WO2023042961A1 - 모터 다이나모미터 및 모터 특성 곡선 생성 방법 - Google Patents

모터 다이나모미터 및 모터 특성 곡선 생성 방법 Download PDF

Info

Publication number
WO2023042961A1
WO2023042961A1 PCT/KR2021/016980 KR2021016980W WO2023042961A1 WO 2023042961 A1 WO2023042961 A1 WO 2023042961A1 KR 2021016980 W KR2021016980 W KR 2021016980W WO 2023042961 A1 WO2023042961 A1 WO 2023042961A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
sample
data sets
torque
characteristic map
Prior art date
Application number
PCT/KR2021/016980
Other languages
English (en)
French (fr)
Inventor
안호진
김경식
백두산
이민욱
Original Assignee
이레산업㈜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이레산업㈜ filed Critical 이레산업㈜
Publication of WO2023042961A1 publication Critical patent/WO2023042961A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/24Devices for determining the value of power, e.g. by measuring and simultaneously multiplying the values of torque and revolutions per unit of time, by multiplying the values of tractive or propulsive force and velocity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines

Definitions

  • the present invention relates to a motor dynamometer and a method for generating a motor characteristic curve, and more particularly, to a motor dynamometer and a motor that automatically generate a motor characteristic curve requested by an operator by extracting necessary data from measurement data collected by a motor dynamometer. It relates to a method for generating a characteristic curve.
  • a motor is a device that converts electrical energy into mechanical energy.
  • High-efficiency motors are required to reduce energy costs and carbon emissions, and the lowest efficiency system is implemented for three-phase induction motors. Since this minimum efficiency system is being implemented not only in Korea but also around the world, if the motor does not meet the standard efficiency, it is not possible to sell motors not only in Korea but also in many countries such as the United States, Canada, Australia, EU, China, and Japan.
  • the efficiency of the motor is calculated by measuring operating data such as voltage, current, active power, temperature, torque, and rotational speed during operation of the motor, and a motor dynamometer is used as such a motor test device.
  • a motor dynamometer is a test device that measures power performance such as output, torque, rotational speed, and efficiency of rotating devices such as electric motors, generators, engines, etc. It is also widely used in the field.
  • the output shaft of the test motor 11 to be tested is coupled to the driving shaft of the load motor 1 through the torque measuring device 12 .
  • the automatic measurement device 16 determines the operating conditions of the test motor 11 and provides current value I and phase angle ⁇ information to the inverter 14 that controls the test motor 11, and the inverter 14 ) drives and controls the test motor 11.
  • the automatic measuring device 16 provides rotation speed N information to the controller 15 that controls the load motor 14 , and the controller 15 controls the rotation speed of the load motor 1 . In this state, the output torque T is measured by the torque measuring device 12 and inputted to the automatic measuring device 16.
  • the map creation unit 17 calculates the efficiency of the test motor based on the measured value and the instruction value, and creates a characteristic map.
  • a representative point is calculated using an estimated characteristic map obtained by simulation based on design specifications, and a characteristic map is created using actual measured values at the representative point from measurement results obtained by operating an actual motor.
  • An object of the present invention is to provide a motor dynamometer and a motor characteristic curve generation method for automatically generating an N-T curve based on sample values of extraction units set by a user from driving data collected by a motor dynamometer.
  • Another object of the present invention is to provide a motor dynamometer and a method for generating a motor characteristic curve that automatically generates a highly reliable smooth N-T curve by processing driving data collected by the motor dynamometer.
  • the technical problem to be achieved by the present embodiment is not limited to the technical problem described above, and other technical problems may exist.
  • a motor dynamometer for achieving the above object includes a sample driver for driving by supplying three-phase power to a sample motor; a DC power supply supplying DC power to the sample driver; a load motor providing a load to the sample motor; a torque sensor installed between the sample motor and the load motor to sense torque; a vibration sensor for sensing the acceleration of the sample motor; an input unit that receives a sampling unit and a sampling range from a user; And periodically collecting a plurality of driving data sets including torque and acceleration from the torque sensor and vibration sensor, extracting a plurality of driving data sets based on the sampling unit and extraction range, and averaging them for each item to obtain a plurality of standard data sets. It is characterized by including a feature map creation unit for generating sets and creating a feature map based on the generated plurality of standard data sets.
  • a method for generating a motor characteristic curve includes a first step of periodically collecting a plurality of driving data sets including torque and acceleration by a characteristic map maker; a second step of receiving a sampling unit and a sampling range from the feature map maker; a third step of generating a plurality of standard data sets by extracting a plurality of driving data sets based on the sampling unit and the sampling range and averaging them for each item by the characteristic map maker; and a fourth step of creating, by the characteristic map generator, a characteristic map based on the plurality of standard data sets.
  • a highly reliable and smooth N-T curve can be automatically generated by processing driving data collected from a motor dynamometer.
  • FIG. 1 is a configuration diagram showing a motor characteristic map creation device disclosed in Japanese Laid-Open Patent Publication No. 1996-240513.
  • FIG. 2 is a block diagram showing a motor dynamometer according to the present invention.
  • FIG. 3 is a diagram illustrating a torque-speed relationship graph and a time-torque relationship graph of a sample motor while collecting driving data sets.
  • 4 is an exemplary diagram of collected driving data sets.
  • FIG. 6 is an operational flowchart illustrating a method for generating a motor characteristic curve according to the present invention.
  • 'unit' or 'module' includes a unit realized by hardware or software, or a unit realized by using both, and one unit is realized by using two or more hardware may be, or two or more units may be realized by one hardware.
  • FIG. 2 is a block diagram showing a motor dynamometer according to the present invention.
  • the motor dynamometer includes a sample driver 22 for driving the sample motor 21, a DC power supply 23 for supplying power to the sample driver 22, and the sample motor 21 ), a load motor 24 for providing a load, a torque sensor 25 mounted between the sample motor 21 and the load motor 24 to detect torque and rotational speed, and the sample motor 21
  • a temperature sensor 26 for measuring the temperature of the sample
  • a vibration sensor 27 for detecting the acceleration of the sample motor 21, a load driver 28 for driving the load motor 24, and a sample from the user.
  • An input unit 30 that receives an extraction unit and an extraction range, and periodically collects a plurality of driving data sets including torque, rotational speed, acceleration, and temperature of the sample motor 21, and according to the sampling unit and extraction range
  • a characteristic map creation unit 29 extracting sample data from among the plurality of driving data sets and creating a characteristic map of the sample motor 21 based on the extracted sample data; and a characteristic map of the sample motor 21 It includes an output unit 31 that outputs.
  • the characteristic map creation unit 29 transmits the DC power data (voltage, current, power) supplied from the DC power supply 23 to the sample driver 22 and the sample motor 21 from the sample driver 22. Collects supplied 3-phase power data (voltage, current, power).
  • the characteristic map creation unit 29 controls the torque of the load motor 24 by feeding back torque to the driver 28 for the load.
  • the characteristic map generator 29 collects a driving data set.
  • the method of collecting the driving data set is to drive the sample motor 21 at the maximum speed without load and then gradually increase the torque of the load motor 24 to collect the driving data set at regular time intervals until the sample motor 21 stops. collect
  • FIG. 3 is a diagram illustrating a torque-speed relationship graph and a time-torque relationship graph of a sample motor while collecting driving data sets.
  • the characteristic map maker 29 collects and stores driving data sets at regular time intervals (eg, 0.1 seconds). Through this, the characteristic map maker 29 can collect a total of 1200 driving data sets for the sample motor 21 .
  • the collected operation data sets include a plurality of items, which include DC power data, 3-phase power data, sample motor temperature and acceleration data, torque data, and rotation speed data.
  • the characteristic map creation unit 29 calculates 3-phase active input, 3-phase inactive input, 3-phase apparent power, 3-phase power factor, 3-phase average voltage, and 3-phase average current from the collected 3-phase power data, motor efficiency, Inverter efficiency and system efficiency are calculated, and the rotational speed and displacement of the sample motor can be calculated from the collected acceleration data.
  • the items of the operation data set include the above-mentioned 3-phase active input, 3-phase inactive input, 3-phase apparent power, 3-phase power factor, 3-phase average voltage, 3-phase average current, motor efficiency, inverter efficiency, system efficiency, rotational speed, and displacement. is included
  • 4 is an exemplary diagram of collected driving data sets.
  • the present invention proposes a technique of selecting sample data by extracting a plurality of driving data of a section around a certain sample value and averaging the extracted driving data.
  • the feature map creation unit 29 of the present invention receives sampling units and extraction ranges from the user through the input unit 30 .
  • the sampling unit is a unit representing the degree of discreteness of sample values of standard items in the driving data set.
  • the driving data set includes multiple item data, among which the degree of discreteness of standard item sample values is indicated. For example, when the criterion item is torque, the sampling unit is the discrete degree of torque sample values.
  • torque sample values are selected at intervals of 2Nm from 0Nm to 20Nm (e.g., 0Nm, 2Nm, 4Nm, ..., 16Nm, 18Nm, 20Nm), and if the extraction unit is 1Nm, 1Nm from 0Nm to 20Nm Torque sample values are selected at intervals (eg, 0Nm, 1Nm, 2Nm, ..., 18Nm, 19Nm, 20Nm).
  • the extraction unit may be arbitrarily set according to the type of reference item and the user's purpose of creating the corresponding characteristic map.
  • the extraction range is an extraction range of driving data sets extracted to calculate the sample data set, and may be set to a certain % of the extraction unit. This extraction range can be set to 0.5%, which is the uncertainty (precision) of torque/efficiency, etc. in motor testing.
  • the extraction unit is 2Nm
  • the extraction range is 0.5%
  • the extraction range is 0.01Nm, so all operating data of ⁇ 0.01Nm centered on the selected torque sample value are extracted.
  • the torque sample value is 2Nm
  • all driving data sets having torque data of 1.99Nm, 1.999Nm, 2.006Nm, and 2.004Nm are extracted.
  • the average value is calculated for each item data and set as sample data. That is, for driving data sets having torque data of 1.99Nm, 1.999Nm, 2.006Nm, and 2.004Nm, an average value is obtained for each item data (eg, efficiency, current, voltage, rotational speed, temperature, etc.), Set the sample data corresponding to the sample value of 2Nm.
  • the characteristic map generator 29 creates a characteristic map by extracting sample values of two or more items.
  • the characteristic map generator of the present invention can be implemented in any computing system.
  • the characteristic map builder may be implemented in a stand alone computing system, or may be implemented in distributed computing systems capable of communicating with each other through a network or the like.
  • the characteristic map creation unit may include a part implemented by a processor executing a program including a series of instructions, or may include a part implemented by logic hardware designed by logic synthesis.
  • a processor is a hardware-implemented, including physically structured circuitry to execute predefined operations including operations expressed in instructions and/or codes included in programs. It may refer to any data processing device.
  • the data processing apparatus includes a microprocessor, a central processing unit (CPU), a graphics processing unit (GPU), a neural processing unit (NPU), a processor core, a multi-core processor, a multi-processor, an application-specific integrated integrated circuit (ASIC), circuit), an application-specific instruction-set processor (ASIP), and a field programmable gate array (FPGA).
  • a microprocessor a central processing unit (CPU), a graphics processing unit (GPU), a neural processing unit (NPU), a processor core, a multi-core processor, a multi-processor, an application-specific integrated integrated circuit (ASIC), circuit), an application-specific instruction-set processor (ASIP), and a field programmable gate array (FPGA).
  • CPU central processing unit
  • GPU graphics processing unit
  • NPU neural processing unit
  • ASIC application-specific integrated integrated circuit
  • ASIP application-specific instruction-set processor
  • FPGA field programmable gate array
  • FIG. 5 (a) is a characteristic map graph prepared based on a driving data set before sample processing, and (b) is a characteristic map graph prepared based on a sample data set after sample processing.
  • the data reliability in some sections was poor due to the large fluctuations in the measured values, but after the sample processing, the characteristic map graph was drawn as a smooth curve, and it can be seen that the reliability of the entire section is improved.
  • FIG. 6 is an operational flowchart illustrating a method for generating a motor characteristic curve according to the present invention.
  • the characteristic map creation unit 29 generates operation data at regular time intervals from when the sample motor 21 is driven at the maximum speed without load until the sample motor 21 is stopped by gradually increasing the torque of the load motor 24.
  • a set is collected (S61).
  • This operating data set includes DC power data, 3-phase power data, sample motor temperature and acceleration data, torque data, rotational speed data, 3-phase active input, 3-phase invalid input, 3-phase apparent power, 3-phase power factor, and 3-phase data.
  • Average voltage, 3-phase average current, motor efficiency, inverter efficiency, system efficiency, rotational speed and displacement may be included.
  • the feature map preparation unit 29 receives a sampling unit and an extraction range from the user through the input unit 30 (S62).
  • the characteristic map generator 29 selects a plurality of reference item sample values according to the sampling unit (S63).
  • the criterion item may be torque
  • the sampling unit represents the degree of discreteness of torque sample values.
  • a plurality of torque sample values are selected at sampling unit intervals from 0 Nm to 20 Nm.
  • Driving data sets within the extraction range are extracted centering on one standard item sample value (S64), and a sample data set is generated by calculating an average value for each item of the extracted driving data sets (S65).
  • Steps S64 and S65 are repeatedly performed for all standard item sample values selected in step S63 to generate sample data sets for all standard item sample values (S66).
  • the characteristic map creation unit 29 extracts two or more item sample values based on a plurality of sample data sets, creates and outputs a characteristic map (S67).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

본 발명은 모터 다이나모미터에서 수집된 측정데이터로부터 필요한 데이터를 추출하여 작업자가 요청한 모터 특성 곡선을 자동으로 생성하는 모터 다이나모미터 및 모터 특성 곡선 생성 방법에 관한 것이다. 본 발명에 따른 모터 다이나모미터는, 시료모터에 3상 전원을 공급하여 구동하는 시료용 드라이버; 상기 시료용 드라이버에 DC 전원을 공급하는 DC전원 공급기; 상기 시료모터에 부하를 제공하는 부하모터; 상기 시료모터와 상기 부하모터 사이에 장착되어 토크를 감지하는 토크센서; 상기 시료모터의 가속도를 감지하는 진동센세; 사용자로부터 표본 추출 단위와 추출 범위를 입력받는 입력부; 및 상기 토크센서 및 진동센서로부터 토크, 가속도를 포함한 복수의 운전 데이터 세트들을 주기적으로 수집하고, 상기 표본 추출 단위와 추출 범위를 기반으로 다수의 운전 데이터 세트들을 추출하고 항목별로 평균하여 복수의 표준 데이터 세트들을 생성하고, 생성된 상기 복수의 표준 데이터 세트들을 기반으로 특성 맵을 작성하는 특성 맵 작성부를 포함한다.

Description

모터 다이나모미터 및 모터 특성 곡선 생성 방법
본 발명은 모터 다이나모미터 및 모터 특성 곡선 생성 방법에 관한 것으로서, 보다 상세하게는 모터 다이나모미터에서 수집된 측정데이터로부터 필요한 데이터를 추출하여 작업자가 요청한 모터 특성 곡선을 자동으로 생성하는 모터 다이나모미터 및 모터 특성 곡선 생성 방법에 관한 것이다.
모터는 전기에너지를 역학적 에너지로 변환시키는 장치이다. 에너지 비용과 탄소 방출량을 줄이기 위하여 고효율 모터가 요구되고 있으며, 삼상유도 전동기에 대하여 최저 효율제가 시행되고 있다. 이러한 최저 효율제는 우리나라뿐만 아니라 전세계적으로 시행 중이므로 모터에 대하여 기준 효율을 만족하지 못하면 한국뿐만 아니라 미국, 캐나다, 호주, EU, 중국, 일본 등 여러 나라에서 모터를 판매하지 못한다.
따라서, 모터가 생산되면 해당 모터의 효율이 필수적으로 측정된다. 모터의 효율은 모터의 운전 중 전압, 전류, 유효전력, 온도, 토크, 회전속도 등의 운전 데이터를 측정하여 계산되며, 이러한 모터 시험 장치로서, 모터 다이나모미터가 사용된다.
모터 다이나모미터는 회전기기 예컨대, 전기모터, 발전기, 엔진 등의 출력, 토크, 회전 속도, 효율 등의 동력 성능을 측정하는 시험장치로서, 자동차 분야, 항공 분야, 조선 분야, 로봇 분야뿐만 아니라 일반 산업분야에서도 널리 사용되고 있다.
모터 다이나모미터를 이용하여 모터의 특성을 측정하는 선행기술로서, 일본 공개특허 제1996-240513호(1996.09.17), '모터의 특성 맵 작성 장치'가 있다.
도 1은 일본 공개특허 제1996-240513호에 기재된 모터 특성 맵 작성 장치를 도시한 구성도이다. 시험 대상인 시험 모터(11)는 그 출력축이 토크 측정기(12)를 통해 부하 모터(1)의 구동축에 결합된다. 자동 계측 장치(16)는 시험 모터(11)의 운전 조건을 결정하고 시험 모터(11)를 제어하는 인버터(14)에 전류값(I) 및 위상각(θ) 정보를 제공하며, 인버터(14)는 시험 모터(11)를 구동 제어한다. 또한, 자동 계측 장치(16)는 부하 모터(14)를 제어하는 컨트롤러(15)에 회전수(N) 정보를 제공하고, 컨트롤러(15)는 부하 모터(1)의 회전수를 제어한다. 이 상태에서 토크 측정기(12)에 의해 출력 토크(T)가 측정되어 자동 계측 장치(16)로 입력된다. 맵 작성부(17)는 측정치 및 지시값에 기초하여 시험 모터의 효율 등을 산출하며 특성 맵을 작성한다. 이 선행기술에서는, 설계 사양에 기초해 시뮬레이션을 해 얻어진 추정 특성 맵을 이용하여 대표점을 산출하고, 실제 모터를 운전해서 얻어진 측정 결과에서 대표점에서의 실측치를 이용하여 특성 맵을 작성한다.
모터 다이나모미터를 이용하여 모터 특성 맵을 자동으로 측정하는 다른 선행기술로서, 일본 공개특허 제2018-014842호, '자동 측정 시스템 및 자동 측정 방법'이 있다. 이 선행기술에서는 토크 지령치와 회전속도 지령치를 취득하고, 취득된 토크 지령치와 회전속도 지령치가 소정 영역에 포함되는지를 판정하며, 그 판정 결과에 따라 이론치 또는 실측치로 특성 맵을 작성한다.
본 발명은 모터 다이나모미터에서 수집된 운전 데이터로부터 사용자에 의해 설정된 추출 단위의 표본값들을 기반으로 N-T 커브를 자동으로 생성하는 모터 다이나모미터 및 모터 특성 곡선 생성 방법을 제공하는데 그 목적이 있다.
본 발명의 다른 목적은 모터 다이나모미터에서 수집된 운전 데이터를 가공하여 신뢰성 높은 부드러운 N-T 커브를 자동으로 생성하는 모터 다이나모미터 및 모터 특성 곡선 생성 방법을 제공하는데 있다.
본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상술한 목적을 달성하기 위한 본 발명에 따른 모터 다이나모미터는, 시료모터에 3상 전원을 공급하여 구동하는 시료용 드라이버; 상기 시료용 드라이버에 DC 전원을 공급하는 DC전원 공급기; 상기 시료모터에 부하를 제공하는 부하모터; 상기 시료모터와 상기 부하모터 사이에 장착되어 토크를 감지하는 토크센서; 상기 시료모터의 가속도를 감지하는 진동센서; 사용자로부터 표본 추출 단위와 추출 범위를 입력받는 입력부; 및 상기 토크센서 및 진동센서로부터 토크, 가속도를 포함한 복수의 운전 데이터 세트들을 주기적으로 수집하고, 상기 표본 추출 단위와 추출 범위를 기반으로 다수의 운전 데이터 세트들을 추출하고 항목별로 평균하여 복수의 표준 데이터 세트들을 생성하고, 생성된 상기 복수의 표준 데이터 세트들을 기반으로 특성 맵을 작성하는 특성 맵 작성부를 포함한 것을 특징으로 한다.
또한, 본 발명에 따른 모터 특성 곡선 생성 방법은, 특성 맵 작성부가 토크, 가속도를 포함한 복수의 운전 데이터 세트들을 주기적으로 수집하는 제1단계; 상기 특성 맵 작성부가 표본 추출 단위와 추출 범위를 입력받는 제2단계; 상기 특성 맵 작성부가 상기 표본 추출 단위와 추출 범위를 기반으로 다수의 운전 데이터 세트들을 추출하고 항목별로 평균하여 복수의 표준 데이터 세트들을 생성하는 제3단계; 및 상기 특성 맵 작성부가 상기 복수의 표준 데이터 세트들을 기반으로 특성 맵을 작성하는 제4단계를 포함한 것을 특징으로 한다.
본 발명에 따르면 모터 다이나모미터에서 수집된 운전 데이터를 가공하여 신뢰성 높고 부드러운 N-T 커브를 자동으로 생성할 수 있는 효과가 있다.
또한, 모터 다이나모미터에서 수집된 운전 데이터로부터 사용자에 의해 설정된 추출 단위의 표본값들을 기반으로 N-T 커브를 자동으로 생성할 수 있는 효과가 있다.
도 1은 일본 공개특허 제1996-240513호에 기재된 모터 특성 맵 작성 장치를 도시한 구성도이다.
도 2는 본 발명에 따른 모터 다이나모미터를 나타내는 구성 블록도이다.
도 3은 운전 데이터 세트를 수집하는 동안의 시료모터의 토크-속도 관계 그래프 및 시간-토크 관계 그래프를 도시한 도면이다.
도 4는 수집된 운전 데이터 세트들의 예시도이다.
도 5의 (a)는 표본 가공 전의 운전 데이터 세트를 기반으로 작성된 특성 맵 그래프이고, (b)는 표본 가공 후의 표본 데이터 세트를 기반으로 작성된 특성 맵 그래프이다.
도 6은 본 발명에 따른 모터 특성 곡선 생성 방법을 도시한 동작 흐름도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 본 발명을 명확하게 설명하기 위해 도면에서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. 또한, 도면을 참고하여 설명하면서, 같은 명칭으로 나타낸 구성일지라도 도면에 따라 도면 번호가 달라질 수 있고, 도면 번호는 설명의 편의를 위해 기재된 것에 불과하고 해당 도면 번호에 의해 각 구성의 개념, 특징, 기능 또는 효과가 제한 해석되는 것은 아니다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미하며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에 있어서 '부(部)' 또는 '모듈'이란, 하드웨어 또는 소프트웨어에 의해 실현되는 유닛(unit), 양방을 이용하여 실현되는 유닛을 포함하며, 하나의 유닛이 둘 이상의 하드웨어를 이용하여 실현되어도 되고, 둘 이상의 유닛이 하나의 하드웨어에 의해 실현되어도 된다.
도 2는 본 발명에 따른 모터 다이나모미터를 나타내는 구성 블록도이다.
본 발명에 따른 모터 다이나모미터는, 시료모터(21)를 구동하는 시료용 드라이버(22)와, 상기 시료용 드라이버(22)에 전원을 공급하는 DC전원 공급기(23)와, 상기 시료모터(21)에 부하를 제공하는 부하모터(24)와, 상기 시료모터(21)와 상기 부하모터(24) 사이에 장착되어 토크와 회전수를 감지하는 토크센서(25)와, 상기 시료모터(21)의 온도를 측정하는 온도센서(26)와, 상기 시료모터(21)의 가속도를 감지하는 진동센서(27)와, 상기 부하모터(24)를 구동하는 부하용 드라이버(28)와, 사용자로부터 표본 추출 단위와 추출 범위를 입력받는 입력부(30)와, 주기적으로 상기 시료모터(21)의 토크, 회전수, 가속도 및 온도를 포함한 복수의 운전 데이터 세트를 수집하고 상기 표본 추출 단위와 추출 범위에 따라 상기 복수의 운전 데이터 세트 중 표본 데이터를 추출하며 상기 추출된 표본 데이터를 기반으로 상기 시료모터(21)의 특성 맵을 작성하는 특성 맵 작성부(29)와, 상기 시료모터(21)의 특성 맵을 출력하는 출력부(31)를 포함한다.
상기 특성 맵 작성부(29)는 DC전원 공급기(23)에서 시료용 드라이버(22)로 공급되는 DC전원 데이터(전압, 전류, 전력)과, 시료용 드라이버(22)에서 시료모터(21)로 공급되는 3상 전원 데이터(전압, 전류, 전력)를 수집한다. 특성 맵 작성부(29)는 부하용 드라이버(28)에 토크를 피드백하여 부하모터(24)의 회전력을 제어한다.
상기 특성 맵 작성부(29)는 운전 데이터 세트를 수집한다. 운전 데이터 세트를 수집하는 방법은, 시료모터(21)를 무부하 최고속도로 구동시킨 후 부하모터(24)의 토크를 서서히 증가시켜 시료모터(21)가 정지할 때까지 일정한 시간 간격으로 운전 데이터 세트를 수집한다.
도 3은 운전 데이터 세트를 수집하는 동안의 시료모터의 토크-속도 관계 그래프 및 시간-토크 관계 그래프를 도시한 도면이다.
무부하(토크=0) 상태에서 최고속도 3500 /min인 시료모터(21)를 시험할 때, 부하모터(24)의 토크를 서서히 증가시키면 시료모터(21)의 속도가 서서히 감소하며, 토크 20 Nm가 인가되면 시료모터(21)는 정지한다. 무부하 상태부터 20 Nm의 부하가 인가되기까지 약 120초의 시간이 소요된다. 이 120초의 시간동안, 특성 맵 작성부(29)는 일정한 시간 간격(예컨대, 0.1초)으로 운전 데이터 세트들을 수집하여 저장한다. 이를 통해 특성 맵 작성부(29)는 시료모터(21)에 대해 총 1200개의 운전 데이터 세트들을 수집할 수 있다.
수집되는 운전 데이터 세트들에는 복수의 항목들이 포함되는데, 이 항목에는 DC전원 데이터, 3상 전원 데이터, 시료모터의 온도 및 가속도 데이터, 토크 데이터, 회전수 데이터가 포함된다. 특성 맵 작성부(29)는 수집된 3상 전원 데이터로부터 3상 유효입력, 3상 무효입력, 3상 피상전력, 3상 역률, 3상 평균전압, 3상 평균전류를 계산하고, 모터 효율, 인버터 효율, 시스템 효율을 연산하며, 수집된 가속도 데이터로부터 시료모터의 회전속도와 변위를 계산할 수 있다. 운전 데이터 세트의 항목에는 상술한 3상 유효입력, 3상 무효입력, 3상 피상전력, 3상 역률, 3상 평균전압, 3상 평균전류, 모터 효율, 인버터 효율, 시스템 효율, 회전속도 및 변위가 포함된다.
도 4는 수집된 운전 데이터 세트들의 예시도이다.
수집된 운전 데이터 세트들 중 토크 항목(41)을 살펴보면, 1.99Nm, 1.989Nm, 2.199Nm, 1.999Nm, 2.006Nm, 2.177Nm, 2.407Nm, 2.328Nm, 2.004Nm와 같이 정수값이 거의 없으며, 시간에 따라 변동이 심한 것을 확인할 수 있다. 따라서, 대표값으로 1Nm, 2Nm 등과 같이 정수 간격으로 데이터를 추출하고자 할 경우, 하나의 대표값을 선정하기 매우 어렵다. 예컨대, 토크가 2Nm일 때의 회전속도를 추출하고자 할 경우, 도 4의 예시 도면에서는 2Nm에 해당하는 토크 데이터가 존재하지 않고, 2Nm 주변으로 복수의 토크 데이터(1.99Nm, 1.999Nm, 2.004Nm 등이 존재)가 존재하는데 이 중 하나를 골라서 표본값으로 선정하기가 쉽지 않다.
본 발명은 임의의 표본값 주변 구간의 복수의 운전 데이터들을 추출하고 추출된 운전 데이터를 평균하여 표본 데이터로 선정하는 기술을 제안한다.
본 발명의 특성 맵 작성부(29)는 입력부(30)를 통해 사용자로부터 표본 추출 단위와 추출 범위를 입력받는다. 표본 추출 단위는 운전 데이터 세트 중 기준 항목의 표본값들의 이산 정도를 나타내는 단위이다. 앞서 설명하였듯이 운전 데이터 세트에는 복수의 항목 데이터가 포함되는데, 이 중 기준 항목 표본값들의 이산 정도를 나타낸다. 예컨대, 기준 항목이 토크인 경우, 표본 추출 단위는 토크 표본값들의 이산 정도이다. 추출 단위가 2Nm인 경우, 0Nm부터 20Nm까지 2Nm 간격으로 토크 표본값들이 선정되고(예컨대, 0Nm, 2Nm, 4Nm, ..., 16Nm, 18Nm, 20Nm), 추출 단위가 1Nm이면 0Nm부터 20Nm까지 1Nm 간격으로 토크 표본값들이 선정된다(예컨대, 0Nm, 1Nm, 2Nm, ..., 18Nm, 19Nm, 20Nm). 추출 단위는 기준 항목의 종류와 사용자의 해당 특성 맵 작성 목적에 따라 임의대로 설정될 수 있다.
추출 범위는 표본 데이터 세트를 계산하기 위해 추출되는 운전 데이터 세트들의 추출 범위로서, 추출 단위의 일정 %로 설정될 수 있다. 이 추출 범위는 모터 시험에서 토크/효율 등의 불확도(정밀도)인 0.5%로 설정될 수 있다. 기준 항목이 토크이고, 추출 단위가 2Nm이고, 추출 범위는 0.5%인 경우, 추출 범위는 0.01Nm이므로, 선정된 토크 표본값을 중심으로 ±0.01Nm의 운전 데이터가 모두 추출된다. 위 도 4의 예에서, 토크 표본값이 2Nm인 경우, 토크 데이터가 1.99Nm, 1.999Nm, 2.006Nm, 2.004Nm인 운전 데이터 세트들이 모두 추출된다.
추출된 운전 데이터 세트들에 대해, 항목 데이터별로 평균값을 계산하여 표본 데이터로 설정한다. 즉, 토크 데이터가 1.99Nm, 1.999Nm, 2.006Nm, 2.004Nm인 운전 데이터 세트들에 대해, 각 항목 데이터별(예컨대, 효율, 전류, 전압, 회전속도, 온도 등등)로 각각 평균값을 구해서, 토크 표본값 2Nm에 대응하는 표본 데이터로 설정한다.
특성 맵 작성부(29)는 임의의 둘 이상의 항목 표본값들을 추출하여 특성 맵을 작성한다.
본 발명의 특성 맵 작성부는 임의의 컴퓨팅 시스템에서 구현될 수 있다. 예를 들면, 특성 맵 작성부는 독립형의(stand alone) 컴퓨팅 시스템에서 구현될 수도 있고, 네트워크 등을 통해 상호 통신가능한 분산된(distributed) 컴퓨팅 시스템들에서 구현될 수도 있다. 또한, 특성 맵 작성부는 일련의 명령어들을 포함하는 프로그램을 실행하는 프로세서에 의해서 구현된 부분을 포함할 수도 있고, 논리합성(logic synthesis)에 의해서 설계된 로직 하드웨어에 의해서 구현된 부분을 포함할 수도 있다. 본 명세서에서, 프로세서는 프로그램에 포함된 명령어들 및/또는 코드로 표현되는 동작들을 포함하는 미리 정의된 동작들을 실행하기 위하여 물리적으로 구조화된 회로를 포함하는, 하드웨어적으로 구현된(hardware-implemented) 임의의 데이터 처리 장치를 지칭할 수 있다. 예를 들면, 데이터 처리 장치는, 마이크로프로세서, CPU(central processing unit), GPU(graphics processing unit), NPU(neural processing unit), 프로세서 코어, 멀티-코어프로세서, 멀티 프로세서, ASIC(application-specific integrated circuit), ASIP(application-specificinstruction-set processor) 및 FPGA(field programmable gate array)를 포함할 수 있다.
도 5의 (a)는 표본 가공 전의 운전 데이터 세트를 기반으로 작성된 특성 맵 그래프이고, (b)는 표본 가공 후의 표본 데이터 세트를 기반으로 작성된 특성 맵 그래프이다. 표본 가공 전에는 측정값의 변동이 심하여 일부 구간의 데이터 신뢰성이 열악하나, 표본 가공 후에는 특성 맵 그래프가 부드러운 곡선으로 도출되며 전 구간 신뢰성이 향상됨을 알 수 있다.
도 6은 본 발명에 따른 모터 특성 곡선 생성 방법을 도시한 동작 흐름도이다.
특성 맵 작성부(29)는 시료모터(21)가 무부하 최고속도로 구동될 때부터 부하모터(24)의 토크를 서서히 증가시켜 시료모터(21)가 정지할 때까지 동안에, 일정한 시간 간격으로 운전 데이터 세트를 수집한다(S61). 이 운전 데이터 세트에는 DC전원 데이터, 3상 전원 데이터, 시료모터의 온도 및 가속도 데이터, 토크 데이터, 회전수 데이터, 3상 유효입력, 3상 무효입력, 3상 피상전력, 3상 역률, 3상 평균전압, 3상 평균전류, 모터 효율, 인버터 효율, 시스템 효율, 회전속도 및 변위가 포함될 수 있다.
다음, 특성 맵 작성부(29)는 입력부(30)를 통해 사용자로부터 표본 추출 단위와 추출 범위를 입력받는다(S62).
특성 맵 작성부(29)는 표본 추출 단위에 따라 복수의 기준 항목 표본값을 선정한다(S63). 이때, 기준 항목은 토크가 될 수 있으며, 표본 추출 단위는 토크 표본값들의 이산 정도를 나타낸다. 0 Nm 부터 20 Nm 까지 표본 추출 단위 간격으로 복수의 토크 표본값들이 선정된다.
하나의 기준 항목 표본값을 중심으로 추출 범위 내의 운전 데이터 세트들을 추출하고(S64), 추출된 운전 데이터 세트들에 대해 각 항목별로 평균값을 계산하여 표본 데이터 세트를 생성한다(S65).
단계 S63에서 선정된 모든 기준 항목 표본값들에 대해 단계 S64와 단계 S65를 반복 수행하여, 모든 기준 항목 표본값들에 대한 표본 데이터 세트들을 생성한다(S66).
특성 맵 작성부(29)는 복수의 표본 데이터 세트들을 기반으로 임의의 둘 이상의 항목 표본값들을 추출하여 특성 맵을 작성하여 출력한다(S67).
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (13)

  1. 시료모터에 3상 전원을 공급하여 구동하는 시료용 드라이버;
    상기 시료용 드라이버에 DC 전원을 공급하는 DC전원 공급기;
    상기 시료모터에 부하를 제공하는 부하모터;
    상기 시료모터와 상기 부하모터 사이에 장착되어 토크를 감지하는 토크센서;
    상기 시료모터의 가속도를 감지하는 진동센서;
    사용자로부터 표본 추출 단위와 추출 범위를 입력받는 입력부; 및
    상기 토크센서 및 진동센서로부터 토크, 가속도를 포함한 복수의 운전 데이터 세트들을 주기적으로 수집하고, 상기 표본 추출 단위와 추출 범위를 기반으로 다수의 운전 데이터 세트들을 추출하고 항목별로 평균하여 복수의 표준 데이터 세트들을 생성하고, 생성된 상기 복수의 표준 데이터 세트들을 기반으로 특성 맵을 작성하는 특성 맵 작성부를 포함한 것을 특징으로 하는 모터 다이나모미터.
  2. 제1항에 있어서,
    상기 특성 맵 작성부는 상기 시료모터가 무부하 최고속도로 구동될 때부터 상기 시료모터에 최대 토크가 인가되어 정지될 때까지의 동안에, 주기적으로 상기 운전 데이터 세트들을 수집하는 것을 특징으로 하는 모터 다이나모미터.
  3. 제1항에 있어서,
    상기 특성 맵 작성부는 상기 표본 추출 단위에 따라 복수의 기준 항목 표본값을 선정하고, 각 기준 항목 표본값에 대응하는 표본 데이터 세트들을 생성하는 것을 특징으로 하는 모터 다이나모미터.
  4. 제3항에 있어서,
    상기 각 표본 데이터 세트는 각 기준 항목 표본값을 중심으로 추출 범위 내의 운전 데이터 세트들을 추출하고 항목별로 평균값을 계산하여 생성되는 것을 특징으로 하는 모터 다이나모미터.
  5. 제1항에 있어서,
    상기 기준 항목은 토크인 것을 특징으로 하는 모터 다이나모미터.
  6. 제1항에 있어서,
    상기 특성 맵은 토크-속도 특성 커브인 것을 특징으로 하는 모터 다이나모미터.
  7. 제1항에 있어서,
    상기 시료모터의 온도를 측정하여 상기 특성 맵 작성부에 제공하는 온도센서를 더 포함한 것을 특징으로 하는 모터 다이나모미터.
  8. 특성 맵 작성부가 토크, 가속도를 포함한 복수의 운전 데이터 세트들을 주기적으로 수집하는 제1단계;
    상기 특성 맵 작성부가 표본 추출 단위와 추출 범위를 입력받는 제2단계;
    상기 특성 맵 작성부가 상기 표본 추출 단위와 추출 범위를 기반으로 다수의 운전 데이터 세트들을 추출하고 항목별로 평균하여 복수의 표준 데이터 세트들을 생성하는 제3단계; 및
    상기 특성 맵 작성부가 상기 복수의 표준 데이터 세트들을 기반으로 특성 맵을 작성하는 제4단계를 포함한 것을 특징으로 하는 모터 특성 곡선 생성 방법.
  9. 제8항에 있어서,
    상기 제1단계는, 상기 특성 맵 작성부가 시료모터가 무부하 최고속도로 구동될 때부터 상기 시료모터에 최대 토크가 인가되어 정지될 때까지의 동안에, 주기적으로 상기 운전 데이터 세트들을 수집하는 것을 특징으로 하는 모터 특성 곡선 생성 방법.
  10. 제8항에 있어서,
    상기 제3단계는, 상기 특성 맵 작성부가 상기 표본 추출 단위에 따라 복수의 기준 항목 표본값을 선정하는 단계와 각 기준 항목 표본값에 대응하는 표본 데이터 세트들을 생성하는 단계를 포함하는 것을 특징으로 하는 모터 특성 곡선 생성 방법.
  11. 제10항에 있어서,
    상기 각 표본 데이터 세트는 각 기준 항목 표본값을 중심으로 추출 범위 내의 운전 데이터 세트들을 추출하고 항목별로 평균값을 계산하여 생성되는 것을 특징으로 하는 모터 특성 곡선 생성 방법.
  12. 제8항에 있어서, 상기 기준 항목은 토크인 것을 특징으로 하는 모터 특성 곡선 생성 방법.
  13. 제8항에 있어서, 상기 특성 맵은 토크-속도 특성 커브인 것을 특징으로 하는 모터 특성 곡선 생성 방법.
PCT/KR2021/016980 2021-09-14 2021-11-18 모터 다이나모미터 및 모터 특성 곡선 생성 방법 WO2023042961A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0122585 2021-09-14
KR1020210122585A KR102667285B1 (ko) 2021-09-14 2021-09-14 모터 다이나모미터 및 모터 특성 곡선 생성 방법

Publications (1)

Publication Number Publication Date
WO2023042961A1 true WO2023042961A1 (ko) 2023-03-23

Family

ID=85603024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016980 WO2023042961A1 (ko) 2021-09-14 2021-11-18 모터 다이나모미터 및 모터 특성 곡선 생성 방법

Country Status (2)

Country Link
KR (1) KR102667285B1 (ko)
WO (1) WO2023042961A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270534A (ja) * 1999-03-19 2000-09-29 Matsushita Electric Ind Co Ltd リニアモータの動特性測定装置
WO2009096169A1 (ja) * 2008-01-29 2009-08-06 Panasonic Corporation モータ制御特性評価装置およびモータ制御特性の提示方法
JP2012132800A (ja) * 2010-12-22 2012-07-12 Ono Sokki Co Ltd ダイナモメータの特性マップ作成方法及びダイナモメータ
KR20170005304A (ko) * 2015-07-03 2017-01-12 주식회사 싸이텍 모터 특성 검사장치
US20170191903A1 (en) * 2014-09-03 2017-07-06 Horiba, Ltd. Electric motor test system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240513A (ja) 1995-03-01 1996-09-17 Toyota Motor Corp モータの特性マップ作成装置
JP6721177B2 (ja) 2016-07-22 2020-07-08 Mywayプラス株式会社 自動測定システム及び自動測定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270534A (ja) * 1999-03-19 2000-09-29 Matsushita Electric Ind Co Ltd リニアモータの動特性測定装置
WO2009096169A1 (ja) * 2008-01-29 2009-08-06 Panasonic Corporation モータ制御特性評価装置およびモータ制御特性の提示方法
JP2012132800A (ja) * 2010-12-22 2012-07-12 Ono Sokki Co Ltd ダイナモメータの特性マップ作成方法及びダイナモメータ
US20170191903A1 (en) * 2014-09-03 2017-07-06 Horiba, Ltd. Electric motor test system
KR20170005304A (ko) * 2015-07-03 2017-01-12 주식회사 싸이텍 모터 특성 검사장치

Also Published As

Publication number Publication date
KR102667285B1 (ko) 2024-05-20
KR20230039361A (ko) 2023-03-21

Similar Documents

Publication Publication Date Title
EP2905630A2 (en) Fault detection in brushless exciters
CN101688897B (zh) 非侵入性确定电动机效率的系统和方法
EP2908148A2 (en) Rectifier diode fault detection in brushless exciters
US20030078742A1 (en) Determination and applications of three-phase power factor
CN109314486A (zh) 用于限制电机的转矩的方法和保护设备
US7880473B2 (en) Non-invasive monitoring and diagnosis of electric machines by measuring external flux density
CN103560725B (zh) 一种独立于转速的无刷直流电机位置检测方法
CN104823064A (zh) 用于检测电动机器中的故障状态的方法
EP2077613A2 (en) Shorted rotating diode detection and protection
CN106452195B (zh) 感应电动机的长启动保护
KR20140146083A (ko) 발전기 모드에서 동기기의 여자 전류 측정을 검사하기 위한 방법
CN105372075B (zh) 具有故障诊断功能的无刷直流电子水泵控制器及诊断方法
CN116325483A (zh) 用于感应电动机的静态偏心故障检测的方法
WO2023042961A1 (ko) 모터 다이나모미터 및 모터 특성 곡선 생성 방법
CN104049127A (zh) 平行线束电流不平衡和故障检测
Tunggal et al. The design of tachometer contact and non-contact using microcontroller
Bhardwaj et al. Fault diagnosis of three phase induction motor using fuzzy logic controller and sequence analyzer
Oviedo et al. Motor current signature analysis and negative sequence current based stator winding short fault detection in an induction motor
Pietrzak et al. Stator phase current STFT analysis for the PMSM stator winding fault diagnosis
Tunggal et al. Design of contact and non-contact tachometer using microcontroller
EP3407483B1 (en) Direct current sensor, alternating current sensor, and inverter comprising same
WO2012113455A1 (en) A method for obtaining an instantaneous direct current value, and control device
CN105978418B (zh) 一种无刷直流电机三相绕组相序的检测方法及检测装置
CN106646231A (zh) 电机出厂试验自动检测系统及测试方法
Mohammad-Alikhani et al. A wrapper-based feature selection approach for accurate fault detection of rotating diode rectifiers in brushless synchronous generators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21957629

Country of ref document: EP

Kind code of ref document: A1