WO2020210961A1 - 侧行数据传输方法、设备及存储介质 - Google Patents

侧行数据传输方法、设备及存储介质 Download PDF

Info

Publication number
WO2020210961A1
WO2020210961A1 PCT/CN2019/082769 CN2019082769W WO2020210961A1 WO 2020210961 A1 WO2020210961 A1 WO 2020210961A1 CN 2019082769 W CN2019082769 W CN 2019082769W WO 2020210961 A1 WO2020210961 A1 WO 2020210961A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
terminal device
data
time
uplink
Prior art date
Application number
PCT/CN2019/082769
Other languages
English (en)
French (fr)
Inventor
赵振山
卢前溪
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/082769 priority Critical patent/WO2020210961A1/zh
Priority to CN201980095447.2A priority patent/CN113711628B/zh
Publication of WO2020210961A1 publication Critical patent/WO2020210961A1/zh
Priority to US17/501,724 priority patent/US20220039118A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the embodiments of the present application relate to communication technology, and in particular, to a method, device, and storage medium for sideline data transmission.
  • the Internet of Vehicles is a sidelink (SL) transmission technology based on Device to Device (D2D), and the communication data in the traditional Long Term Evolution (LTE) system is received or sent through the base station The way is different, the Internet of Vehicles adopts the device-to-device direct communication method.
  • SL sidelink
  • D2D Device to Device
  • LTE Long Term Evolution
  • the resources used for sidelink transmission in the current Internet of Vehicles system can be the transmission resources in the LTE system or the transmission resources in the New Radio (NR) system.
  • the side link of the LTE system and the side link of the NR system coexist in the Internet of Vehicles system.
  • the side link of the LTE system and the side link of the NR system can be frequency-division multiplexed, that is, the same terminal device can simultaneously transmit data and data on the side link of the LTE system on different carriers. Data on the side link of the NR system.
  • the total transmission power of the terminal device may be affected by the side link and the side link of the LTE system.
  • the side link of the NR system is shared. Because the terminal device transmits data on the side link of the LTE system and the side link of the NR system for different durations, the terminal device is on the side link of the LTE system.
  • the transmission power of the terminal device and the transmission power of the terminal device on the side link of the NR system need to be dynamically adjusted, so that the corresponding receiving end of the terminal device needs to perform automatic gain control (AGC) frequently, which reduces The performance of the receiving end.
  • AGC automatic gain control
  • the embodiments of the present application provide a method, device, and storage medium for sideline data transmission, so that the first sideline link in the first communication system and the second sideline link in the second communication system coexist in the car networking system At the same time, reduce or avoid the dynamic changes of the transmit power on the two different side links.
  • an embodiment of the present application may provide a side-line data transmission method, which includes:
  • the terminal device determines the N time slots of the first side uplink according to the subcarrier interval of the first side uplink, where N is greater than or equal to 2, and the N time slots of the first side uplink
  • the time domain length is the same as the time domain length of a subframe of the second side uplink
  • the first side uplink is the side link in the first communication system
  • the second side uplink is The side link in the second communication system
  • the terminal device transmits the second side uplink in the time occupied by the time domain symbols used to transmit the second side row data on the second side uplink in the subframe of the second side uplink.
  • embodiments of the present application may provide a terminal device, which includes:
  • the determining module is configured to determine N time slots of the first side uplink according to the subcarrier interval of the first side uplink, where N is greater than or equal to 2, and N of the first side uplink
  • the time domain length of each time slot is the same as the time domain length of one subframe of the second side uplink
  • the first side uplink is the side link in the first communication system
  • the second side uplink The link is a side link in the second communication system
  • a sending module configured to send the first side link in the time domain symbol used to send the second side row data on the second side link in the time domain Two side line data and the first side line data on the first side line link; and/or, within the time occupied by the time domain symbols that are not used to transmit the second side line data in the subframe , The first side line data and the second side line data are not sent by the terminal device.
  • the embodiments of the present application may provide a terminal device, including:
  • Processor memory, communication interface with network equipment or other terminal equipment;
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the side-line data transmission method described in the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium having computer-executable instructions stored in the computer-readable storage medium.
  • the computer-executable instructions are executed by a processor, the The side row data transmission method described.
  • an embodiment of the present application provides a program, when the program is executed by a processor, it is used to execute the side-line data transmission method described in the first aspect above.
  • the foregoing processor may be a chip.
  • an embodiment of the present application provides a computer program product, including program instructions, which are used to implement the lateral data transmission method described in the first aspect.
  • an embodiment of the present application provides a chip, which includes a processing module and a communication interface, and the processing module can execute the lateral data transmission method described in the first aspect.
  • the chip also includes a storage module (eg, memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the first aspect Said side-line data transmission method.
  • a storage module eg, memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the first aspect Said side-line data transmission method.
  • the terminal device determines the N time slots of the first side-line link according to the sub-carrier interval of the first side-line link, so that the first The time domain length of the N time slots of the side link is the same as the time domain length of a subframe of the second side link.
  • the terminal device When a certain time domain symbol in a subframe of the second side link is used When sending the second side line data on the second side line link, the terminal device sends the second side line data and the line information on the first side line link within the time occupied by the time domain symbol The first side line data, and/or, when a certain time domain symbol in a subframe of the second side line link is not used to send the second side line data, the terminal device is occupied by the time domain symbol Within time, it is determined not to send the second side row data and the first side row data, that is, when the terminal device sends any one of the first side row link and the second side row link When the side row data on the other side row link is also sent by the terminal device at the same time, and/or, when the terminal device does not send any one of the first side row link and the second side row link When the side line data on the side line link, the side line data on the other side line link will not be sent by the terminal equipment, as far as possible to avoid the terminal equipment sending any one of the two different
  • Figure 1 is a schematic diagram of a communication system provided by this application.
  • Figure 2 is a flow chart of a method for sideline data transmission provided by this application.
  • FIG. 3 is a schematic diagram of LTE SL subframes and NR SL time slots provided by this application;
  • FIG. 4 is a schematic diagram of another LTE SL subframe and NR SL time slot provided by this application;
  • Figure 5 is a schematic diagram of another application scenario in the prior art.
  • Fig. 6 is a schematic diagram of another application scenario in the prior art.
  • FIG. 7 is a schematic diagram of a frame structure of an LTE-V2X system in the prior art
  • Fig. 8 is a schematic diagram of another LTE SL subframe and NR SL time slot in the prior art
  • FIG. 9 is a schematic diagram of mapping side row data on a time domain symbol 81 provided by this application.
  • FIG. 10 is a schematic diagram of mapping side row data on another time domain symbol 81 provided by this application.
  • FIG. 11 is a schematic diagram of mapping side row data on another time domain symbol 81 provided by this application.
  • FIG. 12 is a schematic diagram of another LTE SL subframe and NR SL time slot provided by this application.
  • FIG. 13 is a schematic diagram of another LTE SL subframe and NR SL time slot provided by this application;
  • FIG. 14 is a schematic diagram of another LTE SL subframe and NR SL time slot provided by this application.
  • 15 is a schematic diagram of another LTE SL subframe and NR SL time slot provided by this application;
  • FIG. 16 is a schematic diagram of another LTE SL subframe and NR SL time slot provided by this application.
  • FIG. 17 is a schematic diagram of another LTE SL subframe and NR SL time slot provided by this application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by this application.
  • FIG. 19 is a schematic diagram of another structure of the terminal device provided by this application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A advanced long term evolution
  • NR evolution system of NR system
  • LTE LTE-based access to unlicensed spectrum, LTE-U
  • NR NR-based access to unlicensed spectrum, NR-U
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Wireless Local Area Networks
  • WLAN Wireless Fidelity
  • M2M Machine-to-machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • D2D communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as NR system or NR network.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the network device can be an access device, such as an access device in an NR-U system, such as a 5G NR base station (next generation Node B, gNB) or small station, micro station, or relay station , Transmission and Reception Point (TRP), Road Side Unit (RSU), etc.
  • an access device such as an access device in an NR-U system, such as a 5G NR base station (next generation Node B, gNB) or small station, micro station, or relay station , Transmission and Reception Point (TRP), Road Side Unit (RSU), etc.
  • gNB 5G NR base station
  • TRP Transmission and Reception Point
  • RSU Road Side Unit
  • Terminal equipment can also be called mobile terminal, user equipment (User Equipment, UE for short), access terminal, user unit, user station, mobile station, mobile station, user terminal, terminal, wireless communication equipment, user agent or user device .
  • UE User Equipment
  • it can be smart phones, cellular phones, cordless phones, personal digital assistant (PDA) devices, handheld devices with wireless communication functions, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, etc.
  • the terminal device has an interface for communicating with a network device (for example, a cellular network).
  • a network device for example, a cellular network
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the application.
  • Fig. 2 is a flowchart of a method for side-line data transmission provided by this application.
  • the method of the embodiment of the present application can be applied to a car networking system.
  • There are two different side links in the vehicle networking system one is the side link in the first communication system, and the other is the side link in the second communication system. That is to say, in the Internet of Vehicles system, the resources used for sidelink transmission may be the transmission resources in the first communication system, or the transmission resources in the second communication system.
  • the side row data transmission method provided by this implementation method specifically includes the following steps:
  • the terminal device determines N time slots of the first side uplink according to the subcarrier interval of the first side uplink, where N is greater than or equal to 2, and the N time slots of the first side uplink
  • the time domain length of the time slot is the same as the time domain length of one subframe of the second side uplink
  • the first side uplink is the side uplink in the first communication system
  • the second side uplink The road is the side link in the second communication system.
  • the sub-carrier interval of the first side uplink is different from the sub-carrier interval of the second side uplink.
  • One time unit of the first side uplink and one time unit of the second side uplink The length of the time domain is different.
  • the time unit can be a time slot or a subframe.
  • the time unit of the first side uplink is a time slot
  • the time unit of the second side uplink is a subframe. That is to say, the time slot of the first side uplink and the subframe of the second side uplink are time units of the same granularity.
  • the so-called equal granularity refers to a time slot of the first side uplink
  • the number of time domain symbols included is the same as the number of time domain symbols included in one subframe of the second side uplink.
  • the terminal device can determine the first side link according to the sub-carrier spacing of the first side uplink
  • the N time slots of the uplink such that the time domain length of the N time slots of the first side uplink is the same as the time domain length of one subframe of the second side uplink.
  • 30 represents a subframe of the second side uplink
  • 31 represents a time slot of the first side uplink
  • the total length of time occupied by N time slots 31 is equal to that of one subframe 30.
  • the length of time occupied is the same.
  • the terminal device transmits the time domain symbol used to transmit the second side line data on the second side line link in the subframe of the second side line link, and sends the The second side line data and the first side line data on the first side line link.
  • the subframe 30 includes multiple time domain symbols, 301 represents any one of the multiple time domain symbols, and 302 represents the last time domain symbol in the multiple time domain symbols.
  • the time domain length of each time domain symbol in the plurality of time domain symbols is the same.
  • some time-domain symbols are used to transmit side-line data on the second side uplink, and some time-domain symbols may not be used to transmit side-line data on the second side uplink.
  • the side line data on the second side line link may be recorded as the second side line data
  • the side line data on the first side line link may be recorded as the first side line data.
  • the last time domain symbol in the subframe 30 is not used to send the second side line data, and the other time domain symbols except the last time domain symbol in the subframe 30 are used to send the second side line data.
  • the time slot 31 also includes multiple time domain symbols, and 311 represents any one of the multiple time domain symbols included in the time slot 31.
  • each of the multiple time domain symbols included in the time slot 31 has the same time domain length.
  • the terminal device may first determine the second side row link The time occupied by the time domain symbols used to transmit the second side line data in the subframes of the road, such as T1 shown in FIG. 3.
  • the time domain symbols of the subframe 30 corresponding to the time T1 that is, the other time domain symbols except the last time domain symbol 302 in the subframe 30 all carry the second side row data.
  • the time domain symbols of the time slot 31 corresponding to time T1 all carry the first side line data. Further, the terminal device simultaneously sends the first side line data and the second side line data in the T1.
  • step S201 and step S202 are only one possible implementation of the side row data transmission method described in this embodiment.
  • step S201 Another achievable manner of the side line data transmission method described in this embodiment is: on the basis of step S201, the method further includes: a time domain symbol that is not used to transmit the second side line data in the subframe During the occupied time, the first side line data and the second side line data are not sent by the terminal device. That is, the terminal device determines not to send the first side row data and the second side row data within the time occupied by the time domain symbols that are not used to send the second side row data in the subframe. Row data. In this embodiment, the terminal device may determine not to transmit the first side row data and the second side row data within the time occupied by the time domain symbols that are not used to send the second side row data in the subframe.
  • the side row data is denoted as step S203.
  • step S201 Another achievable manner of the side row data transmission method described in this embodiment is to include step S201, step S202, and step S203 at the same time.
  • step S203 describes step S203 in detail.
  • the terminal device does not send the first side line data within the time occupied by the time domain symbol 302. Line data, the second side line data is not sent.
  • part of the time domain symbols used to transmit the second side line data in the subframe 30 are adjacent.
  • the method described in this embodiment can also be applied to one subframe of the second side line.
  • the time domain symbols 303 and the time domain symbols 302 are not used for sending
  • other time domain symbols except the time domain symbol 303 and the time domain symbol 302 in the subframe 30 are used to send the second side line data.
  • the time occupied by the time domain symbols used to send the second side line data in the subframe 30 are T2 time and T4 time
  • the time domain symbols not used for sending the second side line data in the subframe 30 are occupied.
  • the time is T3 time and T5 time.
  • the time domain symbols of the subframe 30 corresponding to the T2 time and T4 time both carry the second side line data
  • the time domain symbols of the time slot 31 corresponding to the T2 time and T4 time both carry the first Side line data
  • the terminal device simultaneously sends the first side line data and the second side line data at time T2 and time T4, and/or, the terminal device determines not to send the first side line data at time T3 and time T5 Side row data and the second side row data.
  • the terminal device determines the N time slots of the first side-line link according to the sub-carrier spacing of the first side-line link, so that the N time slots of the first side-line link are The time domain length of each time slot is the same as the time domain length of a subframe of the second side uplink.
  • the terminal device When a certain time domain symbol in a subframe of the second side uplink is used to transmit the second side uplink
  • the terminal device sends the second side line data and the first side line data on the first side line in the time occupied by the time domain symbol
  • the terminal device determines not to transmit within the time occupied by the time domain symbol
  • the second side row data and the first side row data that is, when the terminal device sends the side row data on any one of the first side row link and the second side row link
  • the side-line data on the other side-line link is also sent by the terminal device at the same time, and/or when the terminal device does not send the side-line data on any one of the first side-line link and the second side-line link In the case of side-line data, the side-line data on the other side-line link is not sent by the terminal device.
  • the first communication system may be a new wireless NR system
  • the second communication system may be a long-term evolution LTE system.
  • the resources used for side link transmission in the Internet of Vehicles system can be the transmission resources in the LTE system or the transmission resources in the NR system.
  • the side link in the LTE system It is denoted as LTE SL
  • the side link in the NR system is denoted as NR SL.
  • NR SL is the first side link in the foregoing embodiment
  • LTE SL is the second side link in the foregoing embodiment.
  • LTE SL and NR SL coexist, and the coexistence of LTE SL and NR SL can be intra-band coexistence or inter-band coexistence.
  • LTE SL and NR SL work in the same frequency band, for example, in the 5.9 GHz frequency band.
  • the 5.9 GHz frequency band includes multiple carriers, and LTE SL and NR SL use different carriers among the multiple carriers. For example, there are two adjacent carriers in the multiple carriers, denoted as carrier 0 and carrier 1, and the bandwidth of each carrier is 10 MHz.
  • LTE SL uses carrier 0 and NR SL uses carrier 1.
  • LTE SL and NR SL work in different frequency bands.
  • LTE SL works in the 5.9 GHz frequency band
  • NR SL works in the 3.6 GHz frequency band
  • LTE SL uses a carrier in the 5.9 GHz frequency band
  • NR SL uses a carrier in the 3.6 GHz frequency band.
  • intra-band coexistence and inter-band coexistence are divided according to whether LTE SL and NR SL work in the same frequency band. That is to say, intra-band coexistence and inter-band coexistence are a combination of LTE SL and NR SL coexistence methods. kind of division method.
  • the coexistence methods of LTE SL and NR SL can also be divided into time division multiplexing (TDM) and frequency division multiplexing (FDM). The way. In the TDM mode, LTE SL and NR SL are time-division multiplexed.
  • the terminal device sends the side-line data on LTE SL and the side-line data on NR SL at different times. That is, there is only one type of SL at the same time.
  • the side row data is sent.
  • LTE SL and NR SL are frequency division multiplexed, and the terminal device simultaneously transmits the side row data on LTE SL and the side row data on NR SL on different carriers.
  • the side row on LTE SL The data corresponds to the second side line data described in the foregoing embodiment
  • the side line data on the NRSL corresponds to the first side line data described in the foregoing embodiment.
  • the carrier used to transmit the first side line data can be marked as the first carrier, and the carrier used to transmit the second side line data can be marked as the second carrier.
  • the first carrier and the second carrier can be Different carriers in the same frequency band can also be different carriers in different frequency bands.
  • the terminal device sends the second side line link and the first side line data, it may send the second side line link on the second carrier and the first side line on the first carrier. data.
  • the total transmit power of the terminal device may be affected by the LTE SL and NR SL are dynamically shared.
  • the first carrier and the second carrier are different carriers on different frequency bands, and the same terminal device transmits the second side link and the first side line data at the same time, the total transmit power of the terminal device is not affected by LTE SL Dynamic sharing with NR SL. Therefore, the method described in this embodiment is applicable to a scenario where LTE SL and NR SL frequency division multiplexing, and the first carrier and the second carrier are different carriers in the same frequency band.
  • the side-line data on any one of LTE SL and NR SL is sent by the terminal device
  • the side-line data on the other side link is also transmitted by the terminal device.
  • LTE SL and NR SL it reduces or avoids the dynamic changes of the transmission power on LTE SL and NR SL, and also effectively reduces the number of automatic gain control at the receiving end in the vehicle network system, and can even avoid automatic gain at the receiving end. Control, thereby improving the performance of the receiving end.
  • the Internet of Vehicles is not limited to D2D communication, and may also include V2V communication, vehicle to pedestrian (Vehicle to Pedestrian, V2P) communication, vehicle to infrastructure/network (Vehicle to Infrastructure/Network, V2I/N) communication, etc.
  • D2D communication, V2V communication, V2P communication, V2I/N communication, etc. can be collectively referred to as vehicle to everything (V2X) communication.
  • V2X based on LTE system transmission resources may be denoted as LTE-V2X
  • V2X based on NR system transmission resources may be denoted as NR-V2X.
  • the terminal device When a terminal device needs to send the second side link and the first side row data at the same time, the terminal device needs to acquire the transmission resources in the LTE system and the transmission resources in the NR system.
  • the terminal equipment acquiring the transmission resources in the LTE system may include the following modes, denoted as mode 3 and mode 4.
  • mode 3 the transmission resources of the terminal equipment such as the vehicle terminal are allocated by the base station.
  • the base station 20 allocates transmission to the vehicle terminal A in the vehicle 21 and the vehicle terminal B in the vehicle 22 respectively through the downlink. Resources, the vehicle-mounted terminal A and the vehicle-mounted terminal B perform side-line data transmission on the side-line link according to the transmission resources allocated by the base station 20.
  • the base station 20 can allocate single transmission resources to the vehicle terminal A and the vehicle terminal B, and can also allocate semi-static transmission resources to the vehicle terminal A and the vehicle terminal B.
  • the so-called semi-static transmission resource refers to the base station to the vehicle terminal After the transmission resource is allocated once, the vehicle-mounted terminal can continuously use the transmission resource in multiple transmission cycles.
  • the base station 20 may also allocate transmission resources to one of the vehicle terminal A and the vehicle terminal B. For example, the base station 20 allocates transmission resources to the vehicle terminal A, and the vehicle terminal A can assign the vehicle terminal B to the vehicle terminal B based on the transmission resource. Send side row data.
  • the vehicle-mounted terminal uses sensing and reservation transmission resources for side-line data transmission. Specifically, the vehicle-mounted terminal obtains a set of available transmission resources from the resource pool by means of interception, and randomly selects a transmission resource from the set of available transmission resources for sideline data transmission. Since the services in the LTE-V2X system are periodic, the vehicle-mounted terminal can adopt a semi-static transmission method, that is, after the vehicle-mounted terminal selects a transmission resource, it will continue to use the transmission resource in multiple transmission cycles, thereby reducing Transmission resource reselection and the probability of transmission resource conflict.
  • the vehicular terminal as the sender can also send sideline control information.
  • the sideline control information can carry information for reserving the next transmission resources, so that other vehicular terminals can pass through
  • the side line control information determines whether the transmission resource is reserved and used by the vehicle-mounted terminal, so as to achieve the purpose of reducing transmission resource conflicts.
  • the vehicle-mounted terminal C in the vehicle 31 listens to and reserves transmission resources, and sends side-line data to the vehicle-mounted terminal D in the vehicle 32 according to the transmission resources. While sending the side-line data, the vehicle-mounted terminal C may also send side-line control information, and the side-line control information carries information for reserving the transmission resource.
  • the vehicle-mounted terminal D or other vehicle-mounted terminals except the vehicle-mounted terminal C and the vehicle-mounted terminal D determine that the transmission resource has been reserved and used by the vehicle-mounted terminal C.
  • the vehicle-mounted terminal may also randomly select transmission resources from the resource pool configured by the network device for sideline data transmission.
  • the mode for the terminal device to obtain transmission resources in the NR system may include the following modes 1 and 2.
  • mode 1 the network device allocates transmission resources to the terminal device, which is similar to mode 3 in the LTE-V2X system.
  • Mode 2 the terminal device autonomously selects transmission resources from the configured resource pool. This mode is similar to Mode 4 in the LTE-V2X system, and the specific principle is not repeated here.
  • the subcarrier spacing of the first side uplink and the second side uplink are The sub-carrier spacing of the road may be different.
  • the subcarrier interval of the first side uplink is N times the subcarrier interval of the second side uplink.
  • the time domain length of one time domain symbol of the second side uplink is equal to the time domain length of N time domain symbols of the first side uplink.
  • the first communication system is an NR system and the second communication system is an LTE system as an example for schematic illustration.
  • the subcarrier interval of the NR system is N times the subcarrier interval of the LTE system
  • the LTE system The time domain length of one time domain symbol of the system is equal to the time domain length of N time domain symbols of the NR system.
  • the subcarrier interval of LTE SL is fixed, for example, fixed at 15 kHz, and one subframe of LTE SL occupies 1 millisecond in the time domain.
  • NR SL can have multiple sub-carrier intervals. For example, when the terminal device works in the first frequency range (Frequence Range 1, FR1), NR SL supports 15 kHz, 30 kHz, and 60 kHz sub-carrier intervals; when the terminal device works in the first frequency range, In the second frequency range (Frequence Range 2, FR2), NRSL supports 60kHz and 120kHz subcarrier spacing.
  • the sub-carrier interval of NR SL is different, the time length occupied by a time slot of NR SL in the time domain is also different.
  • one time slot of NR SL and one subframe of LTE SL include the same number of time domain symbols as an example.
  • one time slot of NR SL and one subframe of LTE SL both include 14 time domain symbols.
  • the time-domain symbol may specifically be an orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol.
  • one time slot of NR SL occupies 1 millisecond, that is, when the sub-carrier interval of NR SL is the same as that of LTE SL, the time domain length of one time slot of NR SL is equal to The time domain length of one subframe of LTESL, and the time domain length of one time domain symbol of NRSL is equal to the time domain length of one time domain symbol of LTESL.
  • one time slot of NRSL occupies 0.5 milliseconds, that is, when the subcarrier interval of NRSL is twice that of LTESL, the time domain of one subframe of LTESL
  • the length is the same as the time domain length of 2 time slots of NRSL
  • the time domain length of one time domain symbol of LTESL is the same as the time domain length of 2 time domain symbols of NRSL.
  • a time slot occupies 0.25 milliseconds, that is, when the subcarrier interval of NRSL is 4 times that of LTESL, the time domain length of one subframe of LTESL is 4 times that of NRSL.
  • the time domain length of each time slot is the same, and the time domain length of one time domain symbol of LTE SL is the same as the time domain length of 4 time domain symbols of NR SL.
  • a time slot occupies 0.125 milliseconds, and the subcarrier interval of NRSL is 8 times the subcarrier interval of LTESL, and the time domain length of one subframe of LTESL is equal to 8 hours of NRSL.
  • the time domain length of the slot is the same, and the time domain length of one time domain symbol of LTE SL is the same as the time domain length of 8 time domain symbols of NR SL.
  • NR SL and LTE SL use different sub-carrier intervals
  • the time length of a subframe of LTE SL and a slot of NR SL will be different.
  • NR SL supports the following Several kinds of subcarrier spacing described in Table 1:
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] 0 15 1 30 2 60 3 120
  • the time length of one subframe of LTE SL is equal to the sum of the time lengths of 2 ⁇ time slots of NR SL.
  • the terminal device can map the transmission resources in the LTE system and the transmission resources in the NR system respectively.
  • Side row data can be recorded as the second side row data, and the side row data mapped on the transmission resource of the terminal device in the NR system Recorded as the first side row data.
  • Figure 7 shows a schematic diagram of the frame structure of the LTE-V2X system.
  • the frame structure can be a physical sidelink shared channel (Physical Sidelink Shared Channel, PSSCH) frame structure, or a physical sidelink control channel (Physical Sidelink Control).
  • PSSCH Physical Sidelink Shared Channel
  • Physical Sidelink Control Physical Sidelink Control
  • Channel, PSCCH Channel, PSCCH
  • 40 is recorded as a subframe, and the time length of a subframe in the time domain is 1 millisecond.
  • One subframe includes 14 time domain symbols.
  • the first time domain symbol among the 14 time domain symbols is usually used for automatic gain control (Automatic Gain Control, AGC), and the last time domain symbol is usually a guard interval (gap, GP) symbol.
  • AGC Automatic Gain Control
  • GP guard interval
  • the sending end can map data on the first time domain symbol, that is, the sending end can map data on the AGC symbol.
  • the receiving end uses the first time domain symbol as AGC, and the data on the first time domain symbol is usually not used for data demodulation.
  • the transmitter does not send data on the GP symbol, which is usually used for receiving and sending conversion or sending and receiving conversion.
  • the subframe 40 used to carry demodulation reference signals (Demodulation Reference Signal, DMRS).
  • DMRS Demodulation Reference Signal
  • the third time domain symbol, the sixth time domain symbol, and the first The 9 time domain symbols and the 12th time domain symbol carry DMRS.
  • the 2nd time domain symbol, the 4th time domain symbol, the 5th time domain symbol, the 7th time domain symbol, the 8th time domain symbol, the 10th time domain symbol, and the 11th time domain symbol The 13th time domain symbol is mapped with data carried on the PSSCH. It can be understood that this is only a schematic description, and does not limit the specific data mapped on the subframe 40.
  • some time domain symbols in the subframe 40 may also be mapped with data carried on the PSCCH.
  • This embodiment does not limit the mapping manner of the data carried on the PSCCH on the subframe 40, and may be the same as the mapping manner of the data carried on the PSSCH on the subframe 40, or may be different.
  • the terminal device can also map the second side row data on the transmission resources in the LTE system in the manner shown in FIG. 8, that is, the second side is mapped on the first 13 time domain symbols of a subframe of LTE SL.
  • Line data, the second side line data may be data carried on the PSSCH, and the last time domain symbol of a subframe of LTE SL is not used to map the second side line data.
  • the terminal device can also map the first side row data on the transmission resources in the NR system in the manner shown in FIG. 8.
  • the time domain length of one subframe of LTE SL is equal to that of NRSL.
  • the terminal device may map the first side row data on the first 13 time domain symbols of each of the 2 time slots of the NR SL.
  • the first side row data may be data carried on the PSSCH, and the The terminal device may not map the first side row data on the last time domain symbol of each of the 2 time slots of the NR SL.
  • the time-domain symbol 81 is a GP symbol. Since the terminal device does not map the first side line data on the time-domain symbol 81, the time domain symbol 81 is occupied by the LTE SL. The second side line data is sent, but there is no first side line data on the NR SL to send. This will cause two different dynamic changes in the transmit power on the side link during the time occupied by the time domain symbol 81 The phenomenon.
  • 82 and 83 represent the last two time domain symbols of the second time slot of the two NR SL time slots, and the sum of the time domain length of the time domain symbol 82 and the time domain symbol 83 is equal to The time domain length of the last time domain symbol in a subframe of LTE SL.
  • the first N-1 of the N time slots of the first side uplink is mapped on the last time domain symbol in each of the time slots.
  • the first side row data mapped on the last time domain symbol in each of the first N-1 time slots includes at least one of the following: carried on the physical side row shared channel PSSCH Data, demodulation reference signal DMRS, channel state information reference signal CSI-RS, listening reference signal SRS, and data randomly generated by the terminal device.
  • the time domain length of one subframe 30 of LTE SL is equal to the sum of the time domain lengths of N time slots 31 of NR SL.
  • the last time domain symbol of each time slot 31 is the GP symbol. Since the transmitting end does not send data on the GP symbol, in order to reduce the dynamic change of the transmission power on the two different side links, the terminal device can use the N time
  • the first side line data is mapped on the last time domain symbol in each of the first N-1 time slots in slot 31, and the second side line data on LTE SL is simultaneously sent within T1 time And the first side row data on NR SL.
  • the terminal device maps the first side row data on the time domain symbol 81.
  • the first side row data mapped on the time domain symbol 81 may include at least one of the following: data carried on the physical side row shared channel PSSCH, demodulation reference signal DMRS, channel state information reference signal (Channel State Information-Reference Signal, CSI) -RS), listening reference signal (Sounding Reference Signal, SRS), data randomly generated by the terminal device.
  • demodulation reference signal DMRS demodulation reference signal
  • CSI Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • the first side row data mapped on the time domain symbol 81 is data carried on the physical side row shared channel PSSCH, and the terminal device transmits the first side row data mapped on the time domain symbol 81.
  • This method can increase the transmission resources corresponding to the PSSCH, reduce the code rate, and improve the performance of the terminal equipment.
  • the first side row data mapped on the time domain symbol 81 is the data carried on the physical side row shared channel PSSCH and the demodulation reference signal DMRS.
  • mapping DMRS on GP symbols can improve channel estimation performance.
  • the first side row data mapped on the time domain symbol 81 is the channel state information reference signal CSI-RS.
  • the channel state information (CSI) includes at least one of the following: Channel Quality Indicator (CQI), precoding matrix Indication (Precoding Matrix Indicator, PMI), Rank Indication (Rank Indication, RI).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • Rank Indication Rank Indication
  • the receiving end can perform channel measurement or channel estimation based on CSI-RS. For example, the receiving end can measure Sidelink Reference Signal Received Power (S-RSRP) and Sidelink Received Signal Field Strength Indicator (Sidelink Received). Signal Strength Indicator, S-RSSI), etc., and feedback the results of channel measurement or channel estimation to the sender.
  • S-RSRP Sidelink Reference Signal Received Power
  • S-RSSI Sidelink Received Signal Field Strength Indicator
  • the bandwidth of the first side line data filled on the GP symbol is the same as that of the data on other symbols.
  • the transmission power on the two different side links does not dynamically change during the time occupied by the time domain symbol 81.
  • the transmit power on the two different side links may still dynamically change during the time occupied by the time domain symbol 82.
  • the first side row is mapped to the last time domain symbol in each of the first N-1 time slots among the N time slots of NR SL. Data, reducing the dynamic change or dynamic adjustment of the transmit power on NR SL and LTE SL.
  • the last N time domain symbols in the Nth time slot among the N time slots are not used to transmit the Row data on the first side.
  • the last time domain symbol in each of the N time slots is a guard interval GP symbol.
  • the time domain length of one subframe 30 of LTE SL is equal to the sum of the time domain lengths of N time slots 31 of NR SL.
  • the time domain length of a time domain symbol of LTESL is equal to the sum of the time domain lengths of N time domain symbols of NRSL, for example, the time domain length of the last time domain symbol 302 of LTESL is equal to the last time slot of NRSL The sum of the time domain lengths of the last N time domain symbols in 31. Since the last time domain symbol 302 of LTE SL is a GP symbol, the terminal device does not send the second side line data on the GP symbol, such as the time domain symbol 302. Therefore, the last N time domains in the last time slot 31 of NR SL The symbol may not be used to send the first side line data.
  • the time-domain symbol 82 and the time-domain symbol 83 may not be used to send side line data in the following manner.
  • the first N-1 time domain symbols of the last N time domain symbols in the Nth time slot among the N time slots are used to map the first side row data, and the first The first side line data mapped on the N-1 time domain symbol is not sent by the terminal device.
  • the first side row data mapped on the first N-1 time domain symbols includes data carried on a physical side row shared channel PSSCH.
  • 82 and 83 represent the last two time domain symbols of the second time slot in the two NR SL time slots, where the time domain symbol 82 is the last two time domain symbols in the second time slot
  • the terminal device can map the first side line data on the time domain symbol 82 in a normal way, that is, the terminal device can send the first side of a time slot of NR SL separately.
  • Line data for resource mapping for example, the terminal device does not map the first side line data on the last time domain symbol 83 of the second time slot, and maps the first side line data on other time domain symbols in the second time slot , For example, mapping the data carried on the physical side-line shared channel PSSCH.
  • the terminal device does not send the first side line data mapped on the time domain symbol 82. That is to say, even if the terminal device has the first side line data mapped on the time domain symbol 82, the terminal device does not send the first side line data mapped on the time domain symbol 82, so that the time domain symbol 82 is not used to send the first side line data. Row data on one side.
  • the time domain symbol 83 is a GP symbol, and the terminal device does not send data on the GP symbol. Therefore, neither the time domain symbol 82 nor the time domain symbol 83 are used to transmit the first side line data.
  • Another way is that the first N-1 time domain symbols in the last N time domain symbols in the Nth time slot of the N time slots are not used for mapping the first side row data.
  • the terminal device does not map the first side line data on the time domain symbol 82. That is, the time domain symbol 82 is not used to map the first side line data, so the time domain symbol 82 cannot be used to send the first side line data.
  • the time domain symbol 83 is a GP symbol, and the terminal device does not send data on the GP symbol. Therefore, neither the time domain symbol 82 nor the time domain symbol 83 are used to transmit the first side line data. In the second NR SL time slot, except for the time domain symbol 82 and the time domain symbol 83, all other time domain symbols are mapped with the first side line data.
  • the last time domain symbol in the LTESL subframe corresponds to the time domain symbol 82 and the time domain symbol 83 of NRSL.
  • the last time domain symbol in the LTE SL subframe is a GP symbol, and the terminal device does not send the second side line data on the GP symbol. Therefore, when neither the time domain symbol 82 nor the time domain symbol 83 is used to send the first side line data, the terminal device neither sends the first side line data nor the time occupied by the time domain symbol 82 and the time domain symbol 83. Do not send the second side row data.
  • the last N time domain symbols in the Nth time slot among the N time slots of the NRSL are not used to transmit the first sideline data, reducing NRSL And the dynamic change or dynamic adjustment of the transmit power on LTE SL.
  • the last time domain symbol in each of the first N-1 time slots of the N time slots is mapped with the first side line data, or the N time slots
  • the last N time domain symbols in the Nth time slot in the time slot are not used to transmit the first side line data, which can reduce the dynamic change of the transmission power on the two different side line links.
  • the terminal device as shown in FIGS. 9-11 maps the first side line data on the time domain symbol 81, or, the time domain symbol 82 and the time domain symbol 83 shown in FIG.
  • the first side line data 12 are not used to send the first side line data, which corresponds to Compared with just using two NR SL time slots to complement one LTE SL subframe as shown in FIG. 8, this reduces the dynamic changes of transmit power on two different side links.
  • one possible way is: the last time domain symbol in each of the first N-1 time slots in the N time slots The first side row data is mapped thereon, and the last N time domain symbols in the Nth time slot of the N time slots are not used to send the first side row data.
  • the terminal device may map the first side line data on the time domain symbol 81, and neither the time domain symbol 82 nor the time domain symbol 83 is used to send the first side line data.
  • the first side row data mapped on the time domain symbol 81 is the data carried on the PSSCH.
  • the first side row data mapped on the time domain symbol 81 is not limited, and it may be in addition to the data carried on the PSSCH. Information other than the data.
  • the terminal device maps the first side line data on the time domain symbol 82, but the terminal device does not send the time domain symbol 82
  • the first side row data of the mapping is a GP symbol, and the terminal device does not map the first side line data on the time domain symbol 83.
  • the terminal device does not map the first side line data on the time domain symbol 82 and the time domain symbol 83, as shown in the figure 13 shown.
  • the terminal device maps the first side line data on the time domain symbol 81, and at the same time, the time domain symbol 82 and the time domain symbol 83 are not used to send the first side line data, which can make the LTESL and NRSL in In the process of frequency division multiplexing, the transmission power allocated to LTE SL and NR SL is always the same, thus effectively avoiding the dynamic change of the transmission power on the two different side links.
  • the first side row is mapped to the last time domain symbol in each of the first N-1 time slots among the N time slots of NR SL.
  • Data, and the last N time-domain symbols in the Nth time slot of the N time slots are not used to send the first side line data, ensuring that in one subframe of LTE SL, LTE SL and NRSL are allocated to
  • the transmission power of NR SL and LTE SL is always the same, thereby avoiding the dynamic change or dynamic adjustment of the transmission power on NR SL and LTE SL.
  • the value of N may not be limited to 2.
  • N may be equal to 4 or 8 in this embodiment.
  • 140 represents a subframe of LTE SL, and 141-144 respectively represent a time slot of NRSL.
  • the subcarrier interval of NRSL is 4 times that of LTESL.
  • the time length of one subframe of LTE SL is equal to the sum of the time lengths of 4 time slots of NR SL.
  • the time length of the four time domain symbols of NRSL is the same as the time length of one time domain symbol of LTESL.
  • 145 represents the last time domain symbol in a subframe of LTE SL.
  • 146 represents the last 4 time domain symbols of the 4th slot in the 4 NR SL slots.
  • the last time domain symbol in the LTE SL subframe corresponds to the last 4 time domain symbols of the 4th NRSL time slot.
  • the terminal device can set the last time domain symbol of each of the first 3 time slots among the 4 time slots of NR SL as shown in Figure 14
  • the first side row data is mapped above, and the first side row data that can be mapped here is consistent with the first side row data that can be mapped in the time domain symbol 81 described in the foregoing embodiment, and will not be repeated here.
  • the last time domain symbol of each of the first 3 time slots of the 4 time slots of NRSL is mapped with data carried on the physical side row shared channel PSSCH.
  • the terminal equipment performs the first 3 of the last 4 time domain symbols of the time slot 144
  • the first side line data is normally mapped on the time domain symbols, but the terminal device does not send the first side line data mapped on the first 3 time domain symbols of the last 4 time domain symbols of the time slot 144.
  • the terminal device does not map the first side row data on the last 4 time domain symbols of the time slot 144.
  • the terminal device maps the first side row data on the last time domain symbol of each of the first 3 time slots of the 4 time slots of NR SL, At the same time, the terminal device does not map the first side line data on the last 4 time domain symbols of the time slot 144.
  • the transmission power allocated to LTE SL and NR SL is always the same, thereby effectively avoiding the transmission power of two different side links. Dynamic changes.
  • the side line data transmission method provided in this embodiment is to map the first side line data on the last time domain symbol of each of the first N-1 time slots of the N time slots of NR SL, and to The first side line data is not sent on the last N time domain symbols of the Nth time slot of the N time slots of NR SL, ensuring that the transmission power allocated to LTE SL and NR SL is always The same, thereby avoiding the dynamic change or dynamic adjustment of the transmit power on NR SL and LTE SL.
  • FIG. 18 is a schematic structural diagram of the terminal device provided by this application. As shown in FIG. 18, the terminal device 180 includes:
  • the determining module 181 is configured to determine N time slots of the first side uplink according to the subcarrier spacing of the first side uplink, where N is greater than or equal to 2, and the The time domain length of the N time slots is the same as the time domain length of one subframe of the second side uplink, the first side uplink is the side uplink in the first communication system, and the second side The uplink is a side link in the second communication system;
  • the sending module 182 is configured to send the time domain symbols used to send the second side line data on the second side line in the subframe of the second side line.
  • the second side line data and the first side line data on the first side line link and/or, the time occupied by the time domain symbols not used to transmit the second side line data in the subframe Inside, the first side line data and the second side line data are not sent by the terminal device.
  • the terminal device provided in this embodiment is used to implement the technical solution on the terminal device side in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the first communication system is a new radio access technology NR system
  • the second communication system is a long-term evolution LTE system.
  • the first side row data is mapped on the last time domain symbol in each of the first N-1 time slots of the N time slots.
  • the first side row data mapped on the last time domain symbol in each of the first N-1 time slots includes at least one of the following:
  • the last N time domain symbols in the Nth time slot among the N time slots are not used to send the first side line data.
  • the last time domain symbol in each of the N time slots is a guard interval GP symbol.
  • the first N-1 time domain symbols in the last N time domain symbols in the Nth time slot among the N time slots are used to map the first side row data, and the first N -1 The first side line data mapped on the time domain symbol is not sent by the terminal device.
  • the first side row data mapped on the first N-1 time domain symbols includes data carried on a physical side row shared channel PSSCH.
  • the first N-1 time domain symbols in the last N time domain symbols in the Nth time slot of the N time slots are not used to map the first side row data.
  • the subcarrier interval of the first side uplink is N times the subcarrier interval of the second side uplink.
  • the time domain length of one time domain symbol of the second side uplink is equal to the time domain length of N time domain symbols of the first side uplink.
  • the sending module when the sending module sends the first side line data on the second side line link and the first side line link, it is specifically configured to: send the second side line data on the second carrier And transmitting the first side line data on the first carrier.
  • the first carrier and the second carrier are different carriers in the same frequency band.
  • FIG. 19 is a schematic diagram of another structure of the terminal device provided by this application. As shown in FIG. 19, the terminal device 190 includes:
  • the memory 192 stores computer execution instructions
  • the processor 191 executes the computer-executable instructions stored in the memory 192, so that the processor 191 executes the technical solution on the terminal device side in any of the foregoing method embodiments.
  • FIG. 19 is a simple design of a terminal device.
  • the embodiment of the present application does not limit the number of processors and memories in the terminal device.
  • FIG. 19 only uses 1 as an example for illustration.
  • the memory, the processor, and the interface may be connected by a bus.
  • the memory may be integrated inside the processor.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions. When the computer-executable instructions are executed by a processor, they are used to implement the terminal device in any of the foregoing method embodiments.
  • Technical solutions are provided.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution of the terminal device in any of the foregoing method embodiments.
  • the foregoing processor may be a chip.
  • the embodiment of the present application also provides a computer program product, including program instructions, which are used to implement the technical solution of the terminal device in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution on the terminal device side in any of the foregoing method embodiments.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute any of the foregoing The technical solution on the terminal device side in the method embodiment.
  • a storage module such as a memory
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division, and there may be other divisions in actual implementation, for example, multiple modules can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces.
  • the indirect coupling or communication connection of the modules may be in electrical, mechanical or other forms.
  • the processor can be a central processing unit (English: Central Processing Unit, abbreviated as: CPU), or other general-purpose processors or digital signal processors (English: Digital Signal Processor, Abbreviation: DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, abbreviation: ASIC), etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like. The steps of the method disclosed in this application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • All or part of the steps in the foregoing method embodiments can be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a readable memory.
  • the program executes the steps including the foregoing method embodiments; and the foregoing memory (storage medium) includes: read-only memory (English: read-only memory, abbreviated as: ROM), RAM, flash memory, hard disk, Solid state drives, magnetic tapes (English: magnetic tape), floppy disks (English: floppy disk), optical discs (English: optical disc) and any combination thereof.

Abstract

本申请实施例提供一种侧行数据传输方法、设备及存储介质。通过终端设备发送第一侧行链路和第二侧行链路中任意一个侧行链路上的侧行数据时,另一个侧行链路上的侧行数据也同时被终端设备发送,和/或,当终端设备不发送第一侧行链路和第二侧行链路中任意一个侧行链路上的侧行数据时,另一个侧行链路上的侧行数据也不被终端设备发送,使得该终端设备的总功率尽可能被平均分配在第一侧行链路和第二侧行链路上,减少或避免了第一侧行链路和第二侧行链路上的发送功率动态变化,同时也有效减少了接收端进行自动增益控制的次数,甚至可以避免接收端进行自动增益控制,从而提高了接收端的性能。

Description

侧行数据传输方法、设备及存储介质 技术领域
本申请实施例涉及通信技术,尤其涉及一种侧行数据传输方法、设备及存储介质。
背景技术
车联网是基于设备到设备(Device to Device,D2D)的一种侧行链路(Sidelink,SL)传输技术,与传统的长期演进(Long Term Evolution,LTE)系统中通信数据通过基站接收或者发送的方式不同,车联网采用设备到设备直接通信的方式。
随着移动通信技术的发展,当前车联网系统中用于侧行链路传输的资源可以是LTE系统中的传输资源,也可以是新无线(New Radio,NR)系统中的传输资源。在现有技术中,LTE系统的侧行链路和NR系统的侧行链路在车联网系统中是共存的。具体的,LTE系统的侧行链路和NR系统的侧行链路可以进行频分复用,也就是说,同一终端设备可以在不同的载波上同时发送LTE系统侧行链路上的数据和NR系统侧行链路上的数据。
但是,终端设备在不同的载波上同时发送LTE系统侧行链路上的数据和NR系统侧行链路上的数据时,该终端设备的总发送功率可能会被LTE系统的侧行链路和NR系统的侧行链路所共享,由于终端设备在LTE系统的侧行链路上和NR系统的侧行链路上发送数据的持续时间不同,导致该终端设备在LTE系统的侧行链路上的发送功率和该终端设备在NR系统的侧行链路上的发送功率需要进行动态调整,使得该终端设备对应的接收端需要频繁的进行自动增益控制(Automatic Gain Control,AGC),降低了接收端的性能。
发明内容
本申请实施例提供一种侧行数据传输方法、设备及存储介质,使得第一通信系统中的第一侧行链路和第二通信系统中的第二侧行链路在车联网系统中共存时,减少或避免该两种不同侧行链路上发送功率的动态变化。
第一方面,本申请实施例可提供一种侧行数据传输方法,该方法包括:
终端设备根据第一侧行链路的子载波间隔,确定所述第一侧行链路的N个时隙,其中,N大于或等于2,所述第一侧行链路的N个时隙的时域长度与第二侧行链路的一个子帧的时域长度相同,所述第一侧行链路是第一通信系统中的侧行链路,所述第二侧行链路是第二通信系统中的侧行链路;
所述终端设备在所述第二侧行链路的子帧中用于发送所述第二侧行链路上的第二侧行数据的时域符号所占用的时间内,发送所述第二侧行数据和所述第一侧行链路上的第一侧行数据;和/或,在所述子帧中不用于发送所述第二侧行数据的时域符号所占用的时间内,所述第一侧行数据和所述第二侧行数据不被所述终端设备发送。
第二方面,本申请实施例可提供一种终端设备,该终端设备包括:
确定模块,用于根据第一侧行链路的子载波间隔,确定所述第一侧行链路的N个时隙,其中,N大于或等于2,所述第一侧行链路的N个时隙的时域长度与第二侧行链路的一个子帧的时域长度相同,所述第一侧行链路是第一通信系统中的侧行链路,所述第二侧行链路是第二通信系统中的侧行链路;
发送模块,用于在所述第二侧行链路的子帧中用于发送所述第二侧行链路上的第二侧行数据的时域符号所占用的时间内,发送所述第二侧行数据和所述第一侧行链路上的第一侧行数据;和/或,在所述子帧中不用于发送所述第二侧行数据的时域符号所占用的时间内,所述第一侧行数据和所述第二侧行数据不被所述终端设备发送。
第三方面,本申请实施例可提供一种终端设备,包括:
处理器、存储器、与网络设备或其他终端设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面所述的侧行数据传输方法。
第四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第一方面所述的侧行数据传输方法。
第五方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如上第一方面所述的侧行数据传输方法。
可选地,上述处理器可以为芯片。
第六方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现第一方面所述的侧行数据传输方法。
第七方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第一方面所述的侧行数据传输方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第一方面所述的侧行数据传输方法。
本申请实施例提供的侧行数据传输方法、设备及存储介质,通过终端设备根据第一侧行链路的子载波间隔,确定所述第一侧行链路的N个时隙,使得第一侧行链路的N个时隙的时域长度与所述第二侧行链路的一个子帧的时域长度相同,当第二侧行链路的一个子帧中某个时域符号用于发送第二侧行链路上的第二侧行数据时,该终端设备在该时域符号所占用的时间内,发送所述第二侧行数据和所述第一侧行链路上的第一侧行数据,和/或,当第二侧行链路的一个子帧中某个时域符号不用于发送所述第二侧行数据时,该终端设备在该时域符号所占用的时间内,确定不发送所述第二侧行数据和所述第一侧行数据,也就是说,当终端设备发送第一侧行链路和第二侧行链路中任意一个侧行链路上的侧行数据时,另一个侧行链路上的侧行数据也同时被终端设备发送,和/或,当终端设备不发送第一侧行链路和第二侧行链路中任意一个侧行链路上的侧行数据时,另一个侧行链路上的侧行数据也不被终端设备发送,尽可能避免该终端设备发送两种不同侧行链路中任意一个侧行链路上的侧行数据时,不发送另一个侧行链路上的侧行数据,使得该终端设备的总功率尽可能被平均分配在第一侧行链路和第二侧行链路上,减少或避免了第一侧行链路和第二侧行链路上的发送功率动态变化,同时也有效减少了接收端进行自动增益控制的次数,甚至可以避免接收端进行自动增益控制,从而提高了接收端的性能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一种通信系统的示意图;
图2为本申请提供的一种侧行数据传输方法的流程图;
图3为本申请提供的一种LTE SL的子帧和NR SL的时隙的示意图;
图4为本申请提供的另一种LTE SL的子帧和NR SL的时隙的示意图;
图5为现有技术中的另一种应用场景的示意图;
图6为现有技术中的再一种应用场景的示意图;
图7为现有技术中的一种LTE-V2X系统的帧结构的示意图;
图8为现有技术中的再一种LTE SL的子帧和NR SL的时隙的示意图;
图9为本申请提供的一种时域符号81上映射侧行数据的示意图;
图10为本申请提供的另一种时域符号81上映射侧行数据的示意图;
图11为本申请提供的再一种时域符号81上映射侧行数据的示意图;
图12为本申请提供的又一种LTE SL的子帧和NR SL的时隙的示意图;
图13为本申请提供的又一种LTE SL的子帧和NR SL的时隙的示意图;
图14为本申请提供的又一种LTE SL的子帧和NR SL的时隙的示意图;
图15为本申请提供的又一种LTE SL的子帧和NR SL的时隙的示意图;
图16为本申请提供的又一种LTE SL的子帧和NR SL的时隙的示意图;
图17为本申请提供的又一种LTE SL的子帧和NR SL的时隙的示意图;
图18为本申请提供的终端设备的一种结构示意图;
图19为本申请提供的终端设备的另一种结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、LTE系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、NR系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,D2D通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电 话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行D2D通信。
可选地,5G系统或5G网络还可以称为NR系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在图1中,网络设备可以是接入设备,例如可以是NR-U系统中的接入设备,例如5G的NR基站(next generation Node B,gNB)或小站、微站,还可以是中继站、发送和接收点(Transmission and Reception Point,TRP)、路边单元(Road Side Unit,RSU)等。
终端设备也可以称为移动终端、用户设备(User Equipment,简称:UE)、接入终端、用户单元、用户站、移动站、移动台、用户终端、终端、无线通信设备、用户代理或用户装置。具体可以是智能手机、蜂窝电话、无绳电话、个人数字处理(Personal Digital Assistant,简称:PDA)设备、具有无线通信功能的手持设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备等。在本申请实施例中,该终端设备具有与网络设备(例如:蜂窝网络)进行通信的接口。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2为本申请提供的一种侧行数据传输方法的流程图。本申请实施例的方法可以应用于车联网系统。在该车联网系统中存在两种不同的侧行链路,一种是第一通信系统中的侧行链路,另一种是第二通信系统中的侧行链路。也就是说,在该车联网系统中,用于侧行链路传输的资源可以是第一通信系统中的传输资源,也可以是第二通信系统中的传输资源。如图2所示,本实现方式提供的侧行数据传输方法具体包括以下步骤:
S201、终端设备根据第一侧行链路的子载波间隔,确定所述第一侧行链路的N个时隙,其中,N大于或等于2,所述第一侧行链路的N个时隙的时域长度与第二侧行链路的一个子帧的时域长度相同,所述第一侧行链路是第一通信系统中的侧行链路,所述第二侧行链路是第二通信系统中的侧行链路。
在本实施例中,第一侧行链路的子载波间隔和第二侧行链路的子载波间隔不同,第一侧行链路的一个时间单元和第二侧行链路的一个时间单元的时域长度不同。该时间单元可以是时隙或子帧。可选的,第一侧行链路的时间单元为时隙,第二侧行链路的时间单元为子帧。也就是说,第一侧行链路的时隙和第二侧行链路的子帧是同等粒度的时间单元,此处,所谓的同等粒度是指,第一侧行链路的一个时隙包括的时域符号个数与该第二侧行链路的一个子帧包括的时域符号个数相同。
在第一侧行链路的子载波间隔和第二侧行链路的子载波间隔均已知的情况下,该终端设备可根据第一侧行链路的子载波间隔,确定该第一侧行链路的N个时隙,使得该第一侧行链路的N个时隙的时域长度与所述第二侧行链路的一个子帧的时域长度相同。如图3所示,30表示第二侧行链路的一个子帧,31表示该第一侧行链路的一个时隙,N个时隙31所占用的时间总长度与一个子帧30所占用的时间长度相同。
S202、所述终端设备在所述第二侧行链路的子帧中用于发送所述第二侧行链路上的第二侧行数据的时域符号所占用的时间内,发送所述第二侧行数据和所述第一侧行链路上的第一侧行数据。
如图3所述,子帧30中包括多个时域符号,301表示该多个时域符号中的任一个,302表示该多个时域符号中的最后一个时域符号。可选的,该多个时域符号中每个时域符号的时域长度相同。在该多个时域符号中,部分时域符号用于发送第二侧行链路上的侧行数据,部分时域符号可能不用于发送第二侧行链路上的侧行数据,在本实施例中,可以将第二侧行链路上的侧行数据记为第二侧行数据,将第一侧 行链路上的侧行数据记为第一侧行数据。例如,子帧30中的最后一个时域符号不用于发送第二侧行数据,子帧30中除了最后一个时域符号之外的其他时域符号用于发送第二侧行数据。
另外,如图3所示,时隙31中也包括多个时域符号,311表示时隙31包括的多个时域符号中的任一个。可选的,时隙31包括的多个时域符号中的每个时域符号的时域长度相同。
当终端设备需要同时发送所述第一侧行链路上的第一侧行数据和所述第二侧行链路上的第二侧行数据时,该终端设备可以先确定第二侧行链路的子帧中用于发送所述第二侧行数据的时域符号所占用的时间,例如图3所示的T1。T1时间所对应的子帧30的时域符号,即子帧30中除了最后一个时域符号302之外的其他时域符号均承载有第二侧行数据。T1时间所对应的时隙31的时域符号均承载有第一侧行数据。进一步,该终端设备在该T1内同时发送所述第一侧行数据和所述第二侧行数据。
上述步骤S201和步骤S202,只是本实施例所述的侧行数据传输方法的一种可实现方式。
本实施例所述的侧行数据传输方法的另一种可实现方式是:在步骤S201的基础上,还包括:在所述子帧中不用于发送所述第二侧行数据的时域符号所占用的时间内,所述第一侧行数据和所述第二侧行数据不被所述终端设备发送。也就是说,所述终端设备在所述子帧中不用于发送所述第二侧行数据的时域符号所占用的时间内,确定不发送所述第一侧行数据和所述第二侧行数据。本实施例可以将所述终端设备在所述子帧中不用于发送所述第二侧行数据的时域符号所占用的时间内,确定不发送所述第一侧行数据和所述第二侧行数据,记为步骤S203。
本实施例所述的侧行数据传输方法的再一种可实现方式是:同时包括步骤S201、步骤S202和步骤S203。下面详细介绍一下步骤S203。
对于S203,如图3所示,子帧30的最后一个时域符号302不用于发送第二侧行数据,相应的,终端设备在时域符号302所占用的时间内,既不发送第一侧行数据,也不发送第二侧行数据。
如图3所示,子帧30中用于发送第二侧行数据的部分时域符号是相邻的,本实施例所述的方法,也可以适用于第二侧行链路的一个子帧中用于发送第二侧行数据的部分时域符号不相邻的情况,如图4所示,第二侧行链路的子帧30中,时域符号303和时域符号302不用于发送第二侧行数据,子帧30中除时域符号303和时域符号302之外的其他时域符号用于发送第二侧行数据。也就是说,子帧30中用于发送第二侧行数据的时域符号所占用的时间是T2时间和T4时间,该子帧30中不用于发送第二侧行数据的时域符号所占用的时间是T3时间和T5时间。在这种情况下,T2时间和T4时间所对应的子帧30的时域符号均承载有第二侧行数据,T2时间和T4时间所对应的时隙31的时域符号均承载有第一侧行数据,终端设备在T2时间和T4时间同时发送所述第一侧行数据和所述第二侧行数据,和/或,该终端设备在T3时间和T5时间确定不发送所述第一侧行数据和所述第二侧行数据。
本实施例提供的侧行数据传输方法,通过终端设备根据第一侧行链路的子载波间隔,确定所述第一侧行链路的N个时隙,使得第一侧行链路的N个时隙的时域长度与所述第二侧行链路的一个子帧的时域长度相同,当第二侧行链路的一个子帧中某个时域符号用于发送第二侧行链路上的第二侧行数据时,该终端设备在该时域符号所占用的时间内,发送所述第二侧行数据和所述第一侧行链路上的第一侧行数据,和/或,当第二侧行链路的一个子帧中某个时域符号不用于发送所述第二侧行数据时,该终端设备在该时域符号所占用的时间内,确定不发送所述第二侧行数据和所述第一侧行数据,也就是说,当终端设备发送第一侧行链路和第二侧行链路中任意一个侧行链路上的侧行数据时,另一个侧行链路上的侧行数据也同时被终端设备发送,和/或,当终端设备不发送第一侧行链路和第二侧行链路中任意一个侧行链路上的侧行数据时,另一个侧行链路上的侧行数据也不被终端设备发送,尽可能避免该终端设备发送两种不同侧行链路中任意一个侧行链路上的侧行数据时,不发送另一个侧行链路上的侧行数据,使得该终端设备的总功率尽可能被平均分配在第一侧行链路和第二侧行链路上,减少或避免了第一侧行链路和第二侧行链路上的发送功率动态变化,同时也有效减少了接收端进行自动增益控制的次数,甚至可以避免接收端进行自动增益控制,从而提高了接收端的性能。
在上述实施例的基础上,所述第一通信系统可以为新无线NR系统,所述第二通信系统可以为长期演进LTE系统。
在本实施例中,车联网系统中用于侧行链路传输的资源可以是LTE系统中的传输资源,也可以是NR系统中的传输资源,此处,将LTE系统中的侧行链路记为LTE SL,将NR系统中的侧行链路记为NR SL,NR SL为上述实施例中的第一侧行链路,LTE SL为上述实施例中的第二侧行链路。在车联网系统中,LTE SL和NR SL共存,LTE SL和NR SL共存方式可以是频带内(intra-band)共存,也可以是频带间(inter-band)共存。当LTE SL和NR SL的共存方式是频带内(intra-band)共存时,LTE SL和NR SL工作在相同的频带内,例如,5.9GHz的频带内。5.9GHz的频带内包括多个载波,LTE SL和NR SL使用该多个载波中 的不同载波。例如,该多个载波中有两个相邻的载波,记为载波0和载波1,每个载波的带宽是10MHz,LTE SL使用载波0,NR SL使用载波1。
当LTE SL和NR SL的共存方式是频带间(inter-band)共存时,LTE SL和NR SL工作在不同的频带内。例如,LTE SL工作在5.9GHz的频带内,NR SL工作在3.6GHz的频带内。LTE SL使用5.9GHz频带内的载波,NR SL使用3.6GHz频带内的载波。
可以理解,频带内共存和频带间共存是根据LTE SL和NR SL是否工作在相同的频带内进行划分的,也就是说,频带内共存和频带间共存是对LTE SL和NR SL共存方式的一种划分方法。另外,根据LTE SL和NR SL的复用方式,还可以将LTE SL和NR SL的共存方式分为时分复用(Time Division Multiplexing,TDM)的方式和频分复用(Frequency Division Multiplexing,FDM)的方式。在TDM的方式中,LTE SL和NR SL时分复用,终端设备在不同时刻分别发送LTE SL上的侧行数据和NR SL上的侧行数据,也就是说,同一个时刻只有一种SL上的侧行数据被发送。在FDM的方式中,LTE SL和NR SL频分复用,终端设备在不同的载波上同时发送LTE SL上的侧行数据和NR SL上的侧行数据,此处,LTE SL上的侧行数据对应于上述实施例所述的第二侧行数据,NR SL上的侧行数据对应于上述实施例所述的第一侧行数据。
在FDM的方式中,可以将用于发送第一侧行数据的载波记为第一载波,将用于发送第二侧行数据的载波记为第二载波,第一载波和第二载波可以是同一频带内的不同载波,也可以是不同频带上的不同载波。终端设备发送所述第二侧行链路和所述第一侧行数据时,可在第二载波上发送所述第二侧行链路,以及在第一载波上发送所述第一侧行数据。
当第一载波和第二载波是同一频带内的不同载波,同一终端设备同时发送所述第二侧行链路和所述第一侧行数据时,该终端设备的总发送功率可能会被LTE SL和NR SL动态共享。当第一载波和第二载波是不同频带上的不同载波,同一终端设备同时发送所述第二侧行链路和所述第一侧行数据时,该终端设备的总发送功率不被LTE SL和NR SL动态共享。因此,本实施例所述的方法可适用于LTE SL和NR SL频分复用,且第一载波和第二载波是同一频带内的不同载波的场景。
本实施例提供的侧行数据传输方法,通过终端设备发送LTE SL和NR SL中任意一个侧行链路上的侧行数据时,另一个侧行链路上的侧行数据也同时被终端设备发送,和/或,当终端设备不发送LTE SL和NR SL中任意一个侧行链路上的侧行数据时,另一个侧行链路上的侧行数据也不被终端设备发送,尽可能避免该终端设备发送LTE SL和NR SL中任意一个侧行链路上的侧行数据时,不发送另一个侧行链路上的侧行数据,使得该终端设备的总功率尽可能被平均分配在LTE SL和NR SL上,减少或避免了LTE SL和NR SL上的发送功率动态变化,同时也有效减少了车辆网系统中接收端进行自动增益控制的次数,甚至可以避免接收端进行自动增益控制,从而提高了接收端的性能。
另外,车联网并不局限于D2D通信,还可以包括V2V通信、车与行人(Vehicle to Pedestrian,V2P)通信、车与基建/网络(Vehicle to Infrastructure/Network,V2I/N)通信等。D2D通信、V2V通信、V2P通信、V2I/N通信等可统称为车与任何事物通信(Vehicle to Everything,V2X)通信。此处,可以将基于LTE系统传输资源的V2X记为LTE-V2X,将基于NR系统传输资源的V2X记为NR-V2X。
当终端设备需要同时发送所述第二侧行链路和所述第一侧行数据时,该终端设备需要获取LTE系统中的传输资源和NR系统中的传输资源。其中,该终端设备获取LTE系统中的传输资源可包括如下几种模式,记为模式3和模式4。在模式3中,终端设备例如车载终端的传输资源是由基站分配的,如图5所示,基站20通过下行链路给车辆21中的车载终端A和车辆22中的车载终端B分别分配传输资源,车载终端A和车载终端B根据基站20分配的传输资源在侧行链路上进行侧行数据的传输。基站20可以给车载终端A和车载终端B分配单次传输的资源,也可以给车载终端A和车载终端B分配半静态的传输资源,此处,所谓半静态的传输资源是指基站给车载终端分配一次传输资源后,车载终端可以在多个传输周期中持续的使用该传输资源。另外,在有些场景中,基站20也可以给车载终端A和车载终端B中的一个分配传输资源,例如,基站20给车载终端A分配传输资源,车载终端A可以根据该传输资源向车载终端B发送侧行数据。
在模式4中,车载终端采用侦听(sensing)和预留(reservation)传输资源的方式进行侧行数据传输。具体的,车载终端通过侦听的方式从资源池中获取可用的传输资源集合,并从该可用的传输资源集合中随机选取一个传输资源进行侧行数据的传输。由于LTE-V2X系统中的业务具有周期性,因此,车载终端可采用半静态传输的方式,即车载终端选取一个传输资源后,就会在多个传输周期中持续的使用该传输资源,从而降低传输资源重选以及传输资源冲突的概率。作为发送端的车载终端在向接收端发送侧行数据的同时,还可以发送侧行控制信息,该侧行控制信息中可携带有用于预留下次传输资源的信息, 从而使得其他车载终端可通过该侧行控制信息来确定该传输资源是否被该车载终端所预留和使用,以达到降低传输资源冲突的目的。如图6所示,车辆31中的车载终端C侦听和预留传输资源,并根据该传输资源向车辆32中的车载终端D发送侧行数据。车载终端C在发送该侧行数据的同时,还可以发送侧行控制信息,该侧行控制信息中携带有用于预留该传输资源的信息。从而使得车载终端D、或者除车载终端C和车载终端D之外的其他车载终端确定该传输资源已经被车载终端C所预留和使用。在其他实施例中,在模式4中,车载终端也可以在网络设备配置的资源池中随机选取传输资源以进行侧行数据传输。
该终端设备获取NR系统中的传输资源的模式可包括如下模式1和模式2,在模式1中,网络设备给终端设备分配传输资源,这种模式类似于LTE-V2X系统中的模式3。在模式2中,终端设备在配置的资源池中自主选取传输资源,这种模式类似于LTE-V2X系统中的模式4,具体原理此处不再赘述。
在本实施例中,由于第一侧行链路和第二侧行链路分别是不同通信系统中的侧行链路,因此,第一侧行链路的子载波间隔和第二侧行链路的子载波间隔可能是不同的。可选的,所述第一侧行链路的子载波间隔是所述第二侧行链路的子载波间隔的N倍。所述第二侧行链路的一个时域符号的时域长度等于所述第一侧行链路的N个时域符号的时域长度。本实施例以所述第一通信系统为NR系统,所述第二通信系统为LTE系统为例进行示意性说明,相应的,NR系统的子载波间隔是LTE系统子载波间隔的N倍,LTE系统的一个时域符号的时域长度等于NR系统的N个时域符号的时域长度。
具体的,LTE SL的子载波间隔是固定的,例如固定为15kHz,LTE SL的一个子帧在时域上占据1毫秒。NR SL的子载波间隔可以有多种,例如,当终端设备工作在第一频率范围(Frequence Range 1,FR1)时,NR SL支持15kHz、30kHz、60kHz的子载波间隔;当终端设备工作在第二频率范围(Frequence Range 2,FR2)时,NR SL支持60kHz和120kHz的子载波间隔。当NR SL的子载波间隔不同时,NR SL的一个时隙在时域上占据的时间长度也不同。本实施例以NR SL的一个时隙和LTE SL的一个子帧包括相同个数时域符号为例,例如,NR SL的一个时隙和LTE SL的一个子帧均包括14个时域符号为例,该时域符号具体可以是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
当NR SL的子载波间隔是15kHz时,NR SL的一个时隙占据1毫秒,即当NR SL的子载波间隔和LTE SL的子载波间隔相同时,NR SL的一个时隙的时域长度等于LTE SL的一个子帧的时域长度,NR SL的一个时域符号的时域长度等于LTE SL的一个时域符号的时域长度。
当NR SL的子载波间隔是30kHz时,NR SL的一个时隙占据0.5毫秒,即当NR SL的子载波间隔是LTE SL的子载波间隔的2倍时,LTE SL的一个子帧的时域长度与NR SL的2个时隙的时域长度相同,LTE SL的一个时域符号的时域长度与NR SL的2个时域符号的时域长度相同。
当子载波间隔是60kHz时,一个时隙占据0.25毫秒,即当NR SL的子载波间隔是LTE SL的子载波间隔的4倍时,LTE SL的一个子帧的时域长度与NR SL的4个时隙的时域长度相同,LTE SL的一个时域符号的时域长度与NR SL的4个时域符号的时域长度相同。
当子载波间隔是120kHz时,一个时隙占据0.125毫秒,NR SL的子载波间隔是LTE SL的子载波间隔的8倍时,LTE SL的一个子帧的时域长度与NR SL的8个时隙的时域长度相同,LTE SL的一个时域符号的时域长度与NR SL的8个时域符号的时域长度相同。
综上所述可知,当NR SL和LTE SL采用不同的子载波间隔时,会导致LTE SL的一个子帧(subframe)和NR SL的一个时隙(slot)的时间长度不同,NR SL支持如下表1所述的几种子载波间隔:
表1
μ Δf=2 μ×15[kHz]
0 15
1 30
2 60
3 120
当NR SL的子载波间隔是2 μ×15kHz时,LTE SL的一个子帧的时间长度等于NR SL的2 μ个时隙的时间长度总和。上述实施例中的N具体可以为此处的2 μ,μ=1、2、3。
在上述实施例的基础上,该终端设备在获取到LTE系统中的传输资源和NR系统中的传输资源后,该终端设备可以在LTE系统中的传输资源和NR系统中的传输资源上分别映射侧行数据,此处,可以将该终端设备在LTE系统中的传输资源上映射的侧行数据记为第二侧行数据,将该终端设备在NR系统中的传输资源上映射的侧行数据记为第一侧行数据。如图7所示为LTE-V2X系统的帧结构的示意图,该帧结构可以是物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)的帧结构,也可以是物理侧行控制信道(Physical Sidelink Control Channel,PSCCH)的帧结构。40记为一个子帧,一个子帧在时域上的时间长度为1毫秒。一个子帧包括14个时域符号。具体的,该14个时域符号中的第1 个时域符号通常用于自动增益控制(Automatic Gain Control,AGC),最后一个时域符号通常是保护间隔(gap,GP)符号。发送端可以在第1个时域符号上映射数据,即发送端可以在AGC符号上映射数据。但是,接收端将第1个时域符号用作AGC,第1个时域符号上的数据通常不用于数据解调。发送端在GP符号上不发送数据,GP符号通常用作收发转换或发收转换。
如图7所示,该子帧40中有4个时域符号用于承载解调参考信号(Demodulation Reference Signal,DMRS),具体的,第3个时域符号、第6个时域符号、第9个时域符号、第12个时域符号承载DMRS。另外,第2个时域符号、第4个时域符号、第5个时域符号、第7个时域符号、第8个时域符号、第10个时域符号、第11个时域符号、第13个时域符号上映射有PSSCH上承载的数据。可以理解,此处只是示意性说明,并不限定该子帧40上映射的具体数据,例如,该子帧40中的部分时域符号上还可以映射有PSCCH上承载的数据。本实施例并不限定PSCCH上承载的数据在该子帧40上的映射方式,可以和PSSCH上承载的数据在该子帧40上的映射方式相同,也可以不同。
另外,该终端设备还可以按照如图8所示的方式在LTE系统中的传输资源上映射第二侧行数据,即LTE SL的一个子帧的前13个时域符号上映射有第二侧行数据,该第二侧行数据可以是PSSCH上承载的数据,LTE SL的一个子帧的最后一个时域符号上不用于映射第二侧行数据。
此外,该终端设备还可以按照如图8所示的方式在NR系统中的传输资源上映射第一侧行数据,如图8所示,LTE SL的一个子帧的时域长度等于NR SL的2个时隙的时域长度之和。该终端设备可以在NR SL的2个时隙的每个时隙的前13个时域符号上映射第一侧行数据,例如,该第一侧行数据可以是PSSCH上承载的数据,以及该终端设备可以在NR SL的2个时隙的每个时隙的最后一个时域符号上不映射第一侧行数据。
但是,如图8所示,时域符号81是GP符号,由于终端设备没有在时域符号81上映射第一侧行数据,那么在时域符号81所占用的时间内,LTE SL上是有第二侧行数据发送的,但是,NR SL上没有第一侧行数据可发送了,如此会导致在时域符号81所占用的时间内出现两种不同侧行链路上发送功率的动态变化的现象。此外,如图8所示,82和83表示该两个NR SL的时隙中第2个时隙的最后2个时域符号,时域符号82和时域符号83的时域长度之和等于LTE SL的一个子帧的最后一个时域符号的时域长度。由于LTE SL的一个子帧的最后一个时域符号上没有映射第二侧行数据,而时域符号82上映射有第一侧行数据,因此,在时域符号82所占用的时间内,LTE SL上是没有第二侧行数据发送的,但是,NR SL上有第一侧行数据,同样也会导致在时域符号82所占用的时间内出现两种不同侧行链路上发送功率的动态变化的现象。
因此,针对上述问题,为了减少两种不同侧行链路上发送功率的动态变化,一种可选的实施例方式是,所述第一侧行链路的N个时隙中前N-1个时隙中的每个时隙中的最后一个时域符号上映射有所述第一侧行数据。可选的,所述前N-1个时隙中的每个时隙中的最后一个时域符号上映射的所述第一侧行数据包括如下至少一种:物理侧行共享信道PSSCH上承载的数据、解调参考信号DMRS、信道状态信息参考信号CSI-RS、侦听参考信号SRS、所述终端设备随机生成的数据。
如图3所示,LTE SL的一个子帧30的时域长度等于NR SL的N个时隙31的时域长度之和。每个时隙31的最后一个时域符号为GP符号,由于发送端在GP符号上不发送数据,为了减少两种不同侧行链路上发送功率的动态变化,终端设备可以在该N个时隙31中前N-1个时隙中的每个时隙中的最后一个时域符号上映射有所述第一侧行数据,并且在T1时间内同时发送LTE SL上的第二侧行数据和NR SL上的第一侧行数据。
下面以N=2为例,如图9-图11所示,在图8的基础上,终端设备在时域符号81上映射第一侧行数据。
时域符号81上映射的第一侧行数据可以包括如下至少一种:物理侧行共享信道PSSCH上承载的数据、解调参考信号DMRS、信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)、侦听参考信号(Sounding Reference Signal,SRS)、该终端设备随机生成的数据。
如图9所示,时域符号81上映射的第一侧行数据是物理侧行共享信道PSSCH上承载的数据,并且终端设备发送时域符号81上映射的第一侧行数据。这种方式可增加PSSCH对应的传输资源,降低码率、提升终端设备性能。
如图10所示,时域符号81上映射的第一侧行数据是物理侧行共享信道PSSCH上承载的数据和解调参考信号DMRS。其中,在GP符号上映射DMRS,可提高信道估计性能。
如图11所示,时域符号81上映射的第一侧行数据是信道状态信息参考信号CSI-RS。这种方式便于接收端获取信道状态信息并且上报给发送端,其中,信道状态信息(Channel State Information,CSI)包括以下中的至少一种:信道质量指示(Channel Quality Indicator,CQI)、预编码矩阵指示 (Precoding Matrix Indicator,PMI)、秩指示(Rank Indication,RI)。另外,接收端可根据CSI-RS进行信道测量或信道估计,例如,接收端可测量侧行参考信号接收功率(Sidelink Reference Signal Received Power,S-RSRP)、侧行接收信号场强指示(Sidelink Received Signal Strength Indicator,S-RSSI)等,并将信道测量或信道估计的结果反馈给发送端。
可以理解,在GP符号例如时域符号81上填充的第一侧行数据和其他符号上的数据的带宽一致。另外,根据图9、10、11可知,在时域符号81上填充第一侧行数据后,时域符号81占据的时间内,两种不同侧行链路上的发送功率不发生动态变化。但是,如果时域符号82用于发送第一侧行数据,则在时域符号82占据的时间内,两种不同侧行链路上的发送功率还是可能会发生动态变化。
本实施例提供的侧行数据传输方法,通过在NR SL的N个时隙中前N-1个时隙中的每个时隙中的最后一个时域符号上映射有所述第一侧行数据,减少了NR SL和LTE SL上发送功率的动态变化或动态调整。
为了减少两种不同侧行链路上发送功率的动态变化,另一种可能的方式是,所述N个时隙中的第N个时隙中的最后N个时域符号不用于发送所述第一侧行数据。可选的,所述N个时隙中每个时隙中的最后一个时域符号为保护间隔GP符号。如图3所示,LTE SL的一个子帧30的时域长度等于NR SL的N个时隙31的时域长度之和。LTE SL的一个时域符号的时域长度等于NR SL的N个时域符号的时域长度之和,例如,LTE SL的最后一个时域符号302的时域长度等于NR SL的最后一个时隙31中的最后N个时域符号的时域长度之和。由于LTE SL的最后一个时域符号302为GP符号,终端设备在GP符号例如时域符号302上不发送第二侧行数据,因此,NR SL的最后一个时隙31中的最后N个时域符号可不用于发送第一侧行数据。
以N=2为例,在图8的基础上,具体可通过如下方式使得时域符号82和时域符号83不用于发送侧行数据。
一种方式是:所述N个时隙中的第N个时隙中的最后N个时域符号中的前N-1时域符号用于映射所述第一侧行数据,且所述前N-1时域符号上映射的所述第一侧行数据不被所述终端设备所发送。可选的,所述前N-1时域符号上映射的所述第一侧行数据包括物理侧行共享信道PSSCH上承载的数据。
如图8所示,82和83表示两个NR SL的时隙中第2个时隙的最后2个时域符号,其中,时域符号82是第2个时隙中最后2个时域符号中的前1个时域符号,终端设备可以在时域符号82上按照正常的方式映射第一侧行数据,也就是说,终端设备可以按照单独发送NR SL的一个时隙上的第一侧行数据进行资源映射,例如,终端设备在第2个时隙的最后一个时域符号83上不映射第一侧行数据,在第2个时隙的其他时域符号上映射第一侧行数据,例如,映射物理侧行共享信道PSSCH上承载的数据。但是,终端设备并不发送时域符号82上映射的第一侧行数据。也就是说,即使终端设备在时域符号82上映射有第一侧行数据,但终端设备并不发送时域符号82上映射的第一侧行数据,从而使得时域符号82不用于发送第一侧行数据。另外,时域符号83是GP符号,终端设备不在GP符号上发送数据。因此,时域符号82和时域符号83都不用于发送第一侧行数据。
另一种方式是:所述N个时隙中的第N个时隙中的最后N个时域符号中的前N-1时域符号不用于映射所述第一侧行数据。
如图12所示,终端设备不在时域符号82上映射第一侧行数据。也就是说,时域符号82不用于映射第一侧行数据,所以,时域符号82也不能用于发送第一侧行数据。同上所述,时域符号83是GP符号,终端设备不在GP符号上发送数据。因此,时域符号82和时域符号83都不用于发送第一侧行数据。在第2个NR SL时隙中,除时域符号82和时域符号83之外的其他时域符号上均映射有第一侧行数据。
如图12可知,LTE SL的子帧中最后一个时域符号对应于NR SL的时域符号82和时域符号83。并且LTE SL的子帧中最后一个时域符号是GP符号,终端设备不在GP符号上发送第二侧行数据。因此,当时域符号82和时域符号83都不用于发送第一侧行数据时,在时域符号82和时域符号83所占用的时间内,终端设备既不发送第一侧行数据,也不发送第二侧行数据。
本实施例提供的侧行数据传输方法,通过该NR SL的N个时隙中的第N个时隙中的最后N个时域符号不用于发送所述第一侧行数据,减少了NR SL和LTE SL上发送功率的动态变化或动态调整。
综上所述可知,所述N个时隙中前N-1个时隙中的每个时隙中的最后一个时域符号上映射有所述第一侧行数据,或者,所述N个时隙中的第N个时隙中的最后N个时域符号不用于发送所述第一侧行数据,可减少两种不同侧行链路上发送功率的动态变化。但是,还未能避免两种不同侧行链路上发送功率的动态变化。如图9-11所示的终端设备在时域符号81上映射第一侧行数据,或者,如图12所示的时域符 号82和时域符号83不用于发送第一侧行数据,相比于如图8所示的只是用2个NR SL的时隙来补齐一个LTE SL的子帧,减少了两种不同侧行链路上发送功率的动态变化。但是,还未能避免两种不同侧行链路上发送功率的动态变化。为了避免两种不同侧行链路上发送功率的动态变化,一种可能的方式是:所述N个时隙中前N-1个时隙中的每个时隙中的最后一个时域符号上映射有所述第一侧行数据,且所述N个时隙中的第N个时隙中的最后N个时域符号不用于发送所述第一侧行数据。
例如,在图8的基础上,终端设备可以在时域符号81上映射第一侧行数据,并且时域符号82和时域符号83均不用于发送第一侧行数据。
如图13所示,时域符号81上映射的第一侧行数据是PSSCH上承载的数据,此处,不限定时域符号81上映射的第一侧行数据,还可以是除了PSSCH上承载的数据之外的其他信息。
时域符号82和时域符号83不用于发送第一侧行数据的一种实现方式是:终端设备在时域符号82上映射有第一侧行数据,只是终端设备不发送时域符号82上映射的第一侧行数据。时域符号83为GP符号,终端设备在时域符号83上不映射第一侧行数据。
时域符号82和时域符号83不用于发送第一侧行数据的另一种实现方式是:终端设备在时域符号82和时域符号83上均不映射第一侧行数据,具体如图13所示。
另外,如图13可知,终端设备在时域符号81上映射第一侧行数据,同时,时域符号82和时域符号83不用于发送第一侧行数据,可使得LTE SL和NR SL在频分复用的过程中,LTE SL和NR SL所分配到的发送功率一直相同,从而有效避免了两种不同侧行链路上发送功率的动态变化。
本实施例提供的侧行数据传输方法,通过在NR SL的N个时隙中前N-1个时隙中的每个时隙中的最后一个时域符号上映射有所述第一侧行数据,以及N个时隙中的第N个时隙中的最后N个时域符号不用于发送所述第一侧行数据,保证在LTE SL的一个子帧内,LTE SL和NR SL分配到的发送功率一直相同,从而避免了NR SL和LTE SL上发送功率的动态变化或动态调整。
以上实施例中以N=2为例,在本实施例中,N的取值可以不限于2,例如,在本实施例中N可以等于4或8。
以N=4为例,如图14所示,140表示LTE SL的一个子帧,141-144分别表示NR SL的一个时隙,NR SL的子载波间隔是LTE SL的子载波间隔的4倍,LTE SL的一个子帧的时间长度等于NR SL的4个时隙的时间长度的总和。并且NR SL的4个时域符号的时间长度与LTE SL的一个时域符号的时间长度相同。例如,145表示LTE SL的子帧中的最后一个时域符号。146表示4个NR SL的时隙中第4个时隙的最后4个时域符号。LTE SL的子帧中的最后一个时域符号对应于第4个NR SL时隙的最后4个时域符号。
为了减少两种不同侧行链路上发送功率的动态变化,终端设备可以在如图14所示的NR SL的4个时隙中前3个时隙的每个时隙的最后一个时域符号上映射第一侧行数据,此处可映射的第一侧行数据与上述实施例所述的时域符号81中可映射的第一侧行数据一致,此处不再赘述。如图15所示,NR SL的4个时隙中前3个时隙的每个时隙的最后一个时域符号上映射有物理侧行共享信道PSSCH上承载的数据。
除了上述方法,减少两种不同侧行链路上发送功率的动态变化的另一种实现方式是,在图14的基础上,终端设备在时隙144的最后4个时域符号的前3个时域符号上正常映射第一侧行数据,但是,该终端设备并不发送该时隙144的最后4个时域符号的前3个时域符号上映射的第一侧行数据。或者,如图16所示,终端设备不在时隙144的最后4个时域符号上映射第一侧行数据。
再一种实现方式是如图17所示的方式,即终端设备在NR SL的4个时隙中前3个时隙的每个时隙的最后一个时域符号上映射第一侧行数据,同时,终端设备不在时隙144的最后4个时域符号上映射第一侧行数据。在这种方式中,可使得LTE SL和NR SL在频分复用的过程中,LTE SL和NR SL分配到的发送功率一直相同,从而有效避免了两种不同侧行链路上发送功率的动态变化。
可以理解,N=8时,减少或避免两种不同侧行链路上发送功率的动态变化的可实现方式同理于上述实施例所述的方法,此处不再赘述。
本实施例提供的侧行数据传输方法,通过在NR SL的N个时隙的前N-1个时隙的每个时隙的最后一个时域符号上映射第一侧行数据,以及在该NR SL的N个时隙的第N个时隙的最后N个时域符号上不发送第一侧行数据,保证在LTE SL的一个子帧内,LTE SL和NR SL分配到的发送功率一直相同,从而避免了NR SL和LTE SL上发送功率的动态变化或动态调整。
图18为本申请提供的终端设备的一种结构示意图,如图18所示,该终端设备180包括:
确定模块181,用于根据第一侧行链路的子载波间隔,确定所述第一侧行链路的N个时隙,其中,N 大于或等于2,所述第一侧行链路的N个时隙的时域长度与第二侧行链路的一个子帧的时域长度相同,所述第一侧行链路是第一通信系统中的侧行链路,所述第二侧行链路是第二通信系统中的侧行链路;
发送模块182,用于在所述第二侧行链路的子帧中用于发送所述第二侧行链路上的第二侧行数据的时域符号所占用的时间内,发送所述第二侧行数据和所述第一侧行链路上的第一侧行数据;和/或,在所述子帧中不用于发送所述第二侧行数据的时域符号所占用的时间内,所述第一侧行数据和所述第二侧行数据不被所述终端设备发送。
本实施例提供的终端设备,用于执行前述任一方法实施例中终端设备侧的技术方案,其实现原理和技术效果类似,此处不再赘述。
在上述图18所示的实施例的基础上,所述第一通信系统为新无线接入技术NR系统,所述第二通信系统为长期演进LTE系统。
可选地,所述N个时隙中前N-1个时隙中的每个时隙中的最后一个时域符号上映射有所述第一侧行数据。
可选地,所述前N-1个时隙中的每个时隙中的最后一个时域符号上映射的所述第一侧行数据包括如下至少一种:
物理侧行共享信道PSSCH上承载的数据、解调参考信号DMRS、信道状态信息参考信号CSI-RS、侦听参考信号SRS、所述终端设备随机生成的数据。
可选地,所述N个时隙中的第N个时隙中的最后N个时域符号不用于发送所述第一侧行数据。
可选地,所述N个时隙中每个时隙中的最后一个时域符号为保护间隔GP符号。
可选地,所述N个时隙中的第N个时隙中的最后N个时域符号中的前N-1时域符号用于映射所述第一侧行数据,且所述前N-1时域符号上映射的所述第一侧行数据不被所述终端设备所发送。
可选地,所述前N-1时域符号上映射的所述第一侧行数据包括物理侧行共享信道PSSCH上承载的数据。
可选地,所述N个时隙中的第N个时隙中的最后N个时域符号中的前N-1时域符号不用于映射所述第一侧行数据。
可选地,所述第一侧行链路的子载波间隔是所述第二侧行链路的子载波间隔的N倍。
可选地,所述第二侧行链路的一个时域符号的时域长度等于所述第一侧行链路的N个时域符号的时域长度。
可选地,所述发送模块发送所述第二侧行链路和所述第一侧行链路上的第一侧行数据时,具体用于:在第二载波上发送所述第二侧行链路,以及在第一载波上发送所述第一侧行数据。
可选地,所述第一载波和所述第二载波是同一个频带内的不同载波。
图19为本申请提供的终端设备的另一种结构示意图,如图19所示,该终端设备190包括:
处理器191、存储器192、与网络设备或其他终端设备进行通信的接口193;
所述存储器192存储计算机执行指令;
所述处理器191执行所述存储器192存储的计算机执行指令,使得所述处理器191执行前述任一方法实施例中终端设备侧的技术方案。
图19为终端设备的一种简单设计,本申请实施例不限制终端设备中处理器和存储器的个数,图19仅以个数为1作为示例说明。
在上述图19所示的终端设备的一种具体实现中,存储器、处理器以及接口之间可以通过总线连接,可选的,存储器可以集成在处理器内部。
本申请实施例还提供一种计算机可读存储介质所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中终端设备的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中终端设备的技术方案。
可选地,上述处理器可以为芯片。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中终端设备的技术方案。
本申请实施例还提供一种芯片,包括:处理模块与通信接口,该处理模块能执行前述任一方法实施例中终端设备侧的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行前述任一方法实施例中终端 设备侧的技术方案。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述终端设备的具体实现中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,简称:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。

Claims (28)

  1. 一种侧行数据传输方法,其特征在于,所述方法包括:
    终端设备根据第一侧行链路的子载波间隔,确定所述第一侧行链路的N个时隙,其中,N大于或等于2,所述第一侧行链路的N个时隙的时域长度与第二侧行链路的一个子帧的时域长度相同,所述第一侧行链路是第一通信系统中的侧行链路,所述第二侧行链路是第二通信系统中的侧行链路;
    所述终端设备在所述第二侧行链路的子帧中用于发送所述第二侧行链路上的第二侧行数据的时域符号所占用的时间内,发送所述第二侧行数据和所述第一侧行链路上的第一侧行数据;和/或,在所述子帧中不用于发送所述第二侧行数据的时域符号所占用的时间内,所述第一侧行数据和所述第二侧行数据不被所述终端设备发送。
  2. 根据权利要求1所述的方法,其特征在于,所述第一通信系统为新无线NR系统,所述第二通信系统为长期演进LTE系统。
  3. 根据权利要求1或2所述的方法,其特征在于,所述N个时隙中前N-1个时隙中的每个时隙中的最后一个时域符号上映射有所述第一侧行数据。
  4. 根据权利要求3所述的方法,其特征在于,所述前N-1个时隙中的每个时隙中的最后一个时域符号上映射的所述第一侧行数据包括如下至少一种:
    物理侧行共享信道PSSCH上承载的数据、解调参考信号DMRS、信道状态信息参考信号CSI-RS、侦听参考信号SRS、所述终端设备随机生成的数据。
  5. 根据权利要求1或2所述的方法,其特征在于,所述N个时隙中的第N个时隙中的最后N个时域符号不用于发送所述第一侧行数据。
  6. 根据权利要求5所述的方法,其特征在于,所述N个时隙中每个时隙中的最后一个时域符号为保护间隔GP符号。
  7. 根据权利要求6所述的方法,其特征在于,所述N个时隙中的第N个时隙中的最后N个时域符号中的前N-1时域符号用于映射所述第一侧行数据,且所述前N-1时域符号上映射的所述第一侧行数据不被所述终端设备所发送。
  8. 根据权利要求7所述的方法,其特征在于,所述前N-1时域符号上映射的所述第一侧行数据包括物理侧行共享信道PSSCH上承载的数据。
  9. 根据权利要求6所述的方法,其特征在于,所述N个时隙中的第N个时隙中的最后N个时域符号中的前N-1时域符号不用于映射所述第一侧行数据。
  10. 根据权利要求1所述的方法,其特征在于,所述第一侧行链路的子载波间隔是所述第二侧行链路的子载波间隔的N倍。
  11. 根据权利要求10所述的方法,其特征在于,所述第二侧行链路的一个时域符号的时域长度等于所述第一侧行链路的N个时域符号的时域长度。
  12. 根据权利要求1所述的方法,其特征在于,所述发送所述第二侧行链路和所述第一侧行链路上的第一侧行数据,包括:
    在第二载波上发送所述第二侧行链路,以及在第一载波上发送所述第一侧行数据。
  13. 根据权利要求12所述的方法,其特征在于,所述第一载波和所述第二载波是同一个频带内的不同载波。
  14. 一种终端设备,其特征在于,包括:
    确定模块,用于根据第一侧行链路的子载波间隔,确定所述第一侧行链路的N个时隙,其中,N大于或等于2,所述第一侧行链路的N个时隙的时域长度与第二侧行链路的一个子帧的时域长度相同,所述第一侧行链路是第一通信系统中的侧行链路,所述第二侧行链路是第二通信系统中的侧行链路;
    发送模块,用于在所述第二侧行链路的子帧中用于发送所述第二侧行链路上的第二侧行数据的时域符号所占用的时间内,发送所述第二侧行数据和所述第一侧行链路上的第一侧行数据;和/或,在所述子帧中不用于发送所述第二侧行数据的时域符号所占用的时间内,所述第一侧行数据和所述第二侧行数据不被所述终端设备发送。
  15. 根据权利要求14所述的终端设备,其特征在于,所述第一通信系统为新无线NR系统,所述第二通信系统为长期演进LTE系统。
  16. 根据权利要求14或15所述的终端设备,其特征在于,所述N个时隙中前N-1个时隙中的每个时隙中的最后一个时域符号上映射有所述第一侧行数据。
  17. 根据权利要求16所述的终端设备,其特征在于,所述前N-1个时隙中的每个时隙中的最后一 个时域符号上映射的所述第一侧行数据包括如下至少一种:
    物理侧行共享信道PSSCH上承载的数据、解调参考信号DMRS、信道状态信息参考信号CSI-RS、侦听参考信号SRS、所述终端设备随机生成的数据。
  18. 根据权利要求14或15所述的终端设备,其特征在于,所述N个时隙中的第N个时隙中的最后N个时域符号不用于发送所述第一侧行数据。
  19. 根据权利要求18所述的终端设备,其特征在于,所述N个时隙中每个时隙中的最后一个时域符号为保护间隔GP符号。
  20. 根据权利要求19所述的终端设备,其特征在于,所述N个时隙中的第N个时隙中的最后N个时域符号中的前N-1时域符号用于映射所述第一侧行数据,且所述前N-1时域符号上映射的所述第一侧行数据不被所述终端设备所发送。
  21. 根据权利要求20所述的终端设备,其特征在于,所述前N-1时域符号上映射的所述第一侧行数据包括物理侧行共享信道PSSCH上承载的数据。
  22. 根据权利要求19所述的终端设备,其特征在于,所述N个时隙中的第N个时隙中的最后N个时域符号中的前N-1时域符号不用于映射所述第一侧行数据。
  23. 根据权利要求14所述的终端设备,其特征在于,所述第一侧行链路的子载波间隔是所述第二侧行链路的子载波间隔的N倍。
  24. 根据权利要求23所述的终端设备,其特征在于,所述第二侧行链路的一个时域符号的时域长度等于所述第一侧行链路的N个时域符号的时域长度。
  25. 根据权利要求14所述的终端设备,其特征在于,所述发送模块发送所述第二侧行链路和所述第一侧行链路上的第一侧行数据时,具体用于:
    在第二载波上发送所述第二侧行链路,以及在第一载波上发送所述第一侧行数据。
  26. 根据权利要求25所述的终端设备,其特征在于,所述第一载波和所述第二载波是同一个频带内的不同载波。
  27. 一种终端设备,其特征在于,包括:
    处理器、存储器、与网络设备或其他终端设备进行侧行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至13任一项所述的侧行数据传输方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1至13任一项所述的侧行数据传输方法。
PCT/CN2019/082769 2019-04-15 2019-04-15 侧行数据传输方法、设备及存储介质 WO2020210961A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/082769 WO2020210961A1 (zh) 2019-04-15 2019-04-15 侧行数据传输方法、设备及存储介质
CN201980095447.2A CN113711628B (zh) 2019-04-15 2019-04-15 侧行数据传输方法、设备、存储介质及芯片
US17/501,724 US20220039118A1 (en) 2019-04-15 2021-10-14 Sidelink data transmission method, device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/082769 WO2020210961A1 (zh) 2019-04-15 2019-04-15 侧行数据传输方法、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/501,724 Continuation US20220039118A1 (en) 2019-04-15 2021-10-14 Sidelink data transmission method, device and storage medium

Publications (1)

Publication Number Publication Date
WO2020210961A1 true WO2020210961A1 (zh) 2020-10-22

Family

ID=72837637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082769 WO2020210961A1 (zh) 2019-04-15 2019-04-15 侧行数据传输方法、设备及存储介质

Country Status (3)

Country Link
US (1) US20220039118A1 (zh)
CN (1) CN113711628B (zh)
WO (1) WO2020210961A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220159473A1 (en) * 2020-11-13 2022-05-19 Parallel Wireless, Inc. 4G/5G Dynamic Spectrum Sharing (DSS) Analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230030066A1 (en) * 2021-07-29 2023-02-02 Qualcomm Incorporated Intra-band carrier aggregation/dual connectivity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180035416A1 (en) * 2016-05-20 2018-02-01 Lg Electronics Inc. Method and apparatus for handling dc subcarrier in nr carrier in wireless communication system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10511422B2 (en) * 2015-10-01 2019-12-17 Lg Electronics Inc. Method and terminal for transmitting reference signal in D2D communication
CN110166198A (zh) * 2018-02-12 2019-08-23 北京三星通信技术研究有限公司 旁路信号发送方法和设备
CN110392392B (zh) * 2018-04-16 2021-07-09 华为技术有限公司 通信方法、通信装置及可读存储介质
KR20200018210A (ko) * 2018-08-09 2020-02-19 삼성전자주식회사 무선 셀룰라 통신 시스템에서 사이드링크 신호 송수신 방법 및 장치
KR20200087017A (ko) * 2019-01-10 2020-07-20 삼성전자주식회사 무선 통신 시스템에서 동기 신호를 전송하기 위한 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180035416A1 (en) * 2016-05-20 2018-02-01 Lg Electronics Inc. Method and apparatus for handling dc subcarrier in nr carrier in wireless communication system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
OPPO: "Discussion on coexistence in NR-V2X", R1-1812830, 3GPP TSG-RAN WG1 MEETING #95, 16 November 2018 (2018-11-16), XP051554790, DOI: 20191226164009A *
OPPO: "Enhancement of LTE Uu and NR Uu to control NR sidelink", R1-1810987, 3GPP TSG RAN WG1 MEETING #94BIS, 12 October 2018 (2018-10-12), XP051518392, DOI: 20191226163605A *
PANASONIC: "Discussion on coexistence mechanisms for LTE sidelink and NR sidelink", R1-1810954, 3GPP TSG RAN WG1 MEETING #94BIS, 12 October 2018 (2018-10-12), XP051518359, DOI: 20191226163412 *
VIVO: "On coexistence of NR and LTE sidelink for V2X", R1-1812311, 3GPP TSG RAN WG1 MEETING #95, 16 November 2018 (2018-11-16), XP051554216, DOI: 20191226164218A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220159473A1 (en) * 2020-11-13 2022-05-19 Parallel Wireless, Inc. 4G/5G Dynamic Spectrum Sharing (DSS) Analysis

Also Published As

Publication number Publication date
CN113711628B (zh) 2023-06-06
CN113711628A (zh) 2021-11-26
US20220039118A1 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
CN112333827B (zh) 侧行通信的方法、终端设备和网络设备
JP2022549595A (ja) データ送信方法と装置
WO2018000929A1 (zh) 一种子帧配置方法及相关设备
WO2020200017A1 (zh) 一种通信方法及装置
CN107734672B (zh) 一种通信接入的方法和设备
KR102473304B1 (ko) 통신 파라미터 조정 방법 및 장치
CN116390228A (zh) 确定传输资源的方法和装置
WO2020025042A1 (zh) 资源配置的方法和终端设备
WO2020025040A1 (zh) 资源配置的方法和终端设备
JPWO2017208286A1 (ja) 無線通信装置、および無線通信方法
EP4024999A1 (en) Communication method, device, and storage medium
US11805519B2 (en) Method for determining transmission bandwidth, device and storage medium
US20220039118A1 (en) Sidelink data transmission method, device and storage medium
WO2021062813A1 (zh) 确定数据传输的时域资源的方法、装置及计算机存储介质
WO2020015693A9 (zh) 侧行通信的方法、终端设备和网络设备
JP7329531B2 (ja) 同期信号を送信するための無線デバイス、ネットワークノード、およびこれらにおける方法
CN108886765A (zh) 传输上行控制信号的方法和装置
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020155168A1 (zh) 用于非授权频谱的无线通信方法、网络设备和终端设备
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2021227071A1 (zh) 保护间隔的确定方法、设备及存储介质
WO2023130480A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
CN112789925B (zh) 用于指示空间关系信息的方法和设备
US20240031092A1 (en) Terminal device and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925128

Country of ref document: EP

Kind code of ref document: A1