WO2023044810A1 - 形成光波导的方法和光波导 - Google Patents

形成光波导的方法和光波导 Download PDF

Info

Publication number
WO2023044810A1
WO2023044810A1 PCT/CN2021/120473 CN2021120473W WO2023044810A1 WO 2023044810 A1 WO2023044810 A1 WO 2023044810A1 CN 2021120473 W CN2021120473 W CN 2021120473W WO 2023044810 A1 WO2023044810 A1 WO 2023044810A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
sacrificial
substrate
base
gap
Prior art date
Application number
PCT/CN2021/120473
Other languages
English (en)
French (fr)
Inventor
袁俊
马庆艳
李世梁
王根成
李威
沈淼
江先鑫
胡志强
杨莉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/120473 priority Critical patent/WO2023044810A1/zh
Publication of WO2023044810A1 publication Critical patent/WO2023044810A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means

Definitions

  • the present disclosure relates to the field of optoelectronics, and more particularly, to a method of forming an optical waveguide and the optical waveguide.
  • the optical coupling technology of silicon-based waveguides is mainly used to realize the interconnection of optical signals on silicon-based integrated optoelectronic chips with external optical signals.
  • This technology is a key technology for silicon-based optoelectronic chip packaging.
  • a common usage scenario is to place an optical waveguide between a silicon photonic chip and an optical fiber to enable coupling between the two.
  • silicon photonics technology has been applied in the field of line side, client side, data center and other fields because it is suitable for preparing high-density and low-cost optical modules.
  • Optical waveguides usually include tapered structures with sharp ends, and how to manufacture optical waveguides that meet the design requirements at a lower cost has always been a problem that the industry is looking forward to solving.
  • the plasma will undercut, thereby eroding the optical waveguide to be etched.
  • the size of the obtained optical waveguide is difficult to meet the requirements of manufacture.
  • the optical waveguide that is undercut may break and cannot realize the function of signal transmission, which makes the yield of the optical waveguide decline.
  • embodiments of the present disclosure provide a method for forming an optical waveguide and the optical waveguide.
  • a method of forming an optical waveguide includes: forming an optical waveguide base and at least one sacrificial portion on a substrate, a gap is formed between each of the optical waveguide base and the at least one sacrificial portion; and at least etching the at least one sacrificial portion on the An optical waveguide is formed on the substrate from this optical waveguide base.
  • the precision of the optical waveguide can be controlled to meet the design requirements.
  • forming the optical waveguide from the optical waveguide base on the substrate by at least etching the at least one sacrificial portion includes: etching the at least one sacrificial portion and an end of the optical waveguide base portion to form the optical waveguide on the substrate with a tapered structure gradually narrowing along the extending direction of the optical waveguide. In this way, the size of the tapered structure of the formed optical waveguide can be controlled, reducing the defective rate.
  • the at least one sacrificial part includes a first sacrificial part and a second sacrificial part, the first sacrificial part and the second sacrificial part are respectively located on both sides of the optical waveguide substrate, and the gap includes A first gap and a second gap, the first gap is between the optical waveguide base and the first sacrificial part, and the second gap is between the optical waveguide base and the second sacrificial part.
  • forming the optical waveguide from the optical waveguide base on the substrate by at least etching the at least one sacrificial portion includes: at least the optical waveguide base, the gap and the at least one sacrificial portion Part coating photoresist; By exposing, remove this photoresist, the part that is positioned at least above this at least one sacrificial part, and keep this photoresist, the part that is positioned at this optical waveguide substrate at least a part; And at least The exposed at least one sacrificial portion is etched to form the optical waveguide on the substrate based on at least a portion of the optical waveguide base. In this way, an optical waveguide can be obtained in a reliable and cost-controllable manner, the tip of the optical waveguide not being broken.
  • each sacrificial portion includes one or more auxiliary patterns, and the one or more auxiliary patterns extend along the extending direction of the optical waveguide. In this way, the sacrificial portion can be provided in a simple and easy manner.
  • the plurality of auxiliary patterns are equally spaced apart from each other by a distance. In this way, material can be saved while providing a sacrificial effect.
  • the distance is equal to the width of a gap between the optical waveguide base and each sacrificial portion. In this way, the accuracy of dimensional control of the side surface of the formed optical waveguide can be improved.
  • each of the plurality of auxiliary patterns has a pattern width perpendicular to the extending direction, and the pattern width is equal to the distance. In this way, the formed optical waveguide can be made more dimensionally stable.
  • the distance is not lower than the width of the optical waveguide of the optical waveguide base body perpendicular to the extending direction. In this way, an optical waveguide with the required dimensions can be efficiently obtained.
  • an optical waveguide in a second aspect of the present disclosure, includes: a first optical waveguide end; an optical waveguide body; and a second optical waveguide end, the optical waveguide body extending from the first optical waveguide end to the second optical waveguide end, the second optical waveguide
  • the end portion of the waveguide has a continuous tapered structure gradually narrowing along the extending direction, and the width of the end portion of the second optical waveguide is lower than 100 nm. In this way, the tip of the optical waveguide can be realized at a lower dimension than in existing solutions, and at this dimension the tip is continuous rather than broken.
  • FIG. 1 shows a schematic usage scenario of an optical waveguide in an implementation manner of the present disclosure
  • Fig. 2 shows the manufacturing effect of the optical waveguide in the prior art
  • FIG. 3 shows a flowchart of a method for forming an optical waveguide according to an exemplary implementation of the present disclosure
  • FIG. 4 shows a schematic diagram of forming an optical waveguide according to an exemplary implementation of the present disclosure
  • Fig. 5 shows a schematic diagram of forming an optical waveguide according to another exemplary implementation of the present disclosure
  • Fig. 6 shows a schematic diagram of forming an optical waveguide according to another exemplary implementation of the present disclosure
  • Fig. 7 shows a schematic diagram of forming an optical waveguide according to another exemplary implementation of the present disclosure
  • FIG. 8 shows a schematic diagram of forming an optical waveguide according to yet another exemplary implementation of the present disclosure.
  • FIG. 9 shows a schematic diagram of forming an optical waveguide according to yet another exemplary implementation of the present disclosure.
  • the optical waveguide can realize signal transmission, how to improve its yield is a problem that designers expect to solve.
  • a schematic usage scenario of an optical waveguide in an implementation manner of the present disclosure is described below with reference to FIG. 1 .
  • an optical waveguide 16 is typically used to implement the interconnection between the silicon photonic chip 12 and the optical fiber 14 .
  • the size of the optical waveguide 16 becomes smaller and smaller so that the light can be diffused and received by the optical fiber 14 .
  • the smaller the dimension b of the optical waveguide 16 the more the matching efficiency to the optical fiber 14 can be enhanced, thereby optimizing the coupling effect.
  • the width B of the optical waveguide 16 on the side away from the optical fiber 14 is generally hundreds of nanometers, and the tip size b of the optical waveguide 16 near the optical fiber 14 is expected to be as small as possible, and there is a large gap between the two sizes. . Accordingly, the ends of the optical waveguide 16 are generally sharply tapered.
  • the industry hopes to involve a solution with simple process and low cost to manufacture the optical waveguide 16 that meets the requirements, so as to realize low-loss coupling between the silicon photonic chip 12 and the optical fiber 14 . It should be understood that the usage scenarios shown here are only for illustration purposes, not for limitation purposes.
  • the optical waveguides of the present disclosure may be adapted for use in any suitable scenario.
  • an optical waveguide 20 with a wider tip is usually etched first, and then a part of the optical waveguide 20 is etched away in an oblique manner through a mask.
  • the figure shows the case of etching a sloped side surface 22 of the optical waveguide 20 , through etching, it is expected that a relatively sharp tip 24 can be obtained.
  • technicians have found that there will be a micro-loading effect during the etching process, which will cause the plasma to erode the side surface 22 laterally in the direction indicated by the arrow (referred to as "side digging" in the industry), which will The final manufacturing effect of the optical waveguide 20 is destroyed.
  • a portion of the side surface 22 of the optical waveguide 20 is intruded, thereby forming a dimple 202 . If it is invaded too much, the optical waveguide 20 may even form a plurality of fractures 204 , eventually causing the resulting optical waveguide 20 to be fractured. This phenomenon is more pronounced near the tip 24 of the optical waveguide 20 . Therefore, it is difficult for the optical waveguide 20 obtained in the existing way to meet the design requirements. It can be understood that, in the existing solution, when the other side surface 26 of the optical waveguide 20 is etched, there will also be undercut phenomenon, which will not be repeated here.
  • implementations of the present disclosure provide a method for forming an optical waveguide, and provide a corresponding optical waveguide.
  • the method can alleviate or even avoid the undercut phenomenon in the existing solution by sharing the consumption in the plasma etching process, thereby ensuring that the formed optical waveguide is continuous and meets the design requirements.
  • FIG. 3 shows a flowchart of a method 300 for forming an optical waveguide according to an exemplary implementation of the present disclosure. Each step in FIG. 3 will be described below with reference to FIG. 4 to FIG. 7 . 4 to 7 respectively show schematic diagrams of forming optical waveguides according to different implementations of the present disclosure.
  • an optical waveguide base 42 and a first sacrificial portion 43 are formed on the substrate 41 with a first gap G1 between the optical waveguide base 42 and the first sacrificial portion 43 .
  • Various methods can be used to form the optical waveguide base 42 and the first sacrificial portion 43 .
  • the optical waveguide base 42 and the first sacrificial portion 43 may be made of the same material, such as SiN, SiON, Si, Ge, Six Ge y , and so on. It should be understood that the materials listed here are only illustrative, and the specific materials are not limited by the implementation of the present disclosure.
  • the optical waveguide base 42 can be formed together with the first sacrificial part 43, which can simplify the process steps.
  • the optical waveguide 40 is formed on the substrate 41 by etching at least the first sacrificial portion 43 .
  • the first sacrificial part 43 can share the plasma near the optical waveguide substrate 42 in the etching process. consumption during the process, so as to protect the optical waveguide substrate 42 from the adverse effects of the undercut effect during the etching process, which can make the etching process more stable. In this way, the optical waveguide 40 without breakage and whose dimensions are controlled can be obtained.
  • a photoresist may be coated on the optical waveguide base 42 , the first gap G1 and the first sacrificial portion 43 first. Then, as shown in FIG. 4 , by exposing the photoresist, the part 91 of the photoresist located above the first sacrificial part 43 is removed, and the part of the photoresist located at the optical waveguide base 42 remains.
  • the optical waveguide 40 is formed on the substrate 41 by etching the exposed first sacrificial portion 43 . In this way, the optical waveguide 40 can be obtained in a reliable manner. It should be understood that what is described here is only a schematic implementation manner in which the optical waveguide 40 can be obtained by photolithography.
  • the exposed first sacrificial portion 43 can be etched by other methods known or developed in the future, so as to obtain the desired optical waveguide 40 .
  • the present disclosure is not limited in this respect.
  • FIG. 5 uses the same or corresponding reference numerals as those in FIG. 4 , and the difference from FIG. 4 is that the end portion 45 of the optical waveguide substrate 42 is also etched away by the plasma while etching the first sacrificial portion 43 .
  • An optical waveguide 50 having a tapered structure 55 is thus formed on the substrate 41 .
  • the tapered structure 55 is also called a wedge-shaped structure.
  • the tapered structure 55 is tapered along the extending direction L of the optical waveguide, so as to realize the coupling from the silicon photonic chip to the optical fiber.
  • a photoresist may be coated on the optical waveguide base 42 , the first gap G1 and the first sacrificial portion 43 first. Then, as shown in FIG. 5 , by exposing the photoresist, the portion 92 of the photoresist above the first sacrificial portion 43 and a part of the optical waveguide base 42 is removed, and the part of the photoresist above the photoresist remains. The portion above the other portion of the waveguide substrate 42 .
  • An optical waveguide 50 with a wedge-shaped structure is formed on the substrate 41 by etching the exposed first sacrificial portion 43 and a part 420 of the optical waveguide base 42 .
  • optical waveguide 50 can be obtained by photolithography.
  • the exposed first sacrificial portion 43 and a part 420 of the optical waveguide substrate 42 can be etched using known or future developed methods, so as to obtain the desired optical waveguide 50 .
  • the present disclosure is not limited in this respect.
  • FIG. 6 Another exemplary implementation according to the present disclosure is described below with reference to FIG. 6 .
  • the same or corresponding reference numerals are used as in FIG. 5 , and the difference from FIG. 5 is that a second sacrificial portion 44 is formed on the substrate 41 .
  • the second sacrificial portion 44 is disposed on one side of the optical waveguide base 42 and is opposite to the first sacrificial portion 43 .
  • a second gap G2 is provided between the optical waveguide base 42 and the second sacrificial portion 44 .
  • FIG. 6 the same or corresponding reference numerals are used as in FIG. 5 , and the difference from FIG. 5 is that a second sacrificial portion 44 is formed on the substrate 41 .
  • the second sacrificial portion 44 is disposed on one side of the optical waveguide base 42 and is opposite to the first sacrificial portion 43 .
  • a second gap G2 is provided between the optical waveguide base 42 and the second sacrificial portion 44 .
  • the second sacrificial part 44 may be made of the same material as the optical waveguide base 42 and the first sacrificial part 43 .
  • the second sacrificial part 44 may be formed together with the optical waveguide base 42 and the first sacrificial part 43 , and such a manner may simplify the process steps.
  • the optical waveguide base 42 , the first gap G1 , the first sacrificial portion 43 , the second gap G2 and the second sacrificial portion 44 may be coated with photoresist first. Then, as shown in FIG. 6 , by exposing the photoresist, a portion 93 of the photoresist located above the first sacrificial portion 43 and a part of the optical waveguide substrate 42 , and a portion 93 located above the second sacrificial portion 44 are removed. portion 94 of the optical waveguide substrate 42 , and the portion of the photoresist that is over another portion of the optical waveguide substrate 42 remains.
  • an optical waveguide 60 with a wedge-shaped structure is formed on the substrate 41 .
  • the exposed first sacrificial portion 43 , the second sacrificial portion 44 and a part 420 of the optical waveguide substrate 42 may be etched using known or future developed methods, so as to obtain the desired optical waveguide 60 .
  • the present disclosure is not limited in this regard.
  • FIG. 7 Another exemplary implementation according to the present disclosure will be described below with reference to FIG. 7 .
  • the same or corresponding reference numerals are used as in FIG. 4 , and the difference from FIG. 4 is that a second sacrificial portion 44 is formed on the substrate 41 .
  • the second sacrificial portion 44 is located on one side of the optical waveguide base 42 and is opposite to the first sacrificial portion 43 .
  • a second gap G2 is also provided between the optical waveguide base 42 and the second sacrificial portion 44 .
  • FIG. 7 the same or corresponding reference numerals are used as in FIG. 4 , and the difference from FIG. 4 is that a second sacrificial portion 44 is formed on the substrate 41 .
  • the second sacrificial portion 44 is located on one side of the optical waveguide base 42 and is opposite to the first sacrificial portion 43 .
  • a second gap G2 is also provided between the optical waveguide base 42 and the second sacrificial portion 44
  • a photoresist may be applied to the optical waveguide base 42 , the first gap G1 , the first sacrificial portion 43 , the second gap G2 and the second sacrificial portion 44 first. Then, as shown in FIG. 7 , by exposing the photoresist, the portion 95 above the first sacrificial portion 43 and the portion 96 above the second sacrificial portion 44 of the photoresist are removed, and the portion of the photoresist remaining The portion above the other portion of the optical waveguide substrate 42 .
  • the optical waveguide 70 is formed on the substrate 41 by etching the exposed first sacrificial portion 43 and the second sacrificial portion 44 .
  • optical waveguide 70 can be obtained by photolithography.
  • the exposed first sacrificial portion 43 and the second sacrificial portion 44 can be etched by other methods known or developed in the future, so as to obtain the desired optical waveguide 70 .
  • the present disclosure is not limited in this regard.
  • the first sacrificial part 43 may include a plurality of first dummy patterns 430 .
  • the first auxiliary patterns 430 extend in parallel along the extending direction L of the optical waveguide. In this way, the first sacrificial portion can be formed in a cost-controllable, simple and reliable manner.
  • the first sacrificial part 43 may include only one first auxiliary pattern 430 .
  • the second sacrificial part 44 may include a plurality of second auxiliary patterns 440 .
  • the second auxiliary patterns 440 extend in parallel along the extending direction L of the optical waveguide. In this way, the second sacrificial portion can be formed in a cost-controllable, simple and reliable manner.
  • the second sacrificial part 44 may include only one second auxiliary pattern 440 .
  • the plurality of first auxiliary patterns 430 may be equidistantly spaced from each other by a first distance D 1 .
  • a reasonable pitch can be set on the first auxiliary patterns 430 , so that material can be saved while providing a sacrificial effect.
  • the first distance D 1 is equal to the width W G1 of the first gap G1 . In this way, the accuracy of dimension control of one side surface of the formed optical waveguide can be improved.
  • each first auxiliary pattern 430 has a first pattern width W D1 perpendicular to the extension direction L, and the first pattern width W D1 is equal to the first distance D 1 . In this way, the dimension of the formed optical waveguide can be made more stable.
  • the optical waveguide base 42 has an optical waveguide width W O perpendicular to the extending direction L, and the optical waveguide width W O may not exceed the first distance D 1 . In this way, an optical waveguide with the desired size can be effectively obtained.
  • the first distance D 1 between the first auxiliary patterns 430 is not more than 10 ⁇ m. In this way, the weakening effect on microloads can be ensured. In a further implementation, the first distance D 1 is between 130 nm and 500 nm. In this way, erosion of one side of the optical waveguide by the undercut effect can be avoided. It should be understood that the numerical values listed here are only illustrative and not restrictive. Based on different design requirements, the first distance D 1 may be other values.
  • the plurality of second auxiliary patterns 440 may be equidistantly spaced from each other by a second distance D 2 .
  • a reasonable pitch can be set on the second auxiliary patterns 440 , so that material can be saved while providing a sacrificial effect.
  • the second distance D 2 is equal to the width W G2 of the second gap G2 . In this way, in this way, the precision of controlling the dimension of the other side of the formed optical waveguide can be improved.
  • each second auxiliary pattern 440 has a second pattern width W D2 perpendicular to the extension direction L, and the second pattern width W D2 is equal to the second distance D 2 . In this way, the dimension of the formed optical waveguide can be made more stable. In some implementations, the optical waveguide width W O of the optical waveguide base 42 may not exceed the second distance D 2 . In this way, an optical waveguide with the desired size can be effectively obtained.
  • the second distance D 2 between the second auxiliary patterns 440 is no more than 10 ⁇ m. In this way, the weakening effect on microloads can be ensured. In a further implementation, the second distance D 2 is between 130 nm and 500 nm. In this way, the erosion of the undercut effect on the other side of the optical waveguide can be avoided. It should be understood that the numerical values listed here are only illustrative and not restrictive. Based on different design requirements, the second distance D 2 may be other values.
  • optical waveguides in FIGS. ,etc. By setting a sacrificial part near the corresponding optical waveguide substrate and then removing the sacrificial part by photolithography, the consumption caused by the micro-loading effect in the plasma etching process near the tip can be shared, and the undercut phenomenon can be reduced or even avoided, so that the formed The size and shape of the optical waveguide meet the requirements.
  • FIGS. 8 to 9 More application scenarios according to the implementation of the present disclosure are described below with reference to FIGS. 8 to 9 .
  • FIG. 8 shows an exemplary schematic diagram of applying the implementation of the present disclosure to a direct coupler (direct coupler) in a silicon photonics chip.
  • the implementation of the present disclosure can be used to realize precise control of the distance c between two adjacent optical waveguides 80-1, 80-2. As described above, it is possible to accurately The desired spacing c between the two optical waveguides 80-1, 80-2 is obtained in a precise manner.
  • the direct coupler since the distance c will directly affect the light splitting ratio of the direct coupler, precise control of the light splitting ratio can be realized.
  • FIG. 8 is the spacing control of two parallel rectangular optical waveguides 80-1, 80-2
  • the waveguides 80-1 and 80-2 may be in the form of waves or strips, or may have certain protrusions, such as tooth-shaped, comb-shaped, and so on.
  • two adjacent optical waveguides may also be non-parallel. The implementation manner of the present disclosure does not limit this.
  • FIG. 9 shows an exemplary schematic diagram of applying the implementation of the present disclosure to a micro-ring resonator (ring filter) in a silicon photonics chip.
  • implementations of the present disclosure can be used to achieve precise control of the distance c between the ring-shaped optical waveguide 90-2 and the adjacent optical waveguide 90-1. Similar to the above description, by setting the corresponding sacrificial parts 43-1, 43-2, 43-3, 43-4 near the adjacent ring-shaped optical waveguide 90-2 and the linear optical waveguide 90-1 and then By removing these sacrificial parts, the desired spacing c between the two optical waveguides 90-1, 90-2 can be accurately obtained. In the microring resonator, the performance of the microring resonator can be greatly improved through precise control of the spacing c.
  • the distance control between the circular optical waveguide 90-2 and the linear optical waveguide 90-1 is shown in FIG. 9, it should be understood that the implementation of the present disclosure can be used in other forms, such as two or The spacing between more ring-shaped optical waveguides is controlled, and the ring-shaped optical waveguides are not required to be strictly circular. In other implementation manners, the optical waveguide may also be elliptical or other polygonal. The implementation manner of the present disclosure does not limit this.
  • the present disclosure also provides an optical waveguide having a continuous tapered structure.
  • the optical waveguide includes a first optical waveguide end, an optical waveguide body and a second optical waveguide end, wherein the optical waveguide body extends from the first optical waveguide end to the second optical waveguide end, the second optical waveguide end has a A continuous tapered structure that gradually narrows along the extension direction L.
  • the width of the end of the second optical waveguide is less than 100 nm.
  • the width of the end portion of the second optical waveguide may be 30 nm.
  • the width of the end portion of the first optical waveguide may be between 130 nm and 500 nm.
  • the micro-loading effect or other etching effect problems caused by the small tip size of the optical waveguide can be effectively reduced.
  • the size of the tip of the optical waveguide obtained by adopting the solution of the present disclosure can be lower than 100 nm or thinner.
  • the formed optical waveguide can be used as an edge coupler, which can help alleviate the coupling loss and port reflection problems in the edge coupler, which has very important technical prospects and commercial value.
  • the implementations of the present disclosure can also be used in optical communication networks in various large-scale data centers.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本公开涉及形成光波导的方法和光波导。该形成光波导的方法包括:首先在衬底上形成光波导基体和与该光波导基体相距第一间隙的第一牺牲部。随后,该方法包括通过至少刻蚀该第一牺牲部,从而在该衬底上形成该光波导。根据上述方法,在对光波导基体进行刻蚀时,等离子体可以被第一牺牲部所消耗,从而减轻甚至缓解对光波导基体的侵蚀。由此可以提升对所形成的的光波导的尺寸精度。

Description

形成光波导的方法和光波导 技术领域
本公开涉及光电领域,更具体而言涉及一种形成光波导的方法和光波导。
背景技术
硅基波导的光学耦合技术主要用于实现硅基集成光电芯片上的光信号同外部光信号的互连,该技术是硅基光电芯片封装的关键技术。一种常见的使用场景是在硅光子芯片和光纤之间设置光波导,以便实现两者之间的耦合。随着光通讯数据流量日益增长,硅光子技术由于适合制备高密度、低成本的光模块,在线路侧、客户侧、数据中心等领域都得到了一定的应用。为了降低芯片光插入损耗来进一步降低激光器功耗,业界越来越希望降低硅光子纳米线波导和标准单模光纤的耦合损耗和封装成本。光波导通常包括具有尖锐端部的锥形结构,如何以较低的成本制造符合设计要求的光波导也一直是业界期待解决的问题。
在现有的制造方案中,由于在刻蚀过程中会存在微负载(micro loading)效应,等离子体会发生侧掏,从而侵蚀待刻蚀的光波导。这样导致得到的光波导的尺寸难以满足制造的需求。此外,在靠近光纤一侧的尖锐端部附近,由于待形成的光波导的设计尺寸较小,被侧掏的光波导的可能会断裂而无法实现信号传输的功能,这使得光波导的成品率下降。
发明内容
鉴于上述问题,为了提高光波导的制造精度和成品率,本公开的实施例提供了一种形成光波导的方法和光波导。
在本公开的第一方面,提供了一种形成光波导的方法。该方法包括:在衬底上形成光波导基体和至少一个牺牲部,该光波导基体和该至少一个牺牲部中每个牺牲部之间具有间隙;以及通过至少刻蚀该至少一个牺牲部在该衬底上由该光波导基体形成光波导。
根据本公开的方法,通过使牺牲部来有效地分担在刻蚀期间的等离子体消耗,可以控制光波导的精度,使其符合设计要求。
在第一方面的一种实现方式中,通过至少刻蚀该至少一个牺牲部在该衬底上由该光波导基体形成该光波导包括:刻蚀该至少一个牺牲部以及该光波导基体的端部,以在该衬底上形成具有锥形结构的该光波导,该锥形结构沿该光波导的延伸方向逐渐变窄。以此方式,所形成的光波导的锥形结构的尺寸得以控制,降低次品率。
在第一方面的一种实现方式中,该至少一个牺牲部包括第一牺牲部和第二牺牲部,该第一牺牲部和该第二牺牲部分别位于该光波导基体两侧,该间隙包括第一间隙和第二间隙,该光波导基体和该第一牺牲部之间具有该第一间隙,该光波导基体和该第二牺牲部之间具有该第二间隙。以此方式,通过在光波导基体的两侧都设置牺牲部,可以实现对光波导的两侧的精度控制,从而进一步提高成品率。
在第一方面的一种实现方式中,通过至少刻蚀该至少一个牺牲部在该衬底上由该光波导基体形成该光波导包括:至少对该光波导基体、该间隙和该至少一个牺牲部涂覆光刻胶;通过曝光,去除该光刻胶的、至少位于该至少一个牺牲部上方的部分,并且保留该光刻胶的、位于该光波导基体的至少一部分上的部分;以及至少对暴露的该至少一个牺牲部进行刻蚀, 以在该衬底上基于该光波导基体的至少一部分形成该光波导。以此方式,可以用稳定可靠且成本可控的方式得到光波导,该光波导的尖端不至于被断开。
在第一方面的一种实现方式中,该每个牺牲部包括一个或多个辅助图案,该一个或多个辅助图案沿该光波导的该延伸方向延伸。以此方式,可以用简单易行的方式提供牺牲部。
在第一方面的一种实现方式中,该多个辅助图案以一距离彼此等距地间隔开。以此方式,能够在提供牺牲作用的情况下能够节省材料。
在第一方面的一种实现方式中,该距离等于该光波导基体和该每个牺牲部之间的间隙的宽度。以此方式,可以提升所形成的光波导的侧面的尺寸控制的精度。
在第一方面的一种实现方式中,该多个辅助图案中的每个辅助图案具有与该延伸方向垂直的图案宽度,并且该图案宽度等于该距离。以此方式,可以使所形成的光波导的尺寸更加稳定。
在第一方面的一种实现方式中,该距离不低于该光波导基体的与该延伸方向垂直的光波导宽度。以此方式,可以有效地得到尺寸符合要求的光波导。
在本公开的第二方面,提供了一种光波导。该光波导包括:第一光波导端部;光波导主体;以及第二光波导端部,该光波导主体从该第一光波导端部延伸至该第二光波导端部,该第二光波导端部具有沿着延伸方向逐渐变窄的连续锥形结构,该第二光波导端部的宽度低于100nm。以此方式,光波导的尖端能够实现比现有方案中更低的尺寸,并且在该尺寸下的尖端是连续而非断裂的。
应当理解,发明内容部分中所描述的内容并非旨在限定本公开的实现方式的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实现方式的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素,其中:
图1示出了本公开的实现方式的光波导的一种示意性的使用场景;
图2示出了现有技术中的光波导的制造效果;
图3示出了根据本公开的示例性实现方式的用于形成光波导的方法的流程图;
图4示出了根据本公开的一个示例性实现方式的形成光波导的示意图;
图5示出了根据本公开的另一个示例性实现方式的形成光波导的示意图;
图6示出了根据本公开的另一个示例性实现方式的形成光波导的示意图;
图7示出了根据本公开的另一个示例性实现方式的形成光波导的示意图;
图8示出了根据本公开的又一个示例性实现方式的形成光波导的示意图;以及
图9示出了根据本公开的又一个示例性实现方式的形成光波导的示意图。
具体实施方式
下面将参照附图更详细地描述本公开的实现方式。虽然附图中显示了本公开的某些实现方式,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实现方式,相反提供这些实现方式是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实现方式仅用于示例性作用,并非用于限制本公开的保护范围。
在本公开的实现方式的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包 括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实现方式”或“该实现方式”应当理解为“至少一个实现方式”。术语“第一”、“第二”等等可以指代不同的或相同的对象。术语“和/或”表示由其关联的两项的至少一项。例如“A和/或B”表示A、B、或者A和B。下文还可能包括其他明确的和隐含的定义。
应理解,本申请实现方式提供的技术方案,在以下具体实现方式的介绍中,某些重复之处可能不再赘述,但应视为这些具体实现方式之间已有相互引用,可以相互结合。
如上文所讨论的,光波导可以实现信号传输,如何提高其成品率是设计者们期望解决的一个问题。下面参照图1描述本公开的实现方式的光波导的一种示意性的使用场景。
如图所示,通常使用光波导16来实现硅光子芯片12与光纤14之间的互连。在光沿着光波导16的延伸方向L传播的路径上,光波导16的尺寸越来越小,以使光可以扩散从而被光纤14所接收。在光波导16靠近光纤14(直径d约为8μm至10μm)的一侧,光波导16的尺寸b越小,就越可以增强对光纤14的匹配效率,从而优化耦合的效果。通常来说,光波导16在远离光纤14的一侧的宽度B一般为数百纳米,而光波导16在靠近光纤14处的尖端尺寸b希望尽量地小,两者的尺寸存在较大的差距。因此,光波导16的端部通常是尖锐的锥形。业界希望涉及一种工艺简便且成本低廉的方案制造符合涉及要求的光波导16,从而可以实现硅光子芯片12与光纤14之间的低损耗耦合。应当理解的是,这里示出的使用场景仅仅是为了说明作用,而非限制作用。本公开的光波导可以适用于任何合适的场景。
下面结合图2来描述现有技术中的光波导的制造效果。在现有的方案中,通常先刻蚀出一个尖端较宽的光波导20,然后通过掩膜以倾斜的方式刻蚀掉该光波导20的一部分。图中显示了对光波导20的一个倾斜的侧表面22进行刻蚀的情形,通过刻蚀,期望可以得到较为尖锐的尖端24。然而,技术人员发现,在刻蚀过程中会存在微负载的效应,从而导致等离子体大致以箭头所示的方向对该侧表面22进行侧向侵蚀(业界称作“侧掏”),这样会破坏光波导20的最终制造效果。如图所示,光波导20的侧表面22上的一部分会被侵入,从而形成凹坑202。如果被侵入过多,光波导20甚至会形成多个断口204,最终导致所得到的光波导20是断裂的。在光波导20的尖端24附近,这种现象会更加明显。因此,以现有的方式得到的光波导20难以符合设计的要求。可以理解的是,在现有的方案中,当对光波导20的另一个侧表面26进行刻蚀时,同样也会存在侧掏的现象,在此不再赘述。
至少为了解决上述问题,本公开的实现方式提供了一种形成光波导的方法,并提供了一种相应的光波导。该方法可以通过分担等离子体的刻蚀过程中的消耗,减轻甚至避免现有方案中的侧掏的现象,从而确保形成的光波导是连续的且符合设计要求的。下面参照附图描述本公开的一些示意性实现方式。
图3示出了根据本公开的示例性实现方式的用于形成光波导的方法300的流程图。下面将结合图4至图7对图3中的各个步骤进行描述。图4至图7分别示出了根据本公开的不同的实现方式的形成光波导的示意图。
参考图3并结合图4,在框302,在衬底41上形成光波导基体42和第一牺牲部43,该光波导基体42和该第一牺牲部43之间具有第一间隙G1。可以使用各种方式来形成该光波导基体42与该第一牺牲部43。在一些实现方式中,光波导基体42与该第一牺牲部43可以是由相同的材料构成的,例如SiN、SiON、Si、Ge、Si xGe y,等等。应当理解的是,这里列举的材料仅仅是示意性的,具体的材料不受到本公开的实现方式的限制。在另一些实现方式中,光波导基体42可以是和第一牺牲部43一起形成的,这样可以简化工艺步骤。
继续参考图3,在框304,通过至少刻蚀第一牺牲部43,在衬底41上形成该光波导40。根据本公开的实现方式,通过设置第一牺牲部43并且在刻蚀过程中对该第一牺牲部43进行刻蚀,可以使第一牺牲部43分担光波导基体42附近的等离子体在刻蚀过程中的消耗,从而保护光波导基体42在刻蚀过程中免受侧掏效应的不利影响,这样能够使得刻蚀工艺更加稳定。由此可以得到不断裂且尺寸得以控制的光波导40。
在一些实现方式中,为了形成光波导40,可以先对光波导基体42、第一间隙G1和第一牺牲部43涂覆光刻胶。然后,如图4所示,通过对光刻胶进行曝光,从而去除光刻胶的位于第一牺牲部43上方的部分91,并且保留光刻胶的位于光波导基体42的部分。通过对暴露的第一牺牲部43进行刻蚀,从而在衬底41上形成光波导40。通过这种方式,可以用可靠的方式得到光波导40。应当理解的是,这里说明的仅仅是一种能够通过光刻方式获得光波导40的示意性的实现方式。可以采用已知的或将来研发出的其他方式来对暴露的第一牺牲部43进行刻蚀,从而得到期望的光波导40。本公开在此方面不做限制。
下面参考图5描述根据本公开的另一种示意性的实现方式。图5中使用了与图4相同或者对应的附图标记,其与图4的区别在于,等离子体在刻蚀第一牺牲部43的同时,还刻蚀掉光波导基体42的端部45,从而在衬底41上形成具有锥形结构55的光波导50。该锥形结构55又被称为楔形结构。如图所示,该锥形结构55沿光波导的延伸方向L是渐缩的,从而实现从硅光子芯片到光纤的耦接。通过图5所示这种形成光波导50的方式,可以避免等离子体的侧掏现象,从而使最终形成的具有楔形结构的光波导50的尺寸是稳定的,而不发生断裂或者缺损。
在一些实现方式中,为了形成光波导50,可以先对光波导基体42、第一间隙G1和第一牺牲部43涂覆光刻胶。然后,如图5所示,通过对光刻胶进行曝光,从而去除光刻胶的位于第一牺牲部43上方和位于光波导基体42的一部分上方的部分92,并且保留光刻胶的位于光波导基体42的另一部分上方的部分。通过对暴露的第一牺牲部43以及光波导基体42的一部分420进行刻蚀,从而在衬底41上形成具有楔形结构的光波导50。应当理解的是,这里说明的仅仅是一种能够通过光刻方式获得光波导50的示意性的实现方式。可以采用已知的或将来研发出的其他方式来对暴露的第一牺牲部43以及光波导基体42的一部分420进行刻蚀,从而得到期望的光波导50。本公开在此方面不做限制。
下面参考图6描述根据本公开的另一种示意性的实现方式。图6中使用了与图5相同或者对应的附图标记,其与图5的区别在于,在衬底41上还形成有第二牺牲部44。如图所示,第二牺牲部44被设置成位于光波导基体42的一侧,并且与第一牺牲部43是相对的。在光波导基体42和第二牺牲部44之间提供第二间隙G2。此外,在图6所示的实现方式中,不仅对第一牺牲部43进行刻蚀,还刻蚀第二牺牲部44,从而在衬底41上形成光波导60。通过这种方式,不仅能够在光波导60的一侧61形成期望的锥形结构65,还可以确保光波导60的另一侧62提供稳定的尺寸控制,从而进一步提升所形成的光波导60的成品率。
可以理解的是,可以使用各种方式来形成第二牺牲部44。在一些实现方式中,第二牺牲部44与光波导基体42、第一牺牲部43可以是由相同的材料构成的。在另一些实现方式中,第二牺牲部44与光波导基体42及第一牺牲部43可以是一起形成的,这样的方式可以简化工艺步骤。
在一些实现方式中,为了形成光波导60,可以先对光波导基体42、第一间隙G1、第一牺牲部43、第二间隙G2和第二牺牲部44涂覆光刻胶。然后,如图6所示,通过对光刻胶进 行曝光,从而去除光刻胶的位于第一牺牲部43上方和位于光波导基体42的一部分上方的部分93、以及位于第二牺牲部44上方的部分94,并且保留光刻胶的位于光波导基体42的另一部分上方的部分。通过对暴露的第一牺牲部43、第二牺牲部44以及光波导基体42的一部分420进行刻蚀,从而在衬底41上形成具有楔形结构的光波导60。应当理解的是,这里说明的仅仅是一种能够通过光刻方式获得光波导60的示意性的实现方式。可以采用已知的或将来研发出的其他方式来对暴露的第一牺牲部43、第二牺牲部44以及光波导基体42的一部分420进行刻蚀,从而得到期望的光波导60。本公开在此方面不做限制。
下面参考图7描述根据本公开的又一种示意性的实现方式。图7中使用了与图4相同或者对应的附图标记,其与图4的区别在于,在衬底41上还形成有第二牺牲部44。如图所示,第二牺牲部44位于光波导基体42的一侧,并且与第一牺牲部43是相对的。在光波导基体42和第二牺牲部44之间也提供第二间隙G2。此外,在图7所示的实现方式中,不仅对第一牺牲部43进行刻蚀,还刻蚀第二牺牲部44,从而在衬底41上形成光波导70。通过这种方式,可以在光波导70的两侧71、72都提供稳定的尺寸控制,从而进一步提升所形成的光波导70的成品率。
在一些实现方式中,为了形成光波导70,可以先对光波导基体42、第一间隙G1、第一牺牲部43、第二间隙G2和第二牺牲部44涂覆光刻胶。然后,如图7所示,通过对光刻胶进行曝光,从而去除光刻胶的位于第一牺牲部43上方部分95以及位于第二牺牲部44上方的部分96,并且保留光刻胶的位于光波导基体42的另一部分上方的部分。通过对暴露的第一牺牲部43和第二牺牲部44进行刻蚀,从而在衬底41上形成光波导70。应当理解的是,这里说明的仅仅是一种能够通过光刻方式获得光波导70的示意性的实现方式。可以采用已知的或将来研发出的其他方式来对暴露的第一牺牲部43和第二牺牲部44进行刻蚀,从而得到期望的光波导70。本公开在此方面不做限制。
下面结合图4至图7对第一牺牲部43和第二牺牲部44的具体实现方式进行描述。参考图4至图7,如所示出,第一牺牲部43可以包括多个第一辅助图案(dummy pattern)430。在进一步的实现方式中,这些第一辅助图案430沿光波导的延伸方向L平行地延伸。通过这种方式,可以按照成本可控且简单可靠的方式形成第一牺牲部。在一些实现方式中,第一牺牲部43可以仅包括一个第一辅助图案430。
对应地,如图6或图7所示,第二牺牲部44可以包括多个第二辅助图案440。在进一步的实现方式中,这些第二辅助图案440沿光波导的延伸方向L平行地延伸。通过这种方式,可以按照成本可控且简单可靠的方式形成第二牺牲部。在一些实现方式中,第二牺牲部44可以仅包括一个第二辅助图案440。
在一些实现方式中,继续参考图4至图7,多个第一辅助图案430可以按第一距离D 1彼此等距地间隔开。通过这种方式,可以在第一辅助图案430设置合理的间距,从而在提供牺牲作用的情况下能够节省材料。在一些实现方式中,第一距离D 1等于第一间隙G1的宽度W G1。通过这种方式,可以提升所形成的光波导的一个侧面的尺寸控制的精度。
在一些实现方式中,参考图4至图7,每个第一辅助图案430具有与延伸方向L垂直的第一图案宽度W D1,并且第一图案宽度W D1等于第一距离D 1。通过这种方式,可以使所形成的光波导的尺寸更加稳定。在一些实现方式中,光波导基体42具有与延伸方向L垂直的光波导宽度W O,该光波导宽度W O可以不超过第一距离D 1。通过这种方式,可以有效地得到尺寸符合要求的光波导。
在一些实现方式中,第一辅助图案430彼此之间第一距离D 1不超过10μm。通过这种方式,可以确保对微负载的削弱效应。在进一步的实现方式中,该第一距离D 1介于130nm和500nm之间。通过这种方式,可以避免侧掏效应对光波导的一侧的侵蚀。应当理解的是,这里列举的数值仅仅是示意性的,而非限制性的。基于不同的设计要求,该第一距离D 1可以是其他数值。
在一些实现方式中,继续参考图4至图7,多个第二辅助图案440可以按第二距离D 2彼此等距地间隔开。通过这种方式,可以在第二辅助图案440设置合理的间距,从而在提供牺牲作用的情况下能够节省材料。在一些实现方式中,第二距离D 2等于第二间隙G2的宽度W G2。通过这种方式,通过这种方式,可以提升所形成的光波导的另一个侧面尺寸控制的精度。
在一些实现方式中,参考图4至图7,每个第二辅助图案440具有与延伸方向L垂直的第二图案宽度W D2,并且第二图案宽度W D2等于第二距离D 2。通过这种方式,可以使所形成的光波导的尺寸更加稳定。在一些实现方式中,光波导基体42的光波导宽度W O可以不超过第二距离D 2。通过这种方式,可以有效地得到尺寸符合要求的光波导。
在一些实现方式中,第二辅助图案440彼此之间第二距离D 2不超过10μm。通过这种方式,可以确保对微负载的削弱效应。在进一步的实现方式中,该第二距离D 2介于130nm和500nm之间。通过这种方式,可以避免侧掏效应对光波导的另一侧的侵蚀。应当理解的是,这里列举的数值仅仅是示意性的,而非限制性的。基于不同的设计要求,该第二距离D 2可以是其他数值。
应该理解的是,虽然图4至图7中的光波导被示出了大致是矩形,然而,本公开的实现方式可以用来形成其他形式的光波导,例如环形、椭圆形、圆形、多边形,等等。通过在相应的光波导基体的附近设置牺牲部并且随后利用光刻方法去掉牺牲部,可以分担尖端附近的等离子体刻蚀过程由于微负载效应导致的消耗,减轻甚至避免侧掏现象,从而使形成的光波导的尺寸和形状符合要求。
下面结合图8至图9描述根据本公开的实现方式的更多应用场景。
图8示出了将本公开的实现方式用于硅光芯片中的直接耦合器(direct coupler)的一种示例性示意图。如图所示,本公开的实现方式可以用于对相邻的两个光波导80-1、80-2之间的距离c实现精度控制。如上所述,通过在相邻的两个光波导80-1、80-2的附近设置相应的牺牲部43-1、43-2并随后除去这些牺牲部43-1、43-2,可以准确地得到这两个光波导80-1、80-2之间的期望间距c。在直接耦合器中,由于该间距c会直接影响到直接耦合器的分光比,由此能够实现对分光比的精确控制。
虽然图8中示出的是相互平行的两个呈矩形光波导80-1、80-2的间距控制,应该理解的是,本公开的实现方式还可以用于其他形式,例如这两个光波导80-1、80-2可以是波形、条带形,也可以具有一定的突起,例如齿形、梳形,等等。在其他的实现方式中,相邻的两个光波导也可以是不平行的。本公开的实现方式对此不做限制。
图9示出了将本公开的实现方式用于硅光芯片中的微环谐振器(ring filter)的一种示例性示意图。如图所示,本公开的实现方式可以用于对环形的光波导90-2与相邻的光波导90-1之间的距离c实现精度控制。类似上面的描述,通过在相邻的环形的光波导90-2与直线形的光波导90-1的附近设置相应的牺牲部43-1、43-2、43-3、43-4并随后除去这些牺牲部,可以准确地得到这两个光波导90-1、90-2之间期望的间距c。在微环谐振器中,通过对间距c的 精确控制,能够大大地提升微环谐振器的性能。
虽然图9中示出的是环形的光波导90-2与直线形的光波导90-1之间的间距控制,应该理解的是,本公开的实现方式可以用于其他形式,例如两个或更多个环形光波导之间的间距控制,并且环形的光波导也不要求其是严格圆形的。在其他的实现方式中,光波导也可以是椭圆形或其他多边形。本公开的实现方式对此不做限制。
本公开还提供了一种具有连续的锥形结构的光波导。该光波导包括第一光波导端部、光波导主体和第二光波导端部,其中光波导主体从第一光波导端部延伸至第二光波导端部,第二光波导端部具有沿着延伸方向L逐渐变窄的连续锥形结构。在一些实现方式中,第二光波导端部的宽度低于100nm。在优选的实现方式中,第二光波导端部的宽度可以是30nm。在另一些实现方式中,第一光波导端部的宽度可以介于130nm和500nm之间。
根据本公开的实现方式,通过在光波导的附近提供一个较大面积区域的牺牲部,可以有效降低由于光波导的尖端尺寸较小所导致的微负载效应或其他刻蚀效应问题。采用本公开的方案得到的光波导,其尖端的尺寸可以低于100nm或更细。在一些实现方式中,所形成的光波导可以用作模斑变换器(edge coupler),这样可以有助于缓解模斑变换器中的耦合损耗和端口反射问题,具有非常重要的技术前景和商业价值。本公开的实现方式还可以用于各种大型的数据中心中的光通信网络。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (10)

  1. 一种形成光波导的方法,包括:
    在衬底上形成光波导基体和至少一个牺牲部,所述光波导基体和所述至少一个牺牲部中每个牺牲部之间具有间隙;以及
    通过至少刻蚀所述至少一个牺牲部在所述衬底上由所述光波导基体形成光波导。
  2. 根据权利要求1所述的方法,其中通过至少刻蚀所述至少一个牺牲部在所述衬底上由所述光波导基体形成所述光波导包括:
    刻蚀所述至少一个牺牲部以及所述光波导基体的端部,以在所述衬底上形成具有锥形结构的所述光波导,所述锥形结构沿所述光波导的延伸方向逐渐变窄。
  3. 根据权利要求1或2所述的方法,所述至少一个牺牲部包括第一牺牲部和第二牺牲部,所述第一牺牲部和所述第二牺牲部分别位于所述光波导基体两侧,所述间隙包括第一间隙和第二间隙,所述光波导基体和所述第一牺牲部之间具有所述第一间隙,所述光波导基体和所述第二牺牲部之间具有所述第二间隙。
  4. 根据权利要求1-3中任一项所述的方法,其中通过至少刻蚀所述至少一个牺牲部在所述衬底上由所述光波导基体形成所述光波导包括:
    至少对所述光波导基体、所述间隙和所述至少一个牺牲部涂覆光刻胶;
    通过曝光,去除所述光刻胶的、至少位于所述至少一个牺牲部上方的部分,并且保留所述光刻胶的、位于所述光波导基体的至少一部分上的部分;以及
    至少对暴露的所述至少一个牺牲部进行刻蚀,以在所述衬底上基于所述光波导基体的至少一部分形成所述光波导。
  5. 根据权利要求1-4中任一项所述的方法,所述每个牺牲部包括一个或多个辅助图案,所述一个或多个辅助图案沿所述光波导的所述延伸方向延伸。
  6. 根据权利要求5所述的方法,所述多个辅助图案以一距离彼此等距地间隔开。
  7. 根据权利要求6所述的方法,所述距离等于所述光波导基体和所述每个牺牲部之间的间隙的宽度。
  8. 根据权利要求6或7所述的方法,所述多个辅助图案中的每个辅助图案具有与所述延伸方向垂直的图案宽度,并且所述图案宽度等于所述距离。
  9. 根据权利要求6-8中任一项所述的方法,所述距离不低于所述光波导基体的与所述延伸方向垂直的光波导宽度。
  10. 一种光波导,包括:
    第一光波导端部;
    光波导主体;以及
    第二光波导端部,所述光波导主体从所述第一光波导端部延伸至所述第二光波导端部,所述第二光波导端部具有沿着延伸方向逐渐变窄的连续锥形结构,所述第二光波导端部的宽度低于100nm。
PCT/CN2021/120473 2021-09-24 2021-09-24 形成光波导的方法和光波导 WO2023044810A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120473 WO2023044810A1 (zh) 2021-09-24 2021-09-24 形成光波导的方法和光波导

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120473 WO2023044810A1 (zh) 2021-09-24 2021-09-24 形成光波导的方法和光波导

Publications (1)

Publication Number Publication Date
WO2023044810A1 true WO2023044810A1 (zh) 2023-03-30

Family

ID=85719226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120473 WO2023044810A1 (zh) 2021-09-24 2021-09-24 形成光波导的方法和光波导

Country Status (1)

Country Link
WO (1) WO2023044810A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189824A (ja) * 2011-03-10 2012-10-04 Sumitomo Bakelite Co Ltd 光導波路および電子機器
CN103048733A (zh) * 2011-10-14 2013-04-17 上海圭光科技有限公司 一种锥形多层脊波导结构及其制作方法
US20170068051A1 (en) * 2015-09-04 2017-03-09 Renesas Electronics Corporation Semiconductor device and method for manufacturing the same
CN109565153A (zh) * 2016-08-25 2019-04-02 索尼公司 半导体激光器、电子设备和驱动半导体激光器的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189824A (ja) * 2011-03-10 2012-10-04 Sumitomo Bakelite Co Ltd 光導波路および電子機器
CN103048733A (zh) * 2011-10-14 2013-04-17 上海圭光科技有限公司 一种锥形多层脊波导结构及其制作方法
US20170068051A1 (en) * 2015-09-04 2017-03-09 Renesas Electronics Corporation Semiconductor device and method for manufacturing the same
CN109565153A (zh) * 2016-08-25 2019-04-02 索尼公司 半导体激光器、电子设备和驱动半导体激光器的方法

Similar Documents

Publication Publication Date Title
US7184630B2 (en) Optical coupling module with self-aligned etched grooves and method for fabricating the same
US7088890B2 (en) Dual “cheese wedge” silicon taper waveguide
JP2565094B2 (ja) 光結合構造
JP2010054943A (ja) スポットサイズ変換器
NL9301656A (nl) Geintegreerde optische polarisatie-omzetter met versterkte periodieke koppeling.
JP4377195B2 (ja) 光モジュールの製造方法
CN113917605A (zh) 一种三维楔形铌酸锂薄膜波导的制备方法
JP2002071981A (ja) 光素子
US20200064554A1 (en) Adiabatic optical coupler for direct soi to interposer coupling
US6309803B1 (en) On-substrate cleaving of sol-gel waveguide
WO2023044810A1 (zh) 形成光波导的方法和光波导
JP4146788B2 (ja) 光導波路接続モジュールおよびその導波路作製方法
JP4560479B2 (ja) 多モード光干渉デバイスの製造方法
JP3074885B2 (ja) 光導波路形成法
JP2006030733A (ja) 光導波路および光導波路の製造方法
JPH0618737A (ja) 光導波路の製造方法
JPS62296102A (ja) 導波路グレ−テイング結合器
JP2006323136A (ja) 光導波路及びその作製方法
JPH09297235A (ja) 光導波路及びその製造方法並びにそれを用いた光導波路モジュール
US20230014644A1 (en) Vertically tapered spot size converter and method for fabricating the same
JP5294148B2 (ja) 光デバイス、光システム及び光デバイス製造方法
JP3019271B2 (ja) 光導波路形成法
JP2663841B2 (ja) 光結合構造の製造方法
KR100238421B1 (ko) 광 모드 크기 변환기
JPH10111423A (ja) 半導体偏波回転素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957934

Country of ref document: EP

Kind code of ref document: A1