WO2023045092A1 - 用于增强室内信号覆盖的三维oam天线架构实现方法及系统 - Google Patents

用于增强室内信号覆盖的三维oam天线架构实现方法及系统 Download PDF

Info

Publication number
WO2023045092A1
WO2023045092A1 PCT/CN2021/136090 CN2021136090W WO2023045092A1 WO 2023045092 A1 WO2023045092 A1 WO 2023045092A1 CN 2021136090 W CN2021136090 W CN 2021136090W WO 2023045092 A1 WO2023045092 A1 WO 2023045092A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
sub
dimensional
array elements
antenna array
Prior art date
Application number
PCT/CN2021/136090
Other languages
English (en)
French (fr)
Inventor
周晨虹
阳堃
赖峥嵘
Original Assignee
广东省新一代通信与网络创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省新一代通信与网络创新研究院 filed Critical 广东省新一代通信与网络创新研究院
Publication of WO2023045092A1 publication Critical patent/WO2023045092A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/007Details of, or arrangements associated with, antennas specially adapted for indoor communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems

Definitions

  • the present invention relates to the technical field of antennas, in particular to a method and system for implementing a three-dimensional OAM antenna architecture for enhancing indoor signal coverage.
  • Orbital Angular Momentum is a new communication multiplexing dimension independent of traditional modulation degrees of freedom such as time and frequency. In theory, it has an infinite-dimensional Hilbert space and has the potential to improve system capacity and spectrum utilization. Electromagnetic waves carrying orbital angular momentum are called vortex electromagnetic waves.
  • the vortex electromagnetic wave has the characteristics of unique helical phase and hollow strength structure.
  • the generation of vortex electromagnetic waves is the basis of building an OAM system, and the efficient and flexible generation of multiple modal vortex electromagnetic waves is the key to the practical application of orbital angular momentum technology.
  • OAM generation methods can be divided into three categories according to the antenna structure: spiral phase structure, array antenna, metasurface and so on.
  • the helical phase structure mainly includes devices such as helical parabolic antenna and helical phase plate. Among them, the helical parabolic antenna realizes the phase rotation after machining the common parabolic antenna.
  • the helical phase plate is a transparent plate whose thickness changes proportionally to the center, and the phase rotation is realized by controlling the beam path difference.
  • the array antenna is mainly uniform circular array (Uniform Circular Array, UCA), and there are two main feeding methods of the antenna element: phase control and time control.
  • a metasurface is an artificial periodic structure whose unit structure is much smaller than the working wavelength, and the helical phase is generated by controlling the shape and distribution of the unit structure.
  • the technical problem to be solved by the present invention is to provide a method for implementing a three-dimensional OAM antenna architecture for enhancing indoor signal coverage, which can realize signal coverage in multiple directions and effectively expand the coverage of OAM signals in indoor scenes.
  • the first aspect of the present invention discloses a method for implementing a three-dimensional OAM antenna architecture for enhancing indoor signal coverage, the method includes: setting the antenna array elements at the vertices of the three-dimensional graph according to a preset arrangement rule The geometric relationship between the antenna array elements is formed above; the antenna array elements are divided into multiple sub-arrays according to the geometric relationship between the antenna array elements; the phase excitation is uniformly performed on the antenna array elements, so that the multiple sub-arrays The arrays respectively generate vortex electromagnetic waves of different modes so that each sub-array radiates in one direction.
  • the three-dimensional figure includes a spherical shape
  • setting the antenna elements on the vertices of the three-dimensional figure according to a preset arrangement rule to form a geometric relationship between the antenna elements includes: setting the antenna elements as Uniformly distributed on the first circle and the second circle perpendicular to the spherical z-axis; uniformly arranged sub-arrays are formed according to the antenna array elements arranged on the first circle and the second circle.
  • the number of sub-arrays is eight, and phase excitation is uniformly performed on the antenna elements, so that the plurality of sub-arrays respectively generate vortex electromagnetic waves of different modes so that each sub-array radiates in one direction, including : Pass the input signal through a four-way splitter, a phase shifter, and an eight-power splitter to generate thirty-two split signals with phase excitation; feed back the thirty-two split signals with phase excitation to eight sub-arrays , so that the eight sub-arrays generate the vortex electromagnetic waves.
  • the three-dimensional figure includes a three-dimensional octagon
  • the arrangement of the antenna array elements on the vertices of the three-dimensional figure according to the preset arrangement rule to form a geometric relationship between the antenna array elements includes: placing the antenna array elements The elements are arranged to be distributed on the first circle and the second circle perpendicular to the spherical z-axis; according to the antenna array elements arranged on the first circle and the second circle, a uniformly arranged sub-array is formed; wherein, the three-dimensional octagon It includes two regular octagons whose side lengths on the upper and lower surfaces are equal to the height of the solid octagon, eight squares on the sides, and circumscribed circles of the two regular octagons coincide with the first circumference and the second circumference respectively.
  • the plurality of sub-arrays respectively generate vortex electromagnetic waves of different modes so that each sub-array radiates in one direction
  • the antenna elements include the first numbered antenna element, the second numbered antenna element, the second numbered antenna element, and the second numbered antenna element.
  • the third-numbered antenna array element and the fourth-numbered antenna array element uniformly perform phase excitation on the antenna array elements, so that: the input signal is divided into four paths through a four-power divider to generate the first signal, the second signal, and the second signal.
  • the three signals and the fourth signal; the first signal is sequentially passed through the first phase shifter and the four power divider to generate four first branch signals with the same phase excitation; the four first branch signals with the same phase excitation Feedback the signals of the first path to the antenna element of the first number; pass the second signal in turn through the second phase shifter and the four power dividers to generate four second branch signals with the same phase excitation; and the four paths with The second branch signal of the same phase excitation is fed back to the antenna array element of the second number; the third signal is sequentially passed through the third phase shifter and the four power divider to generate four third branch signals with the same phase excitation; And the third branch signal with the same phase excitation of the four paths is fed back to the antenna array element of the third number; the fourth signal is sequentially passed through the fourth phase shifter and the four power dividers to generate four paths with the same phase excitation The fourth branch signal; and the fourth branch signal with the same phase excitation is fed back to the fourth numbered antenna element; so that the sub-array composed of four
  • a three-dimensional OAM antenna architecture system for enhancing indoor signal coverage
  • the system includes: an arrangement configuration module, which is used to set the antenna array elements according to a preset arrangement rule Form the geometric relationship between the antenna array elements on the vertices of the three-dimensional graphics; the division module is used to divide the antenna array elements into multiple sub-arrays according to the geometric relationship between the antenna array elements; the full coverage module is used to The antenna array elements uniformly perform phase excitation, so that the plurality of sub-arrays respectively generate vortex electromagnetic waves of different modes so that each sub-array radiates in one direction.
  • the three-dimensional figure includes a sphere
  • the arrangement and configuration module is implemented as follows: the antenna elements are arranged to be evenly distributed on the first circle and the second circle perpendicular to the z-axis of the sphere; according to the first circle and the antenna array elements arranged on the second circumference form a uniformly arranged sub-array.
  • the number of sub-arrays is eight
  • the full coverage module includes: a four-power splitter, a phase shifter, and an eight-power splitter;
  • the input signal is used to generate thirty-two branch signals with phase excitation;
  • the feedback unit is used to feed back the thirty-two branch signals with phase excitation to eight sub-arrays, so that the eight sub-arrays generate the The vortex electromagnetic wave.
  • the three-dimensional figure includes a three-dimensional octagon
  • the arrangement and configuration module is implemented as: arranging the antenna elements to be distributed on the first circumference and the second circumference perpendicular to the spherical z-axis; according to the first The antenna array elements arranged on the first circumference and the second circumference form a uniformly arranged sub-array; wherein, the three-dimensional octagon includes two regular octagons whose side lengths on the upper and lower surfaces are equal to the height of the three-dimensional octagon, and the side faces It is eight squares, and the circumscribed circles of two regular octagons coincide with the first circle and the second circle respectively.
  • the number of sub-arrays is eight
  • the full coverage module includes: two four-power splitters, phase shifters, and eight-power splitters; the four-power splitter, phase shifter, and eight-power splitter
  • the splitter is used to generate eight split signals with phase excitation respectively for the first signal/second signal/third signal/fourth signal;
  • the feedback unit is used to feed back the split signals with phase excitation to four Counterclockwise arrangement/four subarrays arranged clockwise, so that the four subarrays arranged clockwise carry the first vortex electromagnetic wave/four subarrays arranged counterclockwise carry the second vortex electromagnetic wave signal .
  • the implementation of the present invention can radiate OAM signals in various directions in space through the three-dimensional structure of the antenna array element, increase signal coverage, overcome the traditional two-dimensional planar OAM antenna that can only radiate in a certain direction, and for two-dimensional planar N-element UCA, feed
  • the number of phase shifters in the electrical network is equal to the number of array elements. If L OAM modes are to be generated simultaneously, the number of phase shifters will increase exponentially.
  • the three-dimensional spherical OAM antenna proposed by the present invention greatly reduces the use of phase shifters and effectively reduces the complexity of the feeding network by appropriately adding power dividers.
  • the three-dimensional octagonal OAM antenna disclosed in the present invention greatly reduces the number of antenna array elements on the basis of reducing the use of phase shifters. Therefore, the OAM signal coverage can be enhanced in indoor communication scenarios through the two OAM antenna architectures of the three-dimensional spherical shape and the three-dimensional octagonal extended structure provided by the present invention.
  • FIG. 1 is a schematic flowchart of a method for implementing a three-dimensional OAM antenna architecture for enhancing indoor signal coverage disclosed in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a spherical OAM antenna architecture for enhancing indoor signal coverage disclosed by an embodiment of the present invention
  • Fig. 3 is a top view of a spherical OAM antenna architecture for enhancing indoor signal coverage disclosed by an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a feeder implementation of a spherical OAM antenna architecture for enhancing indoor signal coverage disclosed in an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a three-dimensional octagonal OAM antenna architecture for enhancing indoor signal coverage disclosed by an embodiment of the present invention
  • FIG. 6 is a top view of a three-dimensional octagonal OAM antenna architecture for enhancing indoor signal coverage disclosed by an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a feeding circuit implementation of a three-dimensional octagonal OAM antenna architecture for enhancing indoor signal coverage disclosed by an embodiment of the present invention
  • Fig. 8 is a schematic diagram of a three-dimensional OAM antenna architecture system for enhancing indoor signal coverage disclosed by an embodiment of the present invention
  • Fig. 9 is a schematic diagram of a device structure of a three-dimensional OAM antenna architecture for enhancing indoor signal coverage disclosed by an embodiment of the present invention.
  • the embodiment of the present invention discloses a three-dimensional OAM antenna architecture implementation method and system for enhancing indoor signal coverage, which can radiate OAM signals in all directions in space through the three-dimensional architecture of antenna array elements, increase signal coverage, and overcome the traditional two-dimensional structure.
  • the two-dimensional planar OAM antenna can only radiate in a certain direction, and for the two-dimensional planar N-element UCA, the number of phase shifters in the feed network is equal to the number of array elements. To generate L OAM modes at the same time, the phase shifter The number will increase exponentially.
  • the three-dimensional spherical OAM antenna proposed by the present invention greatly reduces the use of phase shifters and effectively reduces the complexity of the feeding network by appropriately adding power dividers.
  • the three-dimensional octagonal OAM antenna disclosed in the present invention greatly reduces the number of antenna array elements on the basis of reducing the use of phase shifters. Therefore, the OAM signal coverage can be enhanced in indoor communication scenarios through the two OAM antenna architectures of the three-dimensional spherical shape and the three-dimensional octagonal extended structure provided by the present invention.
  • FIG. 1 is a schematic flowchart of a method for implementing a three-dimensional OAM antenna architecture for enhancing indoor signal coverage disclosed by an embodiment of the present invention.
  • the implementation method of the three-dimensional OAM antenna architecture for enhancing indoor signal coverage can be applied to the OAM system, and the embodiment of the present invention does not limit the applied antenna architecture system.
  • the implementation method of the three-dimensional OAM antenna architecture for enhancing indoor signal coverage may include the following operations:
  • the antenna array elements are arranged on the vertices of the three-dimensional figure according to the preset arrangement rule to form the geometric relationship between the antenna array elements.
  • the main design idea of this application is to move the arrangement of the antenna array elements from the two-dimensional space to the three-dimensional space, and arrange the antenna array elements on the three-dimensional graphics according to certain rules, and then divide the array elements into multiple sub-sections according to the geometric relationship between the array elements.
  • Array the antenna elements are uniformly phase-excited, so that each sub-array can generate vortex electromagnetic waves with different modes, so that each sub-array radiates in one direction, thereby achieving full coverage of indoor OAM signals.
  • the three-dimensional figure includes a sphere and a three-dimensional polygon, and this application does not limit the three-dimensional figure.
  • a certain number assuming that the number is N, of antenna elements are uniformly arranged at equal intervals on the circumference of a sphere with a certain radius.
  • the antenna array elements are divided into multiple sub-arrays according to the geometric relationship between the antenna array elements.
  • the sub-arrays are divided according to the geometric relationship of different antenna array elements.
  • the geometric relationship of different antenna array elements Exemplarily, in the spherical geometric relationship of this embodiment, there are eight sub-arrays.
  • Phase excitation is uniformly performed on the antenna array elements, so that multiple sub-arrays respectively generate vortex electromagnetic waves carrying different modes so that each sub-array radiates in one direction.
  • the three-dimensional figure is spherical as an example for illustration, as shown in Figure 2 and Figure 3, which is a three-dimensional spherical OAM antenna structure and radiation top view, it can be seen that,
  • the elements of the three-dimensional spherical OAM antenna are distributed on the first circle Circle-1 and the second circle Circle-2 perpendicular to the z-axis. All antenna elements are the same, and 16 antennas are evenly arranged on the first circle Circle-1.
  • Array elements are numbered #1 and #2 in sequence, and 16 array elements are arranged in sequence on the second circle Circle-2, and numbers are assigned #3 and #4 in sequence.
  • each quadruple sub-array can generate vortex electromagnetic waves carrying three modes of -1, 0, and +1.
  • the spherical OAM antenna is designed with 8 groups of sub-arrays, and each sub-array can radiate in one direction, so as to achieve full coverage of indoor OAM signals.
  • the feeding process of the three-dimensional spherical OAM antenna array element is shown in Figure 4: for each sub-array, when radiating +1 modal vortex electromagnetic waves, #1, #2, #3, #4 four
  • the vortex electromagnetic wave signal is divided into four paths through a four-power splitter, and sent to phase shifter 1, phase shifter 2, phase shifter 3, and phase shifter 4 respectively, so that the splitter
  • the signals of the two channels are respectively excited by the phases of 0, ⁇ /2, ⁇ , and 3 ⁇ /2, and then the divided signals are divided into 8 channels through the eight-power divider in turn, and then fed to the channels numbered #1, #2, #3 and
  • each sub-array independently generates vortex electromagnetic waves carrying +1 mode.
  • the OAM signal can be radiated in all directions in space through the spherical structure of the antenna element to increase signal coverage.
  • FIG. 5 and FIG. 6 are top views of a three-dimensional octagonal OAM antenna structure and radiation disclosed by an embodiment of the present invention.
  • a three-dimensional figure is taken as an example of a three-dimensional octagon for illustration.
  • the upper and lower surfaces of the three-dimensional octagonal OAM antenna are two equal regular octagons, and the sides are 8 squares, that is, the side lengths of the upper and lower surfaces are equal to the height of the three-dimensional structure, and two regular octagons
  • the circumscribed circles of the polygon coincide with the first circle Circle-1 and the second circle Circle-2 respectively (assuming that the radius of Circle-1 and Circle-2 are equal).
  • the figure includes the antenna array element of the first number, the antenna array element of the second number, the antenna array element of the third number and the antenna array element of the fourth number, which can be specifically expressed as the first number of the deeper area in the figure
  • the three-dimensional octagonal OAM antenna requires fewer antenna elements, which is One half of a three-dimensional spherical OAM antenna.
  • the feeding process of the three-dimensional spherical OAM antenna element is shown in Figure 7: first, the input signal is divided into four paths through a four-power splitter to generate the first signal, the second signal, the third signal and the fourth signal, The first signal is sequentially passed through the first phase shifter and the four power divider to generate four first branch signals with the same phase excitation, and the four first branch signals with the same phase excitation are fed back to the antenna of the first number On the array element, the second signal is sequentially passed through the second phase shifter and the four-power divider to generate four second branch signals with the same phase excitation, and the four second branch signals with the same phase excitation are fed back to On the antenna element of the second number, the third signal is sequentially passed through the third phase shifter and the four power divider to generate four third branch signals with the same phase excitation, and the four third signal with the same phase excitation The split signal is fed back to the antenna element of the third number, and the fourth signal is sequentially passed through the fourth phase shifter and the four-power
  • the input signals are respectively sent to phase shifter 1, phase shifter 2, phase shifter 3 and phase shifter 4, so that the split signals are respectively obtained as ⁇ 0, ⁇ /2, ⁇ , 3 ⁇ /2 ⁇ phase excitation, and then divide the split signal into 4 paths through the four-power splitter in turn, and feed them to the antenna array elements numbered #1, #2, #3 and #4 in turn, and finally each sub-array is independent Generate vortex electromagnetic waves carrying +1 or -1 modes.
  • the sub-arrays arranged clockwise and counterclockwise are implemented according to the same process, and will not be repeated here.
  • the antenna configuration of the receiving end is the same as that of the transmitting terminal array, that is, a quaternary array and a demodulation network are set up, wherein the phases of each phase shifter in the demodulation network are set to ⁇ 0,- ⁇ /2,- ⁇ ,- 3 ⁇ /2 ⁇ or ⁇ 0, ⁇ /2, ⁇ , 3 ⁇ /2 ⁇ , according to the orthogonality between OAM modes, the transmitted OAM signal can be demodulated to complete OAM communication.
  • the OAM signal can be radiated in all directions in space through the three-dimensional octagonal structure of the antenna element, thereby increasing signal coverage.
  • FIG. 8 is a schematic diagram of a three-dimensional OAM antenna architecture system for enhancing indoor signal coverage disclosed by an embodiment of the present invention.
  • the three-dimensional OAM antenna architecture system for enhancing indoor signal coverage may include:
  • the arrangement and configuration module 1 is used to arrange the antenna array elements on the vertices of the three-dimensional figure according to the preset arrangement rule to form the geometric relationship between the antenna array elements.
  • a certain number assuming that the number is N, of antenna elements are uniformly arranged at equal intervals on the circumference of a sphere with a certain radius.
  • a division module 2 configured to divide the antenna array elements into multiple sub-arrays according to the geometric relationship between the antenna array elements.
  • the sub-arrays are divided according to the geometric relationship of different antenna elements. Exemplarily, in the spherical geometric relationship of this embodiment, there are eight sub-arrays.
  • the full-coverage module 3 is configured to uniformly perform phase excitation on the antenna array elements, so that the multiple sub-arrays respectively generate vortex electromagnetic waves carrying different modes so that each sub-array radiates in one direction.
  • the three-dimensional figure includes a spherical shape
  • the arrangement and configuration module is implemented as: arranging the antenna elements to be evenly distributed on the first circumference and the second circumference perpendicular to the z-axis of the spherical shape.
  • An evenly arranged sub-array is formed according to the antenna array elements arranged on the first circumference and the second circumference.
  • the full-coverage modules include: four-power splitter, phase shifter, and eight-power splitter; the four-power splitter, phase shifter, and eight-power splitter are used to generate 32 channels of input signals with phase excitation split signal.
  • the feedback unit is used to feed back thirty-two branch signals with phase excitation to the eight sub-arrays, so that the eight sub-arrays generate vortex electromagnetic waves.
  • the three-dimensional figure includes a three-dimensional octagon
  • the arrangement and configuration module is implemented as: arranging the antenna array elements to be distributed on the first circumference and the second circumference perpendicular to the z-axis of the spherical shape.
  • An evenly arranged sub-array is formed according to the antenna array elements arranged on the first circumference and the second circumference.
  • the three-dimensional octagon includes two regular octagons whose side lengths on the upper and lower surfaces are equal to the height of the three-dimensional octagon, and the sides are eight squares. Circumference coincides.
  • the full-coverage module includes: two four-power dividers, phase shifters, and eight-power dividers.
  • the four-way splitter, the phase shifter, and the eight-way splitter are used to respectively generate eight split signals with phase excitation from the first signal/second signal/third signal/fourth signal.
  • the feedback unit is used to feed back the divided signal with phase excitation to the four sub-arrays arranged counterclockwise/clockwise, so that the four sub-arrays arranged clockwise carry the first vortex electromagnetic wave/the The four sub-arrays arranged counterclockwise generate the second vortex electromagnetic wave signal.
  • the OAM signal can be radiated in all directions in space through the three-dimensional structure of the antenna array element, and the signal coverage can be increased.
  • the number of phase shifters in the electrical network is equal to the number of array elements. If L OAM modes are to be generated simultaneously, the number of phase shifters will increase exponentially.
  • the three-dimensional spherical OAM antenna proposed by the present invention greatly reduces the use of phase shifters and effectively reduces the complexity of the feeding network by appropriately adding power dividers.
  • the three-dimensional octagonal OAM antenna disclosed in the present invention greatly reduces the number of antenna array elements on the basis of reducing the use of phase shifters. Therefore, through the two OAM antenna architectures of the three-dimensional spherical shape and its extended structure three-dimensional octagon provided by the present invention, OAM signal coverage can be enhanced in indoor communication scenarios.
  • FIG. 9 is a schematic structural diagram of a three-dimensional OAM antenna architecture device for enhancing indoor signal coverage disclosed by an embodiment of the present invention.
  • the three-dimensional OAM antenna architecture device for enhancing indoor signal coverage described in FIG. 9 can be applied in an OAM system, and the embodiment of the present invention does not limit the application system of the three-dimensional OAM antenna architecture for enhancing indoor signal coverage.
  • the device may include:
  • a memory 601 storing executable program codes
  • processor 602 coupled to the memory 601;
  • the processor 602 invokes the executable program code stored in the memory 601 to execute the method for implementing the three-dimensional OAM antenna architecture for enhancing indoor signal coverage described in Embodiment 1 or Embodiment 2.
  • the embodiment of the present invention discloses a computer-readable storage medium, which stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the method described in Embodiment 1 or Embodiment 2 for enhancing indoor signal coverage Three-dimensional OAM antenna architecture implementation method.
  • the embodiment of the present invention discloses a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to enable the computer to execute the computer program described in the first or second embodiment.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in a place, or can also be distributed to multiple network modules. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • a method and device for implementing a three-dimensional OAM antenna architecture for enhancing indoor signal coverage disclosed in the embodiments of the present invention are only preferred embodiments of the present invention, and are only used to illustrate the technology of the present invention scheme, rather than its limitation; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand; it can still modify the technical scheme described in the foregoing embodiments, or modify the Some technical features are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种用于增强室内信号覆盖的三维OAM天线架构实现方法,该方法包括:将天线阵元按照预置的排布规律设置在三维图形顶点上形成天线阵元之间的几何关系;根据天线阵元之间的几何关系将天线阵元划分为多个子阵列;对天线阵元统一进行相位激励,使得多个子阵列分别产生不同模态的涡旋电磁波以使每个子阵列辐射一个方向。根据本发明公开的方法及系统能够实现多个方位的信号覆盖,有效扩展了室内场景中OAM信号覆盖范围。

Description

用于增强室内信号覆盖的三维OAM天线架构实现方法及系统 技术领域
本发明涉及天线技术领域,尤其涉及用于增强室内信号覆盖的三维OAM天线架构实现方法及系统。
背景技术
轨道角动量(Orbital Angular Momentum,OAM)是独立于时间、频率等传统调制自由度的新型通信复用维度,理论上具有无穷维希尔伯特空间,具有提升系统容量和频谱利用率的潜力。携带轨道角动量的电磁波称为涡旋电磁波。涡旋电磁波具有独特螺旋相位和中空强度结构等特点。涡旋电磁波的产生是构建OAM系统的基础,高效、灵活产生多个模态涡旋电磁波则是轨道角动量技术迈向实际应用的关键。
OAM产生方法按照天线结构可分为三类:螺旋相位结构、阵列天线、超表面等。螺旋相位结构主要包括螺旋抛物面天线和螺旋相位板等器件。其中,螺旋抛物面天线是将普通抛物面天线进行机械加工后实现相位旋转。螺旋相位板是一块厚度相对中心成比例变化的透明板,通过控制波束波程差实现相位旋转。阵列天线以均匀圆形天线阵列(Uniform Circular Array,UCA)为主,其中天线阵元馈电方式主要有相控和时控两种。超表面是一种单元结构远小于工作波长的人工周期结构,通过控制单元结构形态和分布调控产生螺旋相位。
综合目前现有OAM产生方法,发现各类OAM天线结构均基于二维平面设计,这使得OAM波束方向可调整性弱,仅能辐射单个区域面,信号覆盖范围严重受限,不利于OAM技术的实际应用。
发明内容
本发明所要解决的技术问题,在于,提供一种用于增强室内信号覆盖的三维OAM天线架构实现方法,能够实现多个方位的信号覆盖,有效扩展了室内场景中OAM信号覆盖范围。
为了解决上述技术问题,本发明第一方面公开了一种用于增强室内信号覆盖的三维OAM天线架构实现方法,所述方法包括:将天线阵元按照预置的排布规律设置在三维图形顶点上形成天线阵元之间的几何关系;根据所述天线阵元之间的几何关系将所述天线阵元划分为多个子阵列;对所述天线阵元统一进行相位激励,使得所述多个子阵列分别产生不同模态的涡旋电磁波以使每个子阵列辐射一个方向。
在一些实施方式中,所述三维图形包括球形,所述将天线阵元按照预置的排布规律设置在三维图形顶点上形成天线阵元之间的几何关系,包括:将天线阵元设置为均匀分布在垂直于球形z轴的第一圆周和第二圆周上;根据第一圆周和第二圆周上设置的天线阵元构成均匀排布的子阵列。
在一些实施方式中,所述子阵列为八个,对所述天线阵元统一进行相位激励,使得所述多个子阵列分别产生不同模态的涡旋电磁波以使每个子阵列辐射一个方向,包括:将输入信号通过四功分器、移相器和八功分器生成三十二路具有相位激励的分路信号;将所述三十二路具有相位激励的分路信号反馈至八个子阵列,使得所述八个子阵列产生所述涡旋电磁波。
在一些实施方式中,所述三维图形包括立体八边形,所述将天线阵元按照预置的排布规律设置在三维图形顶点上形成天线阵元之间的几何关系,包括:将天线阵元设置为分布在垂直于球形z轴的第一圆周和第二圆周上;根据第一圆周和第二圆周上设置的天线阵元构成均匀排布的子阵列;其中,所述立体八边形包括上下表面的边长与立体八边形的高度相等的两个正八边形,侧面为八个正方形,两个正八边形的外切圆分别与第一圆周和第二圆周重合。
在一些实施方式中,所述多个子阵列分别产生不同模态的涡旋电磁波以使每个子阵列辐射一个方向,天线阵元包括第一编号的天线阵元、第二编号的天线阵元、第三编号的天线阵元和第四编号的天线阵元,对所述天线阵元统一进行相位激励,使得:将输入信号通过四功分器分为四路生成第一信号、第二信号、第三信号和第四信号;将第一信号依次通过第一移相器和四功分器生成四路具有相同相位激励的第一分路信号;将所述四路具有相同相位激励的第一分路信号反馈至第一编号的天线阵元上;将第二信号依次通过第二移相器和四功分器生成四路具有相同相位激励的第二分路信号;并将所述四路具有相同相位激励的第二分路信号反馈至第二编号的天线阵元上;将第三信号依次通过第三移相器和四功分器生成四路具有相同相位激励的第三分路信号;并将所述四路具有相同相位激励的第三分路信号反馈至第三编号的天线阵元上;将第四信号依次通过第四移相器和四功分器生成四路具有相同相位激励的第四分路信号;并将所述四路具有相同相位激励的第四分路信号反馈至第四编号的天线阵元上;使得逆时针排布的四个阵元组成的子阵列辐射第一涡旋电磁波,顺时针排布的子阵列辐射第二涡旋电磁波。
根据本发明的第二个方面,提供了一种用于增强室内信号覆盖的三维OAM天线架构系统,所述系统包括:排布配置模块,用于将天线阵元按照预置的排布规律设置在三维图形顶点上形成天线阵元之间的几何关系;划 分模块,用于根据所述天线阵元之间的几何关系将所述天线阵元划分为多个子阵列;全覆盖模块,用于对所述天线阵元统一进行相位激励,使得所述多个子阵列分别产生产生不同模态的涡旋电磁波以使每个子阵列辐射一个方向。
在一些实施方式中,所述三维图形包括球形,所述排布配置模块实现为:将天线阵元设置为均匀分布在垂直于球形z轴的第一圆周和第二圆周上;根据第一圆周和第二圆周上设置的天线阵元构成均匀排布的子阵列。
在一些实施方式中,所述子阵列为八个,所述全覆盖模块包括:四功分器、移相器、八功分器;所述四功分器、移相器、八功分器用于将输入信号生成三十二路具有相位激励的分路信号;反馈单元,用于将所述三十二路具有相位激励的分路信号反馈至八个子阵列,使得所述八个子阵列产生所述涡旋电磁波。
在一些实施方式中,所述三维图形包括立体八边形,所述排布配置模块实现为:将天线阵元设置为分布在垂直于球形z轴的第一圆周和第二圆周上;根据第一圆周和第二圆周上设置的天线阵元构成均匀排布的子阵列;其中,所述立体八边形包括上下表面的边长与立体八边形的高度相等的两个正八边形,侧面为八个正方形,两个正八边形的外切圆分别与第一圆周和第二圆周重合。
在一些实施方式中,所述子阵列为八个,所述全覆盖模块包括:两个四功分器、移相器、八功分器;所述四功分器、移相器、八功分器用于将第一信号/第二信号/第三信号/第四信号分别各生成八路具有相位激励的分路信号;反馈单元,用于将所述具有相位激励的分路信号反馈至四个逆时针排布/四个顺时针排布的子阵列,使得四个顺时针排布的子阵列携带有第一涡旋电磁波/四个逆时针排布的子阵列携带有第二涡旋电磁波信号。
与现有技术相比,本发明的有益效果在于:
实施本发明能够通过天线阵元的立体架构对空间中各个方向进行OAM信号辐射,增加信号覆盖,克服了传统二维平面OAM天线仅能辐射某一个方向,而且对二维平面N元UCA,馈电网络中移相器的个数与阵列阵元数相等,若要同时产生L个OAM模态,移相器个数将成倍增加。但本发明提出的三维球型OAM天线通过适当增加功分器,大大减少了移相器的使用,有效降低了馈电网络复杂度。进而本发明所公开的立体八边形OAM天线在减少移相器使用的基础上还大大减少了天线阵元数量。由此,通过本发明提供的三维球型及其拓展结构立体八边形两种OAM天线架构方式,可在室内通信场景中增强OAM信号覆盖。
附图说明
图1为本发明实施例公开的一种用于增强室内信号覆盖的三维OAM天线架构实现方法的流程示意图;
图2为本发明实施例公开的一种用于增强室内信号覆盖的球形OAM天线架构示意图;
图3为本发明实施例公开的一种用于增强室内信号覆盖的球形OAM天线架构俯视图;
图4为本发明实施例公开的一种用于增强室内信号覆盖的球形OAM天线架构的馈电路实现示意图;
图5为本发明实施例公开的一种用于增强室内信号覆盖的立体八边形OAM天线架构示意图;
图6为本发明实施例公开的一种用于增强室内信号覆盖的立体八边形OAM天线架构俯视图;
图7为本发明实施例公开的一种用于增强室内信号覆盖的立体八边形OAM天线架构的馈电路实现示意图;
图8是本发明实施例公开的一种利用于增强室内信号覆盖的三维OAM天线架构系统示意图;
图9是本发明实施例公开的一种用于增强室内信号覆盖的三维OAM天线架构的装置结构示意图。
具体实施方式
为了更好地理解和实施,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
本发明实施例公开了一种用于增强室内信号覆盖的三维OAM天线架构实现方法及系统,能够通过天线阵元的立体架构对空间中各个方向进行OAM信号辐射,增加信号覆盖,克服了传统二维平面OAM天线仅能辐射某一个方向,而且对二维平面N元UCA,馈电网络中移相器的个数与阵列阵元 数相等,若要同时产生L个OAM模态,移相器个数将成倍增加。但本发明提出的三维球型OAM天线通过适当增加功分器,大大减少了移相器的使用,有效降低了馈电网络复杂度。进而本发明所公开的立体八边形OAM天线在减少移相器使用的基础上还大大减少了天线阵元数量。由此,通过本发明提供的三维球型及其拓展结构立体八边形两种OAM天线架构方式,可在室内通信场景中增强OAM信号覆盖。
实施例一
请参阅图1,图1为本发明实施例公开的一种用于增强室内信号覆盖的三维OAM天线架构实现方法的流程示意图。其中,该用于增强室内信号覆盖的三维OAM天线架构实现方法可以应用在OAM系统,对于所应用的天线架构系统本发明实施例不做限制。如图1所示,该用于增强室内信号覆盖的三维OAM天线架构实现方法可以包括以下操作:
将天线阵元按照预置的排布规律设置在三维图形顶点上形成天线阵元之间的几何关系。
本申请的主要设计构思在于将天线阵元的排列从二维空间搬移到了三维空间,并且通过将天线阵元按照一定规律排布在三维图形上,再根据阵元之间的几何关系划分多个子阵列,对天线阵元统一进行相位激励,这样各子阵列就可以分别产生携带不同模态的涡旋电磁波,使得每个子阵列辐射一个方向,从而实现室内OAM信号全覆盖。具体地,该三维图形包括球形、立体多边形地,本申请不对该三维图形进行限定。示例性地,将一定数量,假设为数量为N的天线阵元等间隔均匀排放在半径一定的球形的圆周上。
根据天线阵元之间的几何关系将天线阵元划分为多个子阵列。
之后,根据不同天线阵元的几何关系对子阵列进行划分,示例性地,在本实施例的球形几何关系中,子阵列为八个。
对天线阵元统一进行相位激励,使得多个子阵列分别产生携带不同模态的涡旋电磁波以使每个子阵列辐射一个方向。
具体实现为:为了实现天线阵元之间的具有不同模态,对所有天线阵列馈送相同幅度的调制信号,并令相邻天线阵元之间有一个连续变化的相位延迟Δ=2πl/N(其中l为所需模态值),使得涡旋波束绕传输轴旋转一周后,相位改变2πl,通过改变天线阵元之间馈电相位差的大小便可以产生不同模态的OAM波束。
具体地,为了更加详细的说明本实施例的原理和实现过程,以三维图形为球形为例进行阐述,如图2和图3所示,为一三维球型OAM天线结构及 辐射俯视图,可见,三维球型OAM天线的阵元分布在垂直于z轴的第一圆周Circle-1和第二圆周Circle-2上,所有天线阵元相同,在第一圆周Circle-1上均匀排布16个天线阵元,依次赋予编号为#1和#2,在第二圆周Circle-2上依次排布16个阵元,依次赋予编号为#3和#4。其中,以圆圈连起来的#1、#2、#3和#4四个阵元构成一个子阵列,子阵列阵元间距相等,且均匀排布在圆圈连起来的圆周上,构成均匀圆形天线阵列。根据UCA通信协议产生OAM原理,每个四元子阵列都可产生携带-1,0,+1三个模态的涡旋电磁波。那么该球型OAM天线共设计8组子阵列,每个子阵列就可以辐射一个方位,从而实现室内OAM信号全覆盖。
进一步地,该三维球型OAM天线阵元馈电流程如图4所示:对每一个子阵列,当辐射+1模态涡旋电磁波时,#1,#2,#3,#4四个阵元辐射信号的相位值依次为{0,π/2,π,3π/2}(相位差Δ=π/2);当辐射-1模态时,四个阵元辐射信号的相位值依次为{0,-π/2,-π,-3π/2}(相位差Δ=-π/2)。以辐射+1模态为例,首先将涡旋电磁波信号通过一个四功分器分成四路,分别送往移相器1、移相器2、移相器3和移相器4,使分路信号分别获得0,π/2,π,3π/2的相位激励,然后再依次通过八功分器将分路信号分为8路,依次馈给编号为#1、#2、#3和#4的天线阵元,最后各子阵列独立产生携带+1模态的涡旋电磁波。由此,能够通过天线阵元的球形架构对空间中各个方向进行OAM信号辐射,增加信号覆盖。
实施例二
请参阅图5和图6,图5和图6为本发明实施例公开的一种立体八边形OAM天线结构及辐射俯视图。为了更好的支持本发明公开的构思,在本实施例中,以三维图形为立体八边形示例,进行阐述。
如图5和图6所示,该立体八边形OAM天线的上下表面为相等的两个正八边形,侧面为8个正方形,即上下表面的边长与立体结构的高度相等,两个正八边形的外切圆分别与第一圆周Circle-1和第二圆周Circle-2重合(设Circle-1和Circle-2半径相等)。其中,图中包括第一编号的天线阵元、第二编号的天线阵元、第三编号的天线阵元和第四编号的天线阵元,具体可表示为图中较深区域的第一编号的天线阵元#1、第二编号的天线阵元#2、第三编号的天线阵元#3、第四编号的天线阵元#4组成一个子阵列,四个阵元均匀排布在第一圆周上,分别受到{0,π/2,π,3π/2}(相位差Δ=π/2)的相位激励后辐射携带+1模态的涡旋电磁波;较浅区域的#1、#2、#3、#4组成一个子阵列,四个阵元均匀排布在第二圆周上,分别受到{0,π/2,π,3π/2}(相位差Δ=-π/2)的相位激励后辐射携带-1模态的涡旋电磁波。因 为相邻两个子阵列会有两个阵元被复用,因此与三维球型OAM天线相比,产生同等数量OAM模态时,立体八边形OAM天线所需天线阵元数量更少,是三维球型OAM天线的一半。
进一步地,该三维球型OAM天线阵元馈电流程如图7所示:首先将输入信号通过一个四功分器分成四路生成第一信号、第二信号、第三信号和第四信号,将第一信号依次通过第一移相器和四功分器生成四路具有相同相位激励的第一分路信号,将四路具有相同相位激励的第一分路信号反馈至第一编号的天线阵元上,将第二信号依次通过第二移相器和四功分器生成四路具有相同相位激励的第二分路信号,并将四路具有相同相位激励的第二分路信号反馈至第二编号的天线阵元上,将第三信号依次通过第三移相器和四功分器生成四路具有相同相位激励的第三分路信号,并将四路具有相同相位激励的第三分路信号反馈至第三编号的天线阵元上,将第四信号依次通过第四移相器和四功分器生成四路具有相同相位激励的第四分路信号,并将四路具有相同相位激励的第四分路信号反馈至第四编号的天线阵元上,由此,使得逆时针排布的四个阵元组成的子阵列辐射第一涡旋电磁波,顺时针排布的子阵列辐射第二涡旋电磁波。作为一种具体实施方式,首先将输入信号分别送往移相器1、移相器2、移相器3和移相器4,使分路信号分别获得{0,π/2,π,3π/2}的相位激励,然后再依次通过四功分器将分路信号分为4路,依次馈给编号为#1、#2、#3和#4的天线阵元,最后各子阵列独立产生携带+1或-1模态的涡旋电磁波。对于顺时针和逆时针排布的子阵列都依照同样的流程实现,在此不进行赘述。
进一步地,对于接收端天线配置与发射端子阵列相同,即设置一个四元阵列以及解调网络,其中,解调网络中各移相器相位设置为{0,-π/2,-π,-3π/2}或{0,π/2,π,3π/2},根据OAM模态间的正交性便可以对发射OAM信号进行解调,从而完成OAM通信。由此,能够通过天线阵元的立体八边形架构对空间中各个方向进行OAM信号辐射,增加信号覆盖。
实施例三
请参阅图8,图8为本发明实施例公开的一种用于增强室内信号覆盖的三维OAM天线架构系统示意图。如图8所示,该用于增强室内信号覆盖的三维OAM天线架构系统可以包括:
排布配置模块1,用于将天线阵元按照预置的排布规律设置在三维图形顶点上形成天线阵元之间的几何关系。示例性地,将一定数量,假设为数量为N的天线阵元等间隔均匀排放在半径一定的球形的圆周上。
划分模块2,用于根据所述天线阵元之间的几何关系将所述天线阵元划 分为多个子阵列。根据不同天线阵元的几何关系对子阵列进行划分,示例性地,在本实施例的球形几何关系中,子阵列为八个。
全覆盖模块3,用于对所述天线阵元统一进行相位激励,使得所述多个子阵列分别产生携带不同模态的涡旋电磁波以使每个子阵列辐射一个方向。具体实现为:为了实现天线阵元之间的具有不同模态,对所有天线阵列馈送相同幅度的调制信号,并令相邻天线阵元之间有一个连续变化的相位延迟Δ=2πl/N(其中l为所需模态值),使得涡旋波束绕传输轴旋转一周后,相位改变2πl,通过改变天线阵元之间馈电相位差的大小便可以产生不同模态的OAM波束。
具体地,三维图形包括球形,排布配置模块实现为:将天线阵元设置为均匀分布在垂直于球形z轴的第一圆周和第二圆周上。根据第一圆周和第二圆周上设置的天线阵元构成均匀排布的子阵列。子阵列为八个,全覆盖模块包括:四功分器、移相器、八功分器;四功分器、移相器、八功分器用于将输入信号生成三十二路具有相位激励的分路信号。反馈单元,用于将三十二路具有相位激励的分路信号反馈至八个子阵列,使得八个子阵列产生涡旋电磁波。
具体地,三维图形包括立体八边形,排布配置模块实现为:将天线阵元设置为分布在垂直于球形z轴的第一圆周和第二圆周上。根据第一圆周和第二圆周上设置的天线阵元构成均匀排布的子阵列。其中,立体八边形包括上下表面的边长与立体八边形的高度相等的两个正八边形,侧面为八个正方形,两个正八边形的外切圆分别与第一圆周和第二圆周重合。子阵列为八个,全覆盖模块包括:两个四功分器、移相器、八功分器。四功分器、移相器、八功分器用于将第一信号/第二信号/第三信号/第四信号分别各生成八路具有相位激励的分路信号。反馈单元,用于将具有相位激励的分路信号反馈至四个逆时针排布/顺时针排布的子阵列,使得四个顺时针排布的子阵列携带有第一涡旋电磁波/所述四个逆时针排布的子阵列产生第二涡旋电磁波信号。
由此,能够通过天线阵元的立体架构对空间中各个方向进行OAM信号辐射,增加信号覆盖,克服了传统二维平面OAM天线仅能辐射某一个方向,而且对二维平面N元UCA,馈电网络中移相器的个数与阵列阵元数相等,若要同时产生L个OAM模态,移相器个数将成倍增加。但本发明提出的三维球型OAM天线通过适当增加功分器,大大减少了移相器的使用,有效降低了馈电网络复杂度。进而本发明所公开的立体八边形OAM天线在减少移相器使用的基础上还大大减少了天线阵元数量。由此,通过本发明提供的三维球型及其拓展结构立体八边形两种OAM天线架构方式,可在室内通信场 景中增强OAM信号覆盖。
实施例四
请参阅图9,图9是本发明实施例公开的一种用于增强室内信号覆盖的三维OAM天线架构装置的结构示意图。其中,图9所描述的用于增强室内信号覆盖的三维OAM天线架构装置可以应用在OAM系统,对于该用于增强室内信号覆盖的三维OAM天线架构的应用系统本发明实施例不做限制。如图9所示,该装置可以包括:
存储有可执行程序代码的存储器601;
与存储器601耦合的处理器602;
处理器602调用存储器601中存储的可执行程序代码,用于执行实施例一或实施例二所描述的用于增强室内信号覆盖的三维OAM天线架构实现方法。
实施例五
本发明实施例公开了一种计算机可读存储介质,其存储用于电子数据交换的计算机程序,其中,该计算机程序使得计算机执行实施例一或实施例二所描述的用于增强室内信号覆盖的三维OAM天线架构实现方法。
实施例六
本发明实施例公开了一种计算机程序产品,该计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,且该计算机程序可操作来使计算机执行实施例一或实施例二中所描述的用于增强室内信号覆盖的三维OAM天线架构实现方法。
以上所描述的实施例仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施例的具体描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory, ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
最后应说明的是:本发明实施例公开的一种用于增强室内信号覆盖的三维OAM天线架构实现方法及装置所揭露的仅为本发明较佳实施例而已,仅用于说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解;其依然可以对前述各项实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应的技术方案的本质脱离本发明各项实施例技术方案的精神和范围。

Claims (10)

  1. 用于增强室内信号覆盖的三维OAM天线架构实现方法,其特征在于,所述方法包括:
    将天线阵元按照预置的排布规律设置在三维图形顶点上形成天线阵元之间的几何关系,所述将天线阵元按照预置的排布规律设置在三维图形顶点上形成天线阵元之间的几何关系,包括:将天线阵元设置为均匀分布在垂直于球形z轴的第一圆周和第二圆周上;根据第一圆周和第二圆周上设置的天线阵元构成均匀排布的子阵列;
    根据所述天线阵元之间的几何关系将所述天线阵元划分为多个子阵列;
    对所述天线阵元统一进行相位激励,使得所述多个子阵列分别产生不同模态的涡旋电磁波以使每个子阵列辐射一个方向。
  2. 根据权利要求1所述的用于增强室内信号覆盖的三维OAM天线架构实现方法,其特征在于,所述三维图形包括球形。
  3. 根据权利要求2所述的用于增强室内信号覆盖的三维OAM天线架构实现方法,其特征在于,所述子阵列为八个,对所述天线阵元统一进行相位激励,使得所述多个子阵列分别产生不同模态的涡旋电磁波以使每个子阵列辐射一个方向,包括:
    将输入信号通过四功分器、移相器和八功分器生成三十二路具有相位激励的分路信号;
    将所述三十二路具有相位激励的分路信号反馈至八个子阵列,使得所述八个子阵列产生所述涡旋电磁波。
  4. 根据权利要求1所述的用于增强室内信号覆盖的三维OAM天线架构实现方法,其特征在于,所述三维图形包括立体八边形,所述将天线阵元按照预置的排布规律设置在三维图形顶点上形成天线阵元之间的几何关系,包括:
    将天线阵元设置为分布在垂直于球形z轴的第一圆周和第二圆周上;
    根据第一圆周和第二圆周上设置的天线阵元构成均匀排布的子阵列;
    其中,所述立体八边形包括上下表面的边长与立体八边形的高度相等的两个正八边形,侧面为八个正方形,两个正八边形的外切圆分别与第一圆周和第二圆周重合。
  5. 根据权利要求4所述的用于增强室内信号覆盖的三维OAM天线架构实现方法,其特征在于,所述天线阵元包括第一编号的天线阵元、第二编号的天线阵元、第三编号的天线阵元和第四编号的天线阵元,对所述天线阵元统一进行相位激励,使得所述多个子阵列分别产生不同模态的涡旋电磁波以使每个子阵列辐射一个方向,包括:
    将输入信号通过四功分器分为四路生成第一信号、第二信号、第三信号和第四信号;
    将第一信号依次通过第一移相器和四功分器生成四路具有相同相位激励的第一分路信号;
    将所述四路具有相同相位激励的第一分路信号反馈至第一编号的天线阵元上;
    将第二信号依次通过第二移相器和四功分器生成四路具有相同相位激励的第二分路信号;
    并将所述四路具有相同相位激励的第二分路信号反馈至第二编号的天线阵元上;
    将第三信号依次通过第三移相器和四功分器生成四路具有相同相位激励的第三分路信号;
    并将所述四路具有相同相位激励的第三分路信号反馈至第三编号的天线阵元上;
    将第四信号依次通过第四移相器和四功分器生成四路具有相同相位激励的第四分路信号;
    并将所述四路具有相同相位激励的第四分路信号反馈至第四编号的天线阵元上;
    使得逆时针排布的四个阵元组成的子阵列辐射第一涡旋电磁波,顺时针排布的子阵列辐射第二涡旋电磁波。
  6. 用于增强室内信号覆盖的三维OAM天线架构系统,其特征在于,所述系统包括:
    排布配置模块,用于将天线阵元按照预置的排布规律设置在三维图形顶点上形成天线阵元之间的几何关系,所述排布配置模块实现为:将天线阵元设置为均匀分布在垂直于球形z轴的第一圆周和第二圆周上;根据第一圆周和第二圆周上设置的天线阵元构成均匀排布的子阵列;
    划分模块,用于根据所述天线阵元之间的几何关系将所述天线阵元划分为多个子阵列;
    全覆盖模块,用于对所述天线阵元统一进行相位激励,使得所述多个 子阵列分别产生不同模态的涡旋电磁波以使每个子阵列辐射一个方向。
  7. 根据权利要求6所述的用于增强室内信号覆盖的三维OAM天线架构系统,其特征在于,所述三维图形包括球形。
  8. 根据权利要求7所述的用于增强室内信号覆盖的三维OAM天线架构系统,其特征在于,所述子阵列为八个,所述全覆盖模块包括:
    四功分器、移相器、八功分器;
    所述四功分器、移相器、八功分器用于将输入信号生成三十二路具有相位激励的分路信号;
    反馈单元,用于将所述三十二路具有相位激励的分路信号反馈至八个子阵列,使得所述八个子阵列产生所述涡旋电磁波。
  9. 根据权利要求6所述的用于增强室内信号覆盖的三维OAM天线架构系统,其特征在于,所述三维图形包括立体八边形,所述排布配置模块实现为:
    将天线阵元设置为分布在垂直于球形z轴的第一圆周和第二圆周上;
    根据第一圆周和第二圆周上设置的天线阵元构成均匀排布的子阵列;
    其中,所述立体八边形包括上下表面的边长与立体八边形的高度相等的两个正八边形,侧面为八个正方形,两个正八边形的外切圆分别与第一圆周和第二圆周重合。
  10. 根据权利要求6所述的用于增强室内信号覆盖的三维OAM天线架构系统,其特征在于,所述子阵列为八个,所述全覆盖模块包括:
    两个四功分器、移相器、八功分器;
    所述四功分器、移相器、八功分器用于将第一信号/第二信号/第三信号/第四信号分别各生成八路具有相位激励的分路信号;
    反馈单元,用于将所述具有相位激励的分路信号反馈至四个逆时针排布/四个顺时针排布的子阵列,使得四个顺时针排布的子阵列产生第一涡旋电磁波/四个逆时针排布的子阵列产生第二涡旋电磁波信号。
PCT/CN2021/136090 2021-09-24 2021-12-07 用于增强室内信号覆盖的三维oam天线架构实现方法及系统 WO2023045092A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111117831.3A CN113571921B (zh) 2021-09-24 2021-09-24 用于增强室内信号覆盖的三维oam天线架构实现方法及系统
CN202111117831.3 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023045092A1 true WO2023045092A1 (zh) 2023-03-30

Family

ID=78174086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136090 WO2023045092A1 (zh) 2021-09-24 2021-12-07 用于增强室内信号覆盖的三维oam天线架构实现方法及系统

Country Status (2)

Country Link
CN (1) CN113571921B (zh)
WO (1) WO2023045092A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571921B (zh) * 2021-09-24 2021-12-07 广东省新一代通信与网络创新研究院 用于增强室内信号覆盖的三维oam天线架构实现方法及系统
WO2024026639A1 (zh) * 2022-08-01 2024-02-08 北京小米移动软件有限公司 一种波束赋形方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111781A1 (en) * 2013-07-01 2016-04-21 Marco Celso Matteoni System for generation and management of orbital angular momentum in an electromagnetic radiation by means of special lens
CN106209183A (zh) * 2016-05-24 2016-12-07 西安电子科技大学 面向同心圆(或同轴圆台)涡旋电磁波mimo系统天线阵元布局及涡旋波分离方法与装置
CN109728448A (zh) * 2018-12-06 2019-05-07 中国科学院上海微系统与信息技术研究所 用于轨道角动量远距离通信的圆环阵列结构及其激励方法
CN110210111A (zh) * 2019-05-29 2019-09-06 重庆邮电大学 基于时间调制同心圆环阵列的涡旋波产生与优化方法
CN113571921A (zh) * 2021-09-24 2021-10-29 广东省新一代通信与网络创新研究院 用于增强室内信号覆盖的三维oam天线架构实现方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9240956B2 (en) * 2012-03-11 2016-01-19 Broadcom Corporation Communication system using orbital angular momentum
DE102013219128B3 (de) * 2013-09-24 2014-10-09 Siemens Aktiengesellschaft Kabellose Signalübertragung in Magnetresonanz-Systemen
CN105762507B (zh) * 2016-02-04 2017-04-26 华中科技大学 一种产生涡旋电磁波的单极子天线阵列及其馈电系统
CN206471491U (zh) * 2016-10-31 2017-09-05 宁夏大学 一种双环结构多模态oam电磁涡旋波阵列天线
CN209282410U (zh) * 2018-11-07 2019-08-20 华南理工大学 一种高口径效率多极化平面反射型轨道角动量天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160111781A1 (en) * 2013-07-01 2016-04-21 Marco Celso Matteoni System for generation and management of orbital angular momentum in an electromagnetic radiation by means of special lens
CN106209183A (zh) * 2016-05-24 2016-12-07 西安电子科技大学 面向同心圆(或同轴圆台)涡旋电磁波mimo系统天线阵元布局及涡旋波分离方法与装置
CN109728448A (zh) * 2018-12-06 2019-05-07 中国科学院上海微系统与信息技术研究所 用于轨道角动量远距离通信的圆环阵列结构及其激励方法
CN110210111A (zh) * 2019-05-29 2019-09-06 重庆邮电大学 基于时间调制同心圆环阵列的涡旋波产生与优化方法
CN113571921A (zh) * 2021-09-24 2021-10-29 广东省新一代通信与网络创新研究院 用于增强室内信号覆盖的三维oam天线架构实现方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DU YONG-XING L, WANG YAN-YANG, QIN LING, LI BAO-SHAN: "Microstrip Array Antenna Design for Generating Multi-Mode OAM Vortex Electromagnetic Beams", JISUANJI-FANGZHEN = COMPUTER SIMULATION, ZHONGGUO HANGTIAN GONGYE ZONGGONGSI, CN, vol. 37, no. 1, 15 January 2020 (2020-01-15), CN , pages 147 - 151, XP093051298, ISSN: 1006-9348 *

Also Published As

Publication number Publication date
CN113571921B (zh) 2021-12-07
CN113571921A (zh) 2021-10-29

Similar Documents

Publication Publication Date Title
WO2023045092A1 (zh) 用于增强室内信号覆盖的三维oam天线架构实现方法及系统
JP6903155B2 (ja) アンテナシステム、信号処理システム、および信号処理方法
US6791507B2 (en) Feed network for simultaneous generation of narrow and wide beams with a rotational-symmetric antenna
US3964066A (en) Electronic scanned cylindrical-array antenna using network approach for reduced system complexity
CN106816716A (zh) 结构简洁的双模涡旋波束双圆极化四元阵列天线
CN111740226B (zh) 一种双极化轨道角动量态复用超表面的设计方法
JP2014036325A (ja) アンテナ装置
Mailloux A low-sidelobe partially overlapped constrained feed network for time-delayed subarrays
US3553706A (en) Array antennas utilizing grouped radiating elements
Qasem et al. Beam steering using OAM waves generated by a concentric circular loop antenna array
Yesilyurt et al. Helical circular array configurations for generation of orbital angular momentum beams
WO2016172823A1 (zh) 天线阵列
EP3529855A1 (en) Apparatus, method and computer program for generating broadcast beams
US11502418B2 (en) Network for forming multiple beams from a planar array
JP7461488B2 (ja) マルチビームアンテナ
AU2020406407B2 (en) Multibeam antenna
Alamayreh et al. Lens antenna for 3D steering of an OAM-synthesized beam
CN111525262B (zh) 一种圆形多波束相控阵列天线及通信方法
JP5918874B1 (ja) アレイアンテナ
EP1602149A2 (en) Systems and methods for providing independent transmit paths within a single phased-array antenna
JP6616249B2 (ja) レンズアンテナ装置
Wang et al. A Low‐Sidelobe‐Level Variable Inclination Continuous Transverse Stub Antenna with a Nonlinear Slow‐Wave Structure
JP7350961B1 (ja) 受電装置、受信装置、端末装置、無線電力伝送システム及び通信システム
CN116318278B (zh) 一种多波束成形网络及六波束基站天线
Ma et al. Butler-Matrices-Based Omnidirectional Beamforming of Circular/Cylindrical Arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21958203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE