WO2023045180A1 - 一种变桨式海浪发电装置和变桨式海浪发电方法 - Google Patents

一种变桨式海浪发电装置和变桨式海浪发电方法 Download PDF

Info

Publication number
WO2023045180A1
WO2023045180A1 PCT/CN2022/070056 CN2022070056W WO2023045180A1 WO 2023045180 A1 WO2023045180 A1 WO 2023045180A1 CN 2022070056 W CN2022070056 W CN 2022070056W WO 2023045180 A1 WO2023045180 A1 WO 2023045180A1
Authority
WO
WIPO (PCT)
Prior art keywords
pitch
variable
impeller
power generation
blade
Prior art date
Application number
PCT/CN2022/070056
Other languages
English (en)
French (fr)
Inventor
谭泓
李荣富
冀卫东
Original Assignee
广东金风科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东金风科技有限公司 filed Critical 广东金风科技有限公司
Priority to AU2022350112A priority Critical patent/AU2022350112A1/en
Priority to EP22871248.5A priority patent/EP4411132A1/en
Publication of WO2023045180A1 publication Critical patent/WO2023045180A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/22Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the flow of water resulting from wave movements to drive a motor or turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/14Rotors having adjustable blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to the technical field of power generation, in particular to a pitch-variable ocean wave power generation device and a pitch-variable ocean wave power generation method.
  • the wave energy storage capacity is large, and it is not easily affected by the weather.
  • the collection and transformation of wave energy has also attracted attention from all walks of life.
  • the traditional wave power generation system has the following disadvantages:
  • the traditional wave power generation device needs to convert the kinetic energy in the direction of the wave flow into the kinetic energy of the piston of the hydraulic cylinder, and then use compressed air to drive the turbine of the generator to move, thereby generating electricity. There are multiple kinetic energy transfers and conversions in this system, resulting in large energy loss and low power generation efficiency.
  • the size and shape of the wave-bearing structure of the traditional wave power generation device are fixed, which can only be applied to a small range of wave characteristics.
  • the wave characteristics include wavelength, wave height, period, etc., for example.
  • ocean waves are complex and changeable, and their characteristic parameters are constantly changing. When the wave parameters exceed the scope of application of traditional ocean wave power generation systems, their power generation efficiency will drop significantly, resulting in poor overall power generation performance and low overall power. Power is not stable.
  • the present invention provides a variable-pitch type ocean wave power generation device, which includes an impeller and a pitch control system, the impeller rotates around a vertical axis, and the impeller includes a plurality of blade units distributed outwardly from the center of the impeller , the pitch control system can control the blade unit to rotate along the horizontal axis to change the pitch.
  • the present invention also provides a variable-pitch type ocean wave power generation method, based on the pitch-variable type ocean wave power generation device described in any one of the above, when the generated power does not exceed the rated power, all the blades are controlled to open to the maximum position; When the power will exceed the rated power, the pitch angle of some or all of the blades is controlled to reduce the generated power until it approaches the rated power.
  • the blades on the impeller have the function of pitch adjustment, the blades can adjust their own pitch angle according to different sea wave characteristics, so as to obtain the optimal power generation efficiency under the corresponding sea wave conditions. Therefore, the pitch-variable wave power generation device has stronger applicability and can be applied to a wider range of waves.
  • variable-pitch wave power generation device can also have constant power characteristics, which can ensure the stable output of the unit's generating power, and has stronger grid friendliness.
  • each blade unit includes two or more blades arranged radially, and the number, size and shape of blades in each blade unit can be customized according to the project site.
  • the length and size of the blade can be designed according to the wave characteristics of the application sea area, such as the usual wavelength range, combined with the airfoil characteristics of the blade itself, to design a reasonable blade length to minimize the energy of the upper and lower fluctuations opposite to the blade.
  • the number of blades in each blade unit can be calculated and designed according to the power generation demand, so as to obtain the optimal power and efficiency of the whole machine, solve the contradiction between power generation efficiency and power generation, and make the scheme more powerful Scalability and applicability.
  • Fig. 1 is a schematic structural diagram of a pitch-variable wave power generation device in the first embodiment of the present invention
  • Fig. 2 is a schematic structural view of a single blade in Fig. 1;
  • Fig. 3 is based on the cross-section of the blade in Fig. 2, a schematic diagram of analyzing the stress characteristics of the blade;
  • Fig. 4 is a schematic structural diagram of a pitch-variable wave power generation device in a second embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the state of the blade in Fig. 4 after retracting the blade;
  • Fig. 6 is a schematic structural diagram of a pitch-variable ocean wave power generation device in a third embodiment of the present invention.
  • 11-turbine generator 12-middle foundation; 13-blade; 131-pitch actuator unit; 13a-section; 14-support rod; 15-ring support frame;
  • FIG. 1 is a schematic structural diagram of a pitch-variable wave power generation device in a first embodiment of the present invention.
  • the pitch-variable wave power generation device includes a horizontally rotatable impeller 1 and a pitch control system.
  • Horizontal rotation refers to rotation in a horizontal plane.
  • FIG. 1 is a top view of the impeller 1 .
  • the impeller 1 includes a plurality of blade units distributed outwardly from the center of the impeller 1, and each blade unit includes at least one blade 13 arranged in the radial direction of the impeller 1, and each blade unit in FIG. 1 It includes two blades 13.
  • the blades 13 themselves also extend radially of the impeller 1.
  • the material of the blades 13 is not limited and can be made of steel or composite materials.
  • the pitch control system can control the blade 13 to rotate along the horizontal axis to change the pitch. After the blade 13 is opened, it can drive the impeller 1 to rotate under the action of the up and down waves of the waves, thereby collecting the up and down wave energy of the waves. Conversion, drives the turbine generator 11 of the pitch-variable ocean wave power generation device to generate electricity, and the turbine generator 11 is connected to the middle part of the impeller 1 .
  • Figure 2 is a schematic structural diagram of a single blade 13 in Figure 1; Based on the section 13a of the blade 13, it is a schematic diagram for analyzing the force characteristics of the blade 13.
  • the impeller surface of the impeller 1 is in the present embodiment, that is, the horizontal plane, and the blades 13 are pitched and rotated around a horizontal axis.
  • the resultant velocity Vres acts on the blade 13 to generate lift L and drag D, which can generate a resultant force R on the blade 13, which can be decomposed into the normal force Fn perpendicular to the impeller surface and the force along the impeller.
  • the tangential force Ft on the surface, and the tangential force Ft can generate the torque that makes the impeller 1 rotate.
  • the resultant torque of multiple blades 13 can make the impeller 1 rotate, thereby driving the turbine generator 11 to generate electricity.
  • the blades 13 are under the action of external force
  • the principle of rotation of the impeller 1 can be referred to the principle of rotation of the impeller 1 of the existing wind power generator, and will not be expanded in more detail.
  • the blades 13 on the impeller 1 have a pitch-changing function, the blades 13 can adjust their own pitch angles according to different sea wave characteristics, so as to obtain the optimal power generation efficiency under corresponding sea wave conditions. Therefore, the pitch-variable wave power generation device has stronger applicability and can be applied to a wider range of waves.
  • each blade unit in this solution may include two or more blades 13 arranged radially, that is, each blade unit is composed of multiple small blades.
  • the impeller 1 of this solution is mainly used to collect the up and down wave energy of the waves. If the blade 13 is too long along the direction of the impeller 1, for example, it is roughly equivalent to a wavelength of the wave wave. At this time, because the up and down wave directions are different, There may be partial offsets affecting the efficiency of collection.
  • the blade unit is divided into multiple blades 13, and the number, size and shape of blades 13 in each blade unit can be customized according to the project site.
  • the length of the blade 13 can be designed according to the wave characteristics of the application sea area, such as the usual wavelength range, combined with the airfoil characteristics of the blade 13 itself, to design a more reasonable length of the blade 13 to minimize the upward and downward fluctuations.
  • it affects the energy collection of blades 13, and the number of blades 13 in each blade unit can be calculated and designed according to the demand, so as to obtain the optimal power and efficiency of the whole machine, and solve the contradiction between power generation efficiency and power generation.
  • Each blade unit of the impeller 1 shown in Fig. 1 comprises two blades 13, obviously, the quantity is not limited thereto, as shown in Fig. 4, Fig. 4 is the structure of the variable-pitch type ocean wave power generation device in the second embodiment of the present invention In the schematic diagram, each blade unit includes four blades 13 .
  • variable-pitch wave power generation device can also have a constant power characteristic, which can ensure the stable output of the generating power of the unit, and has stronger grid friendliness.
  • the stable output of power generation can be realized through the pitch control system, as follows:
  • the rated power can be set, and the rated power can be set according to different needs.
  • Adjusting the pitch angle of some blades also includes directly adjusting to control some blades 13 to retract, as shown in FIG. 5 , which is a schematic diagram of the state of the blades 13 in FIG. 4 after retracting.
  • the pitch control system in this program includes a plurality of pitch execution units 131, and each blade 13 is provided with a corresponding pitch execution unit 131, that is, each blade 13 in each blade unit is also independently controlled, so that all The blades 13 are independently pitch controlled and adjusted according to the constant power demand.
  • the pitch control system can directly control all the blades. 13 close oars, to protect the safety of device.
  • the impeller 1 can include a middle foundation 12, and the blade unit then also includes a support rod 14 extending radially, one end of the support rod 14 is fixed to the middle foundation 12, and each blade 13 of the blade unit is along the support rod 14.
  • the supporting rods 14 can give stable and reliable support to each blade 13 in the corresponding blade unit, and the structure design is simple. It can be seen that each blade 13 of the blade unit is not limited to be connected to the middle foundation 12 through the support rod 14 , for example, each blade 13 may be connected to the middle foundation 12 through a separate connection structure.
  • the impeller 1 also includes a plurality of annular support frames 15, and each annular support frame 15 is separately arranged around the middle foundation 12, and the plurality of annular support frames 15 are distributed sequentially from the inside to the outside, that is, arranged in sequence in a direction away from the middle foundation , the circumferential dimension increases gradually.
  • Each support rod 14 is connected with a plurality of annular support frames 15, that is to say, a plurality of support rods 14 is connected with a plurality of annular support frames 15 simultaneously, so that a grid-like rigid support frame structure is formed, so that each blade unit More reliable assembly together, improve the stability of the structure.
  • Fig. 1 the impeller 1 also includes a plurality of annular support frames 15, and each annular support frame 15 is separately arranged around the middle foundation 12, and the plurality of annular support frames 15 are distributed sequentially from the inside to the outside, that is, arranged in sequence in a direction away from the middle foundation , the circumferential dimension increases gradually.
  • Each support rod 14 is connected with a
  • annular support frames 15 are circular rings arranged concentrically with the impeller 1, but obviously, the annular support frames 15 here are not limited to the circular rings shown in Fig. 1, and can also be other shapes, such as square , as long as a plurality of support rods 14 can be connected in series to strengthen the fixing reliability.
  • the above-mentioned middle foundation 12 can be a floating foundation or a fixed foundation.
  • the floating foundation can better adapt to sea waves, and the fixed foundation is relatively stable in position, which can be selected according to the specific application environment and application requirements.
  • FIG. 6 is a schematic structural diagram of a pitch-variable wave power generation device in a third embodiment of the present invention.
  • variable-pitch type ocean wave power generation device is not limited to setting only the above-mentioned one impeller 1.
  • the impellers 1 are set around the general foundation 2, and all the impellers 1 are connected to the general foundation 2 through a rigid connecting frame, which facilitates the centralized arrangement of multiple impellers 1 in a certain sea area, and is better for sea areas with relatively consistent wave characteristic parameters.
  • the wave energy is collected up and down, and it is also convenient for the centralized collection of electric energy generated by multiple impellers 1.
  • Figure 6 shows four impellers 1 surrounding the general foundation 2, but obviously, the number of impellers 1 in this scheme is not limited. .
  • the connecting frame may include an annular frame 4 and at least two connecting rods 3, and the middle foundations 12 of a plurality of impellers 1 are respectively connected with the annular frame 4, that is, the annular frame 4 connects a plurality of impellers 1 in series on one annular frame 4
  • the ring frame 4 can be circular as shown in Figure 6, and can also be other shapes.
  • the two ends of the connecting rod 3 in the connecting frame then respectively connect the ring frame 4 and the general foundation 2, like this, the connecting rod 3 forms a skeleton structure, establishes the connection of the ring frame 4 and the general foundation 2, and improves the intensity of the whole connecting frame.
  • the general foundation 2 can be a floating foundation or a fixed foundation, which can be selected according to the specific application environment and application requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

一种变桨式海浪发电装置及方法,该海浪发电装置包括叶轮(1)和变桨控制系统,叶轮(1)绕竖直轴转动。叶轮(1)包括多个自叶轮(1)的中心向外呈发散状分布的叶片单元,叶片单元沿径向延伸。变桨控制系统能够控制叶片单元中的叶片(13)沿水平轴线转动以该变桨距角。该发电装置的能量传递步骤少,可降低能量损耗,提高能量利用率。叶轮(1)的叶片(13)可以根据不同的海浪特征,调整自身的桨距角,以获得在对应海浪条件下的最优发电效率。

Description

一种变桨式海浪发电装置和变桨式海浪发电方法
本申请要求于2021年09月27日提交中国专利局、申请号为202111138595.3、发明名称为“一种变桨式海浪发电装置和变桨式海浪发电方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及发电技术领域,具体涉及一种变桨式海浪发电装置和变桨式海浪发电方法。
背景技术
海浪能量存储量大,不易受天气影响,对海浪能量的收集转化也受到各界关注。但采用传统的海浪发电系统,存在以下不足:
传统海浪发电装置需要将海浪流动方向的动能先转换为液压缸活塞的动能,再利用压缩空气推动发电机的涡轮运动,从而产生电能。该系统存在多次的动能传递及转换,能量损耗较大,发电效率较低。
另外,传统海浪发电装置的海浪受力结构尺寸及形状都是固定的,仅可适用范围较小的海浪特征,海浪特征例如包括波长、波高、周期等。而海浪是复杂多变的,其特征参数也是不断变化的,当波浪参数超出传统海浪发电系统的适用范围,其发电效率会大幅下降,导致其整体发电性能不佳,而且整体功率较低,发电功率不具备稳定性。
发明内容
本发明提供一种变桨式海浪发电装置,包括叶轮和变桨控制系统,所述叶轮绕竖直轴线转动,所述叶轮包括多个自所述叶轮的中心向外呈发散状分布的叶片单元,所述变桨控制系统能够控制所述叶片单元沿水平轴线转动以变桨。
本发明还提供一种变桨式海浪发电方法,基于上述任一项所述的变桨式海浪发电装置,在发电功率不超过额定功率时,控制全部所述叶片开桨 到最大位置;当发电功率将超过额定功率时,则控制部分或全部所述叶片的桨距角,使发电功率降低直至趋近于所述额定功率。
本方案中的变桨式海浪发电装置具有下述优势:
1、直接利用海浪上、下运动的能量带动叶轮及涡轮发电机旋转进行发电,能量的传递步骤少,可降低能量损耗,提高能量利用率。
2、由于叶轮上的叶片具备变桨功能,叶片可以根据不同的海浪特征,调整自身的桨距角,以获得在对应海浪条件下的最优发电效率。因此,该变桨式海浪发电装置具有更强的适用性,可适用波浪范围更广。
3、该变桨式海浪发电装置由于设置变桨控制系统,还可具备恒功率特性,可以保证机组发电功率稳定输出,具有更强的电网友好性。
作为进一步的方案,每个叶片单元包括沿径向排布的两个或更多的叶片,每个叶片单元中叶片的数量和尺寸形状可以根据项目场址定制化设计。比如,叶片的长度尺寸可以根据应用海域的波浪特征,比如通常的波长范围,再结合叶片本身的翼型特征,可以设计出合理的叶片长度,以尽量减小上、下波动方向相反对叶片能量收集的影响,并可以根据发电需求再计算设计每个叶片单元中叶片的排布数量,从而获取最优整机功率及效率,解决发电效率和发电功率的矛盾,并使得该方案具有更强的扩展性和适用性。
附图说明
图1为本发明第一实施例中变桨式海浪发电装置的结构示意图;
图2为图1中单个叶片的结构示意图;
图3为以图2中叶片断面为基础,分析叶片受力特性的示意图;
图4为本发明第二实施例中变桨式海浪发电装置的结构示意图;
图5为图4中叶片收桨后的状态示意图;
图6为本发明第三实施例中变桨式海浪发电装置的结构示意图。
图1-6中附图标记说明如下:
1-叶轮;
11-涡轮发电机;12-中部基础;13-叶片;131-变桨执行单元;13a-断面;14-支撑杆;15-环形支撑架;
2-总基础;
3-连接杆;
4-环形架。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
请参考图1,图1为本发明第一实施例中变桨式海浪发电装置的结构示意图。
该变桨式海浪发电装置包括能够水平转动的叶轮1和变桨控制系统,水平转动是指在水平面内转动,图1为该叶轮1的俯视视角。具体地,叶轮1包括多个自叶轮1的中心向外呈发散状分布的叶片单元,而每个叶片单元包括至少一个沿叶轮1的径向排布的叶片13,图1中每个叶片单元包括两个叶片13,叶片13本身也是沿叶轮1的径向延伸,叶片13的材质不限,可以由钢材或复合材料制成。
而变桨控制系统则能够控制叶片13沿水平轴线转动以变桨,叶片13开桨后,可以在海浪的上、下波动作用下带动叶轮1转动,从而对海浪的上、下波动能进行收集转换,带动变桨式海浪发电装置的涡轮发电机11进行发电,涡轮发电机11连接于叶轮1的中部。
叶片13在海浪上、下波动时进行受力而驱动叶轮1转动的原理,可请继续参考图2-3解,图2为图1中单个叶片13的结构示意图;图3为以图2中叶片13断面13a为基础,分析叶片13受力特性的示意图。
如图3所示,叶轮1的叶轮面在本实施例也即水平面,叶片13变桨绕水平的轴线转动,图3中水平轴线垂直纸面方向,交汇于O点。其中,叶轮面和叶片13弦线的夹角为桨距角,海浪的上、下波动产生水质点速度U与叶轮1转速Ωr形成的合速度Vres,叶轮面和和合速度Vres之间的夹角是入流角,弦线和合速度Vres之间的夹角为攻角。合速度Vres作用于叶 片13,可产生升力L和阻力D,升力L和阻力D可在叶片13上产生一个合力R,该合力R又可分解为与叶轮面垂直的法向力Fn和沿叶轮面的切向力Ft,而切向力Ft可以产生使叶轮1旋转的扭矩,多个叶片13的合扭矩可以促使叶轮1进行旋转,从而带动涡轮发电机11进行发电,叶片13在外力作用下推动叶轮1的转动原理可参照已有的风力发电机的叶轮1转动原理,不再更详细地展开。
本方案中的变桨式海浪发电装置具有下述优势:
1、直接利用海浪上、下运动的能量带动叶轮1及涡轮发电机11旋转进行发电,能量的传递步骤少,可降低能量损耗,提高能量利用率。
2、由于叶轮1上的叶片13具备变桨功能,叶片13可以根据不同的海浪特征,调整自身的桨距角,以获得在对应海浪条件下的最优发电效率。因此,该变桨式海浪发电装置具有更强的适用性,可适用波浪范围更广。
3、尤为重要的是,本方案中每个叶片单元可以包括沿径向排布的两个或更多的叶片13,即每个叶片单元由多个小叶片组成。本方案的叶轮1主要是用于收集海浪的上、下波动能量,如果叶片13沿叶轮1的方向尺寸过长,比如和海浪波动的一个波长大致相当,此时由于上、下波动方向不同,可能存在部分抵消,影响收集的效率。而本方案中将叶片单元分割为多个叶片13,每个叶片单元中叶片13的数量和尺寸形状可以根据项目场址定制化设计。比如,叶片13的长度尺寸可以根据应用海域的波浪特征,比如通常的波长范围,再结合叶片13本身的翼型特征,可以设计出更合理的叶片13长度,以尽量减小上、下波动方向相反对叶片13能量收集的影响,并可以根据需求再计算设计每个叶片单元中叶片13的排布数量,从而获取最优整机功率及效率,解决发电效率和发电功率的矛盾。
图1示出的叶轮1的每个叶片单元包括两个叶片13,显然,数量并不限于此,如图4所示,图4为本发明第二实施例中变桨式海浪发电装置的结构示意图,每个叶片单元包括四个叶片13。
可以理解,通过试验或者动力学仿真,可实现叶片13翼型的合理设计,使得海浪上、下波动都可以在叶片13上产生使叶轮1同向转动的力矩,但侧重一种方向能量收集的翼型设计,可提高海浪能量的利用率。
可见,本方案中由于叶片单元由多个叶片13组成,使得该方案具有更强的扩展性和适用性。
4、该变桨式海浪发电装置还可具备恒功率特性,可以保证机组发电功率稳定输出,具有更强的电网友好性。
发电功率的稳定输出具体可以通过变桨控制系统实现,如下:
可以设定额定功率,额定功率可根据不同需求进行设定,在发电功率不超过额定功率时,控制全部叶片13开桨到最大;此时,海浪一般较小;
当海浪变大,发电功率达到额定功率后,并具有超过额定功率的趋势时,则可由变桨控制系统控制调整部分或全部叶片13的桨距角,降低部分或全部叶片13的扭矩,以使发电功率降低直至趋近于额定功率。从而实现变桨式海浪发电装置具备恒功率特性。调整部分叶片的桨距角,也包括直接调整为控制部分叶片13收桨,如图5所示,图5为图4中叶片13收桨后的状态示意图。
本方案中的变桨控制系统包括多个变桨执行单元131,每个叶片13均设有对应的变桨执行单元131,即每个叶片单元内的各叶片13也是独立控制,从而可对所有叶片13进行独立的变桨控制,根据恒功率需求进行调整。
本方案中,如果海浪过大,变桨式海浪发电装置的叶片13如果开桨,可能会因为受力过大而存在损坏,故监测到海浪过大时,变桨控制系统可以直接控制所有叶片13收桨,以保护装置的安全性。
请继续参考图1,叶轮1可以包括中部基础12,叶片单元则还包括沿径向延伸的支撑杆14,支撑杆14的一端固定于中部基础12,叶片单元的各叶片13沿支撑杆14的长度方向排布,如此设置,支撑杆14可以给与对应叶片单元中各叶片13稳定可靠的支撑,且结构设计简单。可知,叶片单元的各叶片13不限于通过支撑杆14连接于中部基础12,比如,各叶片13可以通过单独的连接结构与中部基础12连接。
图1中,叶轮1还包括多个环形支撑架15,每个环形支撑架15分别单独环绕中部基础12设置,多个环形支撑架15由内向外依次分布,即向远离中部基础的方向依次布置,环向尺寸逐渐增加。每个支撑杆14均与多个环形支撑架15连接,也就是说多个支撑杆14同时与多个环形支撑架15 连接,这样形成类似网格状的刚性支撑架结构,从而使得各叶片单元更为可靠地装配在一起,提高结构的稳定性。图1中多个环形支撑架15为与叶轮1同心布置的圆环形,但显然,这里的环形支撑架15也不限于图1中所示的圆环形,也可以是其他形状,例如方形,只要能把多个支撑杆14串接、加强固定可靠性即可。
上述的中部基础12可以为浮体基础或者固定式基础,浮体基础能够更好地适应海浪,固定式基础位置相对稳定,可以根据具体的应用环境和应用需求进行选择。
请继续参考图6,图6为本发明第三实施例中变桨式海浪发电装置的结构示意图。
本实施例中变桨式海浪发电装置不限于只设置上述一个叶轮1,图6中,变桨式海浪发电装置还包括总基础2和至少两个上述实施例中所述的叶轮1,且所有的叶轮1均环绕总基础2设置,所有的叶轮1通过刚性的连接架与总基础2连接,这样便于多个叶轮1集中布置在一定的海域,更好地对海浪特征参数相对一致的海域的海浪上、下波动能量进行收集,同时也方便多个叶轮1发电的电能的集中收集,图6中示出四个围绕总基础2的叶轮1,但显然,本方案中叶轮1的数量不限。
具体地,连接架可以包括环形架4和至少两个连接杆3,多个叶轮1的中部基础12分别与环形架4连接,即环形架4将多个叶轮1串接在一个环形架4上,环形架4可以是图6中所示的圆环形,也可以是其他形状。连接架中的连接杆3的两端则分别连接环形架4和总基础2,这样,连接杆3形成骨架结构,建立环形架4和总基础2的连接,提高整个连接架的强度。
另外,与上述单个叶轮1的中部基础12相同,总基础2可以是浮式基础或固定式基础,可以根据具体的应用环境和应用需求进行选择。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的 保护范围内。

Claims (9)

  1. 一种变桨式海浪发电装置,其特征在于,包括叶轮(1)和变桨控制系统,所述叶轮(1)绕竖直轴线转动;所述叶轮(1)包括多个自所述叶轮(1)的中心向外呈发散状分布的叶片单元,所述叶片单元沿径向延伸;所述变桨控制系统能够控制所述叶片单元沿水平轴线转动以变桨。
  2. 如权利要求1所述的变桨式海浪发电装置,其特征在于,每个所述叶片单元包括至少一个沿所述叶轮(1)的径向排布的叶片(13)。
  3. 如权利要求2所述的变桨式海浪发电装置,其特征在于,所述叶轮(1)包括中部基础(12),所述叶片单元包括沿径向延伸的支撑杆(14),所述支撑杆(14)的一端固定于所述中部基础(12),所述叶片单元的各所述叶片(13)沿所述支撑杆(14)的长度方向排布。
  4. 如权利要求3所述的变桨式海浪发电装置,其特征在于,还包括多个环形支撑架(15),各所述环形支撑架(15)分别环绕所述中部基础(12)设置,且各所述环形支撑架(15)由内向外依次分布;每个所述支撑杆(14)均与多个所述环形支撑架(15)连接。
  5. 如权利要求3所述的变桨式海浪发电装置,其特征在于,还包括总基础(2)和至少两个所述叶轮(1),所有的所述叶轮(1)环绕所述总基础(2)设置,且所述叶轮(1)通过连接架与所述总基础(2)连接。
  6. 如权利要求5所述的变桨式海浪发电装置,其特征在于,所述连接架包括环形架(4)和至少两个连接杆(3),多个所述叶轮(1)的中部基础(12)均与所述环形架(4)连接;所述连接杆(3)的两端分别连接所述环形架(4)和所述总基础(2)。
  7. 如权利要求5所述的变桨式海浪发电装置,其特征在于,所述总基础(2)和所述中部基础(12),为浮式基础或固定式基础。
  8. 如权利要求1-7任一项所述的变桨式海浪发电装置,其特征在于,所述变桨控制系统包括多个变桨执行单元(131),每个所述叶片(13)均设有对应的所述变桨执行单元(131)。
  9. 一种变桨式海浪发电方法,基于权利要求1-8任一项所述的变桨式海浪发电装置,其特征在于,在发电功率不超过额定功率时,控制全部所 述叶片(13)开桨到最大位置;当发电功率将超过额定功率时,则控制部分或全部所述叶片(13)的桨距角,使发电功率降低直至趋近于所述额定功率。
PCT/CN2022/070056 2021-09-27 2022-01-04 一种变桨式海浪发电装置和变桨式海浪发电方法 WO2023045180A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022350112A AU2022350112A1 (en) 2021-09-27 2022-01-04 Variable-pitch seawave power generation device and variable-pitch seawave power generation method
EP22871248.5A EP4411132A1 (en) 2021-09-27 2022-01-04 Variable-pitch seawave power generation device and variable-pitch seawave power generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111138595.3A CN115875174A (zh) 2021-09-27 2021-09-27 一种变桨式海浪发电装置和变桨式海浪发电方法
CN202111138595.3 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023045180A1 true WO2023045180A1 (zh) 2023-03-30

Family

ID=85719960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070056 WO2023045180A1 (zh) 2021-09-27 2022-01-04 一种变桨式海浪发电装置和变桨式海浪发电方法

Country Status (4)

Country Link
EP (1) EP4411132A1 (zh)
CN (1) CN115875174A (zh)
AU (1) AU2022350112A1 (zh)
WO (1) WO2023045180A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090066A1 (ja) 2018-10-31 2020-05-07 オリンパス株式会社 光治療システムおよび光治療方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783670A (en) * 1980-11-14 1982-05-25 Mitsubishi Heavy Ind Ltd Biaxial type water mill and wind mill
US20100290908A1 (en) * 2005-07-15 2010-11-18 Energetech Australia Pty Limited A blade pitch control mechanism
US20110110779A1 (en) * 2009-11-06 2011-05-12 Thomas Glenn Stephens Fluid turbine featuring articulated blades and phase-adjusted cam
CN103348129A (zh) * 2010-10-22 2013-10-09 海洋能源技术有限公司 涡轮机转子组件
CN103470429A (zh) * 2013-09-25 2013-12-25 杭州三汇水电设备有限公司 一种轴流转浆式水轮机
CN205243716U (zh) * 2015-12-04 2016-05-18 林园林 五级变桨风力发电装置
CN106014856A (zh) * 2016-07-25 2016-10-12 张占兵 一种高效的风轮装置
CN111237126A (zh) * 2020-04-03 2020-06-05 季文斌 一种变桨叶轮以及风力发电机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783670A (en) * 1980-11-14 1982-05-25 Mitsubishi Heavy Ind Ltd Biaxial type water mill and wind mill
US20100290908A1 (en) * 2005-07-15 2010-11-18 Energetech Australia Pty Limited A blade pitch control mechanism
US20110110779A1 (en) * 2009-11-06 2011-05-12 Thomas Glenn Stephens Fluid turbine featuring articulated blades and phase-adjusted cam
CN103348129A (zh) * 2010-10-22 2013-10-09 海洋能源技术有限公司 涡轮机转子组件
CN103470429A (zh) * 2013-09-25 2013-12-25 杭州三汇水电设备有限公司 一种轴流转浆式水轮机
CN205243716U (zh) * 2015-12-04 2016-05-18 林园林 五级变桨风力发电装置
CN106014856A (zh) * 2016-07-25 2016-10-12 张占兵 一种高效的风轮装置
CN111237126A (zh) * 2020-04-03 2020-06-05 季文斌 一种变桨叶轮以及风力发电机

Also Published As

Publication number Publication date
EP4411132A1 (en) 2024-08-07
CN115875174A (zh) 2023-03-31
AU2022350112A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
US6857846B2 (en) Stackable vertical axis windmill
US7040859B2 (en) Wind turbine
EP2893186B1 (en) Vertical axis wind turbine
WO2009067845A1 (fr) Aérogénérateur à axe vertical de type à portance à quatre quadrants à direction constante
US11236724B2 (en) Vertical axis wind turbine
CN102192101B (zh) 一种流体能量提升和转换装置
EP2663768A1 (en) Dynamic turbine system
WO2023045180A1 (zh) 一种变桨式海浪发电装置和变桨式海浪发电方法
EP1828597B1 (en) Vertical axis turbine apparatus
CN106351799B (zh) 一种水平轴风力发电机
WO2002014688A1 (fr) Eolienne a ossature combinee
CN101705919B (zh) 倒张索式垂直轴风力发电机悬臂
JP2001065446A (ja) 垂直軸型風車用翼列構造および垂直軸型風車
US20130121832A1 (en) Wind Turbine with Cable Supported Perimeter Airfoil
CA2643587A1 (en) Turbine annular axial rotor
CN204003265U (zh) 一种垂直轴风力发电机
WO2008088921A2 (en) Vertical windmills and methods of operating the same
CN101457738B (zh) 自适应柔性叶片转子
CN109441718B (zh) 具有斜轴变桨和自启动功能的叶片浮动式海上风力发电机
CN108194257B (zh) 一种可升降式船用微风发电塔
CN113027673A (zh) 一种垂直轴风力发电机系统
WO2011026256A1 (zh) 高空风力发电系统及方法
CN206206086U (zh) 水平轴风力发电机
RU2631587C2 (ru) Парусная горизонтальная ветросиловая турбина
CN220599928U (zh) 一种新型并列式双风轮风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2022350112

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022871248

Country of ref document: EP

Effective date: 20240429

ENP Entry into the national phase

Ref document number: 2022350112

Country of ref document: AU

Date of ref document: 20220104

Kind code of ref document: A