WO2016172823A1 - 天线阵列 - Google Patents
天线阵列 Download PDFInfo
- Publication number
- WO2016172823A1 WO2016172823A1 PCT/CN2015/077509 CN2015077509W WO2016172823A1 WO 2016172823 A1 WO2016172823 A1 WO 2016172823A1 CN 2015077509 W CN2015077509 W CN 2015077509W WO 2016172823 A1 WO2016172823 A1 WO 2016172823A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- sub
- array
- antenna array
- arrays
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
Definitions
- the present invention relates to the field of communications, and more particularly to antenna arrays.
- High-frequency (>10G) communication especially high-frequency millimeter wave (>25G) segment communication has wider available bandwidth.
- the V-band of a typical area has a total communication bandwidth of 9G from 57G to 66G
- the E-band has 71-76G. /81 ⁇ 86G a total of 10G of available communication bandwidth, which is unmatched by traditional low frequency, larger available bandwidth means greater communication capacity and higher signal transmission rate.
- the characteristics of the millimeter wave band communication make it a future development direction of the wireless access communication field, which can well meet the requirements of high capacity, high rate, and diverse access.
- the path loss of its spatial transmission is large, and the path loss generally increases with the increase of the frequency.
- the antenna gain is higher than that of the low frequency band communication.
- an antenna gain of at least 30 dBi is required to meet the communication distance of 100 meters, and for a typical panel antenna, the beam width is less than about 5°.
- multiple beam characteristics are required for the base station antenna to meet the simultaneous access requirements of multiple users, and multiple beams are also needed to achieve sector coverage with a certain angular width.
- the conventional rectangular grid array used in the prior art has a single-beam millimeter wave antenna with limited coverage, and has high cost, difficulty in implementation, low gain, inflexible beam control, and system in realizing a millimeter-wave multi-beam antenna. High complexity and other shortcomings.
- the present invention provides an antenna array capable of expanding a coverage area.
- an antenna array comprising N*M antenna elements, the N*M antenna elements forming at least two sub-arrays, and antenna elements in the antenna array are fed through at least two feed ports Electrically, the antenna unit in the same sub-array of the at least two sub-arrays passes the Feeding the same one of the at least two feed ports, M and N are integers greater than 1, and two adjacent antenna elements in each row of the antenna array are respectively performed through different feed ports of the at least two feed ports Feeding and/or two adjacent antenna elements in each column are respectively fed through different ones of the at least two feed ports, and each of the at least two sub-arrays is adjacent to two antenna elements in each row The distance between the two is greater than or equal to the preset threshold and / or the distance between two adjacent antenna elements in each column is greater than or equal to the preset threshold.
- the distance between two adjacent antenna elements in each of the at least two sub-arrays is equal and/or two adjacent columns The distance between the antenna elements is equal.
- a distance between two adjacent antenna elements in each row of the antenna array is less than or equal to the preset threshold and/or each column The distance between two adjacent antenna elements is less than or equal to the preset threshold.
- the distance between two adjacent antenna elements in each row of the antenna array is equal and/or two adjacent columns are adjacent.
- the distance between the antenna elements is equal.
- each of the at least two sub-arrays includes a feed unit and/or a cross-link connection between the antenna units.
- the beam steering is adjusted by adjusting the phase of each of the at least two sub-arrays.
- each of the at least two sub-arrays is fed in-phase.
- each of the at least two sub-arrays is fed with a different phase.
- At least one of the at least two sub-arrays is not fed.
- each of the at least two sub-arrays is fed.
- the preset threshold is greater than or equal to one operating wavelength.
- the antenna array of the embodiment of the present invention generates a plurality of beams by splitting the antenna array into a plurality of sub-arrays and feeding them through different feed ports, thereby significantly expanding
- the communication coverage in the millimeter-wave narrow-beam scene avoids the shortcomings of the traditional millimeter-wave multi-beam high-gain antenna with insufficient angular coverage.
- multiple sub-arrays with large cell spacing overlap each other to achieve efficient use of the array aperture and improve antenna coverage.
- the system beam control is simple, the structure is simple and the implementation is easy, and the low complexity and low cost can be realized compared with the conventional scheme.
- FIG. 1 is a schematic diagram of a conventional antenna array in accordance with an embodiment of the present invention.
- FIG. 2 is a three-dimensional beam pattern of a conventional antenna array in accordance with an embodiment of the present invention.
- 3 is a two-dimensional beam pattern of a conventional antenna array in accordance with an embodiment of the present invention.
- FIG. 4 is a two-dimensional slice beam diagram of a conventional antenna array in accordance with an embodiment of the present invention.
- FIG. 5 is a schematic diagram of an antenna array in accordance with an embodiment of the present invention.
- FIGS. 6(a)-(d) are schematic diagrams of a sub-array of an antenna array in accordance with an embodiment of the present invention.
- FIG. 7 is a schematic diagram of a sub-array and feed connection of an antenna array in accordance with an embodiment of the present invention.
- FIG. 8 is a three-dimensional beam pattern of a sub-array of an antenna array in accordance with an embodiment of the present invention.
- FIG. 9 is a two-dimensional cut-away beam diagram of a sub-array of an antenna array in accordance with an embodiment of the present invention.
- 10 is a two-dimensional beam pattern of another sub-array of an antenna array in accordance with an embodiment of the present invention.
- 11 is a two-dimensional cut-away beam diagram of another sub-array of an antenna array in accordance with an embodiment of the present invention.
- FIG. 12 is a two-dimensional beam pattern of yet another sub-array of an antenna array in accordance with an embodiment of the present invention.
- Figure 13 is a schematic illustration of an antenna array coverage area in accordance with an embodiment of the present invention.
- FIG. 14 is a schematic diagram of an antenna array feeding mode according to an embodiment of the present invention.
- all the patterns in the following are array factor beam patterns composed of isotropic point sources, and the actually working array beam pattern is the product of the array factor beam pattern and the unit antenna radiation beam pattern.
- the beam pattern and performance of the array antenna including the gain and the side lobes are mainly determined by the arrangement of the array itself. Therefore, the discussion of the array factor beam pattern can well represent the beam pattern and performance of the final array antenna.
- FIG. 1 shows an antenna array of a conventional rectangular grid array, the conventional antenna array corresponding to a feed port, taking an 8*8-dimensional array as an example, the cell spacing is 0.8 ⁇ (0.8 wavelengths), and the three-dimensional shape thereof is formed.
- the beam pattern is shown in Figure 2, the corresponding two-bit beam pattern is shown in Figure 3, and the corresponding one-dimensional two-dimensional beam pattern is shown in Figure 4.
- the antenna array can produce a lobe, i.e. the peak portion of the figure, which is the main lobe.
- the beam width of the lobe is generally determined by 3 dB downward at the peak of the lobe, that is, the distance between the two points A and B in FIG.
- the beam width of the main lobe is approximately 9°
- the direction in which the main lobe is located corresponds to the signal coverage area of the system. That is to say, the conventional antenna array is a single beam, and the single beam, that is, the beam generated by the main lobe, has a corresponding beam width of 9°.
- a novel antenna array is constructed, which may be a millimeter wave antenna array, and the antenna array can generate multiple beams.
- the antenna array may be an N*M-dimensional array, that is, the antenna array includes N*M antenna units, each antenna unit may correspond to one millimeter wave antenna, and M and N are integers greater than 1, and the antenna array
- the N*M antenna elements in the form form at least two sub-arrays, that is, the antenna array can be divided into a plurality of sub-arrays, that is, the antenna array includes at least two sub-arrays, and the antenna elements in the antenna array pass at least two feeds The port is fed, and the antenna unit in the same sub-array included in the antenna array is connected to the same one of the at least two feeding ports for feeding.
- An antenna unit in the antenna array can only be fed through one of the at least two feed ports, that is, one antenna unit in the antenna array can belong to only one sub-array, and is fed through a feed port.
- Two adjacent antenna units in each row of the antenna array do not share a single feeding port for feeding, that is, two adjacent antenna units are respectively fed through different two feeding ports of the at least two feeding ports.
- Electric, or two adjacent antenna elements in each column of the antenna array do not share one feed port for feeding, or two adjacent antenna units in each row and each column satisfy that no feed port is shared. Electricity.
- the distance between two adjacent antenna elements in each row of the first sub-array is greater than or equal to a preset threshold and/or two adjacent columns Distance between antenna elements Greater than or equal to the preset threshold.
- the spacing between two adjacent antenna elements in the antenna array is greater than one working wavelength, a lobe must occur; when two adjacent antenna elements are spaced in the scanning array
- the scanning angle is greater than a certain angle when the operating wavelength is greater than 0.5, the lobes may also appear.
- the newly constructed antenna array since the newly constructed antenna array includes at least two sub-arrays, and the distance between two adjacent antenna elements in each sub-array is greater than or equal to a preset threshold, the preset threshold is set to be greater than or equal to one.
- each sub-array can generate a plurality of lobes, one of which is set as the main lobe and the other is the side lobes, and the new antenna array can generate multiple beams, which expands the coverage.
- FIG. 5 is taken as an example for illustration.
- FIG. 5 is a schematic diagram of an antenna array according to an embodiment of the present invention.
- the antenna array of the present invention may not be a square matrix, and may be an N*M-dimensional array, and N and M may be equal or unequal, and the present invention is not limited thereto.
- the spacing between adjacent two antenna elements in each row and each column of the antenna array is 0.8 ⁇ .
- the spacing between adjacent two antenna elements in each row may be equal, or Identical, in the same way, the spacing between two adjacent antenna elements in each column may be equal or unequal, and the distance between two adjacent antenna elements in each row and two adjacent antennas in each column
- the distance between the units may or may not be equal, and the present invention is not limited thereto.
- the antenna array is set to have the same distance between adjacent antenna elements, which can improve utilization efficiency, simplify design, and reduce implementation difficulty.
- the spacing between two adjacent antenna elements in each row may be set to be smaller than a preset threshold, and the preset threshold may be any length less than one working wavelength, for example, 0.7 ⁇ .
- the spacing between adjacent two antenna elements in each column may also be less than a preset threshold, and the present invention is not limited thereto.
- the spacing between two adjacent antenna elements in the antenna array is generally set to be greater than or equal to the threshold. According to empirical values, the threshold is generally acceptable.
- the 0.5 working wavelength that is, the spacing between adjacent antenna elements in the antenna array is set to be not less than 0.5 operating wavelengths, but the present invention is not limited thereto.
- the antenna array in FIG. 5 includes four sub-arrays, each of which is identified by a different pattern, and each sub-array is a 4*4-dimensional array.
- the antenna array may comprise at least two sub-arrays, ie may comprise 2, 3 or more sub-arrays; each The sub-array may be an n*m-dimensional array, and n and m may be equal or unequal, and the present invention is not limited thereto.
- the four sub-arrays in FIG. 5 are separately detached, and four sub-arrays of FIGS. 6( a ) to ( d ) may be formed, and any one of the plurality of sub-arrays included in the antenna array may be formed.
- the array is taken as an example.
- the distance between two adjacent antenna elements in each row of the sub-array is 1.6 ⁇ , optionally, between two adjacent antenna elements in each row.
- the distance is set to be greater than or equal to a preset threshold.
- the preset threshold may be set to any value greater than 1 ⁇ , such as 1.6 ⁇ in (a), and the present invention is not limited thereto.
- the spacing between each column can also be set to be greater than or equal to a predetermined threshold.
- the distance between the antenna elements of each row when the distance between the antenna elements of each row is greater than or equal to a preset threshold, the distance between the antenna elements of each column may also be greater than or equal to a preset threshold, or may be less than a preset threshold, and similarly, each When the distance between the antenna elements of the column is set to be greater than or equal to the preset threshold, the distance between the antenna elements of each row may also be greater than or equal to a preset threshold, or may be less than a preset threshold.
- the sub-array is exemplified in FIG. 6( a ).
- the spacing between the antenna elements in each row in the antenna array is set to be equal, so FIG. 6 is obtained according to a certain rule ( The spacing between the antenna elements of each row in the sub-array of a) is also equal.
- the spacing may be set to be unequal.
- the distance between each antenna unit included in each column may also be set to be unequal, and the present invention is not limited thereto.
- each row of the sub-array when the spacing is not equal, for a plurality of antenna elements included in each row in the sub-array, when there is a distance between two adjacent antenna elements greater than or equal to When the threshold is preset, multiple beams can appear in the antenna array.
- the antenna units included in each column can be set the same, and each column can be set or not set when the distance between two adjacent antenna elements in each row is greater than or equal to a preset threshold.
- the distance between two adjacent antenna elements is greater than or equal to a preset threshold, and the present invention is not limited thereto.
- the antenna array includes at least one sub-array, and each of the corresponding sub-arrays requires one feed port for feeding, that is, the antenna array corresponds to at least two feed ports.
- the antenna array includes four sub-arrays, and correspondingly includes four feed ports, each of which uses one feed port.
- the sub-array corresponds to a feed port.
- each antenna unit in the sub-array corresponding to one feed port may be fed in series or may be fed in parallel. For example, as shown in FIG.
- the "Y" graphic in the figure represents an antenna unit, and the plurality of antenna elements in the figure constitute a sub-array, and the sub-array
- the antenna unit included in the antenna is connected to the same feed port through a feedthrough, and the sub-array is fed through the feed port.
- an antenna array includes at least two sub-arrays, one antenna array corresponding to at least two feed ports, one sub-array with one feed port, and optionally, at least one of at least two sub-arrays Feeding.
- the beam orientation can be changed by adjusting the feed phase of each sub-array, that is, more beams can be obtained, as shown in FIG. 5, when the antenna array includes four sub-arrays.
- the antenna array also corresponds to four feed ports, each of which corresponds to one feed port, and can feed four sub-arrays through four feed ports respectively, or can pass one of the feed ports to one of the corresponding sub-arrays. The array is fed.
- the sub-array of FIG. 6(a) can be fed through the feed port, while the other three sub-arrays (b) to (d) are not fed, and similarly, only any two sub-arrays in FIG. 6 can be performed.
- the feeding phase difference of each sub-array may be different, and different phases are fed, and the beam pointing of each sub-array may be adjusted to maximize the number of each sub-array.
- the beams are made and the directions of each beam are not coincident in order to obtain more beams.
- the antenna unit of the unified sub-array in each sub-array may adopt equal-amplitude in-phase feeding, Power is supplied in different phases of equal amplitude, and different phases can be used to feed each sub-array to facilitate generating more lobes.
- the same sub-array in each sub-array can also be fed with unequal amplitudes, and each sub-array can also be fed with unequal amplitudes, and the invention is not limited thereto.
- the sub-array if the sub-array is fed through the feed port, firstly, equal-amplitude in-phase feeding can be employed.
- the sub-array has nine peaks with close peaks, of which 8 can be selected as side lobes and 1 as main lobes.
- FIG. 6( a ) it is still illustrated in FIG. 6( a ).
- different phase feeds are used in equal amplitude, for example, a 60° phase difference is used in the ⁇ direction. Feeding.
- eight lobes appear, of which seven can be selected as side lobes and one as main lobes.
- each sub-array is fed with a different phase, and more lobes can be generated, that is, the phase is adjusted to feed so that the beams of each sub-array do not overlap each other in space.
- the direction of the beams is different, that is, more beams are generated, which can further expand the spatial coverage.
- each sub-array adjusting phase feed can generate 8 lobes, and then adjusting the phase so that each lob of each sub-array does not coincide, then the two sub-arrays can be generated.
- the antenna array includes 16 beams, further expanding the coverage area.
- FIG. 6( a ) it is still illustrated in FIG. 6( a ).
- the feed for example, is fed with a 50° phase difference in the ⁇ direction while feeding with a 45° phase difference in the ⁇ direction.
- 9 lobes appear, of which 8 can be selected as side lobes and 1 as main lobes. That is, if the sub-array of FIG. 6(a) is used for feeding different amplitudes and different phases, multiple lobes can be generated, and corresponding multiple beams appear.
- the position of the lobes can be changed by adjusting the phase difference in each direction, that is, the orientation of the beam of the sub-array can be adjusted.
- each sub-array is fed with a different phase difference, and more lobes can be generated, that is, the phase is adjusted to feed so that the beams of each sub-array do not overlap each other in space.
- Each beam has a different orientation, that is, more beams are generated, which further expands the spatial coverage.
- the phase difference can be adjusted, so that each sub-array generates a plurality of lobes having different positions, that is, the antenna array can be generated. Multiple beams, and the position and number of beams are adjusted by the phase difference to expand the coverage area.
- the beam width of the sub-array will be consistent with the beam width of the antenna array based on the basic theory of the antenna, the relationship between the aperture and the beam width. Since the sub-array will have multiple lobes, multiple sub-arrays When the feed is performed, the antenna array having multiple beams can be obtained by adjusting the phase of the feed and changing the direction of the beam generated by each of the fed sub-arrays. Therefore, the antenna array of the embodiment of the present invention can significantly expand the communication range. Raising the coverage angle of the system is of great significance for the high-frequency millimeter wave narrow beam scene.
- the antenna array can be split into multiple sub-arrays. Since the spacing of adjacent antenna elements in each sub-array is relatively large, each sub-array will form multiple lobes, and the beam width of each sub-array. It will be substantially consistent with the beam of the antenna array, both of which are narrow beams, and the angular range in which a single main or sidelobe can communicate directly is not expanded. For occluded scenes, objects illuminated by the main or side lobes may form a scatterer, and the scatterer will form a strong scatter signal in a specific area around the scatterer. The corresponding area is called the scatterable communicable area.
- the system will fully utilize the scattered beam formed by the occlusion body scattering to expand the angular coverage to expand the communication range.
- the communicable area is composed of the main or sidelobe direct illumination area and the scattered communicable area.
- the actual communication scenes are mostly urban areas with large populations, and have sufficient scattering scenes. Therefore, in addition to the main lobes formed by the sub-arrays, multiple side lobes can also provide multiple communicable scattering regions, thus expanding the communication of the system.
- the area is shown in Figure 13.
- the antenna array corresponding to the traditional array architecture has only one main lobe, and can provide a communicable scattering region, and no side lobes can provide a communicable scattering region. Therefore, the embodiment of the present invention can further expand the coverage of the system.
- the antenna array can be split into multiple sub-arrays, and each sub-array can generate multiple lobe beams, thereby expanding the communication range.
- MIMO technology can be adopted on the beam formed between different sub-arrays, and the MIMO technology can obtain a lower received signal error rate under the same received signal-to-noise ratio and communication distance condition.
- Improve communication quality multiply the communication distance of the system under the same received signal-to-noise ratio and bit error rate, and obtain larger system capacity under the same received signal-to-noise ratio, bit error rate and communication distance.
- the switching between the main array and the split molecular array can be realized by switching the feeding network. As shown in FIG. 14, switching between the feeding ports can be realized by using switches and the like, thereby realizing Flexible configuration of various application scenarios reduces complexity and system cost.
- the antenna array of the embodiment of the present invention is configured by splitting the antenna array into a plurality of sub-arrays. And feeding through different feeding ports, thereby generating multiple beams, significantly expanding the communication coverage in the millimeter wave narrow beam scene, avoiding the shortcomings of the traditional millimeter wave multi-beam high-gain antenna angular coverage capability, and simultaneously Sub-arrays of cell spacing overlap each other to achieve efficient use of array apertures and improve antenna coverage.
- the spatial coverage of the beam is expanded while meeting the communication requirements of multiple users.
- the system beam control is simple, the structure is simple and easy to implement, compared to the traditional scheme. Low complexity and low cost can be achieved.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention is essentially or a part contributing to the prior art or a part of the technical solution.
- the points may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform various embodiments of the present invention All or part of the steps of the method.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明实施例涉及天线阵列。该天线阵列包括至少两个子阵列,同一子阵列中的天线单元通过同一馈电口馈电,该天线阵列中每行和/或每列相邻两个天线单元分别通过该至少两个馈电口中的不同馈电口进行馈电,该至少两个子阵列中每个子阵列中每行和\或每列相邻两个天线单元之间的距离大于或等于预设阈值。本发明实施例的天线阵列能够产生多个波束,显著扩大毫米波窄波束场景下的通信覆盖范围,避免传统毫米波多波束高增益天线角度覆盖能力不足的缺点,同时由多个大单元间距的子阵列相互交叠实现阵列口径高效利用并提升天线覆盖范围,在扩大波束的空间覆盖范围的同时满足多用户的通信需求,系统波束控制简单,结构简单且实现容易。
Description
本发明涉及通信领域,尤其涉及天线阵列。
随着新兴应用的发展,对无线接入网络的容量需求呈井喷式增长,传统低频无线通信频段(<6G)频谱资源已经耗竭,无法满足未来对无线接入大容量、高速需求,因此通信频率正在向更高频段方向发展。高频(>10G)通信特别是高频毫米波(>25G)段通信具有更宽的可用带宽,如典型区域的V波段具有57G~66G共9G的可用通信带宽,E波段这有71~76G/81~86G共10G的可用通信带宽,这是传统低频无法比拟的,更大的可用带宽意味着更大的通信容量和更高信号传输速率。毫米波频段通信的特性使得其成为未来无线接入通信领域的发展方向,其能够很好的满足高容量、高速率、多样化接入等需求。
同时,由于毫米波频段频率高,其空间传输的路径损耗较大,伴随频率的升高其路径损耗总体上呈上升趋势,为了实现同样的通信距离相比低频段通信其需求更高的天线增益。在当前的技术背景下,对于工作于E波段的系统,为了满足100米的通信距离至少需求30dBi的天线增益,此时对于典型的平板天线,波束宽度大约不到5°。同时为了满足多用户的接入需求,对于基站天线而言需要具备多波束特性以满足多用户同时接入需求,同时也需要多波束以实现具有一定角度宽度的扇区覆盖。
现有技术使用的传统的矩形栅格布阵的毫米波天线为单波束,覆盖范围有限,而在实现毫米波多波束天线方面存在成本高、实现难度大、增益不高、波束控制不灵活及系统复杂度高等缺点。
发明内容
本发明提供了一种天线阵列,能够扩大覆盖面积。
第一方面,提供了一种天线阵列,该天线阵列包括N*M个天线单元,该N*M个天线单元形成至少两个子阵列,该天线阵列中的天线单元通过至少两个馈电口馈电,该至少两个子阵列中的同一子阵列中的天线单元通过该
至少两个馈电口中的同一馈电口馈电,M和N为大于1的整数,该天线阵列中每行相邻两个天线单元分别通过该至少两个馈电口中的不同馈电口进行馈电和/或每列相邻两个天线单元分别通过该至少两个馈电口中的不同馈电口进行馈电,该至少两个子阵列中每个子阵列中每行相邻两个天线单元之间的距离大于或等于预设阈值和\或每列相邻两个天线单元之间的距离大于或等于该预设阈值。
结合第一方面,在第一方面的一种实现方式中,该至少两个子阵列中每个子阵列中每行相邻的两个天线单元之间的距离相等和/或每列相邻的两个天线单元之间的距离相等。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该天线阵列每行相邻两个天线单元之间的距离小于或等于该预设阈值和/或每列相邻两个天线单元之间的距离小于或等于该预设阈值。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该天线阵列中每行相邻的两个天线单元之间的距离相等和/或每列相邻的两个天线单元之间的距离相等。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该至少两个子阵列中每个子阵列包括的天线单元之间采用并馈和/或串馈连接。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,通过调节该至少两个子阵列中每个子阵列馈电的相位以调节波束指向。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该至少两个子阵列中每个子阵列采用同相位馈电。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该至少两个子阵列中每个子阵列采用不同相位馈电。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该至少两个子阵列中至少一个子阵列不馈电。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该至少两个子阵列中每个子阵列均馈电。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该预设阈值大于或等于一个工作波长。
基于上述技术方案,本发明实施例的天线阵列,通过将天线阵列拆分为多个子阵列,并通过不同的馈电口进行馈电,从而产生多个波束,显著扩大
毫米波窄波束场景下的通信覆盖范围,避免传统毫米波多波束高增益天线角度覆盖能力不足的缺点,同时由多个大单元间距的子阵列相互交叠实现阵列口径高效利用并提升天线覆盖范围,在扩大波束的空间覆盖范围的同时满足多用户的通信需求,系统波束控制简单,结构简单且实现容易,相对于传统方案可以实现低复杂度,低成本化。
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的传统天线阵列的示意图。
图2是根据本发明实施例的传统天线阵列的三维波束图。
图3是根据本发明实施例的传统天线阵列的二维波束图。
图4是根据本发明实施例的传统天线阵列的二维切面波束图。
图5是根据本发明实施例的天线阵列的示意图。
图6(a)-(d)是根据本发明实施例的天线阵列的子阵列的示意图。
图7是根据本发明实施例的天线阵列的子阵列并馈连接的示意图。
图8是根据本发明实施例的天线阵列的子阵列的三维波束图。
图9是根据本发明实施例的天线阵列的子阵列的二维切面波束图。
图10是根据本发明实施例的天线阵列的另一子阵列的二维波束图。
图11是根据本发明实施例的天线阵列的另一子阵列的二维切面波束图。
图12是根据本发明实施例的天线阵列的再一子阵列的二维波束图。
图13是根据本发明实施例的天线阵列覆盖区域的示意图。
图14是根据本发明实施例的天线阵列馈电方式的示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创
造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
在本发明实施例中,下文中的所有方向图均为各向同性点源构成的阵列因子波束图,实际工作的阵列波束图为阵列因子波束图与单元天线辐射波束图的乘积。实际中阵列天线的波束图及性能包括增益及旁瓣主要由阵列自身排布方式决定,因此讨论阵列因子波束图即可很好的代表最终阵列天线的波束图及性能。
图1示出了传统的矩形栅格布阵的天线阵列,该传统天线阵列对应一个馈电口,以8*8维阵列为例,单元间距为0.8λ(0.8个波长),其形成的三维波束图见图2,对应的二位波束图见图3,对应的一个切面的二维波束图见图4。从图2、3和4可见该天线阵列可以产生一个波瓣,即图中的峰值部分,该波瓣即为主瓣。从图4可知,一般以波瓣的峰值处向下3dB来确定该波瓣的波束宽度,即图4中A、B两点之间的距离,由图4可知该主瓣的波束宽度约为9°,主瓣所在的方向对应为系统的信号覆盖区域。也就是说,该传统的天线阵列为单波束,该单波束即主瓣产生的波束,对应波束宽度为9°。
在本发明实施例中,构建了一种新型的天线阵列,该天线阵列可以为毫米波天线阵列,该天线阵列可以产生多波束。具体地,该天线阵列可以是N*M维阵列,也就是该天线阵列包括N*M个天线单元,每个天线单元可以对应一个毫米波天线,M和N为大于1的整数,该天线阵列中的N*M个天线单元形成至少两个子阵列,也就是该天线阵列可以分为多个子阵列,即该天线阵列包括至少两个子阵列,且该天线阵列中的天线单元通过至少两个馈电口进行馈电,该天线阵列包括的同一子阵列中的天线单元与至少两个馈电口中的同一个馈电口相连接进行馈电。该天线阵列中一个天线单元只能通过该至少两个馈电口中的一个馈电口进行馈电,也就是该天线阵列中的一个天线单元只能属于一个子阵列,通过一个馈电口进行馈电。该天线阵列中每行相邻两个天线单元不共用一个馈电口进行馈电,也就是相邻的两个天线单元分别通过该至少两个馈电口中的不同的两个馈电口进行馈电,或者该天线阵列中每列相邻两个天线单元不共用一个馈电口进行馈电,又或者是每行与每列的相邻两个天线单元都满足不共用一个馈电口进行馈电。对于该天线阵列中的任意一个子阵列第一子阵列来说,该第一子阵列中每行相邻两个天线单元之间的距离大于或等于预设阈值和\或每列相邻两个天线单元之间的距离
大于或等于该预设阈值。
在本发明实施例中,根据阵列天线理论,当天线阵列中相邻的两个天线单元的间距大于1个工作波长时,必定会出现波瓣;当扫描阵列中相邻的两个天线单元间距大于0.5个工作波长时,扫描角度大于一定角度时,也会出现波瓣。
在本发明实施例中,由于新构建的天线阵列包括至少两个子阵列,且每个子阵列中相邻两个天线单元的距离大于或等于预设阈值,将该预设阈值设置为大于或等于1个工作波长时,根据上述天线理论,每个子阵列均可以产生多个波瓣,其中一个设置为主瓣,其余为副瓣,则新天线阵列可以产生多波束,扩大了覆盖范围。
在本发明实施例中,以图5为例进行说明,图5所示为本发明实施例的天线阵列示意图,该天线阵列为8*8维阵列,该阵列每个位置对应一个天线单元,即该阵列包括8*8=64个天线单元。可选地,本发明的该天线阵列也可以不是方阵,可以为N*M维阵列,N和M可以相等或不相等,本发明并不限于此。图5中,该天线阵列中每行以及每列中相邻两个天线单元之间的间距为0.8λ,可选地,每行中相邻两个天线单元之间的间距可以相等,也可以不相等,同样地,每列中相邻两个天线单元之间的间距可以相等,也可以不相等,并且每行中相邻两个天线单元之间的距离与每列中相邻两个天线单元之间的距离可以相等,也可以不相等,本发明并不限于此。但考虑到该天线阵列的口径,口径相同的情况下,将该天线阵列设置为相邻天线单元之间的距离相等,可以提高利用效率,也可以简化设计,降低实现难度。并且为了进一步提高该天线阵列的效率,可以将每行相邻两个天线单元之间的间距设置为小于预设阈值,该预设阈值可以为小于1个工作波长的任意长度,例如0.7λ,同样地,每列相邻两个天线单元之间的间距设置也可以为小于预设阈值,本发明并不限于此。另外,考虑到天线之间的电磁互耦的作用,该天线阵列中相邻两个天线单元之间的间距一般要设置为大于或等于门限值,根据经验值,该门限值一般可以取0.5个工作波长,即天线阵列中相邻天线单元之间的间距设置不小于0.5个工作波长,但本发明并不限于此。
在本发明实施例中,图5中的天线阵列包括了四个子阵列,每个子阵列采用了不同的图形进行标识,每个子阵列均为4*4维阵列。可选地,天线阵列可以包括至少两个子阵列,即可以包括2个、3个或更多的子阵列;每个
子阵列可以为n*m维阵列,n和m可以相等也可以不相等,本发明并不限于此。
在本发明实施例中,将图5中的四个子阵列分别拆开,可以形成图6(a)至(d)的四个子阵列,以该天线阵列中包括的多个子阵列中任意一个子帧阵列为例,例如以图(a)为例,该子阵列中每行相邻的两个天线单元之间的距离为1.6λ,可选地,每行中相邻的两个天线单元之间的距离设置为大于或等于预设阈值的,根据天线阵列理论,该预设阈值可以设为大于1λ的任意数值,例如图(a)中的1.6λ,本发明并不限于此。同样地,每列之间的间距也可以设置为大于或等于预设阈值。可选地,每行的天线单元之间距离大于或等于预设阈值时,每列的天线单元之间的距离可以也大于或等于预设阈值,也可以小于预设阈值,同样地,将每列的天线单元之间的距离设置为大于或等于预设阈值时,每行的天线单元之间的距离可以也大于或等于预设阈值,也可以小于预设阈值。
在本发明实施例中,以图6(a)为例的子阵列,由于由图5可知,天线阵列中每行中天线单元之间的间距设置为相等,因此按照一定规律得到的图6(a)的子阵列中每行的天线单元之间的间距也相等。可选地,在设置子阵列时,可以设置为间距不相等,同样地,每列包括的每个天线单元之间的距离也可以设置为不相等,本发明并不限于此。例如,对于子阵列的每行来说,在设置为间距不相等时,对于该子阵列中每行包括的多个天线单元中,当存在两个相邻的天线单元之间的距离大于或等于预设阈值时,该天线阵列即可出现多波束。同样地,每列包括的天线单元可以进行相同的设置,并且当每行中已经存在两个相邻的天线单元之间的距离大于或等于预设阈值时,每列可以设置,也可以不设置两个相邻的天线单元之间的距离大于或等于预设阈值,本发明并不限于此。
在本发明实施例中,该天线阵列包括至少一个子阵列,对应的每个子阵列需要一个馈电口进行馈电,即该天线阵列对应至少两个馈电口。具体地,例如图5所示,天线阵列包括四个子阵列,则对应的包括四个馈电口,每个子阵列用一个馈电口,对于图6中任意一个子阵列来说,例如图6(a)的第一子阵列来说,该子阵列对应一个馈电口。可选地,对应一个馈电口的该子阵列中每个天线单元之间可以串馈,也可以并馈。例如图7所示,图中“Y”图形表示一个天线单元,该图中的多个天线单元构成一个子阵列,该子阵列
中包括的天线单元通过并馈连接到同一个馈电口,该子阵列通过该馈电口进行馈电。
在本发明实施例中,一个天线阵列包括至少两个子阵列,一个天线阵列对应了至少两个馈电口,一个子阵列用一个馈电口,可选地,可以对至少两个子阵列中至少一个进行馈电。具体地,为了获得更多的波束,可以通过调节每个子阵列的馈电相位,改变波束的指向,即可以获得更多波束,以图5为例,当该天线阵列包括四个子阵列时,该天线阵列也对应了四个馈电口,每个子阵列对应一个馈电口,可以分别通过四个馈电口给四个子阵列馈电,也可以只通过其中一个馈电口给对应的其中一个子阵列进行馈电。即可以对图6(a)中子阵列通过馈电口进行馈电,而其它三个子阵列(b)至(d)不馈电,同样地,也可以只对图6中任意两个子阵列进行馈电,也可以对四个阵列同时都馈电,本发明并不限于此。当对该天线阵列中的多个子阵列进行馈电时,每个子阵列的馈电相位差可以不同,不同的相位进行馈电,可以调节每个子阵列的波束的指向,尽量使得每个子阵列产生多个波束,并且使每个波束的指向不重合,以便于获得更多得波束。
具体地,在本发明实施例中,在对天线阵列包括的至少两个子阵列中的子阵列进行馈电时,针对每个子阵列中统一子阵列的天线单元可以采用等幅同相位馈电,可以采用等幅不同相位进行供电,每个子阵列之间相比,也可以采用不同相位进行馈电,以便于产生更多的波瓣。可选地,每个子阵列中同一个子阵列也可以采用不等幅进行馈电,每个子阵列之间也可以采用不等幅进行馈电,本发明并不限于此。
具体地,以图6(a)进行说明,若对于该子阵列通过馈电口进行馈电,首先,可以采用等幅同相位馈电。如图8所示,该子阵列出现了9个峰值接近的波瓣,其中可以选择8个为副瓣,1个为主瓣。如图9所示为二维方向图,其为图8中沿π=0方向的切面,因此有3个波瓣。即采用如图6(a)的子阵列既可以产生多个波瓣,则对应的会出现多个波束。
在本发明实施例中,仍然以图6(a)进行说明,若对于该子阵列通过馈电口进行馈电,采用等幅不同相位馈电,例如在θ方向采用等幅60°相位差进行馈电。如图10所示,出现了8个波瓣,其中可以选择7个为副瓣,1个为主瓣。如图11所示为二维方向图,其为图10中沿π=0方向的切面,因此有4个波瓣。即采用如图6(a)的子阵列进行等幅不同相位进行馈电,可
以产生多个波瓣,则对应的会出现多个波束。并且可以通过调节相位差,使得子阵列的波瓣产生的位置发生变化,即可以调节该子阵列的波束的指向。当多个子阵列进行馈电时,每个子阵列采用不同的相位进行馈电,就可以产生更多的波瓣,即调节相位进行馈电让每个子阵列的波束在空间中互不交叠,每个波束的指向不同,也就是产生了更多的波束,这样可以进一步扩大空间覆盖范围。例如,对两个子阵列进行馈电,每个子阵列调节相位馈电都可以产生8个波瓣,再通过调节相位,使得每个子阵列的每个波瓣都不重合,则两个子阵列即可以产生16个波瓣,则该天线阵列包括16个波束,进一步扩大了覆盖面积。
在本发明实施例中,仍然以图6(a)进行说明,若对于该子阵列通过馈电口进行馈电,采用等幅不同相位馈电,并且是在两个方向上的不同相位差进行馈电,例如在θ方向采用等幅50°相位差进行馈电,同时在π方向采用45°相位差进行馈电。如图12所示,出现了9个波瓣,其中可以选择8个为副瓣,1个为主瓣。即采用如图6(a)的子阵列进行等幅不同相位进行馈电,可以产生多个波瓣,则对应的会出现多个波束。同样地,可以通过调节每个方向的相位差,使得波瓣产生的位置发生变化,即可以调节该子阵列的波束的指向。当多个子阵列进行馈电时,每个子阵列采用不同的相位差进行馈电,就可以产生更多的波瓣,即调节相位进行馈电让每个子阵列的波束在空间中互不交叠,每个波束的指向不同,也就是产生了更多的波束,这样可以进一步扩大空间覆盖范围。
因此,本发明实施例的天线阵列,当每个子阵列通过不同的相位差进行馈电时,可以通过调节相位差,使得每个子阵列都产生多个位置不同的波瓣,即该天线阵列可以产生多波束,并且通过相位差调节波束的位置和个数,扩大覆盖面积。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本发明实施例中,由于每个子阵列的口径与天线阵列的口径相比几乎一致,基于天线基本理论,口径与波束宽度的关系,子阵列的波束宽度将与天线阵列的波束宽度保持一致。由于子阵列会出现多个波瓣,对多个子阵列
进行馈电时,通过调节馈电的相位,改变每个馈电的子阵列产生的波束的指向,即可获得具有多个波束的天线阵列,因此本发明实施例的天线阵列可以显著扩大通信范围,提升系统覆盖角度区域,对于高频毫米波窄波束场景具有重要意义。
在本发明实施例中,天线阵列可以拆分为多个子阵列,由于每个子阵列中的相邻天线单元间距较大,因此每个子阵均会形成多个波瓣,同时各个子阵列的波束宽度将与天线阵列的波束保持大致一致,均为窄波束,单个主瓣或副瓣能够直接通信的角度范围并未扩大。对于有遮挡的场景,受到主瓣或副瓣照射的物体可以构成一个散射体,散射体将会在散射体周围特定区域形成较强的散射信号,对应的区域称为散射可通信区域,此时系统将充分运用遮挡体散射作用构成的散射波束扩大角度覆盖范围从而扩大通信范围,此时的可通信区域为主瓣或副瓣直接照射区域与散射可通信区域共同构成。实际通信场景多为人口众多的城市区域,具有充分的散射场景,因此,在子阵列形成的主瓣以外,多个副瓣也同样可提供多个可通信散射区域,因此扩大了系统的可通信区域,如图13所示。而对应传统阵列架构的天线阵列则只有一个主瓣,可提供一个可通信散射区域,无法有副瓣提供可通信散射区域,因此本发明实施例可以进一步扩大系统的覆盖范围。
在本发明实施例中,天线阵列可以拆分为多个子阵列,每个子阵列均能够生成多个波瓣波束,从而扩大通信范围。同时为了从距离方向上扩大通信范围,可以在不同子阵列之间形成的波束上采用MIMO技术,基于MIMO技术在相同的接收信噪比和通信距离条件下可以获得更低的接收信号误码率改善通信质量,在相同接收信噪比和误码率条件下则可以成倍扩大系统的通信距离,在相同的接收信噪比、误码率及通信距离条件下则可获得更大的系统容量。
在本发明实施例中,对于接入点稀少的传播场景,如农村、郊外等场景,希望获得更远的通信距离并减少系统的部署数量;对于接入点密集的传播场景,如市区场景,希望获得更宽的角度覆盖范围。为了获得特定场景下的最优天线配置,可以通过切换馈电网络来实现主阵与拆分子阵列的切换,如图14所示,可以采用开关等器件实现馈电口之间的切换,从而实现各种应用场景的灵活配置,降低了复杂度和系统成本。
因此,本发明实施例的天线阵列,通过将天线阵列拆分为多个子阵列,
并通过不同的馈电口进行馈电,从而产生多个波束,显著扩大毫米波窄波束场景下的通信覆盖范围,避免传统毫米波多波束高增益天线角度覆盖能力不足的缺点,同时由多个大单元间距的子阵列相互交叠实现阵列口径高效利用并提升天线覆盖范围,在扩大波束的空间覆盖范围的同时满足多用户的通信需求,系统波束控制简单,结构简单且实现容易,相对于传统方案可以实现低复杂度,低成本化。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部
分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。
Claims (11)
- 一种天线阵列,其特征在于,所述天线阵列包括N*M个天线单元,所述N*M个天线单元形成至少两个子阵列,所述天线阵列中的天线单元通过至少两个馈电口馈电,所述至少两个子阵列中的同一子阵列中的天线单元通过所述至少两个馈电口中的同一馈电口馈电,M和N为大于1的整数,所述天线阵列中每行相邻两个天线单元分别通过所述至少两个馈电口中的不同馈电口进行馈电和/或每列相邻两个天线单元分别通过所述至少两个馈电口中的不同馈电口进行馈电,所述至少两个子阵列中每个子阵列中每行相邻两个天线单元之间的距离大于或等于预设阈值和\或每列相邻两个天线单元之间的距离大于或等于所述预设阈值。
- 根据权利要求1所述的天线阵列,其特征在于,所述至少两个子阵列中每个子阵列中每行相邻的两个天线单元之间的距离相等和/或每列相邻的两个天线单元之间的距离相等。
- 根据权利要求1或2所述的天线阵列,其特征在于,所述天线阵列每行相邻两个天线单元之间的距离小于或等于所述预设阈值和/或每列相邻两个天线单元之间的距离小于或等于所述预设阈值。
- 根据权利要求3所述的天线阵列,其特征在于,所述天线阵列中每行相邻的两个天线单元之间的距离相等和/或每列相邻的两个天线单元之间的距离相等。
- 根据权利要求1至4中任一项所述的天线阵列,其特征在于,所述至少两个子阵列中每个子阵列包括的天线单元之间采用并馈和/或串馈连接。
- 根据权利要求1至5中任一项所述的天线阵列,其特征在于,通过调节所述至少两个子阵列中每个子阵列馈电的相位以调节波束指向。
- 根据权利要求6中任一项所述的天线阵列,其特征在于,所述至少两个子阵列中每个子阵列采用同相位馈电。
- 根据权利要求6中任一项所述的天线阵列,其特征在于,所述至少两个子阵列中每个子阵列采用不同相位馈电。
- 根据权利要求1至7中任一项所述的天线阵列,其特征在于,所述至少两个子阵列中至少一个子阵列不馈电。
- 根据权利要求1至7中任一项所述的天线阵列,其特征在于,所述 至少两个子阵列中每个子阵列均馈电。
- 根据权利要求1至10中任一项所述的天线阵列,其特征在于,所述预设阈值大于或等于一个工作波长。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/077509 WO2016172823A1 (zh) | 2015-04-27 | 2015-04-27 | 天线阵列 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/077509 WO2016172823A1 (zh) | 2015-04-27 | 2015-04-27 | 天线阵列 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016172823A1 true WO2016172823A1 (zh) | 2016-11-03 |
Family
ID=57199003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/077509 WO2016172823A1 (zh) | 2015-04-27 | 2015-04-27 | 天线阵列 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016172823A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107112623A (zh) * | 2016-11-24 | 2017-08-29 | 深圳市大疆创新科技有限公司 | 天线组件及无人飞行器 |
CN110061361A (zh) * | 2019-05-22 | 2019-07-26 | 中国电子科技集团公司第五十四研究所 | 一种相控阵天线及其设计和扩展方法 |
CN112158056A (zh) * | 2020-09-02 | 2021-01-01 | 安徽精卓光显技术有限责任公司 | 玻璃组件、车载obu组件、车辆及电子费用收集系统 |
CN113036456A (zh) * | 2018-02-28 | 2021-06-25 | 华为技术有限公司 | 一种天线装置及相关设备 |
GB2595691A (en) * | 2020-06-03 | 2021-12-08 | Cambridge Consultants | Antenna array |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7194269B2 (en) * | 2000-10-30 | 2007-03-20 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry | Method and wireless communication hub for data communications |
CN201611686U (zh) * | 2009-08-14 | 2010-10-20 | 南京伏欧安电子技术有限公司 | 圆锥共形全向双频微带天线阵列 |
WO2014148958A1 (en) * | 2013-03-20 | 2014-09-25 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for phase calibration of transmit and/or receive paths of an antenna array |
-
2015
- 2015-04-27 WO PCT/CN2015/077509 patent/WO2016172823A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7194269B2 (en) * | 2000-10-30 | 2007-03-20 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry | Method and wireless communication hub for data communications |
CN201611686U (zh) * | 2009-08-14 | 2010-10-20 | 南京伏欧安电子技术有限公司 | 圆锥共形全向双频微带天线阵列 |
WO2014148958A1 (en) * | 2013-03-20 | 2014-09-25 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangement for phase calibration of transmit and/or receive paths of an antenna array |
Non-Patent Citations (2)
Title |
---|
JIN, RONGHONG ET AL.: "SMART ANTENNA IN WIRELESS COMMUNICATION", BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS PRESS., 31 December 2006 (2006-12-31), pages 57 - 61, XP055325932 * |
ZHOU, HONGYU ET AL.: "A Planar Ka-Band Phased Array with Configurable Polarizations", ANTENNA AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI, 2013, pages 1638 - 1639, XP032555885 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107112623A (zh) * | 2016-11-24 | 2017-08-29 | 深圳市大疆创新科技有限公司 | 天线组件及无人飞行器 |
CN113036456A (zh) * | 2018-02-28 | 2021-06-25 | 华为技术有限公司 | 一种天线装置及相关设备 |
CN110061361A (zh) * | 2019-05-22 | 2019-07-26 | 中国电子科技集团公司第五十四研究所 | 一种相控阵天线及其设计和扩展方法 |
CN110061361B (zh) * | 2019-05-22 | 2024-06-25 | 中国电子科技集团公司第五十四研究所 | 一种相控阵天线及其设计和扩展方法 |
GB2595691A (en) * | 2020-06-03 | 2021-12-08 | Cambridge Consultants | Antenna array |
CN112158056A (zh) * | 2020-09-02 | 2021-01-01 | 安徽精卓光显技术有限责任公司 | 玻璃组件、车载obu组件、车辆及电子费用收集系统 |
CN112158056B (zh) * | 2020-09-02 | 2023-06-20 | 安徽精卓光显技术有限责任公司 | 玻璃组件、车载obu组件、车辆及电子费用收集系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016172823A1 (zh) | 天线阵列 | |
JP5969698B2 (ja) | アンテナアレイ、アンテナ装置及び基地局 | |
JP7125997B2 (ja) | 二重偏波ビームフォーミングのためのアンテナ構成 | |
CN106602265B (zh) | 波束成形网络及其输入结构、输入输出方法及三波束天线 | |
JP2002533003A (ja) | 二重モード切替ビームアンテナ | |
JP6862580B2 (ja) | アンテナ装置及びビーム調整方法 | |
US20180145400A1 (en) | Antenna | |
CN106252903B (zh) | 一种双频两波束天线阵列及双频两波束天线 | |
KR101918138B1 (ko) | 조정 가능한 스포트라이트 빔을 가진 셀룰러 어레이 | |
JP2018538759A (ja) | 通信装置及び無線通信機器 | |
US20210359423A1 (en) | Antenna module | |
WO2016061825A1 (zh) | 天线系统和处理方法 | |
US11509056B2 (en) | RF lens antenna array with reduced grating lobes | |
CN111656611A (zh) | 包含内置的差分馈电方案的高增益和大带宽天线 | |
Zulkifli et al. | Design of Butler matrix integrated with antenna array for beam forming | |
CN115567147A (zh) | 一种无线电干扰系统 | |
CN107230845B (zh) | 一种半功率角外波瓣快速跌落的矩形波束赋形天线 | |
CN107546478B (zh) | 采用特殊方向图阵元的宽角扫描相控阵天线及设计方法 | |
Gil-Martínez et al. | An array of leaky wave antennas for indoor smart wireless access point applications | |
KR101818633B1 (ko) | 이중 수직 빔 셀룰러 어레이 | |
CN107611597B (zh) | 具有赋形波束且可作为阵元的低剖强耦合子阵及设计方法 | |
CN111525262B (zh) | 一种圆形多波束相控阵列天线及通信方法 | |
Pandey | Design of a compact high power phased array for 5G FD-MIMO system at 29 GHz | |
WO2022077185A1 (zh) | 一种多频段共口径天线及通信设备 | |
CN112993596A (zh) | 一种降维多波束天线系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15890203 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15890203 Country of ref document: EP Kind code of ref document: A1 |