WO2023045703A1 - 一种显示3d图像的医用内窥镜系统 - Google Patents
一种显示3d图像的医用内窥镜系统 Download PDFInfo
- Publication number
- WO2023045703A1 WO2023045703A1 PCT/CN2022/115384 CN2022115384W WO2023045703A1 WO 2023045703 A1 WO2023045703 A1 WO 2023045703A1 CN 2022115384 W CN2022115384 W CN 2022115384W WO 2023045703 A1 WO2023045703 A1 WO 2023045703A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- eye
- eye image
- acquisition device
- image
- image acquisition
- Prior art date
Links
- 239000011521 glass Substances 0.000 claims abstract description 34
- 238000012634 optical imaging Methods 0.000 claims abstract description 16
- 210000004556 brain Anatomy 0.000 claims abstract description 6
- 238000003384 imaging method Methods 0.000 claims description 13
- 230000003287 optical effect Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 6
- LBUIKNKQOBTCII-BLLLJJGKSA-N (4r,6s)-5-(4-chlorophenyl)sulfonyl-4,6-diethyl-1,4,6,7-tetrahydropyrazolo[4,3-c]pyridine Chemical compound N1([C@H](CC)C2=CNN=C2C[C@@H]1CC)S(=O)(=O)C1=CC=C(Cl)C=C1 LBUIKNKQOBTCII-BLLLJJGKSA-N 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000013276 bronchoscopy Methods 0.000 description 1
- 238000002574 cystoscopy Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/10—Processing, recording or transmission of stereoscopic or multi-view image signals
- H04N13/194—Transmission of image signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/239—Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/344—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
Definitions
- the utility model relates to the technical field of medical equipment, in particular to a medical endoscope system for displaying 3D images.
- the general medical endoscope system for displaying 3D images has a structure as shown in Figure 1, including an intelligent mirror-supporting robot 1a, a 3D endoscope 2a, an external image processor 3a, and a naked-eye 3D display 4a; wherein: 3D endoscope 2a Clamped on the intelligent mirror-supporting robot 1a, and connected to the external image processor 3a through the signal transmission line, the external image processor 3a is connected to the naked-eye 3D display 4a through the video output line; during the operation, the intelligent mirror-supporting robot 1a can monitor the 3D The posture of the endoscope 2a is adjusted, and the signal collected by the 3D endoscope 2a will be transmitted to the external image processor 3a. After the signal is processed, it will be transmitted to the naked-eye 3D display 4a through the video output line, so as to provide naked-eye images for users during the operation. 3D stereo vision.
- the above-mentioned surgical laparoscopic system is to capture images by the left-eye CMOS image capture device and the right-eye CMOS image capture device and then send them to the FPGA image processor for processing.
- the polarized 3D image formed after the FPGA image processing requires Wearing polarized glasses to watch has a complex structure, resulting in high cost and inconvenient use.
- the images synthesized by the FPGA image processor are input to a polarized 3D display, and the user needs to wear polarized glasses to watch the images.
- the existing solution is to fuse or synthesize one signal from two channels of image acquisition.
- the principle of this method is shown in Figure 3.
- When processing 3D image signals is to cut one 3D image signal into two signals and send them to the left eye and right eye respectively, which will greatly reduce the definition of the picture quality, for example, the original 1920*1080 resolution will be cut into two 960*
- the image quality of 1080 reduces the clarity of 3D images, and cannot imitate the human left and right eyes watching foreign objects at the same time. Therefore, there is a certain difference between the 3D stereoscopic images of this kind of AR glasses and the images actually seen by human eyes. .
- This utility model is to provide a medical endoscope system for displaying 3D images, which solves the technical problems of inconvenient use, complex structure and low image clarity in a surgical endoscope system for displaying 3D images in the prior art .
- the utility model can be realized by following scheme:
- a medical endoscope system for displaying 3D images characterized in that: comprising
- a medical endoscope including a left-eye image acquisition device and a right-eye image acquisition device, wherein the left-eye image acquisition device is used to collect left-eye image signals; the right-eye image acquisition device is used to collect right-eye image signals;
- AR glasses or VR glasses located outside the cavity mirror, including a frame housing, a left-eye microdisplay, a right-eye microdisplay, a left-eye image processing chip, a right-eye image processing chip, a left-eye optical imaging lens, and a right-eye optical imaging lens , the left-eye image signal is processed by the left-eye image processing chip and input to the left-eye micro-display for playback; the right-eye image signal is processed by the right-eye image processing chip and input to the right-eye micro-display for playback, and the image played by the left-eye micro-display is passed through the left-eye optical
- the imaging lens is projected to the left eye of the human body; the image played by the right eye microdisplay is projected to the right eye of the human body through the right eye optical imaging lens, forming a fused 3D stereoscopic image in the human brain.
- the above-mentioned medical endoscope is laparoscope, or gastrointestinal endoscope, or thoracoscopic, or arthroscopic, or ENT endoscope, or oral endoscope, or cystoscope, or uterine cavity endoscope, or ureteroscope, or bronchoscope.
- the above-mentioned left-eye image acquisition device is a digital camera or a digital camera
- the right-eye image acquisition device is a digital camera or a digital camera.
- the aforementioned left-eye image acquisition device communicates with the AR glasses or VR glasses through a signal line
- the right-eye image acquisition device communicates with the AR glasses or VR glasses through another signal line.
- the above-mentioned signal lines are HDMI signal lines or DP signal lines or DVI signal lines or SDI signal lines or USB signal lines.
- the above-mentioned spectacle frame housing is also connected to spectacle legs or a head-mounted device or a mounting bracket.
- the medical endoscope described above also includes a 3D endoscope handle, a 3D endoscope front end, a 3D endoscope catheter, a 3D endoscope handle button, a 3D endoscope image transmission interface, a 3D endoscope image transmission line, an outer sleeve, an objective tube, Inner casing, optical objective lens module, LED lighting module and image acquisition module.
- the left-eye image acquisition device, left-eye image processing chip, and left-eye micro-display of the utility model form a left-eye imaging system;
- the right-eye image acquisition device, right-eye image processing chip, and right-eye micro-display form a right-eye imaging system , thus forming two sets of independent non-interfering imaging playback systems.
- the left-eye image signal is processed by the left-eye image processing chip and input to the left-eye micro-display for playback;
- the right-eye image signal is processed by the right-eye image processing chip and input to the right-eye micro-display for playback, forming a fused 3D stereoscopic image in the human brain. It is very good to imitate the human left eye and right eye to watch foreign objects at the same time to synthesize 3D images, which is more realistic and natural, with lossless image quality and higher resolution.
- the utility model utilizes the left-eye image acquisition device and the right-eye image acquisition device inside the cavity mirror to directly transmit the image data to the AR glasses or VR glasses to form a 3D stereoscopic image display without fusion or synthesis of the two images processing, simplify the structure and reduce the cost.
- Fig. 1 is a structural schematic diagram of a surgical laparoscopic system displaying 3D images in the prior art
- Fig. 2 is the image signal processing flowchart of the surgical laparoscope system that displays 3D images in the prior art
- Fig. 3 is the imaging schematic diagram of the surgical laparoscope system showing 3D images in the prior art
- Fig. 4 is a block diagram of the utility model
- Fig. 5 is a perspective view of the AR glasses of the present invention.
- Fig. 6 is a partial exploded view of the AR glasses of the present invention.
- Fig. 7 is an optical path diagram of the imaging of the AR glasses of the present invention.
- Fig. 8 is a perspective view of the AR glasses of the present invention after replacing the head-mounted device with the temples.
- Fig. 9 is a perspective view of the structure of the medical endoscope of the present invention.
- Fig. 10 is a schematic diagram of one direction of the front end structure of the medical endoscope
- Fig. 11 is a schematic diagram of another direction of the front end structure of the medical endoscope.
- Fig. 12 is a schematic diagram of the third direction of the front end structure of the medical endoscope.
- Fig. 13 is a schematic structural view of the utility model.
- the utility model provides a medical endoscope system for displaying 3D images, including:
- a medical endoscope 200 includes a left-eye image acquisition device 200a and a right-eye image acquisition device 200b, wherein the left-eye image acquisition device 200a is used to collect left-eye image signals; the right-eye image acquisition device 200b is used to collect right-eye image signals. image signal;
- One AR glasses or VR glasses 400 located outside the cavity mirror 200, including a glasses frame housing 1, a left-eye microdisplay 2a, a right-eye microdisplay 2b, a left-eye image processing chip, a right-eye image processing chip, and a left-eye optical imaging lens 3a and right-eye optical imaging lens 3b, the image played by the left-eye micro-display 2a is projected to the left eye of the human body through the left-eye optical imaging lens 3a; the image played by the right-eye micro-display 2b is projected to the right eye of the human body through the right-eye optical imaging lens 3b , the left-eye image signal is processed by the left-eye image processing chip and input to the left-eye micro-display 2a for playback; the right-eye image signal is processed by the right-eye image processing chip and input to the right-eye micro-display 2b for playback, forming a fused 3D display in the human brain Stereoscopic image.
- Left-eye microdisplay 2a, right-eye microdisplay 2b, left-eye image processing chip, right-eye image processing chip, left-eye optical imaging lens 3a and right-eye optical imaging lens 3b are all installed in the spectacle frame housing 1 inside.
- the classification of medical endoscopes can be roughly divided into three categories: rigid tube endoscopes, optical fiber (hose type) endoscopes and electronic endoscopes.
- the above-mentioned medical endoscope 200 can be a laparoscope, or an alimentary tract endoscope, or a thoracoscope, or an arthroscope, or an ear-nose-throat endoscope, or an oral endoscope, or a Cystoscopy, or hysteroscopy, or ureteroscopy, or bronchoscopy.
- the aforementioned left-eye image capture device 200a is a digital camera or a digital camera
- the right-eye image capture device 200b is a digital camera or a digital camera.
- the aforementioned left-eye image acquisition device 200a is connected and communicated with the AR glasses or VR glasses 400 through a signal line 7
- the right-eye image acquisition device 200b is connected and communicated with the AR glasses or VR glasses 400 through another signal line 7 .
- the aforementioned signal line 7 is an HDMI signal line or a DP signal line or a DVI signal line or an SDI signal line or a USB signal line.
- the medical endoscope 200 described above also includes a 3D endoscope handle 21, a 3D endoscope front end 22, a 3D endoscope catheter 23, a 3D endoscope handle button 24, a 3D endoscope image transmission interface 25, and a 3D endoscope image transmission line 26 , outer sleeve 27, objective lens tube 28, inner sleeve 29, optical objective lens module 210, LED lighting module 211 and image acquisition module 212, left eye image acquisition device 200a and right eye image acquisition device 200b are placed in the image acquisition module Group 212 on.
- the spectacle frame housing 1 is also connected to the spectacle legs 6 or the head-mounted device 4 .
- Both the left-eye image processing chip and the right-eye image processing chip are installed in the spectacle frame housing 1, which are not shown in the figure.
- the spectacle legs 6 are also connected to the back of the spectacle frame housing 1.
- the spectacle legs 6 or the spectacle frame housing 1 are provided with an image signal input port 5, and the left eye image signal and the right eye image signal are respectively input to the left eye through the image signal input port 5.
- Image processing chip and right eye image processing chip Simple structure and convenient connection.
- the above-mentioned image signal input ports 5 provided behind the spectacle legs 6 or the spectacle frame housing 1 are respectively connected to the left-eye image capture device 200 a and the right-eye image capture device 200 b through two HDMI cables 7 . Simple structure and convenient connection.
- the above-mentioned spectacle frame housing 1 can also be connected to a head-mounted device 4 for wearing.
- the mirror frame housing 1 can also be mounted on a mounting bracket instead of being worn on the person's head, which depends on the application environment.
- the human eyes are close to the AR glasses or VR glasses.
- the spectacle frame housing 1 of 400 just can watch image.
- Fig. 7 only the imaging optical path diagram of the left eye is drawn.
- the principle of the imaging optical path diagram of the right eye is basically the same as that of the left eye, so it will not be drawn here.
- the principle of the utility model is: the left-eye image acquisition device, the left-eye image processing chip, and the left-eye micro-display form a left-eye imaging system; the right-eye image acquisition device, the right-eye image processing chip, and the right-eye micro-display form a right-eye imaging system , thus forming two sets of independent non-interfering imaging playback systems.
- the left-eye image signal is processed by the left-eye image processing chip and input to the left-eye micro-display for playback; the right-eye image signal is processed by the right-eye image processing chip and input to the right-eye micro-display for playback, forming a fused 3D stereoscopic image in the human brain. It is very good to imitate the human left eye and right eye to watch foreign objects at the same time to synthesize 3D images, which is more realistic and natural, with lossless image quality and higher resolution.
- the left-eye image acquisition device 200a and right-eye image acquisition device 200b of the present invention directly transmit image data to AR glasses or VR glasses to form a 3D stereoscopic image display without processing by an FPGA image processing board, which simplifies the structure and reduces the cost.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- General Physics & Mathematics (AREA)
- Endoscopes (AREA)
Abstract
一种显示3D图像的手术腔镜系统,包括医用内窥镜(200),含有左眼图像采集设备(200a)和右眼图像采集设备(200b),左眼图像采集设备(200a)用于采集左眼图像信号;右眼图像采集设备(200b)用于采集右眼图像信号;AR眼镜或者VR眼镜(400),包括框架壳体(1)、左眼微型显示器(2a)、右眼微型显示器(2b)、左眼图像处理芯片、右眼图像处理芯片、左眼光学成像镜片(3a)和右眼光学成像镜片(3b),左眼图像信号经过左眼图像处理芯片处理输入到左眼微型显示器(2a)播放;右眼图像信号经过右眼图像处理芯片处理输入到右眼微型显示器(2b)播放,左眼微型显示器(2a)播放的图像通过左眼光学成像镜片(3a)投射到人体左眼;右眼微型显示器(2b)播放的图像通过右眼光学成像镜片(3b)投射到人体右眼,在人体的大脑形成一个融合的3D立体图像。该手术腔镜系统操作使用方便,结构简单,图像清晰度高。
Description
本实用新型涉及医用设备技术领域,特别涉及一种显示3D图像的医用内窥镜系统。
目前一般的显示3D图像的医用内窥镜系统,其结构如图1所示,包括智能扶镜机器人1a、3D腔镜2a、体外图像处理器3a以及裸眼3D显示器4a;其中:3D腔镜2a夹持于智能扶镜机器人1a之上,并通过信号传输线与体外图像处理器3a相连,体外图像处理器3a通过视频输出线连接至裸眼3D显示器4a;术中可通过智能扶镜机器人1a对3D腔镜2a的位姿进行调节,3D腔镜2a采集获取的信号将传输至体外图像处理器3a,信号经由处理后将通过视频输出线继续传输至裸眼3D显示器4a,以为术中使用者提供裸眼3D立体视觉。
如图2所示,上述的手术腔镜系统是将左眼CMOS图像拍摄设备和右眼CMOS图像拍摄设备拍摄图像然后再送到FPGA图像处理器处理,FPGA图像处理后形成的偏振式3D图像,需要戴偏振光眼镜观看的结构复杂,导致成本偏高,使用不方便。另外上述通过FPGA图像处理器将图像合成一路输入到一台偏振光式3D显示器,用户需要通过戴偏振光眼镜观看图像。
为了使用方便,现有方案是两路图像采集信息融合或合成一路信号,这样的方式其原理见图3所示,首先两路图像合成一路图像会造成画质的损失,在处理3D图像信号时,是将一路3D图像信号切割成两路信号后分别送到人的左眼和右眼,这样会使画质清晰度大幅降低,例如原1920*1080的分辨率会被切割成两个960*1080的画质,降低了3D图像的清晰度,不能很好地模仿人的左 眼和右眼同时观看外物时,因此这种AR眼镜3D立体图像与人眼真实看到的图像存在一定差别。
发明内容:
本实用新型的目的在于提供一种显示3D图像的医用内窥镜系统,解决现有技术中一种显示3D图像的手术腔镜系统存在使用不方便、结构复杂、图像清晰度不高的技术问题。
本实用新型可通过如下方案来实现:
一种显示3D图像的医用内窥镜系统,其特征在于:包括
一医用内窥镜,包括左眼图像采集设备和右眼图像采集设备,其中左眼图像采集设备,用于采集左眼图像信号;右眼图像采集设备,用于采集右眼图像信号;
一AR眼镜或者VR眼镜,位于腔镜外,包括框架壳体、左眼微型显示器、右眼微型显示器、左眼图像处理芯片、右眼图像处理芯片、左眼光学成像镜片和右眼光学成像镜片,左眼图像信号经过左眼图像处理芯片处理输入到左眼微型显示器播放;右眼图像信号经过右眼图像处理芯片处理输入到右眼微型显示器播放,左眼微型显示器播放的图像通过左眼光学成像镜片投射到人体左眼;右眼微型显示器播放的图像通过右眼光学成像镜片投射到人体右眼,在人体的大脑形成一个融合的3D立体图像。
上述的医用内窥镜是腹腔镜,或者是消化道镜,或者是胸腔镜,或者是关节镜,或者是耳鼻喉内窥镜,或者是口腔内窥镜,或者是膀胱镜,或者是宫腔镜,或者是输尿管镜,或者是支气管镜。
上述的左眼图像采集设备是数码摄像头或者数码相机,右眼图像采集设备是数码摄像头或者数码相机。
上述的左眼图像采集设备与AR眼镜或者VR眼镜是通过一条信号线连接通信,右眼图像采集设备与AR眼镜或者VR眼镜是通过另一条信号线连接通信。
上述的信号线是HDMI信号线或者DP信号线或者DVI信号线或者SDI信号线或者USB信号线。
上述在眼镜框架壳体还连接眼镜腿或者头戴装置或者是安装支架。
上述所述的医用内窥镜还包括3D腔镜手柄、3D腔镜前端、3D腔镜导管、3D腔镜手柄按键、3D腔镜图像传输接口、3D腔镜图像传输线、外套管、物镜管、内套管、光学物镜模组、LED照明模组和图像采集模组。
本实用新型与现有技术相比具有如下优点:
(1)本实用新型的左眼图像采集设备、左眼图像处理芯片、左眼微型显示器形成左眼成像系统;右眼图像采集设备、右眼图像处理芯片、右眼微型显示器形成右眼成像系统,从而形成两套独立的互不干涉的成像播放系统。左眼图像信号经过左眼图像处理芯片处理输入到左眼微型显示器播放;右眼图像信号经过右眼图像处理芯片处理输入到右眼微型显示器播放,在人体的大脑形成一个融合的3D立体图像,很好模仿人的左眼和右眼同时观看外物合成3D图像,更真实自然,且无损画质,分辨率更高。
(2)本实用新型利用腔镜里面的的左眼图像采集设备和右眼图像采集设备将图像数据直接传送到AR眼镜或者VR眼镜形成3D立体图像显示,不需要对两个图像进行融合或合成处理,简化结构,降低成本。
图1是现有技术中显示3D图像的手术腹腔镜系统的结构示意图;
图2是现有技术中显示3D图像的手术腹腔镜系统的图像信号处理流程图;
图3是现有技术中示3D图像的手术腹腔镜系统的成像原理图;
图4是本实用新型的方框原理图;
图5是本实用新型的AR眼镜立体图;
图6是本实用新型的AR眼镜的局部分解图;
图7是本实用新型的AR眼镜的成像的光路图;
图8是本实用新型的AR眼镜用眼镜腿替换头戴装置后的立体图。
图9是本实用新型的医用内窥镜的结构立体图;
图10是医用内窥镜前端结构一个方向的示意图;
图11是医用内窥镜前端结构另一个方向的示意图;
图12是医用内窥镜前端结构第三个方向的示意图;
图13是本实用新型的结构示意图。
下面结合附图和具体实施方式对本实用新型作进一步详细的说明。
实施例一:
如图4至图13所示,本实用新型提供的是一种显示3D图像的医用内窥镜系统,包括:
一医用内窥镜200,包括左眼图像采集设备200a和右眼图像采集设备200b,其中左眼图像采集设备200a,用于采集左眼图像信号;右眼图像采集设备200b,用于采集右眼图像信号;
一AR眼镜或者VR眼镜400,位于腔镜200外,包括眼镜框架壳体1、左眼微型显示器2a、右眼微型显示器2b、左眼图像处理芯片、右眼图像处理芯片、左眼光学成像镜片3a和右眼光学成像镜片3b,左眼微型显示器2a播放的图像通过左眼光学成像镜片3a投射到人体左眼;右眼微型显示器2b播放的图像通过右眼光学成像镜片3b投射到人体右眼,左眼图像信号经过左眼图像处理芯片 处理输入到左眼微型显示器2a播放;右眼图像信号经过右眼图像处理芯片处理输入到右眼微型显示器2b播放,在人体的大脑形成一个融合的3D立体图像。
左眼微型显示器2a、右眼微型显示器2b、左眼图像处理芯片、右眼图像处理芯片、左眼光学成像镜片3a和右眼光学成像镜片3b都安装在眼镜框架壳体1里面。
关于医用内窥镜分类,按其发展及成像构造分类,可大体分为3大类:硬管式内镜、光学纤维(软管式)内镜和电子内镜。按达到的部分,上述的医用内窥镜200可以是腹腔镜,或者是消化道镜,或者是胸腔镜,或者是关节镜,或者是耳鼻喉内窥镜,或者是口腔内窥镜,或者是膀胱镜,或者是宫腔镜,或者是输尿管镜,或者是支气管镜。
上述的左眼图像采集设备200a是数码摄像头或者数码相机,右眼图像采集设备200b是数码摄像头或者数码相机。
上述的左眼图像采集设备200a与AR眼镜或者VR眼镜400是通过一条信号线7连接通信,右眼图像采集设备200b与AR眼镜或者VR眼镜400是通过另一条信号线7连接通信。
上述的信号线7是HDMI信号线或者DP信号线或者DVI信号线或者SDI信号线或者USB信号线。
上述所述的医用内窥镜200还包括3D腔镜手柄21、3D腔镜前端22、3D腔镜导管23、3D腔镜手柄按键24、3D腔镜图像传输接口25、3D腔镜图像传输线26、外套管27、物镜管28、内套管29、光学物镜模组210、LED照明模组211和图像采集模组212,左眼图像采集设备200a和右眼图像采集设备200b放置在图像采集模组212上。
上述在眼镜框架壳体1还连接眼镜腿6或者头戴装置4。
左眼图像处理芯片和右眼图像处理芯片都是安装在眼镜框架壳体1里面,图中没有画出。
上述在眼镜框架壳体1后面还连接眼镜腿6,眼镜腿6或者眼镜框架壳体1设置图像信号输入端口5,左眼图像信号和右眼图像信号通过图像信号输入端口5分别输入到左眼图像处理芯片和右眼图像处理芯片。结构简单,连接方便。
上述在眼镜腿6或者眼镜框架壳体1后面设置的图像信号输入端口5分别通过2条HDMI线7与左眼图像采集设备200a和右眼图像采集设备200b连接。结构简单,连接方便。
上述眼镜框架壳体1还可以连接一个头戴装置4上以便穿戴。当然镜框架壳体1也可以挂装在一个安装支架上,而无需戴在人的头上,这视应用环境而定,当挂装在一个安装支架上时,人眼靠近AR眼镜或者VR眼镜400的眼镜框架壳体1就可以观看图像。
图7中只画出左眼的成像光路图,其实右眼的成像光路图与左眼的成像光路图原理基本一致,在此不再画出。
本实用新型的原理是:左眼图像采集设备、左眼图像处理芯片、左眼微型显示器形成左眼成像系统;右眼图像采集设备、右眼图像处理芯片、右眼微型显示器形成右眼成像系统,从而形成两套独立的互不干涉的成像播放系统。左眼图像信号经过左眼图像处理芯片处理输入到左眼微型显示器播放;右眼图像信号经过右眼图像处理芯片处理输入到右眼微型显示器播放,在人体的大脑形成一个融合的3D立体图像,很好模仿人的左眼和右眼同时观看外物合成3D图像,更真实自然,且无损画质,分辨率更高。
本实用新型的左眼图像采集设备200a和右眼图像采集设备200b将图像数据直接传送到AR眼镜或者VR眼镜形成3D立体图像显示,无需经过FPGA图像处理板处理,简化结构,降低成本。
以上实施例为本实用新型的较佳实施方式,但本实用新型的实施方式不限于此,其他任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本实用新型的保护范围之内。
Claims (7)
- 一种显示3D图像的医用内窥镜系统,其特征在于:包括一医用内窥镜,包括左眼图像采集设备和右眼图像采集设备,其中左眼图像采集设备,用于采集左眼图像信号;右眼图像采集设备,用于采集右眼图像信号;一AR眼镜或者VR眼镜,位于腔镜外,包括框架壳体、左眼微型显示器、右眼微型显示器、左眼图像处理芯片、右眼图像处理芯片、左眼光学成像镜片和右眼光学成像镜片,左眼图像信号经过左眼图像处理芯片处理输入到左眼微型显示器播放;右眼图像信号经过右眼图像处理芯片处理输入到右眼微型显示器播放,左眼微型显示器播放的图像通过左眼光学成像镜片投射到人体左眼;右眼微型显示器播放的图像通过右眼光学成像镜片投射到人体右眼,在人体的大脑形成一个融合的3D立体图像。
- 根据权利要求1所述的一种显示3D图像的医用内窥镜系统,其特征在于:医用内窥镜是腹腔镜,或者是消化道镜,或者是胸腔镜,或者是关节镜,或者是耳鼻喉内窥镜,或者是口腔内窥镜,或者是膀胱镜,或者是宫腔镜,或者是输尿管镜,或者是支气管镜。
- 根据权利要求2所述的一种显示3D图像的医用内窥镜系统,其特征在于:左眼图像采集设备是数码摄像头或者数码相机,右眼图像采集设备是数码摄像头或者数码相机。
- 根据权利要求1或2或3所述的一种显示3D图像的医用内窥镜系统,其特征在于:左眼图像采集设备与AR眼镜或者VR眼镜是通过一条信号线连接通信,右眼图像采集设备与AR眼镜或者VR眼镜是通过另一条信号线连接通信。
- 根据权利要求4所述的一种显示3D图像的医用内窥镜系统,其特征在于:信号线是HDMI信号线或者DP信号线或者DVI信号线或者SDI信号线或者USB信号线。
- 根据权利要求5所述的一种显示3D图像的医用内窥镜系统,其特征在于:在眼镜框架壳体还连接眼镜腿或者头戴装置或者是安装支架。
- 根据权利要求6所述的一种显示3D图像的医用内窥镜系统,其特征在于:所述的医用内窥镜还包括3D腔镜手柄(21)、3D腔镜前端(22)、3D腔镜导管(23)、3D腔镜手柄按键(24)、3D腔镜图像传输接口(25)、3D腔镜图像传输线(26)、外套管(27)、物镜管(28)、内套管(29)、光学物镜模组(210)、LED照明模组(211)和图像采集模组(212)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202122283025.5U CN215937294U (zh) | 2021-09-22 | 2021-09-22 | 一种显示3d图像的医用内窥镜系统 |
CN202122283025.5 | 2021-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023045703A1 true WO2023045703A1 (zh) | 2023-03-30 |
Family
ID=80426995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/115384 WO2023045703A1 (zh) | 2021-09-22 | 2022-08-29 | 一种显示3d图像的医用内窥镜系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN215937294U (zh) |
WO (1) | WO2023045703A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN215871665U (zh) * | 2021-09-01 | 2022-02-18 | 深圳市数泽科技有限公司 | 双路输入3d近眼成像系统 |
CN215937294U (zh) * | 2021-09-22 | 2022-03-04 | 深圳市数泽科技有限公司 | 一种显示3d图像的医用内窥镜系统 |
CN114900597A (zh) * | 2022-05-10 | 2022-08-12 | 上海微创医疗机器人(集团)股份有限公司 | 内窥镜图像传输处理系统、方法及处理设备 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010107603A1 (en) * | 2009-03-20 | 2010-09-23 | Absolute Imaging LLC | Endoscopic apparatus and method for producing via a holographic optical element an autostereoscopic 3-d image |
CN202891883U (zh) * | 2012-10-18 | 2013-04-24 | 广州宝胆医疗器械科技有限公司 | 硬质多通道3d膀胱镜系统 |
CN202891888U (zh) * | 2012-10-18 | 2013-04-24 | 广州宝胆医疗器械科技有限公司 | 硬质多通道3d关节镜系统 |
CN202891868U (zh) * | 2012-10-18 | 2013-04-24 | 广州宝胆医疗器械科技有限公司 | 硬质多通道3d宫腔镜系统 |
CN203458365U (zh) * | 2013-06-21 | 2014-03-05 | 董国庆 | 基于单光路内窥镜、分光棱镜及双路摄像机的立体成像装置 |
CN103767669A (zh) * | 2012-10-18 | 2014-05-07 | 广州宝胆医疗器械科技有限公司 | 硬质多通道3d关节镜系统 |
CN103767664A (zh) * | 2012-10-18 | 2014-05-07 | 广州宝胆医疗器械科技有限公司 | 硬质多通道3d膀胱镜系统 |
CN103767657A (zh) * | 2012-10-18 | 2014-05-07 | 广州宝胆医疗器械科技有限公司 | 硬质多通道3d宫腔镜系统 |
CN204129338U (zh) * | 2014-09-12 | 2015-01-28 | 罗创新 | 一种带有3d图像处理功能的视频眼镜系统 |
WO2016181735A1 (ja) * | 2015-05-14 | 2016-11-17 | オリンパス株式会社 | 立体視内視鏡装置 |
CN111103679A (zh) * | 2019-12-03 | 2020-05-05 | 苏州福尼亚医疗科技有限公司 | 显微镜外置双路同步平行光3d图像实时采集装置、系统 |
CN215871665U (zh) * | 2021-09-01 | 2022-02-18 | 深圳市数泽科技有限公司 | 双路输入3d近眼成像系统 |
CN215839550U (zh) * | 2021-09-16 | 2022-02-18 | 深圳市数泽科技有限公司 | 一种显示3d图像的手术显微镜系统 |
CN215937294U (zh) * | 2021-09-22 | 2022-03-04 | 深圳市数泽科技有限公司 | 一种显示3d图像的医用内窥镜系统 |
-
2021
- 2021-09-22 CN CN202122283025.5U patent/CN215937294U/zh active Active
-
2022
- 2022-08-29 WO PCT/CN2022/115384 patent/WO2023045703A1/zh unknown
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010107603A1 (en) * | 2009-03-20 | 2010-09-23 | Absolute Imaging LLC | Endoscopic apparatus and method for producing via a holographic optical element an autostereoscopic 3-d image |
CN103767664A (zh) * | 2012-10-18 | 2014-05-07 | 广州宝胆医疗器械科技有限公司 | 硬质多通道3d膀胱镜系统 |
CN202891888U (zh) * | 2012-10-18 | 2013-04-24 | 广州宝胆医疗器械科技有限公司 | 硬质多通道3d关节镜系统 |
CN202891868U (zh) * | 2012-10-18 | 2013-04-24 | 广州宝胆医疗器械科技有限公司 | 硬质多通道3d宫腔镜系统 |
CN103767669A (zh) * | 2012-10-18 | 2014-05-07 | 广州宝胆医疗器械科技有限公司 | 硬质多通道3d关节镜系统 |
CN202891883U (zh) * | 2012-10-18 | 2013-04-24 | 广州宝胆医疗器械科技有限公司 | 硬质多通道3d膀胱镜系统 |
CN103767657A (zh) * | 2012-10-18 | 2014-05-07 | 广州宝胆医疗器械科技有限公司 | 硬质多通道3d宫腔镜系统 |
CN203458365U (zh) * | 2013-06-21 | 2014-03-05 | 董国庆 | 基于单光路内窥镜、分光棱镜及双路摄像机的立体成像装置 |
CN204129338U (zh) * | 2014-09-12 | 2015-01-28 | 罗创新 | 一种带有3d图像处理功能的视频眼镜系统 |
WO2016181735A1 (ja) * | 2015-05-14 | 2016-11-17 | オリンパス株式会社 | 立体視内視鏡装置 |
CN111103679A (zh) * | 2019-12-03 | 2020-05-05 | 苏州福尼亚医疗科技有限公司 | 显微镜外置双路同步平行光3d图像实时采集装置、系统 |
CN215871665U (zh) * | 2021-09-01 | 2022-02-18 | 深圳市数泽科技有限公司 | 双路输入3d近眼成像系统 |
CN215839550U (zh) * | 2021-09-16 | 2022-02-18 | 深圳市数泽科技有限公司 | 一种显示3d图像的手术显微镜系统 |
CN215937294U (zh) * | 2021-09-22 | 2022-03-04 | 深圳市数泽科技有限公司 | 一种显示3d图像的医用内窥镜系统 |
Also Published As
Publication number | Publication date |
---|---|
CN215937294U (zh) | 2022-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023045703A1 (zh) | 一种显示3d图像的医用内窥镜系统 | |
US5751341A (en) | Stereoscopic endoscope system | |
US5222477A (en) | Endoscope or borescope stereo viewing system | |
US4310849A (en) | Stereoscopic video system | |
US9756315B2 (en) | Endoscopic system to display three-dimensional picture | |
US20110043612A1 (en) | Dual-tube stereoscope | |
WO2023040637A1 (zh) | 一种显示3d图像的手术显微镜系统 | |
JPH11510615A (ja) | 非対称立体光学内視鏡 | |
CN105657099B (zh) | 便携式3d摄像头及可拍摄3d视频的手机 | |
US20040070823A1 (en) | Head-mount recording of three-dimensional stereo video images | |
WO2023029848A1 (zh) | 双路输入3d近眼成像系统 | |
WO1994028783A1 (en) | Medical video endoscope system | |
JP6223056B2 (ja) | 3次元画像システム | |
CN201278050Y (zh) | 一种具有vga接口的电脑立体眼镜显示器 | |
CN101778304A (zh) | 立体摄像观像装置及其控制方法 | |
CN109040737A (zh) | 一种基于3d增强现实的直播眼镜 | |
JPH10142552A (ja) | ヘッドマウントディスプレイ | |
JP5818265B2 (ja) | 立体内視鏡装置 | |
TW202145969A (zh) | 醫療影像設備以及醫療影像顯示方法 | |
TW202011888A (zh) | 整合式內視鏡及可視化系統 | |
WO2023137808A1 (zh) | 视觉增强的智能穿戴设备及实现立体视觉换位的方法 | |
JP3506766B2 (ja) | 立体内視鏡撮像装置 | |
JPH08122665A (ja) | 立体視内視鏡 | |
WO1994015521A1 (en) | Medical video endoscope system | |
CN218074940U (zh) | 一种兼容式三维硬管内窥镜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22871755 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |