WO2023043149A1 - 분진량 예측 장치 및 방법 - Google Patents

분진량 예측 장치 및 방법 Download PDF

Info

Publication number
WO2023043149A1
WO2023043149A1 PCT/KR2022/013635 KR2022013635W WO2023043149A1 WO 2023043149 A1 WO2023043149 A1 WO 2023043149A1 KR 2022013635 W KR2022013635 W KR 2022013635W WO 2023043149 A1 WO2023043149 A1 WO 2023043149A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
dust
bpa
differential
liquid
Prior art date
Application number
PCT/KR2022/013635
Other languages
English (en)
French (fr)
Inventor
조필성
남승한
최진혁
김민기
서홍규
이창송
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2023549659A priority Critical patent/JP7490148B2/ja
Priority to CN202280008546.4A priority patent/CN116745852A/zh
Priority to EP22870233.8A priority patent/EP4258270A1/en
Priority to US18/267,756 priority patent/US20240050883A1/en
Publication of WO2023043149A1 publication Critical patent/WO2023043149A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic

Definitions

  • the present invention relates to an apparatus and method for predicting the amount of dust, and more particularly, to an apparatus and method for predicting the amount of dust generated in the manufacturing process of BPA prills.
  • dust generated in the process of producing BPA (Bisphenol-A) prills through a prill tower may be stored in a dust filter.
  • the dust filter may include a bag filter through which dust introduced from the prill tower is filtered and a dust box where dust is finally stored.
  • the dust stored in the dust filter is a combustible material, and when more than a certain amount of dust is dispersed in a certain space, static electricity that can act as an ignition source may accumulate. That is, if oxygen, static electricity (ignition source), and dust (combustible material) are present in the bag filter at a certain level or higher, there is a risk that the bag filter may catch fire or explode. Therefore, it is important to detect the occurrence of an unexpected accident in advance by checking the amount of dust stored in the bag filter.
  • the dust box of the dust filter is replaced at regular intervals, and the amount of dust stored in the dust box during the corresponding period is confirmed post fact.
  • this conventional method has a problem in that the amount of dust stored in the dust filter cannot be checked in real time.
  • a dust filter is provided with a sensor for detecting the amount of dust to check the amount of dust.
  • this conventional method has a problem in that the manufacturing cost of the BPA prill production apparatus increases because a sensor for detecting the amount of dust is necessarily provided.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a dust amount prediction device and method for predicting the amount of dust generated in the production process of BPA frills in real time using a learned model.
  • the dust amount prediction device is a dust amount prediction device for predicting the amount of dust generated during a process in which BPA prills are produced from liquid BPA flowing into a frill tower, using a learned differential amount prediction model, a differential amount prediction unit configured to predict a differential amount generated in the process from information on the flow rate of the liquid BPA flowing into the tower; and a dust amount prediction unit configured to predict the amount of dust generated in the process from the differential amount predicted by the differential amount prediction unit by using the learned dust amount prediction model.
  • the differential amount prediction model may be pre-learned to predict the differential amount that can be generated from the liquid BPA based on the flow rate information of the liquid BPA flowing into the prill tower and a preset differential amount generation rate.
  • the differential amount production ratio may be preset to indicate a correspondence between the amount of the liquid BPA and the differential amount generated from the liquid BPA.
  • the differential amount prediction model may be pre-learned to predict the differential amount by further considering at least one of characteristic information of the liquid BPA flowing into the prill tower and process condition factors of the prill tower.
  • the differential amount prediction unit may be configured to determine the differential amount production rate corresponding to at least one of the characteristic information of the liquid BPA and the process condition factor, and to predict the differential amount based on the determined differential amount production rate. .
  • the characteristic information of the liquid BPA may include at least one of temperature information and composition information of the liquid BPA.
  • the process condition factors include the speed at which the liquid BPA flowing into the prill tower is injected into the prill tower, the speed at which BPA prills and fines generated in the process are output from the prill tower to the outside, and in the process It may be configured to include at least one of an amount of refrigerant flowing into the prill tower, a temperature of the refrigerant, an internal temperature of the prill tower, and a pressure difference between a dust filter in which the dust is stored and the inside of the prill tower.
  • the dust amount prediction model may be pre-learned to predict the amount of dust from the predicted differential amount based on a previously set correlation between the powder amount and the dust amount.
  • the correlation may be configured to be set in advance based on a correspondence between the amount of powder and the amount of dust generated from the liquid BPA.
  • the liquid BPA may be introduced into the prill tower during the process to generate the BPA prill, the fine powder, and the dust.
  • An apparatus for predicting the amount of dust is configured to diagnose the state of the dust filter based on the amount of oxygen and the amount of static electricity of the dust filter in which the dust generated in the process is stored and the amount of dust predicted by the dust amount prediction unit. It may further include a risk level determining unit.
  • the risk determining unit may be configured to determine a state of the dust filter as a normal state or an abnormal state, and output a warning notification when the determined state of the dust filter is the abnormal state.
  • BPA prill manufacturing apparatus may include a dust amount predicting apparatus according to one aspect of the present invention.
  • a dust prediction method is a dust amount prediction method for predicting the amount of dust generated during a process in which BPA prills are produced from liquid BPA flowing into a prill tower, using a learned differential amount prediction model, A differential amount prediction step of predicting a differential amount generated in the process from flow rate information and characteristic information of the liquid BPA flowing into the prill tower and process condition factors of the prill tower; and a dust amount prediction step of predicting the amount of dust generated in the process from the differential amount predicted in the differential amount prediction step by using the learned dust amount prediction model.
  • the amount of dust generated in the BPA prill production process can be predicted in real time based on the learned model.
  • FIG. 1 is a diagram schematically illustrating a BPA prill production apparatus for producing BPA prills from liquid BPA.
  • FIG. 2 is a diagram schematically showing an apparatus for predicting the amount of dust according to an embodiment of the present invention.
  • 3 is a diagram schematically showing the amount of fine powder and the amount of dust generated from liquid BPA.
  • Figure 4 is a diagram schematically showing the operating configuration of the dust amount prediction device according to an embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating a phase transition process of liquid BPA in the BPA prill process.
  • FIG. 6 is a diagram schematically illustrating a phase transition process of liquid BPA when the temperature of liquid BPA in FIG. 5 is changed.
  • FIG. 7 is a view schematically illustrating a phase transition process of liquid BPA when the composition of liquid BPA in FIG. 5 is changed.
  • FIG. 8 is a diagram schematically showing the amount of dust predicted by the dust amount prediction device according to an embodiment of the present invention.
  • FIG. 9 is a diagram schematically illustrating a dust amount prediction method according to another embodiment of the present invention.
  • FIG. 1 is a diagram schematically illustrating a BPA prill production apparatus for producing BPA prills from liquid BPA.
  • liquid BPA (Bisphenol-A) is Molten BPA, and may be configured to flow into the prill tower 10 during the process to generate BPA prills, fine powder, and dust.
  • the BPA prill generating device may include a prill tower (10) and a dust filter (20).
  • the frill tower 10 may include a BPA inlet 11, a BPA outlet 12, a body 13, a refrigerant inlet 14, a BPA output 15 and a dust output 16. there is.
  • the BPA inlet 11 may be configured to introduce liquid BPA.
  • liquid BPA may flow into the prill tower 10 through the BPA inlet 11 .
  • the BPA outlet 12 may be connected to the BPA inlet 11, and liquid BPA introduced through the BPA inlet 11 may be extracted.
  • the BPA discharge unit 12 may include one or more holes through which liquid BPA may be discharged.
  • the BPA discharge unit 12 rotates at a predetermined RPM and discharges the introduced liquid BPA into the main body unit 13 .
  • the main body 13 may be configured such that the liquid BPA discharged from the BPA discharge unit 12 falls. Specifically, the discharged liquid BPA may be cooled while falling from the upper side of the main body 13 to the lower side.
  • One or more refrigerant inlets 14 may be provided in the main body 13 so that the external refrigerant flows into the main body 13 .
  • the refrigerant is a cooling gas capable of lowering the temperature of liquid BPA, and for example, air, nitrogen, noble gases, or a combination thereof may be applied.
  • BPA prills can be formed from liquid BPA.
  • fine powder and dust may be generated due to collisions between the formed BPA frills and the inside of the frill tower 10 or collisions between the BPA frills.
  • BPA prills, fine powder, and dust can be classified according to the particle size. More specifically, BPA prills, fines and dust can be classified according to the particle size preset for each.
  • the dust filter 20 through the dust output unit 16 can be introduced into
  • the dust output unit 16 It does not flow into, and can be accumulated on the lower side of the body portion (13). That is, BPA prills and fine powder generated from liquid BPA may be located on the lower side of the body portion 13 .
  • the BPA output unit 15 is provided on the lower side of the body portion 13, and the BPA output unit 15 may be configured to output the BPA frill and the differential powder located on the lower side of the body portion 13 to the outside.
  • the BPA output unit 15 may be configured as a conveyor capable of outputting BPA frills and powder to the outside.
  • the dust output unit 16 may be provided on the upper side of the body unit 13 and may be configured to connect the inside of the body unit 13 and the dust filter 20 . Dust generated inside the main body 13 may flow into the dust filter 20 through the dust output unit 16 .
  • dust may be output to the outside of the frill tower 10 through the BPA output unit 15, but hereinafter, the dust will be described as flowing into the dust filter 20 through the dust output unit 16. do.
  • dust may be generated in the process of solidifying liquid BPA discharged from the BPA discharge unit 12 .
  • dust may be generated while the generated BPA frills and/or fine particles collide with the lower side of the body portion 13 .
  • dust may be generated by colliding with each other in the process of outputting BPA frills and/or fine powder accumulated on the lower side of the body part 13 to the outside through the BPA output part 15.
  • the dust generated inside the main body 13 is generated by the refrigerant introduced through the refrigerant inlet 14 and/or the internal pressure difference between the main body 13 and the dust filter 20. ) It can flow into the dust filter 20 through.
  • the dust filter 20 may include a bag filter 21 and a dust box 22.
  • the bag filter 21 may be configured such that dust passing through the dust output unit 16 is introduced.
  • a sensing unit 23 for measuring the amount of oxygen and the amount of static electricity inside the bag filter 21 may be provided.
  • the dust box 22 may be configured to accumulate dust introduced into the bag filter 21 .
  • the dust box 22 may be configured to be detachable from the bag filter 21 . Therefore, when dust accumulates in the dust box 22 at a predetermined rate or more, the dust box 22 attached to the bag filter 21 is recovered, and a new dust box 22 or a cleaned dust box 22 is returned to the bag. It can be re-mounted on the builder (21).
  • Figure 2 is a diagram schematically showing the dust amount prediction device 100 according to an embodiment of the present invention.
  • the dust amount prediction device 100 may be configured to predict the amount of dust generated during a process of producing BPA prills from liquid BPA flowing into the prill tower 10 .
  • the dust amount prediction device 100 may predict the amount of dust generated from liquid BPA flowing into the prill tower 10 . Specifically, the dust amount prediction device 100 may predict the amount of dust flowing from the prill tower 10 to the bag filter 21 .
  • the dust amount prediction device 100 may include a differential amount prediction unit 110 and a dust amount prediction unit 120 .
  • the differential amount predictor 110 may be configured to predict the differential amount generated in the process from flow information of the liquid BPA flowing into the prill tower 10 using the learned differential amount prediction model.
  • information on the flow rate of liquid BPA may be information on the flow rate of liquid BPA introduced into the main body 13 from the outside through the BPA inlet 11 .
  • the differential amount prediction model may be pre-learned to predict the differential amount that can be produced from the liquid BPA based on the flow rate information of the liquid BPA flowing into the prill tower 10 under process conditions and the differential amount generation ratio set in advance.
  • the differential amount production ratio may be preset to indicate a correspondence between the amount of liquid BPA and the differential amount generated from the liquid BPA.
  • the size of particles generated in the BPA prill process may be 0.15 mm or less, greater than 0.15 mm and less than or equal to 0.5 mm, greater than 0.5 mm and less than or equal to 0.85 mm, greater than 0.85 mm and less than or equal to 2 mm, or greater than 2 mm.
  • the particle size is 0.15 mm or less, it is classified as fine powder, and the rest can be classified as BPA prills.
  • the differential amount production rate may be set in advance as a ratio of the amount of the fine powder to the total amount of liquid BPA introduced into the prill tower 10 in the course of the experiment. Then, based on the differential amount generation rate, the differential amount prediction model can be learned to output the differential amount (differential amount) that can be generated when information on the amount of liquid BPA is input. Accordingly, the differential amount predictor 110 may predict the differential amount corresponding to the flow rate information of the liquid BPA currently flowing into the prill tower 10 by using the learned differential amount prediction model.
  • the dust amount prediction unit 120 may be communicatively connected to the differential amount prediction unit 110 .
  • the dust amount prediction unit 120 may be configured to predict the amount of dust generated in the process from the differential amount predicted by the differential amount prediction unit 110 using the learned dust amount prediction model.
  • the dust amount prediction model may be pre-learned to predict the amount of dust from the predicted amount of dust based on a previously set correlation between the amount of fine powder and the amount of dust.
  • the preset correlation between the amount of fine powder and the amount of dust may be preset based on the correspondence between the amount of fine powder and the amount of dust generated from liquid BPA.
  • the correlation between the amount of powder and the amount of dust may be a value previously set through an experiment. Specifically, the amount of fine powder and the amount of dust generated at each predetermined period may be obtained, and a correlation between the amount of fine powder and the amount of dust may be established based on the amount of fine powder and the amount of dust obtained at each period. That is, the dust amount prediction unit 120 predicts what will be generated in the process from the differential amount predicted to be generated in the process by the differential amount predictor 110 based on the correlation between the preset amount of fine powder and the amount of dust. amount of dust can be calculated.
  • 3 is a diagram schematically showing the amount of fine powder and the amount of dust generated from liquid BPA.
  • the embodiment of FIG. 3 may be experimental data obtained by measuring the total amount of powder generation and the total amount of dust generation every week.
  • the total amount of differential generation is a value obtained by measuring the differential amount generated from liquid BPA through the prill tower 10 at weekly intervals.
  • the total amount of dust generated is a value obtained by measuring the amount of dust stored in the dust box 22 at weekly intervals.
  • the total amount of differential generation and the total amount of dust generation measured in the same week may be mapped to each other and displayed as respective points ( ⁇ ) in FIG. 3 .
  • the correlation between the amount of fine powder and the amount of dust may be set as a ratio of the amount of generated dust to the amount of fine powder.
  • it may be set based on the ratio of the total amount of dust generation to the total amount of differential generation.
  • a maximum ratio or an average ratio of the total amount of dust generation to the total amount of fine dust generation may be set as a correlation.
  • the correlation between the amount of fine powder and the amount of dust may be set as the maximum ratio of the total amount of dust to the total amount of fine powder.
  • the correlation between the amount of fine powder and the amount of dust may be set as a correlation coefficient between the amount of fine powder and the amount of dust.
  • the correlation coefficient may be calculated through the covariance of the total amount of differential generation and the total amount of dust generation. Specifically, when X is set to the total amount of differential generation and Y is set to the total amount of dust generation, the corresponding relationship between the total amount of differential generation and the total amount of dust generation is X-Y as in the embodiment of FIG. 3. It can be expressed as a graph.
  • a correlation coefficient may be calculated based on the variance between the total amounts of differential generation, the variance between the total amounts of dust generation, and the covariance between the total amount of differential generation and the total amount of dust generation.
  • a correlation coefficient between the total amount of fine dust generation and the total amount of dust generation may be 0.56.
  • the correlation between the amount of fine powder and the amount of dust may be preset based on the amount of fine powder and the amount of dust generated in the course of the experiment. And, based on this correlation, the dust amount prediction model can be learned to predict the amount of dust (amount of dust) that can be generated when information on the differential amount is input. Therefore, the dust amount prediction unit 120 may predict the amount of dust expected to be generated in the process from the differential amount predicted by the differential amount prediction unit 110 using the learned dust amount prediction model.
  • the dust amount predicting device 100 can predict the amount of dust generated during the BPA prill process even without an additional sensor for measuring the amount of dust.
  • the dust amount prediction device 100 may predict the amount of dust generated during the BPA prill process in real time without measuring the amount of dust stored in the dust filter 20 ex post facto. Therefore, the dust amount prediction device 100 has the advantage of being able to detect in advance a dangerous situation in which a fire or explosion occurs in the bag filter 21 by estimating the amount of dust in real time.
  • Figure 4 is a diagram schematically showing the operating configuration of the dust amount prediction device 100 according to an embodiment of the present invention.
  • the differential amount prediction model may be pre-learned to predict the differential amount by further considering at least one of the characteristic information of the liquid BPA flowing into the prill tower 10 and the process condition factor of the prill tower 10 .
  • the differential amount prediction model may be learned by further considering at least one of the flow rate information of the liquid BPA, the characteristic information of the liquid BPA, and the process condition factor of the prill tower 10 .
  • the property information of the liquid BPA may be configured to include at least one of temperature information and composition information of the liquid BPA.
  • the process condition factors include the speed at which the liquid BPA flowing into the frill tower 10 is injected into the frill tower 10, the BPA frill and fine powder generated in the process, and the output from the frill tower 10 to the outside.
  • the speed the amount of refrigerant flowing into the prill tower 10 in the process, the temperature of the refrigerant, the internal temperature of the prill tower 10, and the pressure difference between the dust filter 20 and the prill tower 10 in which dust is stored. It may be configured to include at least one.
  • the differential amount prediction unit 110 may determine a differential amount generation rate corresponding to at least one of the characteristic information of the liquid BPA and the process condition factor of the prill tower 10 .
  • the differential amount prediction unit 110 may determine a corresponding differential amount generation rate by considering both the characteristic information of the liquid BPA and the process condition factors of the prill tower 10 .
  • a plurality of differential amount production ratios may be set to correspond to the characteristic information of liquid BPA and the process condition factor of the prill tower 10, and the differential amount prediction unit 110 determines one of the plurality of differential amount production ratios.
  • the differential amount predictor 110 may predict the differential amount from information on the flow rate of liquid BPA flowing into the prill tower 10 using the differential amount learning model to which the determined differential amount generation rate is applied.
  • flow rate information IN1 of liquid BPA, characteristic information IN2 of liquid BPA, and process condition factor IN3 may be input to the differential amount predictor 110 .
  • the differential amount prediction unit 110 may input the flow rate information (IN1) of liquid BPA, the characteristic information (IN2) of liquid BPA, and the process condition factor (IN3) into the differential amount prediction model. Also, the differential amount prediction unit 110 may output the result output from the differential amount prediction model as differential amount information OUT1 predicted to be generated in the process.
  • differential amount information output from the differential amount predictor 110 may be input to the dust amount predictor 120 .
  • the dust amount predicting unit 120 receives the differential amount information OUT1 output from the differential amount predicting unit 110, and the difference between the received differential amount information OUT1 and the preset differential amount and the dust amount is The correlation (IN4) can be input into the dust quantity prediction model.
  • the dust amount prediction unit 120 may output a result output from the dust amount prediction model as dust amount information OUT2 predicted to be generated in a process.
  • the dust amount prediction device 100 is based on at least one of the flow rate, temperature, and composition information of the liquid BPA flowing into the frill tower 10 and the operating condition factor of the frill tower 10 , it has the advantage of being able to predict in real time the amount of dust expected to be generated during the BPA prill process.
  • FIG. 5 is a diagram schematically illustrating a phase transition process of liquid BPA in the BPA prill process. Specifically, the embodiment of FIG. 5 illustrates a standard process by which solid BPA (BPA prills, powders and dust) is produced from liquid BPA.
  • solid BPA BPA prills, powders and dust
  • liquid BPA at a temperature of T1 may be discharged from the BPA discharge unit 12 at time t0.
  • Times t0 to t1 may be a liquid cooling period.
  • the liquid BPA may be cooled by a temperature difference between the inside of the body portion 13 and a temperature difference between the refrigerant introduced into the body portion 13 through the refrigerant inlet 14 .
  • the temperature of the cooled liquid BPA at time t1 may be T0.
  • Time t1 to t2 may be a solidification period.
  • the cooled liquid BPA may be solidified. That is, the temperature T0 may be the freezing point of liquid BPA.
  • a phase transition occurs in the liquid BPA cooled to a temperature T0 through the liquid cooling section, and the liquid BPA may be solidified in the solidification section.
  • BPA prills, fine powder, and dust may be generated from liquid BPA in the solidification section.
  • time t2 may be a solid cooling period.
  • Solid BPA produced through the solidification section may be cooled in the solid cooling section.
  • FIG. 6 is a diagram schematically illustrating a phase transition process of liquid BPA when the temperature of liquid BPA is changed in the embodiment of FIG. 5 .
  • FIG. 6 is a view schematically illustrating a phase transition process of liquid BPA when the temperature of the liquid BPA flowing into the prill tower 10 is T2 greater than T1. That is, the embodiment of FIG. 6 is an embodiment for the case where the temperature of liquid BPA is increased.
  • the length of the liquid cooling section may be longer than that of the liquid cooling section of FIG. 5 .
  • the solidification period may be from t1_chg to t2 time. That is, the solidification period of the embodiment of FIG. 6 may be reduced by "t1_chg - t1" compared to the solidification period of the embodiment of FIG. 5 .
  • the solidification time of the liquid BPA may decrease as the temperature of the liquid BPA increases.
  • solid BPA particles produced in the embodiment of FIG. 6 may be smaller than particles of solid BPA produced in the embodiment of FIG. 5 . This means that in the embodiment of FIG. 6 , a greater amount of fine powder can be generated compared to the embodiment of FIG. 5 .
  • the differential amount prediction unit 110 considers the temperature of the liquid BPA to predict the differential amount to be produced.
  • FIG. 7 is a view schematically illustrating a phase transition process of liquid BPA when the composition of liquid BPA in FIG. 5 is changed. Specifically, FIG. 7 is a view schematically illustrating a phase transition process of liquid BPA when the composition of liquid BPA flowing into the prill tower 10 is different from the composition of liquid BPA according to the embodiment of FIG. 5 . That is, the embodiment of FIG. 7 is an embodiment for a case in which the composition of liquid BPA among the process condition factors is changed.
  • the length of the liquid cooling section may be longer than that of FIG. 5 .
  • the temperature of the liquid BPA may reach the freezing point at the time t1_chg. That is, since the freezing point of the mixture is lower than that of the pure substance, the freezing point of the liquid BPA of FIG. 7 may be lower than the freezing point of the liquid BPA of FIG. 5 . And, since the cooling rates in FIG. 5 and FIG. 7 are the same, the freezing point of the liquid BPA in FIG. 7 can be lowered to T3.
  • the solidification period may be from t1_chg to t2 time. That is, the solidification period of the embodiment of FIG. 7 may be reduced by "t1_chg - t1" compared to the solidification period of the embodiment of FIG. 5 .
  • the solidification time of the liquid BPA may be reduced as the composition of the liquid BPA is changed.
  • the particles of solid BPA produced in the embodiment of FIG. 7 may be smaller than the particles of solid BPA produced in the embodiment of FIG. 5 . This means that in the embodiment of FIG. 7 , a greater amount of fine particles can be generated compared to the embodiment of FIG. 5 .
  • the powder amount prediction unit 110 can predict the amount of fine powder to be produced by considering the composition of liquid BPA. there is.
  • the cooling rate of the liquid BPA may be changed.
  • the cooling rate of the liquid BPA in the liquid cooling section may be changed. Changes in cooling rate can affect the time it takes liquid BPA to reach its freezing point, as well as affect its solidification mechanism.
  • the differential amount prediction unit 110 may predict the differential amount by further considering the temperature of the liquid BPA and the process condition factor of the prill tower 10 .
  • FIG. 8 is a diagram schematically showing the amount of dust predicted by the dust amount prediction device 100 according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing the comparison between the amount of dust actually generated ( ⁇ ) and the predicted amount of dust ( ⁇ ) for a predetermined period (13 months) by the dust amount prediction unit 120 .
  • the dust amount predictor 120 may predict the amount of dust generated from liquid BPA by considering the differential amount information received from the differential amount predictor 110 and the correlation between the differential amount and the dust amount. Therefore, referring to FIG. 8 , it can be seen that the amount of dust predicted by the dust amount prediction unit 120 is similar to the actually generated amount of dust.
  • the dust amount prediction unit 120 can predict the amount of dust generated during the BPA prill process with high accuracy from the predicted fine powder amount.
  • the differential amount prediction unit 110, the dust amount prediction unit 120, and the risk level determining unit 130 provided in the dust amount prediction device 100 are processors known in the art to execute various control logics performed in the present invention.
  • ASICs application-specific integrated circuits
  • other chipsets logic circuits, registers, communication modems, data processing devices, and the like may optionally be included.
  • the dust amount prediction device 100 may further include a storage unit 140 .
  • the storage unit 140 may store data required for each component of the dust amount prediction device 100 to perform operations and functions, or data generated in the process of performing programs or operations and functions.
  • the type of the storage unit 140 is not particularly limited as long as it is known information storage means capable of writing, erasing, updating, and reading data.
  • the information storage means may include RAM, flash memory, ROM, EEPROM, registers, and the like.
  • the storage unit 140 may store program codes in which processes executable by the differential amount prediction unit 110 , the dust amount prediction unit 120 and the risk level determination unit 130 are defined.
  • the storage unit 140 may store a differential amount prediction model, a differential amount generation rate, a dust amount prediction model, and a correlation between the amount of dust and the differential amount.
  • the dust amount prediction device 100 may further include a risk level determining unit 130 .
  • the risk determining unit 130 diagnoses the state of the dust filter 20 based on the amount of oxygen and static electricity of the dust filter 20 in which dust generated in the process is stored and the amount of dust predicted by the dust amount prediction unit 120. can be configured to
  • the risk level determination unit 130 may be communicatively connected to the sensing unit 23 . And, the risk level determination unit 130 may be connected to enable communication with the dust amount prediction unit 120.
  • the risk determination unit 130 determines the amount of oxygen and static electricity IN5 of the bag filter 21 received from the sensing unit 23 and the amount of dust information OUT2 received from the dust amount prediction unit 120. Based on the condition of the dust filter 20 can be diagnosed.
  • the risk determining unit 130 may determine the state of the dust filter 20 as a normal state or an abnormal state.
  • the normal state may mean a state in which the amount of oxygen, the amount of static electricity, and the amount of dust are included in normal ranges, and there is no risk of fire or explosion in the dust filter 20 .
  • the abnormal state may mean a state in which at least one of the amount of oxygen, the amount of static electricity, and the amount of dust is not included in a normal range.
  • the abnormal state may include a warning state and a dangerous state.
  • the warning state may mean a state in which at least one of the amount of oxygen, the amount of static electricity, and the amount of dust is out of a normal range, but the possibility of fire or explosion in the dust filter 20 is low. That is, the warning state is a state in which at least one of the amount of oxygen, the amount of static electricity, and the amount of dust is slightly out of the normal range, and the dust filter 20 may not be in a normal state, but the risk of fire or explosion may be low.
  • the dangerous state may mean a state in which at least one of the amount of oxygen, the amount of static electricity, and the amount of dust is out of a normal range, and there is a possibility of fire or explosion in the dust filter 20 . That is, the dangerous state may be a state in which the dust filter 20 is not in a normal state and has a high risk of fire or explosion.
  • a normal range, a warning range, and a danger range may be preset for each of the oxygen amount, static electricity amount, and dust amount.
  • the risk determining unit 130 may determine the state of the dust filter 20 as a normal state.
  • the risk level determining unit 130 may determine the state of the dust filter 20 as an abnormal state (specifically, a warning state).
  • the risk level determining unit 130 may determine the state of the dust filter 20 as an abnormal state (specifically, a dangerous state). .
  • the abnormal state is divided into only the warning state and the dangerous state, but the abnormal state may be further subdivided according to the possibility of fire or explosion occurring in the dust filter 20 . That is, the state range corresponding to the amount of oxygen, the amount of static electricity, and the amount of dust may be further subdivided in addition to the normal state, the warning state, and the dangerous state.
  • the risk determination unit 130 may be configured to output a warning notification when the determined state of the dust filter 20 is in an abnormal state.
  • the risk level determining unit 130 may output a warning notification along with the determined state of the dust filter 20 to an external display, a user terminal, and/or a central control server.
  • the user and/or server may temporarily stop the BPA frill process according to the warning notification received from the risk level determination unit 130 in order to prevent fire and/or explosion from occurring in the dust filter 20.
  • the state of the dust filter 20 determined by the risk level determination unit 130 is an abnormal state (particularly, a dangerous state)
  • the BPA prill process may be temporarily stopped.
  • the dust amount prediction device 100 can predict the amount of dust generated in the BPA prill process in real time. Therefore, the dust amount prediction device 100 has the advantage of being able to prevent unexpected accidents such as fire and / or explosion from occurring in the process of BPA frills, or to quickly inform the outside of the occurrence of such accidents. .
  • the dust amount prediction device 100 may be included in the BPA prill manufacturing device.
  • the BPA prill manufacturing apparatus may include a prill tower 10, a dust filter 20, and a dust amount prediction device 100.
  • the dust amount prediction device 100 includes flow rate information (IN1) of liquid BPA introduced through the BPA inlet 11, characteristic information (IN2) of liquid BPA, and process conditions of the prill tower 10.
  • the factor (IN3) can be input from the outside.
  • the dust amount prediction device 100 is communicatively connected to the sensing unit 23 provided in the bag filter 21, and may receive the amount of oxygen and the amount of static electricity IN5 from the sensing unit 23.
  • the dust amount prediction device 100 may predict the amount of dust included in the bag filter 21 in real time in the process of producing BPA prills by the BPA frill manufacturing device. Therefore, since the BPA prill manufacturing apparatus can check the possibility of fire and/or explosion of the dust filter 20 in real time, there is an advantage in that BPA prills can be produced more safely.
  • FIG. 9 is a diagram schematically illustrating a dust amount prediction method according to another embodiment of the present invention.
  • each step of the method for predicting the amount of dust may be performed by the device 100 for predicting the amount of dust.
  • the device 100 for predicting the amount of dust may be performed by the device 100 for predicting the amount of dust.
  • the dust amount prediction method is a method of predicting the amount of dust generated during a process in which BPA prills are produced from liquid BPA flowing into the prill tower 10 .
  • the dust amount prediction method may include a differential amount prediction step (S100) and a dust amount prediction step (S200).
  • the differential amount prediction step (S100) is a step of predicting the differential amount generated in the process from the flow rate information of the liquid BPA flowing into the frill tower 10 using the learned differential amount prediction model, and the differential amount prediction unit ( 110) can be performed.
  • the differential amount prediction unit 110 may predict the differential amount expected to be generated from information on the flow rate of liquid BPA flowing into the prill tower 10 in real time.
  • the differential amount prediction unit 110 may generate differential amount information from flow rate information (IN1) of liquid BPA, characteristic information (IN2) of liquid BPA, and process condition factor (IN3).
  • the dust amount prediction step (S200) is a step of predicting the amount of dust generated in the process from the differential amount predicted in the differential amount prediction step (S100) using the learned dust amount prediction model, and is performed by the dust amount prediction unit 120. It can be.
  • the dust amount prediction unit 120 may receive the differential amount information OUT1 from the differential amount prediction unit 110 . Also, the dust amount prediction unit 120 may predict the amount of dust that may be generated during the BPA prill process based on the preset correlation IN4 and the differential amount information OUT1.
  • the method for predicting the amount of dust according to another embodiment of the present invention has the advantage of being able to predict in real time the amount of dust that may be generated during the BPA prill process through a non-destructive method.
  • the dust amount prediction method may further include a risk determining step (S300).
  • the state of the dust filter 20 is diagnosed based on the amount of oxygen and static electricity of the dust filter 20 in which dust generated in the process is stored and the amount of dust predicted by the dust amount prediction unit 120. As a step of doing, it may be performed by the risk determination unit 130.
  • the risk level determination unit 130 may receive the dust amount information OUT2 from the dust amount prediction unit 120 . Also, the risk level determining unit 130 may receive the amount of oxygen and the amount of static electricity IN5 from the sensing unit 23 provided in the dust filter 20 (specifically, the bag filter 21).
  • the risk determining unit 130 may determine the state of the dust filter 20 as a normal state or an abnormal state based on the amount of oxygen, the amount of static electricity, and the amount of dust. If the state of the dust filter 20 is determined to be an abnormal state, the risk level determining unit 130 may be configured to output a warning notification to the outside.
  • the method for predicting the amount of dust prevents accidents such as fire and/or explosion that may occur in the dust filter 20 by outputting a warning notification to the outside when the dust filter 20 is in an abnormal state. It is possible to prevent the occurrence of such an accident in advance or promptly inform the outside of the occurrence of such an accident.
  • the embodiments of the present invention described above are not implemented only through devices and methods, and may be implemented through a program that realizes functions corresponding to the configuration of the embodiments of the present invention or a recording medium on which the program is recorded. Implementation can be easily implemented by an expert in the technical field to which the present invention belongs based on the description of the above-described embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Medicinal Chemistry (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

본 발명의 일 실시예에 따른 분진량 예측 장치는 프릴 타워로 유입되는 액상 BPA로부터 BPA 프릴이 생성되는 공정 과정에서 생성되는 분진량을 예측하는 분진량 예측 장치로서, 학습된 미분량 예측 모델을 이용하여, 상기 프릴 타워로 유입되는 상기 액상 BPA의 유량 정보로부터 상기 공정 과정에서 생성되는 미분량을 예측하도록 구성된 미분량 예측부; 및 학습된 분진량 예측 모델을 이용하여, 상기 미분량 예측부에 의해 예측된 미분량으로부터 상기 공정 과정에서 생성되는 분진량을 예측하도록 구성된 분진량 예측부를 포함한다.

Description

분진량 예측 장치 및 방법
본 출원은 2021년 09월 15일 자로 출원된 한국 특허 출원번호 제10-2021-0123536호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 분진량 예측 장치 및 방법에 관한 것으로서, 보다 상세하게는, BPA 프릴의 제조 과정에서 발생되는 분진량을 예측할 수 있는 분진량 예측 장치 및 방법에 관한 것이다.
일반적으로, 프릴 타워(Prill tower)를 통해 BPA(Bisphenol-A) 프릴이 생성되는 과정에서 생성되는 분진(Dust)은 분진 필터에 저장될 수 있다. 이러한 분진 필터에는 프릴 타워로부터 유입된 분진이 필터링되는 백 필터(Bag filter)와 분진이 최종적으로 저장되는 분진 박스(Dust box)가 포함될 수 있다.
분진 필터에 저장된 분진은 가연 물질이며, 일정량 이상의 분진이 일정 공간 내에 분산되어 있는 경우, 점화원으로 작용할 수 있는 정전기가 축적될 수 있다. 즉, 백 필터 내에 산소, 정전기(점화원) 및 분진(가연 물질)이 일정 수준 이상으로 존재하게 되면, 백 필터에 화재가 발생하거나 백 필터가 폭발할 수 있는 위험이 있다. 따라서, 백 필터에 저장되는 분진량을 확인하여, 예상치 못한 사고가 발생되는 것을 미리 감지하는 것이 중요하다.
예컨대, 종래에는 일정 기간마다 분진 필터의 분진 박스를 교체하고, 해당 기간 동안에 분진 박스에 저장된 분진량을 사후적으로 확인하였다. 다만, 이러한 종래 방식은 분진 필터에 저장되는 분진량을 실시간으로 확인할 수 없다는 문제가 있다.
다른 예로, 종래에는 분진 필터에 분진량을 검출하는 센서를 구비하여 분진량을 확인하였다. 다만, 이러한 종래 방식은 분진량을 검출하는 센서가 필수로 구비되어야 하기 때문에, BPA 프릴 생산 장치의 제조 단가가 상승하게 되는 문제가 있다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 학습된 모델을 이용하여 BPA 프릴의 생산 공정 과정에서 발생되는 분진량을 실시간으로 예측하는 분진량 예측 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 분진량 예측 장치는 프릴 타워로 유입되는 액상 BPA로부터 BPA 프릴이 생성되는 공정 과정에서 생성되는 분진량을 예측하는 분진량 예측 장치로서, 학습된 미분량 예측 모델을 이용하여, 상기 프릴 타워로 유입되는 상기 액상 BPA의 유량 정보로부터 상기 공정 과정에서 생성되는 미분량을 예측하도록 구성된 미분량 예측부; 및 학습된 분진량 예측 모델을 이용하여, 상기 미분량 예측부에 의해 예측된 미분량으로부터 상기 공정 과정에서 생성되는 분진량을 예측하도록 구성된 분진량 예측부를 포함할 수 있다.
상기 미분량 예측 모델은, 상기 프릴 타워로 유입되는 상기 액상 BPA의 유량 정보와 미리 설정된 미분량 생성 비율에 기반하여, 상기 액상 BPA로부터 생성될 수 있는 상기 미분량을 예측하도록 미리 학습될 수 있다.
상기 미분량 생성 비율은, 상기 액상 BPA의 양과 상기 액상 BPA로부터 생성된 미분량 간의 대응 관계를 나타내도록 미리 설정될 수 있다.
상기 미분량 예측 모델은, 상기 프릴 타워로 유입되는 상기 액상 BPA의 특성 정보 및 상기 프릴 타워의 공정 조건 인자 중 적어도 하나를 더 고려하여, 상기 미분량을 예측하도록 미리 학습될 수 있다.
상기 미분량 예측부는, 상기 액상 BPA의 특성 정보 및 상기 공정 조건 인자 중 적어도 하나에 대응되는 상기 미분량 생성 비율을 결정하고, 결정된 미분량 생성 비율에 기반하여 상기 미분량을 예측하도록 구성될 수 있다.
상기 액상 BPA의 특성 정보는, 상기 액상 BPA의 온도 정보 및 조성 정보 중 적어도 하나를 포함하도록 구성될 수 있다.
상기 공정 조건 인자는, 상기 프릴 타워로 유입되는 액상 BPA가 상기 프릴 타워의 내부로 분사되는 속도, 상기 공정 과정에서 생성된 BPA 프릴과 미분이 상기 프릴 타워로부터 외부로 출력되는 속도, 상기 공정 과정에서 상기 프릴 타워로 유입되는 냉매의 양, 상기 냉매의 온도, 상기 프릴 타워의 내부 온도 및 상기 분진이 저장되는 분진 필터와 상기 프릴 타워 내부의 압력차 중 적어도 하나를 포함하도록 구성될 수 있다.
상기 분진량 예측 모델은, 상기 미분량과 상기 분진량에 대해 미리 설정된 상관 관계에 기반하여, 상기 예측된 미분량으로부터 상기 분진량을 예측하도록 미리 학습될 수 있다.
상기 상관 관계는, 상기 액상 BPA로부터 생성된 미분량과 분진량 간의 대응 관계에 기반하여 미리 설정되도록 구성될 수 있다.
상기 액상 BPA는, 상기 공정 과정에서 상기 프릴 타워로 유입되어 상기 BPA 프릴, 상기 미분 및 상기 분진을 생성하도록 구성될 수 있다.
본 발명의 다른 측면에 따른 분진량 예측 장치는 상기 공정 과정에서 생성되는 분진이 저장되는 분진 필터의 산소량 및 정전기량과 상기 분진량 예측부에 의해 예측된 분진량에 기반하여 상기 분진 필터의 상태를 진단하도록 구성된 위험도 결정부를 더 포함할 수 있다.
상기 위험도 결정부는, 상기 분진 필터의 상태를 정상 상태 또는 이상 상태로 결정하고, 상기 결정된 분진 필터의 상태가 상기 이상 상태인 경우, 경고 알림을 출력하도록 구성될 수 있다.
본 발명의 또 다른 측면에 따른 BPA 프릴 제조 장치는 본 발명의 일 측면에 따른 분진량 예측 장치를 포함할 수 있다.
본 발명의 또 다른 측면에 따른 분진 예측 방법은 프릴 타워로 유입되는 액상 BPA로부터 BPA 프릴이 생성되는 공정 과정에서 생성되는 분진량을 예측하는 분진량 예측 방법으로서, 학습된 미분량 예측 모델을 이용하여, 상기 프릴 타워로 유입되는 상기 액상 BPA의 유량 정보 및 특성 정보와 상기 프릴 타워의 공정 조건 인자로부터 상기 공정 과정에서 생성되는 미분량을 예측하는 미분량 예측 단계; 및 학습된 분진량 예측 모델을 이용하여, 상기 미분량 예측 단계에서 예측된 미분량으로부터 상기 공정 과정에서 생성되는 분진량을 예측하는 분진량 예측 단계를 포함할 수 있다.
본 발명의 일 측면에 따르면, BPA 프릴의 생산 공정 과정에서 생성되는 분진량이 학습된 모델에 기반하여 실시간으로 예측될 수 있는 장점이 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 액상 BPA로부터 BPA 프릴을 생성하는 BPA 프릴 생성 장치를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 분진량 예측 장치를 개략적으로 도시한 도면이다.
도 3은 액상 BPA로부터 생성된 미분량과 분진량을 개략적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 분진량 예측 장치의 동작 구성을 개략적으로 도시한 도면이다.
도 5는 BPA 프릴의 공정 과정에서 액상 BPA의 상전이 과정을 개략적으로 도시한 도면이다.
도 6은 도 5에서 액상 BPA의 온도가 달라진 경우의 액상 BPA의 상전이 과정을 개략적으로 도시한 도면이다.
도 7은 도 5에서 액상 BPA의 조성이 달라진 경우의 액상 BPA의 상전이 과정을 개략적으로 도시한 도면이다.
도 8은 본 발명의 일 실시예에 따른 분진량 예측 장치에 의해 예측된 분진량을 개략적으로 도시한 도면이다.
도 9는 본 발명의 다른 실시예에 따른 분진량 예측 방법을 개략적으로 도시한 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 액상 BPA로부터 BPA 프릴을 생성하는 BPA 프릴 생성 장치를 개략적으로 도시한 도면이다.
여기서, 액상 BPA(Bisphenol-A)는 Molten BPA로서, 공정 과정에서 프릴 타워(10)로 유입되어 BPA 프릴, 미분 및 분진을 생성하도록 구성될 수 있다.
도 1을 참조하면, BPA 프릴 생성 장치는 프릴 타워(Prill tower, 10) 및 분진 필터(Dust filter, 20)를 포함할 수 있다. 프릴 타워(10)는 BPA 유입부(11), BPA 토출부(12), 본체부(13), 냉매 유입부(14), BPA 출력부(15) 및 분진 출력부(16)를 포함할 수 있다.
BPA 유입부(11)는 액상 BPA가 유입되도록 구성될 수 있다. 예컨대, 도 1의 실시예에서, 액상 BPA는 BPA 유입부(11)를 통해서 프릴 타워(10)로 유입될 수 있다.
BPA 토출부(12)는 BPA 유입부(11)와 연결되고, BPA 유입부(11)를 통해 유입된 액상 BPA가 도출되도록 구성될 수 있다. 예컨대, BPA 토출부(12)는 액상 BPA가 토출될 수 있는 하나 이상의 홀(Hole)을 포함할 수 있다. BPA 토출부(12)는 정해진 RPM으로 회전하며 유입된 액상 BPA를 본체부(13) 내부로 토출시킬 수 있다.
본체부(13)는 BPA 토출부(12)에서 토출된 액상 BPA가 낙하되도록 구성될 수 있다. 구체적으로, 토출된 액상 BPA는 본체부(13)의 상부측에서 하부측으로 낙하하며 냉각될 수 있다.
냉매 유입부(14)는 외부 냉매가 본체부(13)의 내부로 유입되도록 본체부(13)에 하나 이상 구비될 수 있다. 구체적으로, 냉매는 액상 BPA의 온도를 낮출 수 있는 냉각 기체로서, 예컨대, 공기, 질소, 비활성 기체(noble gases) 또는 이들의 조합이 적용될 수 있다.
본체부(13)의 상부측에서 하부측으로 낙하하는 액상 BPA는 냉매 유입부(14)를 통해 유입되는 냉매와 접촉됨으로써 온도가 낮아지고, 온도가 낮아진 액상 BPA는 응고될 수 있다. 이러한 응고 과정을 거쳐, 액상 BPA로부터 BPA 프릴이 형성될 수 있다. 또한, 액상 BPA의 응고 과정에서, 형성된 BPA 프릴과 프릴 타워(10) 내부 간의 충돌 또는 BPA 프릴 간의 충돌 등으로 인해 미분 및 분진이 생성될 수 있다. 여기서, BPA 프릴, 미분 및 분진은 입자의 크기에 따라 구분될 수 있다. 보다 구체적으로, BPA 프릴, 미분 및 분진은 각각에 대해 미리 설정된 입자 크기에 따라 분류될 수 있다.
분진은 냉매 유입부(14)를 통해 유입된 냉매와 본체부(13)의 내부 압력과 분진 필터(20)의 내부 압력의 차이에 기반하여, 분진 출력부(16)를 통해 분진 필터(20)로 유입될 수 있다.
반면, 액상 BPA로부터 생성된 BPA 프릴과 미분은 분진에 비해 상대적으로 입자 크기가 크고 무겁기 때문에, 유입된 냉매 및 본체부(13)와 분진 필터(20)의 압력차에 의해 분진 출력부(16)로 유입되지 않고, 본체부(13)의 하부측에 쌓일 수 있다. 즉, 액상 BPA로부터 생성된 BPA 프릴과 미분은 본체부(13)의 하부측에 위치할 수 있다.
BPA 출력부(15)는 본체부(13)의 하부측에 구비되고, BPA 출력부(15)는 본체부(13)의 하부측에 위치한 BPA 프릴과 미분을 외부로 출력하도록 구성될 수 있다. 예컨대, BPA 출력부(15)는 BPA 프릴과 미분을 외부로 출력할 수 있는 컨베이어(Conveyor)로 구성될 수 있다.
분진 출력부(16)는 본체부(13)의 상부측에 구비되고, 본체부(13)의 내부와 분진 필터(20)를 연결하도록 구성될 수 있다. 본체부(13)의 내부에서 생성된 분진을 분진 출력부(16)를 통해 분진 필터(20)로 유입될 수 있다.
경우에 따라서는, BPA 출력부(15)를 통해 분진이 프릴 타워(10)의 외부로 출력될 수도 있으나, 이하에서는 분진은 분진 출력부(16)를 통해 분진 필터(20)로 유입되는 것으로 설명한다.
예컨대, 분진은 BPA 토출부(12)에서 토출된 액상 BPA가 응고되는 과정에서 생성될 수 있다. 또한, 분진은 생성된 BPA 프릴 및/또는 미분이 본체부(13)의 하부측에 충돌하면서 생성될 수도 있다. 또한, 분진은 본체부(13)의 하부측에 쌓인 BPA 프릴 및/또는 미분이 BPA 출력부(15)를 통해 외부로 출력되는 과정에서, 서로 충돌하여 생성될 수도 있다. 이렇듯 본체부(13)의 내부에서 생성된 분진은, 냉매 유입부(14)를 통해서 유입된 냉매 및/또는 본체부(13)와 분진 필터(20)의 내부 압력 차이에 의해 분진 출력부(16)를 통해 분진 필터(20)로 유입될 수 있다.
분진 필터(20)는 백 필터(Bag filter, 21)와 분진 박스(Dust box, 22)를 포함할 수 있다.
백 필터(21)는 분진 출력부(16)를 통과한 분진이 유입되도록 구성될 수 있다. 백 필터(21)에는 내부의 산소량과 정전기량을 측정하기를 위한 센싱 유닛(23)이 구비될 수 있다.
분진 박스(22)는 백 필터(21)로 유입된 분진이 축적되도록 구성될 수 있다. 예컨대, 분진 박스(22)는 백 필터(21)에 착탈 가능하도록 구성될 수 있다. 따라서, 분진 박스(22)에 분진이 소정 비율 이상 축적된 경우, 백 필터(21)에 장착된 분진 박스(22)가 회수되고, 새로운 분진 박스(22) 또는 청소된 분진 박스(22)가 백 빌터(21)에 다시 장착될 수 있다.
도 2는 본 발명의 일 실시예에 따른 분진량 예측 장치(100)를 개략적으로 도시한 도면이다.
본 발명의 일 실시예에 따른 분진량 예측 장치(100)는 프릴 타워(10)로 유입되는 액상 BPA로부터 BPA 프릴이 생성되는 공정 과정에서 생성되는 분진량을 예측하도록 구성될 수 있다.
예컨대, 도 1의 실시예에서, 분진량 예측 장치(100)는 프릴 타워(10)로 유입되는 액상 BPA로부터 생성되는 분진량을 예측할 수 있다. 구체적으로, 분진량 예측 장치(100)는, 프릴 타워(10)에서 백 필터(21)로 유입되는 분진량을 예측할 수 있다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 분진량 예측 장치(100)는 미분량 예측부(110) 및 분진량 예측부(120)를 포함할 수 있다.
미분량 예측부(110)는 학습된 미분량 예측 모델을 이용하여, 프릴 타워(10)로 유입되는 액상 BPA의 유량 정보로부터 공정 과정에서 생성되는 미분량을 예측하도록 구성될 수 있다.
여기서, 액상 BPA의 유량 정보는 BPA 유입부(11)를 통해서 외부에서 본체부(13)로 유입되는 액상 BPA의 유량에 대한 정보일 수 있다.
미분량 예측 모델은 공정 조건에서 프릴 타워(10)로 유입되는 액상 BPA의 유량 정보와 미리 설정된 미분량 생성 비율에 기반하여, 액상 BPA로부터 생성될 수 있는 미분량을 예측하도록 미리 학습될 수 있다. 여기서, 미분량 생성 비율은 액상 BPA의 양과 액상 BPA로부터 생성된 미분량 간의 대응 관계를 나타내도록 미리 설정될 수 있다.
예컨대, BPA 프릴의 공정 과정에서 생성되는 입자(Particle)의 크기는 0.15mm 이하, 0.15mm 초과 0.5mm 이하, 0.5mm 초과 0.85mm 이하, 0.85mm 초과 2mm 이하 또는 2mm 초과로 구분될 수 있다. 일반적으로, 입자 크기(Particle size)가 0.15mm 이하이면 미분으로 분류되고, 나머지는 BPA 프릴로 분류될 수 있다.
즉, 미분량 생성 비율은 실험 과정에서 프릴 타워(10)로 유입된 액상 BPA의 총량에 대한 생성된 미분의 양의 비율로 미리 설정될 수 있다. 그리고, 이러한 미분량 생성 비율에 기반하여 미분량 예측 모델은 액상 BPA의 양에 대한 정보가 입력되면 생성될 수 있는 미분의 양(미분량)을 출력하도록 학습될 수 있다. 따라서, 미분량 예측부(110)는 학습된 미분량 예측 모델을 이용하여, 현재 프릴 타워(10)로 유입되는 액상 BPA의 유량 정보에 대응되는 미분량을 예측할 수 있다.
분진량 예측부(120)는 미분량 예측부(110)와 통신 가능하도록 연결될 수 있다.
분진량 예측부(120)는 학습된 분진량 예측 모델을 이용하여, 미분량 예측부(110)에 의해 예측된 미분량으로부터 공정 과정에서 생성되는 분진량을 예측하도록 구성될 수 있다.
분진량 예측 모델은 미분량과 분진량에 대해 미리 설정된 상관 관계에 기반하여, 예측된 미분량으로부터 분진량을 예측하도록 미리 학습될 수 있다. 여기서, 미분량과 분진량에 대해 미리 설정된 상관 관계는, 액상 BPA로부터 생성된 미분량과 분진량 간의 대응 관계에 기반하여 미리 설정될 수 있다.
예컨대, 미분량과 분진량 간의 상관 관계는 미리 실험을 통해서 설정된 값일 수 있다. 구체적으로, 소정의 주기마다 생성된 미분량과 분진량을 획득하고, 각각의 주기에서 획득된 미분량과 분진량에 기반하여 미분량과 분진량 간의 상관 관계가 설정될 수 있다. 즉, 분진량 예측부(120)는 미리 설정된 미분량과 분진량 간의 상관 관계에 기반하여, 미분량 예측부(110)에 의해 공정 과정에서 생성될 것으로 예측된 미분량으로부터 상기 공정 과정에서 생성될 것으로 예측되는 분진량을 산출할 수 있다.
도 3은 액상 BPA로부터 생성된 미분량과 분진량을 개략적으로 도시한 도면이다.
도 3의 실시예는, 매주 미분 발생 총량과 분진 발생 총량을 측정한 실험 데이터일 수 있다. 도 3의 실시예에서, 미분 발생 총량은 프릴 타워(10)를 통해서 액상 BPA로부터 생성되는 미분량을 일주일 간격으로 측정한 값이다. 그리고, 분진 발생 총량은 분진 박스(22)에 저장된 분진량을 일주일 간격으로 측정한 값이다. 그리고, 같은 주에 측정된 미분 발생 총량과 분진 발생 총량은 서로 맵핑되어 도 3에서 각각의 포인트(▲)로 표시될 수 있다.
일 예로, 미분량과 분진량에 대한 상관 관계는, 생성된 미분량에 대한 생성된 분진량의 비율로 설정될 수 있다. 예컨대, 도 3의 실시예에서, 미분 발생 총량에 대한 분진 발생 총량의 비율에 기반하여 설정될 수 있다. 바람직하게, 미분 발생 총량에 대한 분진 발생 총량의 최대 비율 또는 평균 비율이 상관 관계로 설정될 수 있다. 보다 바람직하게, 분진은 점화원으로 작용할 수 있기 때문에, 분진량이 많이 발생된 것으로 예측될수록 분진 필터(20)에서 발생될 수 있는 사고를 미연에 감지할 수 있다. 따라서, 미분량과 분진량에 대한 상관 관계는, 미분 발생 총량에 대한 분진 발생 총량의 최대 비율로 설정될 수 있다.
다른 예로, 미분량과 분진량에 대한 상관 관계는, 생성된 미분량과 생성된 분진량의 상관 계수로 설정될 수 있다. 예컨대, 도 3의 실시예에서, 상관 계수는 미분 발생 총량과 분진 발생 총량의 공분산을 통해서 산출될 수 있다. 구체적으로, X를 미분 발생 총량으로 설정하고, Y를 분진 발생 총량으로 설정한 경우, 미분 발생 총량과 분진 발생 총량 간의 대응 관계는 도 3의 실시예와 같은 X-Y 그래프로 표현될 수 있다. 그리고, 미분 발생 총량 간의 분산, 분진 발생 총량 간의 분산 및 미분 발생 총량과 분진 발생 총량의 공분산에 기반하여, 상관 계수가 산출될 수 있다. 도 3의 실시예에서, 미분 발생 총량과 분진 발생 총량의 상관 계수는 0.56일 수 있다.
즉, 미분량과 분진량에 대한 상관 관계는 실험 과정에서 생성된 미분량 및 분진량에 기반하여 미리 설정될 수 있다. 그리고, 이러한 상관 관계에 기반하여 분진량 예측 모델은 미분량에 대한 정보가 입력되면 생성될 수 있는 분진의 양(분진량)을 예측하도록 학습될 수 있다. 따라서, 분진량 예측부(120)는 학습된 분진량 예측 모델을 이용하여, 공정 과정에서 생성될 것으로 예상되는 분진량을 미분량 예측부(110)에 의해 예측된 미분량으로부터 예측할 수 있다.
본 발명의 일 실시예에 따른 분진량 예측 장치(100)는 분진량을 측정하기 위한 추가적인 센서를 구비하지 않더라도, BPA 프릴의 공정 과정에서 생성되는 분진량을 예측할 수 있다. 또한, 분진량 예측 장치(100)는 분진 필터(20)에 저장된 분진량을 사후적으로 측정하지 않고, BPA 프릴의 공정 과정에서 생성되는 분진량을 실시간으로 예측할 수 있다. 따라서, 분진량 예측 장치(100)는 분진량을 실시간으로 예측함으로써, 백 필터(21)에 화재나 폭발이 발생하는 위험 상황을 미리 감지할 수 있는 장점이 있다.
도 4는 본 발명의 일 실시예에 따른 분진량 예측 장치(100)의 동작 구성을 개략적으로 도시한 도면이다.
미분량 예측 모델은 프릴 타워(10)로 유입되는 액상 BPA의 특성 정보 및 프릴 타워(10)의 공정 조건 인자 중 적어도 하나를 더 고려하여, 미분량을 예측하도록 미리 학습될 수 있다.
즉, 미분량 예측 모델은 액상 BPA의 유량 정보뿐만 아니라 액상 BPA의 특성 정보 및 프릴 타워(10)의 공정 조건 인자 중 적어도 하나를 더 고려하여 학습될 수 있다.
여기서, 액상 BPA의 특성 정보는 액상 BPA의 온도 정보 및 조성 정보 중 적어도 하나를 포함하도록 구성될 수 있다.
또한, 공정 조건 인자는, 프릴 타워(10)로 유입되는 액상 BPA가 프릴 타워(10)의 내부로 분사되는 속도, 공정 과정에서 생성된 BPA 프릴과 미분이 프릴 타워(10)로부터 외부로 출력되는 속도, 공정 과정에서 프릴 타워(10)로 유입되는 냉매의 양, 냉매의 온도, 프릴 타워(10)의 내부 온도 및 분진이 저장되는 분진 필터(20)와 프릴 타워(10) 내부의 압력차 중 적어도 하나를 포함하도록 구성될 수 있다.
미분량 예측부(110)는 액상 BPA의 특성 정보 및 프릴 타워(10)의 공정 조건 인자 중 적어도 하나에 대응되는 미분량 생성 비율을 결정할 수 있다. 바람직하게는, 미분량 예측부(110)는 액상 BPA의 특성 정보 및 프릴 타워(10)의 공정 조건 인자를 모두 고려하여, 대응되는 미분량 생성 비율을 결정할 수 있다.
예컨대, 미분량 생성 비율은 액상 BPA의 특성 정보 및 프릴 타워(10)의 공정 조건 인자에 대응되도록 복수 설정될 수 있으며, 미분량 예측부(110)는 복수의 미분량 생성 비율 중에서 어느 하나를 결정할 수 있다. 그리고, 미분량 예측부(110)는 결정된 미분량 생성 비율이 적용된 미분량 학습 모델을 이용하여 프릴 타워(10)로 유입되는 액상 BPA의 유량 정보로부터 미분량을 예측할 수 있다.
도 4의 실시예에서, 미분량 예측부(110)로 액상 BPA의 유량 정보(IN1), 액상 BPA의 특성 정보(IN2) 및 공정 조건 인자(IN3)가 입력될 수 있다. 미분량 예측부(110)는 입력된 액상 BPA의 유량 정보(IN1), 액상 BPA의 특성 정보(IN2) 및 공정 조건 인자(IN3)를 미분량 예측 모델에 입력할 수 있다. 그리고, 미분량 예측부(110)는 미분량 예측 모델에서 출력되는 결과를 공정 과정에서 생성될 것으로 예측되는 미분량 정보(OUT1)로 출력할 수 있다.
그리고, 미분량 예측부(110)에서 출력된 미분량 정보는 분진량 예측부(120)로 입력될 수 있다.
도 4의 실시예에서, 분진량 예측부(120)는 미분량 예측부(110)에서 출력된 미분량 정보(OUT1)를 수신하고, 수신한 미분량 정보(OUT1)와 미리 설정된 미분량과 분진량 간의 상관 관계(IN4)를 분진량 예측 모델에 입력할 수 있다. 그리고, 분진량 예측부(120)는 분진량 예측 모델에서 출력되는 결과를 공정 과정에서 생성될 것으로 예측되는 분진량 정보(OUT2)로 출력할 수 있다.
즉, 본 발명의 일 실시예에 따른 분진량 예측 장치(100)는 프릴 타워(10)로 유입되는 액상 BPA의 유량, 온도 및 조성 정보와 프릴 타워(10)의 동작 조건 인자 중 적어도 하나에 기반하여, BPA 프릴의 공정 과정에서 생성될 것으로 예상되는 분진량을 실시간으로 예측할 수 있는 장점이 있다.
이하에서는, BPA 프릴 공정 과정에서 액상 BPA의 상전이 과정에 기반하여, 미분량을 예측하기 위해 미분량 예측 모델에 입력되는 인자들을 설명한다. 구체적으로, 액상 BPA의 조성, 액상 BPA의 온도 및 프릴 타워(10)의 공정 조건 인자에 대해 설명한다.
도 5는 BPA 프릴의 공정 과정에서 액상 BPA의 상전이 과정을 개략적으로 도시한 도면이다. 구체적으로, 도 5의 실시예는 액상 BPA로부터 고체 BPA(BPA 프릴, 미분 및 분진)이 생성되는 표준 과정을 도시한 도면이다.
도 5의 실시예에서, t0 시각에, T1 온도의 액상 BPA가 BPA 토출부(12)로부터 토출될 수 있다.
t0 내지 t1 시각은 액체 냉각 구간일 수 있다. 액체 냉각 구간에서, 액상 BPA는 본체부(13) 내부와의 온도차 및 냉매 유입부(14)를 통해 본체부(13) 내부로 유입되는 냉매와의 온도차에 의해 냉각될 수 있다. t1 시각에 냉각된 액상 BPA의 온도는 T0일 수 있다.
t1 내지 t2 시각은 응고 구간일 수 있다. 응고 구간에서, 냉각된 액상 BPA는 응고될 수 있다. 즉, 온도 T0는 액상 BPA의 어는점일 수 있다.
예컨대, 액체 냉각 구간을 거쳐 온도 T0까지 냉각된 액상 BPA에 상전이가 발생되어, 응고 구간에서 액상 BPA가 응고될 수 있다. 구체적으로, 응고 구간에서 액상 BPA로부터 BPA 프릴, 미분 및 분진이 생성될 수 있다.
그리고, t2 시각 이후는 고체 냉각 구간일 수 있다. 응고 구간을 거치며 생성된 고체 BPA는 고체 냉각 구간에서 냉각될 수 있다.
도 6은 도 5의 실시예에서 액상 BPA의 온도가 달라진 경우의 액상 BPA의 상전이 과정을 개략적으로 도시한 도면이다. 구체적으로, 도 6은 프릴 타워(10)로 유입되는 액상 BPA의 온도가 T1 보다 큰 T2인 경우, 액상 BPA의 상전이 과정을 개락적으로 도시한 도면이다. 즉, 도 6의 실시예는 액상 BPA의 온도가 증가된 경우에 대한 실시예이다.
도 6의 실시예에서, 프릴 타워(10)로 유입되는 액상 BPA의 온도가 T2로 높아진 경우, 액체 냉각 구간의 길이가 도 5의 액체 냉각 구간의 길이보다 길어질 수 있다.
도 5 및 도 6을 참조하면, 도 6의 실시예에서는 액상 BPA의 온도만 변경되었으며, 액상 BPA의 조성 및 프릴 타워(10)의 공정 조건 인자는 도 5의 실시예와 동일하기 때문에, 액체 냉각 구간에서 액상 BPA에 대한 냉각 속도는 도 5와 도 6의 실시예에서 동일할 수 있다.
다만, 액상 BPA의 온도가 T2로 높아졌기 때문에, 액상 BPA의 온도는 t1_chg 시각에서 어는점에 도달할 수 있다. 이 경우, 응고 구간은 t1_chg 내지 t2 시각일 수 있다. 즉, 도 6의 실시예의 응고 구간은 도 5의 실시예의 응고 구간에 비해 "t1_chg - t1"만큼 감소될 수 있다.
즉, 도 6의 실시예에서, 액상 BPA의 온도가 높아짐에 따라 액상 BPA의 응고 시간이 감소될 수 있다. 이 경우, 액상 BPA가 짧은 기간 동안만 응고될 수 있기 때문에, 도 6의 실시예에서 생성되는 고체 BPA의 입자는 도 5의 실시예에서 생성되는 고체 BPA의 입자보다 작을 수 있다. 이는, 도 6의 실시예에서, 도 5의 실시예에 비해 보다 많은 양의 미분이 생성될 수 있음을 의미한다.
따라서, 도 5 및 도 6을 참조하면, 액상 BPA의 온도는 미분량에 영향을 미칠 수 있는 인자이기 때문에, 미분량 예측부(110)는 액상 BPA의 온도를 고려하여, 생성되는 미분량을 예측할 수 있다.
도 7은 도 5에서 액상 BPA의 조성이 달라진 경우의 액상 BPA의 상전이 과정을 개략적으로 도시한 도면이다. 구체적으로, 도 7은 프릴 타워(10)로 유입되는 액상 BPA의 조성이 도 5의 실시예에 따른 액상 BPA의 조성과 달라진 경우, 액상 BPA의 상전이 과정을 개략적으로 도시한 도면이다. 즉, 도 7의 실시예는 공정 조건 인자 중 액상 BPA의 조성이 변경된 경우에 대한 실시예이다.
도 7의 실시예에서, 프릴 타워(10)로 유입되는 액상 BPA의 조성이 변경된 경우, 액체 냉각 구간의 길이가 도 5의 액체 냉각 구간의 길이보다 길어질 수 있다.
도 5 및 도 7을 참조하면, 도 7의 실시예에서는 액상 BPA의 조성만 변경되었으며, 액상 BPA의 온도 및 프릴 타워(10)의 공정 조건 인자는 도 5의 실시예와 동일하기 때문에, 액체 냉각 구간에서 액상 BPA에 대한 냉각 속도는 도 5와 도 7의 실시예에서 동일할 수 있다.
다만, 도 7의 실시예에서 액상 BPA의 조성이 변경되었기 때문에, 액상 BPA의 온도는 t1_chg 시각에서 어는점에 도달할 수 있다. 즉, 혼합물의 어는점은 순물질의 어는점보다 낮기 때문에, 도 7의 액체 BPA의 어는점이 도 5의 액체 BPA의 어는점보다 낮을 수 있다. 그리고, 도 5와 도 7에서 냉각 속도는 동일하므로, 도 7의 액체 BPA의 어는 점은 T3로 낮아질 수 있다. 이 경우, 응고 구간은 t1_chg 내지 t2 시각일 수 있다. 즉, 도 7의 실시예의 응고 구간은 도 5의 실시예의 응고 구간에 비해 "t1_chg - t1"만큼 감소될 수 있다.
즉, 도 7의 실시예에서, 액상 BPA의 조성이 변경됨에 따라 액상 BPA의 응고 시간이 감소될 수 있다. 이 경우, 액상 BPA가 짧은 기간 동안만 응고될 수 있기 때문에, 도 7의 실시예에서 생성되는 고체 BPA의 입자는 도 5의 실시예에서 생성되는 고체 BPA의 입자보다 작을 수 있다. 이는, 도 7의 실시예에서, 도 5의 실시예에 비해 보다 많은 양의 미분이 생성될 수 있음을 의미한다.
따라서, 도 5 및 도 7을 참조하면, 액상 BPA의 조성은 미분량에 영향을 미칠 수 있는 인자이기 때문에, 미분량 예측부(110)는 액상 BPA의 조성을 고려하여, 생성되는 미분량을 예측할 수 있다.
또한, 액상 BPA의 온도 및/또는 프릴 타워(10)의 공정 조건 인자가 변경된 경우, 액상 BPA의 냉각 속도가 변경될 수 있다.
도 5의 실시예에서, 액상 BPA의 온도 및/또는 프릴 타워(10)의 공정 조건 인자가 변경되면, 액체 냉각 구간에서 액상 BPA가 냉각되는 속도가 변경될 수 있다. 냉각 속도의 변화는 액상 BPA가 어는점에 도달하는 시간에 영향을 미칠 수 있을 뿐만 아니라, 응고 메커니즘에 영향을 미칠 수도 있다.
예컨대, 냉각 속도가 증가되면, 액상 BPA 내에 핵이 다수 생성되어, 핵 생성(Nucleation) 이후 성장(Growth)을 통해 형성되는 BPA 프릴의 크기가 작아지거나 BPA 프릴을 구성하는 결정(Grain)의 크기가 작아질 수 있다. 즉, 냉각 속도의 증가에 따른 응고 메커니즘의 변화는 BPA 프릴의 강도를 약하게 할 수 있기 때문에, 액상 BPA의 응고 과정 이후에 발생되는 충돌 등으로 인해 미분 및/또는 분진이 추가로 생성될 수 있다. 따라서, 미분량 예측부(110)는, 액상 BPA의 온도 및 프릴 타워(10)의 공정 조건 인자를 더 고려하여 미분량을 예측할 수 있다.
도 8은 본 발명의 일 실시예에 따른 분진량 예측 장치(100)에 의해 예측된 분진량을 개략적으로 도시한 도면이다.
구체적으로, 도 8은 분진량 예측부(120)가 소정의 기간(13개월) 동안, 실제로 생성된 분진량(●)과 예측된 분진량(▲)을 비교 도시한 도면이다.
분진량 예측부(120)는 미분량 예측부(110)로부터 수신한 미분량 정보와 미분량과 분진량 간의 상관 관계를 고려하여 액상 BPA로부터 생성되는 분진량을 예측할 수 있다. 따라서, 도 8을 참조하면 분진량 예측부(120)에 의해 예측된 분진량은 실제로 생성된 분진량과 유사한 것을 알 수 있다.
특히, 분진량 예측부(120)에 의해 예측된 분진량은 실제 생성된 분진량이 급감하는 경향을 보이는 경우에도 이를 정확하게 예측함을 알 수 있다. 따라서, 분진량 예측부(120)는 예측된 미분량으로부터 BPA 프릴의 공정 과정에서 생성되는 분진량을 높은 정확도로 예측할 수 있다.
한편, 분진량 예측 장치(100)에 구비된 미분량 예측부(110), 분진량 예측부(120) 및 위험도 결정부(130)는 본 발명에서 수행되는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다.
또한, 분진량 예측 장치(100)는 저장부(140)를 더 포함할 수 있다. 저장부(140)는 분진량 예측 장치(100)의 각 구성요소가 동작 및 기능을 수행하는데 필요한 데이터나 프로그램 또는 동작 및 기능이 수행되는 과정에서 생성되는 데이터 등을 저장할 수 있다. 저장부(140)는 데이터를 기록, 소거, 갱신 및 독출할 수 있다고 알려진 공지의 정보 저장 수단이라면 그 종류에 특별한 제한이 없다. 일 예시로서, 정보 저장 수단에는 RAM, 플래쉬 메모리, ROM, EEPROM, 레지스터 등이 포함될 수 있다. 또한, 저장부(140)는 미분량 예측부(110), 분진량 예측부(120) 및 위험도 결정부(130)에 의해 실행 가능한 프로세스들이 정의된 프로그램 코드들을 저장할 수 있다.
예컨대, 저장부(140)에는 미분량 예측 모델, 미분량 생성 비율, 분진량 예측 모델 및 분진량과 미분량에 대한 상관 관계가 저장될 수 있다.
한편, 도 2를 참조하면, 본 발명의 일 실시예에 따른 분진량 예측 장치(100)는 위험도 결정부(130)를 더 포함할 수 있다.
위험도 결정부(130)는 공정 과정에서 생성되는 분진이 저장되는 분진 필터(20)의 산소량 및 정전기량과 분진량 예측부(120)에 의해 예측된 분진량에 기반하여 분진 필터(20)의 상태를 진단하도록 구성될 수 있다.
예컨대, 도 1의 실시예에서, 위험도 결정부(130)는 센싱 유닛(23)과 통신 가능하도록 연결될 수 있다. 그리고, 위험도 결정부(130)는 분진량 예측부(120)와도 통신 가능하도록 연결될 수 있다.
도 4를 참조하면, 위험도 결정부(130)는 센싱 유닛(23)으로부터 수신한 백 필터(21)의 산소량 및 정전기량(IN5)과 분진량 예측부(120)로부터 수신한 분진량 정보(OUT2)에 기반하여 분진 필터(20)의 상태를 진단할 수 있다.
구체적으로, 위험도 결정부(130)는 분진 필터(20)의 상태를 정상 상태 또는 이상 상태로 결정할 수 있다.
여기서, 정상 상태란 산소량, 정전기량 및 분진량이 정상 범위에 포함되어, 분진 필터(20)에 화재나 폭발 위험이 없는 상태를 의미할 수 있다. 그리고, 이상 상태란 산소량, 정전기량 및 분진량 중 적어도 하나가 정상 범위에 포함되지 않은 상태를 의미할 수 있다.
본 발명의 일 실시예에 따르면, 이상 상태는 경고 상태 및 위험 상태를 포함할 수 있다. 경고 상태는 산소량, 정전기량 및 분진량 중 적어도 하나가 정상 범위를 벗어났으나, 분진 필터(20)에 화재나 폭발의 가능성은 낮은 상태를 의미할 수 있다. 즉, 경고 상태는 산소량, 정전기량 및 분진량 중 적어도 하나가 정상 범위를 경미하게 벗어난 상태로서, 분진 필터(20)의 상태가 정상 상태는 아니지만 화재나 폭발의 위험성은 낮은 상태일 수 있다.
반대로, 위험 상태는 산소량, 정전기량 및 분진량 중 적어도 하나가 정상 범위를 벗어났고, 분진 필터(20)에 화재나 폭발 가능성이 있는 상태를 의미할 수 있다. 즉, 위험 상태는 분진 필터(20)의 상태가 정상 상태가 아니고, 화재나 폭발의 위험성이 높은 상태일 수 있다.
예컨대, 산소량, 정전기량 및 분진량 각각에 대해 정상 범위, 경고 범위 및 위험 범위가 미리 설정될 수 있다. 그리고, 산소량, 정전기량 및 분진량이 모두 대응되는 정상 범위에 속하면, 위험도 결정부(130)는 분진 필터(20)의 상태를 정상 상태로 결정할 수 있다.
다른 예로, 산소량, 정전기량 및 분진량 중 적어도 하나가 대응되는 경고 범위에 속하면, 위험도 결정부(130)는 분진 필터(20)의 상태를 이상 상태(구체적으로는 경고 상태)로 결정할 수 있다.
또 다른 예로, 산소량, 정전기량 및 분진량 중 적어도 하나가 대응되는 위험 범위에 속하면, 위험도 결정부(130)는 분진 필터(20)의 상태를 이상 상태(구체적으로는 위험 상태)로 결정할 수 있다.
이상에서는, 이상 상태를 경고 상태 및 위험 상태로만 구분하였으나, 분진 필터(20)에 화재나 폭발이 발생될 가능성에 따라 이상 상태는 보다 세분화될 수도 있다. 즉, 산소량, 정전기량 및 분진량 각각에 대응되는 상태 범위가 정상 상태, 경고 상태 및 위험 상태 외에도 보다 세분화될 수 있다.
위험도 결정부(130)는 결정된 분진 필터(20)의 상태가 이상 상태인 경우, 경고 알림을 출력하도록 구성될 수 있다.
예컨대, 위험도 결정부(130)는 외부 디스플레이, 사용자 단말 및/또는 중앙 제어 서버로 결정된 분진 필터(20)의 상태와 함께 경고 알림을 출력할 수 있다.
그리고, 사용자 및/또는 서버는 분진 필터(20)에서 화재 및/또는 폭발이 발생되는 것을 방지하기 위하여, 위험도 결정부(130)로부터 수신한 경고 알림에 따라 BPA 프릴의 공정 과정을 일시적으로 중지할 수 있다. 예컨대, 위험도 결정부(130)에 의해 결정된 분진 필터(20)의 상태가 이상 상태(특히, 위험 상태)일 경우, BPA 프릴의 공정 과정이 일시 중지될 수 있다.
본 발명의 일 실시예에 따른 분진량 예측 장치(100)는 BPA 프릴의 공정 과정에서 발생되는 분진량을 실시간으로 예측할 수 있다. 따라서, 분진량 예측 장치(100)는 BPA 프릴의 공정 과정에서 화재 및/또는 폭발 등의 예상치 못 한 사고가 발생되는 것을 미연에 방지하거나, 이러한 사고의 발생을 신속하게 외부에 알릴 수 있는 장점이 있다.
한편, 본 발명의 일 실시예에 따른 분진량 예측 장치(100)는 BPA 프릴 제조 장치에 포함될 수 있다.
예컨대, 도 1 및 도 2를 참조하면, BPA 프릴 제조 장치는 프릴 타워(10), 분진 필터(20) 및 분진량 예측 장치(100)를 포함할 수 있다.
도 4의 실시예에서, 분진량 예측 장치(100)는 BPA 유입부(11)를 통해 유입되는 액상 BPA의 유량 정보(IN1), 액상 BPA의 특성 정보(IN2) 및 프릴 타워(10)의 공정 조건 인자(IN3)를 외부로부터 입력받을 수 있다. 그리고, 분진량 예측 장치(100)는 백 필터(21)에 구비된 센싱 유닛(23)과 통신 가능하도록 연결되어, 센싱 유닛(23)으로부터 산소량 및 정전기량(IN5)을 수신할 수 있다.
그리고, 분진량 예측 장치(100)는 BPA 프릴 제조 장치가 BPA 프릴을 생성하는 공정에서 백 필터(21)에 포함되는 분진량을 실시간으로 예측할 수 있다. 따라서, BPA 프릴 제조 장치는 분진 필터(20)의 화재 및/또는 폭발 가능성을 실시간으로 확인할 수 있기 때문에, 보다 안전하게 BPA 프릴을 생성할 수 있는 장점이 있다.
도 9는 본 발명의 다른 실시예에 따른 분진량 예측 방법을 개략적으로 도시한 도면이다.
바람직하게, 분진량 예측 방법의 각 단계는 분진량 예측 장치(100)에 의해 수행될 수 있다. 이하에서는, 설명의 편의를 위해, 앞서 설명한 내용과 중복되는 내용은 생략하거나 간략히 설명한다.
분진량 예측 방법은 프릴 타워(10)로 유입되는 액상 BPA로부터 BPA 프릴이 생성되는 공정 과정에서 생성되는 분진량을 예측하는 방법이다.
도 9를 참조하면, 분진량 예측 방법은 미분량 예측 단계(S100) 및 분진량 예측 단계(S200)를 포함할 수 있다.
미분량 예측 단계(S100)는 학습된 미분량 예측 모델을 이용하여, 프릴 타워(10)로 유입되는 액상 BPA의 유량 정보로부터 공정 과정에서 생성되는 미분량을 예측하는 단계로서, 미분량 예측부(110)에 의해 수행될 수 있다.
예컨대, 미분량 예측부(110)는 실시간으로 프릴 타워(10)로 유입되는 액상 BPA의 유량 정보로부터 생성될 것으로 예상되는 미분량을 예측할 수 있다.
도 4의 실시예에서, 미분량 예측부(110)는 액상 BPA의 유량 정보(IN1), 액상 BPA의 특성 정보(IN2) 및 공정 조건 인자(IN3)로부터 미분량 정보를 생성할 수 있다.
분진량 예측 단계(S200)는 학습된 분진량 예측 모델을 이용하여, 미분량 예측 단계(S100)에서 예측된 미분량으로부터 공정 과정에서 생성되는 분진량을 예측하는 단계로서, 분진량 예측부(120)에 의해 수행될 수 있다.
예컨대, 도 4의 실시예에서, 분진량 예측부(120)는 미분량 예측부(110)로부터 미분량 정보(OUT1)를 수신할 수 있다. 그리고, 분진량 예측부(120)는 미리 설정된 상관 관계(IN4)와 미분량 정보(OUT1)에 기반하여, BPA 프릴 공정 과정에서 생성될 수 있는 분진량을 예측할 수 있다.
본 발명의 다른 실시예에 따른 분진량 예측 방법은 비파괴적인 방식을 통해, BPA 프릴의 공정 과정에서 발생될 수 있는 분진량을 실시간으로 예측할 수 있는 장점이 있다.
도 9를 참조하면, 분진량 예측 방법은 위험도 결정 단계(S300)를 더 포함할 수 있다.
위험도 결정 단계(S300)는 공정 과정에서 생성되는 분진이 저장되는 분진 필터(20)의 산소량 및 정전기량과 분진량 예측부(120)에 의해 예측된 분진량에 기반하여 분진 필터(20)의 상태를 진단하는 단계로서, 위험도 결정부(130)에 의해 수행될 수 있다.
예컨대, 도 4의 실시예에서, 위험도 결정부(130)는 분진량 예측부(120)로부터 분진량 정보(OUT2)를 수신할 수 있다. 그리고, 위험도 결정부(130)는 분진 필터(20, 구체적으로, 백 필터(21))에 구비된 센싱 유닛(23)으로부터 산소량 및 정전기량(IN5)을 수신할 수 있다.
위험도 결정부(130)는 산소량, 정전기량 및 분진량에 기반하여, 분진 필터(20)의 상태를 정상 상태 또는 이상 상태로 결정할 수 있다. 만약, 분진 필터(20)의 상태가 이상 상태로 결정된 경우, 위험도 결정부(130)는 경고 알림을 외부로 출력하도록 구성될 수 있다.
즉, 본 발명의 다른 실시예에 따른 분진량 예측 방법은 분진 필터(20)가 이상 상태인 경우 외부로 경고 알림을 출력함으로써 분진 필터(20)에서 발생될 수 있는 화재 및/또는 폭발 등의 사고를 미연에 방지하거나, 이러한 사고의 발생을 외부에 신속하게 알릴 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 앞서 설명한 실시예의 기재로부터 본 발명이 속하는 기술분야의 전문가라면 쉽게 구현할 수 있는 것이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
(부호의 설명)
10: 프릴 타워
11: BPA 유입부
12: BPA 토출부
13: 본체부
14: 냉매 유입부
15: BPA 출력부
16: 분진 출력부
20: 분진 필터
21: 백 필터
22: 분진 박스
23: 센싱 유닛
100: 분진량 예측 장치
110: 미분량 예측부
120: 분진량 예측부
130: 위험도 결정부
140: 저장부

Claims (14)

  1. 프릴 타워로 유입되는 액상 BPA로부터 BPA 프릴이 생성되는 공정 과정에서 생성되는 분진량을 예측하는 분진량 예측 장치에 있어서,
    학습된 미분량 예측 모델을 이용하여, 상기 프릴 타워로 유입되는 상기 액상 BPA의 유량 정보로부터 상기 공정 과정에서 생성되는 미분량을 예측하도록 구성된 미분량 예측부; 및
    학습된 분진량 예측 모델을 이용하여, 상기 미분량 예측부에 의해 예측된 미분량으로부터 상기 공정 과정에서 생성되는 분진량을 예측하도록 구성된 분진량 예측부를 포함하는 것을 특징으로 하는 분진량 예측 장치.
  2. 제1항에 있어서,
    상기 미분량 예측 모델은,
    상기 프릴 타워로 유입되는 상기 액상 BPA의 유량 정보와 미리 설정된 미분량 생성 비율에 기반하여, 상기 액상 BPA로부터 생성될 수 있는 상기 미분량을 예측하도록 미리 학습된 것을 특징으로 하는 분진량 예측 장치.
  3. 제2항에 있어서,
    상기 미분량 생성 비율은,
    상기 액상 BPA의 양과 상기 액상 BPA로부터 생성된 미분량 간의 대응 관계를 나타내도록 미리 설정된 것을 특징으로 하는 분진량 예측 장치.
  4. 제2항에 있어서,
    상기 미분량 예측 모델은,
    상기 프릴 타워로 유입되는 상기 액상 BPA의 특성 정보 및 상기 프릴 타워의 공정 조건 인자 중 적어도 하나를 더 고려하여, 상기 미분량을 예측하도록 미리 학습된 것을 특징으로 하는 분진량 예측 장치.
  5. 제4항에 있어서,
    상기 미분량 예측부는,
    상기 액상 BPA의 특성 정보 및 상기 공정 조건 인자 중 적어도 하나에 대응되는 상기 미분량 생성 비율을 결정하고, 결정된 미분량 생성 비율에 기반하여 상기 미분량을 예측하도록 구성된 것을 특징으로 하는 분진량 예측 장치.
  6. 제4항에 있어서,
    상기 액상 BPA의 특성 정보는,
    상기 액상 BPA의 온도 정보 및 조성 정보 중 적어도 하나를 포함하도록 구성된 것을 특징으로 하는 분진량 예측 장치.
  7. 제4항에 있어서,
    상기 공정 조건 인자는,
    상기 프릴 타워로 유입되는 액상 BPA가 상기 프릴 타워의 내부로 분사되는 속도, 상기 공정 과정에서 생성된 BPA 프릴과 미분이 상기 프릴 타워로부터 외부로 출력되는 속도, 상기 공정 과정에서 상기 프릴 타워로 유입되는 냉매의 양, 상기 냉매의 온도, 상기 프릴 타워의 내부 온도 및 상기 분진이 저장되는 분진 필터와 상기 프릴 타워 내부의 압력차 중 적어도 하나를 포함하도록 구성된 것을 특징으로 하는 분진량 예측 장치.
  8. 제1항에 있어서,
    상기 분진량 예측 모델은,
    상기 미분량과 상기 분진량에 대해 미리 설정된 상관 관계에 기반하여, 상기 예측된 미분량으로부터 상기 분진량을 예측하도록 미리 학습된 것을 특징으로 하는 분진량 예측 장치.
  9. 제8항에 있어서,
    상기 상관 관계는,
    상기 액상 BPA로부터 생성된 미분량과 분진량 간의 대응 관계에 기반하여 미리 설정되도록 구성된 것을 특징으로 하는 분진량 예측 장치.
  10. 제1항에 있어서,
    상기 액상 BPA는,
    상기 공정 과정에서 상기 프릴 타워로 유입되어 상기 BPA 프릴, 상기 미분 및 상기 분진을 생성하도록 구성된 것을 특징으로 하는 분진량 예측 장치.
  11. 제1항에 있어서,
    상기 공정 과정에서 생성되는 분진이 저장되는 분진 필터의 산소량 및 정전기량과 상기 분진량 예측부에 의해 예측된 분진량에 기반하여 상기 분진 필터의 상태를 진단하도록 구성된 위험도 결정부를 더 포함하는 것을 특징으로 하는 분진량 예측 장치.
  12. 제11항에 있어서,
    상기 위험도 결정부는,
    상기 분진 필터의 상태를 정상 상태 또는 이상 상태로 결정하고, 상기 결정된 분진 필터의 상태가 상기 이상 상태인 경우, 경고 알림을 출력하도록 구성된 것을 특징으로 하는 분진량 예측 장치.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 분진량 예측 장치를 포함하는 것을 특징으로 하는 BPA 프릴 제조 장치.
  14. 프릴 타워로 유입되는 액상 BPA로부터 BPA 프릴이 생성되는 공정 과정에서 생성되는 분진량을 예측하는 분진량 예측 방법에 있어서,
    학습된 미분량 예측 모델을 이용하여, 상기 프릴 타워로 유입되는 상기 액상 BPA의 유량 정보 및 특성 정보와 상기 프릴 타워의 공정 조건 인자로부터 상기 공정 과정에서 생성되는 미분량을 예측하는 미분량 예측 단계; 및
    학습된 분진량 예측 모델을 이용하여, 상기 미분량 예측 단계에서 예측된 미분량으로부터 상기 공정 과정에서 생성되는 분진량을 예측하는 분진량 예측 단계를 포함하는 것을 특징으로 하는 분진량 예측 방법.
PCT/KR2022/013635 2021-09-15 2022-09-13 분진량 예측 장치 및 방법 WO2023043149A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023549659A JP7490148B2 (ja) 2021-09-15 2022-09-13 粉塵量予測装置及び方法
CN202280008546.4A CN116745852A (zh) 2021-09-15 2022-09-13 粉尘量估计设备和方法
EP22870233.8A EP4258270A1 (en) 2021-09-15 2022-09-13 Apparatus and method for predicting amount of dust
US18/267,756 US20240050883A1 (en) 2021-09-15 2022-09-13 Apparatus and method for predicting amount of dust

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0123536 2021-09-15
KR1020210123536A KR20230040219A (ko) 2021-09-15 2021-09-15 분진량 예측 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2023043149A1 true WO2023043149A1 (ko) 2023-03-23

Family

ID=85603168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013635 WO2023043149A1 (ko) 2021-09-15 2022-09-13 분진량 예측 장치 및 방법

Country Status (6)

Country Link
US (1) US20240050883A1 (ko)
EP (1) EP4258270A1 (ko)
JP (1) JP7490148B2 (ko)
KR (1) KR20230040219A (ko)
CN (1) CN116745852A (ko)
WO (1) WO2023043149A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371302A (en) * 1992-04-14 1994-12-06 Nippon Steel Chemical Co., Ltd. Process for preparing prilled bisphenol A
KR20010101398A (ko) * 1999-01-07 2001-11-14 빌프리더 하이더 비스페놀 a 프릴의 제조 방법과 장치 및 그에 따라제조된 비스페놀 a 프릴
JP2010155803A (ja) * 2008-12-26 2010-07-15 Mitsubishi Chemicals Corp ビスフェノール化合物粒子の製造方法
KR101945314B1 (ko) * 2018-07-27 2019-04-17 딥클라우드 주식회사 인공지능 알고리즘을 기반으로 한 미세먼지 예측모듈을 이용한 미세먼지 저감장치
KR20190091730A (ko) * 2018-01-29 2019-08-07 성균관대학교산학협력단 미세먼지의 농도 예측 방법 및 장치
KR20210123536A (ko) 2020-04-03 2021-10-14 주식회사 엘지화학 변성 공액디엔계 중합체의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952018B2 (ja) 2006-03-29 2012-06-13 三菱化学株式会社 粒状ビスフェノールaの製造方法
CN108414569B (zh) 2018-02-07 2020-06-23 北京石油化工学院 一种低密度聚乙烯粉尘云最大爆炸压力的评估方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371302A (en) * 1992-04-14 1994-12-06 Nippon Steel Chemical Co., Ltd. Process for preparing prilled bisphenol A
KR20010101398A (ko) * 1999-01-07 2001-11-14 빌프리더 하이더 비스페놀 a 프릴의 제조 방법과 장치 및 그에 따라제조된 비스페놀 a 프릴
JP2010155803A (ja) * 2008-12-26 2010-07-15 Mitsubishi Chemicals Corp ビスフェノール化合物粒子の製造方法
KR20190091730A (ko) * 2018-01-29 2019-08-07 성균관대학교산학협력단 미세먼지의 농도 예측 방법 및 장치
KR101945314B1 (ko) * 2018-07-27 2019-04-17 딥클라우드 주식회사 인공지능 알고리즘을 기반으로 한 미세먼지 예측모듈을 이용한 미세먼지 저감장치
KR20210123536A (ko) 2020-04-03 2021-10-14 주식회사 엘지화학 변성 공액디엔계 중합체의 제조방법

Also Published As

Publication number Publication date
KR20230040219A (ko) 2023-03-22
JP7490148B2 (ja) 2024-05-24
JP2024508268A (ja) 2024-02-26
CN116745852A (zh) 2023-09-12
EP4258270A1 (en) 2023-10-11
US20240050883A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
WO2020017817A1 (ko) 스위치 진단 장치 및 방법
WO2020189914A1 (ko) 배터리 상태 추정 장치
WO2020189904A1 (ko) 레이저 진동측정을 이용한 제강 - 연주 공정설비 제어 및 상태분석 방법과 이를 이용한 시스템
WO2019027190A1 (ko) 배터리 관리 장치 및 이를 포함하는 배터리 팩
WO2020189918A1 (ko) 배터리 관리 장치
WO2021006571A1 (ko) 배터리 팩의 결함 검출 장치 및 방법
WO2021107655A1 (ko) 배터리 상태 진단 장치 및 방법
WO2014204179A1 (en) Method for verifying bad pattern in time series sensing data and apparatus thereof
WO2023043149A1 (ko) 분진량 예측 장치 및 방법
WO2019139310A1 (en) Autonomous driving apparatus and method for autonomous driving of a vehicle
WO2022114871A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차
WO2022075708A1 (ko) 배터리 상태 진단 장치 및 방법
WO2021080219A1 (ko) 배터리 퇴화도 진단 장치 및 방법
WO2020105947A1 (ko) 차량의 음향 개선 장치
WO2012070910A2 (ko) 대표값 산출 장치 및 방법.
WO2021157920A1 (ko) 배터리 랙의 개별 방전 시스템 및 방법
WO2021060900A1 (ko) 배터리 관리 장치 및 방법
WO2021045417A1 (ko) 절연 저항 측정 회로 진단 장치 및 방법
WO2020056952A1 (zh) 显示面板的控制方法、显示面板及存储介质
WO2022080835A1 (ko) 배터리 진단 장치 및 방법
WO2024010391A1 (ko) 화학 물질 유출 경보 제공 시스템 및 화학 물질 유출 경보 제공 방법
WO2021085786A1 (ko) 집적 회로 및 그것을 포함하는 시스템 제어 장치
WO2021153976A1 (ko) 배터리 팩 시뮬레이션 장치 및 이를 이용한 배터리 관리유닛 점검 방법
WO2023106592A1 (ko) 배터리 상태 모니터링 장치 및 방법, 그리고 배터리 보호 장치
WO2021137642A1 (ko) 배터리 관리 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22870233

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18267756

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280008546.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022870233

Country of ref document: EP

Effective date: 20230707

WWE Wipo information: entry into national phase

Ref document number: 2023549659

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE