WO2023045329A1 - 血管内超声回撤装置及系统 - Google Patents

血管内超声回撤装置及系统 Download PDF

Info

Publication number
WO2023045329A1
WO2023045329A1 PCT/CN2022/089702 CN2022089702W WO2023045329A1 WO 2023045329 A1 WO2023045329 A1 WO 2023045329A1 CN 2022089702 W CN2022089702 W CN 2022089702W WO 2023045329 A1 WO2023045329 A1 WO 2023045329A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
transmission
clutch
transmission part
retraction
Prior art date
Application number
PCT/CN2022/089702
Other languages
English (en)
French (fr)
Inventor
张鸽
李林
黄培桂
Original Assignee
深圳北芯生命科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳北芯生命科技股份有限公司 filed Critical 深圳北芯生命科技股份有限公司
Publication of WO2023045329A1 publication Critical patent/WO2023045329A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device

Definitions

  • the present application relates to the technical field of medical devices, in particular to an intravascular ultrasonic retraction device and system.
  • the intravascular ultrasound retraction device can play the role of catheter push-pull movement, thereby meeting the necessary requirements of the intravascular ultrasound retraction device for axial imaging of blood vessels.
  • the intravascular ultrasound retraction device needs to be able to switch between manual mode and automatic mode.
  • the manual and automatic switching of the intravascular ultrasonic retraction device is realized through an electromagnetic clutch or a mechanical clutch together with an unlocking mechanism.
  • Mechanical clutches include jaw toothing or bevel toothing.
  • the unlocking mechanism has a multi-link mechanism, which uses a fork to directly separate the mechanical clutch, and the swing rod drives the rotor of the mechanical clutch to rotate and separate.
  • the multi-link mechanism has high requirements for manufacturing, and it is prone to jamming during assembly, making debugging difficult and inefficient.
  • the swing rod drives the mechanical clutch rotor to rotate and separate.
  • the structure is simple, the number of parts is small, and the assembly is simple, but its unilateral guide is likely to cause the clutch disengagement and meshing movement to be unstable, or cause the movement transmission of the entire intravascular ultrasonic retraction device to be unstable. , and the resistance is relatively large, and the user experience is not high.
  • the electromagnetic clutch is easy to assemble, it requires circuit control, which increases the cost of circuit design, and is prone to heat, which affects the use of the product.
  • the present application provides an intravascular ultrasound retraction device and system.
  • an embodiment of the present application provides an intravascular ultrasonic retraction device configured to realize the retraction of a catheter in a blood vessel, including: a base, a power source assembly and a transmission assembly, the power source assembly and the a transmission assembly is assembled on the base, and the power source assembly is configured to provide power for the transmission assembly;
  • the transmission assembly includes a first transmission part, a second transmission part and a clutch mechanism; the first transmission part is connected to the power source assembly, and the clutch mechanism is connected between the first transmission part and the second transmission part. Between the parts, the second transmission part is configured to drive the catheter to perform a retraction movement;
  • the clutch mechanism includes a first sleeve, a second sleeve and an operating part, the first sleeve is connected to the first transmission part, the second sleeve is connected to the second transmission part; the The first sleeve and the second sleeve are arranged coaxially, and the contact surface of the first sleeve and the second sleeve includes a slope;
  • the operating part is used to control the relative rotation of the first sleeve and the second sleeve, so that the first sleeve and the second sleeve are aligned or staggered, so that the first transmission part The transmission connection or transmission disconnection with the second transmission part.
  • the power source assembly includes a motor;
  • the first transmission part includes a motor gear, a clutch gear, a first transmission member, a clutch upper shaft, a clutch intermediate shaft, and a first spring;
  • the motor drives the motor gear to rotate, the clutch gear meshes with the motor gear, the clutch gear is rigidly connected to the clutch upper shaft, and the first spring is sleeved on the outer peripheral side of the clutch upper shaft , the clutch upper shaft is circumferentially limited by the clutch intermediate shaft, the clutch intermediate shaft is in transmission connection with the first transmission part, and the first transmission part is in transmission connection with the second transmission part.
  • the second transmission part includes a second transmission member, a clutch lower shaft, a retraction lower gear, and a rack;
  • the second transmission member is in transmission connection with the first transmission part, the second transmission member is connected with the clutch lower shaft, the retraction lower gear is arranged on the clutch lower shaft, and the retraction lower shaft A gear meshes with the rack.
  • the first transmission part and the second transmission part are connected through a gear; or, the first transmission part and the second transmission part are connected through a friction wheel.
  • the operating part includes a connecting rod, a guide shaft and a second spring, the second spring is sleeved on the guide shaft, and the guide shaft is arranged on the connecting rod,
  • the guide shaft extends along the moving direction of the connecting rod; one end of the connecting rod is fixed in rotation, and the other end of the connecting rod is connected with the first sleeve and is configured to control the first sleeve and the first sleeve.
  • the relative approach or separation of the second sleeve is configured to control the first sleeve and the first sleeve.
  • the operating part further includes a button, which is arranged on the connecting rod and is configured to press to control the movement of the connecting rod.
  • the intravascular ultrasonic retraction device further includes a displacement sensor, the displacement sensor is arranged on the base, and the displacement sensor is configured to detect the relative position of the first sleeve relative to the The displacement of the second sleeve in the vertical direction.
  • the slope includes a spiral slope, and the lead angle of the spiral slope is greater than or equal to 20° and less than or equal to 40°.
  • the lead angle of the spiral slope is greater than or equal to 30° and less than or equal to 35°.
  • the intravascular ultrasound retraction device further includes a sensor assembly configured to detect a movement state and/or a working state of the intravascular ultrasound retraction device.
  • the sensor assembly includes a code detection assembly
  • the code detection assembly includes a code disc and a read head
  • the code disc is set on the second transmission part
  • the read head is set on the On the base
  • the coding detection component is configured to feed back the retraction speed and distance of the intravascular ultrasound retraction device.
  • the sensor assembly includes a motion detection assembly, the motion detection assembly is installed on the base; on the movement path of the operation component and configured to detect the movement state of the operation component.
  • the sensor assembly includes a clutch detection assembly configured to detect that the first sleeve and the second sleeve are relatively close or far away; the clutch detection assembly is set On the base, alternatively, the clutch detection assembly is arranged on the second sleeve.
  • an embodiment of the present application also provides an intravascular ultrasound retraction system, the intravascular ultrasound retraction system includes a base and the above-mentioned intravascular ultrasound retraction device, and the intravascular ultrasound retraction device is installed on the base.
  • An embodiment of the present application provides an intravascular ultrasonic retraction device configured to realize the retraction of a catheter in a blood vessel, including: a base, a power source assembly, and a transmission assembly.
  • the transmission assembly includes a first transmission part, a second transmission part and a clutch mechanism.
  • the clutch mechanism includes a first sleeve, a second sleeve and an operating part.
  • the operating part is configured to control the relative rotation of the first sleeve and the second sleeve, so that the first sleeve and the second sleeve are aligned or staggered, and the transmission connection or transmission disconnection of the first transmission part and the second transmission part is realized.
  • the relative rotation of the first sleeve and the second sleeve is controlled by the operating part, so that the first sleeve and the second sleeve are close to or far away from each other, so as to realize the power transmission of the power source assembly to the first transmission part, and the first transmission part will The power is transmitted to the second transmission part.
  • the movement of the second transmission part is realized through manual control, thereby realizing the smooth switching between manual and automatic operation of the intravascular ultrasonic retraction device, so as to meet the diverse use needs of users.
  • FIG. 1 is a schematic structural diagram of an intravascular ultrasonic retraction device provided by an embodiment of the present application
  • Fig. 2 is a partial exploded view of an intravascular ultrasonic retraction device provided by an embodiment of the present application
  • Fig. 3 is a structural schematic diagram of the alignment of the first sleeve and the second sleeve provided by an embodiment of the present application;
  • Fig. 4 is a schematic structural diagram of the staggered structure of the first sleeve and the second sleeve provided by an embodiment of the present application;
  • Fig. 5 is a schematic structural diagram of a first sleeve and a second sleeve provided by an embodiment of the present application;
  • Fig. 6 is a cross-sectional view of an intravascular ultrasonic retraction device provided by an embodiment of the present application.
  • Fig. 7 is a structural schematic diagram of the pressing state of the connecting rod provided by one embodiment of the present application.
  • Figure 8 is a schematic structural view of the original state of the connecting rod provided by one embodiment of the present application.
  • FIG. 9 and FIG. 10 are schematic diagrams of force decomposition of an intravascular ultrasound retraction device provided by an embodiment of the present application.
  • Intravascular ultrasound retraction device 1. Intravascular ultrasound retraction device
  • the first transmission member
  • the second transmission part is the second transmission part
  • an embodiment of the present application provides an intravascular ultrasonic retraction device 1 configured to realize catheter retraction in a blood vessel, including: a base 600 , a power source assembly 100 and a transmission assembly 200 .
  • the power source assembly 100 and the transmission assembly 200 are assembled on the base 600 , and the power source assembly 100 is configured to provide power for the transmission assembly 200 .
  • the transmission assembly 200 includes a first transmission part 210, a second transmission part 220 and a clutch mechanism 230; the first transmission part 210 is connected with the power source assembly 100, and the clutch mechanism 230 is connected between the first transmission part 210 and the Between the second transmission parts 220, the second transmission part 220 is configured to drive the catheter to perform a retraction movement.
  • the clutch mechanism 230 includes a first sleeve 231, a second sleeve 232 and an operating member 233, the first sleeve 231 is connected to the first transmission part 210, the second sleeve 232 is connected to the second transmission part 220; the first sleeve 231 and the second sleeve 232 are coaxially arranged, and the contact surface of the first sleeve 231 and the second sleeve 232 includes a slope; the operating part 233 is used to control the relative rotation of the first sleeve 231 and the second sleeve 232, The first sleeve 231 and the second sleeve 232 are aligned or staggered, so that the transmission connection or transmission disconnection of the first transmission part 210 and the second transmission part 220 is achieved.
  • An embodiment of the present application also provides an intravascular ultrasound retraction system, which includes a base and an intravascular ultrasound retraction device 1 .
  • the intravascular ultrasonic retraction device 1 is installed on the base.
  • the intravascular ultrasound retraction device 1 is connected to the base (not shown) of the intravascular ultrasound retraction system through the second transmission part 220 .
  • the first sleeve 231 and the second sleeve 232 are controlled to be relatively close by the operating part 233, so that the first sleeve 231 and the second sleeve 232 are aligned, In this way, the first transmission part 210 is in transmission connection with the second transmission part 220 . Then, the power is transmitted to the first transmission part 210 through the power source assembly 100, and the first transmission part 210 transmits the power to the second transmission part 220, so that the intravascular ultrasonic retraction device 1 can be positioned relative to the base of the intravascular ultrasonic retraction system. Move, so that the intravascular ultrasonic retraction device 1 drives the catheter to retract in the blood vessel.
  • the so-called transmission connection means that the power provided by the power source assembly 100 can be transmitted to the second transmission part 220 through the first transmission part 210
  • the so-called transmission disconnection means that the power provided by the power source assembly 100 cannot be transmitted through the first transmission part 210.
  • the transmission part 210 is transmitted to the second transmission part 220, that is, the connection relationship between the first transmission part 210 and the second transmission part 220 is disconnected.
  • the first sleeve 231 and the second sleeve 232 are controlled relatively far away by the operating part 233, so that the first sleeve 231 and the second sleeve 232 are staggered, so that the first transmission part 210 and the second The transmission part 220 is disconnected, so as to realize the manual control of the movement of the intravascular ultrasonic retraction device 1 relative to the base to drive the catheter to retract in the blood vessel.
  • the use of the transmission connection or transmission disconnection between the first transmission part 210 and the second transmission part 220 enables the intravascular ultrasonic retraction device 1 to switch between manual operation and automatic control smoothly, thereby controlling more precisely The movement of the intravascular ultrasonic retraction device 1 satisfies diverse usage requirements in clinical applications.
  • the outer circumferential surface of the first sleeve 231 is limited in the circumferential direction by the second sleeve 232 , and the contact surface of the first sleeve 231 and the second sleeve 232 is an inclined plane, and the inclined plane includes a spiral inclined plane.
  • the first sleeve 231 has a spiral slope
  • the second sleeve 232 also has a spiral slope
  • the two spiral slopes are distributed symmetrically and cooperate with each other. This makes the first sleeve 231 move around the helical slope of the second sleeve 232 during the rotation process, and ensures that the movement of the first sleeve 231 is stable and smooth.
  • the operating part 233 is used to drive the first sleeve 231 and the second sleeve 232 to rotate and separate.
  • the spiral slopes of the first sleeve and the second sleeve 232 are symmetrical and double-guided, and the number of parts is reduced, so that the entire blood vessel
  • the structure of the internal ultrasonic retraction device 1 is simple; on the other hand, the spiral slope is used to realize the switch between automatic retraction and manual retraction, which improves the stability of the movement between manual retraction and automatic retraction, and improves the user's operating experience , wherein, the number of slopes of the first sleeve 231 and the second sleeve 232 can be 2 or 3, and the number can be set according to requirements without limitation, as long as the first sleeve 231 and the second sleeve 232 The number of slopes corresponds to that.
  • the lead angle of the spiral slope is greater than or equal to 20° and less than or equal to 40°.
  • the lead angle also known as the thread lead angle, is the angle between the pitch diameter of the thread and the helix.
  • the lead angle of the spiral slope is set to be greater than or equal to 20°, which allows the user to switch between manual and automatic retraction with less force, and makes the relative movement of the first sleeve 231 and the second sleeve 232 more stable and smooth. slip.
  • the lead angle of the helical slope is set to be greater than or equal to 30° and less than or equal to 35°.
  • the lead angle of the spiral slope is set to be greater than or equal to 30°, which allows the user to switch between manual and automatic retraction with less force, further making the relative movement of the first sleeve 231 and the second sleeve 232 more stable and smooth. slip. Setting the lead angle of the helical slope to be less than or equal to 35° can prevent the first sleeve 231 and the second sleeve 232 from slipping during manual and automatic retraction switching.
  • the power source assembly 100 includes a motor 110 .
  • the first transmission part 210 includes a gear set, a first transmission member 211 , a clutch upper shaft 212 , a clutch intermediate shaft 213 and a first spring 214 .
  • the gear set includes a motor gear 219 and a clutch gear 218 that mesh with each other.
  • the motor gear 219 meshes with the clutch gear 218 to form a gear set transmission.
  • the motor 110 includes a geared motor.
  • the reduction motor transmits the rotational motion to the motor gear 219
  • the motor gear 219 transmits the rotational motion to the clutch gear 218 .
  • Clutch gear 218 is rigidly connected with clutch upper shaft 212, and clutch upper shaft 212 is spaced circumferentially with clutch intermediate shaft 213, so as to realize the transmission of motion.
  • the clutch upper shaft 212 is provided with a flat position, and the clutch intermediate shaft 213 is provided with a groove. Circumferential limit, and then the rotational motion is transmitted from the clutch upper shaft 212 to the clutch intermediate shaft 213 .
  • the first spring 214 is sleeved on the outer peripheral side of the clutch upper shaft 212, and the clutch gear 218, under the restoring force of the first spring 214, can make the first sleeve 231 rotate and descend along the contact surface with the second sleeve 232 , so that the motion transfer continues.
  • the force transmission between the first sleeve 231 and the second sleeve 232 is relatively stable.
  • the clutch intermediate shaft 213 is in transmission connection with the first transmission member 211 , and the clutch intermediate shaft 213 is fixedly connected with the first transmission member 211 by a set screw.
  • the first transmission member 211 is in transmission connection with the second transmission part 220, so as to realize the transmission of motion.
  • the first transmission part 210 also includes a bearing limiting ring 215 , a first pin 216 , a first bearing 217 and a second bearing.
  • the first bearing 217 and the second bearing are assembled on the first sleeve 231 , the bearing limit ring 215 is configured to limit and fix the first bearing 217 ; the clutch intermediate shaft 213 is configured to rotate relative to the first sleeve 231 . In this way, the situation of over-constraint occurring when the first transmission part 210 is relatively far away from the second transmission part 220 is avoided.
  • the first pin 216 is in interference fit with the first sleeve 231 to provide motion support for the first transmission part 210 .
  • the second transmission part 220 includes a second transmission member 221 , a clutch lower shaft 222 and a rack and pinion assembly.
  • the rack and pinion assembly includes the retraction lower gear 223 and the rack.
  • the second transmission member 221 is in transmission connection with the first transmission member 211 , and the first transmission member 211 and the second transmission member 221 may be connected through a gear transmission.
  • the first transmission member 211 and the second transmission member 221 may also be connected through a friction wheel.
  • the transmission connection between the first transmission member 211 and the second transmission member 221 can be in the form of gear meshing or in the form of friction wheels, both of which can realize the transmission of motion.
  • the motion transmission mode between the first transmission member 211 and the second transmission member 221 is not limited to the above two methods, and other methods to realize the motion transmission between the first transmission member 211 and the second transmission member 221 can be applied to this embodiment. Application examples.
  • the second transmission member 221 is connected with the clutch lower shaft 222, and the second transmission member 221 is fixed on the clutch lower shaft 222 by a set screw.
  • Retraction lower gear 223 is arranged on the clutch lower shaft 222, and the other end of clutch lower shaft 222 has a square flat position, and the clutch lower shaft 222 is fixedly connected with the retraction lower gear 223 by screws and square flat positions. In this way, the transmission of the entire rotary motion is realized.
  • the retraction lower gear 223 is meshed with the rack, and the retraction lower gear 223 is connected with the rack gear provided on the base, so as to realize the conversion of rotational motion into linear motion and meet the requirements of the intravascular ultrasound system for automatic retraction motion.
  • the operating part 233 is used to control the relative rotation of the first sleeve 231 and the second sleeve 232, so that the first sleeve 231 and the second sleeve 232 are aligned or staggered, and the first sleeve 231 can be moved relative to the second sleeve.
  • the cylinder 232 rotates, and the second sleeve 231 is fixed; it may be that the second sleeve 232 can rotate relative to the first sleeve 231, and the first sleeve 231 is fixed, and it may be that the first sleeve 231 and the second sleeve Both barrels 232 are rotatable.
  • the second sleeve 232 is fixed on the base 600, and the first sleeve 231 can be rotated and separated relative to the first sleeve 231 under the action of the operating member 233 and can move vertically.
  • the first transmission member 211 and the second transmission member 221 are connected by gear transmission, and the depth of engagement of the two gears (referring to the distance between the two gears in the vertical direction) can be obtained by measurement before the intravascular ultrasonic retraction device 1 is assembled.
  • a displacement sensor (not shown) is arranged on the base 600, the displacement of the first sleeve 231 relative to the second sleeve 232 along the vertical direction is detected by the displacement sensor, and the displacement of the first sleeve 231 obtained through the By comparing the amount with the meshing depth of the two gears, we can know whether the two gears are in a fully meshed state, incompletely meshed state, or disengaged state.
  • the displacement of the first sleeve 231 is zero, which means that the two gears are fully meshed. If the displacement is about half the depth, it means that they are not fully meshed. At this time, manual return should not be performed.
  • the withdrawal operation should be stopped to troubleshoot the problem in time, and the withdrawal operation should be performed after the problem is resolved.
  • the displacement sensor is any one of a potentiometer displacement sensor, a photoelectric displacement sensor or a laser displacement sensor.
  • the laser displacement sensor is arranged on the base 600, and the laser displacement sensor is positioned above the first sleeve 231.
  • the interior of the displacement sensor is composed of a processor unit, an echo processing unit, a laser transmitter, and a laser receiver.
  • the laser displacement sensor sends one million laser pulses per second to the first sleeve 231 and returns to the receiver through the laser transmitter, and the processor calculates the time required for the laser pulse to meet the first sleeve 231 and return to the receiver, Based on this, the distance value is calculated, so that the displacement amount can be calculated.
  • the operating part 233 includes a connecting rod 2331, a guide shaft 2332 and a second spring 2333, the second spring 2333 is sleeved on the guide shaft 2332, the guide shaft 2332 is arranged on the connecting rod 2331, and the guide shaft 2332 is along the The moving direction of the connecting rod 2331 extends.
  • One end of the connecting rod 2331 is fixed in rotation, and the other end of the connecting rod 2331 is connected to the first sleeve 231 and configured to control the relative approach or separation of the first sleeve 231 and the second sleeve 232 .
  • the operation part 233 also includes a button 2335, which is arranged on the connecting rod 2331 and is configured to control the movement of the connecting rod 2331 by pressing.
  • the button 2335 includes a silicone button, and the silicone button is protruded on the connecting rod 2331, which is convenient for the user to press the silicone button, provides the user with a comfortable degree of pressing, and makes the user experience better, and is also convenient to control the movement of the connecting rod 2331.
  • the intravascular ultrasound retraction device 1 further includes a frame 400 on which the base 600 is installed.
  • the connecting rod 2331 is assembled on the frame 400 by screws.
  • the operating part 233 also includes a second pin and flat washer 2334 .
  • the connecting rod 2331 is sleeved on the second pin, and the silicone button is sleeved on the connecting rod 2331 .
  • the guide shaft 2332 passes through the second spring 2333, the flat washer 2334 and the connecting rod 2331 in sequence, and is fixedly assembled on the base 600 with two screws, so as to guide and assist reset for the swinging movement of the connecting rod 2331.
  • the connecting rod 2331 swings around a fixed fulcrum. During the swinging process, the connecting rod 2331 compresses the second spring 2333 , so that the first sleeve 231 rotates around the second sleeve 232 .
  • the second sleeve 232 rises around the helical slope of the first sleeve 231. After the second sleeve 232 rises for a certain distance, the first transmission member 211 is separated from the second transmission member 221, so that the power source assembly The power delivery of the 100 was discontinued. At this time, the intravascular ultrasound retraction device 1 may be manually operated to make the intravascular ultrasound retraction device 1 perform a retraction movement.
  • the connecting rod 2331 when the user releases the connecting rod 2331 , the connecting rod 2331 is reset under the compression force of the second spring 2333 , and drives the first sleeve 231 to reset and rotate. In this way, the second sleeve 232 descends along the helical slope of the first sleeve 231 during the rotation.
  • the first transmission member 211 is in contact with the second transmission member 221 , and the power transmission of the power source assembly 100 continues. At this time, the movement of the intravascular ultrasonic retraction device 1 can be controlled by the power source assembly 100 .
  • the connecting rod 2331 moves along the first direction, the first sleeve 231 rotates along the first direction, and the first sleeve 231 reciprocates up and down along a direction perpendicular to the first direction.
  • the first direction is the direction of the pressing force F1.
  • the connecting rod 2331 is subjected to an external pressing force F1 and rotates around a fixed fulcrum.
  • the pressing force F1 counteracts the resistance F2 of the second spring 2333 and also provides the circumferential force F3 required for the rotation of the first sleeve 231 .
  • the first sleeve 231 rotates around the second sleeve 232 under the action of the circumferential force F3.
  • the helical slope of the second sleeve 232 is pressed by the helical slope of the first sleeve 231, thereby exerting a reaction force F4.
  • Part of the reaction force F4 is used to balance the circumferential force F3, and the other part is transformed into a component force F5, which overcomes the elastic force F6 and makes the first sleeve 231 move upwards, thereby realizing the disengagement of the first transmission member 211 from the second transmission member 221, and automatically
  • the retracement movement is transformed into a manual retracement movement.
  • the resistance F2 of the second spring 2333 forces the connecting rod 2331 to reset, and a part of the circular force is provided during the reset process of the connecting rod 2331 to make the first sleeve 231 rotate.
  • the first sleeve 231 moves downward, and the helical inclined surface of the second sleeve 232 is in contact with the helical inclined surface of the first sleeve 231, so that the first transmission member 211 and the second transmission member 221 , the power of the power source assembly 100 is continuously transmitted to the second transmission member 221 .
  • the manual retracement movement is transformed into an automatic retracement movement.
  • the connecting rod 2331 Through the swinging movement of the connecting rod 2331 , the short-distance operation stroke is transformed into a long-distance working stroke.
  • the layout space of the intravascular ultrasound retraction device 1 is effectively utilized, and the external dimensions of the intravascular ultrasound retraction device 1 are reduced.
  • the helical inclined surface of the first sleeve 231 is guided by the helical inclined surface of the second sleeve 232 to perform a helical lifting movement around the central axis of the second sleeve 232 .
  • the intravascular ultrasound retraction device 1 further includes a sensor assembly configured to detect the movement state of the intravascular ultrasound retraction device 1 .
  • the relative rotation of the first sleeve 231 and the second sleeve 232 is controlled by the operating part 233, so that the first sleeve 231 and the second sleeve 232 approach or move away from each other, thereby realizing the power transmission of the power source assembly 100 to the first
  • the transmission part 210 the first transmission part 210 transmits power to the second transmission part 220 .
  • the movement of the second transmission part 220 can be realized through manual control, and then the intravascular ultrasonic retraction device 1 can be smoothly switched between manual and automatic, so as to meet the diverse needs of users.
  • the sensor component can timely feed back the motion state and/or working state of the intravascular ultrasonic retraction device 1 , making the process of automatic control or manual control more accurate, and avoiding jumps in speed and sudden changes in motion transmission.
  • the sensor component can timely feed back the motion state or working state of the intravascular ultrasonic retraction device 1 , making the process of automatic control or manual control more accurate, and avoiding jumps in speed and sudden changes in motion transmission.
  • the sensor component can also timely feed back the movement state and working state of the intravascular ultrasonic retraction device 1 to achieve more accurate operation.
  • the movement status of the intravascular ultrasonic retraction device 1 refers to the retraction speed and distance of the intravascular ultrasonic retraction device 1
  • the working state of the intravascular ultrasonic retraction device 1 refers to whether the intravascular ultrasonic retraction device 1 is in an automatic working state or not.
  • Manual working status Specifically, the sensor component can detect the retraction speed of the intravascular ultrasonic retraction device 1 to ensure that the retraction speed of the intravascular ultrasonic retraction device 1 is uniform and stable during the retraction process, and avoid speed jumps.
  • the sensor assembly can also control the retraction stroke, so as to avoid the situation that the intravascular ultrasonic retraction device 1 collides with the structural member during the retraction process.
  • the sensor component can also detect whether the actual motion parameters of the intravascular ultrasonic retraction device 1 meet the control requirements, so as to ensure the stability of the retraction process.
  • the sensor assembly can also detect the movement state of the operating part 233, so as to monitor the switching of the automatic control state or the manual control state of the intravascular ultrasonic retraction device 1, and determine whether the intravascular ultrasonic retraction device 1 is in the automatic working state or the manual working state.
  • the sensor assembly can also detect whether the first sleeve 231 and the second sleeve 232 are in a staggered state or in an aligned state, so as to feed back whether the intravascular ultrasonic retraction device 1 is in an automatic working state or a manual working state. Specifically, when it is detected The first sleeve 231 and the second sleeve 232 are in the staggered state, which indicates that the intravascular ultrasonic retraction device 1 is in the working state of manual control at this time, otherwise when it is detected that the first sleeve 231 and the second sleeve 232 are in the Aligned state, which indicates that the intravascular ultrasonic retraction device 1 is in the working state of automatic control at this time.
  • the use of the transmission connection or transmission disconnection between the first transmission part 210 and the second transmission part 220 enables the intravascular ultrasonic retraction device 1 to switch smoothly between manual operation and automatic control, thereby making it more accurate.
  • the movement of the intravascular ultrasonic retraction device 1 can be accurately controlled to meet the diverse use requirements in clinical applications.
  • the motion state of the intravascular ultrasonic retraction device 1 can be quickly fed back, thereby improving the accuracy of motion control.
  • the sensor assembly includes a motion detection assembly 500 installed on the base 600 and configured to detect the motion state of the connecting rod 2331 .
  • the motion detection assembly 500 includes a motion detection member 510 disposed on a motion path of the operation member 233 .
  • the movement detection member 510 is disposed on the movement path of the connecting rod 2331 .
  • the motion detection member 510 includes a lever.
  • the connecting rod 2331 can do reciprocating swinging motion, and the motion detection part 510 is arranged on the movement path of the connecting rod 2331. When the connecting rod 2331 swings, the motion detecting part 510 can be triggered by the connecting rod 2331, so that the motion detection component 500 can be controlled by the feedback circuit Signal.
  • the motion detection component 500 detects the motion state of the connecting rod 2331, and judges whether the first sleeve 231 and the second sleeve 232 in the clutch mechanism 230 are staggered or aligned through the motion state of the connecting rod 2331, and then feeds back the circuit control signal in time , and issue circuit control commands.
  • the connecting rod 2331 is not subjected to pressing force, the first sleeve 231 and the second sleeve 232 are fitted and aligned, and the motion detection assembly 500 is pressed by the connecting rod 2331, thereby triggering the circuit control signal and feeding back the circuit control signal to the control system.
  • the connecting rod 2331 is pressed, the first sleeve 231 and the second sleeve 232 are staggered, the motion detection assembly 500 is reset, the switch circuit signal is disconnected, and the control system determines the position of the first sleeve 231 and the second sleeve 232 according to the circuit signal.
  • the state that is, the staggered state or the aligned state, determines the working state of the intravascular ultrasonic retraction device 1 .
  • the motion detection assembly 500 also includes a micro switch.
  • the micro switch includes three pins, which are pin A, pin B and pin C.
  • Pin C is a common terminal, pin A and pin C form a circuit loop when not triggered, and pin B and pin C form a circuit loop when triggered.
  • the sensor assembly also includes a clutch detection assembly (not shown in the figure), and the clutch detection assembly is configured to detect that the first sleeve 231 and the second sleeve 232 are relatively close or far away.
  • the clutch detection component is arranged on the base 600 .
  • the clutch detection assembly can also be arranged on the second sleeve 232 .
  • the clutch detection component includes a micro switch, and its detection principle is consistent with that of the motion detection component 500.
  • the clutch detection part of the clutch detection component is arranged on the movement path of the first sleeve 231, and the micro switch can perform automatic control and safety protection, and improve the performance of the clutch. Check the control accuracy of the components.
  • the retraction movement of the intravascular ultrasonic retraction device 1 is in the automatic operation mode, and disengagement between the first transmission part 210 and the second transmission part 220 is not allowed. In the event of disengagement, the automatic operation mode must be controlled to stop immediately. Similarly, the retraction movement of the intravascular ultrasonic retraction device 1 is in the manual operation mode, and it is not allowed to be powered on to trigger the automatic operation state. Therefore, in order to ensure the safety and effectiveness of the intravascular ultrasonic retraction device 1 during the switching process between automatic and manual operation, a clutch detection component is set to detect the transmission state between the first transmission part 210 and the second transmission part 220 . Once the clutch detection component detects the state changes of the first transmission part 210 and the second transmission part 220, it can timely feed back the circuit signal to the control system, and the control system will issue corresponding control commands.
  • the sensor assembly further includes an encoding detection assembly 300, the clutch lower shaft 222 is assembled and fixed on the base 600 through two bearings, the encoding detection assembly 300 is arranged on the second transmission part 220, and is configured to monitor and feed back the retraction movement parameters.
  • the encoding detection assembly 300 is arranged on the clutch lower shaft 222 .
  • the code detection component 300 includes a code disc 310 and a reading head 320, and the code detection component 300 is configured to feed back the retraction speed and distance of the intravascular ultrasound retraction device 1 in real time.
  • An encoding detection component 300 is provided on the clutch lower shaft 222 to monitor the retraction speed of the intravascular ultrasonic retraction device 1 to ensure that the retraction speed is uniform and stable during the retraction process and to avoid speed jumps.
  • the code detection component 300 can also be set in the second transmission part 220, configured to detect whether the actual motion parameters of the intravascular ultrasonic retraction device 1 meet the control requirements.
  • the intravascular ultrasonic retraction device 1 also includes an electronic limit switch, which is arranged on the base 600 and is configured to control the retraction stroke and avoid hitting other structural components during the retraction process.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种血管内超声回撤装置及系统。其中,血管内超声回撤装置(1)配置成实现导管在血管里回撤,包括基座(600)、动力源组件(100)和传动组件(200),动力源组件(100)和传动组件(200)装配在基座(600)上,动力源组件(100)配置成为传动组件(200)提供动力;传动组件(200)包括第一传动部(210)、第二传动部(220)和离合机构(230);第一传动部(210)与动力源组件(100)连接,离合机构(230)连接在第一传动部(210)和第二传动部(220)之间,第二传动部(220)配置成带动导管进行回撤运动;离合机构(230)包括第一套筒(231)、第二套筒(232)和操作部件(233);且第一套筒(231)和第二套筒(232)的相接面包括斜面;操作部件(233)用于控制第一套筒(231)和第二套筒(232)相对旋转,以使第一套筒(231)和第二套筒(232)对齐或错开,使得第一传动部(210)和第二传动部(220)的传动连接或者传动断开。能够实现在手动和自动之间平稳地切换。

Description

血管内超声回撤装置及系统
领域
本申请涉及医疗器械技术领域,尤其涉及一种血管内超声回撤装置及系统。
背景
血管内超声回撤装置能够起到导管推拉运动的作用,从而满足血管内超声回撤装置对血管的轴向成像的必要需求。在临床应用上,血管内超声回撤装置需要满足手动模式和自动模式能够相互间进行切换。
目前市面上的产品,血管内超声回撤装置的手动和自动切换是通过电磁离合器或机械式离合器与解锁机构一起来实现。
机械式离合器包括牙嵌式齿形啮合或锥齿形啮合。解锁机构有多连杆机构,其是利用拔叉直接分离机械式离合器,摆杆驱动机械式离合器转子旋转分离。
多连杆机构的方式对于生产制造的要求高,在装配过程中容易出现卡死现象,调试困难且效率低。
摆杆驱动机械式离合器转子旋转分离的方式结构简单,零件数量少,装配简单,但其单边导向容易造成离合器脱离和啮合运动不平稳,或者造成整个血管内超声回撤装置运动传递的不平稳,且阻力较大,用户体验度不高。
电磁离合器虽然装配方便,但其需要电路控制,增加电路设计成本,且容易发热,从而影响产品使用。
概述
为了解决相关技术中血管内超声回撤装置在自动切换和手动切换之间运动传递平稳性的技术问题,本申请提供了一种血管内超声回撤装置及系统。
第一方面,本申请的一个实施例提供一种血管内超声回撤装置,配置成实现导管在血管里回撤,包括:基座、动力源组件和传动组件,所述动力源组件和所述传动组件装配在所述基座上,所述动力源组件配置成为所述传动组件提供动力;
所述传动组件包括第一传动部、第二传动部和离合机构;所述第一传动部与所述动力源组件连接,所述离合机构连接在所述第一传动部和所述第二传动部之间,所述第二传动部配置成带动所述导管进行回撤运动;
所述离合机构包括第一套筒、第二套筒和操作部件,所述第一套筒和所述第一传动部连接,所述第二套筒与所述第二传动部连接;所述第一套筒和所述第二套筒同轴设置,且所述第一套筒和所述第二套筒的相接面包括斜面;
所述操作部件用于控制所述第一套筒和所述第二套筒相对旋转,以使所述第一套筒和所述第二套筒对齐或错开,从而使得所述第一传动部和所述第二传动部的传动连接或者传动断开。
在本申请的一个实施例中,所述动力源组件包括电机;所述第一传动部包括电机齿轮、离合齿轮、第一传动件、离合上轴、离合中间轴和第一弹簧;
所述电机驱动所述电机齿轮转动,所述离合齿轮与所述电机齿轮啮合,所述离合齿轮与所述离合上轴刚性连接,所述第一弹簧套设在所述离合上轴的外周侧,所述离合上轴与所述离合中间轴周向限位,所述离合中间轴与所述第一传动件传动连接,所述第一传动件与所述第二传动部传动连接。
在本申请的一个实施例中,所述第二传动部包括第二传动件、离合下轴、回撤下齿轮和齿条;
所述第二传动件与所述第一传动部传动连接,所述第二传动件与所述离合下轴连接,所述回撤下齿轮设置在所述离合下轴上,所述回撤下齿轮与所述齿条啮合。
在本申请的一个实施例中,所述第一传动部和所述第二传动部通过齿轮传动连接;或者,所述第一传动部和所述第二传动部通过摩擦轮传动连接。
在本申请的一个实施例中,所述操作部件包括连接杆、导向轴和第二弹簧,所述第二弹簧套设在所述导向轴上,所述导向轴设置在所述连接杆上,所述导向轴沿所述连接杆的运动方向延伸;所述连接杆的一端转动固定,所述连接杆的另一端与所述第一套筒连接并且配置成控制所述第一套筒和所述第二套筒的相对靠近或远离。
在本申请的一个实施例中,所述操作部件还包括按键,所述按键设置在所述连接杆上并且配置成按压控制所述连接杆运动。
在本申请的一个实施例中,所述血管内超声回撤装置还包括位移传感器,所述位移传感器设置在所述基座上,所述位移传感器配置为检测所述第一套筒相对于所述第二套筒在竖直方向上的位移。
在本申请的一个实施例中,所述斜面包括螺旋斜面,所述螺旋斜面的导程角度大于或等于20°,且小于或等于40°。
在本申请的一个实施例中,所述螺旋斜面的导程角度大于或等于30°,且小于或等于35°。
在本申请的一个实施例中,所述血管内超声回撤装置还包括传感器组件,所述传感器组件配置成检测所述血管内超声回撤装置的运动状态和/或工作状态。
在本申请的一个实施例中,所述传感器组件包括编码检测组件,编码检测组件包括码盘和读头,所述码盘设置在所述第二传动部上,所述读头设置在所述基座上,所述编码检测组件配置成反馈所述血管内超声回撤装置的回撤速度和距离。
在本申请的一个实施例中,所述传感器组件包括运动检测组件,所述运动检测组件安装在所述基座上;所述运动检测组件包括运动检测件,所述运动检测件设置在所述操作部件的运动路径上并且配置成检测所述操作部件的运动状态。
在本申请的一个实施例中,所述传感器组件包括离合检测组件,所述离合检测组件配置成检测所述第一套筒和所述第二套筒相对靠近或远离;所述离合检测组件设置在所述基座上,或者,所述离合检测组件设置在所述第二套筒上。
第二方面,本申请的一个实施例还提供一种血管内超声回撤系统,所述血管内超声回撤系统包括底座和上述的血管内超声回撤装置,所述血管内超声回撤装置安装在所述底座上。
本申请实施例提供了一种血管内超声回撤装置,配置成实现导管在血管里回撤,包括:基座、动力源组件和传动组件。传动组件包括第一传动部、第二传动部和离合机构。离合机 构包括第一套筒、第二套筒和操作部件。操作部件配置成控制第一套筒和第二套筒相对旋转,以使第一套筒和第二套筒对齐或错开,实现第一传动部和第二传动部的传动连接或者传动断开。通过操作部件控制第一套筒和第二套筒相对旋转,使得第一套筒和第二套筒相互靠近或远离,从而实现动力源组件的动力传输至第一传动部,第一传动部将动力传输至第二传动部。或者,通过手动控制实现第二传动部的运动,进而实现血管内超声回撤装置在手动和自动之间平稳地切换,满足用户的多样化使用需求。
附图的简要说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的一个实施例提供的一种血管内超声回撤装置的结构示意图;
图2为本申请的一个实施例提供的一种血管内超声回撤装置的部分分解图;
图3为本申请的一个实施例提供的第一套筒和第二套筒对齐的结构示意图;
图4为本申请的一个实施例提供的第一套筒和第二套筒错开的结构示意图;
图5为本申请的一个实施例提供的第一套筒和第二套筒的结构示意图;
图6为本申请的一个实施例提供的一种血管内超声回撤装置的剖面图;
图7为本申请的一个实施例提供的连接杆按压状态的结构示意图;
图8为本申请的一个实施例提供的连接杆原始状态的结构示意图;
图9和图10为本申请的一个实施例提供的血管内超声回撤装置的受力分解示意图。
附图标记:
1、血管内超声回撤装置;
100、动力源组件;
200、传动组件;
400、机架;
600、基座;
110、电机;
210、第一传动部;
211、第一传动件;
212、离合上轴;
213、离合中间轴;
214、第一弹簧;
215、轴承限位圈;
216、第一销钉;
217、第一轴承;
218、离合齿轮;
219、电机齿轮;
220、第二传动部;
221、第二传动件;
222、离合下轴;
223、回撤下齿轮;
230、离合机构;
231、第一套筒;
232、第二套筒;
233、操作部件;
2331、连接杆;
2332、导向轴;
2333、第二弹簧;
2334、平垫圈;
2335、按键;
310、码盘;
320、读头;
510、运动检测件。
详述
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
参考图1至图10,本申请的一个实施例提供了一种血管内超声回撤装置1,配置成实现导管在血管里回撤,包括:基座600、动力源组件100和传动组件200。动力源组件100和传动组件200装配在基座600上,动力源组件100配置成为传动组件200提供动力。
参考图3和图4,传动组件200包括第一传动部210、第二传动部220和离合机构230;第一传动部210与动力源组件100连接,离合机构230连接在第一传动部210和第二传动部220之间,第二传动部220配置成带动导管进行回撤运动。
离合机构230包括第一套筒231、第二套筒232和操作部件233,第一套筒231和第一传动部210连接,第二套筒232与第二传动部220连接;第一套筒231和第二套筒232同轴设置,且第一套筒231和第二套筒232的相接面包括斜面;操作部件233用于控制第一套筒231和第二套筒232相对旋转,以使第一套筒231和第二套筒232对齐或错开,从而使得第一传动部210和第二传动部220的传动连接或者传动断开。
本申请的一个实施例还提供了一种血管内超声回撤系统,血管内超声回撤系统包括底座和血管内超声回撤装置1。血管内超声回撤装置1安装在底座上。血管内超声回撤装置1通过第二传动部220与血管内超声回撤系统的底座(图未示)连接。
利用本申请的一个实施例提供的血管内超声回撤装置1,通过操作部件233控制第一套筒 231和第二套筒232相对靠近,使得第一套筒231和第二套筒232对齐,从而使得第一传动部210与第二传动部220传动连接。然后通过动力源组件100将动力传输至第一传动部210,第一传动部210将动力传输至第二传动部220,使得血管内超声回撤装置1能够相对于血管内超声回撤系统的底座移动,从而实现血管内超声回撤装置1带动导管在血管里回撤。
其中,所谓的传动连接是指动力源组件100提供的动力能够经由第一传动部210传输到第二传动部220,所谓的传动断开是指动力源组件100提供的动力不能够经由第一传动部210传输到第二传动部220,也就是第一传动部210与第二传动部220的连接关系断开。
继续参考图3和图4,通过操作部件233控制第一套筒231和第二套筒232相对远离,使得第一套筒231和第二套筒232错开,使得第一传动部210与第二传动部220传动断开,从而实现通过手动控制血管内超声回撤装置1相对于底座的移动配置成带动导管在血管里回撤。
综上,利用第一传动部210与第二传动部220之间的传动连接或传动断开,使得血管内超声回撤装置1在手动操作和自动控制之间平稳地切换,从而更加精准地控制血管内超声回撤装置1的运动,满足临床应用上的多样化使用需求。
参考图5,第一套筒231利用外圆周面与第二套筒232进行周向限位,第一套筒231和第二套筒232的相接面为斜面,斜面包括螺旋斜面。第一套筒231上具有螺旋斜面,第二套筒232上也具有螺旋斜面,两个螺旋斜面对称分布、且相互配合。使得第一套筒231在转动过程中,绕着第二套筒232的螺旋斜面运动,并确保第一套筒231的运动平稳且顺畅。
第一套筒231和第二套筒232的螺旋斜面对齐时,动力源组件100的运动传递顺畅,此时处于自动回撤模式。第一套筒231和第二套筒232的螺旋斜面错开时,动力源组件100的运动传递中止,此时处于手动回撤模式。
一方面,利用操作部件233驱动第一套筒231和第二套筒232旋转分离,第一套筒和第二套筒232的螺旋斜面为对称双导向的方式,零部件数量减少,使得整个血管内超声回撤装置1结构简单;另一方面,利用螺旋斜面实现自动回撤和手动回撤之间的切换,改善手动回撤和自动回撤之间运动的平稳性,提升用户操作的体验感,其中,第一套筒231和第二套筒232的斜面的数量可以是2条,也可以是3条,数量可以根据需求设置不加以限定,只要第一套筒231和第二套筒232的斜面数量对应即可。
进一步的,螺旋斜面的导程角大于或等于20°,且小于或等于40°。导程角也称为螺纹升角,是螺纹的中径展开的圆周线与螺旋线的夹角。螺旋斜面的导程角设置为大于或等于20°,可以让用户用更小的力进行手动和自动回撤的切换,并且使第一套筒231和第二套筒232相对移动更加平稳、顺滑。
在一个具体实施方式中,设置螺旋斜面的导程角大于或等于30°,且小于或等于35°。螺旋斜面的导程角设置为大于或等于30°,可以让用户用更小的力进行手动和自动回撤的切换,进一步使得第一套筒231和第二套筒232相对移动更加平稳、顺滑。设置螺旋斜面的导程角小于或等于35°,可以避免第一套筒231和第二套筒232在手动和自动回撤切换中滑脱。
参考图6,动力源组件100包括电机110。第一传动部210包括齿轮组、第一传动件211、离合上轴212、离合中间轴213和第一弹簧214。齿轮组包括互相啮合的电机齿轮219和离合齿轮218。电机齿轮219与离合齿轮218啮合从而构成齿轮组传动。电机110包括减速电机。减速电机将旋转运动传递到电机齿轮219上,电机齿轮219将旋转运动传递到离合齿轮218上。离 合齿轮218与离合上轴212刚性连接,离合上轴212与离合中间轴213周向限位,以便于实现运动的传递。
具体地,离合上轴212设置有扁位,离合中间轴213设置有凹槽,离合上轴212的扁位与离合中间轴213的凹槽相匹配,从而实现离合上轴212与离合中间轴213的周向限位,进而将旋转运动从离合上轴212传递到离合中间轴213上。
第一弹簧214套设在离合上轴212的外周侧,离合齿轮218在第一弹簧214的回复力作用下,可以使得第一套筒231沿着与第二套筒232的相接面旋转下降,从而使得运动传递继续进行。利用第一弹簧214起到复位作用,第一套筒231与第二套筒232之间力的传递较为平稳。
离合中间轴213与第一传动件211传动连接,离合中间轴213与第一传动件211通过紧定螺钉固定连接。第一传动件211与第二传动部220传动连接,从而实现运动的传递。
第一传动部210还包括轴承限位圈215、第一销钉216、第一轴承217和第二轴承。第一轴承217和第二轴承装配在第一套筒231上,轴承限位圈215配置成对第一轴承217进行限位固定;离合中间轴213配置为相对于第一套筒231转动。这样,避免第一传动部210在与第二传动部220相对远离时出现过约束的情况。且第一销钉216与第一套筒231过盈配合,能够为第一传动部210提供运动支撑。
第二传动部220包括第二传动件221、离合下轴222和齿轮齿条组件。齿轮齿条组件包括回撤下齿轮223和齿条。第二传动件221与第一传动件211传动连接,第一传动件211和第二传动件221之间可以通过齿轮传动连接。当然,第一传动件211和第二传动件221之间也可以通过摩擦轮传动连接。
第一传动件211与第二传动件221之间传动连接,可以为齿轮啮合方式,也可以为摩擦轮方式,两者都可以实现运动的传递。当然,第一传动件211与第二传动件221之间运动传递方式不限于上述两种方式,其他方式实现第一传动件211和第二传动件221之间的运动传递,均可以应用到本申请实施例中。
第二传动件221与离合下轴222连接,第二传动件221通过紧定螺钉固定在离合下轴222上。回撤下齿轮223设置在离合下轴222上,离合下轴222的另一端具有方形扁位,通过螺钉和方形扁位将离合下轴222与回撤下齿轮223固定连接。从而实现整个旋转运动的传递。
回撤下齿轮223与齿条啮合,回撤下齿轮223与设置在底座上的齿条传动连接,从而实现将旋转运动转化为直线运动,满足血管内超声系统对于自动回撤运动的要求。
操作部件233用于控制第一套筒231和第二套筒232相对旋转,以使第一套筒231和第二套筒232对齐或错开,可以是第一套筒231能够相对于第二套筒232旋转,第二套筒231固定不动;可以是第二套筒232能够相对于第一套筒231旋转,第一套筒231固定不动,可以是第一套筒231和第二套筒232都可以旋转。
具体地,第二套筒232固定在基座600上,第一套筒231在操作部件233的作用下,能够相对于第一套筒231旋转分离并沿着竖直方向移动,其中,当第一传动件211和第二传动件221之间通过齿轮传动连接,在装配血管内超声回撤装置1前可以通过测量获取两个齿轮啮合的深度(指两个齿轮沿竖直方向啮合的距离),在基座600上设置一个位移传感器(图未示出),通过位移传感器检测第一套筒231相对于第二套筒232沿竖直方向的位移,通过获取的第一套筒231的位移量与两个齿轮啮合的深度比较,可以知道两个齿轮是处于完全啮合状态、未完 全啮合状态还是脱离状态。
比如检测到第一套筒231的位移为零,这说明两个齿轮为完全啮合的状态,如果位移量为一半左右的深度,这说明其处于未完全啮合的状态,此时不应当进行手动回撤或者自动回撤的操作,应停止回撤操作及时排查问题,待问题解决后再进行回撤操作。
位移传感器为电位器式位移传感器、光电式位移传感器或激光位移传感器中的任意一种,比如,将激光位移传感器设置在基座600上,且激光位移传感器位于第一套筒231的上方,激光位移传感器内部是由处理器单元、回波处理单元、激光发射器、激光接收器等部分组成。激光位移传感器通过激光发射器每秒发射一百万个激光脉冲到第一套筒231并返回至接收器,处理器计算激光脉冲遇到第一套筒231并返回至接收器所需的时间,以此计算出距离值,从而可以计算位移量。
参考图1和图2,操作部件233包括连接杆2331、导向轴2332和第二弹簧2333,第二弹簧2333套设在导向轴2332上,导向轴2332设置在连接杆2331上,导向轴2332沿连接杆2331的运动方向延伸。连接杆2331的一端转动固定,连接杆2331的另一端与第一套筒231连接配置成控制第一套筒231和第二套筒232的相对靠近或远离。操作部件233还包括按键2335,按键2335设置在连接杆2331上,配置成按压控制连接杆2331运动。按键2335包括硅胶按键,硅胶按键凸设于连接杆2331上,这样便于用户按压硅胶按键,提供用户按压的舒适度,进而使得用户体验更好,也便于控制连接杆2331的运动。
血管内超声回撤装置1还包括机架400,基座600安装在机架400上。连接杆2331通过螺钉装配在机架400上。操作部件233还包括第二销钉和平垫圈2334。连接杆2331套在第二销钉上,硅胶按键套在连接杆2331上。导向轴2332依次穿过第二弹簧2333、平垫圈2334和连接杆2331,并利用两颗螺钉固定装配在基座600上,为连接杆2331的摆动运动进行导向和辅助复位。
参考图7,当用户按压连接杆2331,使得连接杆2331绕着固定的支点进行摆动。在摆动的过程中,连接杆2331压缩第二弹簧2333,从而使得第一套筒231绕第二套筒232转动。
在转动过程中,第二套筒232绕着第一套筒231的螺旋斜面上升,第二套筒232上升一段距离后,第一传动件211与第二传动件221脱离,从而使得动力源组件100的动力传递中止。此时,可以通过手动操作血管内超声回撤装置1,使得血管内超声回撤装置1进行回撤运动。
参考图8,当用户松开连接杆2331,连接杆2331在第二弹簧2333的压缩力作用下进行复位,并带动第一套筒231复位旋转。这样,第二套筒232在转动的过程中,沿着第一套筒231的螺旋斜面下降。使得第一传动件211与第二传动件221贴合,动力源组件100的动力传递继续进行。此时可以通过动力源组件100控制血管内超声回撤装置1的运动。
连接杆2331沿第一方向运动,第一套筒231沿第一方向做旋转运动,且第一套筒231沿与第一方向垂直的方向做上下往复运动。第一方向为按压力F1的方向。
参考图9和图10,连接杆2331受到外部按压力F1的作用,绕着固定的支点转动。按压力F1抵消第二弹簧2333的阻力F2,还提供第一套筒231转动所需要的圆周力F3。第一套筒231在圆周力F3的作用下,绕着第二套筒232转动,此时,第二套筒232的螺旋斜面受到第一套筒231的螺旋斜面挤压,从而施加一个反作用力F4。反作用力F4一部分用来平衡圆周力F3,另一部分转变为分力F5,分力F5克服弹力F6使得第一套筒231向上运动,从而实现第一传动件211与第二传动件221脱离,自动回撤运动转变为手动回撤运动。
当松开按压连接杆2331的按压力F1时,第二弹簧2333的阻力F2迫使连接杆2331复位,连接杆2331复位过程中提供一部分圆周力促使第一套筒231旋转。同时,在弹力F6作用下第一套筒231向下运动,第二套筒232的螺旋斜面与第一套筒231的螺旋斜面对位贴合,从而使得第一传动件211与第二传动件221相贴合,动力源组件100的动力继续传输至第二传动件221。手动回撤运动转变为自动回撤运动。
这样,通过连接杆2331的摆动运动,从而实现短距离操作行程转变为长距离工作行程。有效地利用血管内超声回撤装置1的布局空间,缩小血管内超声回撤装置1的外形尺寸。在连接杆2331摆动运动的作用下,促使第一套筒231的螺旋斜面在第二套筒232的螺旋斜面导向下,绕着第二套筒232的中心轴进行螺旋升降运动。
在一个具体实施方式中,血管内超声回撤装置1还包括传感器组件,传感器组件配置成检测血管内超声回撤装置1的运动状态。这样,通过操作部件233控制第一套筒231和第二套筒232相对旋转,使得第一套筒231和第二套筒232相互靠近或远离,从而实现动力源组件100的动力传输至第一传动部210,第一传动部210将动力传输至第二传动部220。或者,通过手动控制实现第二传动部220的运动,进而实现血管内超声回撤装置1在手动和自动之间平稳地切换,满足用户的多样化使用需求。且传感器组件能够及时反馈血管内超声回撤装置1的运动状态和/或工作状态,使得自动控制或手动控制的过程更加精准,避免速度出现跳变、运动传递突变的情况。
传感器组件能够及时反馈血管内超声回撤装置1的运动状态或工作状态,使得自动控制或手动控制的过程更加精准,避免速度出现跳变、运动传递突变的情况。当然,传感器组件还可以及时反馈血管内超声回撤装置1的运动状态和工作状态,实现更准确地操作。
其中,血管内超声回撤装置1的运动状态指血管内超声回撤装置1的回撤速度和距离,血管内超声回撤装置1工作状态指血管内超声回撤装置1处于自动的工作状态还是手动的工作状态。具体地,传感器组件可以检测血管内超声回撤装置1的回撤速度,确保血管内超声回撤装置1的回撤速度在回撤过程中均匀平稳,避免速度跳变的情况出现。同时,传感器组件还可以控制回撤的行程,避免血管内超声回撤装置1在回撤过程中撞击结构件的情况。且传感器组件还可以检测血管内超声回撤装置1的实际运动参数是否符合控制要求,确保回撤过程的平稳性。传感器组件还可以检测操作部件233的运动状态,从而监测血管内超声回撤装置1自动控制状态或手动控制状态的切换,确定血管内超声回撤装置1是处于自动工作状态还是手动工作状态。传感器组件还可以检测第一套筒231和第二套筒232是处于错开状态或对齐状态,从而反馈血管内超声回撤装置1处于自动的工状态还是手动的工作状态,具体的,当检测到第一套筒231和第二套筒232处于错开状态,这表明此时血管内超声回撤装置1正处于手动控制的工作状态,反之当检测到第一套筒231和第二套筒232处于对齐状态,这表明此时血管内超声回撤装置1正处于自动控制的工作状态。
综上所述,利用第一传动部210与第二传动部220之间的传动连接或传动断开,使得血管内超声回撤装置1在手动操作和自动控制之间平稳地切换,从而更加精准地控制血管内超声回撤装置1的运动,满足临床应用上的多样化使用需求。且通过设置传感器组件能够快速反馈血管内超声回撤装置1的运动状态,提高运动控制的精准性。
参考图7和图8,传感器组件包括运动检测组件500,运动检测组件500安装在基座600上, 配置成检测连接杆2331的运动状态。运动检测组件500包括运动检测件510,运动检测件510设置在操作部件233的运动路径上。运动检测件510设置在连接杆2331的运动路径上。运动检测件510包括拨杆。连接杆2331可以做往复摆动运动,运动检测件510设置在连接杆2331的运动路径上,当连接杆2331摆动时,运动检测件510可以被连接杆2331触发,从而使得运动检测组件500反馈电路控制信号。
运动检测组件500检测连接杆2331的运动状态,通过连接杆2331的运动状态,从而判断离合机构230中的第一套筒231和第二套筒232是否错开或对齐,进而及时地反馈电路控制信号,并发出电路控制命令。
在正常情况下,连接杆2331没有受到按压力的作用,第一套筒231和第二套筒232贴合并对齐,运动检测组件500受到连接杆2331的按压,从而触发电路控制信号,并反馈电路控制信号给控制系统。当按压连接杆2331时,第一套筒231和第二套筒232错开,运动检测组件500复位,开关电路信号断路,控制系统根据电路信号判断定第一套筒231和第二套筒232的状态,即是处于对其错开状态或对齐状态,确定血管内超声回撤装置1的工作状态。
运动检测组件500还包括微动开关。微动开关包括三个引脚,分别是引脚A、引脚B和引脚C。引脚C是公共端,未触发时引脚A和引脚C组成电路回路,触发时引脚B和引脚C组成电路回路。
传感器组件还包括离合检测组件(图未示),离合检测组件配置为检测第一套筒231和第二套筒232相对靠近或远离。离合检测组件设置在基座600上。当然,离合检测组件也可以设置在第二套筒232上。离合检测组件包括微动开关,其检测原理与运动检测组件500一致,离合检测组件的离合检测件设置在第一套筒231的运动路径上,微动开关能够进行自动控制和安全保护,提高离合检测组件的控制精度。
血管内超声回撤装置1的回撤运动在自动运行模式下,不允许第一传动部210和第二传动部220之间脱离。一旦出现脱离的情况,必须控制自动运行模式立即停止。同样的,血管内超声回撤装置1的回撤运动在手动运行模式下,不允许上电触发自动运行的状态。所以,为了保证血管内超声回撤装置1在自动和手动运行的切换过程中保证安全性和有效性,通过设置离合检测组件来检测第一传动部210和第二传动部220之间的传动状态。离合检测组件一旦检测到第一传动部210和第二传动部220的状态变化,能够及时反馈电路信号到控制系统,并由控制系统发出对应的控制命令。
参考图6,传感器组件还包括编码检测组件300,离合下轴222通过两个轴承装配固定在基座600上,编码检测组件300设置在第二传动部220上,配置成监测并反馈回撤运动的参数。编码检测组件300设置在离合下轴222上。
编码检测组件300包括码盘310和读头320,编码检测组件300配置为实时反馈血管内超声回撤装置1的回撤速度和距离。在离合下轴222上设置编码检测组件300监测血管内超声回撤装置1的回撤速度,确保回撤速度在回撤过程中均匀平稳,避免速度跳变的情况出现。
在一个具体实施方式中,还可以设置编码检测组件300在第二传动部220内,配置成检测血管内超声回撤装置1实际运动参数是否符合控制要求。
血管内超声回撤装置1还包括电子限位开关,电子限位开关设置在基座600上,配置成控制回撤的行程,避免回撤过程撞击其他结构部件的情况。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种血管内超声回撤装置,包括:基座、动力源组件和传动组件,所述动力源组件和所述传动组件装配在所述基座上,所述动力源组件配置成为所述传动组件提供动力;
    其中所述传动组件包括第一传动部、第二传动部和离合机构;所述第一传动部与所述动力源组件连接,所述离合机构连接在所述第一传动部和所述第二传动部之间,所述第二传动部配置成带动所述导管进行回撤运动;
    所述离合机构包括第一套筒、第二套筒和操作部件,所述第一套筒和所述第一传动部连接,所述第二套筒与所述第二传动部连接;所述第一套筒和所述第二套筒同轴设置,且所述第一套筒和所述第二套筒的相接面包括斜面;
    所述操作部件配置成控制所述第一套筒和所述第二套筒相对旋转,以使所述第一套筒和所述第二套筒对齐或错开,使得所述第一传动部和所述第二传动部的传动连接或者传动断开。
  2. 如权利要求1所述的血管内超声回撤装置,其中,所述动力源组件包括电机;所述第一传动部包括电机齿轮、离合齿轮、第一传动件、离合上轴、离合中间轴和第一弹簧;
    所述电机驱动所述电机齿轮转动,所述离合齿轮与所述电机齿轮啮合,所述离合齿轮与所述离合上轴刚性连接,所述第一弹簧套设在所述离合上轴的外周侧,所述离合上轴与所述离合中间轴周向限位,所述离合中间轴与所述第一传动件传动连接,所述第一传动件与所述第二传动部传动连接。
  3. 如权利要求1所述的血管内超声回撤装置,其中,所述第二传动部包括第二传动件、离合下轴、回撤下齿轮和齿条;
    所述第二传动件与所述第一传动部传动连接,所述第二传动件与所述离合下轴连接,所述回撤下齿轮设置在所述离合下轴上,所述回撤下齿轮与所述齿条啮合。
  4. 如权利要求1所述的血管内超声回撤装置,其中,所述第一传动部和所述第二传动部通过齿轮传动连接;或者,所述第一传动部和所述第二传动部通过摩擦轮传动连接。
  5. 如权利要求1所述的血管内超声回撤装置,其中,所述操作部件包括连接杆、导向轴和第二弹簧,所述第二弹簧套设在所述导向轴上,所述导向轴设置在所述连接杆上,所述导向轴沿所述连接杆的运动方向延伸;
    所述连接杆的一端转动固定,所述连接杆的另一端与所述第一套筒连接并且配置成控制所述第一套筒和所述第二套筒的相对靠近或远离。
  6. 如权利要求5所述的血管内超声回撤装置,其中,所述操作部件还包括按键,所述按键设置在所述连接杆上并且配置成按压控制所述连接杆运动。
  7. 如权利要求1所述的血管内超声回撤装置,其中,所述血管内超声回撤装置还包括位移传感器,所述位移传感器设置在所述基座上,所述位移传感器配置成检测所述第一套筒相对于所述第二套筒在竖直方向上的位移。
  8. 如权利要求1所述的血管内超声回撤装置,其中,所述斜面包括螺旋斜面,所述螺旋斜面的导程角度大于或等于20°,且小于或等于40°。
  9. 如权利要求8所述的血管内超声回撤装置,其中,所述螺旋斜面的导程角度大于或等于30°,且小于或等于35°。
  10. 如权利要求1所述的血管内超声回撤装置,其中,所述血管内超声回撤装置还包括传感器组件,所述传感器组件配置成检测所述血管内超声回撤装置的运动状态和/或工作状态。
  11. 如权利要求10所述的血管内超声回撤装置,其中,所述传感器组件包括编码检测组件,编码检测组件包括码盘和读头,所述码盘设置在所述第二传动部上,所述读头设置在所述基座上,所述编码检测组件配置成反馈所述血管内超声回撤装置的回撤速度和距离。
  12. 如权利要求10所述的血管内超声回撤装置,其中,所述传感器组件包括运动检测组件,所述运动检测组件安装在所述基座上;所述运动检测组件包括运动检测件,所述运动检测件设置在所述操作部件的运动路径上并且配置成检测所述操作部件的运动状态。
  13. 如权利要求10所述的血管内超声回撤装置,其中,所述传感器组件包括离合检测组件,所述离合检测组件配置成检测所述第一套筒和所述第二套筒相对靠近或远离;所述离合检测组件设置在所述基座上,或者,所述离合检测组件设置在所述第二套筒上。
  14. 一种血管内超声回撤系统,其中,所述血管内超声回撤系统包括底座以及如权利要求1至13任一项所述的血管内超声回撤装置,其中所述血管内超声回撤装置安装在所述底座上。
PCT/CN2022/089702 2021-09-27 2022-04-28 血管内超声回撤装置及系统 WO2023045329A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111136817.8A CN113576535B (zh) 2021-09-27 2021-09-27 血管内超声回撤装置及系统
CN202111136817.8 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023045329A1 true WO2023045329A1 (zh) 2023-03-30

Family

ID=78242409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089702 WO2023045329A1 (zh) 2021-09-27 2022-04-28 血管内超声回撤装置及系统

Country Status (2)

Country Link
CN (2) CN113576535B (zh)
WO (1) WO2023045329A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113576535B (zh) * 2021-09-27 2022-03-08 深圳北芯生命科技股份有限公司 血管内超声回撤装置及系统
CN114391880A (zh) * 2022-01-26 2022-04-26 深圳北芯生命科技股份有限公司 回撤装置以及包括该回撤装置的血管内超声设备
CN114176643B (zh) * 2022-02-17 2022-04-26 天津恒宇医疗科技有限公司 血管内超声成像回撤装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130079860A (ko) * 2012-01-03 2013-07-11 삼성메디슨 주식회사 초음파 진단장치
CN203192720U (zh) * 2013-04-28 2013-09-11 浙江德菱科技有限公司 重合闸断路器的双离合机构
CN204900704U (zh) * 2015-07-18 2015-12-23 屠申富 一种双向自动变速电机传动装置
CN208778590U (zh) * 2018-09-14 2019-04-23 长春福德机械制造有限公司 一种风机三轴变速箱的传动装置
CN208793602U (zh) * 2017-12-26 2019-04-26 杭州贵腾汽车传动科技有限公司 Dct双离合的操作执行机构
CN110432932A (zh) * 2018-05-03 2019-11-12 深圳开立生物医疗科技股份有限公司 一种血管内超声回撤机构
WO2020041948A1 (zh) * 2018-08-27 2020-03-05 深圳迈瑞生物医疗电子股份有限公司 一种升降平衡控制装置及乳腺超声成像系统
CN214549437U (zh) * 2021-09-29 2021-11-02 深圳北芯生命科技股份有限公司 一种血管内超声回撤系统的行进结构及回撤装置
CN113576535A (zh) * 2021-09-27 2021-11-02 深圳北芯生命科技股份有限公司 血管内超声回撤装置及系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB865565A (en) * 1957-10-22 1961-04-19 Rotork Eng Co Ltd Improvements in or relating to valve actuating mechanism
US20030216761A1 (en) * 1990-03-27 2003-11-20 Samuel Shiber Guidewire system
JP2000175917A (ja) * 1998-12-17 2000-06-27 Terumo Corp 超音波トランスデューサ軸方向移動装置および超音波カテーテル診断装置
US20050177073A1 (en) * 2003-06-17 2005-08-11 Samuel Shiber Guidewire system with a deflectable distal tip
CN201275158Y (zh) * 2008-07-18 2009-07-22 江苏省伤残人康复中心 电动假肢电动肘关节
TW201603851A (zh) * 2014-07-01 2016-02-01 賽諾菲公司 藥物輸送裝置
CN104921780B (zh) * 2015-06-23 2018-06-08 苏州迈迪诺生命科技有限公司 一种医用旋切刀控制系统
CN204744330U (zh) * 2015-06-23 2015-11-11 苏州迈迪诺生命科技有限公司 一种医用旋切刀控制系统
CN105796179B (zh) * 2016-03-03 2018-05-18 北京理工大学 一种主从介入手术机器人从端操作装置及其控制方法
US11020190B2 (en) * 2016-07-14 2021-06-01 Intuitive Surgical Operations, Inc. Automated instrument preload engage/disengage mechanism
CN209107409U (zh) * 2018-05-03 2019-07-16 深圳开立生物医疗科技股份有限公司 一种血管内超声回撤机构
CN108670306A (zh) * 2018-06-16 2018-10-19 深圳北芯生命科技有限公司 介入式医疗器械的回撤系统
CN109199750B (zh) * 2018-10-25 2023-12-26 刘尊群 滚筒式床上人体复位机
CN209203857U (zh) * 2018-10-25 2019-08-06 刘尊群 滚筒式床上人体复位机
CN110385700A (zh) * 2019-08-13 2019-10-29 中国科学院深圳先进技术研究院 传动装置及外骨骼机器人
CN212185096U (zh) * 2020-03-06 2020-12-22 红云红河烟草(集团)有限责任公司 一种卷烟机防护门安全联锁机构
CN213155792U (zh) * 2020-06-05 2021-05-11 昆山戎影医疗科技有限公司 一种旋转回撤装置及血管内oct-ivus双导管成像系统
CN112315502A (zh) * 2020-11-26 2021-02-05 深圳开立生物医疗科技股份有限公司 血管内超声探头的驱动控制装置和血管内超声成像系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130079860A (ko) * 2012-01-03 2013-07-11 삼성메디슨 주식회사 초음파 진단장치
CN203192720U (zh) * 2013-04-28 2013-09-11 浙江德菱科技有限公司 重合闸断路器的双离合机构
CN204900704U (zh) * 2015-07-18 2015-12-23 屠申富 一种双向自动变速电机传动装置
CN208793602U (zh) * 2017-12-26 2019-04-26 杭州贵腾汽车传动科技有限公司 Dct双离合的操作执行机构
CN110432932A (zh) * 2018-05-03 2019-11-12 深圳开立生物医疗科技股份有限公司 一种血管内超声回撤机构
WO2020041948A1 (zh) * 2018-08-27 2020-03-05 深圳迈瑞生物医疗电子股份有限公司 一种升降平衡控制装置及乳腺超声成像系统
CN208778590U (zh) * 2018-09-14 2019-04-23 长春福德机械制造有限公司 一种风机三轴变速箱的传动装置
CN113576535A (zh) * 2021-09-27 2021-11-02 深圳北芯生命科技股份有限公司 血管内超声回撤装置及系统
CN214549437U (zh) * 2021-09-29 2021-11-02 深圳北芯生命科技股份有限公司 一种血管内超声回撤系统的行进结构及回撤装置

Also Published As

Publication number Publication date
CN113576535B (zh) 2022-03-08
CN114569160A (zh) 2022-06-03
CN113576535A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2023045329A1 (zh) 血管内超声回撤装置及系统
US8156834B2 (en) Linear actuator having quick-release mechanism
EP1563861A2 (en) Liquid infusion apparatus
WO2012129120A1 (en) End of injection indicator for injection pen
JPWO2007037214A1 (ja) リニアアクチュエータ
CN109194023B (zh) 一种电动推杆
CN111288263B (zh) 升降式旋转装置及电子设备
CN105909748A (zh) 具有遇阻停功能的升降机构驱动器
CN213393406U (zh) 一种带手旋释放装置的电动推杆
WO2021093326A1 (zh) 注射泵
WO2024055414A1 (zh) 力反馈机构、主端控制装置及介入手术机器人
CN109826925B (zh) 自动开门装置及具有其的冰箱
CN214036581U (zh) 一种曲臂开门机离合结构
CN110871450B (zh) 一种灵巧手指机构、机械手及控制方法
CN112605633A (zh) 一种带有装配强度检测功能的自动过盈装配装置
CN219082114U (zh) 离合器、医疗驱动装置及血管内超声诊断仪
TWI387517B (zh) 具安全防護之無感測器可適變剛性致動器
CN215134902U (zh) 余量限位组件及使用其的物料推送器
CN214259015U (zh) 一种投料装置及炒菜机器人
CN219491971U (zh) 一种控制柜柜门安全锁杆
CN215134897U (zh) 余量限位组件及使用其的注射器
CN209401539U (zh) 一种拉线开关
CN116400799B (zh) 一种力反馈装置及电子设备
CN217984825U (zh) 一种行程控制机构和链条式步进设备
CN217657793U (zh) 快速复位的渔轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE