WO2021136544A1 - 传输物理层协议数据单元的方法和装置 - Google Patents

传输物理层协议数据单元的方法和装置 Download PDF

Info

Publication number
WO2021136544A1
WO2021136544A1 PCT/CN2021/070056 CN2021070056W WO2021136544A1 WO 2021136544 A1 WO2021136544 A1 WO 2021136544A1 CN 2021070056 W CN2021070056 W CN 2021070056W WO 2021136544 A1 WO2021136544 A1 WO 2021136544A1
Authority
WO
WIPO (PCT)
Prior art keywords
hes
represented
bandwidth
short training
mhz
Prior art date
Application number
PCT/CN2021/070056
Other languages
English (en)
French (fr)
Inventor
梁丹丹
淦明
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021136544A1 publication Critical patent/WO2021136544A1/zh
Priority to US17/856,112 priority Critical patent/US11817980B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/262Reduction thereof by selection of pilot symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic

Definitions

  • This application relates to the field of wireless communication technology, and more specifically, to a method and device for transmitting physical layer protocol data units.
  • IEEE 802.11ax The Institute of Electrical and Electronics Engineers (IEEE) 802.11ax standard has become difficult To meet user needs in terms of large throughput, low jitter, and low latency, there is an urgent need to develop the next-generation wireless local area network (WLAN) technology, that is, the IEEE 802.11be standard.
  • WLAN wireless local area network
  • IEEE 802.11be will use ultra-large bandwidths, such as 240MHz and 320MHz, to achieve ultra-high transmission rates and support scenarios for ultra-dense users. Then, how to design a short training field (STF) sequence for a larger channel bandwidth is a problem worthy of concern.
  • STF short training field
  • This application provides a method and device for transmitting a physical layer protocol data unit, which can design a short training domain sequence for a larger channel bandwidth.
  • a method for transmitting a physical layer protocol data unit including: generating a physical layer protocol data unit PPDU, the PPDU includes a short training field, and the length of the frequency domain sequence of the short training field is greater than the first length
  • the first length is the length of the frequency domain sequence of the short training domain of the PPDU transmitted on a channel with a bandwidth of 160 MHz; the PPDU is sent on a target channel, wherein the bandwidth of the target channel is greater than 160 MHz.
  • the method of the embodiment of the present application can determine a short training sequence or frequency domain sequence corresponding to a larger channel bandwidth, and can support the receiving end to perform automatic gain control on data transmitted on a larger channel bandwidth.
  • the short training sequence can be obtained based on the short training sequence of the existing channel bandwidth, and through simulation calculation, such as adjusting parameters, a short training sequence with better performance can be obtained.
  • the short training field can be obtained based on the short training sequence. According to the embodiment of the present application, it can not only meet the actual larger channel bandwidth and be backward compatible, but also verify the short training sequence provided by the embodiment of the present application through exhaustive simulation of the parameters, and the peak-to-average power value PAPR is small. Better performance, which in turn improves the estimation effect of the automatic gain control circuit at the receiving end, thereby reducing the receiving bit error rate.
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -1008:16:1008 _L is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • HES' -1008:16:1008 _R is represented as ⁇ -M,-1, M,0,-M,1,-M ⁇
  • HES' -496:16:496 is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • M ⁇ -1,-1 ,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -496:16:496 _L is represented as ⁇ M,1,-M ⁇
  • HES' -496:16:496 _R is represented as ⁇ -M,1,-M ⁇
  • HES' -496:16: 496 is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • M ⁇ -1,-1,-1,1,1,1,-1,1,1,- 1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -1016:8:1016 _L ⁇ M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M ⁇
  • HES' -1016:8:1016 _R ⁇ -M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M ⁇
  • HES' -504 :8:504 is represented as ⁇ M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M ⁇
  • M ⁇ -1 ,-1,-1,1,1,1,-1,1,1,-1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -504:8:504 _L is represented as ⁇ M,-1,M,-1,-M,-1,M ⁇
  • HES' -504:8:504 _R is represented as ⁇ -M,1, M,1,-M,1,-M ⁇
  • HES' -504:8:504 is represented as ⁇ M,-1,M,-1,-M,-1,M,0,-M,1,M ,1,-M,1,-M ⁇
  • M ⁇ -1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -1008:16:1008 is represented as ⁇ M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,-M ⁇
  • HES' -1008:16:1008 _L is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • HES' -1008:16:1008 _R is represented as ⁇ -M,-1,M ,0,-M,1,-M ⁇
  • M ⁇ -1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -496:16:496 _L is represented as ⁇ M,1,-M ⁇
  • HES' -496:16:496 _R is represented as ⁇ -M,1,-M ⁇
  • HES' -496:16: 496 is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • M ⁇ -1,-1,-1,1,1,1,-1,1,1,- 1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -1016:8:1016 is represented as ⁇ M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M,0,- M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M ⁇
  • HES' -1016:8:1016 _L is expressed as ⁇ M, -1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M ⁇
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • another method for transmitting a physical layer protocol data unit including: receiving a physical layer protocol data unit PPDU on a target channel, the PPDU including a short training field, and a frequency domain sequence of the long training field
  • the length is greater than a first length
  • the first length is a length of a frequency domain sequence of a short training domain of a PPDU transmitted on a channel with a bandwidth of 160 MHz, wherein the bandwidth of the target channel is greater than 160 MHz; and the PPDU is parsed.
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -1008:16:1008 _L is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • HES' -1008:16:1008 _R is represented as ⁇ -M,-1, M,0,-M,1,-M ⁇
  • HES' -496:16:496 is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • M ⁇ -1,-1 ,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -496:16:496 _L is represented as ⁇ M,1,-M ⁇
  • HES' -496:16:496 _R is represented as ⁇ -M,1,-M ⁇
  • HES' -496:16: 496 is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • M ⁇ -1,-1,-1,1,1,1,-1,1,1,- 1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -1016:8:1016 _L ⁇ M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M ⁇
  • HES' -1016:8:1016 _R ⁇ -M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M ⁇
  • HES' -504 :8:504 is represented as ⁇ M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M ⁇
  • M ⁇ -1 ,-1,-1,1,1,1,-1,1,1,-1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -504:8:504 _L is represented as ⁇ M,-1,M,-1,-M,-1,M ⁇
  • HES' -504:8:504 _R is represented as ⁇ -M,1, M,1,-M,1,-M ⁇
  • HES' -504:8:504 is represented as ⁇ M,-1,M,-1,-M,-1,M,0,-M,1,M ,1,-M,1,-M ⁇
  • M ⁇ -1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -1008:16:1008 is represented as ⁇ M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,-M ⁇
  • HES' -1008:16:1008 _L is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • HES' -1008:16:1008 _R is represented as ⁇ -M,-1,M ,0,-M,1,-M ⁇
  • M ⁇ -1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -496:16:496 _L is represented as ⁇ M,1,-M ⁇
  • HES' -496:16:496 _R is represented as ⁇ -M,1,-M ⁇
  • HES' -496:16: 496 is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • M ⁇ -1,-1,-1,1,1,1,-1,1,1,- 1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -1016:8:1016 is represented as ⁇ M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M,0,- M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M ⁇
  • HES' -1016:8:1016 _L is expressed as ⁇ M, -1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M ⁇
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • a device for transmitting a physical layer protocol data unit is provided, and the device is configured to execute the method provided in the above-mentioned first aspect.
  • the device may include a module for executing the first aspect and any possible implementation manner of the first aspect.
  • a device for transmitting a physical layer protocol data unit is provided, and the device is configured to execute the method provided in the second aspect.
  • the device may include a module for executing the second aspect and any possible implementation manner of the second aspect.
  • a device for transmitting a physical layer protocol data unit including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the foregoing first aspect and the method in any one of the possible implementation manners of the first aspect.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the device is an access point.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in an access point.
  • the communication interface may be an input/output interface.
  • the device is a station.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a site.
  • the communication interface may be an input/output interface.
  • the device is a chip or a chip system.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a device for transmitting a physical layer protocol data unit including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the foregoing second aspect and the method in any one of the possible implementation manners of the second aspect.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the device is an access point.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in an access point.
  • the communication interface may be an input/output interface.
  • the device is a station.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a site.
  • the communication interface may be an input/output interface.
  • the device is a chip or a chip system.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer-readable storage medium on which a computer program is stored.
  • the apparatus When the computer program is executed by an apparatus, the apparatus enables the apparatus to implement the first aspect and the method in any one of the possible implementation manners of the first aspect .
  • a computer-readable storage medium on which a computer program is stored.
  • the apparatus When the computer program is executed by an apparatus, the apparatus enables the apparatus to implement the second aspect and the method in any one of the possible implementation manners of the second aspect .
  • a computer program product containing instructions is provided, when the instructions are executed by a computer, the device implements the first aspect and the method provided in any one of the possible implementation manners of the first aspect.
  • a computer program product containing instructions which when executed by a computer, causes an apparatus to implement the second aspect and the method provided in any one of the possible implementation manners of the second aspect.
  • a communication system which includes the sending end and the receiving end as described above.
  • FIG. 1 is a schematic diagram of a communication system applicable to the method of the embodiment of the present application
  • FIG. 2 is an internal structure diagram of an access point applicable to an embodiment of the present application
  • Figure 3 is a diagram of the internal structure of a site suitable for an embodiment of the present application.
  • Figure 4 is a schematic diagram of OFDMA resource block distribution under a bandwidth of 80MHz
  • Figure 5 is a schematic diagram of HE-STF constructed from M sequence
  • FIG. 6 is a schematic flowchart of a method for transmitting a physical layer protocol data unit provided by an embodiment of the present application
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • FIG. 8 is another schematic block diagram of an apparatus for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • FIG. 9 is another schematic block diagram of the apparatus for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • WLAN wireless local area network
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD Frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX WiMAX
  • WLAN system is taken as an example to describe the application scenarios of the embodiments of the present application and the methods of the embodiments of the present application.
  • the embodiment of this application can be applied to wireless local area network (WLAN), and the embodiment of this application can be applied to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 currently adopted by WLAN. Any agreement in a series of agreements.
  • the WLAN may include one or more basic service sets (BSS), and the network nodes in the basic service set include access points (AP) and stations (station, STA).
  • BSS basic service sets
  • AP access points
  • STA stations
  • the initiating device and the responding device in the embodiment of the present application may be a user station (STA) in a WLAN, and the user station may also be called a system, a user unit, an access terminal, a mobile station, a mobile station, a remote station, or a remote terminal.
  • STA user station
  • the STA can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless local area network (such as Wi-Fi) communication-enabled handheld devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Wi-Fi wireless local area network
  • the initiating device and the responding device in the embodiments of the present application may also be APs in the WLAN.
  • the AP can be used to communicate with the access terminal through a wireless local area network, and transmit the data of the access terminal to the network side, or transfer data from the network side The data is transmitted to the access terminal.
  • the communication system shown in FIG. 1 is taken as an example to describe in detail the communication system applicable to the embodiments of the present application.
  • the scenario system shown in FIG. 1 may be a WLAN system.
  • the WLAN system in FIG. 1 may include one or more APs and one or more STAs.
  • FIG. 1 takes one AP and three STAs as an example.
  • Various standards can be used for wireless communication between AP and STA. For example, single-user multiple-input multiple-output (SU-MIMO) technology or multi-user multiple-input multiple-output (MU) technology can be used between AP and STA.
  • SU-MIMO single-user multiple-input multiple-output
  • MU multi-user multiple-input multiple-output
  • -MIMO technology for wireless communication.
  • AP is also called wireless access point or hotspot.
  • APs are the access points for mobile users to enter the wired network. They are mainly deployed in homes, buildings, and campuses, and they can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired and wireless networks, and its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the AP may be a terminal device or a network device with a wireless fidelity (wireless fidelity, WiFi) chip.
  • the AP may be a device supporting multiple WLAN standards such as 802.11.
  • Figure 2 shows the internal structure diagram of the AP product, where the AP can be multi-antenna or single-antenna.
  • the AP includes a physical layer (PHY) processing circuit and a media access control (media access control, MAC) processing circuit.
  • the physical layer processing circuit can be used to process physical layer signals
  • the MAC layer processing circuit can be used to process physical layer signals. Process the MAC layer signal.
  • the 802.11 standard focuses on the PHY and MAC parts, and the embodiments of this application focus on the protocol design on the MAC and PHY.
  • STA products are usually terminal products that support the 802.11 series of standards, such as mobile phones, laptops, etc.
  • Figure 3 shows the structure of a single antenna STA.
  • STAs can also be multi-antenna, and can be two The device above the antenna.
  • the STA can include a physical layer (PHY) processing circuit and a media access control (media access control, MAC) processing circuit.
  • the physical layer processing circuit can be used to process physical layer signals
  • the MAC layer processing circuit can be used For processing MAC layer signals.
  • the IEEE 802.11ax standard further adopts orthogonal frequency division multiple access (orthogonal frequency division multiple access) on the basis of the existing orthogonal frequency division multiplexing (OFDM) technology.
  • OFDMA orthogonal frequency division multiple access
  • OFDMA technology supports multiple nodes to send and receive data at the same time, thereby achieving multi-site diversity gain.
  • the available frequency bands include 2.4 gigahertz (GHz) and 5GHz.
  • GHz gigahertz
  • 5GHz the maximum channel bandwidth supported by 802.11
  • the maximum channel bandwidth supported by 802.11 has been expanded from 20 megahertz (MHz) to 40 MHz and then to 160 MHz.
  • FCC Federal Communications Commission
  • the working range of ax equipment is expanded from 2.4GHz, 5GHz to 2.4GHz, 5GHz and 6GHz.
  • a channel bandwidth greater than 160MHz will be supported.
  • the 802.11a frame structure of the first generation of mainstream WiFi starts with the preamble, including the traditional short training field (L-STF), the traditional long training field (legacy-long training field, L-LTF), and the traditional signal.
  • Legacy-signal field (L-SIG) In the subsequent 802.11 and 802.11ax, in order to be compatible with traditional sites, the frame structure starts with a traditional preamble. After the traditional preamble, there are newly defined signaling fields, short training fields, and long training fields for each generation.
  • the short training field (short training field, STF) after the traditional preamble is referred to as extremely high throughput-STF (EHT-STF) for short to distinguish L-STF.
  • EHT-STF extremely high throughput-STF
  • STF short training field
  • 802.11ac the very high throughput-short training field
  • VHT-STF very high throughput-short training field
  • HE-STF high efficiency-short training field
  • 802.11ax also supports a maximum channel bandwidth of 160 MHz.
  • AGC automatic gain control
  • MIMO multiple-input multiple-output
  • the embodiments of the present application provide a method and device for transmitting a physical layer protocol data unit, which can design a short training domain sequence for a larger channel bandwidth.
  • Wireless communication signals have limited bandwidth.
  • the bandwidth can be divided into multiple frequency components within the channel bandwidth according to a certain frequency interval. These components are called subcarriers.
  • the sub-carrier subscripts are continuous integers, where the sub-carrier with subscript 0 corresponds to the DC component, the sub-carrier with negative subscript corresponds to the frequency component below DC, and the sub-carrier with positive subscript corresponds to higher than DC The frequency components.
  • Resource block distribution can also be understood as the distribution of subcarriers carrying data, and different channel bandwidths can correspond to different tone plans.
  • OFDMA and multiple user multiple input multiple output (MU-MIMO) technology the AP divides the spectrum bandwidth into several resource units (RU).
  • the IEEE 802.11ax protocol stipulates that the spectrum bandwidth of 20MHz, 40MHz, 80MHz, and 160MHz is divided into multiple types of resource blocks, including 26 subcarrier resource blocks, 52 subcarrier resource blocks, 106 subcarrier resource blocks, and 242 subcarrier resource blocks (20MHz The largest resource block in the bandwidth), 484 subcarrier resource blocks (the largest resource block in a 40MHz bandwidth), 996 subcarrier resource blocks (the largest resource block in an 80MHz bandwidth), and a 1992 subcarrier resource block (the largest resource block in a 160MHz bandwidth).
  • Each RU is composed of continuous subcarriers, for example, a 26 subcarrier resource block is composed of 26 continuous subcarrier resource blocks.
  • Fig. 4 exemplarily shows a schematic diagram of a tone plan under a bandwidth of 80 MHz.
  • the left-band sub-carriers and the right-band sub-carriers are located at the edge of the transmission frequency band, which are used as guard sub-carriers to reduce the impact of transmission filtering on the data and pilot sub-carriers.
  • DC subcarriers are empty subcarriers (that is, subcarriers that do not carry data or information), which are used by mobile devices to locate the center of the OFDM frequency band.
  • Null subcarriers are subcarriers to which no information is allocated.
  • the left-band sub-carriers, right-band sub-carriers, DC sub-carriers, and empty sub-carriers can be collectively referred to as inter-RU residual sub-carriers (leftover tone).
  • the number of large RU sub-carriers corresponds to the multiple small RUs that can be accommodated and the residual inter-RU sub-carriers.
  • the total number of carriers is the same.
  • multi-user data packets are a combination of RUs of various sizes.
  • the AP allocates one RU to each user. There are several optional RUs that may be allocated to the user:
  • An RU composed of 26 consecutive sub-carriers, including: 24 data sub-carriers and 2 pilot sub-carriers;
  • An RU composed of 52 consecutive subcarriers, including: 48 data subcarriers and 4 pilot subcarriers;
  • An RU composed of 106 consecutive subcarriers, including: 24 data subcarriers and 2 pilot subcarriers;
  • An RU composed of 242 consecutive sub-carriers, including: 234 data sub-carriers and 8 pilot sub-carriers;
  • An RU composed of 484 consecutive sub-carriers, including: 468 data sub-carriers and 16 pilot sub-carriers;
  • An RU composed of 996 consecutive sub-carriers, including: 980 data sub-carriers and 16 pilot sub-carriers.
  • the 160MHz tone plan can be regarded as composed of two 80MHz tone plans.
  • the 240MHz tone plan can be regarded as the composition of three 80MHz tone plans.
  • the 320MHz tone plan can be regarded as consisting of four 80MHz tone plans, which will not be repeated here.
  • the main purpose of the short training sequence is to perform signal detection, automatic gain control (AGC), symbol timing, and coarse frequency deviation estimation.
  • AGC automatic gain control
  • HE-STF defined by 802.11ax supports a maximum channel bandwidth of 160MHz.
  • the channel bandwidth targeted by this application is greater than 160 MHz. Therefore, for distinction, it is referred to as EHT-STF in the embodiment of this application.
  • EHT-STF is used to indicate a short training field or a short training field with a bandwidth greater than 160 MHz, and its specific name does not limit the protection scope of the embodiments of the present application.
  • the short training sequence can be constructed based on the M sequence.
  • the high efficiency short training sequence (HES) of HE-STF is based on the M sequence and is constructed through multiplexing, phase rotation, and splicing.
  • the M sequence is the most basic pseudo-noise sequence (PN sequence) used in the current CDMA system.
  • the M sequence is short for the longest linear feedback shift register sequence.
  • Figure 5 shows a schematic diagram of HE-STF constructed from M sequences.
  • Figure (1) in Figure 5 is a repeating structure.
  • the 20MHz HE-STF is composed of one M sequence
  • the 40MHz HE-STF is composed of two 20MHz HE-STFs (that is, two M sequences); similarly, the 80MHz HE-STF is composed of 4 A 20MHz HE-STF spliced together.
  • additional parameter values and rotation factors can be used to adjust and optimize, as shown in Figure 5 (2).
  • the 20MHz HE-STF is composed of an M sequence; the 40MHz HE-STF is composed of two 20MHz HE-STFs (that is, two M sequences) multiplied by the twiddle factor C and then spliced together; the same, 80MHz
  • the HE-STF is composed of 4 20MHz HE-STF multiplied by the twiddle factor and then spliced together.
  • a parameter value A needs to be inserted between every two M sequences to ensure that the HE-STF includes 5 repetition periods in the time domain.
  • the exception is that the OFDM modulation method requires that the DC subcarrier must be 0.
  • the rotation factor C can include ⁇ c 1 , c 2 , c 3 , c 4 ,... ⁇
  • the parameter value A can include ⁇ a 1 , a 2 , a 3 , a 4 , « ⁇ .
  • these rotation factors and parameter values are collectively referred to as "parameter sets”.
  • 802.11ax there are two types of HE-STF with cycle lengths, 0.8 ⁇ s and 1.6 ⁇ s respectively.
  • 802.11ax supports 4 kinds of channel bandwidths: 20MHz, 40MHz, 80MHz and 160MHz. Each bandwidth and length corresponds to one HE-STF, so there are 8 types of HE-STF frequency domain values HES a:b:c.
  • the optimized frequency-domain sequences of different channel bandwidths are introduced under the two scenarios of 0.8 ⁇ s and 1.6 ⁇ s in length.
  • HE-STF with a channel bandwidth of 20MHz and 0.8 ⁇ s has a total of 256 subcarriers, and the subscript ranges from -127 to 128.
  • the subcarrier with a subscript of 0 corresponds to a DC component
  • the subcarriers with a subscript of negative and positive correspond to frequency components below and above DC, respectively.
  • HES -112:16:112 can be expressed by the following formula:
  • HES -112:16:112 represents the 20MHz HE-STF frequency domain sequence, specifically, the subscripts are -112, -96, -80, -64, -48, -32, -16, 0, 16, 32, 48, 64, 80, 96, 112 sub-carrier values in the frequency domain.
  • HES 0 0, the values of other sub-carriers in the frequency domain are all 0.
  • sub-carriers indicating the subscript range from -127 to 128, except for subscripts -112, -96, -80, -64, -48, -32, -16, 0, 16, 32, 48, 64, Except the sub-carriers of 80, 96, and 112, the remaining sub-carriers are subscripted.
  • sub-carriers with subscripts -112, -96, -80, -64, -48, -32, -16, 0, 16, 32, 48, 64, 80, 96, 112 in the frequency domain They are:
  • HES -240:16:240 can be expressed by the following formula:
  • HES -240:16:240 represents a 40MHz HE-STF frequency domain sequence.
  • HES -496:16:496 can be expressed by the following formula:
  • HES -496:16:496 represents the 80MHz HE-STF frequency domain sequence.
  • HES -1008:16:1008 can be expressed by the following formula:
  • HES -1008:16:1008 represents a 160MHz HE-STF frequency domain sequence.
  • HES -120:8:120 can be expressed by the following formula:
  • HES 0 0, the values of other sub-carriers in the frequency domain are all 0.
  • HES -248:8:248 can be expressed by the following formula:
  • HES -248:8:248 represents a 40MHz HE-STF frequency domain sequence.
  • HES -504:8:504 can be expressed by the following formula:
  • HES -504:8:504 represents an 80MHz HE-STF frequency domain sequence.
  • HES -1016:8:1016 can be expressed by the following formula:
  • HES ⁇ 8 0
  • HES ⁇ 1016 0.
  • HES -1016:8:1016 represents a 160MHz HE-STF frequency domain sequence.
  • Peak-to-average power ratio can refer to the ratio of the peak value of the continuous signal instantaneous power to the average value of the signal power within a symbol. It can be expressed by the following formula:
  • X i represents the time domain discrete value of a set of sequences
  • max(X i 2 ) represents the maximum value of the time domain discrete value squared
  • mean(X i 2 ) represents the average value of the time domain discrete value squared.
  • OFDM system has the shortcoming of high PAPR, especially in the large bandwidth, more sub-carriers will lead to more severe PAPR, high PAPR will cause signal nonlinear distortion, reduce system performance, so when designing the sequence, the sequence is required The smaller the PAPR, the better.
  • protocol can refer to standard protocols in the communication field, for example, it can include LTE protocol, NR protocol, WLAN protocol, and related protocols used in future communication systems. This application does not Make a limit.
  • pre-acquisition may include indication by device signaling or pre-defined, for example, protocol definition.
  • pre-defined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the device (for example, including sites and access points). This application does not make any specific implementation methods. limited. For example, pre-defined can refer to the definition in the agreement.
  • the “saving” involved in the embodiments of the present application may refer to being stored in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • STA can be the sender and AP can be the receiver
  • AP can be the sender and STA can be the receiver
  • other transmission scenarios for example, data between AP and AP
  • For transmission one AP can be used as the sender and the other AP can be used as the receiver
  • for uplink transmission between STAs and STAs one STA can be used as the sender and the other STA can be used as the receiver. Therefore, the following describes the embodiments of the present application according to the sending end and the receiving end.
  • FIG. 5 is a schematic flowchart of a method 500 for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • the method 500 shown in FIG. 5 may include the following steps.
  • the sending end generates a physical layer protocol data unit PPDU, the PPDU includes a short training field, the length of the frequency domain sequence of the short training field is greater than a first length, and the first length is the length of the PPDU transmitted on a channel with a bandwidth of 160 MHz The length of the frequency domain sequence of the short training domain;
  • S520 The sending end sends the PPDU on a target channel, where the bandwidth of the target channel is greater than 160 MHz.
  • the receiving end receives the PPDU on the target channel.
  • the method 500 may further include step S530.
  • S530 The receiving end parses the PPDU.
  • the specific analysis method refer to the existing description, which is not limited.
  • the foregoing short training field may also be referred to as a short training field, which is uniformly represented by the short training field below.
  • the short training field corresponding to the bandwidth of the target channel is represented by EHT-STF.
  • EHT-STF is used to indicate a short training field corresponding to a bandwidth greater than 160 MHz, and its specific name does not limit the protection scope of the embodiments of the present application.
  • EHT-STF is obtained through the frequency domain sequence of EHT-STF.
  • EHT-STF is obtained from the frequency domain sequence or frequency domain value of EHT-STF after IFFT transformation.
  • EHT-STF The frequency domain sequence of is abbreviated as EHTS. It should be understood that EHTS is only a naming and does not limit the protection scope of the embodiments of the present application. For example, it may also be referred to as a frequency domain sequence.
  • the first length is used to represent the length of the frequency domain sequence corresponding to a bandwidth of 160 MHz.
  • the length of the frequency domain sequence of the short training domain is greater than the first length.
  • the length of the frequency domain sequence of the EHT-STF is greater than the length of the frequency domain sequence of the HE-STF with a channel bandwidth of 160 MHz.
  • a 160MHz HE-STF can be formed by multiplying two 80MHz HE-STF by a twiddle factor
  • a 240MHz EHT-STF can be formed by three 80MHz HE-STF multiplied by a twiddle factor.
  • 240MHz EHT-STF can also be pierced from 320MHz EHT-STF (for example, 320MHz EHT-STF can be knocked out of 80MHz EHT-STF to form 240MHz EHT-STF), 320MHz EHT-STF It can be formed by multiplying four 80MHz HE-STF by a twiddle factor and then splicing together, so the length of the EHT-STF frequency domain sequence is greater than the length of the HE-STF frequency domain sequence with a channel bandwidth of 160 MHz.
  • the frequency domain sequence length of the short training domain is greater than the first length, or it can also be understood that the number of EHT-STF frequency domain values is greater than the number of HE-STF frequency domain values of 160MHz.
  • the number of EHT-STF frequency domain values is greater than the number of HE-STF frequency domain values of 160MHz.
  • the 3072 subcarriers correspond to 3072 frequency domain values.
  • the 1024 subcarriers correspond to 1024 frequency domain values. Therefore, the number of frequency domain values of EHT-STF is greater than the frequency domain of HE-STF of 160MHz. The number of values.
  • the length of the frequency domain sequence of the short training domain is greater than the first length, or it can be understood that the number of subcarrier labels corresponding to EHT-STF is greater than the number of subcarrier labels corresponding to 160MHz HE-STF, such as 240MHz EHT-STF
  • the short training sequence can be expressed as EHTS -1520 :16:1520
  • the short training sequence corresponding to the 160MHz HE-STF can be expressed as HES -1008:16:1008 , then the number of subcarrier labels corresponding to EHT-STF can be seen The number of subcarrier labels corresponding to HE-STF greater than 160MHz.
  • the sequence length represents the length of the element composition in the sequence.
  • the sequence 1 is: ⁇ 0,1,-1,1 ⁇ , then the length of the sequence 1 is 4; for another example, the sequence 2 is: ⁇ 0,1,-1,1,1,1 ⁇ , then the length of sequence 2 is 7, and it can be seen that the length of sequence 2 is greater than the length of sequence 1.
  • the frequency domain sequence length corresponding to the 160MHz HE-STF is 2048, then the first length is 2048. In other words, the frequency domain sequence length of the short training domain is greater than 2048.
  • the bandwidth of the target channel is greater than 160 MHz.
  • the bandwidth of the target channel may also be any bandwidth greater than 160 MHz.
  • the bandwidth of the target channel is 200 MHz, 240 MHz, 280 MHz, or 320 MHz, and so on.
  • the EHT-STF of the bandwidth of the target channel in the embodiment of the present application may be obtained through simulation calculation.
  • the sending end can be calculated by using a corresponding formula based on a sequence specified by the protocol (for example, the HE-LTF sequence in IEEE 802.11ax).
  • the sending end may be calculated by using a corresponding formula based on a stored or newly generated sequence, which is not limited in the embodiment of the present application.
  • the short training sequence HES corresponding to the STF of the existing channel bandwidth for example, the short training sequence HES corresponding to the HE-STF, is used as a basis to design a short training sequence with a larger channel bandwidth.
  • the short training sequence EHTS corresponding to EHT-STF is used as a basis to design a short training sequence with a larger channel bandwidth.
  • the method for transmitting PPDUs in the embodiments of the present application can determine a short training sequence or frequency domain sequence corresponding to a larger channel bandwidth, and can support the receiving end to perform automatic gain control on data transmitted on a larger channel bandwidth.
  • the short training sequence can be obtained based on the short training sequence of the existing channel bandwidth, and through simulation calculation, such as adjusting parameters, a short training sequence with better performance can be obtained.
  • the short training field can be obtained based on the short training sequence. According to the embodiment of the present application, it can not only meet the actual larger channel bandwidth and be backward compatible, but also verify the short training sequence provided by the embodiment of the present application through exhaustive simulation of the parameters, and the peak-to-average power value PAPR is small. Better performance, which in turn improves the estimation effect of the automatic gain control circuit at the receiving end, thereby reducing the receiving bit error rate.
  • EHT-STF can include multiple cycles, and the length of each cycle can be 0.8 ⁇ s or 1.6 ⁇ s.
  • the time length of each cycle is recorded as the cycle length.
  • two scenarios with a period length of 0.8 ⁇ s and 1.6 ⁇ s are used to illustrate the EHT-STF of the bandwidth of the target channel.
  • the period length of the reference channel refers to the period length of the frequency domain sequence of the short training domain transmitted on the reference channel, which will not be described in detail below.
  • the corresponding EHT-LTF can be designed respectively. Therefore, the method of the embodiment of the present application is described in detail in different situations below.
  • Case 1 and Case 2 are for EHT-STF with 240MHz channel bandwidth.
  • the tone plane of the 80MHz channel bandwidth specified by 802.11ax has a total of 1024 sub-carriers, and the subscript ranges from -511 to 512. Among them, there are 12 and 11 guard tone at the left and right edges of the bandwidth. , There are 5 DC sub-carriers in the middle of the bandwidth.
  • Case 1 The bandwidth of the target channel is 240 MHz, and the period length of the reference channel is 0.8 ⁇ s.
  • the frequency domain sequence of the EHT-STF with a bandwidth of 240 MHz and a period length of 0.8 ⁇ s is denoted as EHTS -1520 :16:1520
  • EHTS -1520 :16:1520 can be constructed in the following multiple ways.
  • HES -112:16:112 the frequency domain sequence of the HE-STF with a bandwidth of 20 MHz and a period length of 0.8 ⁇ s in IEEE 802.11ax is recorded as HES -112:16:112 .
  • HES' -112:16:112 is represented as ⁇ M ⁇
  • -HES' -112:16:112 is represented as ⁇ -M ⁇ .
  • the design formula is as follows:
  • a i is not a DC sub-carrier or an empty sub-carrier, the value of a i is ⁇ -1,1 ⁇ , and the optimal parameter set of 20 groups of EHTS -1520:16:1520 can be obtained as shown in Table 2.
  • PAPR represents the PAPR value of the sequence that has not been oversampled
  • PAPR upsampling represents the PAPR value of the oversampled sequence, which will not be repeated in the following.
  • the parameter set value of 16:1520 is shown in Table 3.
  • the frequency domain sequence of the HE-STF with a bandwidth of 160 MHz and a period length of 0.8 ⁇ s in IEEE 802.11ax is denoted as HES -1008:16:1008
  • the HE-STF with a bandwidth of 80 MHz and a period length of 0.8 ⁇ s in IEEE 802.11ax The frequency domain sequence of STF is denoted as HES -496:16:496 ,
  • HES' -1008:16:1008 is represented as ⁇ M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,- M ⁇
  • -HES' -1008:16:1008 is represented as ⁇ -M,-1,M,0,M,-1,M,0,M,1,-M,0,M,-1 ,M ⁇ .
  • HES' -496:16:496 is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • -HES' -496 :16:496 is represented as ⁇ -M ,-1,M,0,M,-1,M ⁇ .
  • the design formula is as follows:
  • HES' -1008:16:1008 _L ⁇ M,1,-M,0,-M,1,-M ⁇ , which is the part of HES' -1008:16:1008 on the left of subcarrier 0;
  • HES' -1008:16:1008 _R ⁇ -M,-1,M,0,-M,1,-M ⁇ , which is the part of HES' -1008:16:1008 on the right of the 0 subcarrier;
  • the parameter set value of 16:1520 is shown in Table 4. In this case, the above formula can also be expressed as:
  • design formula is as follows:
  • HES' -1008:16:1008 _L ⁇ M,1,-M,0,-M,1,-M ⁇ , which is the part of HES' -1008:16:1008 on the left of subcarrier 0;
  • HES' -1008:16:1008 _R ⁇ -M,-1,M,0,-M,1,-M ⁇ , which is the part of HES' -1008:16:1008 on the right of the 0 subcarrier;
  • the parameter value of 16:1520 is shown in Table 6.
  • HES -496:16:496 the frequency domain sequence of the HE-STF with a bandwidth of 80 MHz and a period length of 0.8 ⁇ s in IEEE 802.11ax is recorded as HES -496:16:496 .
  • HES' -496:16:496 is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • -HES' -496 :16:496 is represented as ⁇ -M ,-1,M,0,M,-1,M ⁇ .
  • half of the 80MHz sequence can be used for construction.
  • HES' -496:16:496 _L ⁇ M,1,-M ⁇ , which is the part of HES' -496:16:496 on the left of subcarrier 0;
  • HES' -496:16:496 _R ⁇ -M,1,-M ⁇ , which is the part of HES' -496:16:496 on the right of the 0 subcarrier;
  • a i is not a DC subcarrier or an empty subcarrier, then the value of a i is ⁇ -1,1 ⁇ , and the optimal parameter set of 10 groups of EHTS -1520:16:1520 can be obtained as shown in Table 8.
  • the parameter value of 16:1520 is shown in Table 9.
  • a complete 80MHz sequence can be used for construction.
  • the frequency domain sequence of the EHT-STF with a bandwidth of 240 MHz and a period length of 1.6 ⁇ s is denoted as EHTS -1528:8:1528
  • EHTS -1528:8:1528 can be constructed in the following multiple ways.
  • HES -120:8:120 the frequency domain sequence of the HE-STF with a bandwidth of 20 MHz and a period length of 1.6 ⁇ s in IEEE 802.11ax is recorded as HES -120:8:120 .
  • HES' -120:8:120 is represented as ⁇ M,0,-M ⁇
  • -HES' -120:8:120 is represented as ⁇ -M,0,M ⁇ .
  • the design formula is as follows:
  • a i is not a DC sub-carrier or an empty sub-carrier, then the value of a i is ⁇ -1,1 ⁇ , and the optimal parameter set of 20 groups of EHTS -1528:8:1528 can be obtained as shown in Table 12.
  • the frequency domain sequence of the HE-STF with a bandwidth of 160 MHz and a period length of 1.6 ⁇ s in IEEE 802.11ax is denoted as HES -1016:8:1016
  • the HE-STF with a bandwidth of 80 MHz and a period length of 1.6 ⁇ s in IEEE 802.11ax is denoted as HES -1016:8:1016
  • -The frequency domain sequence of STF is denoted as HES -504:8:504 ,
  • HES' -1016:8:1016 is represented as ⁇ M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M,0 ,-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M ⁇ , correspondingly, -HES' -1016:8:1016 Expressed as ⁇ -M,1,-M,M,1,-M,0,M,-1,-M,-1,M,-1,M,0,M,-1,M,-1, -M,-1,M,0,M,M,-1,-M,-1,M,M,-1,M ⁇ .
  • HES' -504:8:504 is represented as ⁇ M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,- M ⁇
  • -HES' -504 :8:504 is represented as ⁇ -M,1,-M,1,M,1,-M,0,M,-1,-M,-1,M, -1,M ⁇ .
  • the design formula is as follows:
  • HES' -1016:8:1016 _L ⁇ M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M ⁇ , which is HES' -1016:8:1016 is the part to the left of subcarrier 0;
  • HES' -1016:8:1016 _R ⁇ -M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M ⁇ , which is HES' -1016:8:1016 is the part to the right of the 0 subcarrier;
  • design formula is as follows:
  • HES' -1016:8:1016 _L ⁇ M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M ⁇ , which is HES' -1016:8:1016 is the part to the left of subcarrier 0;
  • HES' -1016:8:1016 _R ⁇ -M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M ⁇ , which is HES' -1016:8:1016 is the part to the right of the 0 subcarrier;
  • the parameter set value of 8:1528 is shown in Table 16.
  • HES -504:8:504 the frequency domain sequence of the HE-STF with a bandwidth of 80 MHz and a period length of 1.6 ⁇ s in IEEE 802.11ax is recorded as HES -504:8:504 .
  • HES' -504:8:504 is represented as ⁇ M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,- M ⁇
  • -HES' -504 :8:504 is represented as ⁇ -M,1,-M,1,M,1,-M,0,M,-1,-M,-1,M, -1,M ⁇ .
  • half of the 80MHz sequence can be used for construction.
  • HES' -504:8:504 _L ⁇ M,-1,M,-1,-M,-1,M ⁇ , which is the part of HES' -504:8:504 on the left of subcarrier 0;
  • HES' -504:8:504 _R ⁇ -M,1,M,1,-M,1,-M ⁇ , which is the part of HES' -504:8:504 on the right of subcarrier 0;
  • a i is not a DC sub-carrier or an empty sub-carrier, the value of a i is ⁇ -1,1 ⁇ , and the optimal parameter set of 20 groups of EHTS -1528:8:1528 can be obtained as shown in Table 18.
  • the parameter set value of 8:1528 is shown in Table 19.
  • a complete 80MHz sequence can be used for construction.
  • EHTS ⁇ 1528 0
  • Case 3 and Case 4 are EHT-STF for 320MHz channel bandwidth.
  • the tone plane of the 80MHz channel bandwidth specified by 802.11ax has a total of 1024 sub-carriers, and the subscript ranges from -511 to 512. Among them, there are 12 and 11 guard tone at the left and right edges of the bandwidth. , There are 5 DC sub-carriers in the middle of the bandwidth.
  • Case 3 The bandwidth of the target channel is 320 MHz, and the period length of the reference channel is 0.8 ⁇ s.
  • the frequency domain sequence of the EHT-STF with a bandwidth of 320 MHz and a period length of 0.8 ⁇ s is denoted as EHTS -2032:16:2032 , and EHTS -2032:16:2032 can be constructed in the following multiple ways.
  • HES -112:16:112 the frequency domain sequence of the HE-STF with a bandwidth of 20 MHz and a period length of 0.8 ⁇ s in IEEE 802.11ax is recorded as HES -112:16:112 .
  • HES' -112:16:112 is represented as ⁇ M ⁇
  • -HES' -112:16:112 is represented as ⁇ -M ⁇ .
  • the design formula is as follows:
  • a i is not a DC sub-carrier or an empty sub-carrier, the value of a i is ⁇ -1,1 ⁇ , and the optimal 13 groups of EHTS -2032:16:2032 parameter set values shown in Table 23 can be obtained.
  • the frequency domain sequence of the HE-STF with a bandwidth of 160 MHz and a period length of 0.8 ⁇ s in IEEE 802.11ax is recorded as HES -1008:16:1008 ,
  • HES' -1008:16:1008 is represented as ⁇ M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,- M ⁇
  • -HES' -1008:16:1008 is represented as ⁇ -M,-1,M,0,M,-1,M,0,M,1,-M,0,M,-1 ,M ⁇ .
  • a complete 160MHz sequence can be used for construction.
  • a half sequence of the 160MHz sequence can be used for construction.
  • HES' -1008:16:1008 _L ⁇ M,1,-M,0,-M,1,-M ⁇ , which is the part of HES' -1008:16:1008 on the left of subcarrier 0;
  • HES' -1008:16:1008 _R ⁇ -M,-1,M,0,-M,1,-M ⁇ , which is the part of HES' -1008:16:1008 on the right of the 0 subcarrier;
  • a i is not a DC sub-carrier or an empty sub-carrier, the value of a i is ⁇ -1,1 ⁇ , and the optimal 10 sets of EHTS -2032:16:2032 parameter set values shown in Table 25 can be obtained.
  • the frequency domain sequence of the HE-STF with a bandwidth of 80 MHz and a period length of 0.8 ⁇ s in IEEE 802.11ax is recorded as HES -496:16:496 ,
  • HES' -496:16:496 is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • -HES' -496 :16:496 is represented as ⁇ -M ,-1,M,0,M,-1,M ⁇ .
  • half of the 80MHz sequence can be used for construction.
  • HES' -496:16:496 _L ⁇ M,1,-M ⁇ , which is the part of HES' -496:16:496 on the left of subcarrier 0;
  • HES' -496:16:496 _R ⁇ -M,1,-M ⁇ , which is the part of HES' -496:16:496 on the right of the 0 subcarrier;
  • a i is not a DC sub-carrier or an empty sub-carrier, the value of a i is ⁇ -1,1 ⁇ , and the optimal 10 sets of EHTS -2032:16:2032 parameter set values shown in Table 26 can be obtained.
  • HES' -496:16:496 _L ⁇ M,1,-M ⁇ , which is the part of HES' -496:16:496 on the left of subcarrier 0;
  • HES' -496:16:496 _R ⁇ -M,1,-M ⁇ , which is the part of HES' -496:16:496 on the right of the 0 subcarrier;
  • a i is not a DC sub-carrier or an empty sub-carrier, the value of a i is ⁇ -1,1 ⁇ , and the optimal 12 sets of EHTS -2032:16:2032 parameter set values shown in Table 27 can be obtained.
  • HES' -496:16:496 _L ⁇ M,1,-M ⁇ , which is the part of HES' -496:16:496 on the left of subcarrier 0;
  • HES' -496:16:496 _R ⁇ -M,1,-M ⁇ , which is the part of HES' -496:16:496 on the right of the 0 subcarrier;
  • This embodiment is equivalent to that the above a i are all DC sub-carriers or null sub-carriers, that is, all a i are equal to zero.
  • an 80MHz sequence can be used for construction.
  • the frequency domain sequence of the EHT-STF with a bandwidth of 320 MHz and a period length of 1.6 ⁇ s is denoted as EHTS -2040 :8:2040
  • EHTS -2040 :8:2040 can be constructed in the following multiple ways.
  • HES -120:8:120 the frequency domain sequence of the HE-STF with a bandwidth of 20 MHz and a period length of 1.6 ⁇ s in IEEE 802.11ax is recorded as HES -120:8:120 .
  • HES' -120:8:120 is represented as ⁇ M,0,-M ⁇
  • -HES' -120:8:120 is represented as ⁇ -M,0,M ⁇ .
  • the design formula is as follows:
  • EHTS -2040 :8:2040 ⁇ c 1 ⁇ HES' -120:8:120 ,a 1 ,c 2 ⁇ HES' -120:8:120 ,0,c 3 ⁇ HES' -120:8:120, a 2 ,c 4 ⁇ HES' -120:8:120 ,a 3 ,c 5 ⁇ HES' -120:8:120 ,a 4 ,c 6 ⁇ HES' -120:8:120 ,0,c 7 ⁇ HES' -120:8:120 ,a 5 ,c 8 ⁇ HES' -120:8:120 ,a 6 ,c 9 ⁇ HES' -120:8:120 ,a 7 ,c 1 0 ⁇ HES' -120 :8:120 ,0,c 11 ⁇ HES' -120:8:120 ,a 8 ,c 12 ⁇ HES' -120:8:120 ,a 9 ,c 13
  • a i is not a DC subcarrier or an empty subcarrier, the value of a i is ⁇ -1,1 ⁇ , and the optimal 18 sets of EHTS -2040 :8:2040 parameter set values shown in Table 31 can be obtained.
  • the frequency domain sequence of the HE-STF with a bandwidth of 160 MHz and a period length of 1.6 ⁇ s in IEEE 802.11ax is denoted as HES -1016:8:1016 ,
  • HES' -1016:8:1016 is represented as ⁇ M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M,0 ,-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M ⁇ , correspondingly, -HES' -1016:8:1016 Expressed as ⁇ -M,1,-M,M,1,-M,0,M,-1,-M,-1,M,-1,M,0,M,-1,M,-1, -M,-1,M,0,M,M,-1,-M,-1,M,M,-1,M ⁇ .
  • a complete 160MHz sequence can be used for construction.
  • a half sequence of the 160MHz sequence can be used for construction.
  • HES' -1016:8:1016 _L ⁇ M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M ⁇ , which is HES' -1016:8:1016 is the part to the left of subcarrier 0;
  • HES' -1016:8:1016 _R ⁇ -M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M ⁇ , which is HES' -1016:8:1016 is the part to the right of the 0 subcarrier;
  • a i is not a DC sub-carrier or an empty sub-carrier, the value of a i is ⁇ -1,1 ⁇ , and the optimal 10 sets of EHTS -2040 :8:2040 parameter set values shown in Table 33 can be obtained.
  • HES -504:8:504 the frequency domain sequence of the HE-STF with a bandwidth of 80 MHz and a period length of 1.6 ⁇ s in IEEE 802.11ax is recorded as HES -504:8:504 .
  • HES' -504:8:504 is represented as ⁇ M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,- M ⁇
  • -HES' -504 :8:504 is represented as ⁇ -M,1,-M,1,M,1,-M,0,M,-1,-M,-1,M, -1,M ⁇ .
  • half of the 80MHz sequence can be used for construction.
  • HES' -504:8:504 _L ⁇ M,-1,M,-1,-M,-1,M ⁇ , which is the part of HES' -504:8:504 on the left of subcarrier 0;
  • HES' -504:8:504 _R ⁇ -M,1,M,1,-M,1,-M ⁇ , which is the part of HES' -504:8:504 on the right of subcarrier 0;
  • a i is not a DC sub-carrier or an empty sub-carrier, and the value of a i is ⁇ -1,1 ⁇ , and the optimal 20 sets of EHTS -2040 :8:2040 parameter sets can be obtained.
  • the values are shown in Table 34.
  • HES' -504:8:504 _L ⁇ M,-1,M,-1,-M,-1,M ⁇ , which is the part of HES' -504:8:504 on the left of subcarrier 0;
  • HES' -504:8:504 _R ⁇ -M,1,M,1,-M,1,-M ⁇ , which is the part of HES' -504:8:504 on the right of subcarrier 0;
  • a i is not a DC sub-carrier or an empty sub-carrier, and the value of a i is ⁇ -1,1 ⁇ , and the optimal 20 sets of EHTS -2040 :8:2040 parameter sets can be obtained.
  • the values are shown in table 35.
  • HES' -504:8:504 _L ⁇ M,-1,M,-1,-M,-1,M ⁇ , which is the part of HES' -504:8:504 on the left of subcarrier 0;
  • HES' -504:8:504 _R ⁇ -M,1,M,1,-M,1,-M ⁇ , which is the part of HES' -504:8:504 on the right of subcarrier 0;
  • 18 optimal parameter sets of EHTS -2040:8:2040 can be obtained as shown in Table 36.
  • an 80MHz sequence can be used for construction.
  • the optimal parameter set of 14 groups of EHTS -2040 :8:2040 can be obtained as shown in Table 37.
  • the embodiment of the present application can not only meet the actual larger channel bandwidth and be backward compatible, but also verify the short training sequence provided by the embodiment of the present application through exhaustive simulation of the parameters, and the peak-to-average power value PAPR is small. Better performance, which in turn improves the estimation effect of the automatic gain control circuit at the receiving end, thereby reducing the receiving bit error rate.
  • the embodiment of the present application provides a device for transmitting a physical layer protocol data unit.
  • the device is used to implement the steps or procedures corresponding to the receiving end in the foregoing method embodiments.
  • the device is used to implement the steps or procedures corresponding to the sending end in the foregoing method embodiments.
  • FIG. 7 is a schematic block diagram of an apparatus for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • the apparatus 700 may include a communication unit 710 and a processing unit 720.
  • the communication unit 710 can communicate with the outside, and the processing unit 720 is used for data processing.
  • the communication unit 710 may also be called a communication interface or a transceiving unit.
  • the device 700 can implement the steps or processes performed by the sending end corresponding to the above method embodiment, wherein the processing unit 720 is configured to perform operations related to the processing of the sending end in the above method embodiment
  • the communication unit 710 is configured to perform operations related to the sending and receiving of the transmitting end in the above method embodiment.
  • the processing unit 720 is configured to: generate a physical layer protocol data unit PPDU, the PPDU including a short training domain, the frequency domain sequence length of the short training domain is greater than a first length, and the first length is The length of the frequency domain sequence of the short training domain transmitted on the 160 MHz channel; the communication unit 710 is configured to send the PPDU on the target channel, where the bandwidth of the target channel is greater than 160 MHz.
  • the device 700 can implement steps or processes corresponding to the receiving end in the above method embodiment, where the communication unit 710 is configured to perform the receiving and sending-receiving related information in the above method embodiment. Operation, the processing unit 720 is configured to perform processing-related operations on the receiving end in the above method embodiment.
  • the communication unit 710 is configured to: receive a physical layer protocol data unit PPDU on a target channel, the PPDU includes a short training field, the frequency domain sequence length of the short training field is greater than a first length, and the first length It is the length of the frequency domain sequence of the short training domain transmitted on a channel with a bandwidth of 160 MHz, where the bandwidth of the target channel is greater than 160 MHz; the processing unit 720 is configured to: parse the PPDU.
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -1008:16:1008 _L is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • HES' -1008:16:1008 _R is represented as ⁇ -M,-1, M,0,-M,1,-M ⁇
  • HES' -496:16:496 is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • M ⁇ -1,-1 ,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -496:16:496 _L is represented as ⁇ M,1,-M ⁇
  • HES' -496:16:496 _R is represented as ⁇ -M,1,-M ⁇
  • HES' -496:16: 496 is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • M ⁇ -1,-1,-1,1,1,1,-1,1,1,- 1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -1016:8:1016 _L ⁇ M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M ⁇
  • HES' -1016:8:1016 _R ⁇ -M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M ⁇
  • HES' -504 :8:504 is represented as ⁇ M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M ⁇
  • M ⁇ -1 ,-1,-1,1,1,1,-1,1,1,-1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 240 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -504:8:504 _L is represented as ⁇ M,-1,M,-1,-M,-1,M ⁇
  • HES' -504:8:504 _R is represented as ⁇ -M,1, M,1,-M,1,-M ⁇
  • HES' -504:8:504 is represented as ⁇ M,-1,M,-1,-M,-1,M,0,-M,1,M ,1,-M,1,-M ⁇
  • M ⁇ -1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -1008:16:1008 is represented as ⁇ M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,-M ⁇
  • HES' -1008:16:1008 _L is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • HES' -1008:16:1008 _R is represented as ⁇ -M,-1,M ,0,-M,1,-M ⁇
  • M ⁇ -1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -496:16:496 _L is represented as ⁇ M,1,-M ⁇
  • HES' -496:16:496 _R is represented as ⁇ -M,1,-M ⁇
  • HES' -496:16: 496 is represented as ⁇ M,1,-M,0,-M,1,-M ⁇
  • M ⁇ -1,-1,-1,1,1,1,-1,1,1,- 1,1,1,-1,1 ⁇ .
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • HES' -1016:8:1016 is represented as ⁇ M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M,0,- M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M ⁇
  • HES' -1016:8:1016 _L is expressed as ⁇ M, -1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M ⁇
  • the bandwidth of the target channel is 320 MHz
  • the frequency domain sequence of the short training domain is any one of the following:
  • the device 700 here is embodied in the form of a functional unit.
  • the term "unit” here can refer to application specific integrated circuits (ASICs), electronic circuits, processors used to execute one or more software or firmware programs (such as shared processors, proprietary processors, or groups). Processor, etc.) and memory, merged logic circuits, and/or other suitable components that support the described functions.
  • ASICs application specific integrated circuits
  • processors used to execute one or more software or firmware programs (such as shared processors, proprietary processors, or groups).
  • the apparatus 700 may be specifically the sending end in the foregoing embodiment, and may be used to execute each process and/or step corresponding to the sending end in the foregoing method embodiment, or, The apparatus 700 may be specifically the receiving end in the foregoing embodiment, and may be used to execute various processes and/or steps corresponding to the receiving end in the foregoing method embodiment. To avoid repetition, details are not described herein again.
  • the apparatus 700 of each of the foregoing solutions has the function of implementing the corresponding steps performed by the sending end in the foregoing method, or the apparatus 700 of each of the foregoing solutions has the function of implementing corresponding steps performed by the receiving end of the foregoing method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the communication unit can be replaced by a transceiver (for example, the sending unit in the communication unit can be replaced by a transmitter, and the receiving unit in the communication unit can be replaced by a receiver. Machine replacement), other units, such as processing units, etc., can be replaced by processors to perform the transceiver operations and related processing operations in each method embodiment respectively.
  • the aforementioned communication unit may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in FIG. 7 may be the receiving end or the transmitting end in the foregoing embodiment, or may be a chip or a chip system, such as a system on chip (SoC).
  • the communication unit may be an input/output circuit or a communication interface; the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip. There is no limitation here.
  • FIG. 8 shows an apparatus 800 for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • the device 800 includes a processor 810 and a transceiver 820.
  • the processor 810 and the transceiver 820 communicate with each other through an internal connection path, and the processor 810 is configured to execute instructions to control the transceiver 820 to send signals and/or receive signals.
  • the device 800 may further include a memory 830, and the memory 830 communicates with the processor 810 and the transceiver 820 through an internal connection path.
  • the memory 830 is used to store instructions, and the processor 810 can execute the instructions stored in the memory 830.
  • the apparatus 800 is used to implement various processes and steps corresponding to the sending end in the foregoing method embodiments.
  • the apparatus 800 is configured to implement various processes and steps corresponding to the receiving end in the foregoing method embodiment.
  • the apparatus 800 may be specifically the transmitting end or the receiving end in the above-mentioned embodiment, or may be a chip or a chip system.
  • the transceiver 820 may be the transceiver circuit of the chip, which is not limited here.
  • the apparatus 800 may be used to execute various steps and/or processes corresponding to the sending end or the receiving end in the foregoing method embodiments.
  • the memory 830 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A part of the memory may also include a non-volatile random access memory.
  • the memory can also store device type information.
  • the processor 810 may be used to execute instructions stored in the memory, and when the processor 810 executes the instructions stored in the memory, the processor 810 is used to execute each step of the method embodiment corresponding to the sending end or the receiving end. And/or process.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as execution and completion by a hardware processor, or execution and completion by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • the processors in the embodiments of the present application may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • FIG. 9 shows an apparatus 900 for transmitting a physical layer protocol data unit provided by an embodiment of the present application.
  • the device 900 includes a processing circuit 910 and a transceiver circuit 920.
  • the processing circuit 910 and the transceiver circuit 920 communicate with each other through an internal connection path, and the processing circuit 910 is used to execute instructions to control the transceiver circuit 920 to send signals and/or receive signals.
  • the device 900 may further include a storage medium 930, and the storage medium 930 communicates with the processing circuit 910 and the transceiver circuit 920 through an internal connection path.
  • the storage medium 930 is used to store instructions, and the processing circuit 910 can execute the instructions stored in the storage medium 930.
  • the apparatus 900 is configured to implement various processes and steps corresponding to the sending end in the foregoing method embodiment.
  • the apparatus 900 is configured to implement various processes and steps corresponding to the receiving end in the foregoing method embodiment.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the embodiment shown in FIG. 6 In the method.
  • the present application also provides a computer-readable medium storing program code, which when the program code runs on a computer, causes the computer to execute the embodiment shown in FIG. 6 In the method.
  • the present application also provides a system, which includes the aforementioned one or more stations and one or more access points.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输物理层协议数据单元的方法和装置,能够针对更大的信道带宽,设计短训练域序列,本申请设计的短训练域序列,峰均功率值PAPR较小,性能较优。该方法包括:生成物理层协议数据单元PPDU,该PPDU包括短训练域,该短训练域的频域序列的长度大于第一长度,该第一长度为在带宽为160MHz的信道上传输的PPDU的短训练域的频域序列的长度;在目标信道上发送所述PPDU,其中,该目标信道的带宽大于160MHz。

Description

传输物理层协议数据单元的方法和装置
本申请要求于2020年01月03日提交中国专利局、申请号为202010007115.9、申请名称为“传输物理层协议数据单元的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,更具体地,涉及传输物理层协议数据单元的方法和装置。
背景技术
随着移动互联网的发展和智能终端的普及,数据流量快速增长,用户对通信服务质量的需求也越来越高,电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11ax标准已经难以在大吞吐量、低抖动和低延迟等方面满足用户需求,因此,迫切需要发展下一代无线局域网(wireless local area network,WLAN)技术,即IEEE 802.11be标准。
与IEEE 802.11ax不同,IEEE 802.11be将采用超大带宽,例如240MHz和320MHz,以实现超高传输速率和支持超密用户的场景。那么,针对更大的信道带宽,如何设计短训练域(short training field,STF)序列,是一个值得关心的问题。
发明内容
本申请提供一种传输物理层协议数据单元的方法和装置,能够针对更大的信道带宽,设计短训练域序列。
第一方面,提供了一种传输物理层协议数据单元的方法,包括:生成物理层协议数据单元PPDU,所述PPDU包括短训练域,所述短训练域的频域序列的长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的PPDU的短训练域的频域序列的长度;在目标信道上发送所述PPDU,其中,所述目标信道的带宽大于160MHz。
本申请实施例的方法能够确定更大信道带宽所对应的短训练序列或者说频域序列,可以支持接收端对在更大信道带宽上传输的数据进行自动增益控制。该短训练序列可以基于现有信道带宽的短训练序列得到,并且,通过仿真计算,例如调节参数,可以获得性能较好的短训练序列。短训练域可以基于该短训练序列得到。根据本申请实施例,不仅可以满足实际中的更大信道带宽,且向后兼容,而且通过对参数进行穷举仿真验证了本申请实施例提供的短训练序列,峰均功率值PAPR较小,性能较优,进而提高接收端的自动增益控制电路的估计效果,从而降低接收误码率。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000001
Figure PCTCN2021070056-appb-000002
Figure PCTCN2021070056-appb-000003
Figure PCTCN2021070056-appb-000004
Figure PCTCN2021070056-appb-000005
其中,HES’ -112:16:112表示为{M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000006
Figure PCTCN2021070056-appb-000007
Figure PCTCN2021070056-appb-000008
Figure PCTCN2021070056-appb-000009
其中,HES’ -1008:16:1008_L表示为{M,1,-M,0,-M,1,-M},HES’ -1008:16:1008_R表示为{-M,-1,M,0,-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000010
Figure PCTCN2021070056-appb-000011
Figure PCTCN2021070056-appb-000012
Figure PCTCN2021070056-appb-000013
或,
Figure PCTCN2021070056-appb-000014
Figure PCTCN2021070056-appb-000015
其中,HES’ -496:16:496_L表示为{M,1,-M},HES’ -496:16:496_R表示为{-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
{HES’ -120:8:120,-1,-HES’ -120:8:120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8: 120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:1 20};或
{HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120,-1,-HES’ -120:8:120,1,-HES’ -120:8: 120,0,-HES’ -120:8:120,1,HES’ -120:8:120,-1,-HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8: 120};或
{-HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8:120,1,HES’ -120:8:120,-1,HES’ -120 :8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,1,HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120: 8:120};
其中,HES’ -120:8:120表示为{M,0,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000016
Figure PCTCN2021070056-appb-000017
Figure PCTCN2021070056-appb-000018
Figure PCTCN2021070056-appb-000019
其中,HES’ -1016:8:1016_L={M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_R={-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000020
Figure PCTCN2021070056-appb-000021
Figure PCTCN2021070056-appb-000022
Figure PCTCN2021070056-appb-000023
Figure PCTCN2021070056-appb-000024
Figure PCTCN2021070056-appb-000025
Figure PCTCN2021070056-appb-000026
Figure PCTCN2021070056-appb-000027
其中,HES’ -504:8:504_L表示为{M,-1,M,-1,-M,-1,M},HES’ -504:8:504_R表示为{-M,1,M,1,-M,1,-M},HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000028
Figure PCTCN2021070056-appb-000029
Figure PCTCN2021070056-appb-000030
Figure PCTCN2021070056-appb-000031
Figure PCTCN2021070056-appb-000032
Figure PCTCN2021070056-appb-000033
Figure PCTCN2021070056-appb-000034
其中,HES’ -112:16:112表示为{M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000035
Figure PCTCN2021070056-appb-000036
Figure PCTCN2021070056-appb-000037
Figure PCTCN2021070056-appb-000038
Figure PCTCN2021070056-appb-000039
其中,HES’ -1008:16:1008表示为{M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,-M},HES’ -1008:16:1008_L表示为{M,1,-M,0,-M,1,-M},HES’ -1008:16:1008_R表示为{-M,-1,M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000040
Figure PCTCN2021070056-appb-000041
Figure PCTCN2021070056-appb-000042
Figure PCTCN2021070056-appb-000043
Figure PCTCN2021070056-appb-000044
Figure PCTCN2021070056-appb-000045
其中,HES’ -496:16:496_L表示为{M,1,-M},HES’ -496:16:496_R表示为{-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
{HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8: 120,0,-HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:1 20,0,-HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:120};或
{HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,-HES’ -120:8: 120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:12 0,0,HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120};或
{-HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,1,HES’ -120:8: 120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:1 20,0,HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:120};
其中,HES’ -120:8:120表示为{M,0,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000046
Figure PCTCN2021070056-appb-000047
Figure PCTCN2021070056-appb-000048
Figure PCTCN2021070056-appb-000049
Figure PCTCN2021070056-appb-000050
其中,HES’ -1016:8:1016表示为{M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M,0,-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_L表示为{M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_R表示为{-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000051
Figure PCTCN2021070056-appb-000052
其中,HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
第二方面,提供了另一种传输物理层协议数据单元的方法,包括:在目标信道上接收物理层协议数据单元PPDU,所述PPDU包括短训练域,所述长练域的频域序列的长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的PPDU的短训练域的频域序列的长度,其中,所述目标信道的带宽大于160MHz;解析所述PPDU。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000053
Figure PCTCN2021070056-appb-000054
Figure PCTCN2021070056-appb-000055
Figure PCTCN2021070056-appb-000056
Figure PCTCN2021070056-appb-000057
其中,HES’ -112:16:112表示为{M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000058
Figure PCTCN2021070056-appb-000059
Figure PCTCN2021070056-appb-000060
Figure PCTCN2021070056-appb-000061
其中,HES’ -1008:16:1008_L表示为{M,1,-M,0,-M,1,-M},HES’ -1008:16:1008_R表示为{-M,-1,M,0,-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000062
Figure PCTCN2021070056-appb-000063
Figure PCTCN2021070056-appb-000064
Figure PCTCN2021070056-appb-000065
或,
Figure PCTCN2021070056-appb-000066
Figure PCTCN2021070056-appb-000067
其中,HES’ -496:16:496_L表示为{M,1,-M},HES’ -496:16:496_R表示为{-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
{HES’ -120:8:120,-1,-HES’ -120:8:120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8: 120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:1 20};或
{HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120,-1,-HES’ -120:8:120,1,-HES’ -120:8: 120,0,-HES’ -120:8:120,1,HES’ -120:8:120,-1,-HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8: 120};或
{-HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8:120,1,HES’ -120:8:120,-1,HES’ -120 :8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,1,HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120: 8:120};
其中,HES’ -120:8:120表示为{M,0,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000068
Figure PCTCN2021070056-appb-000069
Figure PCTCN2021070056-appb-000070
Figure PCTCN2021070056-appb-000071
其中,HES’ -1016:8:1016_L={M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_R={-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000072
Figure PCTCN2021070056-appb-000073
Figure PCTCN2021070056-appb-000074
Figure PCTCN2021070056-appb-000075
Figure PCTCN2021070056-appb-000076
Figure PCTCN2021070056-appb-000077
Figure PCTCN2021070056-appb-000078
Figure PCTCN2021070056-appb-000079
其中,HES’ -504:8:504_L表示为{M,-1,M,-1,-M,-1,M},HES’ -504:8:504_R表示为{-M,1,M,1,-M,1,-M},HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000080
Figure PCTCN2021070056-appb-000081
Figure PCTCN2021070056-appb-000082
Figure PCTCN2021070056-appb-000083
Figure PCTCN2021070056-appb-000084
Figure PCTCN2021070056-appb-000085
Figure PCTCN2021070056-appb-000086
其中,HES’ -112:16:112表示为{M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000087
Figure PCTCN2021070056-appb-000088
Figure PCTCN2021070056-appb-000089
Figure PCTCN2021070056-appb-000090
Figure PCTCN2021070056-appb-000091
其中,HES’ -1008:16:1008表示为{M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,-M},HES’ -1008:16:1008_L表示为{M,1,-M,0,-M,1,-M},HES’ -1008:16:1008_R表示为{-M,-1,M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000092
Figure PCTCN2021070056-appb-000093
Figure PCTCN2021070056-appb-000094
Figure PCTCN2021070056-appb-000095
Figure PCTCN2021070056-appb-000096
Figure PCTCN2021070056-appb-000097
其中,HES’ -496:16:496_L表示为{M,1,-M},HES’ -496:16:496_R表示为{-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
{HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8: 120,0,-HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:1 20,0,-HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:120};或
{HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,-HES’ -120:8: 120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:12 0,0,HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120};或
{-HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,1,HES’ -120:8: 120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:1 20,0,HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:120};
其中,HES’ -120:8:120表示为{M,0,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000098
Figure PCTCN2021070056-appb-000099
Figure PCTCN2021070056-appb-000100
Figure PCTCN2021070056-appb-000101
Figure PCTCN2021070056-appb-000102
其中,HES’ -1016:8:1016表示为{M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M,0,-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_L表示为{M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_R表示为{-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000103
Figure PCTCN2021070056-appb-000104
其中,HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
第三方面,提供一种传输物理层协议数据单元的装置,所述装置用于执行上述第一方面提供的方法。具体地,所述装置可以包括用于执行第一方面以及第一方面任一种可能实现方式的模块。
第四方面,提供一种传输物理层协议数据单元的装置,所述装置用于执行上述第二方面提供的方法。具体地,所述装置可以包括用于执行第二方面以及第二方面任一种可能实现方式的模块。
第五方面,提供一种传输物理层协议数据单元的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面以及第一方面任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为接入点。当该装置为接入点时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于接入点中的芯片。当该装置为配置于接入点中的芯片时,所述通信接口可以是输入/输出接口。
在一种实现方式中,该装置为站点。当该装置为站点时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于站点中的芯片。当该装置为配置于站点中的芯片时,所述通信接口可以是输入/输出接口。
在另一种实现方式中,该装置为芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第六方面,提供一种传输物理层协议数据单元的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为接入点。当该装置为接入点时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于接入点中的芯片。当该装置为配置于接入点中的芯片时,所述通信接口可以是输入/输出接口。
在一种实现方式中,该装置为站点。当该装置为站点时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于站点中的芯片。当该装置为配置于站点中的芯片时,所述通信接口可以是输入/输出接口。
在另一种实现方式中,该装置为芯片或芯片系统。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被装置执行时,使得所述装置实现第一方面以及第一方面任一种可能实现方式中的方法。
第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被装置执行时,使得所述装置实现第二方面以及第二方面任一种可能实现方式中的方法。
第九方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得装置实现第一方面以及第一方面任一种可能实现方式中提供的方法。
第十方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得装置实现第二方面以及第二方面任一种可能实现方式中提供的方法。
第十一方面,提供一种通信系统,包括如前所述的发送端和接收端。
附图说明
图1是适用于本申请实施例的方法的通信系统的示意图;
图2是适用于本申请实施例的接入点的内部结构图;
图3是适用于本申请实施例的站点的内部结构图;
图4是80MHz带宽下OFDMA资源块分布的示意图;
图5是HE-STF由M序列构建的示意图;
图6是本申请实施例提供的传输物理层协议数据单元的方法的示意性流程图;
图7是本申请实施例提供的传输物理层协议数据单元的装置的示意性框图;
图8是本申请实施例提供的传输物理层协议数据单元的装置的另一示意性框图;
图9是本申请实施例提供的传输物理层协议数据单元的装置的又一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(wireless local area network,WLAN)通信系统,全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
以下作为示例性说明,仅以WLAN系统为例,描述本申请实施例的应用场景以及本申请实施例的方法。
具体而言,本申请实施例可以应用于无线局域网(wireless local area network,WLAN),并且本申请实施例可以适用于WLAN当前采用的电气与电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的任意一种协议。WLAN可以包括一个或多个基本服务集(basic service set,BSS),基本服务集中的网络节点包括接入点(access point,AP)和站点(station,STA)。
具体地,本申请实施例中发起设备和响应设备可以是WLAN中用户站点(STA),该用户站点也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。该STA可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant, PDA)、具有无线局域网(例如Wi-Fi)通信功能的手持设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。
另外,本申请实施例中的发起设备和响应设备也可以是WLAN中AP,AP可用于与接入终端通过无线局域网进行通信,并将接入终端的数据传输至网络侧,或将来自网络侧的数据传输至接入终端。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。如图1所示的场景系统可以是WLAN系统,图1的WLAN系统可以包括一个或者多个AP,和一个或者多个STA,图1以一个AP和三个STA为例。AP和STA之间可以通过各种标准进行无线通信。例如,AP和STA之间可以采用单用户多入多出(single-user multiple-input multiple-output,SU-MIMO)技术或多用户多入多出(multi-users multiple-input multiple-output,MU-MIMO)技术进行无线通信。
其中,AP也称为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有无线保真(wireless fidelity,WiFi)芯片的终端设备或者网络设备。可选地,AP可以为支持802.11等多种WLAN制式的设备。图2示出了AP产品的内部结构图,其中,AP可以是多天线的,也可以是单天线的。图2中,AP包括物理层(physical layer,PHY)处理电路和媒体接入控制(media access control,MAC)处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。802.11标准关注PHY和MAC部分,本申请实施例关注在MAC和PHY上的协议设计。
其中,STA产品通常为支持802.11系列标准的终端产品,如手机、笔记本电脑等,图3示出了单个天线的STA结构图,实际场景中,STA也可以是多天线的,并且可以是两个以上天线的设备。图3中,STA可以包括物理层(physical layer,PHY)处理电路和媒体接入控制(media access control,MAC)处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。
为了大幅提升WLAN系统的业务传输速率,IEEE 802.11ax标准在现有正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的基础上,进一步采用正交频分多址(orthogonal frequency division multiple access,OFDMA)技术。OFDMA技术支持多个节点同时发送和接收数据,从而实现多站点分集增益。
从802.11a经802.11g、802.11n、802.11ac到802.11ax的演进过程中,可用频段包括2.4吉赫(GHz)和5GHz。随着开放的频段越来越多,802.11所支持的最大信道带宽从20兆赫(MHz)扩展到40MHz再扩展到160MHz。2017年,美国联邦通信委员会(federal communications commission,FCC)开放了一段新的免费频段6GHz(5925-7125MHz),802.11ax标准工作者在802.11ax项目授权申请书(project authorization requests,PAR)中把802.11ax设备工作范围从2.4GHz,5GHz拓展到2.4GHz,5GHz和6GHz。由于新开放的6GHz频段可用带宽更大,可以预见,在802.11ax之后的下一代标准演进中,会支持大于160MHz的信道带宽。
每一代主流802.11协议都是兼容传统站点的。比如最早一代主流WiFi的802.11a帧结 构以前导码开始,包括传统短训练字段(legacy-short training field,L-STF)、传统长训练字段(legacy-long training field,L-LTF)、传统信令域(legacy-signal field,L-SIG)。在之后的802.11及802.11ax,为了兼容传统站点,其帧结构都以传统前导码开始。在传统前导码之后,是每一代新定义的信令字段、短训练字段和长训练字段。其中,将传统前导码之后的短训练字段(short training field,STF)简称为极高吞吐量短训练字段(extremely high throughput-STF,EHT-STF),以区别L-STF。当传输大于20MHz信道带宽时,L-STF是在每20MHz的信道带宽上复制再传输,而这些802.111a之后引入的EHT-STF则针对大于20MHz的信道带宽分别定义为新的序列。例如,802.11ac所定义的STF,即非常高吞吐率-短训练字段(very high throughput-STF,VHT-STF),分别定义有20MHz、40MHz、80MHz和160MHz的序列。同样,802.11ax所定义的高效-短训练字段(high efficiency-STF,HE-STF)也支持最大为160MHz的信道带宽。
协议规定,HE-STF的时域波形包含5个重复周期,主要用来增强多输入多输出(multiple-input multiple-output,MIMO)传输下自动增益控制电路(automatic gain control,AGC)的估计,所以要求序列的峰均功率比(peak to average power ratio,PAPR)越小越好。
如上所述,在802.11ax之后的下一代标准(IEEE 802.11be)演进中,会支持大于160MHz的信道带宽,例如240MHz和320MHz,以实现超高传输速率和支持超密用户的场景。因此,需要针对更大的信道带宽,设计新的短训练域序列。有鉴于此,本申请实施例提供了一种传输物理层协议数据单元的方法和装置,能够针对更大的信道带宽,设计短训练域序列。
为便于理解本申请实施例,下面先对本申请涉及到的几个名词或术语进行简单介绍。
1、子载波
无线通信信号都是有限带宽的,利用OFDM技术可以在信道带宽内按照一定频率间隔将带宽分成多个频率分量,这些分量被称为子载波。子载波的下标为连续的整数,其中,下标为0的子载波对应直流分量,下标为负数的子载波对应低于直流的频率分量,下标为正数的子载波对应高于直流的频率分量。
2、资源块分布(tone plan)
资源块分布也可以理解为承载数据的子载波分布,不同的信道带宽可以对应的不同的tone plan。在应用OFDMA及多用户多入多出(multiple user multiple input multiple output,MU-MIMO)技术时,AP会将频谱带宽划分为若干个资源块(resource unit,RU)。IEEE 802.11ax协议规定对于20MHz、40MHz、80MHz和160MHz的频谱带宽划分成多类资源块,其中包括26子载波资源块、52子载波资源块、106子载波资源块、242子载波资源块(20MHz带宽内最大资源块)、484子载波资源块(40MHz带宽内最大资源块)、996子载波资源块(80MHz带宽内最大资源块)、和1992子载波资源块(160MHz带宽内最大资源块)。每个RU由连续的子载波组成,比如26子载波资源块是由26个连续的子载波资源块组成。需要说明的是,不同的总带宽所能支持的RU的种类和数量不相同,但是在同一带宽下,可以支持混合类型的资源块。图4示例性示出了80MHz带宽下的tone plan的示意图。其中,左边带子载波以及右边带子载波位于传输频带的边缘处,其作为防护子载波,以减轻传输滤波对数据和导频子载波的影响。直流子载波是内容为空(empty)的 子载波(即不携带数据或信息的子载波),移动设备用之以定位OFDM频带的中心。空子载波是未分配信息的子载波。左边带子载波、右边带子载波、直流子载波、空子载波可以统称为RU间残留子载波(leftover tone),大的RU子载波个数和对应其中可容纳的多个小RU以及小RU间残留子载波个数总和相同。
OFDMA系统中,多用户的数据包是多种大小的RU组合而成,AP分配给每个用户一个RU,可能分配给用户的可选RU有如下几种:
(1)连续26个子载波组成的RU,包括:24个数据子载波和2个pilot导频子载波;
(2)连续52个子载波组成的RU,包括:48个数据子载波和4个pilot导频子载波;
(3)连续106个子载波组成的RU,包括:24个数据子载波和2个pilot导频子载波;
(4)连续242个子载波组成的RU,包括:234个数据子载波和8个pilot导频子载波;
(5)连续484个子载波组成的RU,包括:468个数据子载波和16个pilot导频子载波;
(6)连续996个子载波组成的RU,包括:980个数据子载波和16个pilot导频子载波。
其中,484-RU是在40MHz的多用户传输中使用,而996-RU是在80MHz或160MHz的多用户传输中使用。应理解,160MHz的tone plan可以看作2个80MHz的tone plan组成。240MHz的tone plan可以看作3个80MHz的tone plan组成。320MHz的tone plan可以看作4个80MHz的tone plan组成,此处不再赘述。
3、短训练序列
短训练序列的主要用途是进行信号检测、自动增益控制(automatic gain control,AGC)、符号定时和粗频率偏差估计等。针对不同的最大信道带宽,可以定义不同的序列。例如,802.11ax所定义的HE-STF支持最大为160MHz的信道带宽。本申请针对的信道带宽大于160MHz,因此,为区分,在本申请实施例中,称为EHT-STF。应理解,EHT-STF用于表示大于160MHz带宽的短训练字段或短训练域,其具体名称不对本申请实施例的保护范围造成限定。
短训练序列可以基于M序列构建而成。例如,根据标准802.11ax可知,HE-STF的高效短训练序列(high efficiency sequence,HES)是基于M序列,通过复用、相位旋转和拼接构建而成。M序列是目前CDMA系统中采用的最基本的伪噪声序列(pseudo-noise sequence,PN序列)。M序列是最长线性反馈移位寄存器序列的简称。M序列在802.11ax标准中定义为M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
应理解,当未来标准定义M序列有其它形式时,也适用于本申请。
需要说明的是,其具体名称不对本申请实施例的保护范围造成限定。例如,也可以称为频域序列等。
首先简单介绍一下802.11ax关于HE-STF的短训练序列HES a:b:c的设计,其中a:b:c表示从子载波a开始每隔b个子载波到子载波c。
图5示出了HE-STF由M序列构建的示意图。图5中的图(1)是重复结构。具体来说,20MHz的HE-STF由一个M序列构成;40MHz的HE-STF由2个20MHz的HE-STF(即,2个M序列)拼接而成;同样的,80MHz的HE-STF由4个20MHz的HE-STF拼接而成的。为了保证HE-STF在时域上包含5个重复周期,以及使得HE-STF的PAPR尽可能的小,可以采用额外的参数值和旋转因子来调整优化,如图5中的图(2)。具体来说,20MHz的HE-STF由一个M序列构成;40MHz的HE-STF由2个20MHz的HE-STF(即,2个 M序列)乘以旋转因子C之后拼接而成;同样的,80MHz的HE-STF由4个20MHz的HE-STF乘以旋转因子之后拼接而成的。同时,每2个M序列之间需要插入一个参数值A,以保证HE-STF在时域上包含5个重复周期。例外的是,OFDM调制方式要求直流子载波必须为0。因此,通过优化这些A和C可以使得HE-STF的PAPR达到最小。如图5中的图(2),旋转因子C可以包括{c 1,c 2,c 3,c 4,……},参数值A可以包括{a 1,a 2,a 3,a 4,……}。本文将这些旋转因子和参数值统称为“参数集”。
802.11ax根据其定义的不同帧结构,定义有两种周期长度的HE-STF,分别是0.8μs和1.6μs。另外,802.11ax支持的信道带宽有20MHz,40MHz,80MHz和160MHz一共4种。每一种带宽和长度对应一个HE-STF,所以HE-STF的频域值HES a:b:c一共有8种。
下面分别从长度为0.8μs和1.6μs两种情形下,介绍优化后的不同信道带宽的频域序列。
情形一、0.8μs的HE-STF的频域序列
(1)信道带宽为20MHz,0.8μs的HE-STF,一共有256个子载波,下标范围从-127到128。其中,下标为0的子载波对应直流分量,下标为负数和正数的子载波分别对应低于和高于直流的频率分量。
其中,HES -112:16:112可以用如下公式表示:
Figure PCTCN2021070056-appb-000105
其中,HES -112:16:112表示20MHz的HE-STF频域序列,具体地,下标为-112、-96、-80、-64、-48、-32、-16、0、16、32、48、64、80、96、112的子载波在频域上的值。HES 0=0,其它子载波在频域上的取值均为0。其它子载波,表示在-127到128的下标范围,除了下标为-112、-96、-80、-64、-48、-32、-16、0、16、32、48、64、80、96、112的子载波之外,其余下标的子载波。
上述公式展开为:
Figure PCTCN2021070056-appb-000106
因此,下标为-112、-96、-80、-64、-48、-32、-16、0、16、32、48、64、80、96、112的子载波在频域上的值分别为:
Figure PCTCN2021070056-appb-000107
需要说明的是,在本文中,公式中涉及到类似于HES -112:16:112的表达,其所要表达的含义是相似的,为简洁,后续不再赘述。
还需要说明的是,在本文中,此后的公式描述中,如未明确标出,其它下标的子载波在频域上的值均为0,为简洁,后续不再赘述。
(2)信道带宽为40MHz,0.8μs的HE-STF,一共有512个子载波,下标范围从-255到256,其中,HES -240:16:240可以用如下公式表示:
Figure PCTCN2021070056-appb-000108
其中,HES -240:16:240表示40MHz的HE-STF频域序列。
(3)信道带宽为80MHz,0.8μs的HE-STF,一共有1024个子载波,下标范围从-511 到512,其中,HES -496:16:496可以用如下公式表示:
Figure PCTCN2021070056-appb-000109
其中,HES -496:16:496表示80MHz的HE-STF频域序列。
(4)信道带宽为160MHz,0.8μs的HE-STF,一共有2048个子载波,下标范围从-1023到1024,其中,HES -1008:16:1008可以用如下公式表示:
Figure PCTCN2021070056-appb-000110
其中,HES -1008:16:1008表示160MHz的HE-STF频域序列。
情形二、1.6μs的HE-STF的频域序列
(1)信道带宽为20MHz,1.6μs的HE-STF,一共有256个子载波,下标范围从-127到128,其中,HES -120:8:120可以用如下公式表示:
Figure PCTCN2021070056-appb-000111
HES 0=0,其它子载波在频域上的取值均为0。
(2)信道带宽为40MHz,1.6μs的HE-STF,一共有512个子载波,下标范围从-255到256,其中,HES -248:8:248可以用如下公式表示:
Figure PCTCN2021070056-appb-000112
HES ±248=0。
其中,HES -248:8:248表示40MHz的HE-STF频域序列。
(3)信道带宽为80MHz,1.6μs的HE-STF,一共有1024个子载波,下标范围从-511到512,其中,HES -504:8:504可以用如下公式表示:
Figure PCTCN2021070056-appb-000113
HES ±504=0。
其中,HES -504:8:504表示80MHz的HE-STF频域序列。
(4)信道带宽为160MHz,1.6μs的HE-STF,一共有2048个子载波,下标范围从-1023到1024,其中,其中,HES -1016:8:1016可以用如下公式表示:
Figure PCTCN2021070056-appb-000114
HES ±8=0,HES ±1016=0。
其中,HES -1016:8:1016表示160MHz的HE-STF频域序列。
以上公式中,
Figure PCTCN2021070056-appb-000115
在复平面的几何意义是将某个值逆时针旋转45°,并保持能量归一。同理,
Figure PCTCN2021070056-appb-000116
是将某个值逆时针旋转225°。由此,基于M序列,得到了不同信道带宽下HE-STF,并保证达到了优化的PAPR。表1列出了以上8种HE-STF的峰均功率比PAPR。
表1
PAPR 20MHz 40MHz 80MHz 160MHz
0.8μs 1.89 4.40 4.53 5.05
1.6μs 4.40 5.22 4.79 6.34
4、峰均功率比
峰均功率比(peak to average power ratio,PAPR),可以指一个符号内,连续信号瞬间功率峰值与信号功率平均值之比。可以用如下公式表示:
Figure PCTCN2021070056-appb-000117
其中,X i,表示一组序列的时域离散值;max(X i 2),表示时域离散值平方的最大值;mean(X i 2),表示时域离散值平方的平均值。
OFDM系统具有高PAPR的缺点,尤其是在大带宽下,更多的子载波导致更为严重的PAPR,高PAPR将会导致信号非线性失真,降低系统性能,所以在设计序列时,要求序列的PAPR越小越好。
需要说明的是,在本申请实施中,“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议、WLAN协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
还需要说明的是,本申请实施例中,“预先获取”可包括由设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括站点和接入点)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预先定义可以是指协议中定义的。
还需要说明的是,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
还需要说明的是,本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
下面将结合附图详细说明本申请提供的技术方案。本申请实施例可以应用于多个不同的场景下,包括图1所示的场景,但并不限于该场景。示例性地,对于上行传输,STA可以作为发送端,AP可以作为接收端;对于下行传输,AP可以作为发送端,STA可以作为接收端;对于其他传输场景,例如,AP和AP之间的数据传输,其中一个AP可以作为发送端,另一个AP可以作为接收端;又例如,STA和STA之间的上行传输,其中一个STA可以作为发送端,另一个STA可以作为接收端。因此,下面按照发送端和接收端对本申请实施例进行描述。
图5是本申请实施例提供的传输物理层协议数据单元的方法500的示意性流程图。图5所示的方法500可以包括如下步骤。
S510,发送端生成物理层协议数据单元PPDU,该PPDU包括短训练域,该短训练域的频域序列的长度大于第一长度,该第一长度为在带宽为160MHz的信道上传输的PPDU的短训练域的频域序列的长度;
S520,发送端在目标信道上发送该PPDU,其中,该目标信道的带宽大于160MHz。
相应地,接收端在目标信道上接收PPDU。
可选地,方法500还可以包括步骤S530。S530,接收端解析PPDU。关于具体的解析方式可参考现有描述,对此不做限定。
上述短训练域也可以称为短训练字段,下文统一用短训练域表示。
在本申请实施例中,为区分传统短训练字段,将目标信道的带宽对应的短训练字段用EHT-STF表示。应理解,EHT-STF用于表示带宽大于160MHz所对应的短训练字段,其具体名称不对本申请实施例的保护范围造成限定。
EHT-STF是通过EHT-STF的频域序列获得的,如EHT-STF由EHT-STF的频域序列或者说频域值经过IFFT变换后得到的,本申请中为描述方便,将EHT-STF的频域序列简称为EHTS。应理解,EHTS仅是一种命名,并不对本申请实施例的保护范围造成限定,例如也可称为频域序列。
在本申请实施例中,用第一长度表示带宽为160MHz对应的频域序列的长度。短训练域的频域序列长度大于第一长度,换句话说,EHT-STF的频域序列的长度大于信道带宽为160MHz的HE-STF的频域序列的长度。例如,160MHz的HE-STF可以由2个80MHz的HE-STF乘以旋转因子之后拼接而成的,240MHz的EHT-STF可以由3个80MHz的HE-STF乘以旋转因子之后拼接而成的,或者,240MHz的EHT-STF也可以由320MHz的EHT-STF穿孔而成的(例如,可以将320MHz的EHT-STF打掉80MHz的EHT-STF从而形成240MHz的EHT-STF),320MHz的EHT-STF可以由4个80MHz的HE-STF乘以旋转因子之后拼接而成的,故EHT-STF的频域序列的长度大于信道带宽为160MHz的HE-STF的频域序列的长度。
短训练域的频域序列长度大于第一长度,或者也可以理解为,EHT-STF的频域值的数量大于160MHz的HE-STF的频域值的数量,如240MHz带宽共有3072个子载波,那么该3072个子载波对应3072个频域值,160MHz带宽共有1024个子载波,那么该1024个子载波对应1024个频域值,因此,EHT-STF的频域值的数量大于160MHz的HE-STF的频域值的数量。
短训练域的频域序列长度大于第一长度,或者也可以理解为,EHT-STF对应的子载波标号的数量大于160MHz的HE-STF对应的子载波标号的数量,如240MHz的EHT-STF对应的短训练序列可以表示为EHTS -1520:16:1520,160MHz的HE-STF对应的短训练序列可以表示为HES -1008:16:1008,那么可以看出EHT-STF对应的子载波标号的数量大于160MHz的HE-STF对应的子载波标号的数量。
在本申请实施例中,序列长度表示序列中元素组成的长度,例如,序列1为:{0,1,-1,1},那么该序列1的长度为4;又如,序列2为:{0,1,-1,1,1,1,1},那么该序列2的长度为7,且可以看出,序列2的长度大于序列1的长度。又如,假设160MHz的HE-STF对应的频域序列长度为2048,那么第一长度为2048,换句话说,短训练域的频域序列长度大于2048。
目标信道的带宽大于160MHz。
目标信道的带宽也可以为大于160MHz的任何带宽,例如,目标信道的带宽为200MHz、240MHz、280MHz、或320MHz等等。
本申请实施例的目标信道的带宽的EHT-STF,可以是通过仿真计算得到。例如,发送端可以基于协议规定的序列(例如IEEE 802.11ax中的HE-LTF序列),采用相应公式计算得到。又如,发送端可以基于已存储的或者新生成的序列,采用相应公式计算得到,本申请实施例对此不做限定。
根据本申请实施例,考虑到向后兼容,以现有信道带宽的STF对应的短训练序列HES,如,HE-STF对应的短训练序列HES为基础,设计更大信道带宽的短训练序列,如EHT-STF对应的短训练序列EHTS。
本申请实施例的传输PPDU的方法,能够确定更大信道带宽所对应的短训练序列或者说频域序列,可以支持接收端对在更大信道带宽上传输的数据进行自动增益控制。该短训练序列可以基于现有信道带宽的短训练序列得到,并且,通过仿真计算,例如调节参数,可以获得性能较好的短训练序列。短训练域可以基于该短训练序列得到。根据本申请实施例,不仅可以满足实际中的更大信道带宽,且向后兼容,而且通过对参数进行穷举仿真验证了本申请实施例提供的短训练序列,峰均功率值PAPR较小,性能较优,进而提高接收端的自动增益控制电路的估计效果,从而降低接收误码率。
下文以目标信道的带宽为240MHz、320MHz这两个示例为例,进行示例性说明。此外,EHT-STF可以包括多个周期,每个周期的时间长度可以为0.8μs或1.6μs。为简洁,在本申请实施例中,将每个周期的时间长度记为周期长度。在本申请实施例中,以周期长度为0.8μs、1.6μs这两种场景,说明目标信道的带宽的EHT-STF。在本申请实施例中,参考信道的周期长度,即表示在参考信道上传输短训练域的频域序列的周期长度,下文不再赘述。
考虑到针对不同的目标信道的带宽和不同的周期长度,可以分别设计对应的EHT-LTF。因此,下面分不同情况详细介绍本申请实施例的方法。
情况一和情况二是针对240MHz信道带宽的EHT-STF。在阐述240MHz信道带宽的EHT-STF之前,首先介绍240MHz的子载波分配图样(tone plane)。如前所述,802.11ax规定的80MHz信道带宽的tone plane为一共有1024个子载波,下标范围从-511到512,其中,在带宽左右边缘分别有12和11个保护子载波(guard tone),在带宽中间有5个直流子载波。本申请实施例所设计的240MHz的信道带宽的tone plan为3个80MHz的tone plane拼接在一起,即3个80MHz的左右边缘子载波和各自中间的自流子载波均保留。这样,240MHz带宽共有1024×3=3072个子载波,左右边缘分别有12个和11个保护子载波,带宽中间有5个直流子载波。
情况一、目标信道的带宽为240MHz、参考信道的周期长度为0.8μs。
本申请实施例将240MHz带宽、周期长度为0.8μs的EHT-STF的频域序列记作EHTS -1520:16:1520,EHTS -1520:16:1520可以通过下列多种方式构造。
1、利用IEEE 802.11ax中20MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中20MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作HES -112:16:112
Figure PCTCN2021070056-appb-000118
Figure PCTCN2021070056-appb-000119
Figure PCTCN2021070056-appb-000120
换句话说,HES’ -112:16:112表示为{M},相应地,-HES’ -112:16:112 表示为{-M}。设计公式如下:
Figure PCTCN2021070056-appb-000121
Figure PCTCN2021070056-appb-000122
EHTS ±1520=0。
其中,a i的取值为{-1,0,1},i=1,2,…,8;c j的取值为{-1,1},j=1,2,…,12。
对不同的经过a i的取值和c j的取值确定的EHTS -1520:16:1520序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -1520:16:1520序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a i均不是直流子载波或空子载波,则a i的取值为{-1,1},可以得到最优的20组EHTS -1520:16:1520的参数集取值表2所示。在本文的所有表格中,PAPR表示未经过过采样的序列的PAPR取值,PAPR上采样(up_sampling)表示经过过采样的序列的PAPR取值,后续不再赘述。
表2
Figure PCTCN2021070056-appb-000123
若a 3和a 6是直流子载波或空子载波,则a 3=0,a 6=0,其他a i的取值为{-1,1},可以得 到最优的12组EHTS -1520:16:1520的参数集取值表3所示。
表3
序号 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 10 c 11 c 12 PAPR PAPR up_sampling
1 -1 -1 0 -1 1 0 1 1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 3.3255 3.9285
2 1 1 0 1 -1 0 -1 -1 1 -1 -1 1 1 -1 1 -1 1 1 1 1 3.3255 3.9287
3 -1 -1 0 -1 1 0 1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 3.3255 3.9287
4 1 1 0 1 -1 0 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 3.3255 3.9285
5 1 1 0 1 -1 0 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 3.3255 3.9564
6 -1 -1 0 -1 1 0 1 1 1 -1 -1 1 1 -1 1 -1 1 1 1 1 3.3255 3.9559
7 1 1 0 1 -1 0 -1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 3.3255 3.9559
8 -1 -1 0 -1 1 0 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 3.3255 3.9564
9 -1 -1 0 -1 1 0 1 1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 3.3255 4.1104
10 1 1 0 1 -1 0 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 3.3255 4.1104
11 -1 -1 0 -1 1 0 1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 -1 -1 3.3255 4.1112
12 1 1 0 1 -1 0 -1 -1 -1 1 -1 1 1 -1 -1 1 1 1 1 1 3.3255 4.1112
2、利用IEEE 802.11ax中160MHz的序列和80MHZ的序列进行构造。
本申请实施例将IEEE 802.11ax中160MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作HES -1008:16:1008,将IEEE 802.11ax中80MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作HES -496:16:496
Figure PCTCN2021070056-appb-000124
Figure PCTCN2021070056-appb-000125
Figure PCTCN2021070056-appb-000126
换句话说,HES’ -1008:16:1008表示为{M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,-M},相应地,-HES’ -1008:16:1008表示为{-M,-1,M,0,M,-1,M,0,M,1,-M,0,M,-1,M}。
Figure PCTCN2021070056-appb-000127
换句话说,HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},相应地,-HES’ -496:16:496表示为{-M,-1,M,0,M,-1,M}。
在一种可能的实现方式中,设计公式如下:
Figure PCTCN2021070056-appb-000128
其中,HES’ -1008:16:1008_L={M,1,-M,0,-M,1,-M},即为HES’ -1008:16:1008在0子载波左边的部分;
HES’ -1008:16:1008_R={-M,-1,M,0,-M,1,-M},即为HES’ -1008:16:1008在0子载波右边的部分;
EHTS ±1520=0。
其中,a i的取值为{-1,0,1},i=1,2;c j的取值为{-1,1},j=1,2,3。
对不同的经过a i的取值和c j的取值确定的EHTS -1520:16:1520序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -1520:16:1520序列值及其对应的PAPR,从中选择PAPR较小的序 列。
若a 1和a 2是直流子载波或空子载波,则a 1=0,a 2=0,其他a i的取值为{-1,1},可以得到最优的4组EHTS -1520:16:1520的参数集取值表4所示。在这种情况下,上述公式也可以表示为:
Figure PCTCN2021070056-appb-000129
表4
序号 a 1 a 2 c 1 c 2 c 3 PAPR PAPR up_sampling
1 0 0 1 1 1 6.3992 6.5654
2 0 0 -1 -1 -1 6.3992 6.5654
3 0 0 1 1 -1 6.1706 7.1419
4 0 0 -1 -1 1 6.1706 7.1419
若a 2是直流子载波或空子载波,则a 2=0,其他a i的取值为{-1,1},可以得到最优的8组EHTS -1520:16:1520的参数集取值表5所示。
表5
序号 a 1 a 2 c 1 c 2 c 3 PAPR PAPR up_sampling
1 -1 0 1 1 1 6.3179 6.4835
2 1 0 -1 -1 -1 6.3179 6.4835
3 1 0 1 1 1 6.6603 6.8255
4 -1 0 -1 -1 -1 6.6603 6.8255
5 1 0 1 1 -1 5.8967 6.9007
6 -1 0 -1 -1 1 5.8967 6.9007
7 -1 0 1 1 -1 6.395 7.3548
8 1 0 -1 -1 1 6.395 7.3548
在另一种可能的实现方式中,设计公式如下:
Figure PCTCN2021070056-appb-000130
Figure PCTCN2021070056-appb-000131
EHTS ±1520=0。
其中,HES’ -1008:16:1008_L={M,1,-M,0,-M,1,-M},即为HES’ -1008:16:1008在0子载波左边的部分;
HES’ -1008:16:1008_R={-M,-1,M,0,-M,1,-M},即为HES’ -1008:16:1008在0子载波右边的部分;
EHTS ±1520=0。
其中,a i的取值为{-1,0,1},i=1,2;c j的取值为{-1,1},j=1,2,3。
对不同的经过a i的取值和c j的取值确定的EHTS -1520:16:1520序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -1520:16:1520序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a 1和a 2是直流子载波或空子载波,则a 1=0,a 2=0,其他a i的取值为{-1,1},可以得到最优的4组EHTS -1520:16:1520的参数集取值表6所示。
表6
序号 a 1 a 2 c 1 c 2 c 3 PAPR PAPR up_sampling
1 0 0 1 -1 -1 6.1706 6.3349
2 0 0 -1 1 1 6.1706 6.3349
3 0 0 1 1 1 6.3992 6.5654
4 0 0 -1 -1 -1 6.3992 6.5654
若a 1是直流子载波或空子载波,则a 1=0,其他a i的取值为{-1,1},可以得到最优的8组EHTS -1520:16:1520的参数集取值表7所示。
表7
序号 a 1 a 2 c 1 c 2 c 3 PAPR PAPR up_sampling
1 0 -1 1 -1 -1 5.8967 6.0599
2 0 1 -1 1 1 5.8967 6.0599
3 0 1 1 -1 -1 6.395 6.5586
4 0 -1 -1 1 1 6.395 6.5586
5 0 -1 1 1 1 6.3179 6.6364
6 0 1 -1 -1 -1 6.3179 6.6364
7 0 1 1 1 1 6.6603 6.8254
8 0 -1 -1 -1 -1 6.6603 6.8254
3、利用IEEE 802.11ax中80MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中80MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作HES -496:16:496
Figure PCTCN2021070056-appb-000132
Figure PCTCN2021070056-appb-000133
Figure PCTCN2021070056-appb-000134
换句话说,HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},相应地,-HES’ -496:16:496表示为{-M,-1,M,0,M,-1,M}。
在一种可能的实现方式中,可以利用80MHz的序列的一半序列进行构造。
Figure PCTCN2021070056-appb-000135
其中,HES’ -496:16:496_L={M,1,-M},即为HES’ -496:16:496在0子载波左边的部分;
HES’ -496:16:496_R={-M,1,-M},即为HES’ -496:16:496在0子载波右边的部分;
EHTS ±1520=0。
其中,a i的取值为{-1,0,1},i=1,2,…,4;c j的取值为{-1,1},j=1,2,…,6。
对不同的经过a i的取值和c j的取值确定的EHTS -1520:16:1520序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -1520:16:1520序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a i均不是直流子载波或空子载波,则a i的取值为{-1,1},可以得到最优的10组EHTS -1520:16:1520的参数集取值表8所示。
表8
序号 a 1 a 2 a 3 a 4 c 1 c 2 c 3 c 4 c 5 c 6 PAPR PAPR up_sampling
1 1 -1 1 1 1 -1 -1 -1 1 1 4.5809 4.9376
2 -1 1 -1 -1 -1 1 1 1 -1 -1 4.5809 4.9376
3 1 1 1 1 1 1 1 -1 -1 -1 4.1434 5.0448
4 -1 -1 -1 -1 -1 -1 -1 1 1 1 4.1434 5.0448
5 -1 -1 -1 1 1 -1 -1 1 -1 -1 4.5808 5.0669
6 1 1 1 -1 -1 1 1 -1 1 1 4.5808 5.0669
7 1 -1 -1 1 1 -1 -1 -1 1 1 4.4543 5.0901
8 -1 1 1 -1 -1 1 1 1 -1 -1 4.4543 5.0901
9 -1 1 -1 1 1 1 1 -1 -1 -1 4.5096 5.1552
10 1 -1 1 -1 -1 -1 -1 1 1 1 4.5096 5.1552
若a 1和a 4是直流子载波或空子载波,则a 1=0,a 4=0,其他a i的取值为{-1,1},可以得到最优的10组EHTS -1520:16:1520的参数集取值表9所示。
表9
序号 a 1 a 2 a 3 a 4 c 1 c 2 c 3 c 4 c 5 c 6 PAPR PAPR up_sampling
1 0 1 1 0 1 -1 -1 1 -1 -1 4.7131 5.0401
2 0 -1 -1 0 -1 1 1 -1 1 1 4.7131 5.0401
3 0 1 -1 0 1 -1 -1 1 -1 -1 4.8759 5.136
4 0 -1 1 0 -1 1 1 -1 1 1 4.8759 5.136
5 0 1 1 0 1 1 1 -1 -1 -1 4.3852 5.1879
6 0 -1 -1 0 -1 -1 -1 1 1 1 4.3852 5.1879
7 0 -1 -1 0 1 -1 -1 1 -1 -1 4.4657 5.2203
8 0 1 1 0 -1 1 1 -1 1 1 4.4657 5.2203
9 0 -1 -1 0 1 1 1 -1 -1 -1 4.2666 5.2848
10 0 1 1 0 -1 -1 -1 1 1 1 4.2666 5.2848
若a i均是直流子载波或空子载波,则a i=0,可以得到最优的10组EHTS -1520:16:1520的参数集取值表10所示。
表10
序号 a 1 a 2 a 3 a 4 c 1 c 2 c 3 c 4 c 5 c 6 PAPR PAPR up_sampling
1 0 0 0 0 1 -1 -1 1 -1 -1 4.4787 5.1509
2 0 0 0 0 -1 1 1 -1 1 1 4.4787 5.1509
3 0 0 0 0 1 1 1 -1 -1 -1 4.2358 5.2186
4 0 0 0 0 -1 -1 -1 1 1 1 4.2358 5.2186
5 0 0 0 0 1 -1 1 1 -1 1 4.4787 5.8077
6 0 0 0 0 -1 1 -1 -1 1 -1 4.4787 5.8077
7 0 0 0 0 1 -1 -1 -1 1 1 4.2358 5.8869
8 0 0 0 0 -1 1 1 1 -1 -1 4.2358 5.8869
9 0 0 0 0 1 1 1 -1 -1 1 6.005 6.1694
10 0 0 0 0 -1 -1 -1 1 1 -1 6.005 6.1694
在另一种可能的实现方式中,可以利用完整的80MHz的序列进行构造。
Figure PCTCN2021070056-appb-000136
其中,EHTS ±1520=0,c j的取值为{-1,1},j=1,2,3。
对不同的经过c j的取值确定的EHTS -1520:16:1520序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -1520:16:1520序列值及其对应的PAPR,从中选择PAPR较小的序列。
因此,可以得到最优的8组EHTS -1520:16:1520的参数集取值表11所示。
表11
序号 c 1 c 2 c 3 PAPR PAPR up_sampling
1 1 -1 -1 6.2795 6.9425
2 -1 1 1 6.2795 6.9425
3 1 1 -1 6.2795 7.0887
4 -1 -1 1 6.2795 7.0887
5 1 1 1 7.6203 7.7865
6 -1 -1 -1 7.6203 7.7865
7 1 -1 1 6.2795 9.357
8 -1 1 -1 6.2795 9.357
情况二、目标信道的带宽为240MHz、参考信道的周期长度为1.6μs。
本申请实施例将240MHz带宽、周期长度为1.6μs的EHT-STF的频域序列记作EHTS -1528:8:1528,EHTS -1528:8:1528可以通过下列多种方式构造。
1、利用IEEE 802.11ax中20MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中20MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作HES -120:8:120
Figure PCTCN2021070056-appb-000137
Figure PCTCN2021070056-appb-000138
Figure PCTCN2021070056-appb-000139
换句话说,HES’ -120:8:120表示为{M,0,-M},相应地,-HES’ -120:8:120表示为{-M,0,M}。设计公式如下:
EHTS -1528:8:1528={c 1·HES’ -120:8:120,a 1,c 2·HES’ -120:8:120,0,c 3·HES’ -120:8:120,a 2,c 4·HES’ -120:8:120,a 3,c 5·HES’ -120:8:120,a 4,c 6·HES’ -120:8:120,0,c 7·HES’ -120:8:120,a 5,c 8·HES’ -120:8:120,a 6,c 9·HES’ -120:8:120,a 7,c 1 0·HES’ -120:8:120,0,c 11·HES’ -120:8:120,a 8,c 12·HES’ -120:8:120},EHTS ±1528=0。
其中,a i的取值为{-1,0,1},i=1,2,…,8;c j的取值为{-1,1},j=1,2,…,12。
对不同的经过a i的取值和c j的取值确定的EHTS -1528:8:1528序列进行反傅里叶变换和5 倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -1528:8:1528序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a i均不是直流子载波或空子载波,则a i的取值为{-1,1},可以得到最优的20组EHTS -1528:8:1528的参数集取值表12所示。
表12
序列 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 10 c 11 c 12 PAPR PAPR up_sampling
1 1 1 -1 1 1 -1 1 1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1 5.9815 6.168
2 1 1 -1 1 1 -1 1 1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 5.9815 6.168
3 -1 -1 1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 5.9815 6.168
4 -1 -1 1 -1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 5.9815 6.168
5 1 1 1 -1 -1 -1 -1 1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 5.8146 6.185
6 -1 1 1 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 1 1 1 5.8146 6.1849
7 1 -1 -1 -1 -1 1 1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 5.8146 6.1849
8 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 5.8146 6.185
9 -1 -1 1 -1 -1 1 -1 -1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1 6.0501 6.2053
10 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 6.0501 6.2052
11 1 1 -1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 6.0501 6.2052
12 1 1 -1 1 1 -1 1 1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 6.0501 6.2053
13 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 5.8146 6.2168
14 1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 1 1 1 5.8146 6.2167
15 -1 -1 -1 -1 1 1 1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 5.8146 6.2167
16 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 5.8146 6.2168
17 1 -1 1 1 -1 1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 5.7529 6.2274
18 1 1 -1 1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 1 1 5.7529 6.2273
19 -1 -1 1 -1 1 1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 5.7529 6.2273
20 -1 1 -1 -1 1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 5.7529 6.2274
若a 3和a 6是直流子载波或空子载波,则a 3=0,a 6=0,其他a i的取值为{-1,1},可以得到最优的12组EHTS -1528:8:1528的参数集取值表13所示。
表13
序列 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 10 c 11 c 12 PAPR PAPR up_sampling
1 -1 1 0 -1 1 0 -1 1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 5.918 6.2275
2 1 -1 0 1 -1 0 1 -1 -1 1 -1 -1 1 -1 -1 -1 -1 1 1 1 5.918 6.2275
3 1 -1 0 1 -1 0 1 -1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 -1 5.918 6.2276
4 -1 1 0 -1 1 0 -1 1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 5.918 6.2276
5 -1 -1 0 -1 1 0 1 1 1 -1 1 -1 -1 1 1 -1 -1 -1 -1 -1 5.8639 6.2575
6 1 1 0 1 -1 0 -1 -1 -1 1 -1 1 1 -1 -1 1 1 1 1 1 5.8639 6.2575
7 1 1 0 1 -1 0 -1 -1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 5.8639 6.2578
8 -1 -1 0 -1 1 0 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 5.8639 6.2578
9 1 -1 0 -1 -1 0 1 1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 5.9585 6.261
10 -1 -1 0 1 1 0 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 1 1 5.9585 6.2609
11 1 1 0 -1 -1 0 -1 1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 5.9585 6.2609
12 -1 1 0 1 1 0 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 5.9585 6.261
2、利用IEEE 802.11ax中160MHz的序列和80MHZ的序列进行构造。
本申请实施例将IEEE 802.11ax中160MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作HES -1016:8:1016,将IEEE 802.11ax中80MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作HES -504:8:504
Figure PCTCN2021070056-appb-000140
Figure PCTCN2021070056-appb-000141
Figure PCTCN2021070056-appb-000142
Figure PCTCN2021070056-appb-000143
换句话说,HES’ -1016:8:1016表示为{M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M,0,-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},相应地,-HES’ -1016:8:1016表示为{-M,1,-M,M,1,-M,0,M,-1,-M,-1,M,-1,M,0,M,-1,M,-1,-M,-1,M,0,M,-1,-M,-1,M,-1,M}。
Figure PCTCN2021070056-appb-000144
换句话说,HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},相应地,-HES’ -504:8:504表示为{-M,1,-M,1,M,1,-M,0,M,-1,-M,-1,M,-1,M}。
在一种可能的实现方式中,设计公式如下:
Figure PCTCN2021070056-appb-000145
其中,HES’ -1016:8:1016_L={M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},即为HES’ -1016:8:1016在0子载波左边的部分;
HES’ -1016:8:1016_R={-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},即为HES’ -1016:8:1016在0子载波右边的部分;
EHTS ±1528=0。
其中,a i的取值为{-1,0,1},i=1,2;c j的取值为{-1,1},j=1,2,3。
对不同的经过a i的取值和c j的取值确定的EHTS -1528:8:1528序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -1528:8:1528序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a 1和a 2是直流子载波或空子载波,则a 1=0,a 2=0,其他a i的取值为{-1,1},可以得到最优的4组EHTS -1528:8:1528的参数集取值表14所示。在这种情况下,上述公式也可以表示为:
Figure PCTCN2021070056-appb-000146
表14
序号 a 1 a 2 c 1 c 2 c 3 PAPR PAPR up_sampling
1 0 0 1 1 1 6.3979 7.1543
2 0 0 -1 -1 -1 6.3979 7.1543
3 0 0 1 1 -1 7.5459 8.4069
4 0 0 -1 -1 1 7.5459 8.4069
若a 2是直流子载波或空子载波,则a 2=0,其他a i的取值为{-1,1},可以得到最优的16组EHTS -1528:8:1528的参数集取值表15所示。
表15
序号 a 1 a 2 c 1 c 2 c 3 PAPR PAPR up_sampling
1 1 0 1 1 1 6.4242 6.9801
2 -1 0 -1 -1 -1 6.4242 6.9801
3 -1 0 1 1 1 6.3536 7.3031
4 1 0 -1 -1 -1 6.3536 7.3031
5 1 0 1 1 -1 7.5656 8.3864
6 -1 0 -1 -1 1 7.5656 8.3864
7 -1 0 1 1 -1 7.7082 8.5643
8 1 0 -1 -1 1 7.7082 8.5643
9 1 0 1 1 1 6.4242 6.9801
10 -1 0 1 1 1 6.3536 7.3031
11 1 0 1 1 -1 7.5656 8.3864
12 -1 0 1 1 -1 7.7082 8.5643
13 1 0 -1 -1 1 7.7082 8.5643
14 -1 0 -1 -1 1 7.5656 8.3864
15 1 0 -1 -1 -1 6.3536 7.3031
16 -1 0 -1 -1 -1 6.4242 6.9801
在另一种可能的实现方式中,设计公式如下:
Figure PCTCN2021070056-appb-000147
其中,HES’ -1016:8:1016_L={M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},即为HES’ -1016:8:1016在0子载波左边的部分;
HES’ -1016:8:1016_R={-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},即为HES’ -1016:8:1016在0子载波右边的部分;
EHTS ±1528=0。
其中,a i的取值为{-1,0,1},i=1,2;c j的取值为{-1,1},j=1,2,3。
对不同的经过a i的取值和c j的取值确定的EHTS -1528:8:1528序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -1528:8:1528序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a 1和a 2是直流子载波或空子载波,则a 1=0,a 2=0,其他a i的取值为{-1,1},可以得 到最优的4组EHTS -1528:8:1528的参数集取值表16所示。
表16
序号 a 1 a 2 c 1 c 2 c 3 PAPR PAPR up_sampling
1 0 0 1 -1 -1 7.5768 8.1803
2 0 0 -1 1 1 7.5768 8.1803
3 0 0 1 1 1 6.3979 8.661
4 0 0 -1 -1 -1 6.3979 8.661
若a 1是直流子载波或空子载波,则a 1=0,其他a i的取值为{-1,1},可以得到最优的8组EHTS -1528:8:1528的参数集取值表17所示。
表17
序号 a 1 a 2 c 1 c 2 c 3 PAPR PAPR up_sampling
1 0 -1 1 -1 -1 7.4815 7.9895
2 0 1 -1 1 1 7.4815 7.9895
3 0 1 1 -1 -1 7.7379 8.3436
4 0 -1 -1 1 1 7.7379 8.3436
5 0 1 1 1 1 6.4242 8.6076
6 0 -1 -1 -1 -1 6.4242 8.6076
7 0 -1 1 1 1 6.3536 8.6933
8 0 1 -1 -1 -1 6.3536 8.6933
3、利用IEEE 802.11ax中80MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中80MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作HES -504:8:504
Figure PCTCN2021070056-appb-000148
Figure PCTCN2021070056-appb-000149
换句话说,HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},相应地,-HES’ -504:8:504表示为{-M,1,-M,1,M,1,-M,0,M,-1,-M,-1,M,-1,M}。
在一种可能的实现方式中,可以利用80MHz的序列的一半序列进行构造。
Figure PCTCN2021070056-appb-000150
其中,HES’ -504:8:504_L={M,-1,M,-1,-M,-1,M},即为HES’ -504:8:504在0子载波左边的部分;
HES’ -504:8:504_R={-M,1,M,1,-M,1,-M},即为HES’ -504:8:504在0子载波右边的部分;
EHTS ±1528=0。
其中,a i的取值为{-1,0,1},i=1,2,…,4;c j的取值为{-1,1},j=1,2,…,6。
对不同的经过a i的取值和c j的取值确定的EHTS -1528:8:1528序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -1528:8:1528序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a i均不是直流子载波或空子载波,则a i的取值为{-1,1},可以得到最优的20组 EHTS -1528:8:1528的参数集取值表18所示。
表18
序号 a 1 a 2 a 3 a 4 c 1 c 2 c 3 c 4 c 5 c 6 PAPR PAPR up_sampling
1 1 1 -1 1 1 1 1 -1 1 1 6.4915 6.7752
2 -1 1 -1 -1 1 1 -1 1 1 1 6.4915 6.775
3 1 -1 1 1 -1 -1 1 -1 -1 -1 6.4915 6.775
4 -1 -1 1 -1 -1 -1 -1 1 -1 -1 6.4915 6.7752
5 -1 1 -1 1 1 1 1 -1 1 1 6.352 6.8126
6 -1 1 -1 1 1 1 -1 1 1 1 6.352 6.8125
7 1 -1 1 -1 -1 -1 1 -1 -1 -1 6.352 6.8125
8 1 -1 1 -1 -1 -1 -1 1 -1 -1 6.352 6.8126
9 1 1 -1 -1 1 1 1 -1 1 1 6.352 6.8317
10 1 1 -1 -1 1 1 -1 1 1 1 6.352 6.8316
11 -1 -1 1 1 -1 -1 1 -1 -1 -1 6.352 6.8316
12 -1 -1 1 1 -1 -1 -1 1 -1 -1 6.352 6.8317
13 1 1 -1 -1 1 1 -1 -1 -1 1 6.0091 7.0364
14 1 1 -1 -1 1 -1 -1 -1 1 1 6.0091 7.0365
15 -1 -1 1 1 -1 1 1 1 -1 -1 6.0091 7.0365
16 -1 -1 1 1 -1 -1 1 1 1 -1 6.0091 7.0364
17 1 1 1 1 1 1 1 -1 1 1 6.6457 7.04
18 -1 -1 -1 -1 1 1 -1 1 1 1 6.6457 7.0398
19 1 1 1 1 -1 -1 1 -1 -1 -1 6.6457 7.0398
20 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 6.6457 7.04
若a 1和a 4是直流子载波或空子载波,则a 1=0,a 4=0,其他a i的取值为{-1,1},可以得到最优的16组EHTS -1528:8:1528的参数集取值表19所示。
表19
序号 a 1 a 2 a 3 a 4 c 1 c 2 c 3 c 4 c 5 c 6 PAPR PAPR up_sampling
1 0 1 -1 0 1 1 1 -1 1 1 6.3749 6.8152
2 0 1 -1 0 1 1 -1 1 1 1 6.3749 6.8151
3 0 -1 1 0 -1 -1 1 -1 -1 -1 6.3749 6.8151
4 0 -1 1 0 -1 -1 -1 1 -1 -1 6.3749 6.8152
5 0 1 1 0 1 1 1 -1 -1 -1 6.1156 7.0878
6 0 -1 -1 0 -1 -1 -1 1 1 1 6.1156 7.0878
7 0 1 -1 0 1 1 -1 -1 -1 1 6.1855 7.1027
8 0 1 -1 0 1 -1 -1 -1 1 1 6.1855 7.1028
9 0 -1 1 0 -1 1 1 1 -1 -1 6.1855 7.1028
10 0 -1 1 0 -1 -1 1 1 1 -1 6.1855 7.1027
11 0 1 1 0 1 1 1 -1 1 1 6.359 7.1239
12 0 -1 -1 0 1 1 -1 1 1 1 6.359 7.1237
13 0 1 1 0 -1 -1 1 -1 -1 -1 6.359 7.1237
14 0 -1 -1 0 -1 -1 -1 1 -1 -1 6.359 7.1239
15 0 1 1 0 1 1 -1 1 1 1 6.5145 7.1515
16 0 -1 -1 0 -1 -1 1 -1 -1 -1 6.5145 7.1515
若a i均是直流子载波或空子载波,则a i=0,可以得到最优的16组EHTS -1528:8:1528的参数集取值表20所示。
表20
序号 a 1 a 2 a 3 a 4 c 1 c 2 c 3 c 4 c 5 c 6 PAPR PAPR up_sampling
1 0 0 0 0 1 1 1 -1 1 1 6.3979 7.1544
2 0 0 0 0 1 1 -1 1 1 1 6.3979 7.1543
3 0 0 0 0 -1 -1 1 -1 -1 -1 6.3979 7.1543
4 0 0 0 0 -1 -1 -1 1 -1 -1 6.3979 7.1544
5 0 0 0 0 1 1 1 -1 -1 -1 6.2344 7.1717
6 0 0 0 0 -1 -1 -1 1 1 1 6.2344 7.1717
7 0 0 0 0 1 -1 1 1 1 -1 7.146 7.4304
8 0 0 0 0 1 -1 -1 -1 1 -1 7.146 7.4304
9 0 0 0 0 -1 1 1 1 -1 1 7.146 7.4304
10 0 0 0 0 -1 1 -1 -1 -1 1 7.146 7.4304
11 0 0 0 0 1 1 -1 -1 -1 1 5.9854 7.4694
12 0 0 0 0 1 -1 -1 -1 1 1 5.9854 7.4695
13 0 0 0 0 -1 1 1 1 -1 -1 5.9854 7.4695
14 0 0 0 0 -1 -1 1 1 1 -1 5.9854 7.4694
15 0 0 0 0 1 -1 1 1 -1 1 6.6825 7.5411
16 0 0 0 0 -1 1 -1 -1 1 -1 6.6825 7.5411
在另一种可能的实现方式中,可以利用完整的80MHz的序列进行构造。
Figure PCTCN2021070056-appb-000151
其中,EHTS ±1528=0,c j的取值为{-1,1},j=1,2,3。
对不同的经过c j的取值确定的EHTS -1528:8:1528序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -1528:8:1528序列值及其对应的PAPR,从中选择PAPR较小的序列。
因此,可以得到最优的8组EHTS -1528:8:1528的参数集取值表21所示。
表21
序号 c 1 c 2 c 3 PAPR PAPR up_sampling
1 1 1 -1 7.046 7.8053
2 1 -1 -1 7.046 7.8052
3 -1 1 1 7.046 7.8052
4 -1 -1 1 7.046 7.8053
5 1 1 1 9.1829 9.339
6 -1 -1 -1 9.1829 9.339
7 1 -1 1 6.7259 10.462
8 -1 1 -1 6.7259 10.462
情况三和情况四是针对320MHz信道带宽的EHT-STF。在阐述320MHz信道带宽的EHT-STF之前,首先介绍320MHz的子载波分配图样(tone plane)。如前所述,802.11ax规定的80MHz信道带宽的tone plane为一共有1024个子载波,下标范围从-511到512,其中,在带宽左右边缘分别有12和11个保护子载波(guard tone),在带宽中间有5个直流子载波。本申请实施例所设计的320MHz的信道带宽的tone plan为4个80MHz的tone plane拼接在一起,即4个80MHz的左右边缘子载波和各自中间的自流子载波均保留。这样,320MHz带宽共有1024×4=4096个子载波,左右边缘分别有12个和11个保护子载波,带宽中间有23个直流子载波。
情况三、目标信道的带宽为320MHz、参考信道的周期长度为0.8μs。
本申请实施例将320MHz带宽、周期长度为0.8μs的EHT-STF的频域序列记作EHTS -2032:16:2032,EHTS -2032:16:2032可以通过下列多种方式构造。
1、利用IEEE 802.11ax中20MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中20MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作HES -112:16:112
Figure PCTCN2021070056-appb-000152
Figure PCTCN2021070056-appb-000153
Figure PCTCN2021070056-appb-000154
换句话说,HES’ -112:16:112表示为{M},相应地,-HES’ -112:16:112表示为{-M}。设计公式如下:
Figure PCTCN2021070056-appb-000155
Figure PCTCN2021070056-appb-000156
EHTS ±2032=0。
其中,a i的取值为{-1,0,1},i=1,2,…,11;c j的取值为{-1,1},j=1,2,…,16。
对不同的经过a i的取值和c j的取值确定的EHTS -2032:16:2032序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2032:16:2032序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a 3、a 6和a 9是直流子载波或空子载波,则a 3=0,a 6=0,a 9=0,其他a i的取值为{-1,1},可以得到最优的19组EHTS -2032:16:2032的参数集取值表22所示。
表22
Figure PCTCN2021070056-appb-000157
若a i均不是直流子载波或空子载波,则a i的取值为{-1,1},可以得到最优的13组EHTS -2032:16:2032的参数集取值表23所示。
表23
Figure PCTCN2021070056-appb-000158
Figure PCTCN2021070056-appb-000159
2、利用IEEE 802.11ax中160MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中160MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作HES -1008:16:1008
Figure PCTCN2021070056-appb-000160
Figure PCTCN2021070056-appb-000161
Figure PCTCN2021070056-appb-000162
换句话说,HES’ -1008:16:1008表示为{M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,-M},相应地,-HES’ -1008:16:1008表示为{-M,-1,M,0,M,-1,M,0,M,1,-M,0,M,-1,M}。
在一种可能的实现方式中,可以利用完整的160MHz的序列进行构造。
Figure PCTCN2021070056-appb-000163
EHTS ±2032=0。
其中,a i的取值为{-1,0,1},i=1;c j的取值为{-1,1},j=1,2。
对不同的经过a i的取值和c j的取值确定的EHTS -2032:16:2032序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2032:16:2032序列值及其对应的PAPR,从中选择PAPR较小的序列。
因此,可以得到最优的10组EHTS -2032:16:2032的参数集取值表24所示。
表24
序号 a 1 c 1 c 2 PAPR PAPR up_sampling
1 1 1 1 7.6317 7.7996
2 -1 -1 -1 7.6317 7.7996
3 -1 1 -1 7.6688 7.8344
4 1 -1 1 7.6688 7.8344
5 0 1 1 7.7322 7.9011
6 0 -1 -1 7.7322 7.9011
7 -1 1 1 7.8063 7.9747
8 1 -1 -1 7.8063 7.9747
9 0 1 -1 7.8597 8.026
10 0 -1 1 7.8597 8.026
在另一种可能的实现方式中,可以利用160MHz的序列的一半序列进行构造。
Figure PCTCN2021070056-appb-000164
其中,HES’ -1008:16:1008_L={M,1,-M,0,-M,1,-M},即为HES’ -1008:16:1008在0子载波左边的部分;
HES’ -1008:16:1008_R={-M,-1,M,0,-M,1,-M},即为HES’ -1008:16:1008在0子载波右边的部分;
EHTS ±2032=0。
其中,a i的取值为{-1,0,1},i=1,2;c j的取值为{-1,1},j=1,2,…,4。
对不同的经过a i的取值和c j的取值确定的EHTS -2032:16:2032序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2032:16:2032序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a i均不是直流子载波或空子载波,则a i的取值为{-1,1},可以得到最优的10组EHTS -2032:16:2032的参数集取值表25所示。
表25
序号 a 1 a 2 c 1 c 2 c 3 c 4 PAPR PAPR up_sampling
1 1 1 1 -1 -1 -1 4.6781 5.2691
2 -1 -1 -1 1 1 1 4.6781 5.2691
3 1 -1 1 1 -1 1 5.0049 5.3441
4 -1 1 -1 -1 1 -1 5.0049 5.3441
5 -1 -1 1 1 -1 1 4.6781 5.3784
6 1 1 -1 -1 1 -1 4.6781 5.3784
7 1 1 1 -1 1 1 4.9383 5.38
8 -1 -1 -1 1 -1 -1 4.9383 5.38
9 -1 1 1 1 1 -1 5.0058 5.5547
10 1 -1 -1 -1 -1 1 5.0058 5.5547
3、利用IEEE 802.11ax中80MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中80MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作HES -496:16:496
Figure PCTCN2021070056-appb-000165
Figure PCTCN2021070056-appb-000166
换句话说,HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},相应地,-HES’ -496:16:496表示为{-M,-1,M,0,M,-1,M}。
在一种可能的实现方式中,可以利用80MHz的序列的一半序列进行构造。
可选地,
Figure PCTCN2021070056-appb-000167
Figure PCTCN2021070056-appb-000168
其中,HES’ -496:16:496_L={M,1,-M},即为HES’ -496:16:496在0子载波左边的部分;
HES’ -496:16:496_R={-M,1,-M},即为HES’ -496:16:496在0子载波右边的部分;
EHTS ±2032=0。
其中,a i的取值为{-1,0,1},i=1,2;c j的取值为{-1,1},j=1,2,…,8。
对不同的经过a i的取值和c j的取值确定的EHTS -2032:16:2032序列进行反傅里叶变换和5 倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2032:16:2032序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a i均不是直流子载波或空子载波,则a i的取值为{-1,1},可以得到最优的10组EHTS -2032:16:2032的参数集取值表26所示。
表26
序号 a 1 a 2 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 PAPR PAPR up_sampling
1 -1 -1 1 -1 1 1 1 -1 -1 -1 4.2225 4.7482
2 1 1 -1 1 -1 -1 -1 1 1 1 4.2225 4.7482
3 1 -1 1 -1 1 -1 -1 -1 1 1 4.5954 4.8615
4 -1 1 -1 1 -1 1 1 1 -1 -1 4.5954 4.8615
5 -1 -1 1 -1 -1 1 -1 -1 -1 -1 4.8145 4.9798
6 1 1 -1 1 1 -1 1 1 1 1 4.8145 4.9798
7 1 1 1 1 -1 -1 1 -1 1 -1 4.8145 4.9806
8 -1 -1 -1 -1 1 1 -1 1 -1 1 4.8145 4.9806
9 -1 1 1 -1 1 -1 -1 -1 1 1 4.5866 5
10 1 -1 -1 1 -1 1 1 1 -1 -1 4.5866 5
可选地,
Figure PCTCN2021070056-appb-000169
Figure PCTCN2021070056-appb-000170
其中,HES’ -496:16:496_L={M,1,-M},即为HES’ -496:16:496在0子载波左边的部分;
HES’ -496:16:496_R={-M,1,-M},即为HES’ -496:16:496在0子载波右边的部分;
EHTS ±2032=0。
其中,a i的取值为{-1,0,1},i=1,2,…,6;c j的取值为{-1,1},j=1,2,…,8。
对不同的经过a i的取值和c j的取值确定的EHTS -2032:16:2032序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2032:16:2032序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a i均不是直流子载波或空子载波,则a i的取值为{-1,1},可以得到最优的12组EHTS -2032:16:2032的参数集取值表27所示。
表27
序号 a 1 a 2 a 3 a 4 a 5 a 6 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 PAPR PAPR up_sampling
1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 4.4829 4.6455
2 1 1 1 1 1 -1 -1 1 1 -1 1 1 1 1 4.4829 4.6455
3 -1 -1 -1 1 -1 1 1 -1 -1 1 -1 -1 -1 -1 4.1327 4.6701
4 1 1 1 -1 1 -1 -1 1 1 -1 1 1 1 1 4.1327 4.6701
5 -1 1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 4.4248 4.6906
6 1 -1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 1 4.4248 4.6906
7 -1 1 1 -1 1 -1 1 1 -1 -1 1 -1 1 -1 4.5762 4.7394
8 -1 -1 1 1 -1 1 1 -1 -1 1 -1 -1 -1 -1 4.5762 4.7392
9 1 1 -1 -1 1 -1 -1 1 1 -1 1 1 1 1 4.5762 4.7392
10 1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 1 4.5762 4.7394
11 -1 1 1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1 4.3126 4.743
12 1 -1 -1 1 1 1 -1 -1 1 1 -1 1 -1 1 4.3126 4.743
可选地,
Figure PCTCN2021070056-appb-000171
Figure PCTCN2021070056-appb-000172
其中,HES’ -496:16:496_L={M,1,-M},即为HES’ -496:16:496在0子载波左边的部分;
HES’ -496:16:496_R={-M,1,-M},即为HES’ -496:16:496在0子载波右边的部分;
EHTS ±2032=0。
其中,c j的取值为{-1,1},j=1,2,…,8。
本实施例相当于上述a i均是直流子载波或空子载波,即a i均等于0。对不同的经过c j的取值确定的EHTS -2032:16:2032序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2032:16:2032序列值及其对应的PAPR,从中选择PAPR较小的序列。
因此,可以得到最优的12组EHTS -2032:16:2032的参数集取值表28所示。
表28
序号 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 PAPR PAPR up_sampling
1 1 -1 1 -1 -1 -1 1 1 4.5287 4.8576
2 -1 1 -1 1 1 1 -1 -1 4.5287 4.8576
3 1 1 -1 -1 1 -1 1 -1 4.8494 5.0166
4 -1 -1 1 1 -1 1 -1 1 4.8494 5.0166
5 1 -1 1 1 1 -1 -1 -1 4.886 5.0534
6 -1 1 -1 -1 -1 1 1 1 4.886 5.0534
7 1 1 -1 1 -1 -1 -1 1 4.886 5.0648
8 -1 -1 1 -1 1 1 1 -1 4.886 5.0648
9 1 -1 -1 1 -1 -1 -1 -1 4.886 5.0731
10 -1 1 1 -1 1 1 1 1 4.886 5.0731
11 1 -1 1 -1 -1 -1 1 1 4.5287 4.8576
12 -1 1 -1 1 1 1 -1 -1 4.5287 4.8576
在另一种可能的实现方式中,可以利用80MHz的序列进行构造。
Figure PCTCN2021070056-appb-000173
其中,EHTS ±2032=0,a i的取值为{-1,0,1},i=1,2;c j的取值为{-1,1},j=1,2,3,4。
对不同的经过a i的取值和c j的取值确定的EHTS -2032:16:2032序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2032:16:2032序列值及其对应的PAPR,从中选择PAPR较小的序列。
因此,可以得到最优的10组EHTS -2032:16:2032的参数集取值表29所示。
表29
序号 a 1 a 2 c 1 c 2 c 3 c 4 PAPR PAPR up_sampling
1 0 0 1 -1 -1 -1 5.0126 6.1671
2 0 0 -1 1 1 1 5.0126 6.1671
3 0 0 1 1 1 -1 5.0126 6.6875
4 0 0 -1 -1 -1 1 5.0126 6.6875
5 0 0 1 -1 1 1 5.0126 6.9014
6 0 0 -1 1 -1 -1 5.0126 6.9014
7 0 0 1 1 -1 1 5.0126 7.4353
8 0 0 -1 -1 1 -1 5.0126 7.4353
9 0 0 1 1 -1 -1 7.7233 8.1384
10 0 0 -1 -1 1 1 7.7233 8.1384
情况四、目标信道的带宽为320MHz、参考信道的周期长度为1.6μs
本申请实施例将320MHz带宽、周期长度为1.6μs的EHT-STF的频域序列记作EHTS -2040:8:2040,EHTS -2040:8:2040可以通过下列多种方式构造。
1、利用IEEE 802.11ax中20MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中20MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作HES -120:8:120
Figure PCTCN2021070056-appb-000174
Figure PCTCN2021070056-appb-000175
Figure PCTCN2021070056-appb-000176
换句话说,HES’ -120:8:120表示为{M,0,-M},相应地,-HES’ -120:8:120表示为{-M,0,M}。设计公式如下:
EHTS -2040:8:2040={c 1·HES’ -120:8:120,a 1,c 2·HES’ -120:8:120,0,c 3·HES’ -120:8:120,a 2,c 4·HES’ -120:8:120,a 3,c 5·HES’ -120:8:120,a 4,c 6·HES’ -120:8:120,0,c 7·HES’ -120:8:120,a 5,c 8·HES’ -120:8:120,a 6,c 9·HES’ -120:8:120,a 7,c 1 0·HES’ -120:8:120,0,c 11·HES’ -120:8:120,a 8,c 12·HES’ -120:8:120,a 9,c 13·HES’ -120:8:120,a 10,c 14·HES’ -120:8:120,0,c 15·HES’ -120:8:120,a 11,c 16·HES’ -120:8:120},EHTS ±2040=0。
其中,a i的取值为{-1,0,1},i=1,2,…,11;c j的取值为{-1,1},j=1,2,…,16。
对不同的经过a i的取值和c j的取值确定的EHTS -2040:8:2040序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2040:8:2040序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a 3、a 6和a 9是直流子载波或空子载波,则a 3=0,a 6=0,a 9=0,其他a i的取值为{-1,1},可以得到最优的18组EHTS -2040:8:2040的参数集取值表30所示。
表30
Figure PCTCN2021070056-appb-000177
若a i均不是直流子载波或空子载波,则a i的取值为{-1,1},可以得到最优的18组EHTS -2040:8:2040的参数集取值表31所示。
表31
Figure PCTCN2021070056-appb-000178
Figure PCTCN2021070056-appb-000179
2、利用IEEE 802.11ax中160MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中160MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作HES -1016:8:1016
Figure PCTCN2021070056-appb-000180
Figure PCTCN2021070056-appb-000181
Figure PCTCN2021070056-appb-000182
换句话说,HES’ -1016:8:1016表示为{M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M,0,-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},相应地,-HES’ -1016:8:1016表示为{-M,1,-M,M,1,-M,0,M,-1,-M,-1,M,-1,M,0,M,-1,M,-1,-M,-1,M,0,M,-1,-M,-1,M,-1,M}。
在一种可能的实现方式中,可以利用完整的160MHz的序列进行构造。
Figure PCTCN2021070056-appb-000183
EHTS ±2040=0。
其中,a i的取值为{-1,0,1},i=1;c j的取值为{-1,1},j=1,2。
对不同的经过a i的取值和c j的取值确定的EHTS -2040:8:2040序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2040:8:2040序列值及其对应的PAPR,从中选择PAPR较小的序列。
因此,可以得到最优的10组EHTS -2040:8:2040的参数集取值表32所示。
表32
序号 a 1 c 1 c 2 PAPR PAPR up_sampling
1 1 1 1 7.2029 7.9943
2 -1 -1 -1 7.2029 7.9943
3 0 1 1 7.2326 8.0145
4 0 -1 -1 7.2326 8.0145
5 -1 1 1 7.2482 8.0197
6 1 -1 -1 7.2482 8.0197
7 1 1 -1 9.1719 9.3317
8 -1 -1 1 9.1719 9.3317
9 0 1 -1 9.194 9.354
10 0 -1 1 9.194 9.354
在另一种可能的实现方式中,可以利用160MHz的序列的一半序列进行构造。
Figure PCTCN2021070056-appb-000184
其中,HES’ -1016:8:1016_L={M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},即为HES’ -1016:8:1016在0子载波左边的部分;
HES’ -1016:8:1016_R={-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},即为HES’ -1016:8:1016在0子载波右边的部分;
EHTS ±2040=0。
其中,a i的取值为{-1,0,1},i=1,2;c j的取值为{-1,1},j=1,2,…,4。
对不同的经过a i的取值和c j的取值确定的EHTS -2040:8:2040序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2040:8:2040序列值及其对应的PAPR,从中选择PAPR较小的序列。
若a i均不是直流子载波或空子载波,则a i的取值为{-1,1},可以得到最优的10组EHTS -2040:8:2040的参数集取值表33所示。
表33
序号 a 1 a 2 c 1 c 2 c 3 c 4 PAPR PAPR up_sampling
1 1 -1 1 1 1 -1 6.1174 6.5894
2 -1 1 -1 -1 -1 1 6.1174 6.5894
3 1 1 1 -1 1 1 6.3378 6.6975
4 -1 -1 -1 1 -1 -1 6.3378 6.6975
5 1 1 1 1 1 -1 6.3378 6.7378
6 -1 -1 -1 -1 -1 1 6.3378 6.7378
7 -1 -1 1 1 1 -1 6.3378 6.7879
8 1 1 -1 -1 -1 1 6.3378 6.7879
9 -1 1 1 -1 1 1 6.1174 6.8241
10 1 -1 -1 1 -1 -1 6.1174 6.8241
3、利用IEEE 802.11ax中80MHz的序列进行构造。
本申请实施例将IEEE 802.11ax中80MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作HES -504:8:504
Figure PCTCN2021070056-appb-000185
Figure PCTCN2021070056-appb-000186
换句话说,HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},相应地,-HES’ -504:8:504表示为{-M,1,-M,1,M,1,-M,0,M,-1,-M,-1,M,-1,M}。
在一种可能的实现方式中,可以利用80MHz的序列的一半序列进行构造。
可选地,
Figure PCTCN2021070056-appb-000187
Figure PCTCN2021070056-appb-000188
其中,HES’ -504:8:504_L={M,-1,M,-1,-M,-1,M},即为HES’ -504:8:504在0子载波左边的部分;
HES’ -504:8:504_R={-M,1,M,1,-M,1,-M},即为HES’ -504:8:504在0子载波右边的部分;
EHTS ±2040=0。
其中,a i的取值为{-1,1},i=1,2;c j的取值为{-1,1},j=1,2,…,8。
对不同的经过a i的取值和c j的取值确定的EHTS -2040:8:2040序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2040:8:2040序列值及其对应的PAPR,从中选择PAPR较小的序列。
在本申请实施例中,a i均不是直流子载波或空子载波,则a i的取值为{-1,1},可以得到最优的20组EHTS -2040:8:2040的参数集取值表34所示。
表34
序号 a 1 a 2 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 PAPR PAPR up_sampling
1 1 -1 1 1 -1 -1 1 -1 1 -1 6.0819 6.2582
2 -1 1 1 -1 1 -1 1 1 -1 -1 6.0819 6.2583
3 1 -1 -1 1 -1 1 -1 -1 1 1 6.0819 6.2583
4 -1 1 -1 -1 1 1 -1 1 -1 1 6.0819 6.2582
5 1 1 1 1 -1 -1 1 -1 1 -1 6.1733 6.333
6 1 1 1 -1 1 -1 1 1 -1 -1 6.1733 6.3331
7 -1 -1 -1 1 -1 1 -1 -1 1 1 6.1733 6.3331
8 -1 -1 -1 -1 1 1 -1 1 -1 1 6.1733 6.333
9 1 -1 1 1 -1 1 1 1 1 -1 6.1367 6.5336
10 -1 1 1 -1 -1 -1 -1 1 -1 -1 6.1367 6.5336
11 1 -1 -1 1 1 1 1 -1 1 1 6.1367 6.5336
12 -1 1 -1 -1 1 -1 -1 -1 -1 1 6.1367 6.5336
13 -1 -1 1 1 -1 -1 1 -1 1 -1 6.246 6.5451
14 -1 -1 1 -1 1 -1 1 1 -1 -1 6.246 6.5452
15 1 1 -1 1 -1 1 -1 -1 1 1 6.246 6.5452
16 1 1 -1 -1 1 1 -1 1 -1 1 6.246 6.5451
17 -1 1 1 1 1 -1 1 1 -1 1 6.4543 6.6191
18 -1 1 1 -1 1 1 -1 1 1 1 6.4543 6.6191
19 1 -1 -1 1 -1 -1 1 -1 -1 -1 6.4543 6.6191
20 1 -1 -1 -1 -1 1 -1 -1 1 -1 6.4543 6.6191
可选地,
Figure PCTCN2021070056-appb-000189
Figure PCTCN2021070056-appb-000190
其中,HES’ -504:8:504_L={M,-1,M,-1,-M,-1,M},即为HES’ -504:8:504在0子载波左边的部分;
HES’ -504:8:504_R={-M,1,M,1,-M,1,-M},即为HES’ -504:8:504在0子载波右边的部分;
EHTS ±2040=0。
其中,a i的取值为{-1,1},i=1,2,…,6;c j的取值为{-1,1},j=1,2,…,8。
对不同的经过a i的取值和c j的取值确定的EHTS -2040:8:2040序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2040:8:2040序列值及其对应的PAPR,从中选择PAPR较小的序列。
在本申请实施例中,a i均不是直流子载波或空子载波,则a i的取值为{-1,1},可以得到最优的20组EHTS -2040:8:2040的参数集取值表35所示。
表35
序号 a 1 a 2 a 3 a 4 a 5 a 6 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 PAPR PAPR up_sampling
1 -1 1 1 1 1 1 1 1 -1 -1 1 -1 1 -1 5.9701 6.1287
2 1 1 1 1 1 -1 1 -1 1 -1 1 1 -1 -1 5.9701 6.1288
3 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1 -1 1 1 5.9701 6.1288
4 1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 1 5.9701 6.1287
5 1 1 1 1 -1 1 1 1 -1 -1 1 -1 1 -1 6.0476 6.2061
6 1 -1 1 1 1 1 1 -1 1 -1 1 1 -1 -1 6.0476 6.2062
7 -1 1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 6.0476 6.2062
8 -1 -1 -1 -1 1 -1 -1 -1 1 1 -1 1 -1 1 6.0476 6.2061
9 -1 1 -1 1 1 1 1 1 -1 -1 1 -1 1 -1 6.1206 6.2791
10 1 1 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 6.1206 6.2792
11 -1 -1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 1 6.1206 6.2792
12 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 -1 1 6.1206 6.2791
13 1 1 1 1 1 1 1 1 -1 -1 1 -1 1 -1 6.139 6.2976
14 1 1 1 1 1 1 1 -1 1 -1 1 1 -1 -1 6.139 6.2977
15 -1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 1 1 6.139 6.2977
16 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 -1 1 6.139 6.2976
17 -1 1 1 -1 1 1 1 1 -1 -1 1 -1 1 -1 6.139 6.3141
18 1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 6.139 6.3143
19 -1 -1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 1 6.139 6.3143
20 1 -1 -1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 6.139 6.3141
可选地,
Figure PCTCN2021070056-appb-000191
Figure PCTCN2021070056-appb-000192
其中,HES’ -504:8:504_L={M,-1,M,-1,-M,-1,M},即为HES’ -504:8:504在0子载波左边的部分;
HES’ -504:8:504_R={-M,1,M,1,-M,1,-M},即为HES’ -504:8:504在0子载波右边的部分;
EHTS ±2040=0。
其中,c j的取值为{-1,1},j=1,2,…,8。
对不同的经过c j的取值确定的EHTS -2040:8:2040序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2040:8:2040序列值及其对应的PAPR,从中选择PAPR较小的序列。
本申请实施例可以得到最优的18组EHTS -2040:8:2040的参数集取值表36所示。
表36
序号 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 PAPR PAPR up_sampling
1 1 1 -1 -1 1 -1 1 -1 6.1906 6.3509
2 1 -1 1 -1 1 1 -1 -1 6.1906 6.351
3 -1 1 -1 1 -1 -1 1 1 6.1906 6.351
4 -1 -1 1 1 -1 1 -1 1 6.1906 6.3509
5 1 1 1 1 -1 -1 -1 1 6.51 6.6702
6 1 -1 -1 -1 1 1 1 1 6.51 6.6703
7 -1 1 1 1 -1 -1 -1 -1 6.51 6.6703
8 -1 -1 -1 -1 1 1 1 -1 6.51 6.6702
9 1 1 1 -1 1 1 -1 1 6.2432 6.6935
10 1 -1 1 1 -1 1 1 1 6.2432 6.6935
11 -1 1 -1 -1 1 -1 -1 -1 6.2432 6.6935
12 -1 -1 -1 1 -1 -1 1 -1 6.2432 6.6935
13 1 1 -1 1 1 1 1 -1 6.2902 6.7076
14 1 -1 -1 -1 -1 1 -1 -1 6.2902 6.7077
15 -1 1 1 1 1 -1 1 1 6.2902 6.7077
16 -1 -1 1 -1 -1 -1 -1 1 6.2902 6.7076
17 1 1 -1 -1 -1 1 -1 1 6.557 6.9284
18 -1 -1 1 1 1 -1 1 -1 6.557 6.9284
在另一种可能的实现方式中,可以利用80MHz的序列进行构造。
Figure PCTCN2021070056-appb-000193
其中,EHTS ±2040=0,a i的取值为{-1,0,1},i=1,2;c j的取值为{-1,1},j=1,2,3,4。
对不同的经过a i的取值和c j的取值确定的EHTS -2040:8:2040序列进行反傅里叶变换和5倍过采样,得到每一组序列的时域离散值X,再按照公式计算出PAPR。经过穷举检索,可以得出所有可能的EHTS -2040:8:2040序列值及其对应的PAPR,从中选择PAPR较小的序列。
因此,可以得到最优的14组EHTS -2040:8:2040的参数集取值表37所示。
表37
序号 a 1 a 2 c 1 c 2 c 3 c 4 PAPR PAPR up_sampling
1 0 0 1 1 1 -1 5.6955 7.7526
2 0 0 1 -1 -1 -1 5.6955 7.7526
3 0 0 -1 1 1 1 5.6955 7.7526
4 0 0 -1 -1 -1 1 5.6955 7.7526
5 0 0 1 1 -1 1 5.8736 8.3275
6 0 0 1 -1 1 1 5.8736 8.3275
7 0 0 -1 1 -1 -1 5.8736 8.3275
8 0 0 -1 -1 1 -1 5.8736 8.3275
9 0 0 1 1 -1 -1 8.6537 9.0161
10 0 0 -1 -1 1 1 8.6537 9.0161
11 0 0 1 -1 -1 1 8.444 9.4539
12 0 0 -1 1 1 -1 8.444 9.4539
13 0 0 1 1 1 1 10.376 10.536
14 0 0 -1 -1 -1 -1 10.376 10.536
应理解,在上述表2至表37中,参数集取值全部取反对应的序列能够获得与原参数集取值对应的序列相同的PAPR,本申请实施例不再一一列举。这里的“取反”具体可以为:1取反后为-1,0取反后仍为0,-1取反后为1。
根据本申请实施例,不仅可以满足实际中的更大信道带宽,且向后兼容,而且通过对参数进行穷举仿真验证了本申请实施例提供的短训练序列,峰均功率值PAPR较小,性能较优,进而提高接收端的自动增益控制电路的估计效果,从而降低接收误码率。
以上,结合图1至图6,详细说明了本申请实施例提供的传输物理层协议数据单元的 方法。
本申请实施例提供了一种传输物理层协议数据单元的装置。在一种可能的实现方式中,该装置用于实现上述方法实施例中的接收端对应的步骤或流程。在另一种可能的实现方式中,该装置用于实现上述方法实施例中的发送端对应的步骤或流程。
以下,结合图7至图9,详细说明本申请实施例提供的传输物理层协议数据单元的装置。
图7是本申请实施例提供的传输物理层协议数据单元的装置的示意性框图。如图7所示,该装置700可以包括通信单元710和处理单元720。通信单元710可以与外部进行通信,处理单元720用于进行数据处理。通信单元710还可以称为通信接口或收发单元。
在一种可能的设计中,该装置700可实现对应于上文方法实施例中的发送端执行的步骤或者流程,其中,处理单元720用于执行上文方法实施例中发送端的处理相关的操作,通信单元710用于执行上文方法实施例中发送端的收发相关的操作。
示例性地,处理单元720用于:生成物理层协议数据单元PPDU,所述PPDU包括短训练域,所述短训练域的频域序列长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的短训练域的频域序列的长度;通信单元710用于:在目标信道上发送所述PPDU,其中,所述目标信道的带宽大于160MHz。
在又一种可能的设计中,该装置700可实现对应于上文方法实施例中的接收端执行的步骤或者流程,其中,通信单元710用于执行上文方法实施例中接收端的收发相关的操作,处理单元720用于执行上文方法实施例中接收端的处理相关的操作。
示例性地,通信单元710用于:在目标信道上接收物理层协议数据单元PPDU,所述PPDU包括短训练域,所述短训练域的频域序列长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的短训练域的频域序列的长度,其中,所述目标信道的带宽大于160MHz;处理单元720用于:解析所述PPDU。
在上述两种可能的设计中,可选地,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000194
Figure PCTCN2021070056-appb-000195
Figure PCTCN2021070056-appb-000196
Figure PCTCN2021070056-appb-000197
Figure PCTCN2021070056-appb-000198
其中,HES’ -112:16:112表示为{M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
可选地,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000199
Figure PCTCN2021070056-appb-000200
Figure PCTCN2021070056-appb-000201
Figure PCTCN2021070056-appb-000202
其中,HES’ -1008:16:1008_L表示为{M,1,-M,0,-M,1,-M},HES’ -1008:16:1008_R表示为{-M,-1,M,0,-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
可选地,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000203
Figure PCTCN2021070056-appb-000204
Figure PCTCN2021070056-appb-000205
Figure PCTCN2021070056-appb-000206
或,
Figure PCTCN2021070056-appb-000207
Figure PCTCN2021070056-appb-000208
其中,HES’ -496:16:496_L表示为{M,1,-M},HES’ -496:16:496_R表示为{-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
可选地,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
{HES’ -120:8:120,-1,-HES’ -120:8:120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8: 120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:1 20};或
{HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120,-1,-HES’ -120:8:120,1,-HES’ -120:8: 120,0,-HES’ -120:8:120,1,HES’ -120:8:120,-1,-HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8: 120};或
{-HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8:120,1,HES’ -120:8:120,-1,HES’ -120 :8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,1,HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120: 8:120};
其中,HES’ -120:8:120表示为{M,0,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
可选地,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000209
Figure PCTCN2021070056-appb-000210
Figure PCTCN2021070056-appb-000211
Figure PCTCN2021070056-appb-000212
其中,HES’ -1016:8:1016_L={M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_R={-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
可选地,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000213
Figure PCTCN2021070056-appb-000214
Figure PCTCN2021070056-appb-000215
Figure PCTCN2021070056-appb-000216
Figure PCTCN2021070056-appb-000217
Figure PCTCN2021070056-appb-000218
Figure PCTCN2021070056-appb-000219
Figure PCTCN2021070056-appb-000220
其中,HES’ -504:8:504_L表示为{M,-1,M,-1,-M,-1,M},HES’ -504:8:504_R表示为{-M,1,M,1,-M,1,-M},HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
可选地,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000221
Figure PCTCN2021070056-appb-000222
Figure PCTCN2021070056-appb-000223
Figure PCTCN2021070056-appb-000224
Figure PCTCN2021070056-appb-000225
Figure PCTCN2021070056-appb-000226
Figure PCTCN2021070056-appb-000227
其中,HES’ -112:16:112表示为{M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
可选地,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000228
Figure PCTCN2021070056-appb-000229
Figure PCTCN2021070056-appb-000230
Figure PCTCN2021070056-appb-000231
Figure PCTCN2021070056-appb-000232
其中,HES’ -1008:16:1008表示为{M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,-M},HES’ -1008:16:1008_L表示为{M,1,-M,0,-M,1,-M},HES’ -1008:16:1008_R表示为{-M,-1,M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
可选地,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000233
Figure PCTCN2021070056-appb-000234
Figure PCTCN2021070056-appb-000235
Figure PCTCN2021070056-appb-000236
Figure PCTCN2021070056-appb-000237
Figure PCTCN2021070056-appb-000238
其中,HES’ -496:16:496_L表示为{M,1,-M},HES’ -496:16:496_R表示为{-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
可选地,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
{HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8: 120,0,-HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:1 20,0,-HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:120};或
{HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,-HES’ -120:8: 120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:12 0,0,HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120};或
{-HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,1,HES’ -120:8: 120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:1 20,0,HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:120};
其中,HES’ -120:8:120表示为{M,0,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
可选地,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000239
Figure PCTCN2021070056-appb-000240
Figure PCTCN2021070056-appb-000241
Figure PCTCN2021070056-appb-000242
Figure PCTCN2021070056-appb-000243
其中,HES’ -1016:8:1016表示为{M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M,0,-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_L表示为{M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_R表示为{-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
可选地,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
Figure PCTCN2021070056-appb-000244
Figure PCTCN2021070056-appb-000245
其中,HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
应理解,这里的装置700以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置700可以具体为上述实施例中的发送端,可以用于执行上述方法实施例中与发送端对应的各个流程和/或步骤,或者,装置700可以具体为上述实施例中的接收端,可以用于执行上述方法实施例中与接收端对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置700具有实现上述方法中发送端所执行的相应步骤的功能,或者,上述各个方案的装置700具有实现上述方法中接收端所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如通信单元可以由收发机替代(例如,通信单元中的发送单元可以由发送机替代,通信单元中的接收单元可以由接收机替代),其它单元,如 处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述通信单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。在本申请的实施例,图7中的装置可以是前述实施例中的接收端或发送端,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,通信单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图8示出了本申请实施例提供的传输物理层协议数据单元的装置800。该装置800包括处理器810和收发器820。其中,处理器810和收发器820通过内部连接通路互相通信,该处理器810用于执行指令,以控制该收发器820发送信号和/或接收信号。
可选地,该装置800还可以包括存储器830,该存储器830与处理器810、收发器820通过内部连接通路互相通信。该存储器830用于存储指令,该处理器810可以执行该存储器830中存储的指令。在一种可能的实现方式中,装置800用于实现上述方法实施例中的发送端对应的各个流程和步骤。在另一种可能的实现方式中,装置800用于实现上述方法实施例中的接收端对应的各个流程和步骤。
应理解,装置800可以具体为上述实施例中的发送端或接收端,也可以是芯片或者芯片系统。对应的,该收发器820可以是该芯片的收发电路,在此不做限定。具体地,该装置800可以用于执行上述方法实施例中与发送端或接收端对应的各个步骤和/或流程。可选地,该存储器830可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器810可以用于执行存储器中存储的指令,并且当该处理器810执行存储器中存储的指令时,该处理器810用于执行上述与发送端或接收端对应的方法实施例的各个步骤和/或流程。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。本申请实施例中的处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器 等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图9示出了本申请实施例提供的传输物理层协议数据单元的装置900。该装置900包括处理电路910和收发电路920。其中,处理电路910和收发电路920通过内部连接通路互相通信,该处理电路910用于执行指令,以控制该收发电路920发送信号和/或接收信号。
可选地,该装置900还可以包括存储介质930,该存储介质930与处理电路910、收发电路920通过内部连接通路互相通信。该存储介质930用于存储指令,该处理电路910可以执行该存储介质930中存储的指令。在一种可能的实现方式中,装置900用于实现上述方法实施例中的发送端对应的各个流程和步骤。在另一种可能的实现方式中,装置900用于实现上述方法实施例中的接收端对应的各个流程和步骤。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图6所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图6所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个站点以及一个或多个接入点。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种传输物理层协议数据单元的方法,其特征在于,包括:
    生成物理层协议数据单元PPDU,所述PPDU包括短训练域,所述短训练域的频域序列的长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的PPDU的短训练域的频域序列的长度;
    在目标信道上发送所述PPDU,其中,所述目标信道的带宽大于160MHz。
  2. 一种传输物理层协议数据单元的方法,其特征在于,包括:
    在目标信道上接收物理层协议数据单元PPDU,所述PPDU包括短训练域,所述短练域的频域序列的长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的PPDU的短训练域的频域序列的长度,其中,所述目标信道的带宽大于160MHz;
    解析所述PPDU。
  3. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100001
    Figure PCTCN2021070056-appb-100002
    Figure PCTCN2021070056-appb-100003
    Figure PCTCN2021070056-appb-100004
    Figure PCTCN2021070056-appb-100005
    其中,HES’ -112:16:112表示为{M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  4. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100006
    Figure PCTCN2021070056-appb-100007
    Figure PCTCN2021070056-appb-100008
    Figure PCTCN2021070056-appb-100009
    其中,HES’ -1008:16:1008_L表示为{M,1,-M,0,-M,1,-M},HES’ -1008:16:1008_R表示为{-M,-1,M,0,-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  5. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100010
    Figure PCTCN2021070056-appb-100011
    Figure PCTCN2021070056-appb-100012
    Figure PCTCN2021070056-appb-100013
    或,
    Figure PCTCN2021070056-appb-100014
    Figure PCTCN2021070056-appb-100015
    其中,HES’ -496:16:496_L表示为{M,1,-M},HES’ -496:16:496_R表示为{-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  6. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
    {HES’ -120:8:120,-1,-HES’ -120:8:120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8: 120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:1 20};或
    {HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120,-1,-HES’ -120:8:120,1,-HES’ -120:8: 120,0,-HES’ -120:8:120,1,HES’ -120:8:120,-1,-HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8: 120};或
    {-HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8:120,1,HES’ -120:8:120,-1,HES’ -120 :8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,1,HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120: 8:120};
    其中,HES’ -120:8:120表示为{M,0,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  7. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100016
    Figure PCTCN2021070056-appb-100017
    Figure PCTCN2021070056-appb-100018
    Figure PCTCN2021070056-appb-100019
    其中,HES’ -1016:8:1016_L={M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_R={-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  8. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100020
    Figure PCTCN2021070056-appb-100021
    Figure PCTCN2021070056-appb-100022
    Figure PCTCN2021070056-appb-100023
    Figure PCTCN2021070056-appb-100024
    Figure PCTCN2021070056-appb-100025
    Figure PCTCN2021070056-appb-100026
    Figure PCTCN2021070056-appb-100027
    其中,HES’ -504:8:504_L表示为{M,-1,M,-1,-M,-1,M},HES’ -504:8:504_R表示为{-M,1,M,1,-M,1,-M},HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  9. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100028
    Figure PCTCN2021070056-appb-100029
    Figure PCTCN2021070056-appb-100030
    Figure PCTCN2021070056-appb-100031
    Figure PCTCN2021070056-appb-100032
    Figure PCTCN2021070056-appb-100033
    Figure PCTCN2021070056-appb-100034
    其中,HES’ -112:16:112表示为{M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  10. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100035
    Figure PCTCN2021070056-appb-100036
    Figure PCTCN2021070056-appb-100037
    Figure PCTCN2021070056-appb-100038
    Figure PCTCN2021070056-appb-100039
    其中,HES’ -1008:16:1008表示为{M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,-M},HES’ -1008:16:1008_L表示为{M,1,-M,0,-M,1,-M},HES’ -1008:16:1008_R表示为{-M,-1,M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  11. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100040
    Figure PCTCN2021070056-appb-100041
    Figure PCTCN2021070056-appb-100042
    Figure PCTCN2021070056-appb-100043
    Figure PCTCN2021070056-appb-100044
    Figure PCTCN2021070056-appb-100045
    其中,HES’ -496:16:496_L表示为{M,1,-M},HES’ -496:16:496_R表示为{-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  12. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
    {HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8: 120,0,-HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:1 20,0,-HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:120};或
    {HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,-HES’ -120:8: 120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:12 0,0,HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120};或
    {-HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,1,HES’ -120:8: 120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:1 20,0,HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:120};
    其中,HES’ -120:8:120表示为{M,0,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  13. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100046
    Figure PCTCN2021070056-appb-100047
    Figure PCTCN2021070056-appb-100048
    Figure PCTCN2021070056-appb-100049
    Figure PCTCN2021070056-appb-100050
    其中,HES’ -1016:8:1016表示为{M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M,0,-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_L表示为{M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_R表示为{-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  14. 根据权利要求1或2所述的方法,其特征在于,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100051
    Figure PCTCN2021070056-appb-100052
    其中,HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  15. 一种传输物理层协议数据单元的装置,其特征在于,包括:
    处理单元,用于生成物理层协议数据单元PPDU,所述PPDU包括短训练域,所述短训练域的频域序列的长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的PPDU的短训练域的频域序列的长度;
    通信单元,用于在目标信道上发送所述PPDU,其中,所述目标信道的带宽大于160MHz。
  16. 一种传输物理层协议数据单元的装置,其特征在于,包括:
    收发单元,用于在目标信道上接收物理层协议数据单元PPDU,所述PPDU包括短训练域,所述短训练域的频域序列的长度大于第一长度,所述第一长度为在带宽为160MHz 的信道上传输的PPDU的短训练域的频域序列的长度,其中,所述目标信道的带宽大于160MHz;
    通信单元,用于解析所述PPDU。
  17. 根据权利要求15或16所述的装置,其特征在于,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100053
    Figure PCTCN2021070056-appb-100054
    Figure PCTCN2021070056-appb-100055
    Figure PCTCN2021070056-appb-100056
    Figure PCTCN2021070056-appb-100057
    其中,HES’ -112:16:112表示为{M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  18. 根据权利要求15或16所述的装置,其特征在于,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100058
    Figure PCTCN2021070056-appb-100059
    Figure PCTCN2021070056-appb-100060
    Figure PCTCN2021070056-appb-100061
    其中,HES’ -1008:16:1008_L表示为{M,1,-M,0,-M,1,-M},HES’ -1008:16:1008_R表示为{-M,-1,M,0,-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  19. 根据权利要求15或16所述的装置,其特征在于,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100062
    Figure PCTCN2021070056-appb-100063
    Figure PCTCN2021070056-appb-100064
    Figure PCTCN2021070056-appb-100065
    或,
    Figure PCTCN2021070056-appb-100066
    Figure PCTCN2021070056-appb-100067
    其中,HES’ -496:16:496_L表示为{M,1,-M},HES’ -496:16:496_R表示为{-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  20. 根据权利要求15或16所述的装置,其特征在于,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
    {HES’ -120:8:120,-1,-HES’ -120:8:120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8: 120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:1 20};或
    {HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120,-1,-HES’ -120:8:120,1,-HES’ -120:8: 120,0,-HES’ -120:8:120,1,HES’ -120:8:120,-1,-HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8: 120};或
    {-HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8:120,1,HES’ -120:8:120,-1,HES’ -120 :8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,1,HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120: 8:120};
    其中,HES’ -120:8:120表示为{M,0,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  21. 根据权利要求15或16所述的装置,其特征在于,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100068
    Figure PCTCN2021070056-appb-100069
    Figure PCTCN2021070056-appb-100070
    Figure PCTCN2021070056-appb-100071
    其中,HES’ -1016:8:1016_L={M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_R={-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  22. 根据权利要求15或16所述的装置,其特征在于,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100072
    Figure PCTCN2021070056-appb-100073
    Figure PCTCN2021070056-appb-100074
    Figure PCTCN2021070056-appb-100075
    Figure PCTCN2021070056-appb-100076
    Figure PCTCN2021070056-appb-100077
    Figure PCTCN2021070056-appb-100078
    Figure PCTCN2021070056-appb-100079
    其中,HES’ -504:8:504_L表示为{M,-1,M,-1,-M,-1,M},HES’ -504:8:504_R表示为{-M,1,M,1,-M,1,-M},HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  23. 根据权利要求15或16所述的装置,其特征在于,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100080
    Figure PCTCN2021070056-appb-100081
    Figure PCTCN2021070056-appb-100082
    Figure PCTCN2021070056-appb-100083
    Figure PCTCN2021070056-appb-100084
    Figure PCTCN2021070056-appb-100085
    Figure PCTCN2021070056-appb-100086
    其中,HES’ -112:16:112表示为{M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  24. 根据权利要求15或16所述的装置,其特征在于,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100087
    Figure PCTCN2021070056-appb-100088
    Figure PCTCN2021070056-appb-100089
    Figure PCTCN2021070056-appb-100090
    Figure PCTCN2021070056-appb-100091
    其中,HES’ -1008:16:1008表示为{M,1,-M,0,-M,1,-M,0,-M,-1,M,0,-M,1,-M},HES’ -1008:16:1008_L表示为{M,1,-M,0,-M,1,-M},HES’ -1008:16:1008_R表示为{-M,-1,M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  25. 根据权利要求15或16所述的装置,其特征在于,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100092
    Figure PCTCN2021070056-appb-100093
    Figure PCTCN2021070056-appb-100094
    Figure PCTCN2021070056-appb-100095
    Figure PCTCN2021070056-appb-100096
    Figure PCTCN2021070056-appb-100097
    其中,HES’ -496:16:496_L表示为{M,1,-M},HES’ -496:16:496_R表示为{-M,1,-M},HES’ -496:16:496表示为{M,1,-M,0,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  26. 根据权利要求15或16所述的装置,其特征在于,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
    {HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8: 120,0,-HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:1 20,0,-HES’ -120:8:120,-1,-HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:120};或
    {HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,-HES’ -120:8: 120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,-HES’ -120:8:12 0,0,HES’ -120:8:120,1,-HES’ -120:8:120,0,HES’ -120:8:120,1,-HES’ -120:8:120};或
    {-HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,-1,HES’ -120:8:120,0,-HES’ -120:8:120,1,HES’ -120:8: 120,0,HES’ -120:8:120,-1,-HES’ -120:8:120,0,HES’ -120:8:120,1,HES’ -120:8:120,0,-HES’ -120:8:120,1,-HES’ -120:8:1 20,0,HES’ -120:8:120,1,HES’ -120:8:120,0,HES’ -120:8:120,-1,HES’ -120:8:120};
    其中,HES’ -120:8:120表示为{M,0,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  27. 根据权利要求15或16所述的装置,其特征在于,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100098
    Figure PCTCN2021070056-appb-100099
    Figure PCTCN2021070056-appb-100100
    Figure PCTCN2021070056-appb-100101
    Figure PCTCN2021070056-appb-100102
    其中,HES’ -1016:8:1016表示为{M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M,0,-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_L表示为{M,-1,M,-M,-1,M,0,-M,1,M,1,-M,1,-M},HES’ -1016:8:1016_R表示为{-M,1,-M,1,M,1,-M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  28. 根据权利要求15或16所述的装置,其特征在于,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:
    Figure PCTCN2021070056-appb-100103
    Figure PCTCN2021070056-appb-100104
    其中,HES’ -504:8:504表示为{M,-1,M,-1,-M,-1,M,0,-M,1,M,1,-M,1,-M},M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。
  29. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1至14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现如权利要求1至14中任一项所述的方法的指令。
  31. 一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的程序指令,以执行如权利要求1-14中任一项所述的方法。
  32. 一种计算机程序产品,包括当所述计算机程序在计算机上运行时,用于执行如权利要求1-14中任一项所述的方法。
PCT/CN2021/070056 2020-01-03 2021-01-04 传输物理层协议数据单元的方法和装置 WO2021136544A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/856,112 US11817980B2 (en) 2020-01-03 2022-07-01 Method and apparatus for transmitting physical layer protocol data unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010007115.9A CN113078987A (zh) 2020-01-03 2020-01-03 传输物理层协议数据单元的方法和装置
CN202010007115.9 2020-01-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/856,112 Continuation US11817980B2 (en) 2020-01-03 2022-07-01 Method and apparatus for transmitting physical layer protocol data unit

Publications (1)

Publication Number Publication Date
WO2021136544A1 true WO2021136544A1 (zh) 2021-07-08

Family

ID=76608809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070056 WO2021136544A1 (zh) 2020-01-03 2021-01-04 传输物理层协议数据单元的方法和装置

Country Status (3)

Country Link
US (1) US11817980B2 (zh)
CN (1) CN113078987A (zh)
WO (1) WO2021136544A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4152709A4 (en) * 2020-07-02 2023-11-15 LG Electronics Inc. METHOD AND APPARATUS FOR RECEIVING PPDU WITH DUPLICATE DATA OVER 80 MHZ BAND IN A WLAN SYSTEM
CN116760679B (zh) * 2023-08-17 2023-11-03 上海朗力半导体有限公司 物理层参数配置方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019178511A1 (en) * 2018-03-16 2019-09-19 Qualcomm Incorporated Wireless communication via a large bandwidth channel
CN110324268A (zh) * 2018-03-31 2019-10-11 华为技术有限公司 一种信息传输方法及装置
WO2020020026A1 (zh) * 2018-07-27 2020-01-30 华为技术有限公司 设计短训练序列的方法和装置
CN111953630A (zh) * 2019-05-14 2020-11-17 华为技术有限公司 发送和接收物理层协议数据单元的方法和装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8072959B2 (en) 2008-03-06 2011-12-06 Issc Technologies Corp. Generating method for short training field in IEEE 802.11n communication systems
US20110013583A1 (en) 2009-07-17 2011-01-20 Qualcomm Incorporated Constructing very high throughput short training field sequences
US9025428B2 (en) 2010-04-14 2015-05-05 Qualcomm Incorporated Allocating and receiving tones for a frame
US9350583B2 (en) 2011-11-02 2016-05-24 Marvell World Trade Ltd. Method and apparatus for automatically detecting a physical layer (PHY) mode of a data unit in a wireless local area network (WLAN)
US8948284B2 (en) 2011-11-07 2015-02-03 Lg Elecronics Inc. Method and apparatus of transmitting PLCP header for sub 1 GHz communication
KR102148441B1 (ko) 2012-04-03 2020-10-15 마벨 월드 트레이드 리미티드 Wlan을 위한 물리 계층 프레임 포맷
US20140070998A1 (en) 2012-09-10 2014-03-13 Electronics And Telecommunications Reasearch Institute Device and method for recognizing location by conversion of frequency offset
US9258163B2 (en) 2012-11-30 2016-02-09 Qualcomm Incorporated Systems and methods for phase rotating duplicate frames in wireless LAN transmission
US9717086B2 (en) 2013-11-27 2017-07-25 Marvell World Trade Ltd. Orthogonal frequency division multiple access for wireless local area network
CN105519065B (zh) 2014-02-13 2019-05-24 华为技术有限公司 传输数据的方法和装置
CN106464323B (zh) 2014-04-29 2020-03-10 英特尔Ip公司 用于频率偏移估计的分组结构和用于hew中的ul mu-mimo通信的方法
KR102015199B1 (ko) 2014-09-28 2019-08-27 후아웨이 테크놀러지 컴퍼니 리미티드 신호 송신 방법, 신호 수신 방법, 및 장치들
WO2016148462A2 (ko) * 2015-03-16 2016-09-22 엘지전자(주) 무선 통신 시스템의 송수신 장치 및 방법
CN105120520B (zh) * 2015-07-17 2019-04-19 魅族科技(中国)有限公司 无线局域网络中数据传输的方法和设备
CN105162745A (zh) 2015-08-04 2015-12-16 江苏中兴微通信息科技有限公司 一种用于无线局域网通信系统的短训练序列设计方法
PL3334108T3 (pl) 2015-08-06 2020-06-15 Lg Electronics Inc. Sposób i urządzenie do generowania sygnału treningowego przy użyciu wcześniej ustalonej sekwencji binarnej w systemie bezprzewodowej sieci lan
CN113162746A (zh) 2015-08-26 2021-07-23 华为技术有限公司 传输he-ltf序列的方法和装置
CN106936749B (zh) 2015-12-30 2020-01-21 华为技术有限公司 传输高效短训练域序列的方法、装置和设备
CN106954202B (zh) 2016-01-07 2021-12-31 华为技术有限公司 无线局域网信息传输方法和装置
US20170279581A1 (en) 2016-03-25 2017-09-28 Lg Electronics Inc. Method and apparatus for generating training signal by using binary sequence in wireless lan system
CN106100791B (zh) 2016-06-15 2019-09-03 珠海市魅族科技有限公司 无线局域网的通信方法、通信装置、接入点和站点
WO2018076144A1 (zh) 2016-10-24 2018-05-03 华为技术有限公司 物理层协议数据单元的编码调制方法及编码调制设备
US20180183905A1 (en) 2016-12-26 2018-06-28 Intel Corporation Wireless communication device, system and method to multiplex a low-power wake-up first signal with an ofdma signal
CN107508780B (zh) 2017-09-26 2019-12-31 重庆邮电大学 一种基于IEEE 802.11ac的OFDM系统的定时同步方法
US10785706B2 (en) 2017-10-16 2020-09-22 Qualcomm Incorporated Bandwidth signaling for a basic service set (BSS) supporting 320 MHZ operating bandwidth
CN108040028A (zh) 2017-12-22 2018-05-15 中国人民解放军国防科技大学 一种基于本地序列互相关检测的ofdm系统抗干扰信号检测与同步方法
US10841760B2 (en) 2018-05-09 2020-11-17 Intel Corporation Methods for vehicular communication in next generation vehicle-to-everything (NGV) devices in mobility scenarios
US11711183B2 (en) 2018-09-04 2023-07-25 Qualcomm Incorporated Protocols for multi-access point coordinated multi-user transmissions
US20220140962A1 (en) * 2019-02-19 2022-05-05 Lg Electronics Inc. Method and apparatus for receiving eht ppdu in wireless lan system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019178511A1 (en) * 2018-03-16 2019-09-19 Qualcomm Incorporated Wireless communication via a large bandwidth channel
WO2019178493A1 (en) * 2018-03-16 2019-09-19 Qualcomm Incorporated Wireless communication via a large bandwidth channel
CN110324268A (zh) * 2018-03-31 2019-10-11 华为技术有限公司 一种信息传输方法及装置
WO2020020026A1 (zh) * 2018-07-27 2020-01-30 华为技术有限公司 设计短训练序列的方法和装置
CN111953630A (zh) * 2019-05-14 2020-11-17 华为技术有限公司 发送和接收物理层协议数据单元的方法和装置

Also Published As

Publication number Publication date
US20220345342A1 (en) 2022-10-27
US11817980B2 (en) 2023-11-14
CN113078987A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN116319228B (zh) 设计短训练序列的方法和装置
WO2020228654A1 (zh) 发送和接收物理层协议数据单元的方法和装置
WO2021093858A1 (zh) 传输物理层协议数据单元的方法和装置
US11817980B2 (en) Method and apparatus for transmitting physical layer protocol data unit
WO2022028370A1 (zh) 一种传输物理层协议数据单元的方法及装置
WO2021249405A1 (zh) 传输/接收物理层协议数据单元的方法和装置
US20230396383A1 (en) Method and apparatus for transmitting physical layer protocol data unit
WO2021244373A1 (zh) 传输物理层协议数据单元的方法和装置
CN114070534A (zh) 一种传输物理层协议数据单元的方法及装置
CN113765951B (zh) 传输物理层协议数据单元的方法和装置
WO2024098316A1 (zh) Wi-Fi系统中PPDU传输方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21736147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21736147

Country of ref document: EP

Kind code of ref document: A1