WO2023045291A1 - 巯基乙酸异辛酯生产废水的处理方法及其处理装置 - Google Patents

巯基乙酸异辛酯生产废水的处理方法及其处理装置 Download PDF

Info

Publication number
WO2023045291A1
WO2023045291A1 PCT/CN2022/083777 CN2022083777W WO2023045291A1 WO 2023045291 A1 WO2023045291 A1 WO 2023045291A1 CN 2022083777 W CN2022083777 W CN 2022083777W WO 2023045291 A1 WO2023045291 A1 WO 2023045291A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption tower
waste water
wastewater
isooctyl thioglycolate
adsorption
Prior art date
Application number
PCT/CN2022/083777
Other languages
English (en)
French (fr)
Inventor
谭洪梓
崔洪友
魏文晓
宋峰
张远
赵蓉蓉
孙秀玉
Original Assignee
山东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东理工大学 filed Critical 山东理工大学
Publication of WO2023045291A1 publication Critical patent/WO2023045291A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the invention belongs to the technical field of organic waste water treatment, and in particular relates to a treatment method and a treatment device for waste water produced by isooctyl thioglycolate.
  • the sodium hydrosulfide method is the main production method of isooctyl thioglycolate.
  • This technology has the advantages of simple process and low cost, but a large amount of high-salt and high-concentration organic wastewater will be generated in the production process.
  • the content of sodium chloride in such high-salt and high-concentration organic wastewater is as high as 20 wt%, and also contains organic substances such as thioglycolic acid, isooctyl alcohol, and isooctyl thioglycolate.
  • Chinese patent CN101318750A discloses a method for treating waste water from the production of isooctyl thioglycolate. This patent first recovers part of the organic matter through extraction, and then performs operations such as neutralization, oxidation, air flotation purification, activated carbon adsorption, and distillation on the water phase to further remove the residual organic matter in the water phase.
  • the patent has complicated treatment process, high treatment cost, solid waste generation, and does not mention the treatment method of solid waste.
  • Chinese patent CN104925997A discloses a high-salt wastewater resource treatment method in which the catalyst can be recycled.
  • the pH range of wastewater treated by this patent is 4.0-6.0.
  • H 2 O 2 is used as the oxidant and Cu 2+ is used as the catalyst.
  • the catalyst and oxidant are added in batches, which can catalyze and oxidize the organic matter in high-salt wastewater.
  • the pH value of the reaction solution is adjusted to 2.0-4.0, and the catalyst is recovered in the form of precipitation by adding alkali. After the recovered catalyst is redissolved with hydrochloric acid, it is returned to the catalytic oxidation reactor for recycling.
  • This patent uses H 2 O 2 as the oxidant, which has high processing costs, and Cu 2+ has a catalytic decomposition effect on H 2 O 2 , and the consumption of H 2 O 2 is usually much higher than the theoretical amount; in addition, the patent needs to use
  • the method of adding alkali to precipitate and then acid to dissolve can realize the recycling of the catalyst, which will not only consume a large amount of sodium hydroxide and hydrochloric acid, but also generate additional inorganic salts will increase the processing cost.
  • Chinese patent CN108715487A discloses a method for treating waste water from the production of isooctyl thioglycolate.
  • This patent uses a bubble reactor to catalyze the oxidation of isooctyl thioglycolate to produce waste water at a temperature of 150-250°C and a pressure of 2.0-10.0MPa.
  • the treatment method of this patent can achieve lower organic content in the treated water and salt, the operating conditions of high temperature and high pressure have special requirements for the reactor; especially for the production wastewater of isooctyl thioglycolate with higher chloride salt content,
  • the reactor needs to be made of Hastelloy alloy, and the investment in equipment is huge.
  • Chinese patent CN101333013A discloses a continuous microwave-ultraviolet light-induced catalytic oxidation wastewater harmless treatment method and equipment; using magnetic transition metals and activated carbon modified by their oxides as adsorbents, and sending short pulses through microwave generators Microwave, excites the infinite ultraviolet light source to generate ultraviolet light, reacts with the oxygen brought in by the air to generate O 3 , and assists one or more of H 2 O 2 , ClO 2 or NaClO as an oxidant to perform microwave-induced catalytic oxidation of organic matter The reaction breaks it down.
  • This technology requires the use of microwaves and ultraviolet light to induce O 3 , and requires additional consumption of oxidants such as H 2 O 2 , ClO 2 , NaClO, etc.
  • the equipment construction is complex and the operating cost is high.
  • the object of the invention is: provide a kind of processing method of isooctyl thioglycolate production waste water.
  • the method significantly reduces the content of COD in waste water, effectively separates water and solid salt, the content of organic matter in water and solid salt is low, the separated water can be reused, solid salt can be used as a by-product, and the treatment process can be carried out continuously;
  • the invention also provides its processing device.
  • the processing method of isooctyl thioglycolate of the present invention produces waste water, is made up of the following steps:
  • the saline wastewater flowing out from the adsorption tower enters the evaporation device for brine separation, and the evaporated mother liquor is filtered through a desalination filter to obtain solid salt;
  • described adsorption tower is made up of adsorption tower A and adsorption tower B, and adsorption tower A and adsorption tower B are arranged in parallel and alternately circulated, when adsorption tower A is absorbed and saturated, carry out in-situ catalytic oxidation reaction according to step (3),
  • the waste water from the production of isooctyl thioglycolate enters the adsorption tower B for the separation of organic matter and salt, realizing the continuous operation of waste water treatment.
  • the salt in the isooctyl thioglycolate production wastewater described in step (1) is NaCl, the salt content is 17.0-22.0wt.%, the COD content is 10000-20000mg/L, and the pH value is 0.5-6.0.
  • the adsorbent described in step (1) is Fe catalyst supported by granular activated carbon (referred to as Fe/AC), its porosity is greater than 30%, and its specific surface area is greater than 1000m 2 /g.
  • the Fe catalyst supported by granular activated carbon described in step (1) the granular activated carbon is granular nitrogen-doped activated carbon, and the nitrogen doping amount is greater than 5wt%; the loaded Fe catalyst is a highly dispersed Fe nanoparticle catalyst with a particle size of 5-50nm, and the loading amount of the Fe nanoparticle catalyst on the granular activated carbon is 10-20wt.%.
  • step (1) the flow velocity of the isooctyl thioglycolate production wastewater flowing through the adsorption tower A is 20-60mL/min.
  • step (2) The water evaporated by the evaporator described in step (2) is stored after being condensed and recycled.
  • the in-situ catalytic oxidation reaction temperature described in step (3) is 200-400°C, the catalytic oxidation reaction time is 60-240min, the catalytic oxidation reaction pressure is 0.1MPa, and the air flow rate is 400-600mL/min;
  • the oxidation reaction time is the continuous feeding time of air in the adsorption tower.
  • the treatment method of isooctyl thioglycolate production wastewater is composed of the following steps: the Fe catalyst supported by granular activated carbon is loaded into the adsorption tower as an adsorbent in advance, and the production wastewater of isooctyl thioglycolate flows through
  • the adsorption tower makes the organic matter in the wastewater fully adsorbed by the adsorbent, and the effluent saline waste water enters the evaporation device for desalination, realizing the separation of organic matter and salt in the waste water of isooctyl thioglycolate production; after the adsorbent reaches adsorption saturation, in-situ catalytic oxidation is carried out Reaction, the adsorption tower is preheated to a certain temperature and then continuously fed with air, the saturated organic matter is oxidized and decomposed into H 2 O, CO 2 , SO 4 2- by the catalyst, and the regeneration of the
  • the treatment device of the waste water produced by isooctyl thioglycolate comprises an evaporation device, a desalting filter, an adsorption tower and a waste water storage tank;
  • the device is connected to the desalination filter in sequence, and the desalination filter is connected to the filter device through pipelines;
  • the bottom of the adsorption tower is connected to the air compressor, and the top of the adsorption tower is connected to the waste water storage tank through pipelines.
  • the adsorption tower is composed of adsorption tower A and adsorption tower B arranged in parallel.
  • Both adsorption tower A and adsorption tower B are equipped with resistance wires outside.
  • the middle part of the adsorption tower A and the adsorption tower B is provided with a porous solid adsorbent bed, and the bottom of the porous solid adsorbent bed is provided with an adsorbent support plate; the porous solid adsorbent bed is provided with a Fe catalyst supported by granular activated carbon .
  • the evaporating device is sequentially connected with the condensing device and the evaporated water storage tank through pipelines.
  • a first delivery pump is installed on the pipeline connecting the waste water storage tank and the filtering device; a second delivery pump is installed on the pipeline connecting the buffer storage tank and the evaporation device; a third delivery pump is installed on the pipeline connecting the desalination filter and the filtering device .
  • Valve E is provided on the waste water inlet pipe connected to adsorption tower A, and valve F is provided on the waste water outflow pipe; There is valve B.
  • Valve G is set on the waste water inlet pipe connected to adsorption tower B, and valve H is set on the waste water outflow pipe; There is valve D.
  • the operation process of the treatment device of the isooctyl thioglycolate production waste water of the present invention is as follows:
  • the present invention has the following beneficial effects:
  • the processing method of the isooctyl thioglycolate production waste water of the present invention the Fe catalyst of granular activated carbon load is loaded into adsorption tower as adsorbent in advance, and isooctyl thioglycolate production waste water flows through adsorption tower, in waste water
  • the organic matter is fully adsorbed by the adsorbent to realize the separation of organic matter and salt in the wastewater;
  • the COD content of the saline wastewater flowing out of the adsorption tower is greatly reduced, and then enters the evaporation device for desalination, and the evaporated water is condensed and reused as reclaimed water;
  • the evaporated mother liquor is passed through
  • the desalination filter obtains solid salt and sells it as a by-product, and the filtrate is fed into the waste water storage tank delivery pipeline through the delivery pump.
  • the invention cleverly avoids the equipment corrosion problem faced by the traditional wet air catalytic oxidation method when treating salt
  • the COD removal rate of the distilled water is above 99%, and the TOC content in the solid salt is very little, and the salt content in the solid salt is ⁇ 98.5wt.%, TOC ⁇ 10.1 ⁇ g /g; the distilled water can be reused as reclaimed water, and the solid salt can be sold as a by-product.
  • the processing method of the isooctyl thioglycolate production waste water of the present invention adopts air as oxidant, has the advantage of being cheap and easy to get; And the in-situ catalytic oxidation treatment that is carried out to the organic matter of absorption saturation is gas-solid phase The reaction does not involve the dissolution of metals in the catalyst.
  • the treatment method of isooctyl thioglycolate production waste water of the present invention in the in-situ catalytic oxidation treatment process to the organic matter of adsorption saturation, can improve the oxidation degree of organic matter by the mode of raising reaction temperature, and reaction process is normal pressure, without considering the withstand voltage of the equipment.
  • the method for treating isooctyl thioglycolate production wastewater according to the present invention can fully utilize the heat generated by the oxidation of organic matter to maintain system operation during the in-situ catalytic oxidation treatment process for saturated organic matter, reducing the waste water treatment process.
  • the energy consumption in the system can ensure the heat balance of the system itself.
  • the present invention proposes for the first time the idea of separating the organic matter and salt in the waste water from the production of isooctyl thioglycolate, and then carrying out catalytic oxidation degradation and evaporative desalination on it, so that not only the recovery and utilization of water and inorganic salt can be realized , and organic matter can also be deeply oxidized and degraded, so as to achieve zero emissions.
  • the treatment device of the isooctyl mercaptoacetate production wastewater of the present invention adopts two adsorption towers A and B to use alternately, after the adsorption tower A reaches adsorption saturation, the temperature is raised and the air is ventilated to carry out catalytic oxidation degradation, and the waste water enters the adsorption tower B For the separation of organic matter and salt, the device can run continuously.
  • Fig. 1 is the structural representation of the waste water treatment device of isooctyl thioglycolate production of the present invention
  • Wastewater storage tank 1. Wastewater storage tank; 2. First delivery pump; 3. Filtration device; 4. Adsorption tower A; 5. Adsorption tower B; 6. Buffer storage tank; 7. Second delivery pump; 8. Evaporation device; 9. Condensing device; 10. Steamed water storage tank; 11. Desalination filter; 12. The third delivery pump; 13. Air compressor; 14. Porous solid adsorbent bed; 15. Adsorbent support plate; 16. Valve A; 17, valve B; 18, valve C; 19, valve D; 20, valve E; 21, valve F; 22, valve G; 23, valve H.
  • the saline wastewater flowing out from the adsorption tower enters the evaporation device for brine separation, and the evaporated mother liquor is filtered through a desalination filter to obtain solid salt;
  • described adsorption tower is made up of adsorption tower A and adsorption tower B, and adsorption tower A and adsorption tower B are arranged in parallel and alternately circulated, when adsorption tower A is absorbed and saturated, carry out in-situ catalytic oxidation reaction according to step (3),
  • the waste water from the production of isooctyl thioglycolate enters the adsorption tower B for the separation of organic matter and salt, realizing the continuous operation of waste water treatment.
  • the granular activated carbon-supported Fe catalyst (referred to as Fe/AC) described in step (1) has a porosity of 35.2% and a specific surface area of 1263.5 m 2 /g.
  • the granular activated carbon is granular nitrogen-doped activated carbon, and the nitrogen doping amount is 5.3wt%; the Fe catalyst supported is highly dispersed Fe nanometer
  • the particulate catalyst has a particle diameter of 10-40nm; the loading capacity of the Fe nanoparticle catalyst on the granular activated carbon is 13.6wt.%.
  • the treatment device of the isooctyl thioglycolate described in the embodiment of the present invention produces waste water, comprises evaporation device 8, desalination filter 11, adsorption tower and waste water storage tank 1; Waste water storage tank 1 passes through pipe The road is connected to the filter device 3, the adsorption tower, the buffer storage tank 6, the evaporation device 8 and the desalination filter 11 in sequence, and the desalination filter 11 is connected to the filter device 3 through a pipeline; the bottom of the adsorption tower is connected to the air compressor 13, The top of the adsorption tower is connected to the waste water storage tank 1 through a pipeline.
  • the adsorption tower is composed of adsorption tower A 4 and adsorption tower B 5 arranged in parallel.
  • Both adsorption tower A 4 and adsorption tower B 5 are equipped with resistance wires.
  • the middle part of adsorption tower A 4 and adsorption tower B 5 is provided with a porous solid adsorbent bed 14, and the bottom of the porous solid adsorbent bed 14 is provided with an adsorbent support plate 15; the porous solid adsorbent bed 14 is provided with particles Fe catalyst supported on activated carbon.
  • the evaporating device 8 is sequentially connected with the condensing device 9 and the evaporated water storage tank 10 through pipelines.
  • the pipeline connecting the wastewater storage tank 1 and the filtering device 3 is provided with a first delivery pump 2; the pipeline connecting the buffer storage tank 6 and the evaporation device 8 is provided with a second delivery pump 7; the desalination filter 11 is connected with the filtering device 3
  • the third delivery pump 12 is set on the pipeline.
  • a valve E 20 is provided on the waste water inlet pipe connected to the adsorption tower A4, and a valve F21 is provided on the waste water outflow pipe; a valve A16 is provided on the tail gas discharge pipe connected to the adsorption tower A4, and a valve A16 is provided on the exhaust gas discharge pipe connected to the adsorption tower A4.
  • the air inlet pipe is provided with a valve B 17.
  • a valve G 22 is provided on the wastewater inlet pipeline connected to the adsorption tower B5, and a valve H23 is provided on the wastewater outflow pipeline; a valve C18 is provided on the tail gas discharge pipeline connected to the adsorption tower B5, which is connected to the adsorption tower B5 There is a valve D 19 on the air inlet pipe.
  • the treatment method of the isooctyl thioglycolate production waste water described in the embodiment of the present invention 1 is made up of the following steps:
  • the Fe catalyst supported by granular activated carbon is packed into adsorption tower A and adsorption tower B in advance, and the isooctyl thioglycolate production wastewater (the salt in the isooctyl thioglycolate production wastewater is NaCl, and the salt content is 20.0 wt.%, COD content is 10000mg/L, pH value is 0.5), flows through adsorption tower A, at this moment valve E and valve F are in open state, valve G and valve H are in closed state, control waste water flow rate to be 20mL/min ;
  • the saline wastewater flowing out from the bottom of the adsorption tower A enters the evaporation device for desalination, the evaporated water enters the evaporated water storage tank after being condensed by the condensing device, the evaporated mother liquor passes through the desalination filter to obtain solid salt, and the filtrate is incorporated into the wastewater storage tank through the delivery pump Delivery pipeline.
  • the COD content of the effluent water at the bottom of the adsorption tower is between 600-1000mg/L during continuous operation, the removal rate of COD in the distilled water is 99.52%, and the pH value is 6.8; the recovery rate of NaCl is 99.5%, and after drying the solid salt
  • its quality indicators are: NaCl: 98.5wt.%, TOC: 7.6 ⁇ g/g, SO 4 2- : 0.02wt.%.
  • the treatment method of the isooctyl thioglycolate production waste water described in the embodiment of the present invention 2 is made up of the following steps:
  • the salty wastewater flowing out from the bottom of the adsorption tower A enters the evaporator for desalination, the evaporated water is condensed by the condensing device and then enters the distilled water storage tank, the evaporated mother liquor passes through the desalination filter to obtain solid salt, and the filtrate is transferred to the wastewater storage tank through the delivery pump pipeline.
  • the COD content of the effluent water at the bottom of the adsorption tower is between 400-1000mg/L during continuous operation, the removal rate of COD in the distilled water is 99.17%, and the pH value is 6.6; the recovery rate of NaCl is 99.1%.
  • its quality indicators are: NaCl: 99.3wt.%, TOC: 10.1 ⁇ g/g, SO 4 2- : 0.01wt.%.
  • the treatment method of the isooctyl thioglycolate production waste water described in the embodiment of the present invention 3 is made up of the following steps:
  • the Fe catalyst loaded with granular activated carbon is loaded into adsorption tower A and adsorption tower B in advance, and the isooctyl thioglycolate production wastewater (the salt in the isooctyl thioglycolate production wastewater is NaCl, and the salt content is 17.0 wt.%, COD content is 20000mg/L, pH value is 4.5) flows through adsorption tower A, now valve E and valve F are in open state, valve G and valve H are in closed state, control waste water flow rate to be 60mL/min;
  • the salty wastewater flowing out from the bottom of the adsorption tower A enters the evaporator for desalination, the evaporated water is condensed by the condensing device and then enters the distilled water storage tank, the evaporated mother liquor passes through the desalination filter to obtain solid salt, and the filtrate is transferred to the wastewater storage tank through the delivery pump pipeline.
  • the COD content of the effluent water at the bottom of the adsorption tower is between 200-1000mg/L during continuous operation, the COD removal rate of the distilled water is 99.25%, and the pH value is 7.1; the recovery rate of NaCl is 98.9%, and the solid salt is dried.
  • its quality indicators are: NaCl: 99.1wt.%, TOC: 8.3 ⁇ g/g, SO 4 2- : 0.03wt.%.
  • the effective volume of adsorption tower is 1000mL among the embodiment 1-3.
  • the Fe catalyst supported by granular activated carbon in the adsorption tower was replaced by the Fe catalyst supported by quartz sand, and the rest of the steps were the same as in Example 1.
  • the COD content of the effluent at the bottom of the tower is 9796mg/L, indicating that the quartz sand does not have the adsorption capacity; the wastewater treatment device cannot be operated continuously.
  • the adsorbent in the adsorption tower is replaced by the granular activated carbon that does not support the Fe catalyst, and all the other steps are the same as in Example 1.
  • the COD content of the water at the bottom of the tower when the adsorbent was used for the second time was 9142 mg/L; it indicated that the granular activated carbon without Fe catalyst could not effectively catalyze the oxidation and decompose the adsorbed organic matter; the wastewater treatment device could not operate continuously.
  • the COD content of the water at the bottom of the tower was 14976mg/L; it shows that the oxygen in the air is the main component of catalytic oxidation, decomposition and adsorption of organic matter; the wastewater treatment device cannot be operated continuously.
  • the saturated adsorption tower was heated to 100° C., and the rest of the steps were the same as in Example 3.
  • the COD content of the water at the bottom of the tower when the adsorbent is used for the second time is 8675mg/L; it shows that when the reaction temperature is not high enough, it is difficult to completely catalyze and oxidize the saturated organic matter into H 2 O, CO 2 , SO 4 2 - ;Wastewater treatment plant cannot be operated continuously.
  • the steamed water COD removal rate is more than 99%, the TOC content in the solid salt is extremely small, and the salt content in the solid salt ⁇ 98.5wt.%, TOC ⁇ 10.1 ⁇ g/g.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Catalysts (AREA)

Abstract

本发明属于有机废水处理技术领域,具体的涉及一种巯基乙酸异辛酯生产废水的处理方法及其处理装置。将颗粒状活性炭负载的Fe催化剂作为吸附剂预先装填至吸附塔,巯基乙酸异辛酯生产废水流经吸附塔,废水中的有机物被吸附剂充分吸附,实现废水中有机物和盐的分离;再进入蒸发装置进行脱盐,蒸出水经冷凝后作为中水回用;蒸发母液经除盐过滤器得到固体盐作为副产品销售。本发明中含盐有机废水经过吸附和脱盐处理后,蒸出水COD去除率在99%以上,固体盐中TOC含量极少。本发明所述的处理装置,采用两个吸附塔A和B交替使用,吸附塔A达到吸附饱和后升温通空气进行催化氧化降解,废水进入吸附塔B进行有机物和盐的分离,装置可以连续运行。

Description

巯基乙酸异辛酯生产废水的处理方法及其处理装置 技术领域
本发明属于有机废水处理技术领域,具体的涉及一种巯基乙酸异辛酯生产废水的处理方法及其处理装置。
背景技术
目前,硫氢化钠法是巯基乙酸异辛酯的主要生产方法。该技术具有工艺简单、成本低廉等优点,但是在其生产过程中会产生大量的高盐高浓有机废水。此类高盐高浓有机废水中氯化钠的含量高达20wt%以上,同时还含有巯基乙酸、异辛醇、巯基乙酸异辛酯等有机物。
中国专利CN101318750A公开一种巯基乙酸异辛酯生产废水的处理方法。该专利首先通过萃取回收部分有机物,然后对水相进行中和、氧化、气浮净化、活性炭吸附、蒸馏等操作,进一步除去水相中残留的有机物。该专利处理过程复杂、处理成本高,有固废产生,并且未提及固废的处理方法。
中国专利CN104925997A公开一种催化剂可循环使用的高盐废水资源化处理方法。该专利处理废水的pH值范围为4.0-6.0,以H 2O 2为氧化剂,Cu 2+为催化剂,催化剂和氧化剂均采取分批加入的方式,可催化氧化降解高盐废水中的有机物。氧化反应完成后把反应液pH值调至2.0-4.0,通过加碱以沉淀形式回收催化剂,回收的催化剂加盐酸再溶解后,返回催化氧化反应器循环使用。该专利采用H 2O 2为氧化剂,处理成本高,而且Cu 2+对H 2O 2具有催化分解作用,H 2O 2的消耗量通常要比理论量高出很多;另外,该专利需采用先加碱沉淀、再加酸溶解的方法才能实现催化剂的循环使用,不仅会额外消耗大量的氢氧化钠和盐酸,而且额外产生的无机盐会增加处理成本。
中国专利CN108715487A公开一种巯基乙酸异辛酯生产废水的处理方法。该专利通过鼓泡反应器催化氧化巯基乙酸异辛酯生产废水,温度150-250℃,压力2.0-10.0MPa。虽然该专利的处理方法可以实现处理后水和盐中较低的有机物含量,但是高温高压的操作条件对反应器有特殊要求;特别是对于氯盐含量较高的巯基乙酸异辛酯生产废水,反应器需要选用哈氏合金材质,设备投资巨大。
中国专利CN101333013A中公开一种连续微波-紫外光诱导催化氧化废水的无害化处理方法及设备;利用具有磁性的过渡金属及其氧化物改性的活性炭作为吸附剂,通过微波发生器发出短脉冲微波,激发无极紫外光源产生紫外光,与空气带入的氧气作用产生O 3,并辅助H 2O 2、ClO 2或NaClO中的一种或一种以上作为氧化剂,对有机物进行微波诱导催化氧化反应使其分解。该技术需要用到微波和紫外光诱导产生O 3,且需额外消耗H 2O 2、ClO 2、NaClO 等氧化剂,设备建造复杂且运行成本较高。
目前巯基乙酸异辛酯生产废水的处理方法中,低温常压操作需要消耗大量的H 2O 2,对于COD很高的有机废水,运行成本昂贵;高温高压操作虽然可以利用廉价的空气作为氧化剂,但严苛的反应条件对反应器的材质有特殊要求,设备投资巨大。
因此,基于以上的技术缺陷,亟需探索一种新型的巯基乙酸异辛酯生产废水的处理方法及其处理装置。
发明内容
本发明的目的是:提供一种巯基乙酸异辛酯生产废水的处理方法。该方法显著降低废水中COD的含量,有效分离水和固体盐,水和固体盐中有机物的含量低,分离出的水能够重复使用,固体盐可以作为副产品使用,且处理过程能够连续进行;本发明同时提供了其处理装置。
本发明所述的巯基乙酸异辛酯生产废水的处理方法,由以下步骤组成:
(1)巯基乙酸异辛酯生产废水流经装填以颗粒状活性炭负载的Fe催化剂为吸附剂的吸附塔进行吸附反应;
(2)吸附完毕从吸附塔流出的含盐废水进入蒸发装置进行盐水分离,蒸发母液经除盐过滤器过滤得到固体盐;
(3)当吸附塔中吸附剂达到吸附饱和后,停止注入巯基乙酸异辛酯生产废水,将吸附塔预热至一定温度,然后持续通入空气进行原位催化氧化反应,吸附的有机物被氧化分解成气体经管路排放,同时吸附剂实现再生;
其中:所述的吸附塔由吸附塔A和吸附塔B组成,吸附塔A和吸附塔B并联设置且交替循环使用,当吸附塔A吸附饱和后按照步骤(3)进行原位催化氧化反应,巯基乙酸异辛酯生产废水进入吸附塔B进行有机物和盐的分离,实现废水处理的连续运行。
其中:
步骤(1)中所述的巯基乙酸异辛酯生产废水中的盐为NaCl,盐含量为17.0-22.0wt.%,COD含量为10000-20000mg/L,pH值为0.5-6.0。
步骤(1)中所述的吸附剂为颗粒状活性炭负载的Fe催化剂(记作Fe/AC),其孔隙率大于30%,比表面积大于1000m 2/g。
步骤(1)中所述的颗粒状活性炭负载的Fe催化剂,颗粒状活性炭为颗粒状氮掺杂活性炭,氮掺杂量大于5wt%;负载的Fe催化剂为高度分散的Fe纳米颗粒催化剂,粒径5-50nm,Fe纳米颗粒催化剂在颗粒状活性炭上的负载量为10-20wt.%。
步骤(1)中巯基乙酸异辛酯生产废水流经吸附塔A的流速为20-60mL/min。
步骤(2)中所述的经蒸发装置蒸出的水经冷凝后储存,回收利用。
步骤(3)中所述的在吸附塔底部含盐废水出口处实时取样分析,当流出含盐废水COD含量高于1000mg/L时,认为吸附塔达到吸附饱和。
步骤(3)中所述的原位催化氧化反应温度为200-400℃,催化氧化反应时间为60-240min,催化氧化反应压力为0.1MPa,空气流速为400-600mL/min;所述的催化氧化反应时间为空气在吸附塔中的持续通入时间。
优选的,本发明所述的巯基乙酸异辛酯生产废水的处理方法,由以下步骤组成:预先将颗粒状活性炭负载的Fe催化剂作为吸附剂装填至吸附塔,巯基乙酸异辛酯生产废水流经吸附塔,使废水中有机物被吸附剂充分吸附,流出的含盐废水进入蒸发装置进行脱盐,实现巯基乙酸异辛酯生产废水中有机物和盐的分离;吸附剂达到吸附饱和后进行原位催化氧化反应,将吸附塔预热至一定温度后持续通入空气,吸附饱和的有机物经催化剂作用被氧化分解为H 2O、CO 2、SO 4 2-,同时实现吸附剂的再生,尾气经过巯基乙酸异辛酯生产废水吸收后排放;采用两个吸附塔A和B交替使用,吸附塔A达到吸附饱和后升温通空气进行催化氧化降解,此时废水进入吸附塔B进行有机物和盐的分离,实现装置的连续运行。
本发明所述的巯基乙酸异辛酯生产废水的处理装置,包括蒸发装置、除盐过滤器、吸附塔和废水储存罐;废水储存罐通过管路与过滤装置、吸附塔、缓冲储存罐、蒸发装置和除盐过滤器依次相连,除盐过滤器通过管路与过滤装置相连;吸附塔底部与空气压缩机相连,吸附塔顶部通过管路与废水储存罐相连。
其中:
吸附塔由并联设置的吸附塔A和吸附塔B组成。
吸附塔A和吸附塔B外部均设有电阻丝。
吸附塔A和吸附塔B内中部设有多孔固体吸附剂床层,多孔固体吸附剂床层底部设有吸附剂支撑板;所述多孔固体吸附剂床层上设有颗粒状活性炭负载的Fe催化剂。
蒸发装置通过管路与冷凝装置和蒸出水储存罐依次相连。
废水储存罐与过滤装置相连的管路上设有第一输送泵;缓冲储存罐与蒸发装置相连的管路上设有第二输送泵;除盐过滤器与过滤装置相连的管路上设置第三输送泵。
与吸附塔A相连的废水进入管道上设有阀E,废水流出管道上设有阀F;与吸附塔A相连的尾气排出管道上设有阀A,与吸附塔A相连的空气进入管道上设有阀B。
与吸附塔B相连的废水进入管道上设有阀G,废水流出管道上设有阀H;与吸附塔B相连的尾气排出管道上设有阀C,与吸附塔B相连的空气进入管道上设有阀D。
本发明所述的巯基乙酸异辛酯生产废水的处理装置的运行过程如下:
(1)预先将颗粒状活性炭负载的Fe催化剂装填至吸附塔A和吸附塔B,巯基乙酸异辛酯生产废水流经吸附塔A,此时阀E和阀F处于打开状态,阀G和阀H处于关闭状态;从吸附塔A底部流出的含盐废水进入蒸发装置进行脱盐,蒸出水经冷凝装置冷凝后进入蒸出水储存罐,蒸发母液经除盐过滤器得到固体盐,滤液经第三输送泵并入废水储存罐输送管线。
(2)在吸附塔A底部含盐废水出口处实时取样分析,当流出含盐废水COD含量高于1000mg/L时,认为吸附塔A达到吸附饱和;此时关闭阀E和阀F,打开阀G和阀H,吸附塔B开始吸附有机物;同时,预热吸附塔A至200-400℃后,打开阀A和阀B,空气持续通入吸附塔A,处理时间60-240min,经催化剂作用吸附的有机物被氧化分解为H 2O、CO 2、SO 4 2-,实现吸附剂的再生,吸附塔A和吸附塔B交替循环使用。
本发明与现有技术相比,具有以下有益效果:
(1)本发明所述的巯基乙酸异辛酯生产废水的处理方法,将颗粒状活性炭负载的Fe催化剂作为吸附剂预先装填至吸附塔,巯基乙酸异辛酯生产废水流经吸附塔,废水中的有机物被吸附剂充分吸附,实现废水中有机物和盐的分离;流出吸附塔的含盐废水COD含量大大降低,再进入蒸发装置进行脱盐,蒸出水经冷凝后作为中水回用;蒸发母液经除盐过滤器得到固体盐作为副产品销售,滤液经输送泵并入废水储存罐输送管线。本发明巧妙地避开了传统湿空气催化氧化方法在处理含盐有机废水时所面临的设备腐蚀问题,显著降低了设备投资成本。
(2)本发明所述的巯基乙酸异辛酯生产废水的处理方法,将颗粒状活性炭作为吸附剂和催化剂载体,活性炭的比表面积大、吸附能力强;而且活性炭表面存在一定数量的羟基、醛基、羧基等有机基团,这些有机基团会与废水中的部分有机物发生相互作用,进一步增强活性炭对废水中有机物的吸附能力。
(3)本发明中含盐有机废水经过吸附和脱盐处理后,蒸出水COD去除率在99%以上,固体盐中TOC含量极少,固体盐中盐含量≥98.5wt.%、TOC≤10.1μg/g;蒸出水可作为中水回用,固体盐可作为副产品销售。
(4)本发明所述的巯基乙酸异辛酯生产废水的处理方法,将废水中的有机物和盐通过吸附方式预先分离,然后原位催化氧化降解吸附饱和的有机物,巧妙地避开在高温高压条件下含氯盐废水对设备的腐蚀问题。
(5)本发明所述的巯基乙酸异辛酯生产废水的处理方法,采用空气作为氧化剂,具有价廉易得的优点;而且对吸附饱和的有机物所进行的原位催化氧化处理为气固相反应,不涉及催化剂中金属的溶出问题。
(6)本发明所述的巯基乙酸异辛酯生产废水的处理方法,对吸附饱和的有机物进行原位 催化氧化处理过程中,可以通过升高反应温度的方式提高有机物氧化程度,反应过程为常压,不必考虑设备的耐压问题。
(7)本发明所述的巯基乙酸异辛酯生产废水的处理方法,对吸附饱和的有机物进行原位催化氧化处理过程中,可以充分利用有机物氧化产生的热量维持系统运转,降低了废水处理过程中的能耗,可以保证系统自身的热量平衡。
(8)本发明所述的巯基乙酸异辛酯生产废水的处理方法,对吸附饱和的有机物进行原位催化氧化处理过程后,有机物彻底氧化分解为H 2O、CO 2、SO 4 2-,吸附剂可以循环使用。
(9)本发明首次提出预先将巯基乙酸异辛酯生产废水中的有机物和盐进行分离,然后分别对其进行催化氧化降解和蒸发脱盐的思路,这样不仅可以实现水和无机盐的回收和利用,而且有机物也可以得到深度氧化降解,从而实现零排放。
(10)本发明所述的巯基乙酸异辛酯生产废水的处理装置,采用两个吸附塔A和B交替使用,吸附塔A达到吸附饱和后升温通空气进行催化氧化降解,废水进入吸附塔B进行有机物和盐的分离,装置可以连续运行。
附图说明
图1是本发明巯基乙酸异辛酯生产废水处理装置的结构示意图;
其中:1、废水储存罐;2、第一输送泵;3、过滤装置;4、吸附塔A;5、吸附塔B;6、缓冲储存罐;7、第二输送泵;8、蒸发装置;9、冷凝装置;10、蒸出水储存罐;11、除盐过滤器;12、第三输送泵;13、空气压缩机;14、多孔固体吸附剂床层;15、吸附剂支撑板;16、阀A;17、阀B;18、阀C;19、阀D;20、阀E;21、阀F;22、阀G;23、阀H。
具体实施方式
以下结合实施例对本发明作进一步描述。
本发明实施例所述的巯基乙酸异辛酯生产废水的处理方法,由以下步骤组成:
(1)巯基乙酸异辛酯生产废水流经装填以颗粒状活性炭负载的Fe催化剂为吸附剂的吸附塔进行吸附反应;
(2)吸附完毕从吸附塔流出的含盐废水进入蒸发装置进行盐水分离,蒸发母液经除盐过滤器过滤得到固体盐;
(3)当吸附塔中吸附剂达到吸附饱和后,停止注入巯基乙酸异辛酯生产废水,将吸附塔预热至一定温度,然后持续通入空气进行原位催化氧化反应,吸附的有机物被氧化分解成气体经管路排放,同时吸附剂实现再生;
其中:所述的吸附塔由吸附塔A和吸附塔B组成,吸附塔A和吸附塔B并联设置且交替循环使用,当吸附塔A吸附饱和后按照步骤(3)进行原位催化氧化反应,巯基乙酸异辛 酯生产废水进入吸附塔B进行有机物和盐的分离,实现废水处理的连续运行。
其中:
步骤(1)中所述的颗粒状活性炭负载的Fe催化剂(记作Fe/AC),其孔隙率为35.2%,比表面积为1263.5m 2/g。
步骤(1)中所述的颗粒状活性炭负载的Fe催化剂中,所述的颗粒状活性炭为颗粒状氮掺杂活性炭,氮掺杂量为5.3wt%;负载的Fe催化剂为高度分散的Fe纳米颗粒催化剂,粒径10-40nm;Fe纳米颗粒催化剂在颗粒状活性炭上的负载量为13.6wt.%。
如附图1所示:本发明实施例所述的巯基乙酸异辛酯生产废水的处理装置,包括蒸发装置8、除盐过滤器11、吸附塔和废水储存罐1;废水储存罐1通过管路与过滤装置3、吸附塔、缓冲储存罐6、蒸发装置8和除盐过滤器11依次相连,除盐过滤器11通过管路与过滤装置3相连;吸附塔底部与空气压缩机13相连,吸附塔顶部通过管路与废水储存罐1相连。
其中:
吸附塔由并联设置的吸附塔A 4和吸附塔B 5组成。
吸附塔A 4和吸附塔B 5外部均设有电阻丝。
吸附塔A 4和吸附塔B 5内中部设有多孔固体吸附剂床层14,多孔固体吸附剂床层14底部设有吸附剂支撑板15;所述多孔固体吸附剂床层14上设有颗粒状活性炭负载的Fe催化剂。
蒸发装置8通过管路与冷凝装置9和蒸出水储存罐10依次相连。
废水储存罐1与过滤装置3相连的管路上设有第一输送泵2;缓冲储存罐6与蒸发装置8相连的管路上设有第二输送泵7;除盐过滤器11与过滤装置3相连的管路上设置第三输送泵12。
与吸附塔A 4相连的废水进入管道上设有阀E 20,废水流出管道上设有阀F 21;与吸附塔A4相连的尾气排出管道上设有阀A 16,与吸附塔A 4相连的空气进入管道上设有阀B 17。
与吸附塔B 5相连的废水进入管道上设有阀G 22,废水流出管道上设有阀H 23;与吸附塔B 5相连的尾气排出管道上设有阀C 18,与吸附塔B 5相连的空气进入管道上设有阀D 19。
实施例1
本发明实施例1所述的巯基乙酸异辛酯生产废水的处理方法,由以下步骤组成:
(1)预先将颗粒状活性炭负载的Fe催化剂装填至吸附塔A和吸附塔B,巯基乙酸异辛酯生产废水(所述的巯基乙酸异辛酯生产废水中的盐为NaCl,盐含量为20.0wt.%,COD含量为10000mg/L,pH值为0.5),流经吸附塔A,此时阀E和阀F处于打开状态,阀G和阀H处于关闭状态,控制废水流速为20mL/min;从吸附塔A底部流出的含盐废水进入蒸发装置 进行脱盐,蒸出水经冷凝装置冷凝后进入蒸出水储存罐,蒸发母液经除盐过滤器得到固体盐,滤液经输送泵并入废水储存罐输送管线。
(2)在吸附塔A底部含盐废水出口处实时取样分析,当流出含盐废水COD含量高于1000mg/L时,认为吸附塔A达到吸附饱和;此时关闭阀E和阀F,打开阀G和阀H,吸附塔B开始吸附有机物;同时,预热吸附塔A至200℃后,打开阀A和阀B,空气持续通入吸附塔A,控制空气流速为400mL/min,处理时间4h,催化氧化反应压力为0.1MPa,经催化剂作用吸附的有机物被氧化分解为H 2O、CO 2、SO 4 2-,实现吸附剂的再生。吸附塔A和吸附塔B交替循环使用。
经检测,连续操作时吸附塔底流出水COD含量在600-1000mg/L之间,蒸出水COD的去除率为99.52%,pH值为6.8;NaCl的回收率为99.5%,固体盐烘干后进行分析,其质量指标为:NaCl:98.5wt.%,TOC:7.6μg/g,SO 4 2-:0.02wt.%。
实施例2
本发明实施例2所述的巯基乙酸异辛酯生产废水的处理方法,由以下步骤组成:
(1)预先将颗粒状活性炭负载的Fe催化剂装填至吸附塔A和吸附塔B,巯基乙酸异辛酯生产废水(所述的巯基乙酸异辛酯生产废水中的盐为NaCl,盐含量为17.0wt.%,COD含量为15000mg/L,pH值为2.0)流经吸附塔A,此时阀E和阀F处于打开状态,阀G和阀H处于关闭状态,控制废水流速为40mL/min;从吸附塔A底部流出的含盐废水进入蒸发装置进行脱盐,蒸出水经冷凝装置冷凝后进入蒸出水储存罐,蒸发母液经除盐过滤器得到固体盐,滤液经输送泵并入废水储存罐输送管线。
(2)在吸附塔A底部含盐废水出口处实时取样分析,当流出含盐废水COD含量高于1000mg/L时,认为吸附塔A达到吸附饱和;此时关闭阀E和阀F,打开阀G和阀H,吸附塔B开始吸附有机物;同时,预热吸附塔A至250℃后,打开阀A和阀B,空气持续通入吸附塔A,控制空气流速为500mL/min,处理时间2.5h,催化氧化反应压力为0.1MPa,经催化剂作用吸附的有机物被氧化分解为H 2O、CO 2、SO 4 2-,实现吸附剂的再生。吸附塔A和吸附塔B交替循环使用。
经检测,连续操作时吸附塔底流出水COD含量在400-1000mg/L之间,蒸出水COD的去除率为99.17%,pH值为6.6;NaCl的回收率为99.1%,固体盐烘干后进行分析,其质量指标为:NaCl:99.3wt.%,TOC:10.1μg/g,SO 4 2-:0.01wt.%。
实施例3
本发明实施例3所述的巯基乙酸异辛酯生产废水的处理方法,由以下步骤组成:
(1)预先将颗粒装活性炭负载的Fe催化剂装填至吸附塔A和吸附塔B,巯基乙酸异辛 酯生产废水(所述的巯基乙酸异辛酯生产废水中的盐为NaCl,盐含量为17.0wt.%,COD含量为20000mg/L,pH值为4.5)流经吸附塔A,此时阀E和阀F处于打开状态,阀G和阀H处于关闭状态,控制废水流速为60mL/min;从吸附塔A底部流出的含盐废水进入蒸发装置进行脱盐,蒸出水经冷凝装置冷凝后进入蒸出水储存罐,蒸发母液经除盐过滤器得到固体盐,滤液经输送泵并入废水储存罐输送管线。
(2)在吸附塔A底部含盐废水出口处实时取样分析,当流出含盐废水COD含量高于1000mg/L时,认为吸附塔A达到吸附饱和;此时关闭阀E和阀F,打开阀G和阀H,吸附塔B开始吸附有机物;同时,预热吸附塔A至300℃后,打开阀A和阀B,空气持续通入吸附塔A,控制空气流速为600mL/min,处理时间1h,催化氧化反应压力为0.1MPa,经催化剂作用吸附的有机物被氧化分解为H 2O、CO 2、SO 4 2-,实现吸附剂的再生。吸附塔A和吸附塔B交替循环使用。
经检测,连续操作时吸附塔底流出水COD含量在200-1000mg/L之间,蒸出水COD的去除率为99.25%,pH值为7.1;NaCl的回收率为98.9%,固体盐烘干后进行分析,其质量指标为:NaCl:99.1wt.%,TOC:8.3μg/g,SO 4 2-:0.03wt.%。
实施例1-3中吸附塔的有效体积为1000mL。
对比例1
将吸附塔内颗粒活性炭负载的Fe催化剂替换为石英砂负载的Fe催化剂,其余步骤与实施例1相同。
经检测,塔底流出水的COD含量为9796mg/L,说明石英砂不具备吸附能力;废水处理装置不能连续操作。
对比例2
将吸附塔内的吸附剂替换为没有负载Fe催化剂的颗粒状活性炭,其余步骤与实施例1相同。
经检测,吸附剂第二次使用时塔底流出水的COD含量为9142mg/L;说明没有负载Fe催化剂的颗粒状活性炭不能有效催化氧化分解吸附的有机物;废水处理装置不能连续操作。
对比例3
在催化氧化处理阶段,将用到的空气替换为氮气,其余步骤与实施例2相同。
经检测,吸附剂第二次使用时塔底流出水的COD含量为14976mg/L;说明空气中的氧气是催化氧化分解吸附有机物的主要成分;废水处理装置不能连续操作。
对比例4
在催化氧化处理阶段,将吸附饱和的吸附塔加热至100℃,其余步骤与实施例3相同。
经检测,吸附剂第二次使用时塔底流出水的COD含量为8675mg/L;说明反应温度不够高时,难以将吸附饱和的有机物彻底催化氧化分解为H 2O、CO 2、SO 4 2-;废水处理装置不能连续操作。
实施例1-3与对比例1-4中的数据如表1。
表1实施例1-3和对比例1-4的实验结果
Figure PCTCN2022083777-appb-000001
通过表1可以看出,本发明在颗粒状活性炭负载的Fe催化剂同时作为吸附剂和催化剂的作用下,蒸出水COD去除率在99%以上,固体盐中TOC含量极少,固体盐中盐含量≥98.5wt.%、TOC≤10.1μg/g。

Claims (10)

  1. 一种巯基乙酸异辛酯生产废水的处理方法,其特征在于:由以下步骤组成:
    (1)巯基乙酸异辛酯生产废水流经装填以颗粒状活性炭负载的Fe催化剂为吸附剂的吸附塔进行吸附反应;
    (2)吸附完毕从吸附塔流出的含盐废水进入蒸发装置进行盐水分离,蒸发母液经除盐过滤器过滤得到固体盐;
    (3)当吸附塔中吸附剂达到吸附饱和后,停止注入巯基乙酸异辛酯生产废水,将吸附塔预热至一定温度,然后持续通入空气进行原位催化氧化反应,吸附的有机物被氧化分解成气体经管路排放,同时吸附剂实现再生;
    其中:所述的吸附塔由吸附塔A和吸附塔B组成,吸附塔A和吸附塔B并联设置且交替循环使用,当吸附塔A吸附饱和后按照步骤(3)进行原位催化氧化反应,巯基乙酸异辛酯生产废水进入吸附塔B进行有机物和盐的分离,实现废水处理的连续运行。
  2. 根据权利要求1所述的巯基乙酸异辛酯生产废水的处理方法,其特征在于:步骤(1)中所述的巯基乙酸异辛酯生产废水中的盐为NaCl,盐含量为17.0-22.0wt.%,COD含量为10000-20000mg/L,pH值为0.5-6.0。
  3. 根据权利要求1所述的巯基乙酸异辛酯生产废水的处理方法,其特征在于:步骤(1)中所述的颗粒状活性炭负载的Fe催化剂,孔隙率大于30%,比表面积大于1000m 2/g。
  4. 根据权利要求1所述的巯基乙酸异辛酯生产废水的处理方法,其特征在于:步骤(1)中所述的颗粒状活性炭负载的Fe催化剂,颗粒状活性炭为颗粒状氮掺杂活性炭,氮掺杂量大于5wt%;负载的Fe催化剂为Fe纳米颗粒催化剂,粒径5-50nm,Fe纳米颗粒催化剂在颗粒状活性炭上的负载量为10-20wt.%。
  5. 根据权利要求1所述的巯基乙酸异辛酯生产废水的处理方法,其特征在于:步骤(1)中巯基乙酸异辛酯生产废水流经吸附塔的流速为20-60mL/min;
    步骤(2)中所述的经蒸发装置蒸出的水经冷凝后储存,回收利用;
    步骤(3)中所述的在吸附塔底部含盐废水出口处实时取样分析,当流出含盐废水COD含量高于1000mg/L时,认为吸附塔中吸附剂达到吸附饱和。
  6. 根据权利要求1所述的巯基乙酸异辛酯生产废水的处理方法,其特征在于:步骤(3)中所述的原位催化氧化反应温度为200-400℃,催化氧化反应时间为60-240min,催化氧化反应压力为0.1MPa,空气流速为400-600mL/min;所述的催化氧化反应时间为空气在吸附塔中的持续通入时间。
  7. 一种权利要求1所述的巯基乙酸异辛酯生产废水的处理装置,其特征在于:包括蒸发装置(8)、除盐过滤器(11)、吸附塔和废水储存罐(1);废水储存罐(1)通过管路与过滤 装置(3)、吸附塔、缓冲储存罐(6)、蒸发装置(8)和除盐过滤器(11)依次相连,除盐过滤器(11)通过管路与过滤装置(3)相连;吸附塔底部与空气压缩机(13)相连,吸附塔顶部通过管路与废水储存罐(1)相连。
  8. 根据权利要求7所述的巯基乙酸异辛酯生产废水的处理装置,其特征在于:
    吸附塔由并联设置的吸附塔A(4)和吸附塔B(5)组成;
    吸附塔A(4)和吸附塔B(5)外部均设有电阻丝;
    吸附塔A(4)和吸附塔B(5)内中部设有多孔固体吸附剂床层(14),多孔固体吸附剂床层(14)底部设有吸附剂支撑板(15);所述多孔固体吸附剂床层(14)上设有颗粒状活性炭负载的Fe催化剂。
  9. 根据权利要求7所述的巯基乙酸异辛酯生产废水的处理装置,其特征在于:蒸发装置(8)通过管路与冷凝装置(9)和蒸出水储存罐(10)依次相连。
  10. 根据权利要求8所述的巯基乙酸异辛酯生产废水的处理装置,其特征在于:
    与吸附塔A(4)相连的废水进入管道上设有阀E(20),废水流出管道上设有阀F(21);与吸附塔A(4)相连的尾气排出管道上设有阀A(16),与吸附塔A(4)相连的空气进入管道上设有阀B(17);
    与吸附塔B(5)相连的废水进入管道上设有阀G(22),废水流出管道上设有阀H(23);与吸附塔B(5)相连的尾气排出管道上设有阀C(18),与吸附塔B(5)相连的空气进入管道上设有阀D(19)。
PCT/CN2022/083777 2021-09-22 2022-03-29 巯基乙酸异辛酯生产废水的处理方法及其处理装置 WO2023045291A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111109057.1A CN113816554B (zh) 2021-09-22 2021-09-22 巯基乙酸异辛酯生产废水的处理方法及其处理装置
CN202111109057.1 2021-09-22

Publications (1)

Publication Number Publication Date
WO2023045291A1 true WO2023045291A1 (zh) 2023-03-30

Family

ID=78920860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083777 WO2023045291A1 (zh) 2021-09-22 2022-03-29 巯基乙酸异辛酯生产废水的处理方法及其处理装置

Country Status (2)

Country Link
CN (1) CN113816554B (zh)
WO (1) WO2023045291A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113816554B (zh) * 2021-09-22 2023-01-20 山东理工大学 巯基乙酸异辛酯生产废水的处理方法及其处理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318750A (zh) * 2008-07-22 2008-12-10 湖北犇星化工有限责任公司 一种巯基乙酸异辛酯生产废水的处理方法
CN101522572A (zh) * 2006-06-27 2009-09-02 技术研究及发展基金有限公司 流体污染物的吸附方法和吸附剂的再生
US20200156971A1 (en) * 2018-11-21 2020-05-21 Nan Yu Catalytic Co., Ltd. Wastewater Treatment System and Method with Catalysts
CN113816554A (zh) * 2021-09-22 2021-12-21 山东理工大学 巯基乙酸异辛酯生产废水的处理方法及其处理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101522572A (zh) * 2006-06-27 2009-09-02 技术研究及发展基金有限公司 流体污染物的吸附方法和吸附剂的再生
CN101318750A (zh) * 2008-07-22 2008-12-10 湖北犇星化工有限责任公司 一种巯基乙酸异辛酯生产废水的处理方法
US20200156971A1 (en) * 2018-11-21 2020-05-21 Nan Yu Catalytic Co., Ltd. Wastewater Treatment System and Method with Catalysts
CN113816554A (zh) * 2021-09-22 2021-12-21 山东理工大学 巯基乙酸异辛酯生产废水的处理方法及其处理装置

Also Published As

Publication number Publication date
CN113816554A (zh) 2021-12-21
CN113816554B (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
Wang et al. Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies
Zubair et al. Starch-NiFe-layered double hydroxide composites: efficient removal of methyl orange from aqueous phase
US20090261042A1 (en) Method for adsorption of fluid contaminants and regeneration of the adsorbent
US20150001155A1 (en) Methods and apparatus for synthesis of stabilized zero valent nanoparticles
Maftouh et al. Comparative review of different adsorption techniques used in heavy metals removal in water
CN108479712B (zh) 一种可吸附降解四溴双酚a的改性碳纳米管薄膜材料及其应用方法
WO2009063456A1 (en) Method for adsorption of phosphate contaminants from water solutions and its recovery
CN103936206B (zh) 一种同步去除污水生化尾水中有机物和磷的方法
CN108793551B (zh) 一种高盐高cod有机废水的处理方法及其处理装置
Chiu et al. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst
CN112892475A (zh) 铁改性生物炭及其制备方法与应用
WO2023045291A1 (zh) 巯基乙酸异辛酯生产废水的处理方法及其处理装置
CN112169757A (zh) 一种低温等离子体改性碳纳米管及其在水处理中的应用
Hsu et al. Novel applications of vacuum distillation for heavy metals removal from wastewater, copper nitrate hydroxide recovery, and copper sulfide impregnated activated carbon synthesis for gaseous mercury adsorption
Adil et al. The effectiveness and adsorption mechanism of iron-carbon nanotube composites for removing phosphate from aqueous environments
Burakov et al. New carbon nanomaterials for water purification from heavy metals
CN111115902A (zh) 一种高盐有机废水除油除氟工艺
Yang et al. Thermally activated natural chalcopyrite for Fenton-like degradation of Rhodamine B: Catalyst characterization, performance evaluation, and catalytic mechanism
Xiong et al. Removal, recycle and reutilization of multiple heavy metal ions from electroplating wastewater using super-stable mineralizer Ca-based layered double hydroxides
CN210855649U (zh) 一种脱硫废水自回用及零排放系统
CN110342713B (zh) 一种脱硫废水自回用及零排放系统
Shakil et al. Synthesis and application of carboxymethyl cellulose-graphene oxide composite for the mitigation of Pb2+ and Cd2+ from aqueous solution
Yu et al. Mechanism of iron salt impregnated biowaste biochar with a prevailing free radical initiator for effective removal of toxic thallium from solution
CN117548155B (zh) 水中配体阴离子去除树脂及其制备和零废水再生方法
Li et al. Effect of thermal regeneration on the breakthrough performance of ceramsite saturated with methylene blue

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE