WO2023044713A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2023044713A1
WO2023044713A1 PCT/CN2021/120165 CN2021120165W WO2023044713A1 WO 2023044713 A1 WO2023044713 A1 WO 2023044713A1 CN 2021120165 W CN2021120165 W CN 2021120165W WO 2023044713 A1 WO2023044713 A1 WO 2023044713A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
side channel
priority
frequency spectrum
channel access
Prior art date
Application number
PCT/CN2021/120165
Other languages
English (en)
French (fr)
Inventor
赵振山
张世昌
马腾
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180099576.6A priority Critical patent/CN117501785A/zh
Priority to PCT/CN2021/120165 priority patent/WO2023044713A1/zh
Publication of WO2023044713A1 publication Critical patent/WO2023044713A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • the unlicensed spectrum is the spectrum allocated by the country and region that can be used for radio device communication.
  • This spectrum is usually considered a shared spectrum, that is, communication devices in different communication systems can be used as long as they meet the regulatory requirements set by the country or region on the spectrum. use without the need for proprietary spectrum authorization.
  • the sidewalk system When the sidewalk system works on the unlicensed spectrum, it needs to access the channel through the channel detection method of Listen Before Talk (LBT). That is, before a communication device transmits a signal on a channel of an unlicensed spectrum, it needs to perform channel detection first, and only when the result of the channel detection indicates that the channel is idle, the communication device can perform signal transmission. If the result of the channel detection of the communication device on the channel of the unlicensed frequency spectrum is that the channel is busy, the communication device cannot perform signal transmission.
  • LBT Listen Before Talk
  • the transmission mode of short control signaling is supported on the unlicensed spectrum.
  • the transmission mode of short control signaling is adopted, the channel can be accessed and side transmission can be performed without monitoring the channel or LBT.
  • the existing lateral communication method it is impossible to determine when to use the short control signaling for transmission.
  • Embodiments of the present application provide a communication method and device to solve the problem in the prior art that it is impossible to determine when to use short control signaling for transmission.
  • the first aspect of the present application provides a communication method, the method comprising:
  • the terminal device determines whether to transmit the side channel on the shared frequency spectrum through a first channel access method according to the information of the side channel; wherein, the first channel access method is to transmit the side channel on the shared frequency spectrum.
  • the channel access mode does not monitor whether there is a signal in the shared frequency spectrum before running the channel.
  • the side channel information includes type information of side channels that support the first channel access manner.
  • the determining whether to transmit the side channel on the shared frequency spectrum through the first channel access method includes:
  • the terminal device transmits the side channel.
  • the information of the side channel further includes a first side priority, and the first side priority is a priority corresponding to the side channel.
  • the determining whether to transmit the side channel on the shared frequency spectrum through the first channel access method includes:
  • the terminal device acquires a first mapping relationship, where the first mapping relationship includes a mapping relationship between sideline priority and whether to support the first channel access mode;
  • the terminal device determines, according to the first sidelink priority and the first mapping relationship, whether to send the sidelink channel on the shared frequency spectrum through the first channel access manner.
  • the determining whether to transmit the side channel on the shared frequency spectrum through the first channel access method includes:
  • the terminal device sends the sidelink channel on the shared frequency spectrum through the first channel access method
  • the terminal device sends the sidelink channel on the shared frequency spectrum through a second channel access method
  • the second channel access mode is a channel access mode of detecting the shared frequency spectrum and determining whether to send the side channel according to the result of the detection.
  • the first threshold is a preconfigured value or configured by a network device.
  • the information of the side channel includes the number of times the side channel is transmitted within the first time range.
  • the determining whether to transmit the side channel on the shared frequency spectrum through the first channel access method includes:
  • the terminal device sends the sidelink channel on the shared frequency spectrum through the first channel access method
  • the terminal device sends the side channel on the shared frequency spectrum through a second channel access method .
  • the second threshold is determined according to the first side row priority and a second mapping relationship, and the second mapping relationship includes a mapping relationship between the side row priority and the second threshold.
  • the information of the side channel further includes a total duration occupied by the side channel sent within the first time range.
  • the determining whether to transmit the side channel on the shared frequency spectrum through the first channel access method includes:
  • the terminal device transmits the sidelink channel on the shared frequency spectrum through the first channel access method channel;
  • the terminal device transmits the side channel.
  • the third threshold is determined according to the first side row priority and a third mapping relationship, and the third mapping relationship includes a mapping relationship between the side row priority and the third threshold.
  • the sidelink channel transmitted within the first time frame is transmitted by the first channel access manner.
  • the first time range includes transmission time slots of the sidelink channel to be transmitted.
  • the first channel access manner includes a short control signaling transmission manner.
  • the second aspect of the present application provides a communication device, including:
  • a processing module configured to determine whether to transmit the side channel on the shared frequency spectrum through a first channel access method according to the information of the side channel; wherein, the first channel access method is to transmit on the shared frequency spectrum A channel access mode in which the side channel does not monitor whether there is a signal in the shared frequency spectrum before.
  • the side channel information includes type information of side channels that support the first channel access manner.
  • the processing module is specifically configured to: if the type of the side channel belongs to the type of the side channel that supports the first channel access method, access the channel through the first channel sending the side channel on the shared spectrum in a manner.
  • the information of the side channel further includes a first side priority, and the first side priority is a priority corresponding to the side channel.
  • the processing module is specifically configured to obtain a first mapping relationship, where the first mapping relationship includes a mapping relationship between sideline priority and whether the first channel access mode is supported; according to the The first sidelink priority and the first mapping relationship are used to determine whether to send the sidelink channel on the shared frequency spectrum through the first channel access manner.
  • the processing module is specifically configured to: if the value of the first sideline priority is less than a first threshold, send the a side channel; if the value of the first side channel priority is greater than or equal to the first threshold, sending the side channel on the shared frequency spectrum through a second channel access method;
  • the second channel access mode is a channel access mode of detecting the shared frequency spectrum and determining whether to send the side channel according to the result of the detection.
  • the first threshold is a preconfigured value or configured by a network device.
  • the information of the side channel includes the number of times the side channel is transmitted within the first time range.
  • the processing module is specifically configured to: if the number of times the sidelink channel is sent within the first time range is less than a second threshold, use the first channel access method in the shared Send the side channel on the frequency spectrum; if the number of times the side channel is sent within the first time range is greater than or equal to the second threshold, then use the second channel access method to send the side channel on the shared spectrum the side channel.
  • the second threshold is determined according to the first side row priority and a second mapping relationship, and the second mapping relationship includes a mapping relationship between the side row priority and the second threshold.
  • the information of the side channel further includes a total duration occupied by the side channel sent within the first time range.
  • the processing module is specifically configured to: if the total duration occupied by the side channel sent within the first time range is less than a third threshold, then use the first channel access method to transmitting the side channel on the shared frequency spectrum; if the total duration occupied by the side channel transmitted within the first time range is greater than or equal to the third threshold, then using the second channel access method to The side channel is sent on the shared frequency spectrum.
  • the third threshold is determined according to the first side row priority and a third mapping relationship, and the third mapping relationship includes a mapping relationship between the side row priority and the third threshold.
  • the sidelink channel transmitted within the first time frame is transmitted by the first channel access manner.
  • the first time range includes transmission time slots of the sidelink channel to be transmitted.
  • the first channel access manner includes a short control signaling transmission manner.
  • the third aspect of this application provides a terminal device, including:
  • the memory stores computer-executable instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the communication method as described in the first aspect.
  • a fourth aspect of the present application provides a chip, including: a processor, configured to invoke and run a computer program from a memory, so that a device installed with the chip executes the method described in the first aspect.
  • a fifth aspect of the present application provides a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method as described in the first aspect.
  • a sixth aspect of the present application provides a computer program product, including computer instructions, and when the computer instructions are executed by a processor, the method as described in the first aspect is implemented.
  • a seventh aspect of the present application provides a computer program, the computer program causes a computer to execute the method described in the first aspect.
  • the eighth aspect of the present application provides a device, which may include: at least one processor and an interface circuit, and the program instructions involved are executed in the at least one processor, so that the communication device implements the communication device described in the first aspect.
  • a ninth aspect of the present application provides a communication device, the device is used to execute the method described in the first aspect.
  • a tenth aspect of the present application provides a communication device, the device is used to execute the method described in the second aspect.
  • the terminal device can determine whether to transmit the side channel on the shared frequency spectrum through the first channel access method according to the information of the side channel.
  • the first channel access mode is a channel access mode in which no signal exists in the shared frequency spectrum before sending the side channel on the shared frequency spectrum. In this manner, when the terminal device accesses the side channel on the shared frequency spectrum, it can judge whether the short control signaling channel access mode can be used according to the information of the side channel.
  • FIG. 1 is a schematic diagram of line communication within network coverage provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of partial network coverage side communication provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of outbound communication under network coverage provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a side communication with a central control node provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a unicast transmission provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a multicast transmission provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a broadcast transmission provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a time slot structure provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another time slot structure provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of resources of a sidelink feedback channel provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a synchronization resource provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a scenario of a communication method provided by an embodiment of the present application.
  • FIG. 13 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 14 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 15 is a signaling interaction diagram of another communication method provided by the embodiment of the present application.
  • FIG. 16 is a schematic diagram of an SSB cycle provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of another SSB cycle provided by the embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the side communication can be divided into network coverage inner communication, partial network coverage side communication, and network coverage outer communication.
  • Figure 1 is a schematic diagram of a network coverage internal line communication provided by the embodiment of the application
  • Figure 2 is a schematic diagram of a partial network coverage side line communication provided by the embodiment of the application
  • Figure 3 is a schematic diagram of a network coverage provided by the embodiment of the application Schematic diagram of line communication outside the network coverage.
  • Fig. 4 is a schematic diagram of a side communication with a central control node provided by an embodiment of the present application.
  • some terminals performing lateral communication are located within the coverage of the network equipment, and terminals located within the coverage of the network equipment can receive configuration signaling from the network equipment. And carry out side communication according to the configuration of the base station.
  • terminals located outside the network coverage cannot receive configuration signaling from network devices.
  • terminals outside the network coverage will perform configuration based on pre-configuration information and physical side signals sent by terminals within the network coverage.
  • the information carried in the broadcast channel (Physical Sidelink Broadcast Channel, PSBCH) determines the sidelink configuration for sidelink communication.
  • PSBCH Physical Sidelink Broadcast Channel
  • all terminals performing side communication are located outside the network coverage, and all terminals determine the side configuration according to the pre-configuration information, so as to perform side communication.
  • a plurality of terminal devices form a communication group, which has a central control node and can also become a group head terminal (Cluster Header, CH).
  • the node has one of the following functions: responsible for the establishment of communication groups; joining and leaving of cluster members (Cluster Members, CMs); performing resource coordination, allocating side transmission resources for other terminal equipment, and receiving side transmission feedback information from other terminal equipment; Functions such as resource coordination with other communication groups.
  • Device-to-Device communication (Device-to-Device, D2D) will be described below.
  • Device-to-device communication is a sidelink transmission technology, which is different from the way communication data is received or sent through the base station in traditional cellular systems, and has higher spectral efficiency and lower transmission delay.
  • the Internet of Vehicles system adopts a device-to-device communication method, and two transmission modes are defined in the 3rd Generation Partnership Project (3GPP): the first mode and the second mode.
  • 3GPP 3rd Generation Partnership Project
  • the transmission resource of the terminal device is allocated by the network device, and the terminal device sends data on the sidelink according to the resource allocated by the terminal device.
  • the network device may allocate resources for a single transmission to the terminal device, and may also allocate resources for semi-static transmission to the terminal device. As shown in FIG. 1 , the terminal device is located within the coverage of the network, and the network device allocates transmission resources for sidelink transmission to the terminal.
  • the terminal device selects a resource from the resource pool for data transmission.
  • the terminal device is located outside the coverage of the cell, and the terminal device autonomously selects transmission resources from a pre-configured resource pool for sidelink transmission.
  • the terminal device autonomously selects transmission resources from the resource pool configured by the network for sidelink transmission.
  • V2X vehicle to everything
  • FIG. 5 is a schematic diagram of a unicast transmission provided by an embodiment of this application
  • Figure 6 is a schematic diagram of a multicast transmission provided by an embodiment of this application
  • Figure 7 is a schematic diagram of a broadcast transmission provided by an embodiment of this application.
  • unicast transmission there is only one terminal at the receiving end. As shown in FIG. 5 , unicast transmission is performed between user equipment (User Equipment, UE) 1 and UE2.
  • UE User Equipment
  • the receiving end is all terminals in a communication group, or all terminals within a certain transmission distance, as shown in Figure 6, UE1, UE2, UE3 and UE4 form a communication group, where UE1 sends data, the All other terminal devices in the group are receiver terminals.
  • the receiving end is any terminal around the sending end terminal, as shown in Figure 7, UE1 is the sending end terminal, and other terminals around it, UE2-UE6 are all receiving end terminals.
  • the following describes the time slot structure of the NR-V2X system frame.
  • FIG. 8 is a schematic diagram of a time slot structure provided by an embodiment of the present application
  • FIG. 9 is a schematic diagram of another time slot structure provided by an embodiment of the present application.
  • the time slot structure shown in FIG. 8 does not include a physical sidelink feedback channel (Physical Sidelink Feedback Channel, PSFCH), and the time slot structure shown in FIG. 9 includes PSFCH.
  • PSFCH Physical Sidelink Feedback Channel
  • the Physical Sidelink Control Channel starts from the second sidelink symbol of the time slot in the time domain and occupies 2 or 3 normal Orthogonal Frequency Division Multiplexing (OFDM) symbols can occupy ⁇ 10, 12, 15, 20, 25 ⁇ physical resource blocks (Orthogonal Frequency Division Multiplexing, PRB) in the frequency domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the number of PRBs occupied by PSCCH must be less than or equal to the number of PRBs contained in a sub-channel in the resource pool, so as not to affect the Physical Sidelink Shared Channel (Physical Sidelink Shared Channel, PSSCH) resource selection or allocation creates additional constraints.
  • the PSSCH also starts from the second side row symbol of the time slot, the last time domain symbol in the time slot is a guard interval (Guard period, GP) symbol, and the remaining symbols are mapped to the PSSCH.
  • the first side row symbol in this time slot is the repetition of the second side row symbol.
  • the receiving terminal uses the first side row symbol as an automatic gain control (Automatic Gain Control, AGC) symbol.
  • AGC Automatic Gain Control
  • Data is generally not used for data demodulation.
  • the PSSCH occupies K subchannels in the frequency domain, and each subchannel includes N consecutive PRBs.
  • a time slot includes a PSFCH channel
  • the second-to-last and third-to-last symbols in the time slot are used for PSFCH channel transmission, and a time domain symbol before the PSFCH channel is used as a GP symbol.
  • a sidelink feedback channel is introduced.
  • the transmitting end terminal may send sidelink data (for example, may include PSCCH and PSSCH) to the receiving end terminal, and the receiving end terminal may send a Hybrid Automatic Repeat reQuest (Hybrid Automatic Repeat reQuest, HARQ) may include an acknowledgment character (ACK) or a negative character (NACK) as feedback information, and the transmitting terminal judges whether retransmission is required according to the feedback information of the receiving terminal.
  • HARQ feedback information is carried in a sidelink feedback channel, such as PSFCH.
  • the sidelink feedback can be activated or deactivated by means of pre-configuration information, network configuration information, or the sending terminal. If the sidelink feedback is activated, the receiving terminal receives the sidelink data sent by the transmitting terminal, and feeds back HARQ ACK or NACK to the transmitting terminal according to the detection result, and the transmitting terminal decides to send retransmission data or new data according to the feedback information of the receiving terminal . If the sidelink feedback is deactivated, the receiving terminal does not need to send feedback information, and the transmitting terminal usually uses blind retransmission to send data. For example, the transmitting terminal repeats sending K times for each sidelink data, instead of according to the The terminal feeds back information to determine whether to send retransmission data.
  • the resources of the sidelink feedback channel will be described below.
  • the parameter N is pre-configured or configured by the network.
  • the minimum time interval between the PSSCH and its corresponding PSFCH can be configured through the resource pool configuration information. As shown in FIG. 10 , the minimum time interval between the PSSCH and its corresponding PSFCH is 2 time slots.
  • the feedback information of the PSSCH transmitted in the time slot 2, the time slot 3, the time slot 4 and the time slot 5 is all transmitted in the time slot 7. Therefore, the time slot ⁇ 2, 3, 4, 5 ⁇ can be regarded as a time slot set, and the corresponding PSFCH of the PSSCH transmitted in the time slot set is in the same time slot.
  • the resources of the sidelink synchronization channel will be described below.
  • a terminal device After obtaining synchronization information from a synchronization source, a terminal device needs to send a sidelink synchronization signal and a sidelink broadcast channel on a sidelink to assist other terminal devices in obtaining synchronization information.
  • the resources used for transmitting the sidelink synchronization signal and the sidelink broadcast channel are called synchronization resources.
  • the synchronization transmission resource and the sidelink data transmission resource are time-division multiplexed (Time Division Multiplexing, TDM), that is, it does not support frequency division multiplexing of sideline synchronization signals and sideline data.
  • TDM Time Division Multiplexing
  • the terminal equipment needs to send and receive sideline synchronization signals on different time domain resources. Therefore, 2 or 3 sets of synchronization resources are required in each synchronization period in NR-V2X.
  • the cycle of synchronization resources is 160ms, and two or three sets of synchronization resources are supported in each synchronization cycle, and multiple transmission opportunities are included in each set of synchronization resources. Since in the second frequency range (Frequency range 2, FR2), different beams need to be used to transmit the synchronization signal block (Synchronization Signal Block, SSB), a set of synchronization resources in one cycle includes multiple SSB transmission opportunities, To achieve full coverage of the cell.
  • SSB Synchronization Signal Block
  • FIG. 11 is a schematic diagram of a synchronization resource provided by an embodiment of the present application.
  • 2 sets of synchronization resources are configured within 160 ms of each synchronization period
  • 4 synchronization time slots are configured in each set of synchronization resources
  • the sending end can send synchronization signals on the 4 time slots respectively.
  • a terminal device detects a synchronization signal on a certain synchronization time slot, it can transmit the synchronization signal according to the Direct Frame Number (DFN) or System Frame Number (SFN) carried in the PSBCH transmitted simultaneously with the synchronization signal.
  • the time slot number can determine whether the synchronization time slot belongs to the first set of synchronization resources or the second set of synchronization resources, and the terminal device sends synchronization signals on the four time slots of the other set of synchronization resources.
  • DFN Direct Frame Number
  • SFN System Frame Number
  • the number of synchronization time slots supported in each set of synchronization resources is as follows:
  • the number of synchronization time slots supported in each set of synchronization resources is ⁇ 1 ⁇ ; if the subcarrier spacing is 30kHz, the number of synchronization time slots supported in each set of synchronization resources is ⁇ 1, 2 ⁇ ; if the subcarrier spacing is 60 kHz, the number of synchronization time slots supported in each set of synchronization resources is ⁇ 1, 2, 4 ⁇ .
  • the number of synchronization time slots supported in each set of synchronization resources is ⁇ 1, 2, 4, 8, 16, 32 ⁇ ; if the subcarrier spacing is 120kHz, the number of synchronization time slots supported in each set of synchronization resources The number of supported synchronization time slots is ⁇ 1, 2, 4, 8, 16, 32, 64 ⁇ .
  • the unlicensed spectrum is the spectrum allocated by the country and region that can be used for radio equipment communication.
  • the spectrum can usually be a shared spectrum, that is, communication equipment in different communication systems can be used as long as they meet the regulatory requirements set by the country or region on the spectrum. This spectrum does not need to apply to the government for exclusive spectrum authorization.
  • the communication device follows the "listen before talking (LBT)" principle, that is, the communication device needs to perform channel detection before sending signals on the channel of the unlicensed spectrum. Only when the channel detection result indicates that the channel is idle, the Communication equipment can carry out signal transmission. If the result of the channel detection of the communication device on the channel of the unlicensed frequency spectrum is that the channel is busy, the communication device cannot perform signal transmission. In order to ensure fairness, in one transmission, the duration of signal transmission by the communication device using the channel of the unlicensed spectrum cannot exceed the Maximum Channel Occupancy Time (MCOT).
  • LBT listen before talking
  • the first LBT mode (LBT mode of type1): multi-slot channel detection based on contention window size adjustment and random backoff, according to the channel access priority p, a channel occupation of length Tmcot can be initiated.
  • the network device uses the type1 LBT method, in addition to sending its own data, it can also share the COT with the terminal device.
  • the terminal device uses the type1 LBT method. In addition to sending its own data, it can also share the COT with the network device.
  • Table 1 shows the correspondence between channel access priorities and channel access parameters when a terminal device performs type1 LBT.
  • m p is the number of back-off slots corresponding to the channel access priority p
  • CW p is the contention window size corresponding to the channel access priority p
  • CW min,p is the channel
  • CW max,p is the maximum value of CW p value corresponding to channel access priority p
  • T mcot,p is the channel corresponding to channel access priority p
  • the maximum occupied time length (or called the maximum channel occupied time).
  • the second LBT method (type2 LBT method): a channel access method based on fixed-length or fixed-duration channel monitoring time slots, specifically including type2A LBT method, type2B LBT method and type2C LBT method:
  • the LBT method of type2A the channel detection of a single time slot with a fixed length or a fixed duration of 25us, the channel detection starts 25us before the data starts to be sent.
  • Channel detection includes one 16us detection and one 9us detection. If the channels are all idle, the channel is considered to be idle and channel access can be performed.
  • the LBT mode of type2B the channel detection of a single time slot with a fixed length of 16us, within the last 9us of detection, if there is more than 4us of idle time, the channel is considered to be idle.
  • the LBT method of type2C does not perform channel detection and transmits directly. Because the time difference between this transmission and the previous transmission is less than 16us, it can be considered as the same transmission, but the length of this transmission does not exceed 584us.
  • Short Control Signaling Transmission Short Control Signaling Transmission
  • the transmission mode of the short control signaling is introduced.
  • the device does not need to sense the channel to access the channel for transmission.
  • the sidewalk system When the sidewalk system works on the unlicensed spectrum, it needs to access the channel through the channel detection method of Listen Before Talk (LBT). That is, before a communication device transmits a signal on an unlicensed spectrum channel, it needs to perform channel detection first. Only when the channel detection result indicates that the channel is idle, the communication device can perform signal transmission; The result of channel detection on the channel is that the channel is busy, and the communication device cannot perform signal transmission.
  • LBT Listen Before Talk
  • the short control signaling transmission mode can be supported in the sidewalk system.
  • the channel can be accessed without monitoring or LBT channel and perform sidetrack transmission.
  • it is impossible to determine when to use the short control signaling for transmission.
  • the embodiments of the present application provide a communication method and device, which determine whether to transmit the side channel on the shared frequency spectrum through the first channel access method according to the information of the side channel.
  • the first channel access mode is a channel access mode in which no signal exists in the shared frequency spectrum before sending the side channel on the shared frequency spectrum.
  • the first channel access mode includes a short control signaling transmission mode. In this manner, when the terminal device accesses the side channel on the shared frequency spectrum, it can judge whether the short control signaling channel access mode can be used according to the information of the side channel.
  • FIG. 12 is a schematic diagram of a scenario of a communication method provided by an embodiment of the present application.
  • a first terminal 101 and a second terminal 102 perform D2D communication, and the first terminal 101 sends a side channel to the second terminal 102 on a shared frequency spectrum.
  • the first terminal 101 may determine whether to send the side channel on the shared frequency spectrum in a short control signaling transmission manner according to the information of the side channel.
  • the first terminal 101 and the second terminal 102 include but are not limited to satellite or cellular telephones, personal communications system (Personal Communications System, PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communication capabilities; PDAs with telephones, pagers, Internet/Intranet access, Web browsers, organizers, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or Other electronic devices including radiotelephone transceivers.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • the terminal equipment may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • FIG. 13 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the subject of execution of the embodiment of the present application is a terminal device, which involves a process of how the terminal device sends a side channel. As shown in Figure 13, the method includes:
  • the terminal device determines whether to transmit the side channel on the shared frequency spectrum through the first channel access manner according to the information of the side channel.
  • the side channel when performing D2D communication, if the side channel needs to be sent between terminal devices, it may be determined whether to send the side channel on the shared frequency spectrum through the first channel access method according to the information of the side channel. If so, send the side channel channel on the shared frequency spectrum through the first channel access manner, and if not, transmit the side channel channel on the shared frequency spectrum through the second channel access manner.
  • the first channel access mode is a channel access mode in which no signal exists in the shared frequency spectrum before sending the side channel on the shared frequency spectrum.
  • the second channel access mode is a channel access mode of detecting the shared frequency spectrum and determining whether to send the side channel according to the result of the detection.
  • the embodiment of the present application does not limit the types of the first channel access method and the second channel access method.
  • the first channel access method may be a short control signaling channel transmission method
  • the second channel access method may be a short control signaling channel transmission method.
  • the access method may be an LBT-based channel access method.
  • the second channel access method includes the above-mentioned type1 LBT method, type2A LBT method, or type2B LBT method.
  • the sidelink channel includes any of the following: physical sidelink control channel (Physical Sidelink Control Channel, PSCCH), physical sidelink control channel Physical Sidelink Shared Channel (PSSCH), Physical Sidelink Feedback Channel (PSFCH) and Sidelink Synchronization Signal Block (S-SSB).
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSFCH Physical Sidelink Feedback Channel
  • S-SSB Sidelink Synchronization Signal Block
  • the sidelink synchronization signal block includes a sidelink primary synchronization signal, a sidelink secondary synchronization signal and a physical sidelink broadcast channel (Physical Sidelink Broadcast Channel, PSBCH).
  • PSBCH Physical Sidelink Broadcast Channel
  • the information of the side channel includes type information of the side channel that supports the first channel access mode.
  • the terminal device sends the side channel on the shared frequency spectrum through the first channel access method.
  • the terminal device when the terminal device sends the PSFCH and/or SSB, it may transmit on the shared frequency spectrum through the first channel access method.
  • the embodiment of the present application does not limit the configuration method of the type information of the side channel that supports the first channel access method.
  • it can be configured by means of predefined, pre-configured information or network configuration information.
  • Type information of the side channel in the first channel access mode can be configured by means of predefined, pre-configured information or network configuration information.
  • the side channel information includes a first side priority
  • the first side priority is a priority corresponding to the side channel.
  • the first sidelink priority may be determined according to priority information carried in Sidelink Control Information (SCI) carried by the PSCCH.
  • SCI Sidelink Control Information
  • the first sidelink priority may be determined according to the priority information carried in the SCI for scheduling the PSSCH.
  • the side channel to be sent is the PSFCH
  • the first side channel priority is determined according to the priority of the PSSCH corresponding to the PSFCH.
  • the side channel to be sent is a side channel SSB
  • the transmission first side channel priority may be determined according to pre-configuration information or network configuration information.
  • the side row priority includes 8 priority levels, and the value range of the corresponding priority is [1, 8] or [0, 7].
  • the priority value range [1, 8] is the priority level configured by the upper layer
  • the priority value range [0, 7] is the priority level indicated in the side traffic control information SCI
  • the above two priority value ranges There is a corresponding relationship between them, for example, the priority value configured by the high layer minus 1 is the priority value indicated in the SCI.
  • the embodiment of the present application is also applicable to the value ranges of the above two priority levels.
  • the priority value range [0, 7] is taken as an example in the embodiment of the present application for illustration.
  • the terminal device in the embodiment of the present application may be within the coverage of the network or outside the coverage of the network, which is not limited in the embodiment of the present application.
  • the terminal device when the terminal device is within the coverage of the network, the terminal device can obtain the system information SIB12 sent by the network, and the system information includes parameters for configuring the first sideline priority of the sideline SSB (sl-SSB- PriorityNR).
  • the pre-configuration information (SidelinkPreconfigNR) is obtained, and the pre-configuration information includes parameters (sl-SSB-PriorityNR) for configuring the first side-line priority of the side-line SSB .
  • the terminal device may acquire a first mapping relationship, where the first mapping relationship includes a mapping relationship between a sidewalk priority and whether the first channel access manner is supported.
  • the terminal device determines, according to the first sidelink priority and the first mapping relationship, whether to send the sidelink channel on the shared frequency spectrum through the first channel access manner.
  • Table 2 is a schematic diagram of the first mapping relationship.
  • the side channel whose value of the first side line priority is less than or equal to 1 supports the shared spectrum through the first channel access method send side channel.
  • a side channel whose value of the first side channel priority is greater than 1 does not support sending the side channel on the shared frequency spectrum through the first channel access method.
  • the terminal device if the value of the first sidelink priority is less than the first threshold, the terminal device sends the sidelink channel on the shared frequency spectrum through the first channel access manner. If the value of the first sidelink priority is greater than or equal to the first threshold, the terminal device sends the sidelink channel on the shared frequency spectrum through the second channel access manner.
  • the embodiment of the present application does not limit the value of the first threshold, which may be specifically set according to actual conditions.
  • the first threshold may be 1.
  • the setting of the first threshold is not limited, for example, it may be set according to pre-configuration information or network configuration information.
  • the side channel information includes the number of times the side channel is sent within the first time range.
  • the terminal device sends the side channel on the shared frequency spectrum through the first channel access manner. If the number of times the side channel is sent within the first time range is greater than or equal to the second threshold, the terminal device sends the side channel on the shared frequency spectrum in a second channel access manner.
  • the first time range may be determined according to preconfiguration information or network configuration information.
  • the duration T1 of the first time range may be 50 milliseconds (millisecond, ms), and correspondingly, the first time range includes time slots [nT start , nT end ].
  • is a parameter determined according to the side row subcarrier spacing, as shown in Table 3.
  • the first time range includes the time slot where time slot n is located, that is, when time slot n uses short control signaling to transmit the side channel, determine the total number of times the side channel is sent within the first time range, The total count includes the side channel transmitted in time slot n.
  • the embodiment of the present application does not limit how to determine the second threshold.
  • the second threshold may be determined according to pre-configuration information or network configuration information, for example, the pre-configuration information or network configuration information is directly configured
  • the second threshold is equal to 50.
  • the second threshold may be determined according to the first priority of the side row and the second mapping relationship, and the second mapping relationship includes a mapping relationship between the priority of the side row and the second threshold.
  • the second mapping relationship is shown in Table 4, and second thresholds corresponding to different side row priorities are respectively configured.
  • the number of times the side channel is transmitted within the first time range includes the number of times the side channel has a priority higher than or equal to the first side priority shown.
  • the first sidelink priority is the priority corresponding to the sidelink channel to be sent in time slot n.
  • the number of times C of sending the side channel within the first time range is determined according to formula (1) :
  • C i is the number of transmissions corresponding to the side channel whose priority value is i.
  • the range of the side row priority is [0, 7], where a priority value of 0 represents the highest priority, and a priority value of 7 represents the lowest priority.
  • the side channel is PSSCH, if the priority value of the PSSCH to be sent in time slot n is 0, then the number of side channels sent in the first time range includes the priority of sending in the first time range is 0 PSSCH times. If the priority value of the PSSCH to be sent in time slot n is 1, the number of times of the side channel sent in the first time range includes the PSSCH with priority 0 and the priority sent in the first time range. The total number of PSSCH times of 1.
  • the priority value of the PSSCH to be sent in time slot n is 2
  • the number of times of the side channel channel sent in the first time range includes the PSSCH with priority 0 sent in the first time range, and the priority is The total number of PSSCH with priority 1 and PSSCH with priority 2.
  • the priority value of the PSSCH to be transmitted in time slot n is 7
  • the number of side channel transmissions in the first time range includes the priority of transmission in the first time range from 0 to priority The total number of PSSCHs with level 7.
  • the range of the side row priority is [0, 7], where a priority value of 0 represents the highest priority, and a priority value of 7 represents the lowest priority.
  • the side channel is PSFCH, and the priority of the PSFCH is determined according to the priority of the PSSCH corresponding to the PSFCH. If the priority value of the PSFCH to be sent in time slot n is 0, the number of side channel transmissions within the first time range includes the number of PSFCHs with priority 0 sent within the first time range. If the priority value of the PSFCH to be sent in time slot n is 1, the number of times of the side channel sent in the first time range includes the PSFCH with the priority of 0 and the priority of being sent in the first time range. 1 for the total number of PSFCHs.
  • the priority value of the PSFCH to be sent in time slot n is 2
  • the number of times of side channel transmissions in the first time range includes the PSFCH with a priority of 0 sent in the first time range
  • the priority is The total number of PSFCH with priority 1 and PSFCH with priority 2.
  • the priority value of the PSFCH to be transmitted in time slot n is 7
  • the number of side channel transmissions in the first time range includes the priority of transmission in the first time range from 0 to priority The total number of PSFCHs with class 7.
  • the information of the side channel includes the total duration occupied by the side channel sent within the first time range.
  • the terminal device transmits the side channel on the shared frequency spectrum through the first channel access manner. If the total duration occupied by the transmitted side channel within the first time range is greater than or equal to the third threshold, the terminal device transmits the side channel on the shared frequency spectrum in a second channel access manner.
  • the third threshold may determine the first threshold according to pre-configuration information or network configuration information, for example, pre-configuration information or network configuration information
  • the message configuration third threshold is equal to 2500 microseconds.
  • the third threshold may be determined according to the first side row priority and a third mapping relationship, and the third mapping relationship includes a mapping relationship between the side row priority and the third threshold.
  • the third mapping relationship is shown in Table 5, and third thresholds corresponding to different side row priorities are respectively configured.
  • the total duration of sending side channels within the first time range includes the total duration of side channels whose priorities are higher than or equal to the first side priority shown.
  • the first sidelink priority is the priority corresponding to the sidelink channel to be sent in time slot n.
  • the total duration T of sending the side channel within the first time range is according to the formula (2) Sure:
  • T i is the total duration corresponding to the side channel whose priority value is i.
  • the range of the side row priority is [0, 7], where a priority value of 0 represents the highest priority, and a priority value of 7 represents the lowest priority.
  • the side channel is PSSCH, if the priority value of the PSSCH to be sent in time slot n is 0, then the total duration occupied by the side channel sent in the first time range includes the priority sent in the first time range The total duration occupied by the PSSCH that is 0. If the priority value of the PSSCH to be sent in time slot n is 1, the total duration occupied by the side channel sent in the first time range includes the PSSCH with priority 0 and the priority channel sent in the first time range. The total time occupied by the PSSCH with level 1.
  • the total duration occupied by the side channel sent in the first time range includes the PSSCH with priority 0 sent in the first time range, the priority The total duration occupied by the PSSCH with priority 1 and the PSSCH with priority 2.
  • the priority value of the PSSCH to be sent in time slot n is 7
  • the total duration occupied by the side channel sent in the first time range includes the priority of 0 sent in the first time range Total time occupied by PSSCH with priority 7.
  • the range of the side row priority is [0, 7], where a priority value of 0 represents the highest priority, and a priority value of 7 represents the lowest priority.
  • the side channel is PSFCH, and the priority of the PSFCH is determined according to the priority of the PSSCH corresponding to the PSFCH. If the priority value of the PSFCH to be sent in time slot n is 0, then the total duration occupied by the side channel sent in the first time range includes the time occupied by the PSFCH with a priority of 0 sent in the first time range Total duration. If the priority value of the PSFCH to be transmitted in time slot n is 1, the total duration occupied by the side channel transmitted within the first time range includes the PSFCH with priority 0 and the priority channel transmitted within the first time range.
  • the priority value of the PSFCH to be transmitted in time slot n is 7, then the total duration occupied by the side channel transmitted within the first time range includes the priority of 0 transmitted within the first time range Total time occupied by PSFCH with priority 7.
  • a PSFCH occupies 2 OFDM symbols. If the subcarrier spacing of the sidelink system is 15kHz, the duration corresponding to one OFDM symbol is about 71.36 microseconds, and the duration occupied by a PSFCH channel is 142.72 microseconds.
  • the total duration of sending the side channel within the first time range does not include the duration corresponding to the time domain symbols used for the GP in the time slot where the side channel is located.
  • the total duration of sending the sidelink channel within the first time range does not include the duration corresponding to the time domain symbols that are not available for sidelink transmission in the time slot where the sidelink channel is located.
  • the terminal device may use one of the above methods to determine whether to use the first channel access method to transmit the side channel on the shared frequency spectrum, or may use the above-mentioned multiple methods to determine whether to use the first channel
  • the access mode transmits the side channel on the shared frequency spectrum, which is not limited in this embodiment of the present application.
  • step S201 is performed, if yes, then step S202 is performed, and if not, then step S203 is performed.
  • the terminal device transmits the side channel on the shared frequency spectrum through the first channel access manner.
  • the terminal device transmits the side channel on the shared frequency spectrum through the second channel access manner.
  • the terminal device determines whether to transmit the side channel on the shared frequency spectrum through the first channel access method according to the information of the side channel.
  • the first channel access mode is a channel access mode in which no signal exists in the shared frequency spectrum before sending the side channel on the shared frequency spectrum. In this manner, when the terminal device accesses the side channel on the shared frequency spectrum, it can judge whether the short control signaling channel access mode can be used according to the information of the side channel.
  • the following describes how to determine whether to transmit the side channel on the shared frequency spectrum through the first channel access method according to the number of times the side channel is transmitted within the first time range.
  • FIG. 14 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • the subject of execution of the embodiment of the present application is a terminal device, which involves a process of how the terminal device sends a side channel.
  • the method includes:
  • the terminal device determines a second threshold.
  • the second threshold is determined according to pre-configuration information or network configuration information, or the second threshold is determined according to the first side line priority and the second mapping relationship, and the second mapping relationship includes the side line priority and the second threshold. Mapping relations.
  • the terminal device determines whether the number of times the side channel is sent within the first time range is less than a second threshold.
  • step S303 If yes, execute step S303; if not, execute step S304.
  • the terminal device transmits the side channel on the shared frequency spectrum through the first channel access manner.
  • the terminal device transmits the side channel on the shared frequency spectrum through the second channel access manner.
  • the first channel access mode is a channel access mode in which no signal exists in the shared frequency spectrum before sending the side channel on the shared frequency spectrum.
  • the second channel access mode is a channel access mode of detecting the shared frequency spectrum and determining whether to send the side channel according to the result of the detection.
  • the period of the side SSB is 160 ms, 2 sets of synchronization resources are configured in each period, and each set of synchronization resources includes 4 SSB transmission opportunities.
  • the terminal device since the terminal device will only use one set of synchronization resources in the two sets of synchronization resources to send the sidelink SSB, if the subcarrier spacing of the sidelink system is 15kHz, that is, the length of a time slot is 1ms, therefore, at 160ms A total of 4 side row SSBs will be sent in . If the first time range is 50 ms and the second threshold is 50, even if the four SSB transmissions are all within a certain time range of 50 ms, the second threshold is not exceeded. Therefore, the terminal device may adopt the first channel access mode when sending the sideline SSB, that is, the terminal device can directly transmit the sideline SSB without performing channel detection or LBT.
  • the above-mentioned first time range may include 100 time slots, the number of PSFCH time slots included in the first time range is 25. If the first threshold is 50, even if the terminal device sends the PSFCH in every PSFCH time slot, the total number of times the terminal device sends the PSFCH does not exceed 100 times within any range of 100 time slots. Therefore, the first channel access manner can be used for transmission.
  • the above-mentioned first time range includes 100 time slots , the number of PSFCH time slots included in the first time range is 100. If the first threshold is 50, the number of PSFCHs sent by the terminal device within the first time range may exceed the first threshold.
  • the terminal device needs to send PSFCH in time slot n, it can be based on the total number of PSFCHs sent in time slot [n-100, n-1], or according to the number of PSFCHs sent in time slot [n-99, n]
  • the total number of times (including the PSFCH to be sent in time slot n) is determined to determine whether it exceeds 50 times, so as to determine whether the PSFCH can be sent in the short control signaling transmission mode in time slot n. If it exceeds 50, the first channel access method cannot be used to transmit the PSFCH, and the second channel access method is used to access the channel. If it does not exceed 50, the PSFCH can be transmitted in the first channel access manner, that is, the terminal can directly transmit the PSFCH without monitoring the channel or LBT.
  • the terminal device is supported to simultaneously send N PSFCHs in one time slot, where N is an integer greater than or equal to 1.
  • the terminal device transmits the N PSFCHs at the same time, that is, the terminal will only access the channel once, so even if N is greater than 1, it can be regarded as one transmission.
  • FIG. 15 is a signaling interaction diagram of another communication method provided by the embodiment of the present application.
  • the subject of execution of the embodiment of the present application is a terminal device, which involves a process of how the terminal device sends a side channel.
  • the method includes:
  • the terminal device determines a third threshold.
  • the third threshold is determined according to pre-configuration information or network configuration information, or the third threshold is determined according to the first side line priority and the third mapping relationship, and the third mapping relationship includes the side line priority and the third threshold. Mapping relations.
  • the terminal device determines whether the total duration of sending the side channel within the first time range is less than a third threshold.
  • step S403 If yes, execute step S403; if not, execute step S404.
  • the terminal device transmits the side channel on the shared frequency spectrum through the first channel access manner.
  • the terminal device transmits the side channel on the shared frequency spectrum through the second channel access manner.
  • the first channel access mode is a channel access mode in which no signal exists in the shared frequency spectrum before sending the side channel on the shared frequency spectrum.
  • the second channel access mode is a channel access mode of detecting the shared frequency spectrum and determining whether to send the side channel according to the result of the detection.
  • each set of synchronization resources includes 4 SSB transmission opportunities.
  • the terminal device since the terminal device only uses one of the two sets of synchronization resources to send the side SSB, therefore, a total of 4 side SSBs will be sent in 160 ms.
  • the subcarrier spacing of the sidewalk system is 15kHz, that is, the length of a time slot is 1ms, and the sidelink SSB occupies other time domain symbols in a time slot except the last time domain symbol, at 15kHz subcarrier spacing (SCS) , the duration corresponding to the last time domain symbol is 71.36 microseconds.
  • FIG. 16 is a schematic diagram of a side row SSB resource configuration provided by an embodiment of the present application.
  • a set of SSB transmission resources in one SSB cycle (160 ms) includes 4 time slots, the interval between two adjacent SSB time slots is 10 time slots, and the SCS of the sidewalk system is 15 kHz.
  • the first time range is 50 ms
  • the third threshold is 2500 microseconds
  • the terminal transmits the first side SSB and the second side SSB since the SSB sent in the previous 50 ms takes up no more than 2500 microseconds seconds, therefore, the first channel access method can be used.
  • 3 SSBs (including the first side SSB, the second side SSB and the third side SSB) are sent within 50ms, that is, the total duration occupied by the SSB It will exceed 2500 microseconds, so the terminal cannot use the first channel access method to transmit the third SSB.
  • 3 SSBs (including the first side SSB, the second side SSB and the second side SSB) are sent within 50ms.
  • the terminal The device cannot transmit the fourth SSB using the first channel access method.
  • FIG. 17 is a schematic diagram of another side row SSB resource configuration provided by the embodiment of the present application.
  • the time interval between two adjacent SSB time slots shown in Figure 16 is 10 time slots
  • the time interval between two adjacent SSB time slots is 20 time slots
  • side The SCS of the line system is also 15kHz. If the first time range is 50 ms, and the third threshold is 2500 microseconds, because in any 50 ms time interval, the total duration of the SSB sent by the terminal device will not exceed 2500 microseconds. Therefore, the terminal device can use the short control signaling transmission method to transmit the side SSB for all 4 SSB transmissions, because in any 50ms time interval, the total time occupied by the SSB sent by the terminal will not exceed 2500 microseconds .
  • the third threshold is 2500 microseconds, for 30 kHz sub
  • the above-mentioned first time range includes 100 time slots, and the number of PSFCH time slots included in the first time range is 25.
  • PSFCH occupies 2 time-domain symbols in each time slot.
  • the period of PSFCH is 2 time slots, that is, there is one PSFCH transmission time slot in every 2 time slots, if the first time range is 50 ms, the third threshold is 2500 microseconds, for 30 kHz
  • the first time range includes 100 time slots, and the number of PSFCH time slots included in the first time range is 50.
  • PSFCH occupies 2 time-domain symbols in each time slot.
  • a PSFCH occupies 71.36us.
  • the terminal device needs to judge whether the total duration of PSFCH sent in 100 time slots including the current time slot exceeds the third threshold. If not, the first channel access method can be used for transmission , otherwise the current transmission cannot use the first channel access method.
  • the aforementioned program can be stored in a computer-readable storage medium.
  • the program When the program is executed, the It includes the steps of the above method embodiments; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other various media that can store program codes.
  • FIG. 18 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication apparatus may be implemented by software, hardware or a combination of the two, so as to implement the communication method for the terminal device in the foregoing embodiments.
  • the communication device 500 includes: a storage module 501 and a processing module 502 .
  • the storage module 501 is used for storing executable programs.
  • the processing module 502 is a processing module configured to determine whether to transmit the side channel on the shared frequency spectrum through the first channel access method according to the information of the side channel; wherein, the first channel access method is to transmit the side channel on the shared frequency spectrum.
  • the channel access method does not listen to whether there is a signal in the shared spectrum before the channel.
  • the side channel information includes type information of the side channel that supports the first channel access manner.
  • the processing module 502 is specifically configured to send the side channel on the shared frequency spectrum through the first channel access mode if the type of the side channel belongs to the type of the side channel that supports the first channel access mode .
  • the information of the side channel further includes a first side priority, where the first side priority is a priority corresponding to the side channel.
  • the processing module 502 is specifically configured to obtain the first mapping relationship, the first mapping relationship includes the mapping relationship between the side line priority and whether the first channel access mode is supported; according to the first side line priority With the first mapping relationship, it is determined whether to send the side channel on the shared frequency spectrum through the first channel access manner.
  • the processing module 502 is specifically configured to, if the value of the first sideline priority is less than the first threshold, send the sideline channel on the shared frequency spectrum through the first channel access method; if the first sideline If the value of the priority is greater than or equal to the first threshold, the side channel is sent on the shared frequency spectrum through the second channel access method;
  • the second channel access mode is a channel access mode of detecting the shared frequency spectrum and determining whether to send the side channel according to the result of the detection.
  • the first threshold is a pre-configured value or configured by a network device.
  • the side channel information includes the number of times the side channel is transmitted within the first time frame.
  • the processing module 502 is specifically configured to send the side channel on the shared frequency spectrum through the first channel access method if the number of times the side channel is sent within the first time range is less than the second threshold; If the number of times the side channel is sent within the first time range is greater than or equal to the second threshold, then the side channel is sent on the shared frequency spectrum in a second channel access manner.
  • the second threshold is determined according to the first side row priority and a second mapping relationship, and the second mapping relationship includes a mapping relationship between the side row priority and the second threshold.
  • the information of the side channel further includes the total duration occupied by the side channel transmitted within the first time range.
  • the processing module 502 is specifically configured to send the side channel on the shared frequency spectrum through the first channel access method if the total duration occupied by the side channel transmitted within the first time range is less than the third threshold ; If the total duration occupied by the transmitted side channel within the first time range is greater than or equal to the third threshold, transmit the side channel on the shared frequency spectrum in a second channel access manner.
  • the third threshold is determined according to the first side row priority and a third mapping relationship, and the third mapping relationship includes a mapping relationship between the side row priority and the third threshold.
  • the side channel transmitted during the first time frame is transmitted by the first channel access method.
  • the first time range includes transmission slots of the side channel to be transmitted.
  • the first channel access mode includes a short control signaling transmission mode.
  • the communication device provided in the embodiment of the present application can execute the actions of the communication method in the above-mentioned embodiment, and its implementation principle and technical effect are similar, and will not be repeated here.
  • FIG. 19 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • this electronic equipment can comprise: processor 61 (such as CPU), memory 62, receiver 63 and transmitter 64; Receiver 63 and transmitter 64 are coupled to processor 61, and processor 61 controls receiver 63 of the receiving action, the processor 61 controls the sending action of the transmitter 64.
  • the memory 62 may include a high-speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, and various information may be stored in the memory 62 for completing various processing functions and implementing the method of the embodiment of the present application step.
  • the electronic device involved in this embodiment of the present application may further include: a power supply 65 , a communication bus 66 and a communication port 67 .
  • the receiver 63 and the transmitter 64 can be integrated in the transceiver of the electronic device, or can be an independent transceiver antenna on the electronic device.
  • the communication bus 66 is used to implement the communication connection between the components.
  • the above-mentioned communication port 67 is used to realize connection and communication between the electronic device and other peripheral devices.
  • the above-mentioned memory 62 is used to store computer-executable program codes, and the program codes include information; when the processor 61 executes the information, the information causes the processor 61 to execute the processing actions on the terminal device side in the above-mentioned method embodiments,
  • the transmitter 64 is made to perform the sending action on the terminal device side in the above method embodiment, and the receiver 63 is made to perform the receiving action on the terminal device side in the above method embodiment.
  • the information causes the processor 61 to execute the processing actions on the network device side in the above method embodiments, make the transmitter 64 execute the sending actions on the network device side in the above method embodiments, and cause the receiver 63 to execute
  • the implementation principles and technical effects of the receiving actions on the network device side in the foregoing method embodiments are similar, and will not be repeated here.
  • An embodiment of the present application further provides a communication system, including a terminal device and a network device, so as to implement the foregoing communication method.
  • the embodiment of the present application also provides a chip, including a processor and an interface.
  • the interface is used to input and output data or instructions processed by the processor.
  • the processor is configured to execute the methods provided in the above method embodiments.
  • the chip can be applied to terminal equipment or network equipment.
  • the present invention also provides a kind of computer-readable storage medium, and this computer-readable storage medium can comprise: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory) ), a magnetic disk or an optical disk, and other media that can store program codes.
  • the computer-readable storage medium stores program information, and the program information is used in the above-mentioned communication method.
  • the embodiment of the present application also provides a program, which is used to execute the communication method provided by the above method embodiment when executed by a processor.
  • the embodiment of the present application also provides a program product, such as a computer-readable storage medium, where instructions are stored in the program product, and when the program product is run on a computer, it causes the computer to execute the communication method provided by the above method embodiment.
  • a program product such as a computer-readable storage medium
  • An embodiment of the present application also provides a device, and the device may include: at least one processor and an interface circuit, and related program instructions are executed in the at least one processor, so that the communication device implements the communication method provided by the above method embodiment.
  • the embodiment of the present application also provides a communication device, which is configured to execute the communication method provided in the above method embodiment.
  • a computer program product includes one or more computer instructions.
  • a computer can be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, computer instructions may be sent from a website, computer, server, or data center via a wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media. Available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,方法包括:终端设备根据侧行信道的信息,确定是否通过第一信道接入方式在共享频谱上发送侧行信道。其中,第一信道接入方式为在共享频谱上发送侧行信道前不侦听共享频谱是否存在信号的信道接入方式。通过该方式,终端设备在共享频谱上进行侧行信道的接入时,可以根据侧行信道的信息来判断是否可以采用短控制信令的信道接入方式。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常被认为是共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求即可进行使用,无需进行专有的频谱授权。
当侧行系统工作在非授权频谱上时,需要通过先听后说(Listen Before Talk,LBT)的信道检测方式接入信道。即,通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送。如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。
在非授权频谱上支持短控制信令的传输方式,当采用短控制信令传输方式时,无需对信道进行侦听或LBT即可接入信道并进行侧行传输。然而,现有的侧行通信方法中,无法确定何时使用短控制信令的方式进行传输。
申请内容
本申请实施例提供一种通信方法及装置,以解决现有技术中无法确定何时使用短控制信令的方式进行传输的问题。
本申请第一个方面提供一种通信方法,所述方法包括:
终端设备根据侧行信道的信息,确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道;其中,所述第一信道接入方式为在所述共享频谱上发送所述侧行信道前不侦听所述共享频谱是否存在信号的信道接入方式。
在一些实施例中,所述侧行信道的信息中包括支持所述第一信道接入方式的侧行信道的类型信息。
在一些实施例中,所述确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道,包括:
若所述侧行信道的类型属于所述支持所述第一信道接入方式的侧行信道的类型,则所述终端设备通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道。
在一些实施例中,所述侧行信道的信息中还包括第一侧行优先级,所述第一侧行优先级为所述侧行信道对应的优先级。
在一些实施例中,所述确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道,包括:
所述终端设备获取第一映射关系,所述第一映射关系包括侧行优先级和是否支持所述第一信道接入方式之间的映射关系;
所述终端设备根据所述第一侧行优先级和所述第一映射关系,确定是否通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道。
在一些实施例中,所述确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道,包括:
若所述第一侧行优先级的取值小于第一阈值,则所述终端设备通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道;
若所述第一侧行优先级的取值大于或等于所述第一阈值,则所述终端设备通过第二信道接入方式在所述共享频谱上发送所述侧行信道;
其中,所述第二信道接入方式为对所述共享频谱进行侦听并根据侦听结果确定是否发送所述侧行信道的信道接入方式。
在一些实施例中,所述第一阈值为预配值或由网络设备配置。
在一些实施例中,所述侧行信道的信息包括在第一时间范围内发送所述侧行信道的次数。
在一些实施例中,所述确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道,包括:
若在所述第一时间范围内发送所述侧行信道的次数小于第二阈值,则所述终端设备通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道;
若在所述第一时间范围内发送所述侧行信道的次数大于或等于所述第二阈值,则所述终端设备通过第二信道接入方式在所述共享频谱上发送所述侧行信道。
在一些实施例中,所述第二阈值根据所述第一侧行优先级和第二映射关系确定,所述第二映射关系包括侧行优先级和第二阈值之间的映射关系。
在一些实施例中,所述侧行信道的信息还包括在第一时间范围内发送的所述侧行信道占据的总时长。
在一些实施例中,所述确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道,包括:
若在所述第一时间范围内发送的所述侧行信道占据的总时长小于第三阈值,则所述终端设备通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道;
若在所述第一时间范围内发送的所述侧行信道占据的总时长大于或等于所述第三阈值,则所述终端设备通过第二信道接入方式在所述共享频谱上发送所述侧行信道。
在一些实施例中,所述第三阈值根据所述第一侧行优先级和第三映射关系确定,所述第三映射关系包括侧行优先级和第三阈值之间的映射关系。
在一些实施例中,在所述第一时间范围内发送的所述侧行信道是通过所述第一信道接入方式发送的。
在一些实施例中,所述第一时间范围包括待发送的所述侧行信道的发送时隙。
在一些实施例中,所述第一信道接入方式包括短控制信令传输方式。
本申请第二个方面提供一种通信装置,包括:
处理模块,用于根据侧行信道的信息,确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道;其中,所述第一信道接入方式为在所述共享频谱上发送所述侧行信道前不侦听所述共享频谱是否存在信号的信道接入方式。
在一些实施例中,所述侧行信道的信息中包括支持所述第一信道接入方式的侧行信道的类型信息。
在一些实施例中,所述处理模块,具体用于若所述侧行信道的类型属于所述支持所述第一信道接入方式的侧行信道的类型,则通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道。
在一些实施例中,所述侧行信道的信息中还包括第一侧行优先级,所述第一侧行优先级为所述侧行信道对应的优先级。
在一些实施例中,所述处理模块,具体用于获取第一映射关系,所述第一映射关系包括侧行优先级和是否支持所述第一信道接入方式之间的映射关系;根据所述第一侧行优先级和所述第一映射关系,确定是否通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道。
在一些实施例中,所述处理模块,具体用于若所述第一侧行优先级的取值小于第一阈 值,则通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道;若所述第一侧行优先级的取值大于或等于所述第一阈值,则通过第二信道接入方式在所述共享频谱上发送所述侧行信道;
其中,所述第二信道接入方式为对所述共享频谱进行侦听并根据侦听结果确定是否发送所述侧行信道的信道接入方式。
在一些实施例中,所述第一阈值为预配值或由网络设备配置。
在一些实施例中,所述侧行信道的信息包括在第一时间范围内发送所述侧行信道的次数。
在一些实施例中,所述处理模块,具体用于若在所述第一时间范围内发送所述侧行信道的次数小于第二阈值,则通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道;若在所述第一时间范围内发送所述侧行信道的次数大于或等于所述第二阈值,则通过第二信道接入方式在所述共享频谱上发送所述侧行信道。
在一些实施例中,所述第二阈值根据所述第一侧行优先级和第二映射关系确定,所述第二映射关系包括侧行优先级和第二阈值之间的映射关系。
在一些实施例中,所述侧行信道的信息还包括在第一时间范围内发送的所述侧行信道占据的总时长。
在一些实施例中,所述处理模块,具体用于若在所述第一时间范围内发送的所述侧行信道占据的总时长小于第三阈值,则通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道;若在所述第一时间范围内发送的所述侧行信道占据的总时长大于或等于所述第三阈值,则通过第二信道接入方式在所述共享频谱上发送所述侧行信道。
在一些实施例中,所述第三阈值根据所述第一侧行优先级和第三映射关系确定,所述第三映射关系包括侧行优先级和第三阈值之间的映射关系。
在一些实施例中,在所述第一时间范围内发送的所述侧行信道是通过所述第一信道接入方式发送的。
在一些实施例中,所述第一时间范围包括待发送的所述侧行信道的发送时隙。
在一些实施例中,所述第一信道接入方式包括短控制信令传输方式。
本申请第三个方面提供一种终端设备,包括:
处理器、存储器、发送器以及与终端设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面所述的通信方法。
本申请第四个方面提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如第一方面所述的方法。
本申请第五个方面提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如第一方面所述的方法。
本申请第六个方面提供一种计算机程序产品,包括计算机指令,该计算机指令被处理器执行时实现如第一方面所述的方法。
本申请第七个方面提供一种计算机程序,所述计算机程序使得计算机执行如第一方面所述的方法。
本申请第八个方面提供一种装置,所述装置可以包括:至少一个处理器和接口电路,涉及的程序指令在该至少一个处理器中执行,以使得该通信装置实现如第一方面所述的方法。
本申请第九个方面提供一种通信装置,所述装置用于执行第一方面述的方法。
本申请第十个方面提供一种通信装置,所述装置用于执行第二方面述的方法。
本申请实施例提供的通信方法及装置,终端设备可以根据侧行信道的信息,确定是否 通过第一信道接入方式在共享频谱上发送侧行信道。其中,第一信道接入方式为在共享频谱上发送侧行信道前不侦听共享频谱是否存在信号的信道接入方式。通过该方式,终端设备在共享频谱上进行侧行信道的接入时,可以根据侧行信道的信息来判断是否可以采用短控制信令的信道接入方式。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种网络覆盖内侧行通信的示意图;
图2为本申请实施例提供的一种部分网络覆盖侧行通信的示意图;
图3为本申请实施例提供的一种网络覆盖外侧行通信的示意图;
图4为本申请实施例提供的一种有中央控制节点的侧行通信的示意图;
图5为本申请实施例提供的一种单播传输的示意图;
图6为本申请实施例提供的一种组播传输的示意图;
图7为本申请实施例提供的一种广播传输的示意图;
图8为本申请实施例提供的一种时隙结构的示意图;
图9为本申请实施例提供的另一种时隙结构的示意图;
图10为本申请实施例提供的一种侧行反馈信道的资源的示意图;
图11为本申请实施例提供的一种同步资源示意图;
图12为本申请实施例提供的一种通信方法的场景示意图;
图13为本申请实施例提供的一种通信方法的流程示意图;
图14为本申请实施例提供的另一种通信方法的流程示意图;
图15为本申请实施例提供的再一种通信方法的信令交互图;
图16为本申请实施例提供的一种SSB周期的示意图;
图17为本申请实施例提供的另一种SSB周期的示意图;
图18为本申请实施例提供的一种通信装置的结构示意图;
图19为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”, 一般表示前后关联对象是一种“或”的关系。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面首先对侧行链路通信进行说明。
在侧行通信中,可以根据进行通信的终端所处的网络覆盖情况,将侧行通信分为网络覆盖内侧行通信,部分网络覆盖侧行通信,及网络覆盖外侧行通信。图1为本申请实施例提供的一种网络覆盖内侧行通信的示意图,图2为本申请实施例提供的一种部分网络覆盖侧行通信的示意图,图3为本申请实施例提供的一种网络覆盖外侧行通信的示意图。图4为本申请实施例提供的一种有中央控制节点的侧行通信的示意图。
如图1所示,在网络覆盖内侧行通信中,所有进行侧行通信的终端均处于同一网络设备的覆盖范围内,上述终端均可以通过接收网络设备的配置信令,基于相同的侧行配置进行侧行通信。
如图2所示,在部分网络覆盖侧行通信情况下,部分进行侧行通信的终端位于网络设备的覆盖范围内,位于网络设备的覆盖范围内的终端能够接收到网络设备的配置信令,并根据基站的配置进行侧行通信。而位于网络覆盖范围外的终端,无法接收网络设备的配置信令,此时,网络覆盖范围外的终端将根据预配置(pre-configuration)信息以及位于网络覆盖范围内的终端发送的物理侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)中携带的信息确定侧行配置,从而进行侧行通信。
如图3所示,在网络覆盖外侧行通信的情况下,所有进行侧行通信的终端均位于网络覆盖范围外,进而所有终端均根据预配置信息确定侧行配置,从而进行侧行通信。
如图4所示,对于有中央控制节点的侧行通信,多个终端设备构成一个通信组,该通信组内具有中央控制节点,又可以成为组头终端(Cluster Header,CH),该中央控制节点具有以下功能之一:负责通信组的建立;组成员(Cluster Member,CM)的加入、离开;进行资源协调,为其他终端设备分配侧行传输资源,接收其他终端设备的侧行反馈信息;与其他通信组进行资源协调等功能。
下面对于设备到设备通信(Device-to-Device,D2D)进行说明。
设备到设备通信是一种侧行链路传输技术,与传统的蜂窝系统中通信数据通过基站接收或者发送的方式不同,其具有更高的频谱效率以及更低的传输时延。其中,车联网系统采用设备到设备通信的方式,在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)定义了两种传输模式:第一模式和第二模式。
其中,在第一模式中,终端设备的传输资源是由网络设备分配的,终端设备根据终端设备分配的资源在侧行链路上进行数据的发送。网络设备可以为终端设备分配单次传输的资源,也可以为终端设备分配半静态传输的资源。如图1所示,终端设备位于网络覆盖范围内,网络设备为终端分配侧行传输使用的传输资源。
在第二模式中,终端设备在资源池中选取一个资源进行数据的传输。如图3所示,终端设备位于小区覆盖范围外,终端设备在预配置的资源池中自主选取传输资源进行侧行传输。或者,如图1所示,终端设备在网络配置的资源池中自主选取传输资源进行侧行传输。
下面对于NR车用无线通信技术(vehicle to everything,V2X)进行说明。
首先,在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。
其次,在NR-V2X中,支持广播传输方式,同时也引入了单播和组播的传输方式。图5为本申请实施例提供的一种单播传输的示意图,图6为本申请实施例提供的一种组播传 输的示意图,图7为本申请实施例提供的一种广播传输的示意图。对于单播传输,其接收端终端只有一个终端,如图5中,用户设备(User Equipment,UE)1、UE2之间进行单播传输。对于组播传输,其接收端是一个通信组内的所有终端,或者是在一定传输距离内的所有终端,如图6,UE1、UE2、UE3和UE4构成一个通信组,其中UE1发送数据,该组内的其他终端设备都是接收端终端。对于广播传输方式,其接收端是发送端终端周围的任意一个终端,如图7,UE1是发送端终端,其周围的其他终端,UE2-UE6都是接收端终端。
下面对于NR-V2X的系统帧的时隙结构进行说明。
图8为本申请实施例提供的一种时隙结构的示意图,图9为本申请实施例提供的另一种时隙结构的示意图。其中,图8所示的时隙结构中不包括物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH),图9所示的时隙结构中包括PSFCH。
参考图8和图9,在NR-V2X中,物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)在时域上从该时隙的第二个侧行符号开始,占用2个或3个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,在频域上可以占用{10,12,15,20,25}个物理资源块(Orthogonal Frequency Division Multiplexing,PRB)。为了降低终端设备对PSCCH的盲检测复杂度,在一个资源池内只允许配置一个PSCCH符号个数和一个PRB个数。另外,由于子信道为NR-V2X中PSSCH资源分配的最小粒度,PSCCH占用的PRB个数必须小于或等于资源池内一个子信道中包含的PRB个数,以免对物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)资源选择或分配造成额外的限制。PSSCH在时域上也是从该时隙的第二个侧行符号开始,该时隙中的最后一个时域符号为保护间隔(Guard period,GP)符号,其余符号映射PSSCH。该时隙中的第一个侧行符号是第二个侧行符号的重复,通常接收端终端将第一个侧行符号用作自动增益控制(Automatic Gain Control,AGC)符号,该符号上的数据通常不用于数据解调。如图8所示,PSSCH在频域上占据K个子信道,每个子信道包括N个连续的PRB。
当时隙中包含PSFCH信道时,如图9所示,该时隙中倒数第二个和倒数第三个符号用作PSFCH信道传输,在PSFCH信道之前的一个时域符号用作GP符号。
下面对于侧行信道的反馈进行说明。
在NR-V2X中,为了提高可靠性,引入了侧行反馈信道。
示例性的,对于单播传输,发送端终端可以向接收端终端发送侧行数据(例如,可以包括PSCCH和PSSCH),接收端终端向发送端终端发送混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)作为反馈信息,可以包括确认字符(ACK)或否定字符(NACK),发送端终端根据接收端终端的反馈信息判断是否需要进行重传。其中,HARQ反馈信息承载在侧行反馈信道中,例如PSFCH。
应理解,可以通过预配置信息、网络配置信息或发送端终端等方式,来激活或者去激活侧行反馈。若侧行反馈被激活,则接收端终端接收发送端终端发送的侧行数据,并且根据检测结果向发送端反馈HARQ ACK或者NACK,发送端终端根据接收端的反馈信息决定发送重传数据或者新数据。若侧行反馈被去激活,接收端终端无需发送反馈信息,发送端终端通常采用盲重传的方式发送数据,例如,发送端终端对每个侧行数据重复发送K次,而不是根据接收端终端反馈信息决定是否需要发送重传数据。
下面对于侧行反馈信道的资源进行说明。
为了降低PSFCH信道的开销,可以定义在每N个时隙中的一个时隙包括PSFCH传输资源,即侧行反馈资源的周期是N个时隙,N=1、2、4。该参数N是预配置或者网络配置的。图10为本申请实施例提供的一种侧行反馈信道的资源的示意图。如图10所示,为N=4时的侧行反馈资源示意图。可以通过资源池配置信息配置PSSCH与其对应的PSFCH之间的最小时间间隔,如图10中,PSSCH与其对应的PSFCH之间的最小时间间隔是2 个时隙。其中,时隙2、时隙3、时隙4、时隙5中传输的PSSCH的反馈信息都是在时隙7中传输的。因此可以把时隙{2、3、4、5}看做一个时隙集合,该时隙集合中传输的PSSCH,其对应的PSFCH是在相同的时隙中。
下面对于侧行同步信道的资源进行说明。
当终端设备从同步源获取同步信息后,需要在侧行链路上发送侧行同步信号和侧行广播信道以辅助其他终端设备获取同步信息。其中,用于传输侧行同步信号和侧行广播信道的资源称为同步资源。
由于半双工的限制,终端设备在一个载波上发送信号时不能同时在该载波上接收信号。为了避免终端设备在发送侧行同步信号时无法接收其他终端设备发送的侧行数据,从而导致侧行数据丢失,在侧行链路传输中,同步传输资源与侧行数据传输资源是时分复用(Time Division Multiplexing,TDM)的,即不支持侧行同步信号和侧行数据的频分复用。另外,也是由于半双工的限制,终端设备需要在不同的时域资源上发送和接收侧行同步信号,因此,在NR-V2X中每个同步周期内需要2套或3套同步资源。
在NR SL系统中,同步资源的周期是160ms,在每个同步周期内支持配置2套或3套同步资源,在每一套同步资源内包括多个传输机会。由于在第二频率范围(Frequency range 2,FR2)时,需要使用不同的波束分别传输同步信号块(Synchronization Signal Block,SSB),在一个周期内的一套同步资源内包括多个SSB传输机会,以实现对小区的全覆盖。
图11为本申请实施例提供的一种同步资源示意图。如图11所示,在每个同步周期160ms内配置了2套同步资源,在每套同步资源内配置4个同步时隙,发送端可以在4个时隙上分别发送同步信号。当终端设备在某个同步时隙上检测到同步信号后,可以根据与该同步信号同时传输的PSBCH中携带的直接帧号(Direct Frame Number,DFN)或系统帧号(System Frame Number,SFN)和时隙编号可以确定该同步时隙属于第一套同步资源还是第二套同步资源,终端设备在另一套同步资源的4个时隙上分别发送同步信号。
示例性的,在第一频率范围(Frequency Range 1,FR1)和第二频率范围FR2中不同子载波间隔时每套同步资源内支持的同步时隙的个数分别如下:
针对FR1,若子载波间隔为15kHz,则每套同步资源内支持的同步时隙的个数为{1};若子载波间隔为30kHz,则每套同步资源内支持的同步时隙的个数为{1,2};若子载波间隔为60kHz,则每套同步资源内支持的同步时隙的个数为{1,2,4}。
针对FR2,若子载波间隔为60kHz,则每套同步资源内支持的同步时隙的个数为{1,2,4,8,16,32};若子载波间隔为120kHz,则每套同步资源内支持的同步时隙的个数为{1,2,4,8,16,32,64}。
下面对于非授权频谱进行说明。
非授权频谱是国家和地区划分的可用于无线电设备通信的频谱,该频谱通常可以为共享频谱,即不同通信系统中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
为了让使用非授权频谱进行无线通信的各个通信系统在该频谱上能够友好共存,一些国家或地区规定了使用非授权频谱必须满足的法规要求。例如,通信设备遵循“先听后说(LBT)”原则,即通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送。若通信设备在非授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。为了保证公平性,在一次传输中,通信设备使用非授权频谱的信道进行信号传输的时长不能超过最大信道占用时间(Maximum Channel Occupancy Time,MCOT)。
在新空口免授权频谱(NR-U)系统中,有以下几种LBT方式:
1、第一LBT方式(type1的LBT方式):基于竞争窗口大小调整的随机回退的多时隙的信道检测,根据信道接入优先级p,可以发起长度为Tmcot的信道占用。网 络设备使用type1的LBT方式,除了发送自己的数据,还可以将COT共享给终端设备。终端设备使用type1的LBT方式,除了发送自己的数据,还可以将COT共享给网络设备。表1示出了终端设备进行type1的LBT时的信道接入优先级与信道接入参数的对应关系。
表1
Figure PCTCN2021120165-appb-000001
需要说明的是,在上述表1中,m p为信道接入优先级p对应的回退时隙个数,CW p为信道接入优先级p对应的竞争窗口大小,CW min,p为信道接入优先级p对应的CW p取值的最小值,CW max,p为信道接入优先级p对应的CW p取值的最大值,T mcot,p为信道接入优先级p对应的信道最大占用时间长度(或称为最大信道占用时长)。
其中,NR-U中第一LBT方式的4种信道接入优先级中,p=1为最高优先级。
2、第二LBT方式(type2的LBT方式):基于固定长度或固定时长的信道监听时隙的信道接入方式,具体包括type2A的LBT方式、type2B的LBT方式和type2C的LBT方式三种方式:
其中,type2A的LBT方式,固定长度或固定时长为25us的单时隙的信道检测,数据开始发送前25us开始信道检测。信道检测包括1个16us的检测和1个9us的检测,若信道都是空闲,则认为信道空闲的,可以进行信道接入。
type2B的LBT方式,固定长度为16us的单时隙的信道检测,检测最后9us的时间内,有4us以上空闲就认为信道是空闲的。
type2C的LBT方式,不进行信道检测,直接传输,因为本次传输距离上一次传输之间时间差小于16us,则可以认为是同一次的传输,但本次传输长度不超过584us。
下面对于短控制信令传输(Short Control Signaling Transmission)进行说明。
在非授权频谱上,为了提高传输控制信令时接入信道的成功概率,引入了短控制信令的传输方式。采用短信令传输方式时,设备不需要对信道进行侦听(sensing)即可接入信道进行传输。
当侧行系统工作在非授权频谱上时,需要通过先听后说(Listen Before Talk,LBT)的信道检测方式接入信道。即,通信设备在非授权频谱的信道上进行信号发送前,需要先进行信道侦听,只有当信道侦听结果为信道空闲时,该通信设备才能进行信号发送;如果通信设备在非授权频谱的信道上的信道侦听结果为信道忙,该通信设备不能进行信号发送。
为了提高在非授权频谱上信道接入的成功率,可以在侧行系统中支持短控制信令传输方式,当采用短控制信令传输方式时,无需对信道进行侦听或LBT即可接入信道并进行侧行传输。然而,现有的侧行通信方法中,无法确定何时使用短控制信令的方式进行传输。
为解决上述问题,本申请实施例提供一种通信方法及装置,根据侧行信道的信息,确定是否通过第一信道接入方式在共享频谱上发送侧行信道。其中,第一信道接入方式为在共享频谱上发送侧行信道前不侦听共享频谱是否存在信号的信道接入方式。其中,第一信道接入方式包括短控制信令传输方式。通过该方式,终端设备在共享频谱上进行侧行信道的接入时,可以根据侧行信道的信息来判断是否可以采用短控制信令的信道接入方式。
下面对于本申请的应用场景进行举例说明。
图12为本申请实施例提供的一种通信方法的场景示意图。如图12所示,第一终端101和第二终端102进行D2D通信,第一终端101在共享频谱上向第二终端102发送侧行信道。 在发送侧行信道前,第一终端101可以根据侧行信道的信息,确定是否通过短控制信令传输方式在共享频谱上发送侧行信道。
其中,第一终端101和第二终端102包括但不限于卫星或蜂窝电话、可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
下面以终端设备为例,以具体地实施例对本申请实施例的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图13为本申请实施例提供的一种通信方法的流程示意图。本申请实施例的执行主体为终端设备,涉及的是终端设备如何发送侧行信道的过程。如图13所示,该方法包括:
S201、终端设备根据侧行信道的信息,确定是否通过第一信道接入方式在共享频谱上发送侧行信道。
在本申请中,在进行D2D通信时,若终端设备之间需要发送侧行信道,则可以根据侧行信道的信息,确定是否通过第一信道接入方式在共享频谱上发送侧行信道。若是,则通过第一信道接入方式在共享频谱上发送侧行信道,若否,则通过第二信道接入方式在共享频谱上发送侧行信道。
其中,第一信道接入方式为在共享频谱上发送侧行信道前不侦听共享频谱是否存在信号的信道接入方式。第二信道接入方式为对共享频谱进行侦听并根据侦听结果确定是否发送侧行信道的信道接入方式。
应理解,本申请实施例对于第一信道接入方式和第二信道接入方式的类型不做限制,示例性的,第一信道接入方式可以为短控制信令信道传输方式,第二信道接入方式可以为基于LBT的信道接入方式,例如第二信道接入方式包括上述type1的LBT方式、type2A的LBT方式或type2B的LBT方式。
应理解,本申请实施例对于终端设备发送的侧行信道不做限制,在一些实施例中,侧行信道包括以下任意一项:物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)、物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)、物理侧行反馈信道(Physical Sidelink Feedback Channel,PSFCH)和侧行同步信号块(Sidelink Synchronization Signal Block,S-SSB)。
其中,侧行同步信号块包括侧行主同步信号、侧行辅同步信号和物理侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)。
下面对于终端设备如何确定否通过第一信道接入方式在共享频谱上发送侧行信道进行说明。
在第一种方式中,侧行信道的信息中包括支持第一信道接入方式的侧行信道的类型信息。
相应的,若侧行信道的类型属于支持第一信道接入方式的侧行信道的类型,则终端设备通过第一信道接入方式在共享频谱上发送侧行信道。
示例性的,若支持第一信道接入方式的侧行信道的类型包括PSFCH和SSB,则终端设备在发送PSFCH和/或SSB时,可以通过第一信道接入方式在共享频谱上发送。
其中,本申请实施例对于支持第一信道接入方式的侧行信道的类型信息的配置方式不做限制,在一些实施例中,可以通过预定义、预配置信息或网络配置信息的方式配置支持第一信道接入方式的侧行信道的类型信息。
在第二种方式中,侧行信道的信息中包括第一侧行优先级,第一侧行优先级为侧行信道对应的优先级。
本申请实施例对于如何确定第一侧行优先级不做限制。示例性的,若待发送的侧行信道是PSCCH,可以根据PSCCH承载的侧行链路控制信息(Sidelink Control Information,SCI)中携带的优先级信息确定第一侧行优先级。示例性的,若待发送的侧行信道是PSSCH,可以根据调度该PSSCH的SCI中携带的优先级信息确定第一侧行优先级。若待发送的侧行信道是PSFCH,根据与PSFCH对应的PSSCH的优先级确定第一侧行优先级。若待发送的侧行信道是侧行SSB,可以根据预配置信息或网络配置信息确定传输第一侧行优先级。
示例性的,侧行优先级包括8个优先等级,对应优先级取值范围为[1,8]或[0,7]。其中,优先级取值范围[1,8]是高层配置的优先等级,优先级取值范围[0,7]是侧行控制信息SCI中指示的优先等级,上述两个优先级取值范围之间有对应关系,例如高层配置的优先级取值减1即是SCI中指示的优先级取值。需要说明的是,本申请实施例同样适用于上述两种优先等级的取值范围。为了便于理解,本申请实施例中以优先级取值范围[0,7]为例进行说明。
应理解,本申请实施例中的终端设备可以在网络覆盖范围内,也可以在网络覆盖范围外,本申请实施例对此不做限制。
示例性的,当终端设备在网络覆盖范围内时,终端设备可以获取网络发送的系统信息SIB12,该系统信息中包括用于配置侧行SSB的第一侧行优先级的参数(sl-SSB-PriorityNR)。
示例性的,当终端设备在网络覆盖范围外时,获取预配置信息(SidelinkPreconfigNR),该预配置信息中包括用于配置侧行SSB的第一侧行优先级的参数(sl-SSB-PriorityNR)。
在一些实施例中,终端设备可以获取第一映射关系,该第一映射关系包括侧行优先级和是否支持第一信道接入方式之间的映射关系。终端设备根据第一侧行优先级和第一映射关系,确定是否通过第一信道接入方式在共享频谱上发送侧行信道。
示例性的,表2为第一映射关系的示意表,如表2所示,第一侧行优先级的取值小于或等于1的侧行信道,支持通过第一信道接入方式在共享频谱上发送侧行信道。第一侧行优先级的取值大于1的侧行信道,不支持通过第一信道接入方式在共享频谱上发送侧行信道。
表2
第一侧行优先级 是否支持第一信道接入方式
0
1
2
3
4
5
6
7
应理解,侧行优先级的取值越低,则表示侧行优先级的等级越高。
在另一些实施例中,若第一侧行优先级的取值小于第一阈值,则终端设备通过第一信 道接入方式在共享频谱上发送侧行信道。若第一侧行优先级的取值大于或等于第一阈值,则终端设备通过第二信道接入方式在共享频谱上发送侧行信道。
其中,本申请实施例对于第一阈值的取值不做限制,可以根据实际情况具体设置。示例性的,第一阈值可以为1。
需要说明的是,第一阈值的设定也不做限制,示例性的,可以根据预配置信息或网络配置信息设定。
在第三种方式中,侧行信道的信息包括在第一时间范围内发送侧行信道的次数。
相应的,若在第一时间范围内发送侧行信道的次数小于第二阈值,则终端设备通过第一信道接入方式在共享频谱上发送侧行信道。若在第一时间范围内发送侧行信道的次数大于或等于第二阈值,则终端设备通过第二信道接入方式在共享频谱上发送侧行信道。
应理解,上述在第一时间范围内发送的侧行信道是通过第一信道接入方式发送的。
需要说明的是,本申请实施例对于如何确定第一时间范围不做限制,在一些实施例中,第一时间范围可以根据预配置信息或网络配置信息确定。示例性的,第一时间范围的时长T1可以为50毫秒(millisecond,ms),相应的,第一时间范围包括时隙[n-T start,n-T end]。
在一些实施例中,第一时间范围不包括待发送的侧行信道所在的发送时隙n,则T end=1;T start=T 1·2 μ。在一些实施例中,第一时间范围可以包括待发送的侧行信道所在的发送时隙n,则T end=0;T start=T 1·2 μ-1。其中,μ为根据侧行子载波间隔确定的参数,如表3所示。
表3
μ 子载波间隔Δf=2 μ*15[kHz]
0 15
1 30
2 60
3 120
应理解,当第一时间范围包括时隙n所在的时隙时,即当时隙n采用短控制信令方式传输该侧行信道时,确定第一时间范围内发送该侧行信道的总次数,该总次数包括在时隙n发送的该侧行信道。
需要说明的是,本申请实施例对于如何确定第二阈值不做限制,在一些实施例中,可以根据预配置信息或网络配置信息确定第二阈值,例如,预配置信息或网络配置信息直接配置第二阈值等于50。
在另一些实施例中,第二阈值可以根据第一侧行优先级和第二映射关系确定,第二映射关系包括侧行优先级和第二阈值之间的映射关系。
在一些实施例中,第二映射关系如表4所示,分别配置了不同的侧行优先级对应的第二阈值。
表4
侧行优先级 第二阈值
0 50
1 50
2 40
3 40
4 30
5 30
6 20
7 20
在一些实施例中,第一时间范围内发送侧行信道的次数包括优先等级高于或等于所示第一侧行优先级的侧行信道的次数。其中,第一侧行优先级是在时隙n将要发送的侧行信 道对应的优先级。
在一些实施例中,若在时隙n将要发送的侧行信道对应的第一侧行优先级取值为p,则在第一时间范围内发送侧行信道的次数C根据公式(1)确定:
Figure PCTCN2021120165-appb-000002
其中,C i为优先级取值为i的侧行信道对应的传输次数。
示例性的,侧行优先级的范围为[0,7],其中优先级取值为0表示最高优先等级,优先级取值为7表示最低优先等级。侧行信道为PSSCH,若在时隙n将要发送的PSSCH的优先级取值为0,则在第一时间范围内发送的侧行信道的次数包括在第一时间范围内发送的优先级为0的PSSCH次数。若在时隙n将要发送的PSSCH的优先级取值为1,则在第一时间范围内发送的侧行信道的次数包括在第一时间范围内发送的优先级为0的PSSCH和优先级为1的PSSCH的总次数。若在时隙n将要发送的PSSCH的优先级取值为2,则在第一时间范围内发送的侧行信道的次数包括在第一时间范围内发送的优先级为0的PSSCH、优先级为1的PSSCH和优先级为2的PSSCH的总次数。以此类推,若在时隙n将要发送的PSSCH的优先级取值为7,则在第一时间范围内发送的侧行信道的次数包括在第一时间范围内发送的优先级为0至优先级为7的PSSCH的总次数。
示例性的,侧行优先级的范围为[0,7],其中优先级取值为0表示最高优先等级,优先级取值为7表示最低优先等级。侧行信道为PSFCH,该PSFCH的优先级根据与该PSFCH对应的PSSCH的优先级确定。若在时隙n将要发送的PSFCH的优先级取值为0,则在第一时间范围内发送的侧行信道的次数包括在第一时间范围内发送的优先级为0的PSFCH次数。若在时隙n将要发送的PSFCH的优先级取值为1,则在第一时间范围内发送的侧行信道的次数包括在第一时间范围内发送的优先级为0的PSFCH和优先级为1的PSFCH的总次数。若在时隙n将要发送的PSFCH的优先级取值为2,则在第一时间范围内发送的侧行信道的次数包括在第一时间范围内发送的优先级为0的PSFCH、优先级为1的PSFCH和优先级为2的PSFCH的总次数。以此类推,若在时隙n将要发送的PSFCH的优先级取值为7,则在第一时间范围内发送的侧行信道的次数包括在第一时间范围内发送的优先级为0至优先级为7的PSFCH的总次数。
在第四种方式中,侧行信道的信息包括在第一时间范围内发送的侧行信道占据的总时长。
相应的,若在第一时间范围内发送的侧行信道占据的总时长小于第三阈值,则终端设备通过第一信道接入方式在共享频谱上发送侧行信道。若在第一时间范围内发送的侧行信道占据的总时长大于或等于第三阈值,则终端设备通过第二信道接入方式在共享频谱上发送侧行信道。
应理解,上述在第一时间范围内发送的侧行信道是通过第一信道接入方式发送的。
需要说明的是,本申请实施例对于如何确定第一时间范围不做限制,可以参照第三种方式中第一时间范围的确定方式。
需要说明的是,本申请实施例对于如何确定第三阈值不做限制,在一些实施例中,第三阈值可以根据预配置信息或网络配置信息确定第一阈值,例如,预配置信息或网络配置信息配置第三阈值等于2500微秒。
在另一些实施例中,第三阈值可以根据第一侧行优先级和第三映射关系确定,第三映射关系包括侧行优先级和第三阈值之间的映射关系。
在一些实施例中,第三映射关系如表5所示,分别配置了不同的侧行优先级对应的第三阈值。
表5
侧行优先级 第三阈值(微秒)
0 2500
1 2500
2 2500
3 2500
4 2000
5 2000
6 1500
7 1500
在一些实施例中,第一时间范围内发送侧行信道的总时长包括优先等级高于或等于所示第一侧行优先级的侧行信道的总时长。其中,第一侧行优先级是在时隙n将要发送的侧行信道对应的优先级。
在一些实施例中,若在时隙n将要发送的侧行信道对应的第一侧行优先级取值为p,则在第一时间范围内发送侧行信道的总时长T根据公式(2)确定:
Figure PCTCN2021120165-appb-000003
其中,T i为优先级取值为i的侧行信道对应的总时长。
示例性的,侧行优先级的范围为[0,7],其中优先级取值为0表示最高优先等级,优先级取值为7表示最低优先等级。侧行信道为PSSCH,若在时隙n将要发送的PSSCH的优先级取值为0,则在第一时间范围内发送的侧行信道占据的总时长包括在第一时间范围内发送的优先级为0的PSSCH占据的总时长。若在时隙n将要发送的PSSCH的优先级取值为1,则在第一时间范围内发送的侧行信道占据的总时长包括在第一时间范围内发送的优先级为0的PSSCH和优先级为1的PSSCH占据的总时长。若在时隙n将要发送的PSSCH的优先级取值为2,则在第一时间范围内发送的侧行信道占据的总时长包括在第一时间范围内发送的优先级为0的PSSCH、优先级为1的PSSCH和优先级为2的PSSCH占据的总时长。以此类推,若在时隙n将要发送的PSSCH的优先级取值为7,则在第一时间范围内发送的侧行信道占据的总时长包括在第一时间范围内发送的优先级为0至优先级为7的PSSCH占据的总时长。
示例性的,侧行优先级的范围为[0,7],其中优先级取值为0表示最高优先等级,优先级取值为7表示最低优先等级。侧行信道为PSFCH,该PSFCH的优先级根据与该PSFCH对应的PSSCH的优先级确定。若在时隙n将要发送的PSFCH的优先级取值为0,则在第一时间范围内发送的侧行信道占据的总时长包括在第一时间范围内发送的优先级为0的PSFCH占据的总时长。若在时隙n将要发送的PSFCH的优先级取值为1,则在第一时间范围内发送的侧行信道占据的总时长包括在第一时间范围内发送的优先级为0的PSFCH和优先级为1的PSFCH占据的总时长。若在时隙n将要发送的PSFCH的优先级取值为2,则在第一时间范围内发送的侧行信道占据的总时长包括在第一时间范围内发送的优先级为0的PSFCH、优先级为1的PSFCH和优先级为2的PSFCH占据的总时长。以此类推,若在时隙n将要发送的PSFCH的优先级取值为7,则在第一时间范围内发送的侧行信道占据的总时长包括在第一时间范围内发送的优先级为0至优先级为7的PSFCH占据的总时长。继续参考图9,一个PSFCH占据2个OFDM符号,若侧行系统的子载波间隔为15kHz,一个OFDM符号对应的时长约为71.36微秒,则一个PSFCH信道占据的时长为142.72微秒。
在一些实施例中,第一时间范围内发送侧行信道的总时长不包括侧行信道所在时隙内用于GP的时域符号对应的时长。
在另一些实施例中,第一时间范围内发送侧行信道的总时长不包括侧行信道所在时隙内不可用于侧行传输的时域符号对应的时长。
需要说明的是,本申请实施例中,终端设备可以采用上述一种方式确定是否通过第一信道接入方式在共享频谱上发送侧行信道,也可以采用上述多种方式确定是否通过第一信道接入方式在共享频谱上发送侧行信道,本申请实施例对此不做限制。
应理解,在执行步骤S201之后,若是,则执行步骤S202,若否,则执行步骤S203。
S202、若是,则终端设备通过第一信道接入方式在共享频谱上发送侧行信道。
S203、若否,则终端设备通过第二信道接入方式在共享频谱上发送侧行信道。
本申请实施例提供的通信方法及装置,终端设备根据侧行信道的信息,确定是否通过第一信道接入方式在共享频谱上发送侧行信道。其中,第一信道接入方式为在共享频谱上发送侧行信道前不侦听共享频谱是否存在信号的信道接入方式。通过该方式,终端设备在共享频谱上进行侧行信道的接入时,可以根据侧行信道的信息来判断是否可以采用短控制信令的信道接入方式。
在上述实施例的基础上,下面对于如何根据第一时间范围内发送侧行信道的次数确定是否通过第一信道接入方式在共享频谱上发送侧行信道进行说明。
图14为本申请实施例提供的另一种通信方法的流程示意图。本申请实施例的执行主体为终端设备,涉及的是终端设备如何发送侧行信道的过程。如图14所示,该方法包括:
S301、终端设备确定第二阈值。
其中,第二阈值根据预配置信息或网络配置信息确定,或者,第二阈值根据第一侧行优先级和第二映射关系确定,第二映射关系包括侧行优先级和第二阈值之间的映射关系。
S302、终端设备确定在第一时间范围内发送侧行信道的次数是否小于第二阈值。
若是,则执行步骤S303,若否,则执行步骤S304。
S303、终端设备通过第一信道接入方式在共享频谱上发送侧行信道。
S304、终端设备通过第二信道接入方式在共享频谱上发送侧行信道。
其中,第一信道接入方式为在共享频谱上发送侧行信道前不侦听共享频谱是否存在信号的信道接入方式。第二信道接入方式为对共享频谱进行侦听并根据侦听结果确定是否发送侧行信道的信道接入方式。
示例性的,侧行SSB的周期为160ms,在每个周期内配置了2套同步资源,在每套同步资源内包括4次SSB传输机会。继续参考图11,由于终端设备只会使用2套同步资源中的1套同步资源发送侧行SSB,若侧行系统的子载波间隔大小为15kHz,即一个时隙长度为1ms,因此,在160ms中总共会发送4次侧行SSB。若第一时间范围是50ms,第二阈值是50,即使4次SSB传输都是位于某个50ms的时间范围内,也没有超过第二阈值。因此,终端设备在发送侧行SSB时可以采用第一信道接入方式,即终端设备无需对信道进行侦听或LBT,即可直接传输侧行SSB。
示例性的,对于PSFCH,若PSFCH的周期为4个时隙,即每4个时隙中包括一个PSFCH传输时隙,对于30kHz子载波间隔的侧行系统,上述第一时间范围可以包括100个时隙,该第一时间范围内包括的PSFCH时隙个数为25个。若第一阈值是50,则终端设备即使在每个PSFCH时隙都发送PSFCH,在任意的100时隙的范围内,终端设备发送的PSFCH的总次数未超过100次。因此,可以采用第一信道接入方式进行传输。
示例性的,对于PSFCH,若PSFCH的周期为1个时隙,即每个时隙中都是PSFCH传输时隙,对于30kHz子载波间隔的侧行系统,上述第一时间范围包括100个时隙,该第一时间范围内包括的PSFCH时隙个数为100个。若第一阈值是50,则终端设备在第一时间范围内发送PSFCH的个数可能超过第一阈值。因此,若终端设备在时隙n需要发送PSFCH,可以根据时隙[n-100,n-1]内已经发送的PSFCH的总次数,或者根据时隙[n-99,n]内发送的PSFCH的总次数(包括时隙n将要发送的PSFCH),确定是否超过50次,从而确定是 否可以在时隙n采用短控制信令传输方式发送PSFCH。若超过50,则不能使用第一信道接入方式传输PSFCH,而采用第二信道接入方式接入信道。若未超过50,则可以第一信道接入方式传输PSFCH,即终端不需要对信道进行侦听或LBT即可直接发送PSFCH。
需要说明的是,在侧行系统中,支持终端设备在一个时隙内同时发送N个PSFCH,其中N是大于或等于1的整数。
应理解,由于在该时隙中,终端设备同时发送该N个PSFCH,即终端只会接入信道1次,因此,即使N大于1,也可以看做是一次发送。
在上述实施例的基础上,下面对于如何根据第一时间范围内发送侧行信道占据的总时长确定是否通过第一信道接入方式在共享频谱上发送侧行信道进行说明。
图15为本申请实施例提供的再一种通信方法的信令交互图。本申请实施例的执行主体为终端设备,涉及的是终端设备如何发送侧行信道的过程。如图15所示,该方法包括:
S401、终端设备确定第三阈值。
其中,第三阈值根据预配置信息或网络配置信息确定,或者,第三阈值根据第一侧行优先级和第三映射关系确定,第三映射关系包括侧行优先级和第三阈值之间的映射关系。
S402、终端设备确定在第一时间范围内发送侧行信道的总时长是否小于第三阈值。
若是,则执行步骤S403,若否,则执行步骤S404。
S403、终端设备通过第一信道接入方式在共享频谱上发送侧行信道。
S404、终端设备通过第二信道接入方式在共享频谱上发送侧行信道。
其中,第一信道接入方式为在共享频谱上发送侧行信道前不侦听共享频谱是否存在信号的信道接入方式。第二信道接入方式为对共享频谱进行侦听并根据侦听结果确定是否发送侧行信道的信道接入方式。
示例性的,若侧行SSB的周期为160ms,在每个周期内配置了2套同步资源,在每套同步资源内包括4次SSB传输机会。继续参考图11,由于终端设备只会使用2套同步资源中的1套发送侧行SSB,因此,在160ms中总共会发送4次侧行SSB。若侧行系统的子载波间隔大小为15kHz,即一个时隙长度为1ms,侧行SSB占据一个时隙中除最后一个时域符号之外的其他时域符号,在15kHz子载波间隔(SCS)时,最后一个时域符号对应的时长为71.36微秒。因此,一个侧行SSB的时长为1000-71.36=928.64微秒。若第一时间范围是50ms,第三阈值是2500微秒,当在50ms的范围内包括不超过2个侧行SSB时隙时,则可以使用第一信道接入方式,否则不能使用第一信道接入方式。
示例性的,图16为本申请实施例提供的一种侧行SSB资源配置的示意图。如图16所示,一个SSB周期(160ms)内的一套SSB传输资源包括的4个时隙,相邻两个SSB时隙之间间隔10个时隙,侧行系统的SCS为15kHz。若第一时间范围是50ms,第三阈值是2500微秒,当终端传输第一个侧行SSB和第二个侧行SSB时,由于在之前的50ms内发送的SSB占据的时长不超过2500微秒,因此,可以使用第一信道接入方式。当终端传输第三个侧行SSB时,则在50ms内发送了3个SSB(包括第一个侧行SSB、第二个侧行SSB和第三个侧行SSB),即SSB占据的总时长会超过2500微秒,因此终端不能使用第一信道接入方式传输第三个SSB。同理,在发送第四个侧行SSB时,如果采用第一信道接入方式进行发送,则在50ms内发送了3个SSB(包括第一个侧行SSB、第二个侧行SSB和第四个侧行SSB,由于第三个侧行SSB没有采用第一信道接入方式,因此没有统计第三个侧行SSB占据的时长),即SSB占据的总时长会超过2500微秒,因此终端设备不能使用第一信道接入方式传输第四个SSB。
示例性的,图17为本申请实施例提供的另一种侧行SSB资源配置的示意图。如图17所示,相对于图16所示的相邻两个SSB时隙的时间间隔是10个时隙,在图17中相邻两个SSB时隙的时间间隔是20个时隙,侧行系统的SCS同样为15kHz。若第一时间范围是50ms,第三阈值是2500微秒,由于在任意一个50ms的时间间隔内,终端设备发送的SSB 占据的总时长都不会超过2500微秒。因此,终端设备对于所有的4个SSB传输都可以使用短控制信令传输方式传输侧行SSB,因为在任意一个50ms的时间间隔内,终端发送的SSB占据的总时长都不会超过2500微秒。
示例性的,对于PSFCH,若PSFCH的周期为4个时隙,即每4个时隙中有一个PSFCH传输时隙,若第一时间范围是50ms,第三阈值是2500微秒,对于30kHz子载波间隔的侧行系统,上述第一时间范围包括100个时隙,该第一时间范围内包括的PSFCH时隙个数为25个。继续参考图9可知,每个时隙中PSFCH占据2个时域符号,对于30kHz SCS的侧行系统,一个PSFCH占据71.36us,则终端设备即使在每个PSFCH时隙都发送PSFCH,其占用的总时长为25*71.36微秒=1784微秒,未超过第三阈值,因此可以采用第一信道接入方式进行传输。
示例性的,对于PSFCH,若PSFCH的周期为2个时隙,即每2个时隙中有一个PSFCH传输时隙,若第一时间范围是50ms,第三阈值是2500微秒,对于30kHz子载波间隔的侧行系统,上述第一时间范围包括100个时隙,该第一时间范围内包括的PSFCH时隙个数为50个。继续参考图9可知,每个时隙中PSFCH占据2个时域符号,对于30kHz SCS的侧行系统,一个PSFCH占据71.36us,若终端在每个PSFCH时隙都发送PSFCH,其占用的总时长为50*71.36微秒=3568微秒,超过第三阈值。因此,终端设备在每次传输PSFCH之前需要判断包括当前时隙在内的100个时隙中发送的PSFCH的总时长是否超过第三阈值,若没有超过,可以采用第一信道接入方式进行传输,否则当前传输不能使用第一信道接入方式。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序信息相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
图18为本申请实施例提供的一种通信装置的结构示意图。该通信装置可以通过软件、硬件或者两者的结合实现,以执行上述实施例中终端设备的通信方法。如图18所示,该通信装置500包括:存储模块501和处理模块502。
存储模块501,用于存储可执行程序。
处理模块502,处理模块,用于根据侧行信道的信息,确定是否通过第一信道接入方式在共享频谱上发送侧行信道;其中,第一信道接入方式为在共享频谱上发送侧行信道前不侦听共享频谱是否存在信号的信道接入方式。
在一些实施例中,侧行信道的信息中包括支持第一信道接入方式的侧行信道的类型信息。
在一些实施例中,处理模块502,具体用于若侧行信道的类型属于支持第一信道接入方式的侧行信道的类型,则通过第一信道接入方式在共享频谱上发送侧行信道。
在一些实施例中,侧行信道的信息中还包括第一侧行优先级,第一侧行优先级为侧行信道对应的优先级。
在一些实施例中,处理模块502,具体用于获取第一映射关系,第一映射关系包括侧行优先级和是否支持第一信道接入方式之间的映射关系;根据第一侧行优先级和第一映射关系,确定是否通过第一信道接入方式在共享频谱上发送侧行信道。
在一些实施例中,处理模块502,具体用于若第一侧行优先级的取值小于第一阈值,则通过第一信道接入方式在共享频谱上发送侧行信道;若第一侧行优先级的取值大于或等于第一阈值,则通过第二信道接入方式在共享频谱上发送侧行信道;
其中,第二信道接入方式为对共享频谱进行侦听并根据侦听结果确定是否发送侧行信道的信道接入方式。
在一些实施例中,第一阈值为预配值或由网络设备配置。
在一些实施例中,侧行信道的信息包括在第一时间范围内发送侧行信道的次数。
在一些实施例中,处理模块502,具体用于若在第一时间范围内发送侧行信道的次数小于第二阈值,则通过第一信道接入方式在共享频谱上发送侧行信道;若在第一时间范围内发送侧行信道的次数大于或等于第二阈值,则通过第二信道接入方式在共享频谱上发送侧行信道。
在一些实施例中,第二阈值根据第一侧行优先级和第二映射关系确定,第二映射关系包括侧行优先级和第二阈值之间的映射关系。
在一些实施例中,侧行信道的信息还包括在第一时间范围内发送的侧行信道占据的总时长。
在一些实施例中,处理模块502,具体用于若在第一时间范围内发送的侧行信道占据的总时长小于第三阈值,则通过第一信道接入方式在共享频谱上发送侧行信道;若在第一时间范围内发送的侧行信道占据的总时长大于或等于第三阈值,则通过第二信道接入方式在共享频谱上发送侧行信道。
在一些实施例中,第三阈值根据第一侧行优先级和第三映射关系确定,第三映射关系包括侧行优先级和第三阈值之间的映射关系。
在一些实施例中,在第一时间范围内发送的侧行信道是通过第一信道接入方式发送的。
在一些实施例中,第一时间范围包括待发送的侧行信道的发送时隙。
在一些实施例中,第一信道接入方式包括短控制信令传输方式。
本申请实施例提供的通信装置,可以执行上述实施例中的通信方法的动作,其实现原理和技术效果类似,在此不再赘述。
图19为本申请实施例提供的一种电子设备的结构示意图。如图19所示,该电子设备可以包括:处理器61(例如CPU)、存储器62、接收器63和发送器64;接收器63和发送器64耦合至处理器61,处理器61控制接收器63的接收动作、处理器61控制发送器64的发送动作。存储器62可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器62中可以存储各种信息,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的电子设备还可以包括:电源65、通信总线66以及通信端口67。接收器63和发送器64可以集成在电子设备的收发信机中,也可以为电子设备上独立的收发天线。通信总线66用于实现元件之间的通信连接。上述通信端口67用于实现电子设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器62用于存储计算机可执行程序代码,程序代码包括信息;当处理器61执行信息时,信息使处理器61执行上述方法实施例中终端设备侧的处理动作,使发送器64执行上述方法实施例中终端设备侧的发送动作,使接收器63执行上述方法实施例中终端设备侧的接收动作,其实现原理和技术效果类似,在此不再赘述。
或者,当处理器61执行信息时,信息使处理器61执行上述方法实施例中网络设备侧的处理动作,使发送器64执行上述方法实施例中网络设备侧的发送动作,使接收器63执行上述方法实施例中网络设备侧的接收动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例还提供一种通信系统,包括终端设备和网络设备,以执行上述通信方法。
本申请实施例还提供了一种芯片,包括处理器和接口。其中接口用于输入输出处理器所处理的数据或指令。处理器用于执行以上方法实施例中提供的方法。该芯片可以应用于终端设备或网络设备中。
本发明还提供了一种计算机可读存储介质,该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质,具体的,该计算机可读存储介质中存储有程序信息,程序信息用于上述通信方法。
本申请实施例还提供一种程序,该程序在被处理器执行时用于执行以上方法实施例提 供的通信方法。
本申请实施例还提供一种程序产品,例如计算机可读存储介质,该程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述方法实施例提供的通信方法。
本申请实施例还提供一种装置,装置可以包括:至少一个处理器和接口电路,涉及的程序指令在该至少一个处理器中执行,以使得该通信装置实现上述方法实施例提供的通信方法。
本申请实施例还提供一种通信装置,装置用于执行上述方法实施例提供的通信方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生根据本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务端或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务端或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务端、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (39)

  1. 一种通信方法,其特征在于,包括:
    终端设备根据侧行信道的信息,确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道;其中,所述第一信道接入方式为在所述共享频谱上发送所述侧行信道前不侦听所述共享频谱是否存在信号的信道接入方式。
  2. 根据权利要求1所述的方法,其特征在于,所述侧行信道的信息中包括支持所述第一信道接入方式的侧行信道的类型信息。
  3. 根据权利要求2所述的方法,其特征在于,所述确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道,包括:
    若所述侧行信道的类型属于所述支持所述第一信道接入方式的侧行信道的类型,则所述终端设备通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述侧行信道的信息中包括第一侧行优先级,所述第一侧行优先级为所述侧行信道对应的优先级。
  5. 根据权利要求4所述的方法,其特征在于,所述确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道,包括:
    所述终端设备获取第一映射关系,所述第一映射关系包括侧行优先级和是否支持所述第一信道接入方式之间的映射关系;
    所述终端设备根据所述第一侧行优先级和所述第一映射关系,确定是否通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道。
  6. 根据权利要求4或5所述的方法,其特征在于,所述确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道,包括:
    若所述第一侧行优先级的取值小于第一阈值,则所述终端设备通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道;
    若所述第一侧行优先级的取值大于或等于所述第一阈值,则所述终端设备通过第二信道接入方式在所述共享频谱上发送所述侧行信道;
    其中,所述第二信道接入方式为对所述共享频谱进行侦听并根据侦听结果确定是否发送所述侧行信道的信道接入方式。
  7. 根据权利要求6所述的方法,其特征在于,所述第一阈值为预配值或由网络设备配置。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述侧行信道的信息包括在第一时间范围内发送所述侧行信道的次数。
  9. 根据权利要求8所述的方法,其特征在于,所述确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道,包括:
    若在所述第一时间范围内发送所述侧行信道的次数小于第二阈值,则所述终端设备通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道;
    若在所述第一时间范围内发送所述侧行信道的次数大于或等于所述第二阈值,则所述终端设备通过第二信道接入方式在所述共享频谱上发送所述侧行信道。
  10. 根据权利要求9所述的方法,其特征在于,所述第二阈值根据第一侧行优先级和第二映射关系确定,所述第二映射关系包括侧行优先级和第二阈值之间的映射关系。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述侧行信道的信息包括在第一时间范围内发送的所述侧行信道占据的总时长。
  12. 根据权利要求11所述的方法,其特征在于,所述确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道,包括:
    若在所述第一时间范围内发送的所述侧行信道占据的总时长小于第三阈值,则所述终端设备通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道;
    若在所述第一时间范围内发送的所述侧行信道占据的总时长大于或等于所述第三阈值,则所述终端设备通过第二信道接入方式在所述共享频谱上发送所述侧行信道。
  13. 根据权利要求12所述的方法,其特征在于,所述第三阈值根据第一侧行优先级和第三映射关系确定,所述第三映射关系包括侧行优先级和第三阈值之间的映射关系。
  14. 根据权利要求8-13中任一项所述的方法,其特征在于,在所述第一时间范围内发送的所述侧行信道是通过所述第一信道接入方式发送的。
  15. 根据权利要求8-13中任一项所述的方法,其特征在于,所述第一时间范围包括待发送的所述侧行信道的发送时隙。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述第一信道接入方式包括短控制信令传输方式。
  17. 一种通信装置,其特征在于,包括:
    处理模块,用于根据侧行信道的信息,确定是否通过第一信道接入方式在共享频谱上发送所述侧行信道;其中,所述第一信道接入方式为在所述共享频谱上发送所述侧行信道前不侦听所述共享频谱是否存在信号的信道接入方式。
  18. 根据权利要求17所述的装置,其特征在于,所述侧行信道的信息中包括支持所述第一信道接入方式的侧行信道的类型信息。
  19. 根据权利要求18所述的装置,其特征在于,所述处理模块,具体用于若所述侧行信道的类型属于所述支持所述第一信道接入方式的侧行信道的类型,则通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道。
  20. 根据权利要求17-19中任一项所述的装置,其特征在于,所述侧行信道的信息中还包括第一侧行优先级,所述第一侧行优先级为所述侧行信道对应的优先级。
  21. 根据权利要求20所述的装置,其特征在于,所述处理模块,具体用于获取第一映射关系,所述第一映射关系包括侧行优先级和是否支持所述第一信道接入方式之间的映射关系;根据所述第一侧行优先级和所述第一映射关系,确定是否通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道。
  22. 根据权利要求20或21所述的装置,其特征在于,所述处理模块,具体用于若所述第一侧行优先级的取值小于第一阈值,则通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道;若所述第一侧行优先级的取值大于或等于所述第一阈值,则通过第二信道接入方式在所述共享频谱上发送所述侧行信道;
    其中,所述第二信道接入方式为对所述共享频谱进行侦听并根据侦听结果确定是否发送所述侧行信道的信道接入方式。
  23. 根据权利要求22所述的装置,其特征在于,所述第一阈值为预配值或由网络设备配置。
  24. 根据权利要求17-23任一项所述的装置,其特征在于,所述侧行信道的信息包括在第一时间范围内发送所述侧行信道的次数。
  25. 根据权利要求24所述的装置,其特征在于,所述处理模块,具体用于若在所述第一时间范围内发送所述侧行信道的次数小于第二阈值,则通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道;若在所述第一时间范围内发送所述侧行信道的次数大于或等于所述第二阈值,则通过第二信道接入方式在所述共享频谱上发送所述侧行信道。
  26. 根据权利要求25所述的装置,其特征在于,所述第二阈值根据第一侧行优先级和第二映射关系确定,所述第二映射关系包括侧行优先级和第二阈值之间的映射关系。
  27. 根据权利要求17-26任一项所述的装置,其特征在于,所述侧行信道的信息还包括在第一时间范围内发送的所述侧行信道占据的总时长。
  28. 根据权利要求27所述的装置,其特征在于,所述处理模块,具体用于若在所述第一时间范围内发送的所述侧行信道占据的总时长小于第三阈值,则通过所述第一信道接入方式在所述共享频谱上发送所述侧行信道;若在所述第一时间范围内发送的所述侧行信道占据的总时长大于或等于所述第三阈值,则通过第二信道接入方式在所述共享频谱上发送所述侧行信道。
  29. 根据权利要求28所述的装置,其特征在于,所述第三阈值根据第一侧行优先级和第三映射关系确定,所述第三映射关系包括侧行优先级和第三阈值之间的映射关系。
  30. 根据权利要求24-29任一项所述的装置,其特征在于,在所述第一时间范围内发送的所述侧行信道是通过所述第一信道接入方式发送的。
  31. 根据权利要求24-29任一项所述的装置,其特征在于,所述第一时间范围包括待发送的所述侧行信道的发送时隙。
  32. 根据权利要求17-31任一项所述的装置,其特征在于,所述第一信道接入方式包括短控制信令传输方式。
  33. 一种终端设备,其特征在于,包括:
    处理器、存储器、接收器以及与网络设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至16中任一项所述的通信方法。
  34. 一种芯片,其特征在于,包括:处理器与存储器;
    所述处理器,用于从所述存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行权利要求1-16任一所述的方法。
  35. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-16中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,所述计算机程序产品包含涉及的程序指令,所述涉及的程序指令被执行时,以实现权利要求1-16中任一所述的方法。
  37. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行权利要求1-16任一所述的方法。
  38. 一种装置,其特征在于,所述装置可以包括:至少一个处理器和接口电路,涉及的程序指令在该至少一个处理器中执行,以使得该通信装置实现如权利要求1-16中任一项所述的方法。
  39. 一种通信装置,其特征在于,所述装置用于执行权利要求1-16中任一项所述的方法。
PCT/CN2021/120165 2021-09-24 2021-09-24 通信方法及装置 WO2023044713A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180099576.6A CN117501785A (zh) 2021-09-24 2021-09-24 通信方法及装置
PCT/CN2021/120165 WO2023044713A1 (zh) 2021-09-24 2021-09-24 通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120165 WO2023044713A1 (zh) 2021-09-24 2021-09-24 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023044713A1 true WO2023044713A1 (zh) 2023-03-30

Family

ID=85719173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120165 WO2023044713A1 (zh) 2021-09-24 2021-09-24 通信方法及装置

Country Status (2)

Country Link
CN (1) CN117501785A (zh)
WO (1) WO2023044713A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016041578A1 (en) * 2014-09-16 2016-03-24 Nokia Solutions And Networks Oy Improving short control signaling efficiency in unlicensed spectrum
US20190132875A1 (en) * 2016-05-12 2019-05-02 Sony Mobile Communications Inc. Listen before talk (lbt) configuration for wireless communication in unlicensed frequency bands
CN111149397A (zh) * 2017-09-29 2020-05-12 Lg电子株式会社 在无线通信系统中由终端发送v2x消息的方法和使用该方法的终端
CN111385763A (zh) * 2018-12-29 2020-07-07 华为技术有限公司 一种信号发送、配置优先级的方法及设备
WO2020199203A1 (en) * 2019-04-04 2020-10-08 Lenovo (Beijing) Limited Determining channel statistics for clear channel assessments
US20210058889A1 (en) * 2019-08-23 2021-02-25 Qualcomm Incorporated Ranging signal transmission in unlicensed band
WO2021062805A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种通信方法及通信装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016041578A1 (en) * 2014-09-16 2016-03-24 Nokia Solutions And Networks Oy Improving short control signaling efficiency in unlicensed spectrum
US20190132875A1 (en) * 2016-05-12 2019-05-02 Sony Mobile Communications Inc. Listen before talk (lbt) configuration for wireless communication in unlicensed frequency bands
CN111149397A (zh) * 2017-09-29 2020-05-12 Lg电子株式会社 在无线通信系统中由终端发送v2x消息的方法和使用该方法的终端
CN111385763A (zh) * 2018-12-29 2020-07-07 华为技术有限公司 一种信号发送、配置优先级的方法及设备
WO2020199203A1 (en) * 2019-04-04 2020-10-08 Lenovo (Beijing) Limited Determining channel statistics for clear channel assessments
US20210058889A1 (en) * 2019-08-23 2021-02-25 Qualcomm Incorporated Ranging signal transmission in unlicensed band
WO2021062805A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 一种通信方法及通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL: "Sidelink resource allocation mode 2", 3GPP DRAFT; R1-1812209, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 3 November 2018 (2018-11-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 14, XP051478365 *
OPPO: "Views on physical layer procedures for NR-U", 3GPP DRAFT; R1-1803975, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 6 April 2018 (2018-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051413064 *

Also Published As

Publication number Publication date
CN117501785A (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
EP3370364B1 (en) Service transmission method and apparatus
WO2020200017A1 (zh) 一种通信方法及装置
WO2019095332A1 (zh) 数据传输方法、终端设备和网络设备
WO2020191637A1 (zh) 随机接入的方法、终端设备和网络设备
US11464000B2 (en) Information indication method, terminal device, and network device
CN115066031B (zh) 侧行通信的方法及装置
WO2021012167A1 (zh) 一种资源处理方法、设备及存储介质
TW202019205A (zh) 一種資源配置方法及裝置、終端
WO2024066145A1 (zh) 侧行通信的方法及装置
WO2021007779A1 (zh) 一种资源共享方法及装置、终端设备
US20220053515A1 (en) Communication method and apparatus
WO2021212372A1 (zh) 资源分配方法和终端
US20230217493A1 (en) Systems and techniques for sidelink communication
WO2021088055A1 (zh) 非授权频谱上的数据传输方法、装置、设备及存储介质
EP3684130B1 (en) Information transmission method and device
WO2020210961A1 (zh) 侧行数据传输方法、设备及存储介质
WO2023082356A1 (zh) 无线通信的方法和终端设备
WO2023044713A1 (zh) 通信方法及装置
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
WO2023206145A1 (zh) 无线通信的方法和通信设备
WO2023193237A1 (zh) 信道接入方法、终端设备、网络设备
WO2024016121A1 (zh) 侧行传输方法、终端和网络设备
WO2023065363A1 (zh) 无线通信的方法和终端设备
WO2023010579A1 (zh) 一种harq-ack码本的反馈方法及装置、通信设备
WO2023000332A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180099576.6

Country of ref document: CN