WO2023044685A1 - 一种高通量油水分离复合金属网及其制备方法与应用 - Google Patents

一种高通量油水分离复合金属网及其制备方法与应用 Download PDF

Info

Publication number
WO2023044685A1
WO2023044685A1 PCT/CN2021/120013 CN2021120013W WO2023044685A1 WO 2023044685 A1 WO2023044685 A1 WO 2023044685A1 CN 2021120013 W CN2021120013 W CN 2021120013W WO 2023044685 A1 WO2023044685 A1 WO 2023044685A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
metal mesh
water separation
composite metal
throughput
Prior art date
Application number
PCT/CN2021/120013
Other languages
English (en)
French (fr)
Inventor
李武龙
李战雄
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to PCT/CN2021/120013 priority Critical patent/WO2023044685A1/zh
Publication of WO2023044685A1 publication Critical patent/WO2023044685A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Definitions

  • the invention is an environmental protection technology, and relates to a composite metal mesh with oil-water separation function and a preparation method thereof, in particular to a method for grafting and polymerizing a fluorine-containing alkyl aromatic amine through a covalent bond of a diazo radical, and to The invention relates to a high-flux oil-water separation composite metal mesh prepared by mesh surface modification, which belongs to the technical field of high-flux oil-water separation materials.
  • Water is the source of life and the most basic element for the stability and development of the entire human society. Human life is inseparable from water. Both water and oil are important resources on the earth. The phenomenon of oil in water and the problem of water in oil will affect water and oil. affect normal use. The main source of oil pollution in water bodies is human activities, and the leakage of oil in sea transportation will cause marine environmental pollution. The doping of water in refined oil will also reduce the quality of oil and affect the efficiency of oil use.
  • the present invention uses diazonium radical covalent graft polymerization method for surface modification of metal mesh materials, and discloses a high-flux oil-water separation composite metal mesh material and a preparation method thereof.
  • the technical solution for realizing the purpose of the present invention is: a high-throughput oil-water separation composite metal mesh, including the chemical structure of the metal mesh and the grafted chain on the surface of the metal mesh.
  • the chemical structure is as follows.
  • the high-flux oil-water separation composite metal mesh can be expressed as follows.
  • n 0 ⁇ 100, preferably 10 ⁇ 60;
  • R 1 H, -CF 3 , -C 2 F 5 or -C 4 F 9 ;
  • R 2 -CF 3 , -C 2 F 5 or -C 4 F9 .
  • the invention discloses a preparation method of the above-mentioned high-throughput oil-water separation composite metal mesh.
  • the metal mesh, a fluorine-containing alkylbenzene diazonium salt and a reducing agent are mixed and then reacted to obtain a high-throughput oil-water separation composite metal mesh. It specifically includes the following steps: (1) Pre-cleaning: the metal mesh is pre-cleaned ultrasonically in acetone, absolute ethanol and deionized water, and then dried for later use.
  • the metal mesh is copper wire mesh, barbed wire mesh, alloy wire mesh or mixed braided metal mesh or the like. It has the advantages of easy molding and high strength when used for oil-water separation.
  • the reaction temperature is 10-45° C., preferably room temperature; the reaction time is 0.2-48 hours, preferably 0.5-3 hours; the reducing agent is iron powder or vitamin C.
  • the fluorine-containing alkylbenzene diazonium salt is reduced to the fluorine-containing alkylbenzene radical monomer, the in-situ one-electron radical covalent graft polymerization reaction is carried out on the surface of the metal mesh.
  • the reaction time has a key influence on the product performance. With vitamin C as the reducing agent, a significant improvement can be achieved after 1 hour of reaction.
  • the chemical structural formula of the fluorine-containing alkylaniline monomer is as follows.
  • the invention discloses the application of the above-mentioned high-throughput oil-water separation composite metal mesh in oil-water separation; specifically, the oil-water mixture is passed through the above-mentioned high-throughput oil-water separation composite metal mesh to complete the oil-water separation.
  • the present invention utilizes the method of covalent graft polymerization of aromatic diazonium free radicals containing fluorine-containing alkyl aniline to carry out surface modification and finishing of the metal mesh, Therefore, the high-throughput oil-water separation composite metal mesh is endowed with excellent durability and fastness, and the cycle times and service life of its oil-water separation are greatly improved.
  • the present invention treats the metal wire in the composite metal mesh as surface chemical modification, and the super-hydrophobic and super-oleophilic coating coated on the surface of the metal wire does not affect the flux of the composite metal mesh, and the metal mesh can achieve good stability and high-pass High volume, high separation efficiency oil-water separation.
  • the fluoroalkyl group is a short carbon chain fluoroalkyl group. Compared with long carbon chain fluoroalkane materials that are not easy to degrade, the obtained high-throughput oil-water separation composite metal mesh not only The method has the advantage of low price, and the treatment method provided is also an environment-friendly high-flux oil-water separation composite metal mesh preparation method.
  • the preparation method of the high-throughput oil-water separation composite metal mesh of the present invention is a "one-bath method", the reaction medium is a dilute acid solution, the reaction conditions are low temperature and room temperature, the preparation process is simple, the conditions are mild, and it is easy for large-scale industrial production and promotion .
  • Fig. 1 is a scanning electron microscope (SEM) image, a schematic diagram of a chemical structure and a diagram of an oil-water separation mechanism of an oil-water separation composite metal mesh according to an embodiment of the present invention.
  • Fig. 2 is the test diagram of the contact angle of the copper wire mesh before grafting and finishing, and the measured contact angle is 130.7°.
  • Fig. 3 is a scanning electron microscope (SEM) image of the fluorine-containing alkyl radical graft polymerization surface-treated composite metal mesh prepared in Example 1.
  • Fig. 4 is the infrared spectrum of the composite metal mesh prepared in Example 1 of the present invention.
  • Fig. 5 is an X-ray diffraction energy spectrum diagram of the composite metal mesh prepared in Example 1 of the present invention.
  • Fig. 6 is a test diagram of the contact angle of the fluorine-containing alkyl free radical graft polymerization surface-treated composite metal mesh prepared in Example 1, and the measured contact angle is 169.9°.
  • Fig. 7 is a test diagram of the contact angle after mechanical friction of the fluorine-containing alkyl free radical graft polymerization surface-treated composite metal mesh prepared in Example 1, and the measured contact angle is 157.4°.
  • Fig. 8 is a test diagram of rolling contact angle of the fluorine-containing alkyl free radical graft polymerization surface-treated composite metal mesh prepared in Example 1, and the measured rolling angle is 1.07°.
  • Fig. 9 is a test diagram of the rolling contact angle after mechanical friction of the fluorine-containing alkyl free radical graft polymerization surface-treated composite metal mesh prepared in Example 1, and the measured rolling angle is 3.25°.
  • Fig. 10 is a test diagram of the oil contact angle of the fluorine-containing alkyl free radical graft polymerization surface-treated composite metal mesh prepared in Example 1, and the measured contact angle is 0°.
  • Fig. 11 is the efficiency of different oil-water separations of the fluorine-containing alkyl radical graft polymerization surface-treated composite metal mesh prepared in Example 1.
  • Figure 12 shows the separation efficiency of carbon tetrachloride and water of the surface-treated composite metal mesh prepared by grafting polymerization of fluorine-containing alkyl radicals prepared in Example 1, and the reusability test, the number of cycles is 10 times.
  • Fig. 13 is the flux of the surface-treated composite metal mesh prepared by grafting polymerization of fluorine-containing alkyl radicals prepared in Example 1 when separating different oil-water mixtures.
  • Fig. 14 is a scanning electron microscope (SEM) image of the fluorine-containing alkyl radical graft polymerization surface-treated composite metal mesh prepared in Example 2.
  • the preparation method of the above-mentioned high-throughput oil-water separation composite metal mesh disclosed by the present invention is as follows: (1) Pre-cleaning: the metal mesh is ultrasonically cleaned with acetone, absolute ethanol and deionized water in sequence, and dried to obtain a clean surface of the metal mesh material.
  • Diazotization Diazotization of fluorine-containing alkylaniline monomers in dilute acid solution of sodium nitrite to form fluorine-containing alkylbenzene diazonium salts.
  • Sodium nitrite and fluorine-containing alkylaniline monomers are used as reaction monomers in a molar ratio of 1.1:1.
  • sodium nitrite is added to a dilute acid solution to dissolve, and then fluorine-containing alkylaniline is added, stirred conventionally, and diazotized to form Fluorine-containing alkylbenzene diazonium salt.
  • the structure and performance of the high-throughput oil-water separation composite metal mesh prepared by the present invention are tested as follows: contact angle test: the DSA100 automatic microscopic droplet wettability measuring instrument of German Krüss company is used to test the surface before and after finishing and after mechanical friction.
  • contact angle test the DSA100 automatic microscopic droplet wettability measuring instrument of German Krüss company is used to test the surface before and after finishing and after mechanical friction.
  • water was selected as the test droplet, and the droplet volume was 6 ⁇ L, and the average value was taken after five tests, which showed that the modified metal mesh had super lipophilic and super hydrophobic properties.
  • the separation efficiency ( ⁇ ) of the oil-water mixture is calculated by collecting the separated oil volume (V1) and the oil volume (V0) in the initial oil-water mixture through the formula (1): .
  • the oil-water separation copper mesh of the present invention has high separation efficiency for the mixture of chloroform, petroleum ether, toluene, carbon tetrachloride and water.
  • Circulation ability test of oil-water separation copper wire mesh test the recycle ability of the oil-water separation copper mesh prepared by the present invention in carbon tetrachloride and water mixture (the volume ratio of organic solvent and water is 1: 1), the result can be seen that, After the oil-water separation copper mesh was recycled for 10 times, its separation efficiency was still high, indicating that the oil-water separation copper mesh can be reused many times.
  • the oil-water separation metal mesh prepared by the present invention is used for the respective mixtures of chloroform, methylene chloride, toluene, and carbon tetrachloride with water (the volume ratio of organic solvent to water is 1:1) Carry out separation, measure the volume of the organic solvent after separation, and measure the separation time at the same time, and calculate it by formula (2): .
  • V unit L
  • S unit m 2
  • T unit h
  • the raw materials involved in the present invention are all commercially available conventional substances, and the test method is a conventional test method for oil-water separation materials.
  • the metal mesh modification method of the present invention has simple process, easy operation and low price, and can obtain high-throughput and multiple-cycle oil-water separation effects, which is very important for large-scale production of oil-water separation materials.
  • Embodiment 1 (1) The three-neck flask is equipped with a thermometer, the T-shaped tee is equipped with an air balloon, and a magnetic stirrer is equipped. Add 100 ml of 1.5wt% hydrochloric acid solution, cool to 2°C in a cold bath, add 380mg of sodium nitrite, cool to -3°C in a cold bath, stir and dissolve to form a sodium nitrite hydrochloric acid solution; then add 1.15g of 3,5- The diazotization reaction of bis(trifluoromethyl)aniline was incubated at -3°C for 1 hour to generate 3,5-bis(trifluoromethyl)aniline diazonium salt, which was directly used in step (2).
  • Fig. 3 is a scanning electron microscope (SEM) image of the fluorine-containing alkyl free radical graft polymerization surface-treated composite metal mesh prepared above.
  • the high-throughput oil-water separation composite metal mesh prepared above was used as a treated sample, and the total reflection infrared spectrum (ATR-FTIR, see Figure 4) of the treated copper mesh was tested, among which, 1278.43 cm -1 , 1183.86 cm -1 , 1128.69 cm -1 is the characteristic absorption peak of trifluoromethyl (CF 3 ), 1367.97cm -1 , 903.98cm -1 , 845.85cm -1 , and 681.77cm -1 are the characteristic absorption peaks of the benzene ring skeleton.
  • SEM scanning electron microscope
  • the DSA100 automatic microscopic droplet wettability measuring instrument of German Krüss company was used to test the wettability of the above-mentioned copper wire mesh. Water was selected as the test droplet, and the droplet volume was 6 ⁇ L. The average value was taken from the five tests respectively. See accompanying drawings 6, 7, 8, 9, 10.
  • the measured static water contact angles on the copper mesh surface before and after treatment and after mechanical friction were 130.7°, 169.9°, 157.4°, and the dynamic rolling angles were 1.07°, 3.25°, and the static n-tetradecane contact angles were all 0° , indicating that the modified copper mesh has super-oleophilic and super-hydrophobic properties.
  • Example 2 Add 2g of Fe powder to 3,5-bis(trifluoromethyl)aniline diazonium salt solution (the same method as in Example 1), then immerse in a 4 ⁇ 4cm 2 pre-cleaned copper grid, and react at room temperature 36h, 3,5-bis(trifluoromethyl)aniline diazonium salt was reduced to 3,5-bis(trifluoromethyl)benzene radical under the action of reducing agent iron powder, and the original Free radical covalent grafting polymerization; take out the copper mesh to terminate the reaction, put it in water for ultrasonic washing for 10 minutes, and then put it in an oven to dry at 50°C to obtain a high-throughput oil-water separation composite metal mesh.
  • Example 3 Add 2g of Fe powder to the 3,5-bis(trifluoromethyl)aniline diazonium salt solution (the same method as in Example 1), then immerse in a 4 ⁇ 4cm 2 pre-cleaned copper grid, and react at room temperature 12h, 3,5-bis(trifluoromethyl)aniline diazonium salt was reduced to 3,5-bis(trifluoromethyl)benzene radical under the action of reducing agent iron powder, and the original Free radical covalent graft polymerization; take out the copper mesh to terminate the reaction, put it in water for ultrasonic washing for 10 minutes, and then put it in an oven to dry at 50°C to obtain a high-throughput oil-water separation composite metal mesh with a surface static water contact angle of 133.9° .
  • Example 4 Add 88 mg of vitamin C to the 3,5-bis(trifluoromethyl)aniline diazonium salt solution (the same method as in Example 1), then immerse in a 4 ⁇ 4cm 2 pre-cleaned copper grid, and react at room temperature 3h, 3,5-bis(trifluoromethyl)aniline diazonium salt is reduced to 3,5-bis(trifluoromethyl)benzene radical under the action of reducing agent, and completes the in-situ free radical on the surface of copper mesh base covalent graft polymerization; take out the copper mesh to terminate the reaction, put it into water for ultrasonic washing for 10 minutes, and then put it in an oven to dry at 50°C to obtain a high-flux oil-water separation composite metal mesh.
  • the surface static water contact angle is 168.5°
  • the dynamic The roll angle is 0.89°.
  • Example 5 Add 88 mg of vitamin C to the 3,5-bis(trifluoromethyl)aniline diazonium salt solution (the same method as in Example 1), then immerse in a 4 ⁇ 4cm 2 pre-cleaned copper grid, and react at room temperature 5h, 3,5-bis(trifluoromethyl)aniline diazonium salt is reduced to 3,5-bis(trifluoromethyl)benzene radical under the action of reducing agent, and completes the in situ free radical on the surface of copper mesh Based covalent graft polymerization; take out the copper mesh to terminate the reaction, put it in water for ultrasonic washing for 10 minutes, and then put it in an oven to dry at 50°C to obtain a high-flux oil-water separation composite metal mesh with a surface static water contact angle of 143.1°.
  • Example 1 discloses a super-hydrophobic fabric, using it to separate the water mixture of carbon tetrachloride, measuring the volume of the separated organic solvent, and measuring the separation time at the same time, calculated by formula (2) The obtained liquid flux is 1327L ⁇ m -2 ⁇ h -1 .
  • Embodiment 6 The chemical structural formula of m-heptafluoropropylaniline is as follows.
  • the three-necked flask is equipped with a thermometer, the T-shaped tee is equipped with an air balloon, and it is equipped with magnetic stirring.
  • Add 100 ml of 1.5wt% hydrochloric acid solution cool to 2°C in a cold bath, add 380 mg of sodium nitrite, cool to -3°C in a cold bath, stir and dissolve to form a sodium nitrite hydrochloric acid solution; then add 1.15 g of m-heptafluoride Propylaniline was incubated (-3°C) for diazotization reaction for 1 hour to generate m-heptafluoropropylaniline diazonium salt, which was directly used in step (2).
  • Metal mesh (barbed wire mesh, copper wire mesh, etc.) is easy to obtain, cheap, good stability, optional aperture and easy to modify the surface, which makes it widely used in daily life. It has a very good special wettability problem, and the prepared composite metal mesh has super-oleophilic and super-hydrophobic properties, which can realize the selective separation of oil-water mixtures. Therefore, its application in sewage treatment and separation has been expanded.
  • the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the design ideas and principles of the present invention are included in the protection of the present invention. within range.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种高通量油水分离复合金属网及其制备方法与应用,属于油水分离材料技术领域。以含氟芳香胺为反应单体,亚硝酸钠的酸性溶液为重氮化试剂,在低温条件下重氮化制得含氟芳香重氮盐;在还原剂的作用下把重氮盐还原成芳香单电子自由基;重氮自由基单体在金属基底上进行原位共价接枝聚合反应,制得高通量油水分离复合金属网。生产工艺条件温和,产品制备工艺简单及操作安全,并可大规模制备。作为以化学接枝得到的高通量油水分离复合金属网,金属表面涂层以共价键与金属丝结合,具有更强的牢度,可以很大程度的改善和提高材料的循环使用寿命及油水混合物的分离效率,对可实现大规模生产和应用的高通量油水分离材料具有重要意义。

Description

一种高通量油水分离复合金属网及其制备方法与应用 技术领域
本发明为环保技术,涉及述一种具有油水分离功能的复合金属网及其制备方法,具体涉及一种含氟烷基芳香胺通过重氮自由基共价键接枝聚合的方法,及对金属网表面改性制备的高通量油水分离复合金属网,属于高通量油水分离材料技术领域。
背景技术
水是生命之源,是整个人类社会稳定和发展最基本的要素,人类的生活离不开水,水和油都是地球上的重要资源,水中含油现象和油中含水问题,都会对水和油的正常使用造成影响。水体中油类污染的主要来源是人类活动,海上石油运输中的泄漏,会造成海洋环境污染。成品油中掺杂水分也会降低油的品质,影响油的使用效率。
目前对于油水分离问题,有着悠久的研究历史,其中传统的研究方法可分为重力式分离、离心式分离、电分离、吸附分离、气浮分离、加热油水分离法等。但这些方法都存在着分离效率低、消耗能量大、会带来二次污染和处理成本较高,还不能循环使用等问题。如何克服传统分离方法的缺点,研究新的油水分离材料,成为了目前亟待解决的问题。
随着材料表面润湿性研究的不断深入,目前己掌握制备具有超亲水、超疏水、超亲油和超疏油等特殊润湿性表面的方法。根据这些特殊润湿性表面,选择一种水相的特殊润湿性和一种油相的特殊润湿性相结合,可以进一步得到超疏水/超亲油表面、超疏油/超亲水表面、双超疏表面、双超亲表面。对于应用于油水分离领域的工业产品,除了表面性能适用外,还需要考虑制备方法以及运输、使用的便利性。
技术问题
为了解决上述问题,本发明将重氮自由基共价接枝聚合法用于金属网材料表面改性,公开了一种高通量油水分离复合金属网材料及其制备方法。
技术解决方案
实现本发明目的的技术方案是:一种高通量油水分离复合金属网,包括金属网及金属网表面接枝链的化学结构,所述化学结构如下。
Figure 534193dest_path_image001
所述高通量油水分离复合金属网可如下表示。
Figure 572557dest_path_image002
其中,n=0~100,优选10~60;R 1=H、-CF 3、-C 2F 5或-C 4F 9;R 2=-CF 3、-C 2F 5或-C 4F 9
本发明公开了上述高通量油水分离复合金属网的制备方法,将金属网、含氟烷基苯重氮盐、还原剂混合,然后进行反应,得到高通量油水分离复合金属网。具体包括如下步骤:(1)预清洗:金属网预先在丙酮、无水乙醇和去离子水中超声清洗,然后烘干,备用。
(2)重氮化:含氟烷基苯胺单体在亚硝酸钠的酸性溶液中进行重氮化形成含氟烷基苯重氮盐。
(3)还原以及共价接枝聚合:含氟烷基苯重氮盐在还原剂的作用下转变为含氟烷基苯自由基单体;含氟烷基苯自由基单体与金属网表面进行原位单电子自由基共价接枝聚合反应,得到高通量油水分离复合金属网。
本发明中,金属网为铜丝网、铁丝网、合金丝网或者混编金属网等。用于油水分离时具有易成型、强度高的优点。
本发明中,反应的温度为10~45℃,最好为室温;反应的时间为0.2~48h,优选0.5~3h;还原剂为铁粉或者维生素C。含氟烷基苯重氮盐在还原反应为含氟烷基苯自由基单体后即在金属网表面进行原位单电子自由基共价接枝聚合反应,反应时间对产品性能有关键影响,以维生素C为还原剂下,反应1小时可实现显著的进步。
含氟烷基苯胺单体的化学结构式如下。
Figure 582101dest_path_image003
含氟烷基苯重氮盐的化学结构式如下。
Figure 645478dest_path_image004
含氟烷基苯自由基单体的化学结构式如下。
Figure 715066dest_path_image005
取代基如上文。
本发明公开了上述高通量油水分离复合金属网在油水分离中的应用;具体的,将油水混合物经过上述高通量油水分离复合金属网,完成油水分离。
有益效果
与现有技术相比,本发明提供的技术方案的有益效果在于:1、本发明利用含氟烷基苯胺的芳香重氮自由基共价接枝聚合的方法对金属网进行表面改性整理,从而赋予高通量油水分离复合金属网优异的耐久牢度,大大提高了其油水分离的循环使用次数和使用寿命。
2、本发明对复合金属网中金属丝处理为表面化学改性,在金属丝表面涂覆的超疏水超亲油涂层不影响复合金属网通量,通过金属网可实现稳定性好、高通量、高分离效率的油水分离。
3、本发明所采用的氟烷基苯胺单体中,氟烷基为短碳链氟烷基,与长碳链氟烷烃类材料不易降解相比,得到的高通量油水分离复合金属网不仅具有价格低廉的优势,提供的处理方法还是一种环保的高通量油水分离复合金属网制备手段。
4、本发明高通量油水分离复合金属网的制备方法为“一浴法”,反应介质为稀酸溶液,反应条件为低温和室温,制备工艺简单、条件温和,易于大规模工业化生产和推广。
附图说明
图1是本发明实施例的油水分离复合金属网的扫描电子显微镜(SEM)图、化学结构式示意图及油水分离机理图。
图2是接枝整理前铜丝网接触角测试图,测得接触角为130.7°。
图3是实施例一制备得到的含氟烷基自由基接枝聚合表面处理复合金属网扫描电子显微镜(SEM)图。
图4是本发明实施例一制备的复合金属网红外图谱。
图5是本发明实施例一制备的复合金属网X射线衍射能谱图。
图6是实施例一制备得到的含氟烷基自由基接枝聚合表面处理复合金属网接触角测试图,测得接触角为169.9°。
图7是实施例一制备得到的含氟烷基自由基接枝聚合表面处理复合金属网机械摩擦后接触角测试图,测得接触角为157.4°。
图8是实施例一制备得到的含氟烷基自由基接枝聚合表面处理复合金属网滚动接触角测试图,测得滚动角为1.07°。
图9是实施例一制备得到的含氟烷基自由基接枝聚合表面处理复合金属网机械摩擦后滚动接触角测试图,测得滚动角为3.25°。
图10是实施例一制备得到的含氟烷基自由基接枝聚合表面处理复合金属网对油接触角测试图,测得接触角为0°。
图11是实施例一制备得到的含氟烷基自由基接枝聚合表面处理复合金属网对不同油水分离的效率。
图12是实施例一制备得到的含氟烷基自由基接枝聚合表面处理复合金属网对四氯化碳与水的分离效率,可重复使用能力测试,循环次数为10次。
图13是实施例一制备得到的含氟烷基自由基接枝聚合表面处理复合金属网对不同油水混合物分离时的通量。
图14是实施例二制备得到的含氟烷基自由基接枝聚合表面处理复合金属网扫描电子显微镜(SEM)图。
本发明的实施方式
本发明公开的上述高通量油水分离复合金属网的制备方法如下:(1)预清洗:金属网依次分别用丙酮、无水乙醇和去离子水超声清,干燥得表面干净金属网材料。
(2)重氮化:含氟烷基苯胺单体在亚硝酸钠的稀酸溶液中进行重氮化形成含氟烷基苯重氮盐。
(3)还原以及共价接枝聚合:含氟烷基苯重氮盐在还原剂的作用下转变为含氟烷基苯自由基单体;含氟烷基苯自由基单体与金属网进行原位单电子自由基共价接枝聚合反应,得到高通量油水分离复合金属网。
本发明公开的上述高通量油水分离复合金属网的制备方法中,反应示意如下:重氮化。
Figure 240725dest_path_image006
以亚硝酸钠和含氟烷基苯胺单体按照1.1:1摩尔比作为反应单体,先把亚硝酸钠加入稀酸溶液中溶解,再加入含氟烷基苯胺,常规搅拌,重氮化生成含氟烷基苯重氮盐。
还原以及共价接枝聚合。
Figure 53960dest_path_image007
Figure 551938dest_path_image008
将还原剂、金属网加入上述含氟烷基苯重氮盐溶液中,室温反应,把含氟烷基苯重氮盐还原成含氟烷基苯自由基单体;含氟烷基苯自由基单体在金属网上进行原位自由基共价接枝聚合反应;反应结束后取出改性后的金属网,放入水中超声洗涤,干燥后得到高通量油水分离复合金属网;图1是本发明油水分离复合金属网(铜网)的扫描电子显微镜(SEM)图、化学结构式示意图及油水分离机理图。
将本发明制备的高通量油水分离复合金属网进行结构和性能检测,具体如下:接触角测试:采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对整理前后及机械摩擦后的金属丝网润湿性能测试,选取水作为测试液滴,液滴体积为6μL,分别测试五次取其平均值,表明改性整理后的金属网具有超亲油超疏水性能。
机械摩擦测试:将制备好的样品放于800目的砂纸之上,将100g重的砝码放在样品之上,手动牵引向前移动10cm,然后旋转180度,继续移动10 cm,此过程为一个机械摩擦循环过程;然后重复5个循环,结束,测其摩擦后样品的对水接触角数据。
测量不同油水混合物的分离效率:油水混合物的分离效率(η)是通过收集分离后的油体积(V1)与初始油水混合物中的油体积(V0)通过公式(1)进行计算得到:
Figure 995688dest_path_image009
采用制备的油水分离金属网通过公式(1)对三氯甲烷、石油醚、甲苯、四氯化碳各自与水混合物(有机溶剂与水的体积比为1∶1)的分离效率,结果可以看出,本发明的油水分离铜网对于三氯甲烷、石油醚、甲苯、四氯化碳与水混合物的分离效率高。
油水分离铜丝网的循环能力测试:测试本发明制备的油水分离铜网在四氯化碳与水混合物(有机溶剂与水的体积比为1∶1)的循环使用能力,结果可以看出,油水分离铜网循环使用10次后,其分离效率仍然高,说明该油水分离铜网可以进行多次重复利用。
不同油水混合物通量的测试:采用本发明制备的油水分离金属网分别对三氯甲烷、二氯甲烷、甲苯、四氯化碳各自与水混合物(有机溶剂与水的体积比为1∶1)进行分离,测量分离后的有机溶剂的体积,同时测量分离时间,通过公式(2)计算得到:
Figure 680748dest_path_image010
F为液体通量、V(单位L)为渗透液体积,S(单位m 2)为有效分离面积,T(单位h)为渗透通过时间。
下面结合附图和实施例对本发明技术方案作进一步描述;本发明涉及的原料都为市售常规物质,测试方法为油水分离材料常规测试方法。与现有技术相比,本发明金属网改性方法工艺简单、操作容易和价格低廉,可以获得高通量和多次循环利用的油水分离效果,这一点对于大规模生产油水分离材料非常重要。
制备洁净的金属网:取100目铜网并用丙酮超声清洗10min,再用无水乙醇超声清洗10min,最后用去离子水超声清洗10min,干燥,得表面干净铜网材料,测得接触角为130.7°,参见图2;用于以下实验。
实施例一:(1)三口烧瓶配备温度计,T型三通配备空气球,装备磁力搅拌。加入100 ml,1.5wt%的盐酸溶液,冷浴降温至2℃,加入380mg亚硝酸钠,冷浴降温至-3℃,搅拌溶解形成亚硝酸钠盐酸溶液;再加入1.15g的3,5-双(三氟甲基)苯胺保温(-3℃)重氮化反应1h,生成3,5-双(三氟甲基)苯胺重氮盐,直接用于步骤(2)。
(2)在上述3,5-双(三氟甲基)苯胺重氮盐溶液中加入88mg维生素C,再浸入一块4×4cm 2预清洗的铜网,室温反应1h,3,5-双(三氟甲基)苯胺重氮盐在还原剂维生素C的作用下被还原成3,5-双(三氟甲基)苯自由基,并在铜网表面完成原位自由基共价接枝聚合;取出铜网终止反应,放入水中进行超声水洗10min,然后放入烘箱中50℃干燥,得高通量油水分离复合金属网。
图3是上述制备得到的含氟烷基自由基接枝聚合表面处理复合金属网扫描电子显微镜(SEM)图。将上述制备的高通量油水分离复合金属网作为处理样品,测试了处理后铜网全反射红外光谱(ATR-FTIR,见附图4),其中,1278.43cm -1、1183.86 cm -1、1128.69cm -1为三氟甲基(CF 3)特征吸收峰,1367.97cm -1、903.98cm -1、845.85cm -1、681.77cm -1为苯环骨架特征吸收峰,系列特征峰在处理前铜网ATR-FTIR曲线中则未出现。同时测试了处理前后铜网的X射线衍射能谱图(XPS,见附图5),其中,688.8eV为F元素的能谱峰,533.2eV为O元素的能谱峰,286.2eV为C元素的能谱峰,934.1eV为Cu元素的能谱峰,以上结果表明通过本实施例处理,三氟甲苯可以成功的接枝到铜网表面。
采用德国Krüss公司的DSA100型全自动微观液滴润湿性测量仪对上述铜丝网润湿性能测试,选取水作为测试液滴,液滴体积为6μL,分别测试五次取其平均值,结果见附图6、7、8、9、10。测得处理前后、机械摩擦后铜网表面的静态水接触角分别为130.7°、169.9°、157.4°,及其动态滚动角为1.07°、3.25°,静态正四十烷接触角都为0°,表明改性整理后的铜网具有超亲油超疏水性能。
采用上述制备的油水分离铜网通过公式(1)对三氯甲烷、石油醚、甲苯、四氯化碳单独与水混合物的分离效率,结果见图11,从图中可以看出,该油水分离铜网对于三氯甲烷、石油醚、甲苯、四氯化碳的水混合物的分离效率可以达到97%以上。进一步测试上述制备的油水分离铜网在四氯化碳与水混合物的循环使用能力,结果见图12,从图中可以看出,采用该油水分离铜网对四氯化碳与水混合物进行分离,油水分离铜网循环使用10次后,其分离效率仍然能够达到95%以上,说明该油水分离铜网可以进行多次重复利用。
采用上述制备的油水分离铜网分别对三氯甲烷、二氯甲烷、甲苯、四氯化碳的水混合物进行分离,测量分离后的有机溶剂的体积,同时测量分离时间,通过公式(2)计算得到液体通量,结果见图13,通量最大的为四氯化碳/水混合物,其通量为25100±300L·m -2h -1,通量最小的为甲苯/水混合物,其通量为15232±150L·m -2·h -1
采用上述制备的油水分离铜网分别对硅油/水混合物进行分离,测量分离后的硅油体积,同时测量分离时间,通过公式(2)计算得到液体通量,为9700±250L·m -2·h -1
实施例二:在3,5-双(三氟甲基)苯胺重氮盐溶液(同实施例一的方法)中加入2g Fe粉,再浸入一块4×4cm 2预清洗的铜网,室温反应36h,3,5-双(三氟甲基)苯胺重氮盐在还原剂铁粉的作用下被还原成3,5-双(三氟甲基)苯自由基,并在铜网表面完成原位自由基共价接枝聚合;取出铜网终止反应,放入水中进行超声水洗10min,然后放入烘箱中50℃干燥,得高通量油水分离复合金属网,其扫描电子显微镜(SEM)图见图14,表面静态水接触角为167.3°、动态滚动角为2.4°。采用上述制备的油水分离铜网对四氯化碳的水混合物进行分离,测量分离后的有机溶剂的体积,同时测量分离时间,通过公式(2)计算得到液体通量为16378±150L·m -2·h -1
实施例三:在3,5-双(三氟甲基)苯胺重氮盐溶液(同实施例一的方法)中加入2g Fe粉,再浸入一块4×4cm 2预清洗的铜网,室温反应12h,3,5-双(三氟甲基)苯胺重氮盐在还原剂铁粉的作用下被还原成3,5-双(三氟甲基)苯自由基,并在铜网表面完成原位自由基共价接枝聚合;取出铜网终止反应,放入水中进行超声水洗10min,然后放入烘箱中50℃干燥,得高通量油水分离复合金属网,表面静态水接触角为133.9°。
实施例四:在3,5-双(三氟甲基)苯胺重氮盐溶液(同实施例一的方法)中加入88mg维生素C,再浸入一块4×4cm 2预清洗的铜网,室温反应3h,3,5-双(三氟甲基)苯胺重氮盐在还原剂的作用下被还原成3,5-双(三氟甲基)苯自由基,并在铜网表面完成原位自由基共价接枝聚合;取出铜网终止反应,放入水中进行超声水洗10min,然后放入烘箱中50℃干燥,得高通量油水分离复合金属网,表面静态水接触角为168.5°、动态滚动角为0.89°。
实施例五:在3,5-双(三氟甲基)苯胺重氮盐溶液(同实施例一的方法)中加入88mg维生素C,再浸入一块4×4cm 2预清洗的铜网,室温反应5h,3,5-双(三氟甲基)苯胺重氮盐在还原剂的作用下被还原成3,5-双(三氟甲基)苯自由基,并在铜网表面完成原位自由基共价接枝聚合;取出铜网终止反应,放入水中进行超声水洗10min,然后放入烘箱中50℃干燥,得高通量油水分离复合金属网,表面静态水接触角为143.1°。
对比例一:现有技术CN111472171A实施例一公开了超疏水织物,采用其对四氯化碳的水混合物进行分离,测量分离后的有机溶剂的体积,同时测量分离时间,通过公式(2)计算得到液体通量,为1327L·m -2·h -1
实施例六 :m-七氟丙基苯胺的化学结构式如下。
Figure 359991dest_path_image011
(1)三口烧瓶配备温度计,T型三通配备空气球,装备磁力搅拌。加入100 ml,1.5wt%的盐酸溶液,冷浴降温至2℃,加入380mg亚硝酸钠,冷浴降温至-3℃,搅拌溶解形成亚硝酸钠盐酸溶液;再加入1.15g的m-七氟丙基苯胺保温(-3℃)重氮化反应1h,生成m-七氟丙基苯胺重氮盐,直接用于步骤(2)。
(2)在上述重氮盐溶液中加入88mg 维生素C、浸入一块4×4cm 2预清洗的铜网,室温反应1h;取出铜网终止反应,放入水中进行超声水洗10min,然后放入烘箱中50℃干燥,得高通量油水分离复合金属网,其扫描电子显微镜(SEM)图见图14,表面静态水接触角为145.9°。
金属网(铁丝网、铜丝网等)是一种易得、廉价、稳定性好、孔径可选且表面易修饰等优点,使其在日常生活中有着广泛地应用,本发明解决了金属网没有很好的特殊湿润性的问题,制备的复合金属网具有超亲油超疏水性能,能实现对油水混合物进行选择性分离,因此,拓展了其在污水处理及分离中的应用。以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的设计思想及原则之内,所作的任何修改、等同替换、改进等,均包含在本发明的保护范围之内。

Claims (10)

  1. 一种高通量油水分离复合金属网,包括金属网及金属网表面接枝链的化学结构,其特征在于,所述化学结构如下:
    Figure 291696dest_path_image001
    其中,n=0~100;R 1=H、-CF 3、-C 2F 5或-C 4F 9;R 2=-CF 3、-C 2F 5或-C 4F 9
  2. 根据权利要求1所述高通量油水分离复合金属网,其特征在于,n= 10~60。
  3. 权利要求1所述高通量油水分离复合金属网的制备方法,其特征在于,将金属网、含氟烷基苯重氮盐、还原剂混合,然后进行反应,得到高通量油水分离复合金属网。
  4. 根据权利要求3所述高通量油水分离复合金属网的制备方法,其特征在于,金属网为铜丝网、铁丝网、合金丝网或者混编金属网;金属网预先在丙酮、无水乙醇和去离子水中超声清洗,然后烘干。
  5. 根据权利要求3所述高通量油水分离复合金属网的制备方法,其特征在于,含氟烷基苯胺单体在亚硝酸钠的酸性溶液中进行重氮化形成含氟烷基苯重氮盐。
  6. 根据权利要求3所述高通量油水分离复合金属网的制备方法,其特征在于,含氟烷基苯重氮盐在还原剂的作用下转变为含氟烷基苯自由基单体;含氟烷基苯自由基单体与金属网表面进行原位单电子自由基共价接枝聚合反应,得到高通量油水分离复合金属网。
  7. 根据权利要求3所述高通量油水分离复合金属网的制备方法,其特征在于,反应的温度为10~45℃;反应的时间为0.2~48h;还原剂为铁粉或者维生素C。
  8. 根据权利要求7所述高通量油水分离复合金属网的制备方法,其特征在于,反应的温度为室温;反应的时间为0.5~3h。
  9. 权利要求1所述高通量油水分离复合金属网在油水分离中的应用。
  10. 一种油水分离的方法,其特征在于,将油水混合物经过权利要求1所述高通量油水分离复合金属网,完成油水分离。
PCT/CN2021/120013 2021-09-23 2021-09-23 一种高通量油水分离复合金属网及其制备方法与应用 WO2023044685A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120013 WO2023044685A1 (zh) 2021-09-23 2021-09-23 一种高通量油水分离复合金属网及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120013 WO2023044685A1 (zh) 2021-09-23 2021-09-23 一种高通量油水分离复合金属网及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2023044685A1 true WO2023044685A1 (zh) 2023-03-30

Family

ID=85719171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120013 WO2023044685A1 (zh) 2021-09-23 2021-09-23 一种高通量油水分离复合金属网及其制备方法与应用

Country Status (1)

Country Link
WO (1) WO2023044685A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557894A (zh) * 2017-08-01 2018-01-09 东华大学 一种高效高通量二维网状极细纳米纤维油水分离材料及其制备方法
CN109763316A (zh) * 2019-01-11 2019-05-17 中北大学 一种耐久高效快速的超疏水油水分离棉织物的制备方法
CN110201422A (zh) * 2019-07-12 2019-09-06 青岛大学 一步制备超疏水油水分离网膜的方法
CN111472171A (zh) * 2020-05-18 2020-07-31 苏州大学 一种超疏水织物及其制备方法
CN111593570A (zh) * 2020-05-26 2020-08-28 苏州大学 一种防水布面柔性复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557894A (zh) * 2017-08-01 2018-01-09 东华大学 一种高效高通量二维网状极细纳米纤维油水分离材料及其制备方法
CN109763316A (zh) * 2019-01-11 2019-05-17 中北大学 一种耐久高效快速的超疏水油水分离棉织物的制备方法
CN110201422A (zh) * 2019-07-12 2019-09-06 青岛大学 一步制备超疏水油水分离网膜的方法
CN111472171A (zh) * 2020-05-18 2020-07-31 苏州大学 一种超疏水织物及其制备方法
CN111593570A (zh) * 2020-05-26 2020-08-28 苏州大学 一种防水布面柔性复合材料及其制备方法

Similar Documents

Publication Publication Date Title
Li et al. Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance
Liu et al. A superhydrophobic TPU/CNTs@ SiO2 coating with excellent mechanical durability and chemical stability for sustainable anti-fouling and anti-corrosion
Pan et al. Fabrication of stable superhydrophobic coating on fabric with mechanical durability, UV resistance and high oil-water separation efficiency
Zhu et al. Durability evaluation of superhydrophobic copper foams for long-term oil-water separation
CN107722343B (zh) 利用多巴胺和碳纳米管改性的超疏水密胺海绵的制备方法
CN110130103A (zh) 含氟单体改性poss基超双疏涂层材料及其制备方法与应用
CN113713431A (zh) 一种高通量油水分离复合金属网及其制备方法与应用
Yang et al. A stable eco-friendly superhydrophobic/superoleophilic copper mesh fabricated by one-step immersion for efficient oil/water separation
CN109304102B (zh) 一种新型金属有机骨架zif-300膜的制备方法
Zhang et al. Construction of ZnO@ Co3O4-loaded nickel foam with abrasion resistance and chemical stability for oil/water separation
CN110117443A (zh) 一种常温固化超疏水电活性抗点蚀涂层及其制备方法
CN104556016A (zh) 一种石墨烯的低温环保制备方法
WO2023044685A1 (zh) 一种高通量油水分离复合金属网及其制备方法与应用
Li et al. Environmentally friendly synthesis of oxygen-doped g-C3N4 nanosheets for enhancing photocatalytic corrosion resistance of carbon steel
Wang et al. Robust multifunctional rGO/MXene@ PPS fibrous membrane for harsh environmental applications
CN106989619A (zh) 一种基于聚苯胺复合防护层的散热器
CN108373812A (zh) 一种防腐防污抗蛋白水性聚脲接枝石墨烯涂层材料的制备方法
CN105603393A (zh) 一种具有石墨烯保护膜的镁合金及其制备方法
CN114410151B (zh) 一种超浸润金属网膜及其制备方法和应用
Zhang et al. Robust self-healing superhydrophobic cotton fabric for durable and efficient oil–water separation
He et al. A facile approach to fabricate the durable and buoyant superhydrophobic fabric for efficient oil/water separation
CN108047792A (zh) 一种石墨烯基环氧树脂防腐涂层的制备方法
CN109385154B (zh) 一种新型绿色环保电化学保护膜层及其制备工艺
CN104120413A (zh) 稀土铈诱导超声化学共沉积Ni-P-PTFE防垢镀层及其制备工艺
CN103073973B (zh) 新型碳纳米管/乙烯基酯乳液导电涂料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE