE LTF 160_P1*c,HE LTF 160_P2*d},其对应的PAPR值是7.8。通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的相位旋转方案所得到的LTF序列能够形成较低的PAPR值。
应理解,表5的第3行和第4行所示的a、b、c和d对应于上述的第一相位旋转参数、第二相位旋转参数、第三相位旋转参数和第四相位旋转参数。
应理解,表5的第5行对应的第一相位旋转参数、第二相位旋转参数、第三相位旋转参数和第四相位旋转参数之间的组合方式为{1,1,1,1}或者{-1,-1,-1,-1}。
应理解,表5的第6行对应的第一相位旋转参数、第二相位旋转参数、第三相位旋转 参数和第四相位旋转参数之间的组合方式为{1,-1,-1,1}或者{1,-1,1,-1}或者{-1,1,1,-1}或者{-1,1,-1,1}。
应理解,表5所示的第一序列的几种组合方式所对应的PAPR值仅作为参考,其表示各种组合方式对应的PAPR的近似值。
由此可知,通过对第一序列的各段子序列进行相位旋转,可以改变子载波间的叠加方式,如此,本申请能够有效降低A-PPDU的下行传输的总的PAPR值。
表6:A-PPDU的聚合类型2
Figure PCTCN2022119665-appb-000012
表6所示的是当LTF序列为LTF2x序列时,不同的LTF序列发送方式所对应的PAPR值。应理解,表6第一行中的3*996、2*996和4*996是指MRU的tone的具体配置形式。
应理解,表6示出了在相同的配置形式下,不同的LTF序列构成方式所对应的PAPR值之间的比较。示例性地,当配置形式是4*996时,A-PPDU的LTF序列是由{EHT LTF 160,HE LTF160}构成时(也可以将该序列理解为现有的A-PPDU的LTF序列的发送方式),其对应的PAPR值是9.78;第一序列包括{EHT LTF 160_P1*a,EHT LTF 160_P2*b,HE LTF 160_P1*c,HE LTF 160_P2*d},其对应的PAPR值是7.26;第一序列包括{EHT LTF 320_P1,EHT LTF 320_P2,HE LTF 160_P1,HE LTF 160_P2},其对应的PAPR值是8.61;第一序列包括{EHT LTF 320_P1*a,EHT LTF 320_P2*b,HE LTF 160_P1*c,HE LTF 160_P2*d},其对应的PAPR值是8.06。通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的相位旋转方案所得到的LTF序列能够形成较低的PAPR值。
应理解,表6的第3行所示的a、b、c和d对应于上述的第一相位旋转参数、第二相位旋转参数、第三相位旋转参数和第四相位旋转参数。
应理解,表6的第4行对应的第一相位旋转参数、第二相位旋转参数、第三相位旋转参数和第四相位旋转参数之间的组合方式为{1,1,1,1}或者{-1,-1,-1,-1}。
应理解,表6的第5行对应的第一相位旋转参数、第二相位旋转参数、第三相位旋转参数和第四相位旋转参数之间的组合方式为{1,1,-1,-1}或者{-1,-1,1,1}或者{1,1, -1,1}或者{-1,-1,1,-1}。
应理解,表6所示的第一序列的几种组合方式所对应的PAPR值仅作为参考,其表示各种组合方式对应的PAPR的近似值。
由此可知,通过对第一序列的各段子序列进行相位旋转,可以改变各个子序列对应的子载波间的叠加方式,如此,本申请能够有效降低A-PPDU的下行传输的总的PAPR值。
需要说明的是,图3至表6中所示的采用本申请实施例的技术方案所得出的PAPR值是上述所列举的第一序列与N个相位旋转参数之间具体组合方式所对应的PAPR的近似值。
通过对比,可以得知,通过采用本申请实施例的相位旋转方案,可以改变子载波间的叠加方式,如此,本申请能够有效降低A-PPDU的下行传输的PAPR值。
作为一种可能的实现方式,该方法还包括:
S530,确定第二数据序列,第二数据序列是由差序列和第一数据序列确定。
S540,发送第二数据序列。
对应地,终端设备接收来自网络设备的第二数据序列。
应理解,第一数据序列为原数据序列,第二数据序列为待发送的数据序列,差序列是由第一序列确定。
应理解,第一数据序列为原数据序列可以理解为:网络设备根据MAC传递的生成的数据序列。
应理解,差序列可以视为:例如,将序列A视为实发LTF序列,序列B视为需要发送的LTF序列,则序列A与序列B之间的差序列Gapseq=A./B,其中./的含义为序列A的元素和序列B的元素之间对应相除,并规定,序列A的元素0与序列B的元素0之间相除所得的商为1。
应理解,差序列由第一序列确定,可以理解为:网络设备确定向终端设备发送的第一序列并不一定与终端设备认定的LTF序列相同。
示例性地,第一序列为:{HE LTF 160_P1*1,HE LTF 160_P2*-1,EHT LTF 160_P1*-1,EHT LTF 160_P2*-1},终端设备认定的LTF序列为{HE LTF 160,EHT LTF 160}时,则差序列=[HE LTF 160_P1*1./HE LTF 160_P1,HE LTF 160_P2*-1./HE LTF 160_P2,EHT LTF 160_P1*-1./EHT LTF 160_P1,EHT LTF 160_P2*-1./EHT LTF 160_P2]。
具体而言,终端设备认定的LTF序列为{HE LTF 160,EHT LTF 160},第一序列为{HE LTF 160_P1*1,HE LTF 160_P2*-1,EHT LTF 160_P1*-1,EHT LTF 160_P2*-1},则对于终端设备认定的序列{HE LTF 160},网络设备实际发送的LTF序列为{HE LTF 160_P1*1,HE LTF 160_P2*-1},网络设备需要确定二者之间的差序列。对于终端设备认定的序列{EHT LTF 160},网络设备实际发送的LTF序列为{EHT LTF 160_P1*-1,EHT LTF 160_P2*-1},网络设备也需要确定二者之间的差序列。对于序列{EHT LTF 160}和序列{EHT LTF 160_P1*-1,EHT LTF 160_P2*-1},以及序列{HE LTF 160}和{HE LTF 160_P1*1,HE LTF 160_P2*-1}而言,二者之间的差序列可以视为是由相位旋转参数-1和1两个数值组成的。例如,若序列{HE LTF 160}包括10个数字,序列{HE LTF 160_P1*1,HE LTF 160_P2*-1}也包括10个数字,且序列{HE LTF 160_P1*1}包括5个数字,序列{HE LTF 160_P2*-1}包括5个数字,则该对应的差序列为{1,1,1,1,1,-1,-1,-1,-1,-1}。若序列{EHT LTF 160}包括10个数字,序列{EHT LTF 160_P1*-1,EHT LTF 160_P2*-1}也包括10个数字,且序列{EHT LTF 160_P1*-1}包括5个数字,序列{EHT LTF 160_P2*-1} 包括5个数字,则该对应的差序列为{-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}。
因此,序列{HE LTF 160,EHT LTF 160}与第一序列{HE LTF 160_P1*1,HE LTF 160_P2*-1,EHT LTF 160_P1*-1,EHT LTF 160_P2*-1}之间的差序列为{1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}。
因此,第二数据序列与第一数据序列之间需要满足如下关系:第二数据序列=第一数据序列.*Gapseq,换言之,第一数据序列中的每个元素需要和Gapseq中的每个对应元素做一对一的相乘,如此便得到了第二数据序列。
具体地说,网络设备在确定差序列之后,其使用差序列的元素对第一数据序列中的对应元素做相乘,从而确定第二数据序列。
应理解,网络设备在调整了LTF序列的发送方式之后,网络设备也需要对数据序列的传输进行相应的处理,如此便可以解决发送序列与终端设备的已知序列不一致的问题,从而实现对终端设备的透明传输,且终端设备不需要作任何的更改或者改变。
通过上述技术方案,网络设备在调整了LTF序列的发送方式之后,对数据序列的传输进行相应的处理,如此解决了发送序列与终端设备的已知序列不一致的问题,从而实现对终端设备的透明传输,且终端设备不需要作任何的更改或者改变。
图6是本申请提供的另一种数据传输的方法的示意图。该方法#600的执行主体是网络设备。
S610,确定A-PPDU,A-PPDU包括至少两个属于不同协议的PPDU,A-PPDU包括第一序列,第一序列包括HE LTF序列或者EHT LTF序列。
应理解,A-PPDU包括多个属于不同协议的PPDU。例如,该A-PPDU包括HE PPDU和EHT PPDU,或者,该A-PPDU包括VHT PPDU和HT PPDU,或者,该A-PPDU也可以包括HE PPDU、EHT PPDU、VHT PPDU和HT PPDU,本申请实施例不作具体限定。
应理解,该A-PPDU所包括的第一序列包括HE LTF序列或者EHT LTF序列。而由上文可知,当该A-PPDU包括多个属于不同协议的PPDU时,则意味着每个PPDU均会有对应的LTF序列,然而如果直接将该多个PPDU对应的LTF序列合并发送,则会造成较大的PAPR,因此,当该A-PPDU所包括的第一序列包括HE LTF序列或者EHT LTF序列时,如此,就能够有效降低A-PPDU的总的PAPR。
S620,发送A-PPDU。
对应地,终端设备接收来自网络设备的A-PPDU。
通过改变A-PPDU的下行传输的LTF序列的构成,换言之,网络设备只发送HE LTF序列或者EHT LTF序列,如此,本申请能够实现有效降低A-PPDU的下行传输的总的PAPR。
下文将对本申请实施例的采用发送一种LTF序列所得到的有益效果进行描述。
表7:A-PPDU的聚合类型1
Figure PCTCN2022119665-appb-000013
表7所示的是当LTF序列为LTF4x序列时,不同的LTF序列发送方式所对应的PAPR值。应理解,表7的第一行中的3*996、2*996和4*996是指MRU的tone的具体配置形 式。
应理解,表7示出了在相同的配置形式下,不同的LTF序列构成方式所对应的PAPR值之间的比较。示例性地,当配置形式是4*996时,A-PPDU的LTF序列是由{HE LTF 160,EHT LTF160}构成时(也可以将该序列理解为现有的A-PPDU的LTF序列的发送方式),其对应的PAPR值是9.45;第一序列包括{EHT LTF 320},其对应的PAPR值是8.36。通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的相位旋转方案所得到的LTF序列能够形成较低的PAPR值。
通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的方案所得到的LTF序列能够形成较低的PAPR值。
表8:A-PPDU的聚合类型1
Figure PCTCN2022119665-appb-000014
表8所示的是当LTF序列为LTF2x序列时,不同的LTF序列发送方式所对应的PAPR值。应理解,表8的第一行中的3*996、2*996和4*996是指MRU的tone的具体配置形式。
应理解,表8示出了在相同的配置形式下,不同的LTF序列构成方式所对应的PAPR值之间的比较。示例性地,当配置形式是4*996时,A-PPDU的LTF序列是由{HE LTF 160,EHT LTF160}构成时(也可以将该序列理解为现有的A-PPDU的LTF序列的发送方式),其对应的PAPR值是9.78;第一序列包括{EHT LTF 320},其对应的PAPR值是7.366。通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的相位旋转方案所得到的LTF序列能够形成较低的PAPR值。
通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的方案所得到的LTF序列能够形成较低的PAPR值。
表9:A-PPDU的聚合类型2
Figure PCTCN2022119665-appb-000015
表9所示的是当LTF序列为LTF4x序列时,不同的LTF序列发送方式所对应的PAPR值。应理解,表9的第一行中的3*996、2*996和4*996是指MRU的tone的具体配置形式。
应理解,表9示出了在相同的配置形式下,不同的LTF序列构成方式所对应的PAPR值之间的比较。示例性地,当配置形式是4*996时,A-PPDU的LTF序列是由{EHT LTF 160,HE LTF160}构成时(也可以将该序列理解为现有的A-PPDU的LTF序列的发送方式),其对应的PAPR值是9.43;第一序列包括{EHT LTF 320},其对应的PAPR值是8.36。通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的相位旋转方案所得到的LTF序列能够形成较低的PAPR值。
通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的方案所得到的LTF序列能够形成较低的PAPR值。
表10:A-PPDU的聚合类型2
Figure PCTCN2022119665-appb-000016
表10所示的是当LTF序列为LTF2x序列时,不同的LTF序列发送方式所对应的PAPR值。应理解,表10的第一行中的3*996、2*996和4*996是指MRU的tone的具体配置形式。
应理解,表10示出了在相同的配置形式下,不同的LTF序列构成方式所对应的PAPR值之间的比较。示例性地,当配置形式是4*996时,A-PPDU的LTF序列是由{EHT LTF 160,HE LTF160}构成时(也可以将该序列理解为现有的A-PPDU的LTF序列的发送方式),其对应的PAPR值是9.78;第一序列包括{EHT LTF 320},其对应的PAPR值是7.68。通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的相位旋转方案所得到的LTF序列能够形成较低的PAPR值。
通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的方案所得到的LTF序列能够形成较低的PAPR值。
由此可知,当改变A-PPDU的下行传输的第一序列的构成时,本申请能够有效降低A-PPDU的下行传输的总的PAPR值。
表11:A-PPDU的聚合类型3
LTF 4x序列 2*996
{HE LTF 80,EHT LTF 80} 9.26
{EHT LTF 320_P1,EHT LTF 320_P2} 6.17
{HE LTF 160} 7.14
表11所示的是当LTF序列为LTF4x序列时,不同的LTF序列发送方式所对应的PAPR值。应理解,表11第一行中的2*996是指MRU的tone的具体配置形式。
具体而言,当配置方式为2*996时,当A-PPDU的LTF序列是由{HE LTF 80,EHT LTF 80}构成时(也可以将该序列理解为现有的A-PPDU的LTF序列的发送方式),其对应的PAPR值是9.26;第一序列是由{EHT LTF 320_P1,EHT LTF 320_P2}构成时,其对应的PAPR值是6.17;第一序列是由{HE LTF 160}构成时,其对应的PAPR值是7.14。通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的方案所得到的LTF序列能够形成较低的PAPR值。
由此可知,当改变A-PPDU的下行传输的第一序列的构成时,本申请能够有效降低A-PPDU的下行传输的总的PAPR值。
表12:A-PPDU的聚合类型3
LTF 2x序列 2*996
{HE LTF 80,EHT LTF 80} 8.92
{EHT LTF 320_P1,EHTLTF320_P2} 7.24
{HELTF160} 7.23
表12所示的是当LTF序列为LTF2x序列时,不同的LTF序列发送方式所对应的PAPR值。应理解,表12第一行中的2*996是指MRU的tone的具体配置形式。
具体而言,当配置方式为2*996时,当A-PPDU的LTF序列是由{HE LTF 80,EHT LTF 80}构成时(也可以将该序列理解为现有的A-PPDU的LTF序列的发送方式),其对应的PAPR值是8.92;第一序列是由{EHT LTF 320_P1,EHT LTF 320_P2}构成时,其对应的PAPR值是7.24;第一序列是由{HE LTF 160}构成时,其对应的PAPR值是7.23。通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的方案所得到的LTF序列能够形成较低的PAPR值。
由此可知,当改变A-PPDU的下行传输的第一序列的构成时,本申请能够有效降低A-PPDU的下行传输的总的PAPR值。
表13:A-PPDU的聚合类型4
LTF 4x序列 2*996
{EHTLTF80,HELTF80} 9.26
{EHTLTF320_P1,EHTLTF320_P2} 6.56
{HELTF160} 7.38
表13所示的是当LTF序列为LTF4x序列时,不同的LTF序列发送方式所对应的PAPR值。应理解,表13第一行中的2*996是指MRU的tone的具体配置形式。
具体而言,当配置方式为2*996时,当A-PPDU的LTF序列是由{EHT LTF 80,HE LTF 80}构成时(也可以将该序列理解为现有的A-PPDU的LTF序列的发送方式),其对应的PAPR值是9.26。第一序列是由{EHT LTF 320_P1,EHT LTF 320_P2}构成时,其对应的PAPR值是6.56;第一序列是由{HE LTF 160}构成时,其对应的PAPR值是7.38。通过上述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的方案所得到的LTF序列能够形成较低的PAPR值。
由此可知,当改变A-PPDU的下行传输的第一序列的构成时,本申请能够有效降低A-PPDU的下行传输的总的PAPR值。
表14:A-PPDU的聚合类型4
LTF 2x序列 2*996
{EHTLTF80,HELTF80} 8.92
{EHTLTF320_P1,EHTLTF320_P2} 7.58
{HELTF160} 7.49
表14所示的是当LTF序列为LTF2x序列时,不同的LTF序列发送方式所对应的PAPR值。应理解,表14第一行中的2*996是指MRU的tone的具体配置形式。
具体而言,当配置方式为2*996时,当A-PPDU的LTF序列是由{EHT LTF 80,HE LTF 80}构成时(也可以将该序列理解为现有的A-PPDU的LTF序列的发送方式),其对应的PAPR值是8.92;第一序列是由{EHT LTF 320_P1,EHT LTF 320_P2}构成时,其对应的PAPR值是7.58;第一序列是由{HE LTF 160}构成时,其对应的PAPR值是7.49。通过上 述对比,可以得知,相比于采用现有的LTF序列的构成方式,采用本申请实施例的方案所得到的LTF序列能够形成较低的PAPR值。
由此可知,当改变A-PPDU的下行传输的第一序列的构成时,本申请能够有效降低A-PPDU的下行传输的总的PAPR值。
由上述对比得知,通过采用改变A-PPDU的下行传输时的LTF序列的构成,例如,仅发送HE LTF序列或者EHT LTF序列,本申请能够有效降低A-PPDU的下行传输的PAPR值。
作为一种可能的实现方式,该A-PPDU包括HE PPDU和EHT PPDU。如此,本申请能够有效降低由HE PPDU和EHT PPDU构成的A-PPDU的下行传输的总的PAPR。
作为一种可能的实现方式,网络设备在320MHz的带宽资源发送A-PPDU。
应理解,该第一序列是EHT LTF序列。
作为一种可能的实现方式,网络设备在160MHz的带宽资源发送A-PPDU。
应理解,该第一序列是EHT LTF序列或者HE LTF序列。
可选地,当第一序列为EHT LTF序列时,该网络设备实际发送的EHT LTF序列可以是320MHz带宽资源对应的EHT LTF序列的一半EHT LTF序列,例如,第一序列是{EHT LTF 320_P1,EHT LTF 320_P2},或者,该第一序列是{EHT LTF 320_P3,EHT LTF 320_P4}。
作为一种可能的实现方式,该方法还包括:
S630,基于差序列与第一数据序列确定第二数据序列,差序列由第一序列确定。
S640,发送第二数据序列。
相应地,终端设备接收来自网络设备的第二数据序列。
应理解,第一数据序列为原数据序列,第二数据序列为待发送的数据序列。
应理解,网络设备在调整LTF序列的发送方式之后,其需要对数据序列的传输也进行相应的调整,即,实发数据序列与待发数据序列需要满足如下关系:实发数据序列=待发数据序列.*Gapseq。其中,差序列可以理解为Gapseq,且Gapseq的含义可以参考前述的内容,在此不再赘述。
应理解,差序列由第一序列确定,可以理解为:当网络设备确定向终端设备发送的第一序列之后,由于终端设备认定的LTF序列并不同于第一序列。例如,终端设备认定网络设备发送的LTF序列为{HE LTF 80,EHT LTF 80},则二者之间存在差序列。
示例性地,第一序列为:{EHT LTF 320_P1,EHT LTF 320_P2},终端设备认定的序列为{HE LTF 80,EHT LTF 80}时,则差序列=[EHT LTF 320_P1./HE LTF 80,EHT LTF 320_P2./EHT LTF 80]。
具体而言,第一序列是由HE LTF序列或者EHT LTF序列组成,且第一序列是由网络设备实际发送给终端设备的,但是终端设备会认定一个第二序列,换言之,第二序列可以视为协议预定义的LTF序列,因此,第一序列与第二序列之间存在一个差序列,差序列是由第一序列的每个元素与第二序列中的对应元素之间相除所得到的商组成。
网络设备在确定差序列之后,对第一数据序列的每个元素与差序列中的对应元素作相乘,继而确定第二数据序列。如此,网络设备能够实现对终端设备的透明传输。
由于LTF序列的功能是为数据部分提供参考,因此,在对LTF序列的发送方式进行调整之后,网络设备也需要对数据字段进行相应的处理,如此便解决了网络设备实际发送的序列与终端设备的已知序列不一致的问题,从而实现网络设备对终端设备的透明传输。
图7是本申请提供的通信装置700的示意性框图。如图所示,该通信装置700可以包括:收发单元710和处理单元720。
在一种可能的设计中,该通信装置700可以是上文方法实施例中的网络设备,也可以是用于实现上文方法实施例中网络设备的功能的芯片。
应理解,该通信装置700可对应于根据本申请实施例中的网络设备,该通信装置700可以包括用于执行图5至图6中的网络设备执行的方法的单元。并且,该通信装置700中的各单元和上述其他操作和/或功能分别为了实现图5至图6中的相应流程。
作为一种示例性描述,该通信装置700能够实现前述方法实施例中的S510、S520、S530和S540中涉及网络设备有关的动作、步骤或者方法。
应理解,上述内容仅作为示例性理解,该通信装置700还能够实现上述方法实施例中的其他与网络设备相关的步骤、动作或者方法,在此不再赘述。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该通信装置700可以是上文方法实施例中的终端设备,也可以是用于实现上文方法实施例中终端设备的功能的芯片。
应理解,该通信装置700可对应于根据本申请实施例中的终端设备,该通信装置700可以包括用于执行图5和图6中的终端设备执行的方法的单元。并且,该通信装置700中的各单元和上述其他操作和/或功能分别为了实现图5和图6中的相应流程。应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,该通信装置700中的收发单元710可对应于图8中示出的通信设备800中的收发器820,该通信装置700中的处理单元720可对应于图8中示出的通信设备800中的处理器810。
还应理解,当该通信装置700为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
收发单元710用于实现通信装置700的信号的收发操作,处理单元720用于实现通信装置700的信号的处理操作。
可选地,该通信装置700还包括存储单元730,该存储单元730用于存储指令。
图8是本申请实施例提供的通信设备800的示意性框图。如图所示,该通信设备800包括:至少一个处理器810和收发器820。该处理器810与存储器耦合,用于执行存储器中存储的指令,以控制收发器820发送信号和/或接收信号。可选地,该通信设备800还包括存储器830,用于存储指令。
应理解,上述处理器810和存储器830可以合成一个处理装置,处理器810用于执行存储器830中存储的程序代码来实现上述功能。具体实现时,该存储器830也可以集成在处理器810中,或者独立于处理器810。
还应理解,收发器820可以包括接收器(或者称,接收机)和发射器(或者称,发射机)。收发器820还可以进一步包括天线,天线的数量可以为一个或多个。收发器1020有可以是通信接口或者接口电路。
当该通信设备800为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以 是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。本申请实施例还提供了一种处理装置,包括处理器和接口。所述处理器可用于执行上述方法实施例中的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由网络设备执行的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由网络设备执行的方法,或由终端设备执行的方法。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。
其中,计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质(或者说计算机可读介质)例如可以包括但不限于:磁性介质或磁存储器件(例如,软盘、硬盘(如移动硬盘)、磁带)、光介质(例如,光盘、压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等)、智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)、或者半导体介质(例如固态硬 盘(solid state disk,SSD)等、U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)等各种可以存储程序代码的介质。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,计算机可以是个人计算机,服务器,或者网络设备等。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、 微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。关于计算机可读存储介质,可以参考上文描述。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分不同的网络设备,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下网元会做出相应的处理,并非是限定时间,且也不要求网元实现时一定要有判断的动作,也不意味着存在其它限定。
还应理解,在本申请各实施例中,“A对应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种数据传输的方法,其特征在于,包括:
    确定聚合物理层协议数据单元A-PPDU,所述A-PPDU包括至少两个属于不同协议的PPDU,所述A-PPDU包括第一序列,所述第一序列包括N段子序列,所述N段子序列的任一段子序列是由高效长训练字段HE LTF序列和/或超高吞吐量长训练字段EHT LTF序列在所述HE LTF序列和/或所述EHT LTF序列对应的相位旋转参数下进行相位旋转所得,所述N段子序列对应的N个所述相位旋转参数中包括至少一个值为-1的相位旋转参数,所述N为大于或等于2的正整数;
    发送所述A-PPDU。
  2. 一种数据传输的方法,其特征在于,包括:
    接收聚合物理层协议数据单元A-PPDU,所述A-PPDU包括至少两个属于不同协议的PPDU,所述A-PPDU包括第一序列,所述第一序列包括N段子序列,所述N段子序列的任一段子序列是由高效长训练字段HE LTF序列和/或超高吞吐量长训练字段EHT LTF序列在所述HE LTF序列和/或所述EHT LTF序列对应的相位旋转参数下进行相位旋转所得,所述N段子序列对应的N个所述相位旋转参数中包括至少一个值为-1的相位旋转参数,所述N为大于或等于2的正整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述A-PPDU包括HE PPDU和EHT PPDU。
  4. 根据权利要求1或3所述的方法,其特征在于,所述发送所述A-PPDU,包括:
    在320MHz的带宽资源发送所述A-PPDU。
  5. 根据权利要求2或3所述的方法,其特征在于,所述接收A-PPDU,包括:
    在320MHz的带宽资源接收所述A-PPDU。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述N=4,所述N个相位旋转参数包括如下至少一组:
    {1,-1,-1,-1},{1,-1,1,1},{1,1,-1,1},{1,1,1,-1},{-1,1,1,1},{-1,1,-1,-1},{-1,-1,1,-1},{-1,-1,-1,1},{1,-1,-1,1},{1,-1,1,-1},{-1,1,1,-1},{-1,1,-1,1},{1,1,-1,-1},{-1,-1,1,1}。
  7. 根据权利要求1、3-4、6中任一项所述的方法,其特征在于,所述方法还包括:
    确定第二数据序列,所述第二数据序列是由差序列与第一数据序列确定;
    发送所述第二数据序列,
    其中,所述第一数据序列为原数据序列,所述第二数据序列为待发送的数据序列,所述差序列由所述第一序列确定。
  8. 根据权利要求2-3、5-6中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二数据序列,所述第二数据序列是由差序列与第一数据序列确定,
    其中,所述第一数据序列为原数据序列,所述第二数据序列为待发送的数据序列,所述差序列由所述第一序列确定。
  9. 一种数据传输的方法,其特征在于,包括:
    确定聚合物理层协议数据单元A-PPDU,所述A-PPDU包括至少两个属于不同协议的PPDU,所述A-PPDU包括第一序列,所述第一序列包括高效长训练字段HE LTF序列或者超高吞吐量长训练字段EHT LTF序列;
    发送所述A-PPDU。
  10. 一种数据传输的方法,其特征在于,包括:
    接收聚合物理层协议数据单元A-PPDU,所述A-PPDU包括至少两个属于不同协议的PPDU,所述A-PPDU包括第一序列,所述第一序列包括高效长训练字段HE LTF序列或者超高吞吐量长训练字段EHT LTF序列。
  11. 根据权利要求9或10所述的方法,其特征在于,所述A-PPDU包括HE PPDU和EHT PPDU。
  12. 根据权利要求9或11所述的方法,其特征在于,所述发送所述A-PPDU,包括:
    在320MHz的带宽资源发送所述A-PPDU;或者,
    在160MHz的带宽资源发送所述A-PPDU。
  13. 根据权利要求10或11所述的方法,其特征在于,所述接收A-PPDU,包括:
    在320MHz的带宽资源接收所述A-PPDU;或者,
    在160MHz的带宽资源接收所述A-PPDU。
  14. 根据权利要求9、11或12中任一项所述的方法,其特征在于,所述方法还包括:
    基于差序列与第一数据序列确定第二数据序列,所述差序列由所述第一序列确定;
    发送所述第二数据序列,
    其中,所述第一数据序列为原数据序列,所述第二数据序列为待发送的数据序列。
  15. 根据权利要求10、11或13中任一项所述的方法,其特征在于,所述方法还包括:
    接收第二数据序列,所述第二数据序列是基于差序列与第一数据序列确定,所述差序列由所述第一序列确定,
    其中,所述第一数据序列为原数据序列,所述第二数据序列为待发送的数据序列。
  16. 一种通信装置,其特征在于,包括:
    处理单元,用于确定聚合物理层协议数据单元A-PPDU,所述A-PPDU包括至少两个属于不同协议的PPDU,所述A-PPDU包括第一序列,所述第一序列包括N段子序列,所述N段子序列的任一段子序列是由高效长训练字段HE LTF序列和/或超高吞吐量长训练字段EHT LTF序列在所述HE LTF序列和/或所述EHT LTF序列对应的相位旋转参数下进行相位旋转所得,所述N段子序列对应的N个所述相位旋转参数中包括至少一个值为-1的相位旋转参数,所述N为大于或等于2的正整数;
    收发单元,用于发送所述A-PPDU。
  17. 一种通信装置,其特征在于,包括:
    收发单元,用于接收聚合物理层协议数据单元A-PPDU,所述A-PPDU包括至少两个属于不同协议的PPDU,所述A-PPDU包括第一序列,所述第一序列包括N段子序列,所述N段子序列的任一段子序列是由高效长训练字段HE LTF序列和/或超高吞吐量长训练字段EHT LTF序列在所述HE LTF序列和/或所述EHT LTF序列对应的相位旋转参数下进行相位旋转所得,所述N段子序列对应的N个所述相位旋转参数中包括至少一个值为-1的相位旋转参数,所述N为大于或等于2的正整数。
  18. 根据权利要求16或17所述的通信装置,其特征在于,所述A-PPDU包括HE PPDU 和EHT PPDU。
  19. 根据权利要求16或18所述的通信装置,其特征在于,所述发送所述A-PPDU,包括:
    在320MHz的带宽资源发送所述A-PPDU。
  20. 根据权利要求17或18所述的通信装置,其特征在于,所述接收A-PPDU,包括:
    在320MHz的带宽资源接收所述A-PPDU。
  21. 根据权利要求16至20中任一项所述的通信装置,其特征在于,所述N=4,所述N个相位旋转参数包括如下至少一组:
    {1,-1,-1,-1},{1,-1,1,1},{1,1,-1,1},{1,1,1,-1},{-1,1,1,1},{-1,1,-1,-1},{-1,-1,1,-1},{-1,-1,-1,1},{1,-1,-1,1},{1,-1,1,-1},{-1,1,1,-1},{-1,1,-1,1},{1,1,-1,-1},{-1,-1,1,1}。
  22. 根据权利要求16、18、19、21中任一项所述的通信装置,其特征在于,所述通信装置还包括:
    所述处理单元还用于确定第二数据序列,所述第二数据序列是由差序列与第一数据序列确定;
    所述收发单元还用于发送所述第二数据序列,
    其中,所述第一数据序列为原数据序列,所述第二数据序列为待发送的数据序列,所述差序列由所述第一序列确定。
  23. 根据权利要求17、18、20-22中任一项所述的通信装置,其特征在于,所述通信装置还包括:
    所述收发单元还用于接收第二数据序列,所述第二数据序列是由差序列与第一数据序列确定,
    其中,所述第一数据序列为原数据序列,所述第二数据序列为待发送的数据序列,所述差序列由所述第一序列确定。
  24. 一种通信装置,其特征在于,包括:
    处理单元,用于确定聚合物理层协议数据单元A-PPDU,所述A-PPDU包括至少两个属于不同协议的PPDU,所述A-PPDU包括第一序列,所述第一序列包括高效长训练字段HE LTF序列或者超高吞吐量长训练字段EHT LTF序列;
    收发单元,用于发送所述A-PPDU。
  25. 一种通信装置,其特征在于,包括:
    收发单元,用于接收聚合物理层协议数据单元A-PPDU,所述A-PPDU包括至少两个属于不同协议的PPDU,所述A-PPDU包括第一序列,所述第一序列包括高效长训练字段HE LTF序列或者超高吞吐量长训练字段EHT LTF序列。
  26. 根据权利要求24或25所述的通信装置,其特征在于,所述A-PPDU包括HE PPDU和EHT PPDU。
  27. 根据权利要求24或26所述的通信装置,其特征在于,所述发送所述A-PPDU,包括:
    在320MHz的带宽资源发送所述A-PPDU;或者,
    在160MHz的带宽资源发送所述A-PPDU。
  28. 根据权利要求25或26所述的通信装置,其特征在于,所述接收A-PPDU,包括:
    在320MHz的带宽资源接收所述A-PPDU;或者,
    在160MHz的带宽资源接收所述A-PPDU。
  29. 根据权利要求24、26或27中任一项所述的通信装置,其特征在于,所述通信装置还包括:
    所述处理单元还用于基于差序列与第一数据序列确定第二数据序列,所述差序列由所述第一序列确定;
    所述收发单元还用于发送所述第二数据序列,
    其中,所述第一数据序列为原数据序列,所述第二数据序列为待发送的数据序列。
  30. 根据权利要求25、26或28中任一项所述的通信装置,其特征在于,所述通信装置还包括:
    所述收发单元还用于接收第二数据序列,所述第二数据序列是基于差序列与第一数据序列确定,所述差序列由所述第一序列确定,
    其中,所述第一数据序列为原数据序列,所述第二数据序列为待发送的数据序列。
  31. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,所述计算机程序或指令用于实现权利要求1至15中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至15中任一项所述的方法。
  33. 一种芯片,其特征在于,所述芯片包括逻辑电路和通信接口,所述芯片用于实现如权利要求1-15中任一项所述的方法。
PCT/CN2022/119665 2021-09-23 2022-09-19 数据传输的方法和通信装置 WO2023045877A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111116352.XA CN115865284A (zh) 2021-09-23 2021-09-23 数据传输的方法和通信装置
CN202111116352.X 2021-09-23

Publications (1)

Publication Number Publication Date
WO2023045877A1 true WO2023045877A1 (zh) 2023-03-30

Family

ID=85652347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119665 WO2023045877A1 (zh) 2021-09-23 2022-09-19 数据传输的方法和通信装置

Country Status (3)

Country Link
CN (1) CN115865284A (zh)
TW (1) TWI805491B (zh)
WO (1) WO2023045877A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778421A (zh) * 2009-01-12 2010-07-14 瑞昱半导体股份有限公司 帧合并装置及其方法
US20210227529A1 (en) * 2020-01-04 2021-07-22 Nxp Usa, Inc. Method and apparatus for communications
CN114339893A (zh) * 2020-09-29 2022-04-12 华为技术有限公司 物理层协议数据单元ppdu传输方法及相关装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021045422A1 (ko) * 2019-09-05 2021-03-11 엘지전자 주식회사 무선랜 시스템에서 광대역을 통해 ppdu를 수신하는 방법 및 장치
CN115943600A (zh) * 2020-03-13 2023-04-07 交互数字专利控股公司 涉及无线局域网(“wlan”)系统中的物理层信令的方法、架构、装置和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778421A (zh) * 2009-01-12 2010-07-14 瑞昱半导体股份有限公司 帧合并装置及其方法
US20210227529A1 (en) * 2020-01-04 2021-07-22 Nxp Usa, Inc. Method and apparatus for communications
CN114339893A (zh) * 2020-09-29 2022-04-12 华为技术有限公司 物理层协议数据单元ppdu传输方法及相关装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUI CAO (NXP): "Aggregated PPDU for Large BW", IEEE DRAFT; 11-20-0693-01-00BE-AGGREGATED-PPDU-FOR-LARGE-BW, vol. 802.11 EHT; 802.11be, no. 1, 18 May 2020 (2020-05-18), Piscataway, NJ USA , pages 1 - 7, XP068167945 *

Also Published As

Publication number Publication date
TWI805491B (zh) 2023-06-11
TW202315374A (zh) 2023-04-01
CN115865284A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
TWI782013B (zh) 單使用者及多使用者傳輸之具調變波形編碼
EP3637842B1 (en) Method of transmitting and receiving information, network device and terminal device
EP4050829B1 (en) Method and device for transmitting physical layer protocol data unit
TWI711289B (zh) 無線傳輸/接收單元及由其執行的方法
CN106797529B (zh) 用于减小带宽的机器型通信(mtc)设备的子带分配技术
TW201742415A (zh) 毫米波及前文設計調變方法及裝置
US20170347349A1 (en) Techniques for group-based spatial stream assignment signaling in 60 ghz wireless networks
WO2022068689A1 (zh) 物理层协议数据单元ppdu传输方法及相关装置
WO2021249405A1 (zh) 传输/接收物理层协议数据单元的方法和装置
WO2021136544A1 (zh) 传输物理层协议数据单元的方法和装置
WO2023045877A1 (zh) 数据传输的方法和通信装置
WO2021244373A1 (zh) 传输物理层协议数据单元的方法和装置
CN107592142B (zh) 一种信道估计序列的传输方法和装置
WO2018006660A1 (zh) 一种信道估计序列的传输方法和装置
CN113765951B (zh) 传输物理层协议数据单元的方法和装置
WO2022252954A1 (zh) 资源配置的方法及装置
WO2023246422A1 (zh) 数据处理方法和数据处理装置
JP7460045B2 (ja) 将来のネットワークのためのヌメロロジースキーム及びシステムベーシックタイミング
WO2024098316A1 (zh) Wi-Fi系统中PPDU传输方法、装置、设备及介质
WO2023016384A1 (zh) 一种数据传输方法及通信装置
EP4373044A1 (en) Method and apparatus for transmitting phase tracking reference signal
WO2022082766A1 (zh) 一种dc位置的上报方法及装置、终端设备、网络设备
TW202402006A (zh) 用於無線區域網路 (wlans) 的單載波分頻多工(sc-fdm)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022871923

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022871923

Country of ref document: EP

Effective date: 20240325

NENP Non-entry into the national phase

Ref country code: DE