WO2023042810A1 - 水素供給システム及び水素供給システムを備える水素消費プラント並びに水素消費装置に水素を供給する方法 - Google Patents

水素供給システム及び水素供給システムを備える水素消費プラント並びに水素消費装置に水素を供給する方法 Download PDF

Info

Publication number
WO2023042810A1
WO2023042810A1 PCT/JP2022/034139 JP2022034139W WO2023042810A1 WO 2023042810 A1 WO2023042810 A1 WO 2023042810A1 JP 2022034139 W JP2022034139 W JP 2022034139W WO 2023042810 A1 WO2023042810 A1 WO 2023042810A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
consuming device
supply system
storage tank
amount
Prior art date
Application number
PCT/JP2022/034139
Other languages
English (en)
French (fr)
Inventor
裕之 古市
智史 山本
創 駒田
正 勝目
香織 吉田
Original Assignee
三菱重工エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジニアリング株式会社 filed Critical 三菱重工エンジニアリング株式会社
Priority to EP22869957.5A priority Critical patent/EP4361493A1/en
Priority to CA3228127A priority patent/CA3228127A1/en
Priority to AU2022346364A priority patent/AU2022346364A1/en
Publication of WO2023042810A1 publication Critical patent/WO2023042810A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels

Definitions

  • the present disclosure relates to a hydrogen supply system, a hydrogen consuming plant comprising the hydrogen supply system and a method of supplying hydrogen to a hydrogen consuming device.
  • Patent Literature 1 describes a gas turbine that can supply not only natural gas but also hydrogen obtained by reforming natural gas as fuel to the combustor. During normal operation of the gas turbine, natural gas, hydrogen, and off-gas are supplied to the combustor as fuel, and during low-load operation of the gas turbine, such as when the demand for electricity is low, hydrogen is stored without being supplied to the combustor. do.
  • Patent Document 1 states that hydrogen is stored during low-load operation of the gas turbine, it does not describe the specific configuration of the hydrogen storage equipment.
  • Patent Document 1 describes that the stored hydrogen is used for other purposes as an industrial hydrogen product, and that it is used as part of the fuel for a fuel cell that is provided separately from the gas turbine. It is not assumed to be reused in gas turbines. Even if the stored hydrogen were to be reused in the gas turbine, it would be difficult to make the supply of hydrogen follow fluctuations in the amount of fuel supplied when the gas turbine load fluctuates simply by providing a tank for storing hydrogen.
  • At least one embodiment of the present disclosure supplies hydrogen to a hydrogen supply system having improved followability to fluctuations in demand for hydrogen, a hydrogen supply plant including the hydrogen supply system, and a hydrogen consumption device.
  • the purpose is to provide a method.
  • a hydrogen supply system includes a hydrogen production device, a hydrogen distribution line through which hydrogen produced by the hydrogen production device flows, and a hydrogen distribution line downstream of the hydrogen production device.
  • a buffer tank provided in the line; and a bypass line that bypasses part of the hydrogen flow line, the downstream end of the bypass line communicating with the hydrogen flow line downstream of the buffer tank.
  • a storage tank provided in the bypass line and capable of storing hydrogen.
  • a method for supplying hydrogen to a hydrogen consuming device includes a hydrogen producing step of producing hydrogen, and circulating the hydrogen produced in the hydrogen producing step toward the hydrogen consuming device. a circulating step, a retaining step of retaining the hydrogen circulating toward the hydrogen consuming device, and a storing step of storing a portion of the hydrogen circulating toward the hydrogen consuming device together with or after the retaining step. including.
  • the fluctuation in the amount of hydrogen in the buffer tank can absorb the fluctuation in the demand, and when the fluctuation in the demand for hydrogen becomes large.
  • the amount of hydrogen stored in the storage tank or by supplying hydrogen from the storage tank, it is possible to improve the ability to follow changes in demand for hydrogen.
  • the retention step of retaining the hydrogen flowing toward the hydrogen consuming device, and the hydrogen flowing toward the hydrogen consuming device together with or after the retaining step Since the storage step of storing a part of the hydrogen demanded by the hydrogen consuming device can absorb the fluctuations in the amount of hydrogen demanded by the hydrogen consuming device, it is possible to improve the ability to follow the fluctuations in the demand for hydrogen.
  • FIG. 1 is a configuration schematic diagram of a hydrogen supply system and a hydrogen consumption plant according to Embodiment 1 of the present disclosure
  • FIG. FIG. 2 is a configuration schematic diagram of a hydrogen supply system and a hydrogen consumption plant according to Embodiment 2 of the present disclosure
  • a hydrogen supply system, a hydrogen consuming plant, and a method of supplying hydrogen to a hydrogen consuming device according to embodiments of the present disclosure will be described below with reference to the drawings.
  • the embodiments described below represent one aspect of the present disclosure, do not limit the disclosure, and can be arbitrarily changed within the scope of the technical idea of the present disclosure.
  • a hydrogen consuming plant 1 includes a hydrogen consuming device 2 that consumes hydrogen for any purpose, and a hydrogen supply system 10 that supplies hydrogen to the hydrogen consuming device 2. It has The hydrogen consuming device 2 is not particularly limited. , the hydrogen consuming device 2 will be described as a gas turbine 3 using fuel mixed with hydrogen relative to other fuels. When the hydrogen consuming device 2 is a gas turbine 3 , the combustor 3 a of the gas turbine 3 is supplied with fuel (for example, natural gas) and hydrogen from the hydrogen supply system 10 .
  • fuel for example, natural gas
  • FIG. 1 depicts that the fuel and hydrogen are separately supplied to the combustor 3a, the fuel and hydrogen may be mixed and then supplied to the combustor 3a.
  • the hydrogen supply system 10 includes a hydrogen production device 11 that produces hydrogen, a hydrogen distribution line 12 that communicates the hydrogen production device 11 and the combustor 3 a of the gas turbine 3 , and a hydrogen distribution line 12 downstream of the hydrogen production device 11 .
  • a buffer tank 13 provided in the line 12 a bypass line 14 communicating the buffer tank 13 and the hydrogen flow line 12 on the downstream side of the buffer tank 13, and a storage tank 15 provided in the bypass line 14.
  • the hydrogen distribution line 12 is provided with a compressor 16 between the buffer tank 13 and the portion where the bypass line 14 is connected to the hydrogen distribution line 12 .
  • the hydrogen flow line 12 is provided with a pressure control valve 18 between the hydrogen production device 11 and the buffer tank 13, between the buffer tank 13 and the compressor 16, and on the downstream side of the compressor 16, respectively.
  • pressure gauges 19 and 20 are provided.
  • a compressor 17 is provided in the bypass line 14 between the buffer tank 13 and the storage tank 15 .
  • a flow control valve 21 is provided in the bypass line 14 downstream of the storage tank 15 .
  • the upstream end of the bypass line 14 is not limited to a configuration in which it communicates with the buffer tank 13, and the upstream end of the bypass line 14 is located upstream or downstream of the buffer tank 13 and is connected to the hydrogen flow line. 12 may be communicated. In either case, the downstream end of the bypass line 14 communicates with the hydrogen flow line 12 downstream of the buffer tank 13 . If the compressor 16 is provided downstream of the buffer tank 13 , the downstream end of the bypass line 14 communicates with the hydrogen flow line 12 downstream of the compressor 16 .
  • the hydrogen supply system 10 is provided with a control device 22 for controlling the load, reaction temperature, etc. of the hydrogen production device 11 , and the pressure gauge 19 is electrically connected to the control device 22 . Also, the flow control valve 21 is electrically connected to the pressure gauge 19 .
  • the control device 22 includes a CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), external storage media (HDD (Hard Disk Drive), SSD (Solid State Drive), etc. ), an I/F (Interface), a control circuit, etc., and is embodied by the CPU executing a predetermined control program stored in the ROM.
  • a pressure gauge 19 is electrically connected to each of the compressor 17 and the flow control valve 21 .
  • Pressure gauge 20 is electrically connected to compressor 16 .
  • the configuration of the hydrogen production device 11 is not particularly limited, and any device that produces hydrogen according to any principle can be used.
  • the hydrogen production device 11 may be a device that produces hydrogen through a chemical reaction of raw materials. Specific examples of chemical reactions include reforming reactions of natural gas and other hydrocarbons, partial oxidation, coal gasification reactions, ammonia decomposition reactions, and the like.
  • the hydrogen production device 11 will be described as a device that produces hydrogen through a reforming reaction of natural gas as a raw material.
  • the storage tank 15 having a design pressure higher than that of the buffer tank 13 is provided, and hydrogen can be compressed to a high pressure and stored in the storage tank 15 .
  • a large amount of hydrogen can be stored in a smaller volume than the buffer tank 13, so that the size of each tank and the installation area of equipment can be reduced.
  • the cost of equipment required for storage can be kept low overall.
  • the operation of the hydrogen supply system 10 (method of supplying hydrogen to the hydrogen consuming device) will be described.
  • hydrogen is produced by a reforming reaction of natural gas (hydrogen production step).
  • the control device 22 controls the load (amount of hydrogen produced) of the hydrogen production device 11, the reaction temperature, and the like by the operation described later.
  • Hydrogen flowing out of the hydrogen production device 11 flows through the hydrogen flow line 12 by driving the compressor 16 (flow step).
  • the capacity of the compressor 16 is controlled so that the pressure on the downstream side of the compressor 16 is within a predetermined range.
  • the flow rate of hydrogen flowing through the hydrogen flow line 12 is controlled by controlling the opening of the pressure control valve 18 so that the pressure at the outlet of the hydrogen production device 11 is within a predetermined range.
  • the hydrogen flowing through the hydrogen flow line 12 flows into the buffer tank 13.
  • the buffer tank 13 can retain an amount of hydrogen corresponding to its volume and pressure (retention step). Therefore, when the flow rate of hydrogen flowing through the hydrogen flow line 12 fluctuates, the fluctuation is absorbed by the buffer function of the buffer tank 13 as long as the fluctuation range is within a certain range, thereby reducing the demand for hydrogen in the system as a whole. It is possible to operate in accordance with the fluctuation of the amount.
  • the value detected by the pressure gauge 19 (which can be identified with the pressure inside the buffer tank 13) is transmitted to the control device 22.
  • the amount of hydrogen produced by the hydrogen production device 11 exceeds the amount of hydrogen demanded by the gas turbine 3, the amount of hydrogen stored in the buffer tank 13 increases, and the value detected by the pressure gauge 19 rises. do.
  • the amount of hydrogen produced in the hydrogen production device 11 becomes smaller than the amount of hydrogen demanded by the gas turbine 3, the amount of hydrogen stored in the buffer tank 13 decreases, and the pressure gauge 19
  • the detection value by The control device 22 controls the amount of hydrogen produced by controlling the operating conditions of the hydrogen production device 11 so that the pressure detected by the pressure gauge 19 is within a predetermined range.
  • the gas turbine 3 is driven by exhaust gas generated by burning a mixed gas of fuel and hydrogen. It is necessary to control to prevent Therefore, when the fuel supply amount fluctuates due to the load fluctuation of the gas turbine 3, it is necessary to make the hydrogen supply amount follow the fluctuation of the fuel supply amount.
  • the fluctuation width of the fuel supply amount is relatively small and the fluctuation of the hydrogen supply amount to follow the fluctuation is also relatively small, the fluctuation is absorbed by the buffer function of the buffer tank 13 described above, so that the entire system As a result, it is possible to operate in accordance with fluctuations in hydrogen demand.
  • the control device 22 performs control to reduce the amount of hydrogen produced by the hydrogen production device 11 as described above.
  • the hydrogen production apparatus 11 has a minimum operational load that can be installed, and the facility cannot be operated with a load lower than this. Therefore, when the amount of demand for hydrogen drops below the minimum operating load of the hydrogen production device 11, the amount of hydrogen supplied becomes excessive with respect to the amount of demand even if the hydrogen production device 11 is operated at the minimum load. The detected value may rise continuously.
  • the compressor 17 is stopped when the pressure in the storage tank 15 reaches a preset maximum pressure, or even when the pressure is below that, the operator arbitrarily decides to stop.
  • the storage step may occur with the dwell step (or in a parallel configuration) or after the dwell step (or in a serial configuration).
  • the storage step will occur after the retention step (or in a serial configuration).
  • the compressor 17 is stopped, and the hydrogen stored in the storage tank 15 is gradually discharged by adjusting the opening degree of the flow control valve 21.
  • the pressure is lowered to the initial pressure prior to storage.
  • the mixing ratio of the hydrogen flowing out of the storage tank 15 and the hydrogen produced by the hydrogen production device 11 is set in a control program preset according to the hydrogen demand amount within a range in which the hydrogen production device 11 does not operate under the lowest load.
  • the amount of hydrogen flowing out of the storage tank 15 can be adjusted by setting the opening of the flow control valve 21 by the operation of the operator.
  • the discharge amount of the compressor 16 is controlled so as to maintain the detection value of the pressure gauge 20 within a specified range.
  • the detected value of the pressure gauge 19 decreases, and a load increase command is issued to the hydrogen production device 11.
  • the load on the hydrogen production device 11 increases. There is a possibility that it cannot catch up transiently. In this case, the detected value of the pressure gauge 19 continues to decrease, and there is a possibility that the operation of the compressor 16 cannot be continued.
  • hydrogen is back-supplied from the storage tank 15 to the gas turbine 3 by issuing a flow rate command to the flow rate control valve 21 when the detected value of the pressure gauge 19 reaches a preset pressure.
  • the flow rate when flowing from the storage tank 15 toward the hydrogen production device 11 is controlled.
  • the discharge rate of the compressor 16 decreases, preventing further decrease in the detection value of the pressure gauge 19.
  • the increase in the load of the hydrogen production device 11 catches up with the pressure gauge 19. Detection value increases.
  • the flow rate command to the flow control valve 21 is stopped.
  • FIG. 1 depicts that one storage tank 15 is provided, two or more storage tanks 15 may be provided.
  • a plurality of storage tanks 15 may be provided in parallel with the bypass line 14 and hydrogen may be stored in each storage tank 15 at the same time.
  • hydrogen may be supplied from each storage tank 15 at the same time, or hydrogen may be supplied from one storage tank 15 and when that storage tank 15 is empty, another Hydrogen may be supplied from the storage tank 15 .
  • a switching device may be provided to connect a bypass line to each of the plurality of storage tanks, and hydrogen may be stored separately in each of the storage tanks 15 .
  • Embodiment 2 Next, a hydrogen supply system and a hydrogen consumption plant according to Embodiment 2 will be described.
  • a hydrogen supply system and a hydrogen consuming plant according to the second embodiment are different from those of the first embodiment in the configuration of the storage tank 15 .
  • the same reference numerals are given to the same components as those of the first embodiment, and detailed description thereof will be omitted.
  • the bypass line 14 includes a storage tank 15, a compressor 17 located downstream of the storage tank 15, and a compressor 17 located downstream of the storage tank 15.
  • a flow control valve 21 located upstream of is provided.
  • the storage tank 15 in Embodiment 2 stores hydrogen under a lower pressure condition than the buffer tank 13 . Since the gas is stored under low-pressure conditions, it is possible to increase the size of each tank and reduce the number of installed units, and the structure of the tank body can be made inexpensive. As a result, the cost of equipment required for storage can be kept low overall.
  • the configuration of the storage tank 15 whose storage pressure is lower than that of the buffer tank 13 is not particularly limited, and any tank can be used.
  • a tank having a configuration in which a movable roof 15a provided in the tank outer shell is moved up and down according to the inflow and outflow of gas, and hydrogen is stored in a state of approximately atmospheric pressure is used. can do.
  • Other configurations are the same as those of the first embodiment.
  • the hydrogen production apparatus 11 is controlled to reduce the amount of hydrogen produced. If the operating load falls below the minimum operating load, the amount of hydrogen supplied may become excessive with respect to the amount of demand, and the detected value of the pressure gauge 19 may continue to rise. In this case, when the detected value of the pressure gauge 19 reaches a preset pressure, an open command is issued to the flow control valve 21 so that hydrogen flows not only through the hydrogen flow line 12 but also through the bypass line 14. to Hydrogen flowing through the bypass line 14 is decompressed to substantially atmospheric pressure by the flow control valve 21 and flows into the storage tank 15 where it is stored. That is, part of the hydrogen flowing toward the gas turbine 3 is stored in the storage tank 15 .
  • the flow control valve 21 is closed and the compressor 17 is started to gradually flow out the hydrogen stored in the storage tank 15,
  • the amount of storage in the storage tank 15 is reduced to the initial amount before the start of storage.
  • the mixing ratio of the hydrogen flowing out of the storage tank 15 and the hydrogen produced by the hydrogen production device 11 is set in a control program preset according to the hydrogen demand within a range in which the hydrogen production device 11 does not operate under the lowest load.
  • the starting circuit of the compressor 17 is electrically connected to the pressure gauge 19 .
  • the discharge amount of the compressor 16 is controlled so as to maintain the detection value of the pressure gauge 20 within a specified range.
  • the detected value of the pressure gauge 19 decreases, and a load increase command is issued to the hydrogen production device 11.
  • the load increase of the hydrogen production device 11 is transient. may not be able to catch up. In this case, the detected value of the pressure gauge 19 continues to decrease, and there is a possibility that the operation of the compressor 16 cannot be continued.
  • hydrogen is back-supplied from the storage tank 15 to the gas turbine 3 by issuing an operation command to the compressor 17 when the detected value of the pressure gauge 19 reaches a preset pressure.
  • an operation command to the compressor 17 when the detected value of the pressure gauge 19 reaches a preset pressure.
  • the discharge rate of the compressor 16 decreases, preventing further decrease in the detection value of the pressure gauge 19, and the load increase of the hydrogen production device 11 eventually catches up with the pressure gauge 19. Detection value increases.
  • the operation command to the compressor 16 is stopped when the pressure recovers.
  • the fluctuation in hydrogen demand when the fluctuation in hydrogen demand is small, the fluctuation is absorbed by the buffer function of the buffer tank 13, and when the fluctuation in hydrogen demand becomes large, an excess amount is supplied to the storage tank 15. of hydrogen, or by supplying hydrogen from the storage tank 15 for the shortage, it is possible to improve the followability of the system as a whole to changes in demand for hydrogen.
  • FIG. 2 also shows that one storage tank 15 is provided, but two or more storage tanks 15 are provided as in the modification of the first embodiment. may When a plurality of storage tanks 15 are provided in the second embodiment, the method of storing hydrogen in each storage tank 15 and supplying hydrogen from each storage tank 15 is the same as in the modification of the first embodiment. be.
  • Embodiments 1 and 2 the design pressure of the buffer tank 13 and the design pressure of the storage tank 15 are different, but the design pressure of the buffer tank 13 and the storage tank 15 may be the same.
  • the fluctuation in demand for hydrogen is small, the fluctuation is absorbed by the buffer function of the buffer tank 13, and when the fluctuation in demand for hydrogen becomes large, excess hydrogen is compressed and stored in the storage tank 15. , or by supplying hydrogen from the storage tank 15 for the shortage, the same effects as in the first and second embodiments can be obtained.
  • a hydrogen supply system includes: a hydrogen production device (11); a hydrogen flow line (12) through which hydrogen produced by the hydrogen production device (11) flows; a buffer tank (13) provided in the hydrogen flow line (12) downstream of the hydrogen production device (11); A bypass line (14) that bypasses a part of the hydrogen flow line (12), the downstream end of the bypass line (14) being located downstream of the buffer tank (13) and the hydrogen flow line a bypass line (14) communicating with (12); and a storage tank (15) provided in the bypass line (14) and capable of storing hydrogen.
  • the fluctuation in the amount of hydrogen in the buffer tank can absorb the fluctuation in the demand, and when the fluctuation in the demand for hydrogen becomes large.
  • the amount of hydrogen stored in the storage tank or by supplying hydrogen from the storage tank, it is possible to improve the ability to follow changes in demand for hydrogen.
  • a hydrogen supply system is the hydrogen supply system of [1], The pressure in said storage tank (15) is higher than the pressure in said buffer tank (13).
  • a hydrogen supply system is the hydrogen supply system of [1], The pressure in said storage tank (15) is lower than the pressure in said buffer tank (13).
  • a hydrogen supply system is the hydrogen supply system according to any one of [1] to [3], In the hydrogen production device (11), hydrogen is produced by a chemical reaction of raw materials.
  • a hydrogen supply system is the hydrogen supply system according to any one of [4],
  • the source material is natural gas or hydrocarbons.
  • a hydrogen consuming plant according to one aspect, a hydrogen supply system (10) according to any one of [1] to [5]; and a hydrogen consuming device (2) for consuming hydrogen supplied from the hydrogen supply system (10) through the hydrogen flow line (12).
  • the hydrogen consuming plant of the present disclosure it is possible to improve the followability of the hydrogen supply amount according to the load fluctuation of the hydrogen consuming device.
  • a hydrogen consuming plant according to another aspect is the hydrogen consuming plant of [6], Said hydrogen consuming device (2) is a gas turbine (3).
  • a method for supplying hydrogen to a hydrogen consuming device comprises: a hydrogen production step for producing hydrogen; a distribution step of distributing the hydrogen produced in the hydrogen production step toward the hydrogen consumption device (2); a retention step of retaining the hydrogen flowing toward the hydrogen consuming device (2); and a storage step of storing a portion of the hydrogen flowing towards the hydrogen consuming device (2) together with or after the staying step.
  • the retention step of retaining the hydrogen flowing toward the hydrogen consuming device Since the storage step of storing a part of the hydrogen can absorb the fluctuations in the amount of hydrogen demanded by the hydrogen consuming device, it is possible to improve the ability to follow the fluctuations in the demand for hydrogen.
  • a method according to another aspect is the method of [8], The pressure of hydrogen staying in the staying step is detected, and the storing step is performed based on the detected value.
  • a method according to yet another aspect is the method of [8] or [9], Part of the hydrogen flowing towards said hydrogen consuming device (2) is stored in a compressed state.
  • a method according to yet another aspect is the method according to any one of [8] to [10], When the hydrogen demand of the hydrogen consuming device (2) increases while the retention step and the storing step are being performed, the storing step is stopped, and the hydrogen stored in the storing step is replaced with the hydrogen consuming device (2). ).
  • a method according to yet another aspect is the method of [11], When the hydrogen stored in the storing step is supplied to the hydrogen consuming device (2), the flow rate when the hydrogen stored in the storing step flows toward the hydrogen consuming device (2) is the pressure of the stagnant hydrogen is detected and controlled based on the detected value.
  • a method according to yet another aspect is the method of [11] or [12], When the detected value of the pressure of hydrogen staying in the staying step decreases, the supply amount of the hydrogen stored in the storing step to the hydrogen consuming device (2) is increased.
  • the detected value of the pressure of hydrogen staying in the staying step decreases.
  • the hydrogen stored in the storage step is backed up and supplied to the hydrogen consuming device, thereby reducing the supply amount of the hydrogen retained in the staying step to the hydrogen consuming device.
  • the increase in the amount of hydrogen produced in the production step will catch up.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

水素供給システムは、水素製造装置と、水素製造装置で製造された水素が流通する水素流通ラインと、水素製造装置よりも下流側で水素流通ラインに設けられるバッファータンクと、水素流通ラインの一部をバイパスするバイパスラインであって、バイパスラインの下流側の端部がバッファータンクよりも下流側において前記水素流通ラインに連通するバイパスラインと、バイパスラインに設けられ、水素を貯蔵可能な貯蔵タンクとを備える。

Description

水素供給システム及び水素供給システムを備える水素消費プラント並びに水素消費装置に水素を供給する方法
 本開示は、水素供給システム及び水素供給システムを備える水素消費プラント並びに水素消費装置に水素を供給する方法に関する。
 本願は、2021年9月16日に日本国特許庁に出願された特願2021-151135号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、天然ガスの他に、天然ガスを改質することにより得られた水素を燃料として燃焼器に供給可能なガスタービンが記載されている。このガスタービンの通常運転時には、天然ガスと水素とオフガスとを燃料として燃焼器に供給する他、電力需要低下時のようにガスタービンの低負荷運転時には、水素を燃焼器に供給せずに貯蔵する。
 一般的に、ガスタービン等による発電設備は、時々刻々と変動する電力需要に応じてフレキシブルに運転負荷を追従させることが求められる。従って、ガスタービンへの燃料供給設備についても同様に、ガスタービンの負荷変動に速やかに追従して燃料を供給することが求められる。しかしながら、ガスタービンの燃料として改質反応のような化学プロセスによって製造される水素を活用する場合、一般的に化学プロセスは反応・分離・熱回収等が有機的に組み合わされた複雑な工程を有しているため、水素製造装置の運転条件を急激に変動させるとシステム全体のバランスが崩れてしまい、安定した運転継続ができない。従って、ガスタービンの負荷変動に対して水素供給量をレスポンス良く追従させることは困難である。
特開2003-49610号公報
 特許文献1には、ガスタービンの低負荷運転時には水素を貯蔵するとの記載はあるものの、水素の貯蔵設備の具体的な構成は記載されていない。また、特許文献1には、貯蔵された水素は産業用の水素製品として別用途に使用することや、ガスタービンとは別に設けられた燃料電池の燃料の一部として使用することが記載されており、ガスタービンでの再使用は想定されていない。仮に、貯蔵した水素をガスタービンで再使用するとしても、水素を貯蔵するタンクを単に設けるだけでは、ガスタービンの負荷変動時に燃料供給量の変動に水素の供給量を追従させることは難しい。
 上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、水素の需要の変動に対する追従性を向上させた水素供給システム及び水素供給システムを備える水素消費プラント並びに水素消費装置に水素を供給する方法を提供することを目的とする。
 上記目的を達成するため、本開示に係る水素供給システムは、水素製造装置と、前記水素製造装置で製造された水素が流通する水素流通ラインと、前記水素製造装置よりも下流側で前記水素流通ラインに設けられるバッファータンクと、前記水素流通ラインの一部をバイパスするバイパスラインであって、該バイパスラインの下流側の端部が前記バッファータンクよりも下流側において前記水素流通ラインに連通するバイパスラインと、前記バイパスラインに設けられ、水素を貯蔵可能な貯蔵タンクとを備える。
 上記目的を達成するため、本開示に係る水素消費装置に水素を供給する方法は、水素を製造する水素製造ステップと、前記水素製造ステップで製造された水素を前記水素消費装置へ向かって流通させる流通ステップと、前記水素消費装置へ向かって流通する水素を滞留させる滞留ステップと、前記滞留ステップと共に又は前記滞留ステップの後に、前記水素消費装置へ向かって流通する水素の一部を貯蔵する貯蔵ステップとを含む。
 本開示の水素供給システムによれば、水素の需要の変動が小さいときはバッファータンク内の水素量の変動により、需要量の変動を吸収させることができ、水素の需要の変動が大きくなったときは、貯蔵タンク内の水素の貯蔵量を変動させること、又は、貯蔵タンクからの水素の供給を行うことにより、水素の需要の変動に対する追従性を向上させることができる。また、本開示の水素消費装置に水素を供給する方法によれば、水素消費装置へ向かって流通する水素を滞留させる滞留ステップと、滞留ステップと共に又は滞留ステップの後に、水素消費装置へ向かって流通する水素の一部を貯蔵する貯蔵ステップとにより、水素消費装置の水素の需要量の変動を吸収させることができるので、水素の需要の変動に対する追従性を向上させることができる。
本開示の実施形態1に係る水素供給システム及び水素消費プラントの構成模式図である。 本開示の実施形態2に係る水素供給システム及び水素消費プラントの構成模式図である。
 以下、本開示の実施形態による水素供給システム及び水素消費プラント並びに水素消費装置に水素を供給する方法について、図面に基づいて説明する。以下で説明する実施形態は、本開示の一態様を示すものであり、この開示を限定するものではなく、本開示の技術的思想の範囲内で任意に変更可能である。
(実施形態1)
<水素供給システム及び水素消費プラントの構成>
 図1に示されるように、本開示の実施形態1に係る水素消費プラント1は、水素を任意の目的で消費する水素消費装置2と、水素消費装置2に水素を供給する水素供給システム10とを備えている。水素消費装置2については特に限定はしないが、例えば、水素のみを燃料とする、又は、他の燃料に対して水素を混入した燃料を使用するガスタービン3とすることができ、実施形態1では、水素消費装置2を、他の燃料に対して水素を混入した燃料を使用するガスタービン3として説明する。水素消費装置2がガスタービン3の場合、ガスタービン3の燃焼器3aには、燃料(例えば天然ガス)と、水素供給システム10からの水素とが供給されるようになっている。図1には、燃料と水素とが別々に燃焼器3aに供給されるように描かれているが、燃料と水素とが混合された後に燃焼器3aに供給されるようにしてもよい。
 水素供給システム10は、水素が製造される水素製造装置11と、水素製造装置11とガスタービン3の燃焼器3aとを連通する水素流通ライン12と、水素製造装置11よりも下流側で水素流通ライン12に設けられるバッファータンク13と、バッファータンク13とバッファータンク13よりも下流側における水素流通ライン12とを連通させるバイパスライン14と、バイパスライン14に設けられる貯蔵タンク15とを備えている。
 水素流通ライン12には、バッファータンク13とバイパスライン14が水素流通ライン12に接続される部分との間に圧縮機16が設けられている。また、水素流通ライン12には、水素製造装置11とバッファータンク13との間に圧力制御弁18が設けられ、バッファータンク13と圧縮機16との間、及び、圧縮機16の下流側のそれぞれに、圧力計19及び20が設けられている。バイパスライン14には、バッファータンク13と貯蔵タンク15との間に圧縮機17が設けられている。また、バイパスライン14には、貯蔵タンク15の下流側に流量制御弁21が設けられている。
 尚、バイパスライン14の上流側の端部はバッファータンク13に連通する形態に限定するものではなく、バイパスライン14の上流側の端部はバッファータンク13よりも上流側又は下流側で水素流通ライン12と連通するようにしてもよい。いずれの場合も、バイパスライン14の下流側の端部はバッファータンク13よりも下流側で水素流通ライン12と連通することになる。尚、バッファータンク13よりも下流側に圧縮機16が設けられる場合は、バイパスライン14の下流側の端部は圧縮機16よりも下流側で水素流通ライン12と連通することになる。
 水素供給システム10は、水素製造装置11の負荷や反応温度等を制御するための制御装置22が設けられ、圧力計19は制御装置22に電気的に接続されている。また、流量制御弁21は圧力計19と電気的に接続されている。制御装置22は、いずれも図示しないが、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、外部記憶媒体(HDD(Hard Disk Drive)、SSD(Solid State Drive)等)、I/F(InterFace)、制御回路等を備え、ROMに格納されている所定の制御プログラムがCPUによって実行されることにより具現化される。圧力計19は圧縮機17及び流量制御弁21のそれぞれに電気的に接続されている。圧力計20は圧縮機16に電気的に接続されている。
 水素製造装置11の構成は特に限定するものではなく、任意の原理で水素が製造される装置を使用することができる。例えば、水素製造装置11は、原料物質の化学反応によって水素が製造される装置であってもよい。化学反応の具体的な例として、天然ガスやその他の炭化水素の改質反応、部分酸化法、石炭のガス化反応、アンモニア分解反応等が挙げられる。実施形態1では、水素製造装置11は、原料物質としての天然ガスの改質反応によって水素を製造する装置として説明する。
 実施形態1では、バッファータンク13に比べて高い設計圧力を有する貯蔵タンク15を設けており、貯蔵タンク15には水素を高圧に圧縮して貯蔵することが可能である。これにより、バッファータンク13に比べると小さい容積で大容量の水素を貯蔵することができるため、タンク1基当たりの大きさ及び設備の設置面積を小さくできる。これにより、貯蔵のために必要な設備費を総合的に低く抑えることができる。
<水素供給システム及び水素消費プラントの動作>
 次に、本開示の実施形態1に係る水素供給システム10及び水素消費プラント1の動作について説明する。水素消費プラント1では、水素供給システム10から水素が水素流通ライン12を介してガスタービン3の燃焼器3aに供給される。燃焼器3aに供給された水素は、燃焼器3aに供給された燃料と共に、圧縮機3bから供給された圧縮空気によって燃焼される。すなわち、水素がガスタービン3の燃焼器3aで消費される。燃焼器3aにおける燃焼により生じた排ガスでタービン3cを駆動することによって、ガスタービン3が駆動する。
 次に、水素供給システム10の動作(水素消費装置に水素を供給する方法)について説明する。水素製造装置11において、天然ガスの改質反応により水素が製造される(水素製造ステップ)。制御装置22は、後述する動作によって、水素製造装置11の負荷(水素の製造量)や反応温度等を制御する。圧縮機16が駆動することによって水素製造装置11から流出した水素は水素流通ライン12を流通する(流通ステップ)。このとき、圧縮機16は、圧縮機16の下流側が予め決められた範囲の圧力になる吐出量となるように容量制御が行われる。また、水素製造装置11の出口が予め決められた範囲の圧力になるように圧力制御弁18の開度が制御されることで、水素流通ライン12を流通する水素の流量が制御される。
 水素流通ライン12を流通する水素はバッファータンク13に流入する。バッファータンク13は、その体積及び圧力に応じた量の水素を滞留させることができる(滞留ステップ)。このため、水素流通ライン12を流通する水素の流量に変動が生じた場合、ある程度の変動幅である限りは、バッファータンク13の緩衝機能によってその変動を吸収することにより、システム全体として水素の需要量の変動に追従した運転が可能となる。
 水素供給システム10が稼働する間、圧力計19による検出値(バッファータンク13内の圧力と同一視可能)が制御装置22に伝送される。水素製造装置11において製造される水素の量がガスタービン3における水素の需要量に対して過剰になると、バッファータンク13に貯留される水素の量が増加することで圧力計19による検出値が上昇する。これとは逆に、水素製造装置11において製造される水素の量がガスタービン3の水素の需要量に対して少なくなると、バッファータンク13に貯留される水素の量が減少することで圧力計19による検出値が低下する。制御装置22は、圧力計19による検出値が予め決められた範囲の圧力になるように、水素製造装置11の運転条件を制御することで、水素の製造量の制御を行う。
 上述したように、ガスタービン3では、燃料及び水素の混合ガスを燃焼させて生成した排ガスによって駆動されるが、ガスタービン3の安定運転のためには、燃料と水素との混焼比率が大きく変動しないような制御が必要となる。このため、ガスタービン3の負荷変動のために燃料の供給量が変動する場合には、燃料の供給量の変動に水素の供給量を追従させる必要がある。燃料の供給量の変動幅が比較的小さく、その変動に追従させる水素の供給量の変動も比較的小さい場合には、上述したバッファータンク13の緩衝機能によってその変動を吸収することにより、システム全体として水素の需要量の変動に追従した運転が可能となる。
 しかしながら、例えば、夜間におけるガスタービン3の大幅な負荷低下(完全停止も含む)の場合、通常運転時に比べて水素需要量も大きく低下するが、水素製造装置11が水素を化学プロセスによって製造する構成であると、その工程の複雑さから、水素製造装置11の運転を一時的に停止することは困難である。このため、水素の需要量と供給量との間には大きなアンバランス(供給過剰)が生じ、バッファータンク13の緩衝機能のみでは、このアンバランスを吸収することができなくなる可能性がある。このような場合、実施形態1では、次に説明する動作によって、このアンバランスを吸収させることが可能となる。
 ガスタービン3における水素の需要量が大きく低下した場合、前述の通り制御装置22は水素製造装置11における水素製造量を減少させるべく制御を行う。しかしながら、水素製造装置11には設備的に可能な最低運転負荷が存在し、これより低い負荷で設備を運転することはできない。従って、水素の需要量が水素製造装置11の最低運転負荷以下に低下した場合、水素製造装置11を最低負荷で運転したとしても水素供給量が需要量に対して過剰になり、圧力計19の検出値は継続的に上昇してしまう可能性がある。
 水素製造装置11を最低負荷の運転条件で制御しても、圧力計19による検出値がさらに継続して上昇してしまい、予め設定された圧力に達した場合は、圧縮機17を起動し、水素が水素流通ライン12だけでなくバイパスライン14にも流通するようにする。需要量に対して過剰に製造された水素を圧縮機17が圧縮することにより、貯蔵タンク15内に水素が貯蔵される(貯蔵ステップ)。すなわち、ガスタービン3へ向かって流通する水素の一部が貯蔵タンク15内に貯蔵される。これにより、ガスタービン3の水素需要量に対する水素製造装置11からの水素製造量のアンバランス(過剰分)を吸収して、システム全体として水素の需要量の変動に追従した運転が可能となる。圧縮機17は、貯蔵タンク15の圧力が予め設定された最高圧力まで達した場合、又は、それ以下の圧力であっても運転員の任意判断により停止される。尚、実施形態1におけるバイパスライン14の構成では、貯蔵ステップは滞留ステップと共に(若しくは並列な構成で)又は滞留ステップの後に(若しくは直列な構成で)行われる。バイパスライン14の上流側の端部がバッファータンク13よりも下流側で水素流通ライン12と連通する構成では、滞留ステップの後に(又は直列な構成で)貯蔵ステップが行われることになる。
 その後、再びガスタービン3の負荷が上昇する際には、圧縮機17を停止すると共に、流量制御弁21の開度調整により貯蔵タンク15に貯蔵された水素を徐々に流出させて貯蔵タンク15の圧力を貯蔵前の初期圧力まで低下させてゆく。この時、貯蔵タンク15から流出する水素と水素製造装置11により製造される水素の混合比率は、水素製造装置11が最低負荷運転とならない範囲で、水素需要量に応じて予め設定された制御プログラム又は運転員の操作によって流量制御弁21の開度を設定し、貯蔵タンク15から流出される水素量を調整することにより可能である。
 ガスタービン3の水素の需要量が増大した場合、圧縮機16については、圧力計20の検出値を規定範囲に維持すべく吐出量の制御が行われる。吐出量が増大すると圧力計19の検出値が低下することにより、水素製造装置11には負荷上昇指令が出されるが、水素需要量の増大が急激な場合は、水素製造装置11の負荷上昇が過渡的に追いつかない可能性がある。この場合には、圧力計19の検出値は継続して低下してしまい、圧縮機16の運転が継続できなくなる可能性がある。これに対しては、圧力計19の検出値が予め設定された圧力に達した時点で流量制御弁21に対して流量指令を出すことにより、貯蔵タンク15より水素をガスタービン3へバックアップ供給することができる。すなわち、圧力計19の検出値に基づいて、貯蔵タンク15から水素製造装置11へ向かって流通する際の流量が制御される。水素がバックアップ供給されると、圧縮機16の吐出量が低下することにより、圧力計19の検出値のさらなる低下は防止され、やがて水素製造装置11の負荷上昇が追い付くことにより、圧力計19の検出値は上昇する。圧力が回復した時点で流量制御弁21に対する流量指令は停止される。
 尚、このような動作は、夜間におけるガスタービン3の大幅な負荷低下時のみに行われるものではなく、ガスタービン3について軽度のメンテナンスを行う為の短時間の運転停止等に対しても適用することができる。
 このように、水素の需要の変動が小さいときはバッファータンク13の緩衝機能によってその変動を吸収させ、水素の需要量の変動が大きくなったときは、貯蔵タンク15に過剰分の水素を圧縮貯蔵すること、又は、貯蔵タンク15から不足分の水素の供給を行うことにより、システム全体としての水素の需要量の変動に対する追従性を向上させることができる。
<水素供給システムの変形例>
 図1には、1つの貯蔵タンク15が設けられているように描かれているが、2つ以上の貯蔵タンク15が設けられていてもよい。この場合、複数の貯蔵タンク15をバイパスライン14に並列に設けて、それぞれの貯蔵タンク15に同時に水素を貯蔵させてもよい。貯蔵タンク15から水素を供給する場合には、それぞれの貯蔵タンク15から同時に水素を供給してもよいし、1つの貯蔵タンク15から水素を供給し、その貯蔵タンク15が空になったら別の貯蔵タンク15から水素を供給するようにしてもよい。また、複数の貯蔵タンクのそれぞれにバイパスラインを連通させる切替装置を設けて、それぞれの貯蔵タンク15に別々に水素を貯蔵させてもよい。
(実施形態2)
 次に、実施形態2に係る水素供給システム及び水素消費プラントについて説明する。実施形態2に係る水素供給システム及び水素消費プラントは、実施形態1に対して、貯蔵タンク15の構成を変更したものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
<水素供給システム及び水素消費プラントの構成>
 図2に示されるように、本開示の実施形態2に係る水素供給システム10において、バイパスライン14には、貯蔵タンク15と、貯蔵タンク15の下流側に位置する圧縮機17と、貯蔵タンク15の上流側に位置する流量制御弁21とが設けられている。実施形態2における貯蔵タンク15は、バッファータンク13よりも低圧の条件下において水素を貯蔵するものである。低圧条件下でガスを貯蔵することから、タンク1基当たりの大型化及び設置基数の低減が可能であり、又、タンク本体を安価な構造とすることが出来る。これにより、貯蔵のために必要な設備費を総合的に低く抑えることができる。
 貯蔵圧力がバッファータンク13よりも低い貯蔵タンク15の構成は特に限定するものではなく、任意のタンクを使用することができる。このような貯蔵タンク15の一例として、タンク外殻の中に設けられた可動式屋根15aをガスの流出入に応じて上下動させ、ほぼ大気圧の状態で水素を貯蔵する構成のタンクを使用することができる。その他の構成は実施形態1と同じである。
<水素供給システム及び水素消費プラントの動作>
 本開示の実施形態2に係る水素供給システム10において、水素の需要量の変動が小さい場合にバッファータンク13の緩衝機能によってその変動を吸収させつつ負荷追従させる動作については、実施形態1と同じである。水素の需要量の変動が大きい場合に水素の供給量を燃料の供給量の変動に追従させる実施形態2の動作が実施形態1とは異なるので、以下ではこの動作についてのみ説明する。
 実施形態1と同様に、ガスタービン3の水素の需要量が大きく低下した場合、水素製造装置11については水素製造量を減少させるべく制御が行われるが、水素の需要量が水素製造装置11の最低運転負荷以下に低下した場合は、水素供給量が需要量に対して過剰になり、圧力計19の検出値が継続的に上昇してしまう可能性がある。この場合、圧力計19の検出値が予め設定された圧力に達したら、流量制御弁21に対して開指令を出すことにより、水素が水素流通ライン12だけでなくバイパスライン14にも流通するようにする。バイパスライン14を流通する水素は、流量制御弁21によりほぼ大気圧に減圧されて貯蔵タンク15に流入し、貯蔵タンク15内に貯蔵される。すなわち、ガスタービン3へ向かって流通する水素の一部が貯蔵タンク15内に貯蔵される。これにより、ガスタービン3の水素の需要量に対する水素製造装置11からの水素製造量のアンバランス(過剰分)を吸収して、システム全体として水素需要量変動に追従した運転が可能となる。
 その後、再びガスタービン3における水素の需要量が増大した際には、流量制御弁21を閉止すると共に、圧縮機17を起動することにより貯蔵タンク15に貯蔵された水素を徐々に流出させて、貯蔵タンク15の貯蔵量を貯蔵開始前の初期量まで低下させてゆく。この時、貯蔵タンク15から流出する水素と水素製造装置11により製造される水素の混合比率は、水素製造装置11が最低負荷運転とならない範囲で、水素需要量に応じて予め設定された制御プログラム又は運転員の操作により圧縮機17の運転負荷を設定し、貯蔵タンク15から流出される水素量を調整することにより可能である。
 実施形態2では、圧縮機17の起動回路は圧力計19と電気的に接続されている。ガスタービン3の水素の需要量が増大した場合、圧縮機16については、圧力計20の検出値を規定範囲に維持すべく吐出量の制御が行われる。吐出量が増大すると圧力計19の検出値が低下することにより水素製造装置11には負荷上昇指令が出されるが、水素の需要量の増大が急激な場合は水素製造装置11の負荷上昇が過渡的に追いつかない可能性がある。この場合には、圧力計19の検出値が継続的に低下してしまい、圧縮機16の運転が継続できなくなる可能性がある。これに対しては、圧力計19の検出値が予め設定された圧力に達した時点で圧縮機17に対して運転指令を出すことにより、貯蔵タンク15より水素をガスタービン3へバックアップ供給することができる。水素がバックアップ供給されると、圧縮機16の吐出量が低下することにより、圧力計19の検出値のさらなる低下は防止され、やがて水素製造装置11の負荷上昇が追い付くことにより、圧力計19の検出値は上昇する。圧力が回復した時点で圧縮機16に対する運転指令は停止される。
 このように、実施形態2においても、水素の需要の変動が小さいときはバッファータンク13の緩衝機能によってその変動を吸収させ、水素需要量の変動が大きくなったときは、貯蔵タンク15に過剰分の水素を貯蔵すること、又は、貯蔵タンク15から不足分の水素の供給を行うことにより、システム全体としての水素需要量変動に対する追従性を向上させることができる。
<水素供給システムの変形例>
 実施形態2においても、図2には、1つの貯蔵タンク15が設けられているように描かれているが、実施形態1の変形例と同様に、2つ以上の貯蔵タンク15が設けられていてもよい。実施形態2において複数の貯蔵タンク15が設けられている場合の各貯蔵タンク15への水素の貯蔵及び各貯蔵タンク15からの水素の供給の運用方法については、実施形態1の変形例と同じである。
(その他の変形例)
 実施形態1及び2では、バッファータンク13の設計圧力と貯蔵タンク15の設計圧力とは異なっていたが、バッファータンク13と貯蔵タンク15とを同じ設計圧力にしてもよい。この形態でも、水素の需要の変動が小さいときはバッファータンク13の緩衝機能によってその変動を吸収させ、水素の需要量の変動が大きくなったときは、貯蔵タンク15に過剰分の水素を圧縮貯蔵すること、又は、貯蔵タンク15から不足分の水素の供給を行うことにより、実施形態1及び2と同様の作用効果を得ることができる。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
[1]一の態様に係る水素供給システムは、
 水素製造装置(11)と、
 前記水素製造装置(11)で製造された水素が流通する水素流通ライン(12)と、
 前記水素製造装置(11)よりも下流側で前記水素流通ライン(12)に設けられるバッファータンク(13)と、
 前記水素流通ライン(12)の一部をバイパスするバイパスライン(14)であって、該バイパスライン(14)の下流側の端部が前記バッファータンク(13)よりも下流側において前記水素流通ライン(12)に連通するバイパスライン(14)と、
 前記バイパスライン(14)に設けられ、水素を貯蔵可能な貯蔵タンク(15)と
を備える。
 本開示の水素供給システムによれば、水素の需要の変動が小さいときはバッファータンク内の水素量の変動により、需要量の変動を吸収させることができ、水素の需要の変動が大きくなったときは、貯蔵タンク内の水素の貯蔵量を変動させること、又は、貯蔵タンクからの水素の供給を行うことにより、水素の需要の変動に対する追従性を向上させることができる。
[2]別の態様に係る水素供給システムは、[1]の水素供給システムであって、
 前記貯蔵タンク(15)内の圧力は前記バッファータンク(13)内の圧力よりも高い。
 このような構成によれば、小さい容積で大容量の水素を貯蔵することができるため、タンク1基当たりの大きさ及び設備の設置面積を小さくできる。これにより、貯蔵のために必要な設備費を総合的に低く抑えることができる。
[3]さらに別の態様に係る水素供給システムは、[1]の水素供給システムであって、
 前記貯蔵タンク(15)内の圧力は前記バッファータンク(13)内の圧力よりも低い。
 このような構成によれば、低圧条件下でガスを貯蔵することからタンク1基当たりの大型化及び設置基数の低減が可能であり、また、タンク本体を安価な構造とすることができる。これにより、貯蔵のために必要な設備費を総合的に低く抑えることができる。
[4]さらに別の態様に係る水素供給システムは、[1]~[3]のいずれかの水素供給システムであって、
 前記水素製造装置(11)において、水素は原料物質の化学反応によって製造される。
 水素を化学反応によって製造する場合、水素製造装置における水素の製造量を水素の需要の大きな変動に追従させることは難しいが、このような構成によれば、水素供給システムからの水素の供給量を、水素の需要の変動に良好に追従させることができる。
[5]さらに別の態様に係る水素供給システムは、[4]のいずれかの水素供給システムであって、
 前記原料物質は天然ガス又は炭化水素である。
 水素を天然ガス又は炭化水素の改質反応によって製造する場合、水素の製造量を水素の需要の大きな変動に追従させることは難しいが、このような構成によれば、水素供給システムからの水素の供給量を、水素の需要の変動に良好に追従させることができる。
[6]一の態様に係る水素消費プラントは、
 [1]~[5]のいずれかの水素供給システム(10)と、
 前記水素流通ライン(12)を介して前記水素供給システム(10)から供給された水素を消費する水素消費装置(2)と
を備える。
 本開示の水素消費プラントによれば、水素消費装置の負荷変動に応じた水素の供給量の追従性を向上させることができる。
[7]別の態様に係る水素消費プラントは、[6]の水素消費プラントであって、
 前記水素消費装置(2)はガスタービン(3)である。
 このような構成によれば、ガスタービンの負荷変動に応じた水素の供給量の追従性を向上させることができる。
[8]一の態様に係る水素消費装置に水素を供給する方法は、
 水素を製造する水素製造ステップと、
 前記水素製造ステップで製造された水素を前記水素消費装置(2)へ向かって流通させる流通ステップと、
 前記水素消費装置(2)へ向かって流通する水素を滞留させる滞留ステップと、
 前記滞留ステップと共に又は前記滞留ステップの後に、前記水素消費装置(2)へ向かって流通する水素の一部を貯蔵する貯蔵ステップと
を含む。
 本開示の水素消費装置に水素を供給する方法によれば、水素消費装置へ向かって流通する水素を滞留させる滞留ステップと、滞留ステップと共に又は滞留ステップの後に、水素消費装置へ向かって流通する水素の一部を貯蔵する貯蔵ステップとにより、水素消費装置の水素の需要量の変動を吸収させることができるので、水素の需要の変動に対する追従性を向上させることができる。
[9]別の態様に係る方法は、[8]の方法であって、
 前記滞留ステップで滞留する水素の圧力を検出し、その検出値に基づいて、前記貯蔵ステップが行われる。
 このような方法によれば、水素消費装置の水素の需要量の低下に対する追従性を向上させることができる。
[10]さらに別の態様に係る方法は、[8]または[9]の方法であって、
 前記水素消費装置(2)へ向かって流通する水素の一部は、圧縮された状態で貯蔵される。
 このような方法によれば、小さい容積で大容量の水素を貯蔵することができるため、タンク1基当たりの大きさ及び設備の設置面積を小さくできる。
[11]さらに別の態様に係る方法は、[8]~[10]のいずれかの方法であって、
 前記滞留ステップ及び前記貯蔵ステップを実施する間に前記水素消費装置(2)の水素の需要量が増加した場合、前記貯蔵ステップを停止し、前記貯蔵ステップで貯蔵した水素を前記水素消費装置(2)へ供給する。
 このような方法によれば、水素消費装置の水素の需要量の低下に対する対処後に水素の需要量が増加した場合、水素の需要量の増加に対する追従性を向上させることができる。
[12]さらに別の態様に係る方法は、[11]の方法であって、
 前記貯蔵ステップで貯蔵した水素を前記水素消費装置(2)へ供給する場合、前記貯蔵ステップで貯蔵した水素が前記水素消費装置(2)へ向かって流通する際の流量は、滞留する水素の圧力を検出し、その検出値に基づいて制御される。
 このような方法によれば、水素消費装置の水素の需要量の低下に対する対処後に水素の需要量が増加した場合、水素の需要量の増加に対する追従性を向上させることができる。
[13]さらに別の態様に係る方法は、[11]または[12]の方法であって、
 前記滞留ステップで滞留する水素の圧力の検出値が低下する場合、前記貯蔵ステップで貯蔵した水素の前記水素消費装置(2)への供給量を増加する。
 水素の需要量の増大が急激で、水素製造ステップにおける水素の製造量の上昇が過渡的に追いつかない場合、滞留ステップで滞留する水素の圧力の検出値が低下する。これに対し、このような方法によれば、貯蔵ステップで貯蔵した水素を水素消費装置へバックアップ供給することで、滞留ステップで滞留する水素の水素消費装置への供給量を低下することにより、水素製造ステップにおける水素の製造量の上昇が追い付くようになる。
1 水素消費プラント
2 水素消費装置
3 ガスタービン
10 水素供給システム
11 水素製造装置
12 水素流通ライン
13 バッファータンク
14 バイパスライン
15 貯蔵タンク

Claims (13)

  1.  水素製造装置と、
     前記水素製造装置で製造された水素が流通する水素流通ラインと、
     前記水素製造装置よりも下流側で前記水素流通ラインに設けられるバッファータンクと、
     前記水素流通ラインの一部をバイパスするバイパスラインであって、該バイパスラインの下流側の端部が前記バッファータンクよりも下流側において前記水素流通ラインに連通するバイパスラインと、
     前記バイパスラインに設けられ、水素を貯蔵可能な貯蔵タンクと
    を備える水素供給システム。
  2.  前記貯蔵タンク内の圧力は前記バッファータンク内の圧力よりも高い、請求項1に記載の水素供給システム。
  3.  前記貯蔵タンク内の圧力は前記バッファータンク内の圧力よりも低い、請求項1に記載の水素供給システム。
  4.  前記水素製造装置において、水素は原料物質の化学反応によって製造される、請求項1~3のいずれか一項に記載の水素供給システム。
  5.  前記原料物質は天然ガス又は炭化水素である、請求項4に記載の水素供給システム。
  6.  請求項1~3のいずれか一項に記載の水素供給システムと、
     前記水素流通ラインを介して前記水素供給システムから供給された水素を消費する水素消費装置と
    を備える水素消費プラント。
  7.  前記水素消費装置はガスタービンである、請求項6に記載の水素消費プラント。
  8.  水素消費装置に水素を供給する方法であって、
     水素を製造する水素製造ステップと、
     前記水素製造ステップで製造された水素を前記水素消費装置へ向かって流通させる流通ステップと、
     前記水素消費装置へ向かって流通する水素を滞留させる滞留ステップと、
     前記滞留ステップと共に又は前記滞留ステップの後に、前記水素消費装置へ向かって流通する水素の一部を貯蔵する貯蔵ステップと
    を含む、水素消費装置に水素を供給する方法。
  9.  前記滞留ステップで滞留する水素の圧力を検出し、その検出値に基づいて、前記貯蔵ステップが行われる、請求項8に記載の水素消費装置に水素を供給する方法。
  10.  前記水素消費装置へ向かって流通する水素の一部は、圧縮された状態で貯蔵される、請求項8または9に記載の水素消費装置に水素を供給する方法。
  11.  前記滞留ステップ及び前記貯蔵ステップを実施する間に前記水素消費装置の水素の需要量が増加した場合、前記貯蔵ステップを停止し、前記貯蔵ステップで貯蔵した水素を前記水素消費装置へ供給する、請求項8または9に記載の水素消費装置に水素を供給する方法。
  12.  前記貯蔵ステップで貯蔵した水素を前記水素消費装置へ供給する場合、前記貯蔵ステップで貯蔵した水素が前記水素消費装置へ向かって流通する際の流量は、滞留する水素の圧力を検出し、その検出値に基づいて制御される、請求項11に記載の水素消費装置に水素を供給する方法。
  13.  前記滞留ステップで滞留する水素の圧力の検出値が低下する場合、前記貯蔵ステップで貯蔵した水素の前記水素消費装置への供給量を増加する、請求項11に記載の水素消費装置に水素を供給する方法。
PCT/JP2022/034139 2021-09-16 2022-09-13 水素供給システム及び水素供給システムを備える水素消費プラント並びに水素消費装置に水素を供給する方法 WO2023042810A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22869957.5A EP4361493A1 (en) 2021-09-16 2022-09-13 Hydrogen supply system, hydrogen-consuming plant provided with hydrogen supply system, and method for supplying hydrogen to hydrogen-consuming device
CA3228127A CA3228127A1 (en) 2021-09-16 2022-09-13 Hydrogen supply system, hydrogen-consuming plant provided with hydrogen supply system, and method for supplying hydrogen to hydrogen-consuming unit
AU2022346364A AU2022346364A1 (en) 2021-09-16 2022-09-13 Hydrogen supply system, hydrogen-consuming plant provided with hydrogen supply system, and method for supplying hydrogen to hydrogen-consuming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021151135A JP2023043473A (ja) 2021-09-16 2021-09-16 水素供給システム及び水素供給システムを備える水素消費プラント並びに水素消費装置に水素を供給する方法
JP2021-151135 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023042810A1 true WO2023042810A1 (ja) 2023-03-23

Family

ID=85602921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034139 WO2023042810A1 (ja) 2021-09-16 2022-09-13 水素供給システム及び水素供給システムを備える水素消費プラント並びに水素消費装置に水素を供給する方法

Country Status (6)

Country Link
EP (1) EP4361493A1 (ja)
JP (1) JP2023043473A (ja)
AU (1) AU2022346364A1 (ja)
CA (1) CA3228127A1 (ja)
TW (1) TW202327994A (ja)
WO (1) WO2023042810A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049610A (ja) 2001-08-07 2003-02-21 Mitsubishi Heavy Ind Ltd 電力/水素併給設備
JP2004360728A (ja) * 2003-06-02 2004-12-24 Honda Motor Co Ltd 圧力水素タンクへの水素充填方法および水素充填装置
JP2012026463A (ja) * 2010-07-20 2012-02-09 Honda Motor Co Ltd 水素充填システム及びその運転方法
US20150219279A1 (en) * 2012-10-16 2015-08-06 Bayerische Motoren Werke Aktiengesellschaft Method for Filling a Fuel Storage System of a Motor Vehicle
JP2018076214A (ja) * 2016-11-11 2018-05-17 株式会社豊田自動織機 水素生成装置
JP2021151135A (ja) 2020-03-19 2021-09-27 本田技研工業株式会社 太陽光発電制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049610A (ja) 2001-08-07 2003-02-21 Mitsubishi Heavy Ind Ltd 電力/水素併給設備
JP2004360728A (ja) * 2003-06-02 2004-12-24 Honda Motor Co Ltd 圧力水素タンクへの水素充填方法および水素充填装置
JP2012026463A (ja) * 2010-07-20 2012-02-09 Honda Motor Co Ltd 水素充填システム及びその運転方法
US20150219279A1 (en) * 2012-10-16 2015-08-06 Bayerische Motoren Werke Aktiengesellschaft Method for Filling a Fuel Storage System of a Motor Vehicle
JP2018076214A (ja) * 2016-11-11 2018-05-17 株式会社豊田自動織機 水素生成装置
JP2021151135A (ja) 2020-03-19 2021-09-27 本田技研工業株式会社 太陽光発電制御装置

Also Published As

Publication number Publication date
JP2023043473A (ja) 2023-03-29
TW202327994A (zh) 2023-07-16
CA3228127A1 (en) 2023-03-23
AU2022346364A1 (en) 2024-01-25
EP4361493A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
US3849662A (en) Combined steam and gas turbine power plant having gasified coal fuel supply
JPS59231140A (ja) 石炭ガス化設備を備えた火力発電所
CN104051762B (zh) 用于使燃料电池待机的设备和方法
CN105308292A (zh) 具有燃料成分控制的燃气涡轮
KR101245766B1 (ko) 비상상태에서의 연료전지 작동 시스템 및 그 방법
EP4105491A1 (en) Method and apparatus for compressing a gas feed with a variable flow rate
WO2023042810A1 (ja) 水素供給システム及び水素供給システムを備える水素消費プラント並びに水素消費装置に水素を供給する方法
JP3262145B2 (ja) 燃料電池用空気供給装置
JP2001108201A (ja) 多重圧排熱ボイラ
US9240599B2 (en) Ammonia or hydrazine injection into fuel cell systems
JP3930426B2 (ja) 燃料電池複合発電システム
KR102423015B1 (ko) 전력수요 대응형 재생에너지-연료전지 다중 발전시스템 및 그 운용방법
JP2003036872A (ja) 複合発電システム
JP3137147B2 (ja) 燃料電池設備用タービン・コンプレッサ装置の制御方法
JP5536165B2 (ja) 複合発電システム
CN112682296A (zh) 一种核电厂用的应急动力系统、以及核电厂动力系统
JP2014160631A (ja) 発電システム及び発電システムの運転方法
EP1618622B1 (en) Buffer/converter/dumping system between fuel cells and process
CN108474555B (zh) 燃烧气体供给系统
JP6626777B2 (ja) 高圧水素製造システム
CN217481338U (zh) 一种海上天然气管网余压回收装置
CN106438272A (zh) 一种气推油储能系统
CN214380115U (zh) 一种igcc电站耦合空气液化的电力调峰调频系统
JP6290558B2 (ja) 制御装置及び方法、それを備えた複合発電システム
JP2006046826A (ja) 微粉炭火力発電システム及びその運転方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869957

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022346364

Country of ref document: AU

Ref document number: AU2022346364

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022346364

Country of ref document: AU

Date of ref document: 20220913

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022869957

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3228127

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022869957

Country of ref document: EP

Effective date: 20240126

NENP Non-entry into the national phase

Ref country code: DE