WO2023045643A1 - 加热装置及用于加热装置的控制方法 - Google Patents

加热装置及用于加热装置的控制方法 Download PDF

Info

Publication number
WO2023045643A1
WO2023045643A1 PCT/CN2022/113374 CN2022113374W WO2023045643A1 WO 2023045643 A1 WO2023045643 A1 WO 2023045643A1 CN 2022113374 W CN2022113374 W CN 2022113374W WO 2023045643 A1 WO2023045643 A1 WO 2023045643A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating device
treated
electromagnetic wave
wave generating
water quantity
Prior art date
Application number
PCT/CN2022/113374
Other languages
English (en)
French (fr)
Inventor
韩志强
李春阳
苗建林
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023045643A1 publication Critical patent/WO2023045643A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves

Definitions

  • the invention relates to the field of food processing, in particular to an electromagnetic wave heating device and a control method for the heating device.
  • the quality of food is maintained, but frozen food needs to be thawed before processing or consumption.
  • the food is usually thawed by an electromagnetic wave heating device.
  • Thawing food through the electromagnetic wave heating device is not only fast and efficient, but also has low loss of nutritional components of the food.
  • different types of food have different internal substance contents (especially moisture content)
  • the heating parameters of the electromagnetic wave generation system are either manually input by the user, or determined according to the data obtained from image analysis and weight detection, so the internal information of the food cannot be accurately obtained, the error is large, and there are still serious uneven heating and local overheating.
  • An object of the first aspect of the present invention is to overcome at least one technical defect in the prior art, and provide an electromagnetic wave heating device, which can obtain property information inside the food more accurately.
  • a further object of the first aspect of the present invention is to reduce the influence of the water quantity detection system on the electromagnetic wave generating system.
  • Another further object of the first aspect of the present invention is to prolong the service life of the water quantity detection system.
  • An object of the second aspect of the present invention is to provide a control method for a heating device, which is applicable to heating different types of food and improves temperature uniformity.
  • a heating device comprising:
  • Cylinder used to accommodate the object to be processed
  • An electromagnetic wave generating system at least partly disposed in the cylinder or accessible to the cylinder, to emit electromagnetic waves into the cylinder to heat the object to be treated;
  • the water quantity detection system is configured to be conductively connected to the object to be treated, and detect the conductivity of the object to be treated, thereby reflecting the water content of the object to be treated.
  • the water quantity detection system includes:
  • two detection electrodes set to be electrically connected to the object to be treated
  • a detection power supply connected in series between the two detection electrodes, for providing potential energy
  • a current detector connected in series between the two detection electrodes, is used to detect the current flowing therethrough.
  • the heating device also includes:
  • the rack is arranged on the cylinder and is used to carry the object to be processed;
  • the two detection electrodes are arranged on the rack at intervals, and are at least partially exposed on the upper surface of the rack.
  • the two detection electrodes are spherical; or
  • the two detection electrodes are sheet-shaped, and the periphery is composed of smooth curves.
  • the interval between the two detection electrodes is greater than or equal to 2cm; and/or
  • the vertical dimension of the part of the two detection electrodes located above the shelf is 1mm-2.5mm.
  • the barrel is made of metal and arranged to be grounded;
  • the water quantity detection system is at least partly located in the cylinder and below the shelf, and this part is configured to be conductively connected to the cylinder.
  • the water quantity detection system is at least partially located in the cylinder and below the shelf; and the heating device further includes:
  • the shielding structure is arranged in the barrel and below the shelf, and covers part of the water quantity detection system.
  • the water quantity detection system also includes:
  • a switch connected in series between the two detection electrodes, is used to conduct or block the circuit between the detection power supply and one of the detection electrodes;
  • the switch is configured to be turned off when the electromagnetic wave generating system is in a working state.
  • control method for a heating device the heating device is any one of the heating devices described above; wherein, the control method includes:
  • the attribute information including electrical conductivity
  • the attribute information also includes a dielectric coefficient; and the step of determining or obtaining the attribute information of the object to be processed further includes:
  • the dielectric coefficient of the object to be processed is determined according to the incident wave signal and/or the reflected wave signal.
  • the present invention detects the conductivity of the object to be treated by the water quantity detection system, and can obtain accurate and comprehensive attribute information reflecting the water content of the object to be treated, and then determine the heating parameters of the electromagnetic wave generating module suitable for the object to be treated, While reducing the requirements for users, it improves the temperature uniformity of the heated food and avoids local overheating.
  • the present invention disconnects the switch of the water quantity detection system when the electromagnetic wave generating system is in the working state, and sets the part of the water quantity detection system below the shelf as grounded and covered by a shielding structure, which can reduce the impact of electromagnetic waves on the water quantity detection system. interference and damage, improve the accuracy of the measured property information of the object to be treated, and prolong the service life of the water quantity detection system.
  • Fig. 1 is a schematic structural diagram of a heating device according to an embodiment of the present invention.
  • FIG. 2 is a schematic circuit diagram of a water quantity detection system according to an embodiment of the present invention.
  • Fig. 3 is a schematic flowchart of a control method for a heating device according to an embodiment of the present invention
  • Fig. 4 is a detailed flowchart of a control method for a heating device according to an embodiment of the present invention.
  • Fig. 1 is a schematic structural diagram of a heating device 100 according to an embodiment of the present invention.
  • the heating device 100 may include a cylinder body 110 , a door body, an electromagnetic wave generating system, a power supply 160 and a controller.
  • the barrel 110 can be used to accommodate the object 120 to be processed.
  • the door body can be used to open and close the access opening of the cylinder body 110 .
  • the barrel 110 and door may be provided with electromagnetic shielding features to reduce electromagnetic leakage.
  • the cylinder body 110 can be made of metal, and is set to be grounded, so as to further improve the safety performance of the heating device 100 .
  • the electromagnetic wave generating system can be at least partly disposed in the barrel 110 or connected to the barrel 110 to emit electromagnetic waves into the barrel 110 to heat the object 120 to be treated.
  • the power supply 160 can be configured to supply power to the electromagnetic wave generating system.
  • the electromagnetic wave generating system may include an electromagnetic wave generating module 131 and a radiation antenna 132 electrically connected to the electromagnetic wave generating module 131 .
  • the electromagnetic wave generating module 131 can be configured to generate electromagnetic wave signals, and the radiation antenna 132 can be disposed in the barrel 110 to generate electromagnetic waves in the barrel 110 to heat the object 120 in the barrel 110 .
  • the controller may include a processing unit and a storage unit.
  • the storage unit stores a computer program, and the computer program is used to implement the control method of the present invention when executed by the processing unit.
  • Fig. 2 is a schematic circuit diagram of a water quantity detection system according to an embodiment of the present invention.
  • the heating device 100 of the present invention may further include a water quantity detection system.
  • the water quantity detection system can be set to be electrically connected to the object to be treated 120, and detect the conductivity of the object to be treated 120 to reflect the water content of the object to be treated 120, and then determine the heating of the electromagnetic wave generating module 131 suitable for the object to be treated 120 Parameters, while reducing the requirements for users, improve the temperature uniformity of the heated food to avoid local overheating.
  • the water quantity detection system may include two detection electrodes 141 , and a detection power supply and a current detector 142 connected in series between the two detection electrodes 141 .
  • the two detection electrodes 141 can be arranged to be conductively connected with the object to be processed 120 to form a closed loop.
  • the detection power supply is used to provide the potential energy required for detection.
  • the current detector 142 is used to detect the current flowing therethrough. Wherein, the conductivity of the object to be processed 120 is indicated by the current value measured by the current detector 142 .
  • the detection power supply can be integrated in the power supply 160 or can be an independent power supply module.
  • a shelf 170 may be provided inside the barrel 110 for carrying the object 120 to be processed.
  • the two detection electrodes 141 may be disposed on the shelf 170 at intervals, and at least partially exposed on the upper surface of the shelf 170, so as to be in contact with the object 120 to be processed.
  • the shelf 170 is made of a non-conductive material.
  • the distance between the two detection electrodes 141 can be greater than or equal to 2 centimeters (cm), so as to avoid short circuit caused by impurities falling into the water detection system.
  • the water volume detection system can be at least partly located in the barrel 110 and below the shelf 170, and this part can be set to be conductively connected to the barrel 110, and then grounded, so as to improve safety and reduce the impact of electromagnetic waves on water level detection. System interference and damage.
  • the heating device 100 may further include a shielding structure 145 .
  • the shielding structure 145 can be arranged in the barrel 110 and under the shelf 170, and cover part of the water quantity detection system to reduce the interference and damage of the electromagnetic wave to the water quantity detection system. That is, the shielding structure 145 may be configured to cover at least a part of the water quantity detection system below the shelf 170 .
  • the parts of the water volume detection system except the detection electrodes 141 and the electrical connections of the detection electrodes 141 can be arranged on the outside of the cylinder 110 to further reduce the interference and damage of electromagnetic waves to the water volume detection system.
  • the two detection electrodes 141 may be spherical in order to avoid arc discharge when the electromagnetic wave generating system is working.
  • the detection electrode 141 may have a circular cross section, such as a perfect circle, an ellipse, and the like.
  • the vertical dimension of the part where the two detection electrodes 141 are located above the shelf 170 can be 1 millimeter to 2.5 millimeters (mm), so that the detection electrodes 141 are in effective contact with the object to be processed 120, such as 1 mm, 2 mm or 2.5mm.
  • the two detection electrodes 141 may be in the shape of a sheet, and the periphery is formed of a smooth curve, so as to avoid the occurrence of arc discharge when the electromagnetic wave generating system is working.
  • the water quantity detection system can also determine the electrical conductivity of the object 120 to be processed by detecting the resistivity of the object 120 to be processed by a detector.
  • the water quantity detection system may further include a switch 143 connected in series between the two detection electrodes 141 for conducting or blocking the circuit between the detection power supply and one detection electrode 141 .
  • the switch 143 can be configured to be disconnected when the electromagnetic wave generation system is in working state, so as to prolong the service life of the water quantity detection system.
  • the water quantity detection system may also include a protection resistor 144 connected in series between the two detection electrodes 141 to prevent short circuit of the water quantity detection system.
  • the controller can be configured to determine or obtain attribute information of the object 120 to be processed, determine the heating parameters of the electromagnetic wave generating system according to the attribute information, and control the electromagnetic wave generating system to work according to the heating parameters.
  • Attribute information may include electrical conductivity.
  • Heating parameters may include heating power and/or heating time.
  • the controller can activate the water quantity detection system and detect the electrical conductivity of the object 120 to be treated, so as to determine the heating parameters of the electromagnetic wave generating module 131 suitable for the object 120 to be treated.
  • the attribute information may also include a dielectric coefficient to reflect the weight of the object 120 to be treated, so as to further improve the heating effect.
  • the controller can control the electromagnetic wave generating system to work according to the preset detection power, detect the incident wave signal emitted by the electromagnetic wave generating system and/or the reflected wave signal returning to the electromagnetic wave generating system, and according to The incident wave signal and/or the reflected wave signal determine the permittivity of the object 120 to be processed.
  • the controller can calculate the dielectric coefficient of the object 120 to be processed according to the voltage and current of the incident wave signal and the reflected wave signal.
  • An impedance matching module may be connected in series between the electromagnetic wave generating module 131 and the radiation antenna 132 .
  • the controller can also determine the dielectric coefficient of the object to be processed 120 through the configuration of the impedance matching module with the smallest power of the reflected wave signal during the initial impedance matching (the storage unit can pre-store the contrast relationship between the impedance matching module and the dielectric coefficient), Or directly represent the dielectric coefficient of the object 120 to be processed.
  • the frequency of the electromagnetic wave signal generated by the electromagnetic wave generating module 131 can vary within a preset frequency range.
  • the controller can determine the frequency value of the minimum power of the reflected wave signal within the preset frequency range before officially starting the heating, and determine the dielectric coefficient of the object 120 to be processed through the frequency value (the storage unit can pre-store the frequency value and the dielectric coefficient The comparative relationship of the electrical coefficient), or directly express the dielectric coefficient of the object 120 to be processed.
  • Fig. 3 is a schematic flowchart of a control method for the heating device 100 according to an embodiment of the present invention.
  • the control method for the heating device 100 of the present invention may include the following steps:
  • Step S302 Determine or acquire attribute information of the object to be processed 120, and the attribute information may include electrical conductivity.
  • Step S304 Determine the heating parameters of the electromagnetic wave generating system according to the attribute information.
  • Step S306 Control the electromagnetic wave generating system to work according to the heating parameters.
  • step S302 may further include: activating the water volume detection system, and detecting the conductivity of the object 120 to be treated.
  • the control method of the present invention detects the conductivity of the object to be treated 120 through the water quantity detection system, and can obtain accurate and comprehensive attribute information reflecting the water content of the object to be treated 120, and then can determine the electromagnetic wave suitable for the object to be treated 120
  • the heating parameters of the generating module 131 can improve the temperature uniformity of the heated food while reducing the requirements for the user, and avoid local overheating.
  • the attribute information may also include a dielectric coefficient to reflect the weight of the object to be processed 120 to further improve the heating effect.
  • Step S302 may further include: controlling the electromagnetic wave generating system to work according to the preset detection power, detecting the incident wave signal emitted by the electromagnetic wave generating system and/or the reflected wave signal returning to the electromagnetic wave generating system, and determining the target wave signal according to the incident wave signal and/or the reflected wave signal.
  • the dielectric constant of the object 120 may be controlled according to the preset detection power, detecting the incident wave signal emitted by the electromagnetic wave generating system and/or the reflected wave signal returning to the electromagnetic wave generating system, and determining the target wave signal according to the incident wave signal and/or the reflected wave signal.
  • the permittivity of the object to be processed 120 can be calculated according to the voltage and current of the incident wave signal and the reflected wave signal.
  • the dielectric coefficient of the object to be processed 120 can pass through the configuration of the impedance matching module with the minimum power of the reflected wave signal during the initial impedance matching. Determined (the storage unit may pre-store the comparison relationship between the impedance matching module and the dielectric coefficient), or directly express.
  • the dielectric coefficient of the object to be treated 120 can be determined by determining the reflected wave within the preset frequency range before officially starting heating.
  • the frequency value at which the power of the signal is minimum is determined (the storage unit may pre-store a comparison relationship between the frequency value and the dielectric coefficient), or directly expressed.
  • Fig. 4 is a detailed flowchart of a control method for the heating device 100 according to an embodiment of the present invention, wherein "Y” means “yes”; “N” means “no”.
  • the control method of the present invention may include the following detailed steps:
  • Step S402 Obtain a heating instruction.
  • Step S404 Start the water quantity detection system, and detect the conductivity of the object 120 to be treated. That is, the switch 143 is closed to enable the detection power supply to provide potential energy for detection, and the conductivity is represented by the current value detected by the current detector 142 .
  • Step S406 Cut off the water volume detection system. That is, the switch 143 is turned off.
  • Step S408 Control the electromagnetic wave generating module 131 to generate electromagnetic wave signals according to the preset detection power, and detect the incident wave signals emitted by the electromagnetic wave generating module 131 and/or the reflected wave signals returning to the electromagnetic wave generating module 131 .
  • Step S410 Determine the permittivity of the object 120 to be processed according to the incident wave signal and/or the reflected wave signal.
  • Step S412 Determine the heating power and heating time of the object 120 to be treated according to the conductivity and the dielectric coefficient.
  • Step S414 Control the electromagnetic wave generating module 131 to generate an electromagnetic wave signal according to the determined heating power.
  • Step S416 Determine whether the running time of step S414 is greater than or equal to the determined heating time. If yes, execute step S418; if no, return to step S414.
  • Step S418 Control the electromagnetic wave generating module 131 to stop working. Return to step S402.

Abstract

一种加热装置及用于加热装置的控制方法。该加热装置(100)包括筒体(110)、电磁波发生系统、以及水量检测系统。筒体(110)用于容置待处理物(120)。电磁波发生系统至少部分设置于筒体(110)内或通达至筒体(110),以向筒体(110)内发射电磁波来加热待处理物(120)。水量检测系统设置为与待处理物(120)导电连接,并检测待处理物(120)的导电性能,进而反映待处理物(120)的含水量。通过水量检测系统检测待处理物(120)的导电性能,可获得准确的、综合性的反映待处理物(120)的含水量的属性信息,进而可确定出适宜该待处理物(120)的电磁波发生模块(131)的加热参数,在降低对用户的要求的同时,提高加热后的食物温度均匀性,避免局部过热的情况发生。

Description

加热装置及用于加热装置的控制方法 技术领域
本发明涉及食物处理领域,特别是涉及一种电磁波加热装置及用于加热装置的控制方法。
背景技术
食物在冷冻的过程中,食物的品质得到了保持,然而冷冻的食物在加工或食用前需要解冻。为了便于用户解冻食物,通常通过电磁波加热装置来解冻食物。
通过电磁波加热装置来解冻食物,不仅速度快、效率高,而且食物的营养成分损失低。但由于不同种类的食物的内部物质含量(特别是水分含量)不同,若按照相同的加热参数加热食物,易产生加热不均匀和局部过热的问题。现有技术中,电磁波发生系统的加热参数或由用户手动输入,或根据图像分析、重量检测得到的数据确定,不能准确地获得食物的内部信息,误差较大,仍存在较严重的加热不均匀和局部过热的问题。
发明内容
本发明第一方面的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种电磁波加热装置,其可较准确地获得食物内部的属性信息。
本发明第一方面的一个进一步的目的是要减轻水量检测系统对电磁波发生系统的影响。
本发明第一方面的另一个进一步的目的是延长水量检测系统的使用寿命。
本发明第二方面的一个目的是要提供一种用于加热装置的控制方法,其可适用于对不同种类的食物加热,提高温度均匀性。
根据本发明的第一方面,提供了一种加热装置,包括:
筒体,用于容置待处理物;
电磁波发生系统,至少部分设置于所述筒体内或通达至所述筒体,以向所述筒体内发射电磁波来加热所述待处理物;以及
水量检测系统,设置为与所述待处理物导电连接,并检测所述待处理物的导电性能,进而反映所述待处理物的含水量。
可选地,所述水量检测系统包括:
两个检测电极,设置为与所述待处理物导电连接;
检测电源,串联在所述两个检测电极之间,用于提供电势能;和
电流检测器,串联在所述两个检测电极之间,用于检测流过其的电流。
可选地,所述加热装置还包括:
搁物架,设置于所述筒体,用于承载所述待处理物;其中
所述两个检测电极间隔地设置于所述搁物架,并至少部分暴露于所述搁物架的上表面。
可选地,所述两个检测电极呈球状;或
所述两个检测电极呈片状,且周缘由平滑曲线构成。
可选地,所述两个检测电极之间的间隔大于等于2cm;和/或
所述两个检测电极位于所述搁物架上方的部分在竖直方向上的尺寸为1mm~2.5mm。
可选地,所述筒体由金属制成并设置为接地;且
所述水量检测系统至少部分位于所述筒体内并位于所述搁物架下方,该部分设置为与所述筒体导电连接。
可选地,所述水量检测系统至少部分位于所述筒体内并位于所述搁物架下方;且所述加热装置还包括:
屏蔽结构,设置于所述筒体内并位于所述搁物架的下方,并将部分所述水量检测系统罩设在内。
可选地,所述水量检测系统还包括:
开关,串联在所述两个检测电极之间,用于导通或阻断所述检测电源与一个所述检测电极之间的电路;其中
所述开关配置为在所述电磁波发生系统处于工作状态时断开。
根据本发明的第二方面,提供了一种用于加热装置的控制方法,所述加热装置为以上任一所述的加热装置;其中,所述控制方法包括:
确定或获取所述待处理物的属性信息,所述属性信息包括导电性能;
根据所述属性信息确定所述电磁波发生系统的加热参数;
控制所述电磁波发生系统按照所述加热参数工作;其中,所述确定或获取所述待处理物的属性信息的步骤包括:
启动所述水量检测系统,并检测所述待处理物的导电性能。
可选地,所述属性信息还包括介电系数;且所述确定或获取所述待处理物的属性信息的步骤还包括:
控制所述电磁波发生系统按照预设检测功率工作,检测所述电磁波发生系统发射的入射波信号和/或返回所述电磁波发生系统的反射波信号;
根据所述入射波信号和/或反射波信号确定所述待处理物的介电系数。
本发明通过水量检测系统检测待处理物的导电性能,可获得准确的、综合性的反映待处理物的含水量的属性信息,进而可确定出适宜该待处理物的电磁波发生模块的加热参数,在降低对用户的要求的同时,提高加热后的食物温度均匀性,避免局部过热的情况发生。
进一步地,在本发明之前,本领域技术人员均认为电磁波加热装置内不能放入金属,否则易产生电弧、火花,甚至损坏电磁波发生系统。本申请的发明人突破了上述思想桎梏,创造性地将检测电极的外轮廓设置为由平滑曲面构成,并具有特定的尺寸参数,不仅可在电磁波发生系统工作时避免电弧放电的情况产生,还可在使检测电极与待处理物实现有效接触的同时,避免水量检测系统短路的情况发生,提高了加热装置的安全性和使用寿命。
进一步地,本发明在电磁波发生系统处于工作状态时断开水量检测系统的开关,将水量检测系统位于搁物架下方的部分设置为接地、并由屏蔽结构罩设,可降低电磁波对水量检测系统的干扰和损害,提高测得的待处理物的属性信息的准确性,并延长水量检测系统的使用寿命。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的加热装置的示意性结构图;
图2是根据本发明一个实施例的水量检测系统的示意性电路图;
图3是根据本发明一个实施例的用于加热装置的控制方法的示意性流程图;
图4是根据本发明一个实施例的用于加热装置的控制方法的详细流程图。
具体实施方式
图1是根据本发明一个实施例的加热装置100的示意性结构图。参见图1,加热装置100可包括筒体110、门体、电磁波发生系统、供电电源160和控制器。
筒体110可用于容置待处理物120。门体可用于开闭筒体110的取放口。筒体110和门体可设置有电磁屏蔽特征,以减少电磁泄漏。
筒体110可由金属制成,并设置为接地,以进一步提高加热装置100的安全性能。
电磁波发生系统可至少部分设置于筒体110内或通达至筒体110,以向筒体110内发射电磁波来加热待处理物120。供电电源160可配置为向电磁波发生系统供电。
电磁波发生系统可包括电磁波发生模块131和与电磁波发生模块131电连接的辐射天线132。电磁波发生模块131可配置为产生电磁波信号,辐射天线132可设置于筒体110内,以在筒体110内产生电磁波,进而加热筒体110内的待处理物120。
控制器可包括处理单元和存储单元。其中,存储单元存储有计算机程序,计算机程序被处理单元执行时用于实现本发明的控制方法。
图2是根据本发明一个实施例的水量检测系统的示意性电路图。参见图1和图2,特别地,本发明的加热装置100还可包括水量检测系统。水量检测系统可设置为与待处理物120导电连接,并检测待处理物120的导电性能,以反映待处理物120的含水量,进而可确定出适宜待处理物120的电磁波发生模块131的加热参数,在降低对用户的要求的同时,提高加热后的食物温度均匀性,避免局部过热的情况发生。
具体地,水量检测系统可包括两个检测电极141、以及串联在两个检测电极141之间的检测电源和电流检测器142。
两个检测电极141可设置为与待处理物120导电连接,以形成闭合回路。检测电源用于提供检测所需的电势能。电流检测器142用于检测流过其的电流。其中,待处理物120的导电性能由电流检测器142测得的电流值表示。
检测电源可为集成于供电电源160,也可为独立的电源模块。
筒体110内可设置有搁物架170,用于承载待处理物120。两个检测电 极141可间隔地设置于搁物架170,并至少部分暴露于搁物架170的上表面,以与待处理物120接触。搁物架170由不导电材料制成。
在一些实施例中,两个检测电极141之间的间隔可大于等于2厘米(cm),以避免因杂质落入水量检测系统短路的情况发生。
在一些实施例中,水量检测系统可至少部分位于筒体110内并位于搁物架170下方,该部分可设置为与筒体110导电连接,进而接地,以提高安全性、降低电磁波对水量检测系统的干扰和损害。
在一些实施例中,加热装置100还可包括屏蔽结构145。屏蔽结构145可设置于筒体110内并位于搁物架170下方,并将部分水量检测系统罩设在内,以降低电磁波对水量检测系统的干扰和损害。即,屏蔽结构145可设置为将水量检测系统位于搁物架170下方的至少一部分罩设在内。
水量检测系统除检测电极141及检测电极141的电连线之外的部分可设置于筒体110的外侧,以进一步降低电磁波对水量检测系统的干扰和损害。
在一些实施例中,两个检测电极141可呈球状,以在电磁波发生系统工作时避免电弧放电的情况产生。检测电极141的截面可为圆形,例如正圆形、椭圆形等。
两个检测电极141位于搁物架170上方的部分在竖直方向上的尺寸可为1毫米~2.5毫米(mm),以使检测电极141与待处理物120实现有效接触,例如1mm、2mm或2.5mm。
在另一些实施例中,两个检测电极141可呈片状,且周缘由平滑曲线构成,以在电磁波发生系统工作时避免电弧放电的情况产生。
在另一些实施例中,水量检测系统也可通过检测仪检测待处理物120的电阻率来确定待处理物120的导电性能。
在一些实施例中,水量检测系统还可包括串联在两个检测电极141之间的开关143,用于导通或阻断检测电源与一个检测电极141之间的电路。
开关143可配置为在电磁波发生系统处于工作状态时断开,以延长水量检测系统的使用寿命。
水量检测系统还可包括串联在两个检测电极141之间的保护电阻144,以防止水量检测系统短路。
在一些实施例中,控制器可配置为确定或获取待处理物120的属性信息,根据属性信息确定电磁波发生系统的加热参数,并控制电磁波发生系统按照 加热参数工作。
属性信息可包括导电性能。加热参数可包括加热功率和/或加热时间。控制器可在确定或获取待处理物120的属性信息时,启动水量检测系统,并检测待处理物120的导电性能,以确定出适宜待处理物120的电磁波发生模块131的加热参数。
在一些进一步的实施例中,属性信息还可包括介电系数,以反映待处理物120的重量,进一步地提高加热效果。
控制器可在确定或获取待处理物120的属性信息时,控制电磁波发生系统按照预设检测功率工作,检测电磁波发生系统发射的入射波信号和/或返回电磁波发生系统的反射波信号,并根据入射波信号和/或反射波信号确定待处理物120的介电系数。
控制器可根据入射波信号和反射波信号的电压和电流计算得出待处理物120的介电系数。
电磁波发生模块131与辐射天线132之间可串联有阻抗匹配模块。控制器也可通过初次阻抗匹配时反射波信号的功率最小的阻抗匹配模块的配置确定出待处理物120的介电系数(存储单元可预先存储有阻抗匹配模块与介电系数的对照关系)、或直接表示待处理物120的介电系数。
电磁波发生模块131产生的电磁波信号的频率可在预设频率范围内变化。控制器可在正式开始加热前确定出预设频率范围内反射波信号的功率最小的频率值,并通过频率值确定出待处理物120的介电系数(存储单元可预先存储有频率值与介电系数的对照关系)、或直接表示待处理物120的介电系数。
图3是根据本发明一个实施例的用于加热装置100的控制方法的示意性流程图。参见图3,本发明用于加热装置100的控制方法可包括如下步骤:
步骤S302:确定或获取待处理物120的属性信息,属性信息可包括导电性能。
步骤S304:根据属性信息确定电磁波发生系统的加热参数。
步骤S306:控制电磁波发生系统按照加热参数工作。
特别地,步骤S302可进一步包括:启动水量检测系统,并检测待处理物120的导电性能。本发明的控制方法通过水量检测系统检测待处理物120的导电性能,可获得准确的、综合性的反映待处理物120的含水量的属性信 息,进而可确定出适宜该待处理物120的电磁波发生模块131的加热参数,在降低对用户的要求的同时,提高加热后的食物温度均匀性,避免局部过热的情况发生。
在一些实施例中,属性信息还可包括介电系数,以反映待处理物120的重量,进一步地提高加热效果。
步骤S302可进一步包括:控制电磁波发生系统按照预设检测功率工作,检测电磁波发生系统发射的入射波信号和/或返回电磁波发生系统的反射波信号,根据入射波信号和/或反射波信号确定待处理物120的介电系数。
在一些进一步的实施例中,待处理物120的介电系数可根据入射波信号和反射波信号的电压和电流计算得出。
在另一些电磁波发生模块131与辐射天线132之间可串联有阻抗匹配模块的实施例中,待处理物120的介电系数可通过初次阻抗匹配时反射波信号的功率最小的阻抗匹配模块的配置确定出(存储单元可预先存储有阻抗匹配模块与介电系数的对照关系)、或直接表示。
在又一些电磁波发生模块131产生的电磁波信号的频率可在预设频率范围内变化的实施例中,待处理物120的介电系数可通过在正式开始加热前确定出预设频率范围内反射波信号的功率最小的频率值确定出(存储单元可预先存储有频率值与介电系数的对照关系)、或直接表示。
图4是根据本发明一个实施例的用于加热装置100的控制方法的详细流程图,其中,“Y”表示“是”;“N”表示“否”。参见图4,本发明的控制方法可包括如下详细步骤:
步骤S402:获取加热指令。
步骤S404:启动水量检测系统,并检测待处理物120的导电性能。即,闭合开关143,使检测电源提供电势能进行检测,导电性能由电流检测器142检测到的电流值表示。
步骤S406:切断水量检测系统。即,断开开关143。
步骤S408:控制电磁波发生模块131按照预设检测功率产生电磁波信号,并检测电磁波发生模块131发射的入射波信号和/或返回电磁波发生模块131的反射波信号。
步骤S410:根据入射波信号和/或反射波信号确定待处理物120的介电系数。
步骤S412:根据导电性能和介电系数确定对待处理物120的加热功率和加热时间。
步骤S414:控制电磁波发生模块131按照确定出的加热功率产生电磁波信号。
步骤S416:判断步骤S414的运行时间是否大于等于确定出的加热时间。若是,执行步骤S418;若否,返回步骤S414。
步骤S418:控制电磁波发生模块131停止工作。返回步骤S402。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种加热装置,包括:
    筒体,用于容置待处理物;
    电磁波发生系统,至少部分设置于所述筒体内或通达至所述筒体,以向所述筒体内发射电磁波来加热所述待处理物;以及
    水量检测系统,设置为与所述待处理物导电连接,并检测所述待处理物的导电性能,进而反映所述待处理物的含水量。
  2. 根据权利要求1所述的加热装置,其中,所述水量检测系统包括:
    两个检测电极,设置为与所述待处理物导电连接;
    检测电源,串联在所述两个检测电极之间,用于提供电势能;和
    电流检测器,串联在所述两个检测电极之间,用于检测流过其的电流。
  3. 根据权利要求2所述的加热装置,还包括:
    搁物架,设置于所述筒体,用于承载所述待处理物;其中
    所述两个检测电极间隔地设置于所述搁物架,并至少部分暴露于所述搁物架的上表面。
  4. 根据权利要求3所述的加热装置,其中,
    所述两个检测电极呈球状;或
    所述两个检测电极呈片状,且周缘由平滑曲线构成。
  5. 根据权利要求3或4所述的加热装置,其中,
    所述两个检测电极之间的间隔大于等于2cm;和/或
    所述两个检测电极位于所述搁物架上方的部分在竖直方向上的尺寸为1mm~2.5mm。
  6. 根据权利要求3或4所述的加热装置,其中,
    所述筒体由金属制成并设置为接地;且
    所述水量检测系统至少部分位于所述筒体内并位于所述搁物架下方,该部分设置为与所述筒体导电连接。
  7. 根据权利要求3或4所述的加热装置,其中,
    所述水量检测系统至少部分位于所述筒体内并位于所述搁物架下方;且所述加热装置还包括:
    屏蔽结构,设置于所述筒体内并位于所述搁物架的下方,并将部分所述水量检测系统罩设在内。
  8. 根据权利要求2-4中任一项所述的加热装置,其中,所述水量检测系统还包括:
    开关,串联在所述两个检测电极之间,用于导通或阻断所述检测电源与一个所述检测电极之间的电路;其中
    所述开关配置为在所述电磁波发生系统处于工作状态时断开。
  9. 一种用于加热装置的控制方法,所述加热装置为根据权利要求1-8中任一项所述的加热装置;其中,所述控制方法包括:
    确定或获取所述待处理物的属性信息,所述属性信息包括导电性能;
    根据所述属性信息确定所述电磁波发生系统的加热参数;
    控制所述电磁波发生系统按照所述加热参数工作;其中,所述确定或获取所述待处理物的属性信息的步骤包括:
    启动所述水量检测系统,并检测所述待处理物的导电性能。
  10. 根据权利要求9所述的控制方法,其中,
    所述属性信息还包括介电系数;且所述确定或获取所述待处理物的属性信息的步骤还包括:
    控制所述电磁波发生系统按照预设检测功率工作,检测所述电磁波发生系统发射的入射波信号和/或返回所述电磁波发生系统的反射波信号;
    根据所述入射波信号和/或反射波信号确定所述待处理物的介电系数。
PCT/CN2022/113374 2021-09-26 2022-08-18 加热装置及用于加热装置的控制方法 WO2023045643A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111129387.7 2021-09-26
CN202111129387.7A CN115868594A (zh) 2021-09-26 2021-09-26 加热装置及用于加热装置的控制方法

Publications (1)

Publication Number Publication Date
WO2023045643A1 true WO2023045643A1 (zh) 2023-03-30

Family

ID=85720029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113374 WO2023045643A1 (zh) 2021-09-26 2022-08-18 加热装置及用于加热装置的控制方法

Country Status (2)

Country Link
CN (1) CN115868594A (zh)
WO (1) WO2023045643A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1358960A (zh) * 2000-12-12 2002-07-17 三菱电机株式会社 加热烹调器
JP2002277426A (ja) * 2001-03-21 2002-09-25 Kawata Mfg Co Ltd 誘電物性測定装置
JP2002277427A (ja) * 2001-03-21 2002-09-25 Kawata Mfg Co Ltd 誘電物性測定装置
WO2014030054A2 (de) * 2012-08-21 2014-02-27 Gonzalez Juan Valdes Verfahren und vorrichtung zur bestimmung der elektrischen eigenschaften von materialien
US20160150602A1 (en) * 2014-11-21 2016-05-26 Elwha Llc Microwave heating element
CN105891264A (zh) * 2016-03-29 2016-08-24 西南大学 一种鲜茧茧层含水率与干壳量快速无损检测方法及装置
CN106131992A (zh) * 2016-06-21 2016-11-16 苏州铭冠软件科技有限公司 具有声控功能的智能微波炉
CN111294997A (zh) * 2020-01-23 2020-06-16 深圳市大拿科技有限公司 加热控制方法及相关装置
WO2020220789A1 (zh) * 2019-04-30 2020-11-05 青岛海尔电冰箱有限公司 用于冷藏冷冻装置的解冻方法及冷藏冷冻装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990535B (zh) * 2017-12-29 2021-02-26 海尔智家股份有限公司 解冻装置及具有该解冻装置的冰箱
CN108872320A (zh) * 2018-06-27 2018-11-23 广东省生物工程研究所(广州甘蔗糖业研究所) 一种肉类食物生熟度检测装置
CN111417228A (zh) * 2019-01-04 2020-07-14 青岛海尔股份有限公司 加热装置
CN109764371A (zh) * 2019-01-14 2019-05-17 珠海格力电器股份有限公司 工作参数的处理方法和装置、微波炉
CN209897300U (zh) * 2019-01-28 2020-01-03 青岛海尔特种电冰箱有限公司 加热装置及具有该加热装置的冰箱
CN111406788A (zh) * 2020-04-24 2020-07-14 珠海格力电器股份有限公司 解冻装置及冰箱
CN111521638A (zh) * 2020-06-10 2020-08-11 长江重庆航道工程局 一种适用于多类固态物质的含水率检测方法及其设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1358960A (zh) * 2000-12-12 2002-07-17 三菱电机株式会社 加热烹调器
JP2002277426A (ja) * 2001-03-21 2002-09-25 Kawata Mfg Co Ltd 誘電物性測定装置
JP2002277427A (ja) * 2001-03-21 2002-09-25 Kawata Mfg Co Ltd 誘電物性測定装置
WO2014030054A2 (de) * 2012-08-21 2014-02-27 Gonzalez Juan Valdes Verfahren und vorrichtung zur bestimmung der elektrischen eigenschaften von materialien
US20160150602A1 (en) * 2014-11-21 2016-05-26 Elwha Llc Microwave heating element
CN105891264A (zh) * 2016-03-29 2016-08-24 西南大学 一种鲜茧茧层含水率与干壳量快速无损检测方法及装置
CN106131992A (zh) * 2016-06-21 2016-11-16 苏州铭冠软件科技有限公司 具有声控功能的智能微波炉
WO2020220789A1 (zh) * 2019-04-30 2020-11-05 青岛海尔电冰箱有限公司 用于冷藏冷冻装置的解冻方法及冷藏冷冻装置
CN111294997A (zh) * 2020-01-23 2020-06-16 深圳市大拿科技有限公司 加热控制方法及相关装置

Also Published As

Publication number Publication date
CN115868594A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
US11729871B2 (en) System and method for applying electromagnetic energy
US11464085B2 (en) Microwave heating apparatus
US10168848B2 (en) Radiofrequency-wave-transparent capacitive sensor pad
KR102224542B1 (ko) 플라즈마 처리 장치, 플라즈마 처리 방법 및 고주파 발생기
TWI513101B (zh) 電子裝置及其控制方法
US20180248249A1 (en) Radiating structure with integrated proximity sensing
AU2020214406B2 (en) Heating device and refrigerator having same
KR102159894B1 (ko) 플라스마 처리 장치
EP3916326B1 (en) Refrigeration and freezing apparatus
CN104216489A (zh) 热量控制方法及热量控制模块
CN209897304U (zh) 加热装置
CN108991340A (zh) 用于解冻装置的解冻方法
WO2023045643A1 (zh) 加热装置及用于加热装置的控制方法
US10939512B2 (en) Microwave heating apparatus
CN109000399A (zh) 用于解冻装置的解冻方法及冰箱
JP2018078034A (ja) 加熱調理器
US20220117050A1 (en) Heating device
CN108991339A (zh) 用于解冻装置的解冻方法
CN209897307U (zh) 加热装置
RU2781274C1 (ru) Нагревательное устройство
WO2023226707A9 (zh) 液晶反射阵天线的控制方法、设备、装置、程序和介质
JP2022067466A (ja) プラズマ処理装置
WO2024045050A1 (zh) 加热不燃烧装置及其加热控制方法、程序产品、存储介质
JPH05144566A (ja) 高周波加熱装置
JPH01248490A (ja) 解凍センサ付高周波加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871699

Country of ref document: EP

Kind code of ref document: A1