WO2023042748A1 - 二酸化炭素吸収剤 - Google Patents

二酸化炭素吸収剤 Download PDF

Info

Publication number
WO2023042748A1
WO2023042748A1 PCT/JP2022/033751 JP2022033751W WO2023042748A1 WO 2023042748 A1 WO2023042748 A1 WO 2023042748A1 JP 2022033751 W JP2022033751 W JP 2022033751W WO 2023042748 A1 WO2023042748 A1 WO 2023042748A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyether compound
general formula
carbon dioxide
repeating units
Prior art date
Application number
PCT/JP2022/033751
Other languages
English (en)
French (fr)
Inventor
重孝 早野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2023548443A priority Critical patent/JPWO2023042748A1/ja
Priority to CN202280059566.4A priority patent/CN117916007A/zh
Publication of WO2023042748A1 publication Critical patent/WO2023042748A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • C08L71/03Polyepihalohydrins

Definitions

  • the present invention relates to a carbon dioxide absorbent, and more particularly, to a carbon dioxide absorbent that is excellent in carbon dioxide absorption and that is suppressed from falling off from the porous membrane when retained in the porous membrane.
  • a polyether compound having a cationic group has ionic conductivity, and therefore, for example, in electrochemical devices such as secondary batteries, fuel cells, dye-sensitized solar cells, and actuators, ionic conductivity between electrodes It is known to be used as an electrolyte for imparting
  • Patent Document 1 a polyalkylene oxide having a side chain having a cationic site and a counter ion of the side chain in the polyalkylene oxide main chain, and the side chain or the counter ion thereof being liquid crystalline is disclosed.
  • An electrolyte composition has been proposed which is characterized by containing
  • An object of the present invention is to provide a carbon dioxide absorbent that is excellent in carbon dioxide absorption and that is suppressed from falling off from the porous membrane when held in the porous membrane.
  • the inventor has attempted to use a polyether compound having a cationic group as a carbon dioxide absorbent.
  • a polyether compound having a cationic group do not have sufficient carbon dioxide absorbability.
  • conventional polyether compounds having cationic groups tend to fall off from the porous membrane when held in the porous membrane.
  • the present inventors have found that the number of repeating units represented by the general formula (1) described later is a specific number or more, and the general formula (2) described later Represented by, by using a polyether compound containing a repeating unit containing a nitrogen-containing cationic group, it was found that a carbon dioxide absorbent excellent in carbon dioxide absorption can be obtained, further such polyether It has been found that the use of the compound prevents the carbon dioxide absorbent from coming off from the porous membrane when held on the porous membrane.
  • the present invention is an invention completed as a result of such studies.
  • a carbon dioxide absorbent containing a polyether compound wherein the polyether compound has 50 repeating units represented by the following general formula (1) as an average number per molecule characterized in that the polyether compound contains repeating units represented by the following general formula (2) as at least part of the repeating units represented by the general formula (1):
  • a carbon dioxide absorbent is provided.
  • A represents a monovalent group.
  • A' + represents a nitrogen-containing cationic group.
  • X ⁇ represents an anion.
  • the repeating unit represented by the general formula (2) is represented by the repeating unit represented by the following general formula (3-1) and the following general formula (3-2).
  • a repeating unit or a repeating unit represented by the following general formula (4) is preferred.
  • R 1 to R 4 each independently represent a hydrogen atom or a substituent, and R 2 and R 3 may be bonded to each other. Further, general formula (3-1) , X - represents an anion.
  • R 11 to R 15 each independently represent a hydrogen atom or a substituent, and two arbitrarily selected from R 11 to R 15 may be bonded to each other.
  • X ⁇ represents an anion.
  • R 5 to R 7 each independently represent a hydrogen atom or a substituent, and R 6 and R 7 may be bonded to each other. Further, in general formula (4), X ⁇ represents an anion.
  • the polyether compound preferably contains 101 or more repeating units represented by the general formula (1) as an average number per molecule.
  • the ratio of the repeating units represented by the general formula (1) in the polyether compound is 90 to 100 mol% with respect to the total repeating units of the polyether compound.
  • the proportion of the repeating units represented by the general formula (2) in the polyether compound is 5 with respect to the total repeating units represented by the general formula (1). It is preferably ⁇ 100 mol %.
  • the carbon dioxide absorbent of the present invention preferably further contains an ionic liquid or an oxygen-containing polar organic solvent.
  • X ⁇ is each independently a halide ion, a sulfonylimidide ion, a carboxylate ion, a sulfonate ion, OH ⁇ , BF 4 ⁇ , PF 6 ⁇ , ClO 4 ⁇ , B(CN) 4 ⁇ , SCN ⁇ , (NC) 2 N ⁇ .
  • a carbon dioxide absorbent that has excellent carbon dioxide absorption properties and is suppressed from falling off from the porous membrane when held in the porous membrane.
  • the carbon dioxide absorbent of the present invention contains a polyether compound, which will be described later.
  • the polyether compound used in the present invention contains 50 or more repeating units represented by the following general formula (1) as an average number per molecule, and the repeating unit represented by the general formula (1) It is characterized by containing a repeating unit represented by the following general formula (2) as at least part of the units.
  • A represents a monovalent group.
  • A' + represents a nitrogen-containing cationic group.
  • X ⁇ represents an anion.
  • the polyether compound used in the present invention contains a relatively large number of repeating units (oxirane units) represented by the general formula (1), ie, 50 or more per molecule, and is represented by the general formula (2). oxirane units containing nitrogen-containing cationic groups.
  • the carbon dioxide absorbent used in the present invention has excellent carbon dioxide absorption properties, and is suppressed from coming off from the porous membrane when held in the porous membrane. .
  • the repeating unit represented by the general formula (1) is a unit (oxirane monomer unit) obtained by ring-opening polymerization of the oxirane structure portion of the compound containing the oxirane structure.
  • compounds containing an oxirane structure include aliphatic oxirane monomers such as ethylene oxide, propylene oxide, 1,2-butylene oxide and 1,2-octylene oxide; aromatic oxirane monomers such as styrene oxide; epihalohydrin monomers such as epichlorohydrin, epibromohydrin, epiiodohydrin and epifluorohydrin; alkenyl group-containing oxirane monomers such as allyl glycidyl ether; aromatic ether group-containing oxiranes such as phenylglycidyl ether monomers; (meth)acryloyl group-containing oxirane monomers such as glycidyl acrylate and glycidyl methacrylate;
  • the polyether compound used in the present invention comprises an oxirane unit containing a nitrogen-containing cationic group represented by the general formula (2) as at least part of the repeating units represented by the general formula (1). It is.
  • the repeating unit represented by the general formula (2) usually converts at least part of the halogen atoms constituting the epihalohydrin monomer unit in the polymer containing the epihalohydrin monomer unit into a nitrogen-containing cationic group. obtained by substituting
  • A' + represents a nitrogen-containing cationic group.
  • the nitrogen-containing cationic group is preferably bonded to the carbon atom at position "2" shown in the general formula below via one of the nitrogen atoms constituting the nitrogen-containing cationic group.
  • the nitrogen-containing cationic group may have another nitrogen atom in addition to the nitrogen atom bonded to the carbon atom at position "2" shown in the general formula below.
  • Nitrogen-containing cationic groups represented by A' + include amino groups, nitrogen-containing cationic aromatic groups, and nitrogen-containing cationic aliphatic groups.
  • the nitrogen-containing cationic aromatic group as A' + a group containing a cationic nitrogen-containing aromatic heterocycle is preferred.
  • the nitrogen-containing aromatic heterocycle in the cationic nitrogen-containing aromatic heterocycle in the group containing the cationic nitrogen-containing aromatic heterocycle may have a nitrogen atom in the ring and have aromaticity. , an oxygen atom, a sulfur atom, etc., other than the nitrogen atom, and some of the atoms constituting the heterocyclic ring may be substituted with substituents. In addition, it may have a polycyclic structure in which two or more rings are condensed.
  • nitrogen-containing aromatic heterocycles include, for example, five-membered heterocycles such as imidazole ring, pyrrole ring, thiazole ring, oxazole ring, pyrazole ring and isoxazole ring; pyridine ring, pyrazine ring, pyrimidine ring, Six-membered heterocycles such as pyridazine ring and triazine ring; quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, cinnoline ring, purine ring, indole ring, isoindole ring, benzimidazole ring, benzoxazole ring, benzisoxazole ring, etc. condensed heterocyclic ring; and the like.
  • five-membered heterocyclic ring and a six-membered heterocyclic ring are preferred, and an imidazole
  • the substituents of the nitrogen-containing aromatic heterocyclic ring are not particularly limited, but for example, an alkyl group; a cycloalkyl group; an alkenyl group such as a vinyl group; an aryl group such as a phenyl group; an arylalkyl group; an alkylaryl group; alkoxyalkyl group; aryloxy group; alkanol group; hydroxyl group; carbonyl group; alkoxycarbonyl group; amino group;
  • the number of carbon atoms in these substituents is preferably 0 to 12, more preferably 1 to 8, and even more preferably 1 to 6.
  • a nitrogen-containing cationic aliphatic group as A' + may be linear or branched, and may have a non-aromatic ring structure.
  • nitrogen-containing cationic groups represented by A′ + include ammonium groups; cationic nitrogen atoms such as methylammonium groups, butylammonium groups, cyclohexylammonium groups, anilinium groups, benzylammonium groups and ethanolammonium groups; Disubstituted ammonium group containing a cationic nitrogen atom such as dimethylammonium group, diethylammonium group, dibutylammonium group, nonylphenylammonium group; trimethylammonium group, triethylammonium group, n-butyl Contains cationic nitrogen atoms such as dimethylammonium group, stearyldimethylammonium group, tributylammonium group, trivinylammonium group, triethanolammonium group, N,N-dimethylethanolammonium group, tri(2-ethoxyethyl)ammonium group, etc.
  • the anion represented by X ⁇ is the counter anion of the nitrogen-containing cationic group represented by A′ + .
  • X ⁇ include, for example, monovalent anions such as halide ions such as F ⁇ , Cl ⁇ , Br ⁇ and I ⁇ ; (FSO 2 ) 2 N ⁇ , (CF 3 SO 2 ) 2 N ⁇ , ( sulfonyl imide ions such as CF 3 CF 2 SO 2 ) 2 N- ; carboxylic oxides such as CH 3 COO ⁇ , C 3 H 7 COO ⁇ , CF 3 COO ⁇ , PhCOO ⁇ (Ph represents a phenyl group); ions; sulfonate ions such as CH 3 SO 3 ⁇ and CF 3 SO 3 ⁇ ; OH ⁇ , BF 4 ⁇ , PF 6 ⁇ , ClO 4 ⁇ , B(CN) 4 ⁇ , SCN ⁇ , (
  • X ⁇ may be a polyvalent anion or a polyanion having two or more monovalent anionic groups in the molecule.
  • polyvalent anions include sulfate ion (SO 4 2 ⁇ ) and carbonate ion (CO 3 2 ⁇ ).
  • polyanions having two or more monovalent anionic groups in the molecule include —O 3 SCF 2 CF 2 CF 2 SO 3 — , —O 3 SCF 2 CF 2 SO 3 — and CF 3 SO 2 N —. SO 2 CF 2 CF 2 OCF 2 CF 2 OCF 2 CF 2 SO 2 N — SO 2 CF 3 and the like.
  • sulfonylimidide ions from the viewpoint of carbon dioxide absorption, sulfonylimidide ions, carboxylic oxide ions, and BF 4 — are preferable, and sulfonylimidide ions, CH 3 COO ⁇ , and BF 4 — are more preferable.
  • the units represented by general formula (2) are each independent, and two or more types of units represented by general formula (2) exist in the polyether compound. You may have For example, all of the nitrogen-containing cationic groups represented by A' + in the entire repeating unit represented by the general formula (2) in the polyether compound may be the same type of nitrogen-containing cationic group. , different nitrogen-containing cationic groups may be mixed. Further, in the entire repeating unit represented by the general formula (2) in the polyether compound, all the anions represented by X ⁇ may be the same type of anion, or different types of anions may be mixed. good too.
  • repeating units represented by general formula (2) include repeating units represented by the following general formula (3-1).
  • a repeating unit represented by the following general formula (3-1) is an oxirane unit containing an imidazolium structure.
  • R 1 to R 4 each independently represent a hydrogen atom or a substituent, and R 2 and R 3 may be bonded to each other. Further, general formula (3-1) , X - represents an anion.
  • R 1 to R 4 each independently represent a hydrogen atom or a substituent.
  • substituents include those similar to those described above as the substituent of the nitrogen-containing aromatic heterocyclic ring.
  • the substituents as R 1 to R 4 may be linear or branched, and may have a ring structure.
  • the substituents as R 1 to R 4 are preferably linear.
  • R 1 is not particularly limited as long as it is a hydrogen atom or a substituent, but is preferably a hydrogen atom or a hydrocarbon group, more preferably a hydrocarbon group, An alkyl group or alkenyl group is more preferred, an alkyl group or vinyl group is particularly preferred, and an alkyl group is most preferred.
  • the number of carbon atoms in R 1 is preferably 0 to 12, more preferably 0 to 8, even more preferably 1 to 6, even more preferably 1 to 4, and particularly preferably 1 to 3, from the viewpoint of carbon dioxide absorption. , 1-2 are most preferred.
  • R 2 to R 4 are each independently a hydrogen atom or a substituent, and are not particularly limited, but are preferably each independently a hydrogen atom or a hydrocarbon group. , a hydrogen atom, an alkyl group or a vinyl group, more preferably a hydrogen atom or an alkyl group, and particularly preferably a hydrogen atom.
  • the number of carbon atoms in R 2 to R 4 is preferably 0 to 8, more preferably 0 to 6, still more preferably 0 to 4, and even more preferably 0 to 3, from the viewpoint of carbon dioxide absorption. , 0-2 is particularly preferred, and 0-1 is most preferred.
  • R 2 and R 3 may be bonded to each other.
  • the repeating unit represented by general formula (3-1) has a group represented by -R 2 -R 3 -.
  • R 2 and R 3 are preferably not bonded to each other.
  • 1 to 3 of R 2 to R 4 preferably represent a hydrogen atom, more preferably 2 to 3 represent a hydrogen atom. Further, 0 to 2 of R 2 to R 4 preferably represent a substituent such as a hydrocarbon group, and more preferably 0 to 1 represent a substituent such as a hydrocarbon group.
  • Examples of the anion represented by X 1 ⁇ in general formula (3-1) include the same anions as those represented by X 1 in general formula (2), and preferred embodiments are also the same.
  • the repeating unit represented by the general formula (3-1) includes an imidazolium group, a 1-methylimidazolium group, a 1-butylimidazolium group, a 1-hexylimidazolium group, or a 1-vinylimidazolium group. Those containing a dazolium group are preferred.
  • repeating units represented by general formula (2) include repeating units represented by the following general formula (3-2).
  • a repeating unit represented by the following general formula (3-2) is an oxirane unit containing a pyridinium structure.
  • R 11 to R 15 each independently represent a hydrogen atom or a substituent, and two arbitrarily selected from R 11 to R 15 may be bonded to each other.
  • X ⁇ represents an anion.
  • R 11 to R 15 each independently represent a hydrogen atom or a substituent.
  • substituents as R 11 to R 15 may be linear or branched, and may have a ring structure.
  • R 11 to R 15 are each independently a hydrogen atom or a substituent, and are not particularly limited, but are preferably each independently a hydrogen atom or a hydrocarbon group. , a hydrogen atom, an alkyl group or a vinyl group, more preferably a hydrogen atom or an alkyl group.
  • the number of carbon atoms in R 11 to R 15 is preferably 0 to 8, more preferably 0 to 6, still more preferably 0 to 4, and even more preferably 0 to 3, from the viewpoint of carbon dioxide absorption. , 0-2 is particularly preferred, and 0-1 is most preferred.
  • R 11 to R 15 may be bonded to each other.
  • R 11 and R 12 may combine with each other to form a group represented by -R 11 -R 12 -.
  • R 11 to R 15 preferably represent hydrogen atoms, more preferably 3 to 5 represent hydrogen atoms, and 4 to 5 represent hydrogen atoms. is more preferred, and all hydrogen atoms are particularly preferred. Further, 0 to 3 of R 11 to R 15 preferably represent a substituent such as a hydrocarbon group, more preferably 0 to 2 represent a substituent such as a hydrocarbon group, and 0 to 1 more preferably represents a substituent such as a hydrocarbon group.
  • Examples of the anion represented by X 1 ⁇ in general formula (3-2) include the same anions as those represented by X 1 in general formula (2), and preferred embodiments are also the same.
  • the repeating unit represented by general formula (3-2) preferably contains a pyridinium group, a 2,6-dimethylpyridinium group, a 4-vinylpyridinium group, or a quinolinium group.
  • repeating units represented by general formula (2) include repeating units represented by the following general formula (4).
  • R 5 to R 7 each independently represent a hydrogen atom or a substituent, and R 6 and R 7 may be bonded to each other. Further, in general formula (4), X ⁇ represents an anion.
  • R 5 to R 7 each independently represent a hydrogen atom or a substituent.
  • substituents include those mentioned above as the substituent of the nitrogen-containing aromatic heterocycle, and among them, alkyl group, aryl group, arylalkyl group, alkylaryl group, alkoxyl group, alkoxyalkyl group, An aryloxy group and an alkanol group are preferred, an alkyl group, a cycloalkyl group, a phenyl group, an alkoxyalkyl group and an alkanol group are more preferred, and an alkyl group or a cycloalkyl group is even more preferred.
  • the substituents as R 5 to R 7 may each independently be linear or branched, or may have a cyclic structure.
  • R 5 is not particularly limited as long as it is a hydrogen atom or a substituent, but is preferably a linear substituent. Further, the number of carbon atoms of R 5 is preferably 0 to 12, more preferably 1 to 8, even more preferably 1 to 6, even more preferably 1 to 4, and 1 to 3 from the viewpoint of carbon dioxide absorption. Particularly preferred, 1 to 2 are most preferred.
  • R 6 to R 7 may each independently be a hydrogen atom or a substituent, and are not particularly limited. Also, R6 and R7 may or may not be bonded to each other.
  • R 6 when R 6 and R 7 are not bonded to each other, R 6 is preferably a linear substituent.
  • the number of carbon atoms in R 6 is preferably 0 to 12, more preferably 2 to 8, even more preferably 3 to 6, and particularly preferably 3 to 5, from the viewpoint of carbon dioxide absorption.
  • R7 is preferably a linear substituent. Further, the number of carbon atoms of R 7 is preferably 0 to 12, more preferably 1 to 8, even more preferably 1 to 6, even more preferably 1 to 4, and 1 to 3 from the viewpoint of carbon dioxide absorption. Particularly preferred, 1 to 2 are most preferred.
  • the repeating unit represented by general formula (4) has a group represented by -R 6 -R 7 -.
  • the group represented by -R 6 -R 7 - may be linear or branched, or may have a ring structure, but is preferably linear.
  • the number of carbon atoms in the group represented by -R 6 -R 7 - is preferably 1 to 12, more preferably 2 to 8, even more preferably 3 to 6, and 3 to 3, from the viewpoint of carbon dioxide absorption. 5 is particularly preferred.
  • Examples of the anion represented by X 1 ⁇ in general formula (4) include the same anions as those represented by X 1 in general formula (2), and preferred embodiments are also the same.
  • repeating units represented by formula (4) include trimethylammonium group, triethylammonium group, n-butyldimethylammonium group, n-octyldimethylammonium group, n-stearyldimethylammonium group, tributylammonium group and trivinylammonium. group, 1-methylpyrrolidinium group, N,N'-dimethylanilinium group, triethanolammonium group, N,N'-dimethylethanolammonium group, or tri(2-ethoxyethyl)ammonium group preferable.
  • the repeating unit represented by the general formula (2) includes a repeating unit represented by the general formula (3-1), a repeating unit represented by the general formula (3-2), or a repeating unit represented by the general formula (4). is preferable, and a repeating unit represented by general formula (3-1) or a repeating unit represented by general formula (4) is more preferable.
  • the polyether compound used in the present invention may contain a repeating unit represented by general formula (1) other than the repeating unit represented by general formula (2).
  • Examples of repeating units represented by general formula (1) other than repeating units represented by general formula (2) include ethylene oxide units, propylene oxide units, 1,2-butylene oxide units, and 1,2-octylene.
  • alkylene oxide monomer units such as oxide units; aromatic oxirane monomer units such as styrene oxide units; epihalohydrin monomer units such as epichlorohydrin units, epibromohydrin units, epiiodohydrin units; alkenyl group-containing oxirane monomer units such as glycidyl ether units; aromatic ether group-containing oxirane monomer units such as phenylglycidyl ether units; (meth)acryloyl group-containing oxirane monomer units such as glycidyl acrylate units and glycidyl methacrylate units unit; and the like.
  • repeating units represented by general formula (1) other than repeating units represented by general formula (2) include alkylene oxide monomer units, epihalohydrin monomer units, and (meth)acryloyl group-containing oxirane monomers. Units are preferred, and ethylene oxide units, propylene oxide units, epichlorohydrin units and glycidyl methacrylate units are more preferred.
  • the polyether compound used in the present invention may contain one repeating unit represented by the general formula (1) other than the repeating unit represented by the general formula (2), or two or more of the repeating units represented by the general formula (2). May contain units.
  • the polyether compound used in the present invention may contain repeating units other than the repeating unit represented by general formula (1).
  • repeating units other than the repeating unit represented by the general formula (1) include disubstituted or more oxirane monomer units such as 2,3-butylene oxide units, and oxirane containing ring structures such as cyclohexene oxide. Monomeric units are included.
  • the polyether compound used in the present invention may contain a single repeating unit other than the repeating unit represented by formula (1), or may contain two or more such units.
  • the polyether compound used in the present invention may contain an oxirane monomer unit having a crosslinkable group.
  • a crosslinkable composition can be prepared by blending a crosslinker, and the crosslinked product obtained by crosslinking this has a crosslinked structure. Since it contains the material, it becomes excellent in shape retention when it is molded into a predetermined shape.
  • the oxirane monomer unit having a crosslinkable group is not particularly limited, and examples thereof include epihalohydrin monomer units, alkenyl group-containing oxirane monomer units, (meth)acryloyl group-containing oxirane monomer units, and the like. .
  • the polyether compound used in the present invention may contain two or more repeating units, and in this case, the distribution pattern of the plurality of repeating units is not particularly limited, but has a random distribution. preferably.
  • the chain structure of the polyether compound used in the present invention is not particularly limited, and may be linear or branched, such as graft-like or radial.
  • the terminal group of the polyether compound used in the present invention is not particularly limited, and can be any monovalent group.
  • the terminal group include a hydrogen atom, a halogen group, an alkyl group, a haloalkyl group, a hydroxyl group, and an azide group.
  • the terminal group may be a group composed of a nitrogen-containing cationic group (A' + ) and an anion (X ⁇ ) which the repeating unit represented by the general formula (2) has.
  • the polyether compound used in the present invention contains 50 or more repeating units represented by general formula (1) as an average number per molecule.
  • the number of repeating units represented by the general formula (1) in the polyether compound used in the present invention is not particularly limited as long as the average number per molecule is 50 or more, but the average number per molecule is 51.
  • the number is preferably up to 2000, more preferably 101 to 1000, even more preferably 110 to 800.
  • the carbon dioxide absorbent of the present invention is more excellent in carbon dioxide absorption and has a porous structure when held in a porous membrane. Drop-off from the film is further suppressed.
  • the number average molecular weight (Mn) of the polyether compound used in the present invention is not particularly limited, but is preferably 3,000 to 800,000, more preferably 4,000 to 400,000. 000 to 300,000 is more preferred.
  • the carbon dioxide absorbent of the present invention has excellent carbon dioxide absorbability, and does not fall off from the porous membrane when held in the porous membrane. It is further suppressed.
  • the molecular weight distribution (Mw/Mn) of the polyether compound used in the present invention is not particularly limited, but is preferably 1.0 to 4.0, more preferably 1.0 to 2.0. 0 to 1.5 is more preferable.
  • the proportion of the repeating units represented by the general formula (1) in the polyether compound used in the present invention is not particularly limited, but is preferably 90 to 100 mol% with respect to the total repeating units of the polyether compound. Preferably, it is 95 to 100 mol %, and most preferably substantially 100 mol %.
  • the carbon dioxide absorbent of the present invention is more excellent in carbon dioxide absorption and has a porous structure when held in a porous membrane. Dropping from the membrane is further suppressed.
  • the number of repeating units represented by the general formula (2) in the polyether compound used in the present invention is not particularly limited, but the average number per molecule is preferably 8 to 2000, more preferably 15 to 1000. is more preferable, 20 to 900 is more preferable, and 25 to 800 is particularly preferable.
  • the carbon dioxide absorbent of the present invention is more excellent in carbon dioxide absorption and has a porous structure when held in a porous membrane. Drop-off from the film is further suppressed.
  • the ratio of the repeating units represented by the general formula (2) in the polyether compound used in the present invention is not particularly limited, but is 5 to 100 mol with respect to the total repeating units represented by the general formula (1). %, more preferably 8 to 100 mol %, even more preferably 10 to 100 mol %.
  • the proportion of the repeating unit represented by the general formula (2) is within the above range, the carbon dioxide absorbent of the present invention is more excellent in carbon dioxide absorption and has a porous structure when held in a porous membrane. Dropping from the membrane is further suppressed.
  • the average number of repeating units represented by the general formula (1) per molecule is 50 or more, and the repeating unit represented by the general formula (2) is contained in a relatively small amount (for example, even when a polyether compound containing 14 mol % or 29 mol %) is used, the carbon dioxide absorbent of the present invention surprisingly exhibits excellent carbon dioxide absorption. Although the reason for this is not clear, it is presumed that the carbon dioxide absorbability also depends on the mobility of the repeating unit represented by general formula (2).
  • the proportion of the repeating unit represented by the general formula (2) in the polyether compound used in the present invention is represented by the general formula (1). It is preferably 20 to 100 mol%, more preferably 50 to 100 mol%, even more preferably 80 to 100 mol%, and 90 to 100 mol% of the total repeating units. Especially preferred is 95 to 100 mol %, most preferred is substantially 100 mol %.
  • the ratio of the repeating units represented by the general formula (1) other than the repeating units represented by the general formula (2) is not particularly limited. It is preferably from 0 to 95 mol %, more preferably from 0 to 92 mol %, even more preferably from 0 to 90 mol %, based on the total repeating units.
  • the repeating unit represented by the general formula (1) other than the repeating unit represented by the general formula (2) in the polyether compound used in the present invention is preferably 0 to 80 mol%, more preferably 0 to 50 mol%, and 0 to 20 mol% of the total repeating units represented by formula (1). more preferably 0 to 10 mol %, particularly preferably 0 to 5 mol %, and most preferably substantially 0 mol %.
  • the ratio of oxirane monomer units having a crosslinkable group in the polyether compound used in the present invention is not particularly limited, but is preferably 0 to 50 mol% with respect to all repeating units of the polyether compound. It is preferably 0 to 20 mol %, and more preferably 0 to 20 mol %.
  • the lower limit of the ratio of the oxirane monomer unit having a crosslinkable group is not particularly limited, but the polyether compound used in the present invention is made into a crosslinkable composition and crosslinked. From the viewpoint of making the product more excellent in shape retention, it may be 1 mol % or more.
  • the method for synthesizing the polyether compound used in the present invention is not particularly limited, and any synthesis method can be adopted as long as the desired polyether compound can be obtained.
  • a base polymer (a polyether compound having no repeating unit represented by general formula (2)) is obtained by the following method (A) or (B).
  • a monomer containing an oxirane monomer containing at least an epihalohydrin such as epichlorohydrin, epibromohydrin, and epiiodohydrin is disclosed in JP-A-2010-53217 as a catalyst. in the presence of a catalyst comprising an onium salt of a compound containing an atom of group 15 or group 16 of the periodic table and a trialkylaluminum in which the alkyl groups contained are all linear alkyl groups.
  • the halogen group constituting the epihalohydrin monomer unit of the base polymer obtained by the above method (A) or (B) is reacted with an onium agent containing a nitrogen-containing cationic group (onium conversion reaction).
  • an onium agent containing a nitrogen-containing cationic group onium conversion reaction.
  • Halide ions constituting onium halide groups containing nitrogen-containing cationic groups can be converted to anions (X ⁇ ) other than halide ions.
  • the nitrogen-containing cationic group-containing onium agent used in reacting the base polymer with the nitrogen-containing cationic group-containing onium agent is the nitrogen-containing cationic group (A' + ) is the corresponding onium reagent.
  • the repeating unit represented by general formula (3-1) can be formed.
  • the method of reacting the base polymer and the onium agent is not particularly limited, but a method of mixing the base polymer and the onium agent is preferable.
  • the method of mixing the base polymer and the onium agent is not particularly limited, but for example, a method of adding the onium agent to a solution containing the base polymer and mixing, or a method of adding the base polymer to a solution containing the onium agent and mixing. , a method of preparing separate solutions of the onium agent and the base polymer, and mixing the two solutions.
  • an inert solvent is preferably used, and may be non-polar or polar.
  • non-polar solvents include aromatic hydrocarbons such as benzene and toluene; chain saturated hydrocarbons such as n-pentane and n-hexane; alicyclic saturated hydrocarbons such as cyclopentane and cyclohexane; be done.
  • Polar solvents include ethers such as tetrahydrofuran, anisole and diethyl ether; esters such as ethyl acetate and ethyl benzoate; ketones such as acetone, 2-butanone and acetophenone; aprotons such as acetonitrile, dimethylformamide, dimethylacetamide and dimethylsulfoxide.
  • polar solvents protic polar solvents such as ethanol, methanol, and water; and the like.
  • a mixed solvent of these is also suitably used.
  • the amount of the solvent used is not particularly limited, but it is preferably used so that the concentration of the base polymer is 1 to 50% by mass, more preferably 3 to 40% by mass.
  • the amount of the onium agent used is not particularly limited. You can decide accordingly. Specifically, the amount of the onium agent used is generally 0.01 to 100 mol, preferably 0.02 to 50 mol, more preferably 0.02 to 50 mol, per 1 mol of the epichlorohydrin unit of the base polymer used. 03 to 10 mol, more preferably 0.05 to 2 mol.
  • the pressure for reacting the base polymer and the onium agent is not particularly limited, but is usually 1 to 500 atm, preferably 1 to 100 atm, particularly preferably 1 to 50 atm.
  • the temperature during the reaction is also not particularly limited, and is usually 0 to 200°C, preferably 20 to 170°C, more preferably 40 to 150°C.
  • the reaction time is generally 1 minute to 1,000 hours, preferably 3 minutes to 800 hours, more preferably 5 minutes to 500 hours, still more preferably 30 minutes to 200 hours.
  • the method of performing an anion exchange reaction by reacting an onium halide structural unit-containing polyether compound with a salt of an anion (X ⁇ ) other than a halide ion and a metal cation is not particularly limited, but the onium halide structural unit containing A preferred method is to mix and react a polyether compound with a salt of an anion (X ⁇ ) other than a halide ion and a metal cation.
  • the conditions for performing an anion exchange reaction are not particularly limited, and an onium halide structural unit-containing polyether compound may be mixed with only a salt of an anion (X ⁇ ) other than a halide ion and a metal cation, or an organic solvent. It may be carried out under conditions in which other compounds such as are present.
  • the amount of the salt used is not particularly limited, but usually 0.01 to 100 mol, preferably 0.02 to 50 mol, per 1 mol of the onium halide structural unit of the onium halide structural unit-containing polyether compound used. It is preferably in the range of 0.03 to 10 mol.
  • Salts of metal cations and anions (X ⁇ ) other than halide ions used for the anion exchange reaction are not particularly limited. , lithium (bistrifluoromethylsulfone)imide ( Li ( CF3SO2 ) 2N ), lithium (bispentafluoroethylsulfone) imide (Li( CF3CF2SO2 ) 2N ), sodium acetate ( CH3COONa ), silver acetate ( CH3COOAg ), lithium butyrate ( C3H7COOLi ), lithium trifluoroacetate ( CF3COOLi ), lithium benzoate ( PhCOOLi ), potassium tetracyanoborate (KB(CN) 4 ), lithium thiocyanate (LiSCN), lithium (biscyano)imide (Li(NC) 2N ), lithium methylsulfonate ( LiCH3SO3 ) , lithium trifluoromethylsulfonate ( LiCF3SO3 ) ,
  • salts of polyvalent anions and metal cations silver sulfate (Ag 2 SO 4 2 ⁇ ) and sodium carbonate (Na 2 CO 3 2 ⁇ ) can be used.
  • salts of polyanions having two or more monovalent anionic groups in the molecule and metal cations include LiO 3 SCF 2 CF 2 CF 2 SO 3 Li, LiO 3 SCF 2 CF 2 SO 3 Li, Li 2 ( CF3SO2NSO2CF2CF2OCF2CF2OCF2CF2SO2CF3 ) .
  • the pressure during the anion exchange reaction is usually 1 to 500 atm, preferably 1 to 100 atm, particularly preferably 1 to 50 atm.
  • the temperature during the reaction is usually -30 to 200°C, preferably -15 to 180°C, more preferably 0 to 150°C.
  • the reaction time is generally 1 minute to 1000 hours, preferably 3 minutes to 100 hours, more preferably 5 minutes to 10 hours, still more preferably 5 minutes to 3 hours.
  • metal cations, halide ions, salts thereof, etc. are removed by washing with water, etc., and membrane separation using a membrane such as a semipermeable membrane, and the mixture containing the polyether compound is recovered.
  • a mixture containing a polyether compound can be recovered by extracting the polyether compound using a solvent such as methanol. Further, the desired polyether compound can be recovered by a conventional method such as drying under reduced pressure.
  • Carbon dioxide absorbent of the present invention in addition to the above polyether compound, ionic liquid; alkali metal salts such as LiPF6 , LiTFSI, KI; oxygen-containing polar organic solvents; fillers such as carbon materials and inorganic materials; may contain.
  • Oxygen-containing polar organic solvents include ethers such as tetrahydrofuran, anisole, diethyl ether, dibutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and tetraethylene glycol dimethyl ether; esters such as ethyl acetate and ethyl benzoate; acetone, methyl ethyl ketone, diethyl ketone, ketones such as ethylene carbonate, dimethyl carbonate and acetophenone; alcohols such as ethanol, methanol, ethylene glycol, diethylene glycol, tetraethylene glycol, polyethylene glycol and glycerin; dimethylformamide, dimethylacetamide and dimethylsulfoxide.
  • ethers such as tetrahydrofuran, anisole, diethyl ether, dibutyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and tetraethylene glyco
  • ethers, ketones and alcohols are preferred, and methyl ethyl ketone, tetraethylene glycol dimethyl ether and tetraethylene glycol are more preferred. These may be used singly or in combination of two or more. For example, one or more ethers and one or more ketones may be used in combination.
  • the content of the oxygen-containing polar organic solvent is not particularly limited. On the other hand, it is preferably 1 to 4000 parts by mass, preferably 5 to 3000 parts by mass, more preferably 10 to 2000 parts by mass.
  • the ionic liquid is not particularly limited as long as it is an organic salt compound having a melting point of 500° C. or lower, but an organic salt compound having a melting point of 400° C. or lower is preferable, and an organic salt compound having a melting point of 300° C. or lower is more preferable.
  • Organic salt compounds with a melting point of 150° C. or lower are more preferred, organic salt compounds with a melting point of 100° C. or lower are particularly preferred, organic salt compounds with a melting point of 80° C. or lower are particularly preferred, and a melting point of room temperature (25 ° C.) are most preferred.
  • the ionic liquid may be either liquid at room temperature or solid at room temperature, but is preferably liquid at room temperature.
  • the ionic liquid is preferably an organic salt compound composed of a cation and an anion, and the cation is an organic molecule having only one positive charge and a counter anion having only one negative charge. It is more preferable that it is an organic salt compound having Note that the ionic liquid is sometimes called an ionic liquid or a room-temperature molten salt.
  • the ionic liquid used in the present invention preferably has a molecular weight (the combined molecular weight of cations and anions) in the range of 100-700, more preferably 120-500.
  • the ionic liquid that is liquid at room temperature (25°C) preferably has a viscosity at 25°C of 10 to 1000 mPa ⁇ s, more preferably 10 to 500 mPa ⁇ s.
  • cations that form ionic liquids include ammonium ions; monosubstituted ions containing cationic nitrogen atoms such as methylammonium ions, butylammonium ions, cyclohexylammonium ions, anilinium ions, benzylammonium ions, and ethanolammonium ions.
  • anion forming the ionic liquid examples include the above-described specific examples of the anion represented by X 1 ⁇ in formula (2), and preferred examples are the same.
  • the anion forming the ionic liquid is preferably the same as the anion represented by X - contained in the polyether compound.
  • all of the cations and anions may consist of the same ion species, or one or both of the cations and anions may contain two or more ionic species. can be anything. That is, the ionic liquid may be a single liquid or a mixture of two or more types.
  • the ionic liquid used in the present invention include N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, 1-ethyl-1-methylpyrrolidinium tetra Fluoroborate, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1-ethyl-3-methylimidazolium hexafluorophosphate , 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, N-butylpyridinium bis(trifluoromethanesulfonyl)imide, tributyldodecaphosphonium bis(trifluoromethanesulfonyl)imide and the
  • the content ratio of the ionic liquid is not particularly limited, but 1 to 4000 with respect to 100 parts by mass of the polyether compound in the carbon dioxide absorbent of the present invention. It is preferably 5 to 3000 parts by mass, more preferably 10 to 2000 parts by mass.
  • a carbon dioxide absorbing member containing the carbon dioxide absorbent of the present invention can be obtained using the carbon dioxide absorbent of the present invention.
  • the carbon dioxide absorbent of the present invention is excellent in carbon dioxide absorption. Therefore, by using the carbon dioxide absorbent of the present invention, a carbon dioxide absorbent member having excellent carbon dioxide absorption properties can be obtained. In addition, the carbon dioxide absorbent of the present invention is also suppressed from falling off from the porous membrane when held in the porous membrane. Therefore, the carbon dioxide-absorbing member obtained by holding the carbon dioxide absorbent of the present invention in a porous membrane has excellent carbon dioxide absorption properties, is excellent in preventing the carbon dioxide absorbent from falling off, and has excellent durability. becomes.
  • the carbon dioxide absorbing member containing the carbon dioxide absorbent of the present invention may be, for example, one obtained by casting the carbon dioxide absorbent of the present invention on a substrate such as a sheet. is impregnated into a porous material such as a nonwoven fabric or a porous membrane.
  • the method for molding the carbon dioxide absorbing member is not particularly limited, but the carbon dioxide absorbing agent of the present invention may be cast on a substrate as it is or in a state of being dissolved or dispersed in a solvent to form a liquid composition.
  • Carbon dioxide absorber reinforcing agent; antioxidant; UV absorber; light stabilizer; tackifier; surfactant; It may be subjected to molding after blending additives such as agents.
  • the carbon dioxide absorbent of the present invention when the polyether compound contained in the carbon dioxide absorbent of the present invention has a crosslinkable group, the carbon dioxide absorbent is blended with the crosslinking agent to form a crosslinkable composition, and then molded. Then, the carbon dioxide absorbing member may be obtained by cross-linking.
  • the carbon dioxide absorbent of the present invention is excellent in carbon dioxide absorption, it can be suitably used as a member for carbon dioxide separation, a member for carbon dioxide storage, and a member for carbon dioxide transport.
  • the carbon dioxide absorbent of the present invention is excellent in carbon dioxide absorption both under normal pressure and under high pressure (for example, 2000 hPa to 150000 hPa). Therefore, the carbon dioxide absorbent of the present invention can be suitably used, for example, as a member of equipment for carbon dioxide separation under normal pressure or as a member of equipment for carbon dioxide separation under high pressure.
  • the carbon dioxide absorbent of the present invention absorbs carbon dioxide from natural gas, absorbs carbon dioxide from biogas, absorbs carbon dioxide from CO 2 /CH 4 containing gas, CO 2 /N 2 containing gas It can be suitably used for applications such as absorption of carbon dioxide from.
  • Gases targeted for carbon dioxide absorption may include hydrogen sulfide, mercaptans (thiols), disulfides, carbon disulfide, and the like.
  • the number average molecular weight (Mn) and molecular weight distribution (Mw/Mn) of the base polymer were measured as polystyrene equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
  • GPC gel permeation chromatography
  • HLC-8320 manufactured by Tosoh Corporation
  • TSKgel SuperMultiporeHZH manufactured by Tosoh Corporation
  • RI-8320 manufactured by Tosoh Corporation
  • the number average molecular weight (Mn) of the polyether compound was determined as follows. That is, first, from the average molecular weight of the repeating unit of the base polymer, the average molecular weight of the various monomer units constituting the polyether compound, and the content of the various monomer units obtained by the following (3), The average molecular weight of all repeating units constituting the polyether compound was obtained. Then, the number average molecular weight (Mn) of the polyether compound was obtained by multiplying the number of repeating units of the base polymer by the average molecular weight of all repeating units constituting the polyether compound.
  • the structure of the base polymer and polyether compound, and the content of various monomer units in the base polymer and polyether compound are measured using a nuclear magnetic resonance spectrometer (NMR) as follows. bottom. First, 30 mg of a base polymer or polyether compound sample was added to 1.0 mL of deuterated chloroform or deuterated dimethylsulfoxide, and shaken for 1 hour to dissolve uniformly. Then, the obtained solution was subjected to NMR measurement to obtain a 1H-NMR spectrum, and the structure of the sample was assigned according to the standard method. Moreover, the content of the repeating unit represented by the general formula (2) in the polyether compound containing the repeating unit represented by the general formula (2) was calculated by the following method.
  • the number of moles B1 of all oxirane monomer units was calculated from the integrated value of protons derived from the oxirane monomer units of the main chain.
  • the number of moles B2 of the repeating unit represented by general formula (2) was calculated from the integrated value of protons derived from the onium structure in the repeating unit represented by general formula (2).
  • the ratio (percentage) of B2 to B1 was determined as the content of the repeating unit represented by general formula (2) in the polyether compound.
  • TTD-MS temperature programmed desorption-mass spectrometry
  • the obtained support film was fixed and brought into close contact with a perforated plate (2 cm in diameter) having many holes with a diameter of 1 mm.
  • the lower side of the perforated plate (opposite side of the support film) is decompressed in two steps to suck the support film composed of the carbon dioxide absorbent and the porous substrate, and the carbon dioxide absorbent is removed from the porous substrate.
  • the presence or absence was visually observed and judged according to the following criteria.
  • the upper part of the perforated plate was normal pressure and 1.0 atm.
  • the obtained support film was fixed in a vertically suspended state, and allowed to stand for 24 hours under normal pressure environment with a temperature of 25°C and a humidity of 60%. Presence or absence of detachment of the carbon dioxide absorbent from the porous substrate was visually observed and judged according to the following criteria. When the carbon dioxide absorbent was retained in the pores of the porous membrane, it was evaluated as ⁇ , and when the carbon dioxide absorbent was dropped to some extent, it was evaluated as ⁇ .
  • the viscosity of the solution gradually increased. After reacting for 12 hours, a small amount of water was poured into the polymerization reaction solution to stop the reaction. The resulting polymerization reaction solution was washed with a 0.1N hydrochloric acid aqueous solution to deash the catalyst residue, and after further washing with deionized water, the organic phase was dried under reduced pressure at 50° C. for 12 hours.
  • the yield of the colorless transparent oily substance thus obtained was 9.9 g.
  • the obtained substance had a number average molecular weight (Mn) determined by GPC of 1,050, an average repeating unit number of 11-mer, and a molecular weight distribution (Mw/Mn) of 1.35.
  • the obtained oily substance was polyepichlorohydrin (base polymer A) composed of epichlorohydrin units having a bromomethyl group at the polymerization initiation terminal and a hydroxyl group at the polymerization termination terminal. I can say.
  • the number average molecular weight (Mn) of the obtained substance by GPC was 2,100, the average number of repeating units was 23-mer, and the molecular weight distribution (Mw/Mn) was 1.25. From the above, it can be said that the obtained oily substance is a polyether compound (base polymer B) composed of epichlorohydrin units having a bromomethyl group at the polymerization initiation terminal and a hydroxyl group at the polymerization termination terminal.
  • base polymer B base polymer B
  • the number average molecular weight (Mn) of the obtained substance by GPC was 5,390, the average number of repeating units was 58 mers, and the molecular weight distribution (Mw/Mn) was 1.21. From the above, it can be said that the obtained oily substance is a polyether compound (base polymer C) composed of epichlorohydrin units having a bromomethyl group at the polymerization initiation terminal and a hydroxyl group at the polymerization termination terminal.
  • the obtained substance had a number average molecular weight (Mn) determined by GPC of 10,700, an average number of repeating units of 116, and a molecular weight distribution (Mw/Mn) of 1.18. From the above, it can be said that the obtained oily substance is a polyether compound (base polymer D) composed of epichlorohydrin units having a bromomethyl group at the polymerization initiation terminal and a hydroxyl group at the polymerization termination terminal.
  • base polymer D base polymer D
  • the obtained substance had a number average molecular weight (Mn) of 15,600 by GPC, an average number of repeating units of 169, and a molecular weight distribution (Mw/Mn) of 1.35. From the above, it can be said that the obtained oily substance is a polyether compound (base polymer E) composed of epichlorohydrin units having a bromomethyl group at the polymerization initiation terminal and a hydroxyl group at the polymerization termination terminal.
  • base polymer E base polymer E
  • the viscosity of the solution gradually increased. After reacting for 12 hours, a small amount of water was poured into the polymerization reaction solution to stop the reaction. The resulting polymerization reaction solution was washed with a 0.1N hydrochloric acid aqueous solution to deash the catalyst residue, and after further washing with deionized water, the organic phase was dried under reduced pressure at 50° C. for 12 hours.
  • the yield of the colorless, transparent, viscous oily substance thus obtained was 9.5 g.
  • the obtained substance had a number average molecular weight (Mn) of 32,500 by GPC, an average number of repeating units of 351, and a molecular weight distribution (Mw/Mn) of 1.43.
  • the obtained oily substance is a polyether compound (base polymer F) composed of epichlorohydrin units having a bromomethyl group at the polymerization initiation terminal and a hydroxyl group at the polymerization termination terminal.
  • the resulting viscous oily substance had a number average molecular weight (Mn) of 11,000, an average number of repeating units of 105, and a molecular weight distribution of 1.26 as measured by GPC. Furthermore, 1H-NMR measurement of the obtained viscous oily substance revealed that this rubbery substance contained 97.0 mol % of epichlorohydrin units and 3.0 mol % of glycidyl methacrylate units. It could be confirmed. As described above, the resulting viscous oily substance was a polyether compound (base polymer G )You can say that.
  • the resulting viscous oily substance had a number average molecular weight (Mn) of 57,000, an average repeating unit number of 606, and a molecular weight distribution of 1.58 as measured by GPC. Furthermore, 1H-NMR measurement of the resulting rubber-like substance revealed that this viscous oily substance contained 97.0 mol % of epichlorohydrin units and 3.0 mol % of glycidyl methacrylate units. It could be confirmed. As described above, the resulting viscous oily substance was a polyether compound (base polymer H )You can say that.
  • the obtained polymer had a number average molecular weight (Mn) of 10,600, a weight average molecular weight (Mw) of 12,200, an average number of repeating units of 171, and a molecular weight distribution (Mw/Mn) of 1.15. Met.
  • the obtained viscous oily substance was a polyether compound (base polymer I )You can say that.
  • the obtained polymer had a number average molecular weight (Mn) of 15,100, a weight average molecular weight (Mw) of 22,300, an average number of repeating units of 303, and a molecular weight distribution (Mw/Mn) of 1.48. Met.
  • the resulting viscous oily substance is a polyether compound (base polymer J) composed of epichlorohydrin units and ethylene oxide units, having a bromomethyl group at the polymerization initiation end and a hydroxyl group at the polymerization termination end. You can say that.
  • polyether compound A' having a 1-methylimidazolium halide group, in which the bromo groups of all the bromomethyl groups at the polymerization initiation terminals are respectively substituted with 1-methylimidazolium bromide groups in the lithium chloride group. was done.
  • the obtained polyether compound A' had a number average molecular weight (Mn) of 1,980 and an average number of repeating units of 11-mer.
  • the precipitated pale brown viscous oily substance was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the pale brown viscous oily substance obtained by coagulation was dried under reduced pressure at 50° C. for 12 hours to obtain 11.5 g of a pale brown viscous oily substance.
  • the polyether compound A having a 1-methylimidazolium halide group obtained in Production Example 1′, which is the starting material was obtained.
  • polyether compound B' having a 1-methylimidazolium halide group in which the bromo groups of all the bromomethyl groups at the polymerization initiation terminals are respectively substituted with 1-methylimidazolium bromide groups in the lithium chloride group. was done.
  • the obtained polyether compound B' had a number average molecular weight (Mn) of 3,960 and an average number of repeating units of 23-mer.
  • the precipitated pale brown viscous oily substance was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the pale brown viscous oily substance obtained by coagulation was dried under reduced pressure at 50° C. for 12 hours to obtain 11.4 g of a pale brown viscous oily substance. 1 H-NMR measurement and elemental analysis were performed on the resulting pale brown viscous oily substance.
  • polyether compound C' having a 1-methylimidazolium halide group in which the bromo groups of the bromomethyl groups at all polymerization initiation terminals are respectively substituted with 1-methylimidazolium bromide groups in the lithium chloride group.
  • the obtained polyether compound C' had a number average molecular weight (Mn) of 10,200 and an average number of repeating units of 58 mers.
  • the precipitated pale brown viscous oily substance was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the pale brown viscous oily substance obtained by coagulation was dried under reduced pressure at 50° C. for 12 hours to obtain 11.6 g of a pale brown viscous oily substance. 1 H-NMR measurement and elemental analysis were performed on the obtained light brown viscous oily substance.
  • polyether compound D' having a 1-methylimidazolium halide group in which the bromo groups of all the bromomethyl groups at the polymerization initiation terminals are respectively substituted with 1-methylimidazolium bromide groups in the lithium chloride group.
  • the obtained polyether compound D' had a number average molecular weight (Mn) of 20,200 and an average number of repeating units of 116-mer.
  • the precipitated pale brown viscous oily substance was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the pale brown viscous oily substance obtained by coagulation was dried under reduced pressure at 50° C. for 12 hours to obtain 11.5 g of a pale brown viscous oily substance. 1 H-NMR measurement and elemental analysis were performed on the obtained pale brown viscous oily substance.
  • polyether compound E' having a 1-methylimidazolium halide group in which the chloride group and the bromo groups of all polymerization initiation terminal bromomethyl groups are respectively substituted with 1-methylimidazolium bromide groups.
  • the obtained polyether compound E' had a number average molecular weight (Mn) of 29,400 and an average number of repeating units of 169 mers.
  • polyether compound F' having a 1-methylimidazolium halide group in which the chloride group and the bromo groups of all polymerization initiation terminal bromomethyl groups are respectively substituted with 1-methylimidazolium bromide groups.
  • the obtained polyether compound F' had a number average molecular weight (Mn) of 61,300 and an average number of repeating units of 351.
  • polyether compound G' having a 1-methylimidazolium halide group in which the chloride group and the bromo groups of all polymerization initiation terminal bromomethyl groups are respectively substituted with 1-methylimidazolium bromide groups.
  • the obtained polyether compound G' had a number average molecular weight (Mn) of 20,100 and an average number of repeating units of 105.
  • the precipitated pale brown viscous oily substance was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the pale brown viscous oily substance obtained by coagulation was dried under reduced pressure at 50° C. for 12 hours to obtain 11.1 g of a pale brown viscous oily substance.
  • 1H-NMR measurement and elemental analysis were performed on the resulting pale brown viscous oily substance, it was found to be the polyether compound G' having a 1-methylimidazolium halide group obtained in Production Example 7', which is the starting material.
  • polyether compound H' having a 1-methylimidazolium halide group in which the chloride group and the bromo groups of all polymerization initiation terminal bromomethyl groups are respectively substituted with 1-methylimidazolium bromide groups.
  • the obtained polyether compound H' had a number average molecular weight (Mn) of 104,000 and an average number of repeating units of 606.
  • the obtained toluene solution was dried under reduced pressure at 50° C. for 12 hours to obtain 10.5 g of a viscous liquid substance.
  • all of the chloride ions and bromide ions of the starting polyether compound C'9 were bis(trifluoromethanesulfonyl)imide anions.
  • the obtained polyether compound C''9 had a number average molecular weight (Mn) of 27,100 and an average number of repeating units of 58 mers.
  • the obtained toluene solution was dried under reduced pressure at 50° C. for 12 hours to obtain 10.5 g of a viscous liquid substance.
  • all of the chloride ions and bromide ions in the starting polyether compound D'10 were bis(trifluoromethanesulfonyl)imide anions.
  • the obtained polyether compound D′′10 had a number average molecular weight (Mn) of 53,500 and an average repeating unit number of 116-mer.
  • the obtained toluene solution was dried under reduced pressure at 50° C. for 12 hours to obtain 10.7 g of a viscous liquid substance.
  • all of the chloride ions and bromide ions in the starting polyether compound D'13 were bis(trifluoromethanesulfonyl)imide anions.
  • the obtained polyether compound D''13 had a number average molecular weight (Mn) of 50,800 and an average number of repeating units of 116-mer.
  • the obtained toluene solution was dried under reduced pressure at 50° C. for 12 hours to obtain 10.8 g of a viscous liquid substance.
  • all of the chloride ions and bromide ions of the polyether compound F'14 as the starting material were bis(trifluoromethanesulfonyl)imide anions.
  • the obtained polyether compound F''14 had a number average molecular weight (Mn) of 154,000 and an average number of repeating units of 351.
  • the obtained polyether compound B'15 had a number average molecular weight (Mn) of 4,090 and an average repeating unit number of 23-mer.
  • the precipitated light brown rubber polyether compound was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the coagulated rubber-like substance was dried under reduced pressure at 50° C. for 12 hours to obtain 18.0 g of a pale brown rubber-like substance.
  • the obtained polyether compound C'16 had a number average molecular weight (Mn) of 10,300 and an average number of repeating units of 58 mers.
  • the precipitated pale brown rubber-like substance was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the coagulated rubber-like material was dried under reduced pressure at 50° C. for 12 hours to obtain 18.0 g of a pale brown rubber-like material.
  • the obtained polyether compound D'17 had a number average molecular weight (Mn) of 19,800 and an average number of repeating units of 116-mer.
  • the precipitated pale brown rubber-like substance was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the coagulated rubber-like material was dried under reduced pressure at 50° C. for 12 hours to obtain 12.1 g of a pale brown rubber-like material.
  • polyether compound A'18 having a halide ion as a counter anion, each substituted with a pyridinium bromide group.
  • the obtained polyether compound A'18 had a number average molecular weight (Mn) of 1,950 and an average number of repeating units of 11-mer.
  • the precipitated pale brown rubber-like substance was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the coagulated rubber-like material was dried under reduced pressure at 50° C. for 12 hours to obtain 12.1 g of a pale brown rubber-like material.
  • the precipitated pale brown viscous oily substance was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the pale brown viscous oily substance obtained by coagulation was dried under reduced pressure at 50° C. for 12 hours to obtain 6.4 g of a pale brown viscous oily substance. 1 H-NMR measurement and elemental analysis were performed on the obtained light brown viscous oily substance.
  • polyether compound D'20 71 mol% of 1-methylimidazolium halide groups and chloromethyl groups, in which imidazolium chloride groups are substituted with bromo groups of bromomethyl groups at all polymerization initiation terminals and 1-methylimidazolium bromide groups, respectively It was identified as polyether compound D'20.
  • the obtained polyether compound D'20 had a number average molecular weight (Mn) of 13,500 and an average number of repeating units of 116-mer.
  • the precipitated pale brown viscous oily substance was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the pale brown viscous oily substance obtained by coagulation was dried under reduced pressure at 50° C. for 12 hours to obtain 8.0 g of a pale brown viscous oily substance. 1H-NMR measurement and elemental analysis were performed on the obtained light brown viscous oily substance.
  • a counter anion in which all of the chloride ions of the 1-methylimidazolium chloride group in the repeating units of 20 and the bromide ions of the 1-methylimidazolium bromide group at the polymerization initiation terminal are exchanged for bis(trifluoromethanesulfonyl)imide anions was identified as an imidazolium structure-containing polyether compound D′′20 having a bis(trifluoromethanesulfonyl)imide anion as The obtained polyether compound D''20 had a number average molecular weight (Mn) of 21,700 and an average number of repeating units of 116-mer.
  • This resinous substance was subjected to 1H-NMR measurement and elemental analysis. 89 moles of 1-methylimidazolium halide groups and methyl groups derived from propylene oxide units, in which imidazolium chloride groups are substituted with 1-methylimidazolium bromide groups for all bromomethyl group bromo groups at polymerization initiation terminals % and was identified as polyether compound I'21.
  • the resulting polyether compound I'21 had a number average molecular weight (Mn) of 12,100 and an average number of repeating units of 171.
  • the precipitated pale brown viscous oily substance was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the pale brown viscous oily substance obtained by coagulation was dried under reduced pressure at 50° C. for 12 hours to obtain 6.4 g of a pale brown viscous oily substance.
  • the 1-methylimidazolium halide group obtained in Production Example 21′ which is the starting material, and the methyl derived from the propylene oxide unit
  • All of the chloride ion of the 1-methylimidazolium chloride group in the repeating unit of the polyether compound I'21 having a group and the bromide ion of the 1-methylimidazolium bromide group at the polymerization initiation end are bis(trifluoromethanesulfonyl) It was identified as imidazolium structure-containing polyether compound I''21 with bis(trifluoromethanesulfonyl)imide anion as the counter-anion exchanged for the imide anion.
  • the obtained polyether compound I''21 had a number average molecular weight (Mn) of 16,000 and an average number of repeating units of 171.
  • ether compound J'22 Identified as ether compound J'22.
  • the resulting polyether compound J'22 had a number average molecular weight (Mn) of 18,100 and an average number of repeating units of 303.
  • All of the chloride ions of the 1-methylimidazolium chloride group in the repeating unit of the polyether compound J'22 and the bromide ions of the 1-methylimidazolium bromide group at the polymerization initiation end are bis (trifluoromethanesulfonyl) imide anions was identified as an imidazolium structure-containing polyether compound J''22 with the bis(trifluoromethanesulfonyl)imide anion as the counter anion, which was exchanged for .
  • the obtained polyether compound J''22 had a number average molecular weight (Mn) of 26,200 and an average number of repeating units of 303.
  • the precipitated pale brown viscous oily substance was collected and dissolved in acetonitrile, and the acetonitrile solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the pale brown viscous oily substance obtained by coagulation was dried under reduced pressure at 50° C. for 12 hours to obtain 6.4 g of a pale brown resinous substance.
  • 1H-NMR measurement and elemental analysis were performed on the resulting pale brown viscous oily substance, it was found to be polyether compound C' having a 1-methylimidazolium halide group obtained in Production Example 3', which is the starting material.
  • polyether compound H'27 having a halide ion as a counter anion, each substituted with a pyridinium bromide group.
  • the obtained polyether compound H'27 had a number average molecular weight (Mn) of 105,700 and an average number of repeating units of 606 mers.
  • polyether compound F'28 72 mol% of 1-methylimidazolium halide groups and chloromethyl groups, in which imidazolium chloride groups are substituted with bromo groups of bromomethyl groups at all polymerization initiation terminals and 1-methylimidazolium bromide groups, respectively It was identified as polyether compound F'28.
  • the obtained polyether compound F'28 had a number average molecular weight (Mn) of 41,300 and an average number of repeating units of 351.
  • the precipitated pale brown viscous oily substance was collected and dissolved in acetone, and the acetone solution was added dropwise to 300 ml of distilled water to remove inorganic salts by polymer coagulation.
  • the pale brown viscous oily substance obtained by coagulation was dried under reduced pressure at 50° C. for 12 hours to obtain 8.0 g of a pale brown viscous oily substance. 1H-NMR measurement and elemental analysis were performed on the obtained light brown viscous oily substance.
  • a counter anion in which all of the chloride ions of the 1-methylimidazolium chloride group in the repeating unit of 28 and the bromide ions of the 1-methylimidazolium bromide group at the polymerization initiation end are exchanged with bis(trifluoromethanesulfonyl)imide anions was identified as an imidazolium structure-containing polyether compound F′′28 having a bis(trifluoromethanesulfonyl)imide anion as The obtained polyether compound F''28 had a number average molecular weight (Mn) of 67,000 and an average number of repeating units of 351.
  • Examples 1 to 19 and Comparative Examples 1 to 7 According to the method for producing a polyether compound described in Tables 1 and 2, the type of base polymer and the type of onium agent are selected, the base polymer is quaternized, and anion exchange is performed to obtain carbon dioxide. A polyether compound was obtained as an absorbent. Using the obtained carbon dioxide absorbent (polyether compound), measurement of the amount of carbon dioxide absorbed and drop test 1 of the carbon dioxide absorbent from the porous membrane were carried out. The results are shown in Tables 1-2.
  • Examples 20-30 and Comparative Examples 8-11 According to the method for producing a polyether compound described in Table 3, the type of base polymer and the type of onium agent are selected, the base polymer is quaternized, and anion exchange is performed to obtain a polyether compound. Obtained.
  • a carbon dioxide absorbent made of a polyether compound containing a repeating unit containing a functional group is excellent in carbon dioxide absorption, and is suppressed from falling off from the porous membrane when held in the porous membrane.
  • a carbon dioxide absorbent made of a polyether compound containing less than 50 specific repeating units represented by the general formula (1) as an average number per molecule has poor carbon dioxide absorption and is retained in a porous membrane. It was also easy to fall off from the porous membrane when it was pressed (Comparative Examples 1 to 7).
  • a carbon dioxide absorbent containing a polyether compound containing a repeating unit containing is excellent in carbon dioxide absorption, and is suppressed from falling off from the porous membrane when held in the porous membrane. (Examples 20-30).
  • a carbon dioxide absorbent containing a polyether compound containing less than 50 specific repeating units represented by the general formula (1) as an average number per molecule has poor carbon dioxide absorption and is retained in a porous membrane. It was also easy to fall off from the porous membrane when it was pressed (Comparative Examples 8 to 11).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polyethers (AREA)

Abstract

ポリエーテル化合物を含有する二酸化炭素吸収剤であって、前記ポリエーテル化合物が、明細書に記載の一般式(1)で表される繰り返し単位を1分子あたりの平均個数として50個以上含んでなるものであり、前記ポリエーテル化合物が、前記一般式(1)で表される繰り返し単位の少なくとも一部として、明細書に記載の一般式(2)で表される繰り返し単位を含むことを特徴とする二酸化炭素吸収剤を提供する。

Description

二酸化炭素吸収剤
 本発明は、二酸化炭素吸収剤に関し、より詳しくは、二酸化炭素吸収性に優れ、多孔質膜に保持させた場合における多孔質膜からの脱落が抑制された二酸化炭素吸収剤に関する。
 カチオン性基を有するポリエーテル化合物は、イオン伝導性を有していることから、例えば、二次電池、燃料電池、色素増感太陽電池、アクチュエーターなどの電気化学デバイスにおいて、電極間のイオン伝導性を付与するための電解質として用いることが知られている。
 例えば、特許文献1には、ポリアルキレンオキシド主鎖に、カチオン部位を持つ側鎖と、該側鎖の対イオンとを有し、該側鎖あるいはその対イオンが液晶性であるポリアルキレンオキシドを含有することを特徴とする電解質組成物が提案されている。
特開2002-246066号公報
 本発明は、二酸化炭素吸収性に優れ、多孔質膜に保持させた場合における多孔質膜からの脱落が抑制された二酸化炭素吸収剤を提供することを目的とする。
 本発明者は、カチオン性基を有するポリエーテル化合物を、二酸化炭素吸収剤として用いることを試みた。しかしながら、従来のカチオン性基を有するポリエーテル化合物は、二酸化炭素吸収性が十分でないことが判明した。また、従来のカチオン性基を有するポリエーテル化合物は、多孔質膜に保持させた場合における多孔質膜からの脱落が生じやすいものであった。そこで、本発明者は、上記目的を達成するために鋭意研究した結果、後述する一般式(1)で表される繰り返し単位の数が特定数以上であり、かつ、後述する一般式(2)で表される、窒素含有カチオン性基を含む繰り返し単位を含有したポリエーテル化合物を用いることにより、二酸化炭素吸収性に優れた二酸化炭素吸収剤が得られることを見出し、さらに、このようなポリエーテル化合物を用いることにより、二酸化炭素吸収剤が、多孔質膜に保持させた場合における多孔質膜からの脱落が抑制されたものとなることを見出した。本発明は、このような検討の結果として完成した発明である。
 すなわち、本発明によれば、ポリエーテル化合物を含有する二酸化炭素吸収剤であって、前記ポリエーテル化合物が、下記一般式(1)で表される繰り返し単位を1分子あたりの平均個数として50個以上含んでなるものであり、前記ポリエーテル化合物が、前記一般式(1)で表される繰り返し単位の少なくとも一部として、下記一般式(2)で表される繰り返し単位を含むことを特徴とする二酸化炭素吸収剤が提供される。
Figure JPOXMLDOC01-appb-C000006
(一般式(1)において、Aは一価の基を表す。)
Figure JPOXMLDOC01-appb-C000007
(一般式(2)において、A’は窒素含有カチオン性基を表す。また、一般式(2)において、Xはアニオンを表す。)
 本発明の二酸化炭素吸収剤において、前記一般式(2)で表される繰り返し単位が、下記一般式(3-1)で表される繰り返し単位、下記一般式(3-2)で表される繰り返し単位、または下記一般式(4)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(一般式(3-1)において、R~Rはそれぞれ独立に水素原子または置換基を表し、RおよびRは互いに結合していてもよい。また、一般式(3-1)において、Xはアニオンを表す。)
Figure JPOXMLDOC01-appb-C000009
(一般式(3-2)において、R11~R15はそれぞれ独立に水素原子または置換基を表し、R11~R15から任意に選択される2つが互いに結合していてもよい。また、一般式(3-2)において、Xはアニオンを表す。)
Figure JPOXMLDOC01-appb-C000010
(一般式(4)において、R~Rはそれぞれ独立に水素原子または置換基を表し、RおよびRは互いに結合していてもよい。また、一般式(4)において、Xはアニオンを表す。)
 本発明の二酸化炭素吸収剤において、前記ポリエーテル化合物が、一般式(1)で表される繰り返し単位を1分子あたりの平均個数として101個以上含んでなるものであることが好ましい。
 本発明の二酸化炭素吸収剤において、前記ポリエーテル化合物における、前記一般式(1)で表される繰り返し単位が占める割合が、前記ポリエーテル化合物の全繰り返し単位に対して、90~100モル%であることが好ましい。
 本発明の二酸化炭素吸収剤において、前記ポリエーテル化合物における、前記一般式(2)で表される繰り返し単位が占める割合が、前記一般式(1)で表される繰り返し単位全体に対して、5~100モル%であることが好ましい。
 本発明の二酸化炭素吸収剤は、さらにイオン液体または酸素含有極性有機溶媒を含むことが好ましい。
 本発明の二酸化炭素吸収剤において、前記一般式(2)において、Xが、それぞれ独立に、ハロゲン化物イオン、スルホニルイミド化物イオン、カルボン酸化物イオン、スルホン酸化物イオン、OH、BF 、PF 、ClO 、B(CN) 、SCN、(NC)から選択されるアニオンを表すことが好ましい。
 本発明によれば、二酸化炭素吸収性に優れ、多孔質膜に保持させた場合における多孔質膜からの脱落が抑制された二酸化炭素吸収剤が提供される。
 本発明の二酸化炭素吸収剤は、後述するポリエーテル化合物を含有する。
 本発明で用いるポリエーテル化合物は、下記一般式(1)で表される繰り返し単位を1分子あたりの平均個数として50個以上含んでなるものであり、前記一般式(1)で表される繰り返し単位の少なくとも一部として、下記一般式(2)で表される繰り返し単を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000011
(一般式(1)において、Aは一価の基を表す。)
Figure JPOXMLDOC01-appb-C000012
(一般式(2)において、A’は窒素含有カチオン性基を表す。また、一般式(2)において、Xはアニオンを表す。)
 本発明で用いるポリエーテル化合物は、一般式(1)で表される繰り返し単位(オキシラン単位)を1分子あたりの平均個数として50個以上と比較的多く含み、かつ、一般式(2)で表される、窒素含有カチオン性基を含有するオキシラン単位を含んでなるものである。このようなポリエーテル化合物を用いることにより、本発明で用いる二酸化炭素吸収剤が、二酸化炭素吸収性に優れ、多孔質膜に保持させた場合における多孔質膜からの脱落が抑制されたものとなる。
 一般式(1)で表される繰り返し単位は、オキシラン構造を含有する化合物のオキシラン構造部分が開環重合することにより得られる単位(オキシラン単量体単位)である。オキシラン構造を含有する化合物としては、たとえば、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、1,2-オクチレンオキシドなどの脂肪族オキシラン単量体;スチレンオキシドなどの芳香族オキシラン単量体、エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリン、エピフルオロヒドリンなどのエピハロヒドリン単量体;アリルグリシジルエーテルなどのアルケニル基含有オキシラン単量体;フェニルグリシジルエーテルなどの芳香族エーテル基含有オキシラン単量体;グリシジルアクリレート、グリシジルメタクリレートなどの(メタ)アクリロイル基含有オキシラン単量体;などが挙げられる。オキシラン構造を含有する化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。
 本発明で用いるポリエーテル化合物は、一般式(1)で表される繰り返し単位の少なくとも一部として、一般式(2)で表される、窒素含有カチオン性基を含有するオキシラン単位を含んでなるものである。
 一般式(2)で表される繰り返し単位は、通常、エピハロヒドリン単量体単位を含有する重合体中の、エピハロヒドリン単量体単位を構成するハロゲン原子の少なくとも一部を、窒素含有カチオン性基に置換することで得られる。
 一般式(2)において、A’は窒素含有カチオン性基を表す。窒素含有カチオン性基は、該窒素含有カチオン性基を構成する窒素原子の1つを介して、下記一般式に示す「2」の位置の炭素原子と結合していることが好ましい。また、窒素含有カチオン性基は、下記一般式に示す「2」の位置の炭素原子と結合する窒素原子以外に、別の窒素原子を有していてもよい。
Figure JPOXMLDOC01-appb-C000013
 A’で表される窒素含有カチオン性基としては、アミノ基、窒素含有カチオン性芳香族基、窒素含有カチオン性脂肪族基が挙げられる。
 A’としての窒素含有カチオン性芳香族基としては、カチオン性含窒素芳香族複素環を含有する基が好ましい。カチオン性含窒素芳香族複素環を含有する基中のカチオン性含窒素芳香族複素環における含窒素芳香族複素環は、環中に窒素原子を有し、芳香族性を有するものであればよく、酸素原子、硫黄原子など、窒素原子以外のヘテロ原子を有していてもよいし、また、複素環を構成する原子のうち一部は置換基により置換されていてもよい。また、二環以上が縮合した多環構造をとっていてもよい。このような含窒素芳香族複素環の構造としては、例えば、イミダゾール環、ピロール環、チアゾール環、オキサゾール環、ピラゾール環、イソオキサゾール環などの五員複素環;ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環などの六員複素環;キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、シンノリン環、プリン環、インドール環、イソインドール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾイソオキサゾール環などの縮合複素環;などが挙げられる。これらのなかでも、五員複素環および六員複素環が好ましく、イミダゾール環がより好ましい。
 含窒素芳香族複素環の置換基としては、特に限定されないが、たとえば、アルキル基;シクロアルキル基;ビニル基等のアルケニル基;フェニル基等のアリール基;アリールアルキル基;アルキルアリール基;アルコキシル基;アルコキシアルキル基;アリールオキシ基;アルカノール基;水酸基;カルボニル基;アルコキシカルボニル基;アミノ基;イミノ基;ニトリル基;アルキルシリル基;ハロゲン原子;などが挙げられる。これらの置換基の炭素数としては、0~12が好ましく、1~8がより好ましく、1~6がさらに好ましい。
 A’としての窒素含有カチオン性脂肪族基は、直鎖状または分岐鎖状であってよく、また、非芳香族性の環構造を有していてもよい。
 A’で表される窒素含有カチオン性基の具体例としては、アンモニウム基;メチルアンモニウム基、ブチルアンモニウム基、シクロヘキシルアンモニウム基、アニリニウム基、ベンジルアンモニウム基、エタノールアンモニウム基等のカチオン性の窒素原子を含有するモノ置換アンモニウム基;ジメチルアンモニウム基、ジエチルアンモニウム基、ジブチルアンモニウム基、ノニルフェニルアンモニウム基等のカチオン性の窒素原子を含有するジ置換アンモニウム基;トリメチルアンモニウム基、トリエチルアンモニウム基、n-ブチルジメチルアンモニウム基、ステアリルジメチルアンモニウム基、トリブチルアンモニウム基、トリビニルアンモニウム基、トリエタノールアンモニウム基、N,N-ジメチルエタノールアンモニウム基、トリ(2-エトキシエチル)アンモニウム基等のカチオン性の窒素原子を含有するトリ置換アンモニウム基;ピペリジニウム基、1-メチルピロリジニウム基、1-ブチルピロリジニウム基、イミダゾリウム基、1-メチルイミダゾリウム基、1-エチルイミダゾリウム基、1-ブチル-イミダゾリウム基、ベンズイミダゾリウム基、ピロリウム基、1-メチルピロリウム基、オキサゾリウム基、ベンズオキサゾリウム基、ピラゾリウム基、イソオキサゾリウム基、ピリジニウム基、2,6-ジメチルピリジニウム基、ピラジニウム基、ピリミジニウム基、ピリダジニウム基、トリアジニウム基、N,N-ジメチルアニリニウム基、キノリニウム基、イソキノリニウム基、インドリニウム基、キノキサリウム基、イソキノキサリウム基等のカチオン性の窒素原子を含有する複素環基等が挙げられる。これらの中でも、カチオン性の窒素原子を含有するトリ置換アンモニウム基およびカチオン性の窒素原子を含有する複素環基が好ましい。
 一般式(2)において、Xで表されるアニオンは、A’で表される窒素含有カチオン性基の対アニオンである。Xとしては、たとえば、一価のアニオンとしては、F、Cl、Br、Iなどのハロゲン化物イオン;(FSO、(CFSO、(CFCFSOなどのスルホニルイミド化物イオン;CHCOO、C37COO、CFCOO、PhCOO(Phはフェニル基を示す。)などのカルボン酸化物イオン;CHSO 、CFSO などのスルホン酸化物イオン;OH、BF 、PF 、ClO 、B(CN) 、SCN、(NC)などが挙げられる。Xとしては、多価のアニオンでも良く、1価のアニオン性基を分子内に2個以上有するポリアニオンとなっていてもよい。たとえば、多価のアニオンとしては、硫酸イオン(SO 2-)や炭酸イオン(CO 2-)が挙げられる。たとえば、1価のアニオン性基を分子内に2個以上有するポリアニオンとしては、SCF2CF2CF2SO SCF2CF2SO 、CFSOSOCF2CF2OCF2CF2OCF2CF2SOSOCFなどが挙げられる。なかでも、二酸化炭素吸収性の観点から、スルホニルイミド化物イオン、カルボン酸化物イオン、BF が好ましく、スルホニルイミド化物イオン、CHCOO、BF がより好ましい。
 本発明で用いるポリエーテル化合物において、一般式(2)で表される単位は、それぞれ独立しており、ポリエーテル化合物中に、2種以上の、一般式(2)で表される単位が存在していてもよい。たとえば、ポリエーテル化合物中の一般式(2)で表される繰り返し単位全体において、A’で表される窒素含有カチオン性基の全てが同一種の窒素含有カチオン性基であってもよいし、異種の窒素含有カチオン性基が混在していてもよい。また、ポリエーテル化合物中の一般式(2)で表される繰り返し単位全体において、Xで表されるアニオンの全てが同一種のアニオンであってもよいし、異種のアニオンが混在していてもよい。
 一般式(2)で表される繰り返し単位としては、下記一般式(3-1)で表される繰り返し単位が挙げられる。下記一般式(3-1)で表される繰り返し単位は、イミダゾリウム構造を含有するオキシラン単位である。
Figure JPOXMLDOC01-appb-C000014
(一般式(3-1)において、R~Rはそれぞれ独立に水素原子または置換基を表し、RおよびRは互いに結合していてもよい。また、一般式(3-1)において、Xはアニオンを表す。)
 一般式(3-1)において、R~Rはそれぞれ独立に水素原子または置換基を表す。置換基としては、含窒素芳香族複素環の置換基として上述したものと同様のものが挙げられる。R~Rとしての置換基は、直鎖状または分岐鎖状であってよく、また、環構造を有していてもよい。R~Rとしての置換基は、直鎖状であることが好ましい。
 一般式(3-1)において、Rは、水素原子または置換基であればよく、特に限定されないが、水素原子または炭化水素基であることが好ましく、炭化水素基であることがより好ましく、アルキル基またはアルケニル基であることがさらに好ましく、アルキル基またはビニル基であることが特に好ましく、アルキル基であることが最も好ましい。Rの炭素数としては、二酸化炭素吸収性の観点から、0~12が好ましく、0~8がより好ましく、1~6がさらに好ましく、1~4がさらにより好ましく、1~3が特に好ましく、1~2が最も好ましい。
 一般式(3-1)において、R~Rは、それぞれ独立に、水素原子または置換基であればよく、特に限定されないが、それぞれ独立に、水素原子または炭化水素基であることが好ましく、水素原子、アルキル基またはビニル基であることがより好ましく、水素原子またはアルキル基であることがさらに好ましく、水素原子であることが特に好ましい。R~Rの炭素数としては、二酸化炭素吸収性の観点から、それぞれ独立に、0~8が好ましく、0~6がより好ましく、0~4がさらに好ましく、0~3がさらにより好ましく、0~2が特に好ましく、0~1が最も好ましい。
 一般式(3-1)において、RおよびRは互いに結合していてもよい。RおよびRが結合している場合、一般式(3-1)で表される繰り返し単位は、-R-R-で表される基を有する。一般式(3-1)において、RおよびRは互いに結合していないことが好ましい。
 一般式(3-1)において、R~Rのうち1~3個が水素原子を表すことが好ましく、2~3個が水素原子を表すことがより好ましい。また、R~Rのうち0~2個が炭化水素基等の置換基を表すことが好ましく、0~1個が炭化水素基等の置換基を表すことがより好ましい。
 一般式(3-1)におけるXで表されるアニオンとしては、一般式(2)におけるXで表されるアニオンと同様のものが挙げられ、好適な態様も同様である。
 一般式(3-1)で表される繰り返し単位としては、イミダゾリウム基、1-メチルイミダソリウム基、1-ブチルイミダソリウム基、1-ヘキシルイミダソリウム基、または、1-ビニルイミダソリウム基を含むものが好ましい。
 一般式(2)で表される繰り返し単位としては、下記一般式(3-2)で表される繰り返し単位が挙げられる。下記一般式(3-2)で表される繰り返し単位は、ピリジニウム構造を含有するオキシラン単位である。
Figure JPOXMLDOC01-appb-C000015
(一般式(3-2)において、R11~R15はそれぞれ独立に水素原子または置換基を表し、R11~R15から任意に選択される2つが互いに結合していてもよい。また、一般式(3-2)において、Xはアニオンを表す。)
 一般式(3-2)において、R11~R15はそれぞれ独立に水素原子または置換基を表す。置換基としては、含窒素芳香族複素環の置換基として上述したものと同様のものが挙げられる。R11~R15としての置換基は、直鎖状または分岐鎖状であってよく、また、環構造を有していてもよい。
 一般式(3-2)において、R11~R15は、それぞれ独立に、水素原子または置換基であればよく、特に限定されないが、それぞれ独立に、水素原子または炭化水素基であることが好ましく、水素原子、アルキル基またはビニル基であることがより好ましく、水素原子またはアルキル基であることがさらに好ましい。R11~R15の炭素数としては、二酸化炭素吸収性の観点から、それぞれ独立に、0~8が好ましく、0~6がより好ましく、0~4がさらに好ましく、0~3がさらにより好ましく、0~2が特に好ましく、0~1が最も好ましい。
 一般式(3-2)において、R11~R15から任意に選択される2つが互いに結合していてもよい。たとえば、R11とR12とが互いに結合して、-R11-R12-で表される基を形成していてもよい。一般式(3-2)において、R11~R15は、いずれも、互いに結合していないことが好ましい。
 一般式(3-2)において、R11~R15のうち2~5個が水素原子を表すことが好ましく、3~5個が水素原子を表すことがより好ましく、4~5個が水素原子を表すことがさらに好ましく、全てが水素原子を表すことが特に好ましい。また、R11~R15のうち0~3個が炭化水素基等の置換基を表すことが好ましく、0~2個が炭化水素基等の置換基を表すことがより好ましく、0~1個が炭化水素基等の置換基を表すことがさらに好ましい。
 一般式(3-2)におけるXで表されるアニオンとしては、一般式(2)におけるXで表されるアニオンと同様のものが挙げられ、好適な態様も同様である。
 一般式(3-2)で表される繰り返し単位としては、ピリジニウム基、2,6-ジメチルピリジニウム基、4-ビニルピリジニウム基、または、キノリニウム基を含むものが好ましい。
 一般式(2)で表される繰り返し単位としては、下記一般式(4)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000016
(一般式(4)において、R~Rはそれぞれ独立に水素原子または置換基を表し、RおよびRは互いに結合していてもよい。また、一般式(4)において、Xはアニオンを表す。)
 一般式(4)において、R~Rはそれぞれ独立に水素原子または置換基を表す。置換基としては、含窒素芳香族複素環の置換基として上述したものと同様のものが挙げられ、なかでも、アルキル基、アリール基、アリールアルキル基、アルキルアリール基、アルコキシル基、アルコキシアルキル基、アリールオキシ基、アルカノール基が好ましく、アルキル基、シクロアルキル基、フェニル基、アルコキシアルキル基、アルカノール基がより好ましく、アルキル基またはシクロアルキル基がさらに好ましい。R~Rとしての置換基は、それぞれ独立に、直鎖状または分岐鎖状であってよく、また、環構造を有していてもよい。
 一般式(4)において、Rは、水素原子または置換基であればよく、特に限定されないが、直鎖状の置換基であることが好ましい。また、Rの炭素数としては、二酸化炭素吸収性の観点から、0~12が好ましく、1~8がより好ましく、1~6がさらに好ましく、1~4がさらにより好ましく、1~3が特に好ましく、1~2が最も好ましい。
 一般式(4)において、R~Rはそれぞれ独立に水素原子または置換基であればよく、特に限定されない。また、RおよびRは互いに結合していてもよく、互いに結合していなくてもよい。
 一般式(4)において、RおよびRが互いに結合していない場合、Rは、直鎖状の置換基であることが好ましい。また、Rの炭素数としては、二酸化炭素吸収性の観点から、0~12が好ましく、2~8がより好ましく、3~6がさらに好ましく、3~5が特に好ましい。
 RおよびRが互いに結合していない場合、Rは、直鎖状の置換基であることが好ましい。また、Rの炭素数としては、二酸化炭素吸収性の観点から、0~12が好ましく、1~8がより好ましく、1~6がさらに好ましく、1~4がさらにより好ましく、1~3が特に好ましく、1~2が最も好ましい。
 一般式(4)において、RおよびRが互いに結合している場合、一般式(4)で表される繰り返し単位は、-R-R-で表される基を有する。-R-R-で表される基は、直鎖状または分岐鎖状であってよく、また、環構造を有していてもよいが、直鎖状であることが好ましい。また、-R-R-で表される基の炭素数としては、二酸化炭素吸収性の観点から、1~12が好ましく、2~8がより好ましく、3~6がさらに好ましく、3~5が特に好ましい。
 一般式(4)におけるXで表されるアニオンとしては、一般式(2)におけるXで表されるアニオンと同様のものが挙げられ、好適な態様も同様である。
 一般式(4)で表される繰り返し単位としては、トリメチルアンモニウム基、トリエチルアンモニウム基、n-ブチルジメチルアンモニウム基、n-オクチルジメチルアンモニウム基、n-ステアリルジメチルアンモニウム基、トリブチルアンモニウム基、トリビニルアンモニウム基、1-メチルピロリジニウム基、N,N’-ジメチルアニリニウム基、トリエタノールアンモニウム基、N,N’-ジメチルエタノールアンモニウム基、または、トリ(2-エトキシエチル)アンモニウム基を含むものが好ましい。
 一般式(2)で表される繰り返し単位としては、一般式(3-1)で表される繰り返し単位、一般式(3-2)で表される繰り返し単位または一般式(4)で表される繰り返し単位が好ましく、一般式(3-1)で表される繰り返し単位または一般式(4)で表される繰り返し単位がより好ましい。
 本発明で用いるポリエーテル化合物は、一般式(2)で表される繰り返し単位以外の一般式(1)で表される繰り返し単位を含むものであってもよい。一般式(2)で表される繰り返し単位以外の一般式(1)で表される繰り返し単位としては、例えば、エチレンオキシド単位、プロピレンオキシド単位、1,2-ブチレンオキシド単位、1,2-オクチレンオキシド単位などのアルキレンオキシド単量体単位;スチレンオキシド単位などの芳香族オキシラン単量体単位、エピクロロヒドリン単位、エピブロモヒドリン単位、エピヨードヒドリン単位などのエピハロヒドリン単量体単位;アリルグリシジルエーテル単位などのアルケニル基含有オキシラン単量体単位;フェニルグリシジルエーテル単位などの芳香族エーテル基含有オキシラン単量体単位;グリシジルアクリレート単位、グリシジルメタクリレート単位などの(メタ)アクリロイル基含有オキシラン単量体単位;などが挙げられる。一般式(2)で表される繰り返し単位以外の一般式(1)で表される繰り返し単位としては、アルキレンオキシド単量体単位、エピハロヒドリン単量体単位、(メタ)アクリロイル基含有オキシラン単量体単位が好ましく、エチレンオキシド単位、プロピレンオキシド単位、エピクロロヒドリン単位、グリシジルメタクリレート単位がより好ましい。本発明で用いるポリエーテル化合物は、1種単独の、一般式(2)で表される繰り返し単位以外の一般式(1)で表される繰り返し単位を含有してもよく、2種以上の該単位を含有してもよい。
 本発明で用いるポリエーテル化合物は、一般式(1)で表される繰り返し単位以外の繰り返し単位を含むものであってもよい。一般式(1)で表される繰り返し単位以外の繰り返し単位としては、例えば、2,3-ブチレンオキシド単位などの2置換以上のオキシラン単量体単位や、シクロヘキセンオキシドなどの環構造を含有するオキシラン単量体単位が挙げられる。本発明で用いるポリエーテル化合物は、1種単独の、一般式(1)で表される繰り返し単位以外の繰り返し単位を含有してもよく、2種以上の該単位を含有してもよい。
 本発明で用いるポリエーテル化合物は、架橋性基を有するオキシラン単量体単位を含有してもよい。本発明で用いるポリエーテル化合物が架橋性基を有する場合には、架橋剤を配合することにより架橋性組成物を調製することができ、これを架橋させることにより得られる架橋物は、架橋構造を含むものであることから、所定の形状に成形した場合などにおける、形状保持性により優れるものとなる。架橋性基を有するオキシラン単量体単位としては、特に限定されないが、例えば、エピハロヒドリン単量体単位、アルケニル基含有オキシラン単量体単位、(メタ)アクリロイル基含有オキシラン単量体単位などが挙げられる。
 本発明で用いるポリエーテル化合物は、2種以上の繰り返し単位を含有するものであってもよく、この場合において、それら複数の繰り返し単位の分布様式は、特に限定されないが、ランダムな分布を有していることが好ましい。
 本発明で用いるポリエーテル化合物の鎖構造は、特に限定されず、直鎖状のものであってもよく、グラフト状、放射状などの分岐を有する鎖構造のものであってもよい。
 本発明で用いるポリエーテル化合物の末端基は特に限定されず、任意の一価の基とすることができる。末端基となる基の具体例としては、水素原子、ハロゲン基、アルキル基、ハロアルキル基、水酸基、アジド基、などを挙げることができる。また、末端基となる基は、一般式(2)で表される繰り返し単位が有する、窒素含有カチオン性基(A’)およびアニオン(X)からなる基であってもよい。
 本発明で用いるポリエーテル化合物は、一般式(1)で表される繰り返し単位を1分子あたりの平均個数として50個以上含んでなるものである。本発明で用いるポリエーテル化合物における、一般式(1)で表される繰り返し単位の個数は、1分子あたりの平均個数として50個以上であれば特に限定されないが、1分子あたりの平均個数として51~2000個であることが好ましく、101~1000個であることがより好ましく、110~800個であることがさらに好ましい。一般式(1)で表される繰り返し単位の個数が上記範囲内であることにより、本発明の二酸化炭素吸収剤が、二酸化炭素吸収性に一層優れ、多孔質膜に保持させた場合における多孔質膜からの脱落が一層抑制されたものとなる。
 本発明で用いるポリエーテル化合物の数平均分子量(Mn)は、特に限定されないが、3,000~800,000であることが好ましく、4,000~400,000であることがより好ましく、8,000~300,000であることがさらに好ましい。数平均分子量(Mn)が上記範囲内であることにより、本発明の二酸化炭素吸収剤が、優れた二酸化炭素吸収性を備えながら、多孔質膜に保持させた場合における多孔質膜からの脱落が一層抑制されたものとなる。
 本発明で用いるポリエーテル化合物の分子量分布(Mw/Mn)は、特に限定されないが、1.0~4.0であることが好ましく、1.0~2.0であることがより好ましく、1.0~1.5であることがさらに好ましい。
 本発明で用いるポリエーテル化合物における、一般式(1)で表される繰り返し単位が占める割合は、特に限定されないが、ポリエーテル化合物の全繰り返し単位に対して、90~100モル%であることが好ましく、95~100モル%であることがより好ましく、実質的に100モル%であることが最も好ましい。一般式(1)で表される繰り返し単位が占める割合が上記範囲内であることにより、本発明の二酸化炭素吸収剤が、二酸化炭素吸収性に一層優れ、多孔質膜に保持させた場合における多孔質膜からの脱落が一層抑制されたものとなる。
 本発明で用いるポリエーテル化合物における、一般式(2)で表される繰り返し単位の個数は、特に限定されないが、1分子あたりの平均個数として8~2000個であることが好ましく、15~1000個であることがより好ましく、20~900個であることがさらに好ましく、25~800個であることが特に好ましい。一般式(2)で表される繰り返し単位の個数が上記範囲内であることにより、本発明の二酸化炭素吸収剤が、二酸化炭素吸収性に一層優れ、多孔質膜に保持させた場合における多孔質膜からの脱落が一層抑制されたものとなる。
 本発明で用いるポリエーテル化合物における、一般式(2)で表される繰り返し単位が占める割合は、特に限定されないが、一般式(1)で表される繰り返し単位全体に対して、5~100モル%であることが好ましく、8~100モル%であることがより好ましく、10~100モル%であることがさらに好ましい。一般式(2)で表される繰り返し単位が占める割合が上記範囲内であることにより、本発明の二酸化炭素吸収剤が、二酸化炭素吸収性に一層優れ、多孔質膜に保持させた場合における多孔質膜からの脱落が一層抑制されたものとなる。
 本発明によれば、たとえば、一般式(1)で表される繰り返し単位を1分子あたりの平均個数として50個以上含み、かつ、一般式(2)で表される繰り返し単位を比較的少量(たとえば、14モル%や、29モル%)含むポリエーテル化合物を用いる場合であっても、意外なことに、本発明の二酸化炭素吸収剤は、二酸化炭素吸収性に優れたものとなる。この理由は、定かではないが、二酸化炭素吸収性は、一般式(2)で表される繰り返し単位の運動性にも依存するからであると推測される。
 なお、一層優れた二酸化炭素吸収性が要求される場合には、本発明で用いるポリエーテル化合物における、一般式(2)で表される繰り返し単位が占める割合は、一般式(1)で表される繰り返し単位全体に対して、20~100モル%であることが好ましく、50~100モル%であることがより好ましく、80~100モル%であることがさらに好ましく、90~100モル%であることがことさらに好ましく、95~100モル%であることが特に好ましく、実質的に100モル%であることが最も好ましい。
 本発明で用いるポリエーテル化合物における、一般式(2)で表される繰り返し単位以外の一般式(1)で表される繰り返し単位が占める割合は、特に限定されないが、一般式(1)で表される繰り返し単位全体に対して、0~95モル%であることが好ましく、0~92モル%であることがより好ましく、0~90モル%であることがさらに好ましい。
 なお、一層優れた二酸化炭素吸収性が要求される場合には、本発明で用いるポリエーテル化合物における、一般式(2)で表される繰り返し単位以外の一般式(1)で表される繰り返し単位が占める割合は、一般式(1)で表される繰り返し単位全体に対して、0~80モル%であることが好ましく、0~50モル%であることがより好ましく、0~20モル%であることがさらに好ましく、0~10モル%であることがことさらに好ましく、0~5モル%であることが特に好ましく、実質的に0モル%であることが最も好ましい。
 本発明で用いるポリエーテル化合物中の、架橋性基を有するオキシラン単量体単位が占める割合は、特に限定されないが、ポリエーテル化合物の全繰り返し単位に対して、0~50モル%であることが好ましく、0~20モル%であることがより好ましい。なお、架橋性基を有するオキシラン単量体単位が占める割合の下限は、特に限定されないが、本発明で用いるポリエーテル化合物を架橋可能な架橋性組成物とし、これを架橋させることにより得られる架橋物を、形状保持性により優れるものとする観点から、1モル%以上であってもよい。
 本発明で用いるポリエーテル化合物の合成方法は、特に限定されず、目的のポリエーテル化合物を得られるものである限りにおいて、任意の合成方法を採用できる。合成方法の一例を示すと、まず、以下の(A)または(B)の方法により、ベースポリマー(一般式(2)で表される繰り返し単位を有しないポリエーテル化合物)を得る。
 (A)エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリンなどのエピハロヒドリンを少なくとも含む、オキシラン単量体を含有する単量体を、触媒として、特開2010-53217号公報に開示されている、周期表第15族または第16族の原子を含有する化合物のオニウム塩と、含有されるアルキル基が全て直鎖状アルキル基であるトリアルキルアルミニウムとを含んでなる触媒との存在下で開環重合することにより、ベースポリマーを得る方法。
 (B)エピクロロヒドリン、エピブロモヒドリン、エピヨードヒドリンなどのエピハロヒドリンを少なくとも含む、オキシラン単量体を含有する単量体を、特公昭46-27534号公報に開示されている、トリイソブチルアルミニウムにリン酸とトリエチルアミンを反応させた触媒の存在下で開環重合することにより、ベースポリマーを得る方法。
 そして、上記(A)または(B)の方法において得られたベースポリマーのエピハロヒドリン単量体単位を構成するハロゲン基と、窒素含有カチオン性基を含有するオニウム化剤とを反応(オニウム化反応)させることにより、ベースポリマーのエピハロヒドリン単量体単位を構成するハロゲン基の少なくとも一部を、窒素含有カチオン性基を含有するオニウムハライド基に変換することで、一般式(2)においてアニオン(X)がハロゲン化物イオンである繰り返し単位を含む、オニウムハライド構造単位含有ポリエーテル化合物を得ることができる。さらに、必要に応じて、得られたオニウムハライド構造単位含有ポリエーテル化合物と、ハロゲン化物イオン以外のアニオン(X)と金属カチオンとの塩とを反応させて、アニオン交換反応を行うことにより、窒素含有カチオン性基を含有するオニウムハライド基を構成するハロゲン化物イオンを、ハロゲン化物イオン以外のアニオン(X)に変換することができる。
 ベースポリマーと、窒素含有カチオン性基を含有するオニウム化剤とを反応させる際に用いる窒素含有カチオン性基を含有するオニウム化剤は、一般式(2)における窒素含有カチオン性基(A’)に対応するオニウム化剤である。たとえば、オニウム化剤として、一般式(3-1)中のイミダゾリウム構造に対応するイミダゾール化合物を用いることにより、一般式(3-1)で表される繰り返し単位を形成させることができる。
 ベースポリマーと、オニウム化剤とを反応させる方法としては、特に限定されないが、ベースポリマーと、オニウム化剤とを混合する方法が好ましい。ベースポリマーとオニウム化剤との混合方法は、特に限定されないが、例えば、ベースポリマーを含む溶液にオニウム化剤を添加し混合する方法、オニウム化剤を含む溶液にベースポリマーを添加し混合する方法、オニウム化剤とベースポリマーのそれぞれを別個の溶液として調製しておき、両溶液を混合する方法などが挙げられる。
 ベースポリマーと、オニウム化剤とを反応させる際において、用いることができる溶媒としては、不活性の溶媒が好適に用いられ、非極性であっても極性であってもよい。非極性溶媒としては、例えば、ベンゼン、トルエンなどの芳香族炭化水素;n-ペンタン、n-へキサンなどの鎖状飽和炭化水素;シクロペンタン、シクロヘキサンなどの脂環式飽和炭化水素;などが挙げられる。極性溶媒としては、テトラヒドロフラン、アニソール、ジエチルエーテルなどのエーテル;酢酸エチル、安息香酸エチルなどのエステル;アセトン、2-ブタノン、アセトフェノンなどのケトン;アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドなどの非プロトン性極性溶媒;エタノール、メタノール、水などのプロトン性極性溶媒;などが挙げられる。溶媒としては、これらの混合溶媒も好適に用いられる。溶媒の使用量は、特に限定されないが、ベースポリマーの濃度が1~50質量%となるように用いることが好ましく、3~40質量%になるように用いることがより好ましい。
 ベースポリマーと、オニウム化剤とを反応させる際における、オニウム化剤の使用量は、特に限定されず、目的とするポリエーテル化合物の一般式(2)で表される繰り返し単位の含有割合などに応じて決定すればよい。具体的には、オニウム化剤の使用量は、用いるベースポリマーのエピクロロヒドリン単位1モルに対し、通常、0.01~100モル、好ましくは0.02~50モル、より好ましくは0.03~10モル、さらに好ましくは0.05~2モルの範囲である。
 ベースポリマーと、オニウム化剤とを反応させる際の圧力は、特に限定されないが、通常1~500atmであり、好ましくは1~100atmであり、特に好ましくは1~50atmである。反応時の温度も特に限定されず、通常0~200℃、好ましくは20~170℃、より好ましくは40~150℃である。反応時間は、通常1分~1,000時間であり、好ましくは3分~800時間であり、より好ましくは5分~500時間であり、さらに好ましくは30分~200時間である。
 オニウムハライド構造単位含有ポリエーテル化合物と、ハロゲン化物イオン以外のアニオン(X)と金属カチオンとの塩とを反応させて、アニオン交換反応を行う方法は、特に限定されないが、オニウムハライド構造単位含有ポリエーテル化合物と、ハロゲン化物イオン以外のアニオン(X)と金属カチオンとの塩と、を混合して、反応させる方法が好ましい。
 アニオン交換反応を行う条件は、特に限定されず、オニウムハライド構造単位含有ポリエーテル化合物と、ハロゲン化物イオン以外のアニオン(X)と金属カチオンとの塩のみを混合してもよいし、有機溶媒などのその他の化合物が存在する条件下で行ってもよい。また、塩の使用量は、特に限定されないが、用いるオニウムハライド構造単位含有ポリエーテル化合物のオニウムハライド構造単位1モルに対し、通常0.01~100モル、好ましくは0.02~50モル、より好ましくは0.03~10モルの範囲である。
 アニオン交換反応を行う際に用いる、ハロゲン化物イオン以外のアニオン(X)と金属カチオンとの塩は、特に限定されないが、例えば、リチウム(ビスフルオロスルホン)イミド(Li(FSO22N)、リチウム(ビストリフルオロメチルスルホン)イミド(Li(CF3SO22N)、リチウム(ビスペンタフルオロエチルスルホン)イミド(Li(CF3CF2SO22N)、酢酸ナトリウム(CH3COONa)、酢酸銀(CH3COOAg)、リチウムブチレート(C37COOLi)、リチウムトリフルオロアセテート(CF3COOLi)、リチウムベンゾエート(PhCOOLi)、カリウムテトラシアノボラート(KB(CN))、チオシアン酸リチウム(LiSCN)、リチウム(ビスシアノ)イミド(Li(NC)N)、リチウムメチルスルホネート(LiCH3SO3)、リチウムトリフルオロメチルスルホネート(LiCF3SO3)、水酸化カリウム(KOH)、リチウムパークロレート(LiClO4)などが挙げられる。また、多価アニオンと金属カチオンとの塩の場合には、硫酸銀(AgSO 2-)、炭酸ナトリウム(NaCO 2-)が挙げられる。たとえば1価のアニオン性基を分子内に2個以上有するポリアニオンと金属カチオンとの塩としては、LiOSCF2CF2CF2SOLi、LiOSCF2CF2SOLi、Li(CFSONSOCF2CF2OCF2CF2OCF2CF2SONSOCF)、が挙げられる。
 アニオン交換反応を行う際の圧力は、通常1~500atmであり、好ましくは1~100atmであり、特に好ましくは1~50atmである。反応時の温度は、通常、-30~200℃、好ましくは-15~180℃、より好ましくは0~150℃である。反応時間は、通常、1分~1000時間であり、好ましくは3分~100時間であり、より好ましくは5分~10時間であり、さらに好ましくは5分~3時間である。
 アニオン交換反応が完了した後は、水等による洗浄、半透膜等の膜による膜分離により、金属カチオン、ハロゲン化物イオン、およびこれらの塩等を除去し、ポリエーテル化合物を含む混合物を回収することができる。また、メタノール等の溶媒を用いてポリエーテル化合物を抽出することにより、ポリエーテル化合物を含む混合物を回収することができる。さらに、例えば減圧乾燥などの常法に従い、目的とするポリエーテル化合物を回収することができる。
 本発明の二酸化炭素吸収剤は、上記のポリエーテル化合物に加えて、イオン液体;LiPF、LiTFSI、KIなどのアルカリ金属塩;酸素含有極性有機溶媒;カーボン材料や無機材料などのフィラー;などを含有してもよい。
 酸素含有極性有機溶媒としては、テトラヒドロフラン、アニソール、ジエチルエーテル、ジブチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテルなどのエーテル;酢酸エチル、安息香酸エチルなどのエステル;アセトン、メチルエチルケトン、ジエチルケトン、エチレンカーボネート、ジメチルカーボネート、アセトフェノンなどのケトン;エタノール、メタノール、エチレングリコール、ジエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリンなどのアルコール;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドなどが挙げられる。なかでも、エーテル、ケトン、アルコールが好ましく、メチルエチルケトン、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールがよりましい。これらは、1種単独で、または2種以上を配合してもよい。たとえば、1種以上のエーテルと、1種以上のケトンとを併用してもよい。
 本発明の二酸化炭素吸収剤が酸素含有極性有機溶媒を含有する場合における、酸素含有極性有機溶媒の含有割合は、特に限定されないが、本発明の二酸化炭素吸収剤中のポリエーテル化合物100質量部に対して、1~4000質量部であることが好ましく、5~3000質量部であることが好ましく、10~2000質量部であることがより好ましい。
 イオン液体とは、融点が500℃以下である有機塩化合物であればよく、特に限定されないが、融点が400℃以下である有機塩化合物が好ましく、融点が300℃以下である有機塩化合物がより好ましく、融点が150℃以下である有機塩化合物がさらに好ましく、融点が100℃以下である有機塩化合物がことさらに好ましく、融点が80℃以下である有機塩化合物が特に好ましく、融点が室温(25℃)以下である有機塩化合物が最も好ましい。イオン液体としては、室温で液体のものであってもよく、室温で固体のものであってもよいが、室温で液体のものが好ましい。そして、イオン液体は、カチオンとアニオンとから構成される有機塩化合物であることが好ましく、カチオンとして、正の電荷を1つのみ有する有機分子と、負の電荷を1つのみ有する対アニオンとを有する有機塩化合物であることがより好ましい。なお、イオン液体は、イオン性液体、あるいは、常温溶融塩とも呼ばれることがある。
 また、本発明で用いるイオン液体としては、分子量(カチオンとアニオンとを合わせた分子量)が100~700の範囲にあるものが好ましく、120~500の範囲にあるものがより好ましい。また、室温(25℃)で液体のイオン液体としては、25℃における粘度が10~1000mPa・sの範囲にあるものが好ましく、10~500mPa・sの範囲にあるものがより好ましい。
 イオン液体を形成するカチオンの具体例としては、アンモニウムイオン;メチルアンモニウムイオン、ブチルアンモニウムイオン、シクロヘキシルアンモニウムイオン、アニリニウムイオン、ベンジルアンモニウムイオン、エタノールアンモニウムイオン等のカチオン性の窒素原子を含有するモノ置換アンモニウムイオン;ジメチルアンモニウムイオン、ジエチルアンモニウムイオン、ジブチルアンモニウムイオン、ノニルフェニルアンモニウムイオン等のカチオン性の窒素原子を含有するジ置換アンモニウムイオン;トリメチルアンモニウムイオン、トリエチルアンモニウムイオン、n-ブチルジメチルアンモニウムイオン、ステアリルジメチルアンモニウムイオン、トリブチルアンモニウムイオン、トリビニルアンモニウムイオン、トリエタノールアンモニウムイオン、N,N-ジメチルエタノールアンモニウムイオン、トリ(2-エトキシエチル)アンモニウムイオン、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムイオン等のカチオン性の窒素原子を含有するトリ置換アンモニウムイオン;テトラメチルアンモニウムイオン、トリメチルエチルアンモニウムイオン、トリメチルプロピルアンモニウムイオン、トリメチルブチルアンモニウムイオン、トリメチルペンチルアンモニウムイオン、トリメチルヘキシルアンモニウムイオン、トリメチルヘプチルアンモニウムイオン、トリメチルオクチルアンモニウムイオン、トリメチルデシルアンモニウムイオン、トリメチルドデシルアンモニウムイオン等のカチオン性の窒素原子を含有するテトラ置換アンモニウムイオン;ピペリジニウムイオン、1-メチルピロリジニウムイオン、1-エチル-1-メチルピロリジニウムイオン、1-ブチル-1メチルピロリジニウムイオン、イミダゾリウムイオン、1-メチルイミダゾリウムイオン、1-エチルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、ベンズイミダゾリウムイオン、ピロリウムイオン、1-メチルピロリウムイオン、オキサゾリウムイオン、ベンズオキサゾリウムイオン、ピラゾリウムイオン、イソオキサゾリウムイオン、ピリジニウムイオン、2,6-ジメチルピリジニウムイオン、N-ブチルピリジニウムイオン、ピラジニウムイオン、ピリミジニウムイオン、ピリダジニウムイオン、トリアジニウムイオン、N,N-ジメチルアニリニウムイオン、キノリニウムイオン、イソキノリニウムイオン、インドリニウムイオン、キノキサリウムイオン、イソキノキサリウムイオン等のカチオン性の窒素原子を含有する複素環イオン;トリブチルドデカホスホニウムイオン、テトラブチルホスホニウムイオン等のカチオン性のリン原子を含んでなるイオン;トリフェニルスルホニウムイオン、トリブチルスルホニウムイオン等のカチオン性の硫黄原子を含んでなるイオン;等が挙げられるが、これらに限定されるものではない。これらの中でも、カチオン性の窒素原子を含有するイオンが好ましく、トリ置換アンモニウムイオン、カチオン性の窒素原子を含有する複素環イオンがより好ましく、トリ置換アンモニウムイオン、ピロリジニウム環を含有するイオン、イミダソリウム環を含有するイオン、ピリジニウム環を含有するイオンが特に好ましい。
 イオン液体を形成するアニオンの具体例としては、一般式(2)においてXで表されるアニオンの具体例として上記したものが挙げられ、好適なものも同様である。イオン液体を形成するアニオンは、ポリエーテル化合物が含有する、Xで表されるアニオンと同一であることが好ましい。
 本発明で用いるイオン液体としては、カチオンおよびアニオンの全てが同一のイオン種からなるものであってもよいし、カチオンおよびアニオンのいずれか一方、あるいは両方として、2種以上のイオン種が混在したものであってもよい。すなわち、イオン液体としては、単一のものであってもよく、2種以上が混合されたものであってもよい。
 本発明で用いるイオン液体の具体例としては、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-1-メチルピロリジニウムテトラフルオロボラート、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル―1-メチルピロリジニウムビス(トリフルオロメタンスルホニル)イミド、N-ブチルピリジニウムビス(トリフルオロメタンスルホニル)イミド、トリブチルドデカホスホニウムビス(トリフルオロメタンスルホニル)イミドなどが挙げられる。中でも、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドが好ましい。
 本発明の二酸化炭素吸収剤がイオン液体を含有する場合における、イオン液体の含有割合は、特に限定されないが、本発明の二酸化炭素吸収剤中のポリエーテル化合物100質量部に対して、1~4000質量部であることが好ましく、5~3000質量部であることが好ましく、10~2000質量部であることがより好ましい。
 本発明の二酸化炭素吸収剤を用いて、本発明の二酸化炭素吸収剤を含有する二酸化炭素吸収部材を得ることができる。
 本発明の二酸化炭素吸収剤は、二酸化炭素吸収性に優れたものである。したがって、本発明の二酸化炭素吸収剤を用いることにより、二酸化炭素吸収性に優れた二酸化炭素吸収部材を得ることができる。また、本発明の二酸化炭素吸収剤は、多孔質膜に保持させた場合における多孔質膜からの脱落が抑制されたものでもある。したがって、本発明の二酸化炭素吸収剤を多孔質膜に保持させてなる二酸化炭素吸収部材は、二酸化炭素吸収性に優れるとともに、二酸化炭素吸収剤の脱落抑制性にも優れ、耐久性に優れたものとなる。
 本発明の二酸化炭素吸収剤を含有する二酸化炭素吸収部材は、たとえば、本発明の二酸化炭素吸収剤を、シートなどの基材にキャストしてなるものであってよく、本発明の二酸化炭素吸収剤を、不織布や多孔質膜などの多孔質体に含浸させてなるものであってよい。
 二酸化炭素吸収部材の成形方法としては、特に限定されないが、本発明の二酸化炭素吸収剤を、そのまま、または、溶媒に溶解もしくは分散させて液状組成物とした状態で、基材にキャストすることにより、フィルム状の成形体を得る方法;本発明の二酸化炭素吸収剤を、そのまま、または、溶媒に溶解もしくは分散させて液状組成物とした状態で、不織布や多孔質膜などの多孔質体に含浸させて、成形体を得る方法;などを挙げることができる。
 二酸化炭素吸収剤に、補強剤;老化防止剤;紫外線吸収剤;耐光安定剤;粘着付与剤;界面活性剤;導電性付与剤;電解質物質;着色剤(染料・顔料);難燃剤;帯電防止剤;などの添加剤を配合した後、成形に供してもよい。
 また、本発明の二酸化炭素吸収剤に含まれるポリエーテル化合物が、架橋性基を有するものである場合には、二酸化炭素吸収剤に架橋剤を配合して、架橋性組成物とした後、成形し、架橋することで、二酸化炭素吸収部材を得てもよい。
 本発明の二酸化炭素吸収剤は、二酸化炭素吸収性に優れることから、二酸化炭素分離用の部材、二酸化炭素貯蔵用の部材、二酸化炭素輸送用の部材として好適に用いることができる。本発明の二酸化炭素吸収剤は、常圧下でも、高圧下(例えば、2000hPa~150000hPa)でも、二酸化炭素吸収性に優れるものである。そのため、本発明の二酸化炭素吸収剤は、例えば、常圧下で二酸化炭素分離を行う設備の部材としても、高圧下で二酸化炭素分離を行う設備の部材としても、好適に用いることができる。
 本発明の二酸化炭素吸収剤は、例えば、天然ガスからの二酸化炭素の吸収、バイオガスからの二酸化炭素の吸収、CO/CH含有ガスからの二酸化炭素の吸収、CO/N含有ガスからの二酸化炭素の吸収などの用途に好適に利用することができる。二酸化炭素の吸収の対象とするガスには、硫化水素、メルカプタン(チオール)、ジスルファイド、二硫化炭素などが含まれていてもよい。
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「部」および「%」は、特に断りのない限り質量基準である。また、試験および評価は下記に従った。
〔数平均分子量(Mn)および分子量分布(Mw/Mn)〕
(1)ベースポリマーの数平均分子量(Mn)および分子量分布(Mw/Mn)は、テトラヒドロフランを溶媒とするゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算値として測定した。なお、測定器としてはHLC-8320(東ソー社製)を用い、カラムはTSKgel SuperMultiporeHZH(東ソー社製)4本を直列に連結して用い、検出器は示差屈折計RI-8320(東ソー社製)を用いた。
(2)ポリエーテル化合物の数平均分子量(Mn)は、次のように求めた。すなわち、まず、ベースポリマーの繰り返し単位の平均分子量と、ポリエーテル化合物を構成する各種の単量体単位の平均分子量、および下記(3)により求めた各種の単量体単位の含有率とから、ポリエーテル化合物を構成する、全ての繰り返し単位の平均分子量を求めた。そして、ベースポリマーの繰り返し単位数と、ポリエーテル化合物を構成する、全ての繰り返し単位の平均分子量とを乗じることにより得られた値を、ポリエーテル化合物の数平均分子量(Mn)とした。
(3)ベースポリマーおよびポリエーテル化合物の構造、ならびに、ベースポリマーおよびポリエーテル化合物中の、各種の単量体単位の含有率は、核磁気共鳴装置(NMR)を用いて、以下のように測定した。すなわち、まず、ベースポリマーまたはポリエーテル化合物の試料30mgを、1.0mLの重クロロホルムまたは重ジメチルスルホキシドに加え、1時間振蕩することにより均一に溶解させた。そして、得られた溶液についてNMR測定を行って、1H-NMRスペクトルを得て、定法に従い試料の構造を帰属した。
 また、一般式(2)で表される繰り返し単位を含有するポリエーテル化合物中の、一般式(2)で表される繰り返し単位の含有率は、次の方法により算出した。すなわち、まず、主鎖のオキシラン単量体単位に由来するプロトンの積分値から全オキシラン単量体単位のモル数B1を算出した。次に、一般式(2)で表される繰り返し単位中のオニウム構造に由来するプロトンの積分値から、一般式(2)で表される繰り返し単位のモル数B2を算出した。そして、B1に対するB2の割合(百分率)を、ポリエーテル化合物中の、一般式(2)で表される繰り返し単位の含有率として求めた。
〔二酸化炭素吸収量〕
 ガラス基板の上に、二酸化炭素吸収剤(ポリエーテル化合物または組成物)を1000mg薄く塗布した。次いで、二酸化炭素吸収剤をガラス基板ごと真空乾燥機で80℃で24時間乾燥し、水分や揮発成分を除去した。次に、二酸化炭素吸収剤を、ガラス基板ごと1000hPaまたは8000hPa、温度25℃の二酸化炭素気流下に72時間静置し、二酸化炭素吸収剤中に二酸化炭素を吸収させ、飽和させた。二酸化炭素を飽和吸収させた二酸化炭素吸収剤をガラス基板ごと密閉容器に移し、ヘリウムで満たされている昇温脱離ガス分析装置(Temperature Programmed Desorption-Mass Spectrometry:TPD-MS; リガク 昇温脱離ガス分析装置 TPD type V)の反応管に導入した。二酸化炭素吸収剤の加熱炉への導入後、温度を昇温しながら、検出器で検出される二酸化炭素の量を定量することにより、二酸化炭素吸収剤1gあたりの二酸化炭素の吸収量を求めた。
〔二酸化炭素吸収剤の多孔質膜からの脱落試験1〕
 実施例1~19、比較例1~7で得られた二酸化炭素吸収剤(ポリエーテル化合物)を、ジメチルスルホキシドに溶解し、10wt%の二酸化炭素吸収剤溶液を調製した。次に、多孔膜基材(ポリエチレン製、膜厚25マイクロメートル、空孔率40%、平均孔径15ナノメートル)を100℃に加熱し、二酸化炭素吸収剤溶液を塗布し、細孔内に二酸化炭素吸収剤溶液を浸透させた。次に、ゆっくりジメチルスルホキシドを揮発させ、溶媒除去後、膜を水に浸して表面の余分な二酸化炭素吸収剤を削り落とした。得られた膜を乾燥させることで二酸化炭素吸収剤と多孔質基材からなるサポート膜を得た。
 得られたサポート膜を、直径1mmの穴を多数有している目皿(直径2cm)の上に固定し密着させた。目皿の下側(サポート膜の反対側)を2段階で減圧して、二酸化炭素吸収剤と多孔質基材からなるサポート膜を吸引し、多孔質基材からの二酸化炭素吸収剤の脱落の有無を、目視にて観察し、以下の基準で判定した。なお、目皿の上部は常圧で1.0気圧とした。
 目皿の下側の圧力を0.9気圧とした場合において、多孔質膜の細孔から二酸化炭素吸収剤が多少とも脱落した場合をC判定とした。また、目皿の下側の圧力を0.9気圧とした場合においては、二酸化炭素吸収剤が脱落しなかったが、目皿の下側の圧力を0.8気圧とした場合において、多孔質膜の細孔から二酸化炭素吸収剤が多少とも脱落した場合をB判定とした。さらに、目皿の下側の圧力を0.8気圧とした場合においても、二酸化炭素吸収剤が脱落せず、多孔質膜の細孔に二酸化炭素吸収剤が保持されている場合をA判定とした。
〔二酸化炭素吸収剤の多孔質膜からの脱落試験2〕
 実施例20~30、比較例8~11で得られた二酸化炭素吸収剤(組成物)を、100℃に加熱した多孔質基材(ポリエチレン製、膜厚25マイクロメートル、空孔率40%、平均孔径15ナノメートル)に塗布して、細孔内に二酸化炭素吸収剤を浸透させた。次に、膜の表面をふき取り余分な二酸化炭素吸収剤を落としたことで、二酸化炭素吸収剤と多孔質基材とからなるサポート膜を得た。
 得られたサポート膜を、垂直に吊った状態で固定し、気温25℃・湿度60%の常圧環境下にて24時間静置した。多孔質基材からの二酸化炭素吸収剤の脱落の有無を、目視にて観察し、次の基準で判定した。多孔質膜の細孔に二酸化炭素吸収剤が保持されている場合は〇、二酸化炭素吸収剤が多少とも脱落していた場合は×とした。
〔製造例A〕
(エピクロロヒドリンのリビングアニオン重合)
 アルゴンで置換した攪拌機付きガラス反応器に、テトラノルマルブチルアンモニウムブロミド3.22gおよびトルエン50mlを添加し、これを0℃に冷却した。次いで、トリエチルアルミニウム1.256g(テトラノルマルブチルアンモニウムブロミドに対して1.1当量)をノルマルヘキサン10mlに溶解したものを添加して、15分間反応させることで触媒組成物を得た。得られた触媒組成物に、エピクロロヒドリン10.0gを添加し、0℃において重合反応を行った。重合反応開始後、徐々に溶液の粘度が上昇した。12時間反応後、重合反応液に少量の水を注いで反応を停止した。得られた重合反応液を0.1Nの塩酸水溶液で洗浄することにより触媒残渣の脱灰処理を行い、さらにイオン交換水で洗浄した後に、有機相を50℃で12時間減圧乾燥した。これにより得られた無色透明のオイル状物質の収量は9.9gであった。また、得られた物質のGPCによる数平均分子量(Mn)は1,050、平均繰り返し単位数は11量体、分子量分布(Mw/Mn)は1.35であった。以上より、得られたオイル状物質は、重合開始末端にブロモメチル基を持ち、重合停止末端に水酸基を持つ、エピクロロヒドリン単位により構成されたポリエピクロロヒドリン(ベースポリマーA)であるといえる。
〔製造例B〕
(エピクロロヒドリンのリビングアニオン重合)
 アルゴンで置換した攪拌機付きガラス反応器に、テトラノルマルブチルアンモニウムブロミド1.61gおよびトルエン50mlを添加し、これを0℃に冷却した。次いで、トリエチルアルミニウム0.657g(テトラノルマルブチルアンモニウムブロミドに対して1.15当量)をノルマルヘキサン10mlに溶解したものを添加して、15分間反応させることで触媒組成物を得た。得られた触媒組成物に、エピクロロヒドリン10.0gを添加し、0℃において重合反応を行った。重合反応開始後、徐々に溶液の粘度が上昇した。12時間反応後、重合反応液に少量の水を注いで反応を停止した。得られた重合反応液を0.1Nの塩酸水溶液で洗浄することにより触媒残渣の脱灰処理を行い、さらにイオン交換水で洗浄した後に、有機相を50℃で12時間減圧乾燥した。これにより得られた無色透明のオイル状物質の収量は9.9gであった。また、得られた物質のGPCによる数平均分子量(Mn)は2,100、平均繰り返し単位数は23量体、分子量分布(Mw/Mn)は1.25であった。以上より、得られたオイル状物質は、重合開始末端にブロモメチル基を持ち、重合停止末端に水酸基を持つ、エピクロロヒドリン単位により構成されたポリエーテル化合物(ベースポリマーB)であるといえる。
〔製造例C〕
(エピクロロヒドリンのリビングアニオン重合)
 アルゴンで置換した攪拌機付きガラス反応器に、テトラノルマルブチルアンモニウムブロミド0.644gおよびトルエン50mlを添加し、これを0℃に冷却した。次いで、トリエチルアルミニウム0.285g(テトラノルマルブチルアンモニウムブロミドに対して1.25当量)をノルマルヘキサン10mlに溶解したものを添加して、15分間反応させることで触媒組成物を得た。得られた触媒組成物に、エピクロロヒドリン10.0gを添加し、0℃において重合反応を行った。重合反応開始後、徐々に溶液の粘度が上昇した。12時間反応後、重合反応液に少量の水を注いで反応を停止した。得られた重合反応液を0.1Nの塩酸水溶液で洗浄することにより触媒残渣の脱灰処理を行い、さらにイオン交換水で洗浄した後に、有機相を50℃で12時間減圧乾燥した。これにより得られた無色透明のオイル状物質の収量は9.9gであった。また、得られた物質のGPCによる数平均分子量(Mn)は5,390、平均繰り返し単位数は58量体、分子量分布(Mw/Mn)は1.21であった。以上より、得られたオイル状物質は、重合開始末端にブロモメチル基を持ち、重合停止末端に水酸基を持つ、エピクロロヒドリン単位により構成されたポリエーテル化合物(ベースポリマーC)であるといえる。
〔製造例D〕
(エピクロロヒドリンのリビングアニオン重合)
 アルゴンで置換した攪拌機付きガラス反応器に、テトラノルマルブチルアンモニウムブロミド0.322gおよびトルエン50mlを添加し、これを0℃に冷却した。次いで、トリエチルアルミニウム0.148g(テトラノルマルブチルアンモニウムブロミドに対して1.3当量)をノルマルヘキサン10mlに溶解したものを添加して、15分間反応させることで触媒組成物を得た。得られた触媒組成物に、エピクロロヒドリン10.0gを添加し、0℃において重合反応を行った。重合反応開始後、徐々に溶液の粘度が上昇した。12時間反応後、重合反応液に少量の水を注いで反応を停止した。得られた重合反応液を0.1Nの塩酸水溶液で洗浄することにより触媒残渣の脱灰処理を行い、さらにイオン交換水で洗浄した後に、有機相を50℃で12時間減圧乾燥した。これにより得られた無色透明の粘稠オイル状物質の収量は9.9gであった。また、得られた物質のGPCによる数平均分子量(Mn)は10,700、平均繰り返し単位数は116量体、分子量分布(Mw/Mn)は1.18であった。以上より、得られたオイル状物質は、重合開始末端にブロモメチル基を持ち、重合停止末端に水酸基を持つ、エピクロロヒドリン単位により構成されたポリエーテル化合物(ベースポリマーD)であるといえる。
〔製造例E〕
(エピクロロヒドリンのリビングアニオン重合)
 アルゴンで置換した攪拌機付きガラス反応器に、テトラノルマルブチルアンモニウムブロミド0.215gおよびトルエン50mlを添加し、これを0℃に冷却した。次いで、トリエチルアルミニウム0.114g(テトラノルマルブチルアンモニウムブロミドに対して1.5当量)をノルマルヘキサン10mlに溶解したものを添加して、15分間反応させることで触媒組成物を得た。得られた触媒組成物に、エピクロロヒドリン10.0gを添加し、0℃において重合反応を行った。重合反応開始後、徐々に溶液の粘度が上昇した。12時間反応後、重合反応液に少量の水を注いで反応を停止した。得られた重合反応液を0.1Nの塩酸水溶液で洗浄することにより触媒残渣の脱灰処理を行い、さらにイオン交換水で洗浄した後に、有機相を50℃で12時間減圧乾燥した。これにより得られた無色透明の粘稠オイル状物質の収量は9.7gであった。また、得られた物質のGPCによる数平均分子量(Mn)は15,600、平均繰り返し単位数は169量体、分子量分布(Mw/Mn)は1.35であった。以上より、得られたオイル状物質は、重合開始末端にブロモメチル基を持ち、重合停止末端に水酸基を持つ、エピクロロヒドリン単位により構成されたポリエーテル化合物(ベースポリマーE)であるといえる。
〔製造例F〕
(エピクロロヒドリンのリビングアニオン重合)
 アルゴンで置換した攪拌機付きガラス反応器に、テトラノルマルブチルアンモニウムブロミド0.107gおよびトルエン50mlを添加し、これを0℃に冷却した。次いで、トリエチルアルミニウム0.057g(テトラノルマルブチルアンモニウムブロミドに対して1.5当量)をノルマルヘキサン10mlに溶解したものを添加して、15分間反応させることで触媒組成物を得た。得られた触媒組成物に、エピクロロヒドリン10.0gを添加し、0℃において重合反応を行った。重合反応開始後、徐々に溶液の粘度が上昇した。12時間反応後、重合反応液に少量の水を注いで反応を停止した。得られた重合反応液を0.1Nの塩酸水溶液で洗浄することにより触媒残渣の脱灰処理を行い、さらにイオン交換水で洗浄した後に、有機相を50℃で12時間減圧乾燥した。これにより得られた無色透明の粘稠オイル状物質の収量は9.5gであった。また、得られた物質のGPCによる数平均分子量(Mn)は32,500、平均繰り返し単位数は351量体、分子量分布(Mw/Mn)は1.43であった。以上より、得られたオイル状物質は、重合開始末端にブロモメチル基を持ち、重合停止末端に水酸基を持つ、エピクロロヒドリン単位により構成されたポリエーテル化合物(ベースポリマーF)であるといえる。
〔製造例G〕
(エピクロロヒドリンとグリシジルメタクリレートとのリビングアニオン共重合)
 アルゴンで置換した攪拌機付きガラス反応器に、テトラノルマルブチルアンモニウムブロミド0.322gおよびトルエン50mlを添加し、これを0℃に冷却した。次いで、トリエチルアルミニウム0.148g(テトラノルマルブチルアンモニウムブロミドに対して1.3当量)をノルマルヘキサン10mlに溶解したものを添加して、15分間反応させることで触媒組成物を得た。得られた触媒組成物に、エピクロロヒドリン9.5gおよびグリシジルメタクリレート0.5gを添加し、0℃において重合反応を行った。12時間反応後、重合反応液に少量の水を注いで反応を停止した。得られた重合反応液を0.1Nの塩酸水溶液で洗浄することにより触媒残渣の脱灰処理を行い、さらにイオン交換水で洗浄した後に、有機相を50℃で12時間減圧乾燥した。これにより得られた無色透明の粘稠オイル状物質の収量は9.9gであった。得られた粘稠オイル状物質のGPC測定による数平均分子量(Mn)は11,000、平均繰り返し単位数は105量体、分子量分布は1.26であった。さらに得られた粘稠オイル状物質について、1H‐NMR測定を行ったところ、このゴム状物質は、エピクロロヒドリン単位97.0モル%およびグリシジルメタクリレート単位3.0モル%を含むものであることが確認できた。以上より、得られた粘稠オイル状物質は、重合開始末端にブロモメチル基を持ち、重合停止末端に水酸基を持つ、エピクロロヒドリン単位およびグリシジルメタクリレート単位により構成されたポリエーテル化合物(ベースポリマーG)であるといえる。
〔製造例H〕
(エピクロロヒドリンとグリシジルメタクリレートとのリビングアニオン共重合)
 アルゴンで置換した攪拌機付きガラス反応器に、テトラノルマルブチルアンモニウムブロミド0.032gおよびトルエン5mlを添加し、これを0℃に冷却した。次いで、トリエチルアルミニウム0.029g(テトラノルマルブチルアンモニウムブロミドに対して2.5当量)をノルマルヘキサン0.25mlに溶解したものを添加して、15分間反応させることで触媒組成物を得た。得られた触媒組成物に、エピクロロヒドリン9.5gおよびグリシジルメタクリレート0.5gを添加し、0℃において重合反応を行った。12時間反応後、重合反応液に少量の水を注いで反応を停止した。得られた重合反応液を0.1Nの塩酸水溶液で洗浄することにより触媒残渣の脱灰処理を行い、さらにイオン交換水で洗浄した後に、有機相を50℃で12時間減圧乾燥した。これにより得られた無色透明の粘稠オイル状物質の収量は8.3gを得た。得られた粘稠オイル状物質のGPC測定による数平均分子量(Mn)は57,000、平均繰り返し単位数は606量体、分子量分布は1.58であった。さらに得られたゴム状物質について、1H‐NMR測定を行ったところ、この粘稠オイル状物質は、エピクロロヒドリン単位97.0モル%およびグリシジルメタクリレート単位3.0モル%を含むものであることが確認できた。以上より、得られた粘稠オイル状物質は、重合開始末端にブロモメチル基を持ち、重合停止末端に水酸基を持つ、エピクロロヒドリン単位およびグリシジルメタクリレート単位により構成されたポリエーテル化合物(ベースポリマーH)であるといえる。
〔製造例I〕
(エピクロロヒドリン/プロピレンオキシドランダム共重合体の製造)
 攪拌機付きガラス反応器に、テトラノルマルブチルアンモニウムブロミドを0.160gとトルエン60mlを添加し、これを0℃に冷却した。さらにトリメチルアルミニウム0.0540gをノルマルヘキサン1mlに溶解したものを添加して、15分間反応した。かくして得られた混合物に、エピクロロヒドリン3.0gとプロピレンオキシド7.0gを添加し、0℃にて重合反応を行った。重合反応開始後、徐々に溶液の粘度が上昇した。1時間反応後、重合反応液に少量の水を注いで反応を停止した。得られた重合反応液を0.1Nの塩酸水溶液で洗浄することにより触媒残渣の脱灰処理を行い、さらにイオン交換水で洗浄した後に、有機相を50℃で12時間減圧乾燥した。これにより得られた無色透明の粘稠オイル状物質の収量は。得られた重合体の収量は5.6gであった。また、得られた重合体の数平均分子量(Mn)は10,600、重量平均分子量(Mw)は12,200、平均繰り返し単位数は171量体、分子量分布(Mw/Mn)は1.15であった。また、1H-NMRにより求めた、重合体の単量体単位組成比(モル比)は、エピクロロヒドリン単位:プロピレンオキシド単位=11:89であった。以上より、得られた粘稠オイル状物質は、重合開始末端にブロモメチル基を持ち、重合停止末端に水酸基を持つ、エピクロロヒドリン単位およびプロピレンオキシド単位により構成されたポリエーテル化合物(ベースポリマーI)であるといえる。
〔製造例J〕
(エピクロロヒドリン/エチレンオキシドランダム共重合体の製造)
 攪拌機付きガラス反応器に、テトラノルマルブチルアンモニウムブロミドを0.160gとトルエン60mlを添加し、これを0℃に冷却した。さらにトリメチルアルミニウム0.0540gをノルマルヘキサン1mlに溶解したものを添加して、15分間反応した。かくして得られた混合物に、エピクロロヒドリン5.0gとエチレンオキシド5.0gを添加し、0℃にて重合反応を行った。重合反応開始後、徐々に溶液の粘度が上昇した。1時間反応後、重合反応液に少量の水を注いで反応を停止した。得られた重合反応液を0.1Nの塩酸水溶液で洗浄することにより触媒残渣の脱灰処理を行い、さらにイオン交換水で洗浄した後に、有機相を50℃で12時間減圧乾燥した。これにより得られた無色透明の粘稠オイル状物質の収量は。得られた重合体の収量は6.5gであった。また、得られた重合体の数平均分子量(Mn)は15,100、重量平均分子量(Mw)は22,300、平均繰り返し単位数は303量体、分子量分布(Mw/Mn)は1.48であった。また、1H-NMRにより求めた、重合体の単量体単位組成比(モル比)は、エピクロロヒドリン単位:エチレンオキシド単位=12:88であった。以上より、得られた粘稠オイル状物質は、重合開始末端にブロモメチル基を持ち、重合停止末端に水酸基を持つ、エピクロロヒドリン単位およびエチレンオキシド単位により構成されたポリエーテル化合物(ベースポリマーJ)であるといえる。
〔製造例1’〕
(ベースポリマーA中のエピクロロヒドリン単位の1-メチルイミダゾールによる4級化)
 製造例Aで得られたベースポリマーA8.0gと、1-メチルイミダゾール22.0gと、N, N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を一部抜き取り、50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質15.0gを得た。この樹脂状物質について、H‐NMR測定および元素分析を行ったところ、出発原料の製造例Aで得られたベースポリマーA中の全てのエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、1-メチルイミダゾリウムハライド基を有するポリエーテル化合物A’であると同定された。得られたポリエーテル化合物A’の数平均分子量(Mn)は1,980、平均繰り返し単位数は11量体であった。
〔製造例1’’〕
(1-メチルイミダゾリウムハライド基を有するポリエーテル化合物A’のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド10.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例1’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物A’ 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質11.5gを得た。得られた薄褐色の粘稠オイル状物質についてH‐NMR測定および元素分析を行ったところ、出発原料である製造例1’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物A’の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物A’’であると同定された。得られたポリエーテル化合物A’’の数平均分子量(Mn)は4,750、平均繰り返し単位数は11量体であった。
〔製造例2’〕
(ベースポリマーB中のエピクロロヒドリン単位の1-メチルイミダゾールによる4級化)
 製造例Bで得られたベースポリマーB8.0gと、1-メチルイミダゾール22.0gと、N, N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を一部抜き取り、50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質15.0gを得た。この樹脂状物質について、H‐NMR測定および元素分析を行ったところ、出発原料の製造例Bで得られたベースポリマーB中の全てのエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、1-メチルイミダゾリウムハライド基を有するポリエーテル化合物B’であると同定された。得られたポリエーテル化合物B’の数平均分子量(Mn)は3,960、平均繰り返し単位数は23量体であった。
〔製造例2’’〕
(1-メチルイミダゾリウムハライド基を有するポリエーテル化合物B’のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド10.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例2’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物B’ 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質11.4gを得た。得られた薄褐色の粘稠オイル状物質についてH‐NMR測定および元素分析を行ったところ、出発原料である製造例2’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物B’の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物B’’であると同定された。得られたポリエーテル化合物B’’の数平均分子量(Mn)は9,500、平均繰り返し単位数は23量体であった。
〔製造例3’〕
(ベースポリマーC中のエピクロロヒドリン単位の1-メチルイミダゾールによる4級化)
 製造例Cで得られたベースポリマーC8.0gと、1-メチルイミダゾール22.0gと、N, N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を一部抜き取り、50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質15.0gを得た。この樹脂状物質について、H‐NMR測定および元素分析を行ったところ、出発原料の製造例Cで得られたベースポリマーC中の全てのエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、1-メチルイミダゾリウムハライド基を有するポリエーテル化合物C’であると同定された。得られたポリエーテル化合物C’の数平均分子量(Mn)は10,200、平均繰り返し単位数は58量体であった。
〔製造例3’’〕
(1-メチルイミダゾリウムハライド基を有するポリエーテル化合物C’のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド10.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例3’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物C’ 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質11.6gを得た。得られた薄褐色の粘稠オイル状物質についてH‐NMR測定および元素分析を行ったところ、出発原料である製造例3’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物C’の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物C’’であると同定された。得られたポリエーテル化合物C’’の数平均分子量(Mn)は24,400、平均繰り返し単位数は58量体であった。
〔製造例4’〕
(ベースポリマーD中のエピクロロヒドリン単位の1-メチルイミダゾールによる4級化)
 製造例Dで得られたベースポリマーD8.0gと、1-メチルイミダゾール22.0gと、N, N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を一部抜き取り、50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質14.9gを得た。この樹脂状物質について、H‐NMR測定および元素分析を行ったところ、出発原料の製造例Dで得られたベースポリマーD中の全てのエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、1-メチルイミダゾリウムハライド基を有するポリエーテル化合物D’であると同定された。得られたポリエーテル化合物D’の数平均分子量(Mn)は20,200、平均繰り返し単位数は116量体であった。
〔製造例4’’〕
(1-メチルイミダゾリウムハライド基を有するポリエーテル化合物D’のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド10.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例4’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物D’ 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質11.5gを得た。得られた薄褐色の粘稠オイル状物質についてH‐NMR測定および元素分析を行ったところ、出発原料である製造例4’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物D’の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物D’’であると同定された。得られたポリエーテル化合物D’’の数平均分子量(Mn)は48,500、平均繰り返し単位数は116量体であった。
〔製造例5’〕
(ベースポリマーE中のエピクロロヒドリン単位の1-メチルイミダゾールによる4級化)
 製造例Eで得られたベースポリマーE8.0gと、1-メチルイミダゾール22.0gと、N, N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を一部抜き取り、50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質14.9gを得た。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料の製造例Eで得られたベースポリマーE中の全てのエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、1-メチルイミダゾリウムハライド基を有するポリエーテル化合物E’であると同定された。得られたポリエーテル化合物E’の数平均分子量(Mn)は29,400、平均繰り返し単位数は169量体であった。
〔製造例5’’〕
(1-メチルイミダゾリウムハライド基を有するポリエーテル化合物E’のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド10.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例5’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物E’ 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質11.4gを得た。得られた薄褐色の粘稠オイル状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例5’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物E’の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物E’’であると同定された。得られたポリエーテル化合物E’’の数平均分子量(Mn)は70,700、平均繰り返し単位数は169量体であった。
〔製造例6’〕
(ベースポリマーF中のエピクロロヒドリン単位の1-メチルイミダゾールによる4級化)
 製造例Fで得られたベースポリマーF8.0gと、1-メチルイミダゾール22.0gと、N, N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を一部抜き取り、50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質14.9gを得た。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料の製造例Fで得られたベースポリマーF中の全てのエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、1-メチルイミダゾリウムハライド基を有するポリエーテル化合物F’であると同定された。得られたポリエーテル化合物F’の数平均分子量(Mn)は61,300、平均繰り返し単位数は351量体であった。
〔製造例6’’〕
(1-メチルイミダゾリウムハライド基を有するポリエーテル化合物F’のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド10.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例6’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物F’ 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質11.4gを得た。得られた薄褐色の粘稠オイル状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例6’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物F’の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物F’’であると同定された。得られたポリエーテル化合物F’’の数平均分子量(Mn)は147,000、平均繰り返し単位数は351量体であった。
〔製造例7’〕
(ベースポリマーG中のエピクロロヒドリン単位の1-メチルイミダゾールによる4級化)
 製造例Gで得られたベースポリマーG8.0gと、1-メチルイミダゾール22.0gと、N, N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を一部抜き取り、50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質14.6gを得た。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料の製造例Gで得られたベースポリマーG中の全てのエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、1-メチルイミダゾリウムハライド基を有するポリエーテル化合物G’であると同定された。得られたポリエーテル化合物G’の数平均分子量(Mn)は20,100、平均繰り返し単位数は105量体であった。
〔製造例7’’〕
(1-メチルイミダゾリウムハライド基を有するポリエーテル化合物G’のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド10.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例7’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物G’ 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質11.1gを得た。得られた薄褐色の粘稠オイル状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例7’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物G’の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物G’’であると同定された。得られたポリエーテル化合物G’’の数平均分子量(Mn)は48,300、平均繰り返し単位数は105量体であった。
〔製造例8’〕
(ベースポリマーH中のエピクロロヒドリン単位の1-メチルイミダゾールによる4級化)
 製造例Hで得られたベースポリマーH8.0gと、1-メチルイミダゾール22.0gと、N, N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を一部抜き取り、50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質14.7gを得た。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料の製造例Hで得られたベースポリマーH中の全てのエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、1-メチルイミダゾリウムハライド基を有するポリエーテル化合物H’であると同定された。得られたポリエーテル化合物H’の数平均分子量(Mn)は104,000、平均繰り返し単位数は606量体であった。
〔製造例8’’〕
(1-メチルイミダゾリウムハライド基を有するポリエーテル化合物H’のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド10.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例8’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物H’ 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質11.2gを得た。得られた薄褐色の粘稠オイル状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例8’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物H’の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物H’’であると同定された。得られたポリエーテル化合物H’’の数平均分子量(Mn)は240,000、平均繰り返し単位数は606量体であった。
〔製造例9’〕
(ベースポリマーCの1-ノルマルブチルイミダゾールによる4級化)
 製造例Cで得られたベースポリマーC5.0gと、1-ノルマルブチルイミダゾール13.4gと、アセトニトリル10.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止した。得られた反応物をトルエン/メタノール/水の等質量混合溶液にて洗浄した後、1-ノルマルブチルイミダゾールおよびトルエンを含む有機相を除去して、水相を50℃で12時間減圧乾燥したところ、薄赤色の固体11.7gが得られた。この固体について、1H-NMR測定および元素分析を行ったところ、出発原料のベースポリマーCの、繰り返し単位におけるクロロ基全てが1-ノルマルブチルイミダゾリウムクロリド基に、重合開始末端のブロモメチル基のブロモ基全てが1-ノルマルブチルイミダゾリウムブロミド基に、それぞれ置換された、対アニオンとしてハロゲン化物イオンを有する1-ノルマルブチルイミダゾリウム構造含有ポリエーテル化合物C’9であると同定された。得られたポリエーテル化合物C’9の数平均分子量(Mn)は12,700、平均繰り返し単位数は58量体であった。
〔製造例9’’〕
(ポリエーテル化合物C’9のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 製造例9’にて得られたポリエーテル化合物C’9 5.0gと、リチウムビス(トリフルオロメタンスルホニル)イミド10.0gと、イオン交換水20mLとを攪拌機付きガラス反応器に添加した。室温で30分間反応させた後、50℃で12時間減圧乾燥し、得られた固液混合物を水で洗浄して無機塩を除去した後、アセトンで液相を抽出した。得られたトルエン溶液を50℃で12時間減圧乾燥したところ、粘性液状物質10.5gが得られた。得られた粘性液状物質について1H-NMRスペクトル測定と元素分析を行ったところ、出発原料であるポリエーテル化合物C’9の、塩化物イオンおよび臭化物イオンの全てが、ビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有する1-ノルマルブチルイミダゾリウム構造含有ポリエーテル化合物C’’9であると同定された。得られたポリエーテル化合物C’’9の数平均分子量(Mn)は27,100、平均繰り返し単位数は58量体であった。
〔製造例10’〕
(ベースポリマーDの1-ノルマルブチルイミダゾールによる4級化)
 製造例Dで得られたベースポリマーD5.0gと、1-ノルマルブチルイミダゾール13.4gと、アセトニトリル10.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止した。得られた反応物をトルエン/メタノール/水の等質量混合溶液にて洗浄した後、1-ノルマルブチルイミダゾールおよびトルエンを含む有機相を除去して、水相を50℃で12時間減圧乾燥したところ、薄赤色の固体11.7gが得られた。この固体について、1H-NMR測定および元素分析を行ったところ、出発原料のベースポリマーDの、繰り返し単位におけるクロロ基全てが1-ノルマルブチルイミダゾリウムクロリド基に、重合開始末端のブロモメチル基のブロモ基全てが1-ノルマルブチルイミダゾリウムブロミド基に、それぞれ置換された、対アニオンとしてハロゲン化物イオンを有する1-ノルマルブチルイミダゾリウム構造含有ポリエーテル化合物D’10であると同定された。得られたポリエーテル化合物D’10の数平均分子量(Mn)は25,100、平均繰り返し単位数は116量体であった。
〔製造例10’’〕
(ポリエーテル化合物D’10のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 製造例10’にて得られたポリエーテル化合物D’10 5.0gと、リチウムビス(トリフルオロメタンスルホニル)イミド10.0gと、イオン交換水20mLとを攪拌機付きガラス反応器に添加した。室温で30分間反応させた後、50℃で12時間減圧乾燥し、得られた固液混合物を水で洗浄して無機塩を除去した後、アセトンで液相を抽出した。得られたトルエン溶液を50℃で12時間減圧乾燥したところ、粘性液状物質10.5gが得られた。得られた粘性液状物質について1H-NMRスペクトル測定と元素分析を行ったところ、出発原料であるポリエーテル化合物D’10の、塩化物イオンおよび臭化物イオンの全てが、ビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有する1-ノルマルブチルイミダゾリウム構造含有ポリエーテル化合物D’’10であると同定された。得られたポリエーテル化合物D’’10の数平均分子量(Mn)は53,500、平均繰り返し単位数は116量体であった。
〔製造例11’〕
(ベースポリマーAのノルマルブチルジメチルアミンによる4級化)
 製造例Aで得られたベースポリマーA5.0gと、ノルマルブチルジメチルアミン16.4gと、アセトニトリル10.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止した。得られた反応物をトルエン/メタノール/水の等質量混合溶液にて洗浄した後、ノルマルブチルジメチルアミンおよびトルエンを含む有機相を除去して、水相を50℃で12時間減圧乾燥したところ、薄赤色の固体10.2gが得られた。この固体について、1H-NMR測定および元素分析を行ったところ、出発原料のベースポリマーAの、繰り返し単位におけるクロロ基全てがノルマルブチルジメチルアンモニウムクロリド基に、重合開始末端のブロモメチル基のブロモ基全てがノルマルブチルジメチルアンモニウムブロミド基に、それぞれ置換された、対アニオンとしてハロゲン化物イオンを有するノルマルブチルジメチルアンモニウム構造含有ポリエーテル化合物A’11であると同定された。得られたポリエーテル化合物A’11の数平均分子量(Mn)は2,120、平均繰り返し単位数は11量体であった。
〔製造例11’’〕
(ポリエーテル化合物A’11のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 製造例11’にて得られたポリエーテル化合物A’11 5.0gと、リチウムビス(トリフルオロメタンスルホニル)イミド10.0gと、イオン交換水20mLとを攪拌機付きガラス反応器に添加した。室温で30分間反応させた後、50℃で12時間減圧乾燥し、得られた固液混合物を水で洗浄して無機塩を除去した後、アセトンで液相を抽出した。得られたトルエン溶液を50℃で12時間減圧乾燥したところ、粘性液状物質10.5gが得られた。得られた粘性液状物質について1H-NMRスペクトル測定と元素分析を行ったところ、出発原料であるポリエーテル化合物A’11の、塩化物イオンおよび臭化物イオンの全てが、ビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するノルマルブチルジメチルアンモニウム構造含有ポリエーテル化合物A’’11であると同定された。得られたポリエーテル化合物A’’11の数平均分子量(Mn)は4,820、平均繰り返し単位数は11量体であった。
〔製造例12’〕
(ベースポリマーCのノルマルブチルジメチルアミンによる4級化)
 製造例Cで得られたベースポリマーC5.0gと、ノルマルブチルジメチルアミン16.4gと、アセトニトリル10.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止した。得られた反応物をトルエン/メタノール/水の等質量混合溶液にて洗浄した後、ノルマルブチルジメチルアミンおよびトルエンを含む有機相を除去して、水相を50℃で12時間減圧乾燥したところ、薄赤色の固体10.1gが得られた。この固体について、1H-NMR測定および元素分析を行ったところ、出発原料のベースポリマーCの、繰り返し単位におけるクロロ基全てがノルマルブチルジメチルアンモニウムクロリド基に、重合開始末端のブロモメチル基のブロモ基全てがノルマルブチルジメチルアンモニウムブロミド基に、それぞれ置換された、対アニオンとしてハロゲン化物イオンを有するノルマルブチルジメチルアンモニウム構造含有ポリエーテル化合物C’12であると同定された。得られたポリエーテル化合物C’12の数平均分子量(Mn)は11,200、平均繰り返し単位数は58量体であった。
〔製造例12’’〕
(ポリエーテル化合物C’12のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 製造例12’にて得られたポリエーテル化合物C’12 5.0gと、リチウムビス(トリフルオロメタンスルホニル)イミド10.0gと、イオン交換水20mLとを攪拌機付きガラス反応器に添加した。室温で30分間反応させた後、50℃で12時間減圧乾燥し、得られた固液混合物を水で洗浄して無機塩を除去した後、アセトンで液相を抽出した。得られたトルエン溶液を50℃で12時間減圧乾燥したところ、粘性液状物質10.8gが得られた。得られた粘性液状物質について1H-NMRスペクトル測定と元素分析を行ったところ、出発原料であるポリエーテル化合物C’12の、塩化物イオンおよび臭化物イオンの全てが、ビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するノルマルブチルジメチルアンモニウム構造含有ポリエーテル化合物C’’12であると同定された。得られたポリエーテル化合物C’’12の数平均分子量(Mn)は25,400、平均繰り返し単位数は58量体であった。
〔製造例13’〕
(ベースポリマーDのノルマルブチルジメチルアミンによる4級化)
 製造例Dで得られたベースポリマーD5.0gと、ノルマルブチルジメチルアミン16.4gと、アセトニトリル10.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止した。得られた反応物をトルエン/メタノール/水の等質量混合溶液にて洗浄した後、ノルマルブチルジメチルアミンおよびトルエンを含む有機相を除去して、水相を50℃で12時間減圧乾燥したところ、薄赤色の固体10.0gが得られた。この固体について、1H-NMR測定および元素分析を行ったところ、出発原料のベースポリマーDの、繰り返し単位におけるクロロ基全てがノルマルブチルジメチルアンモニウムクロリド基に、重合開始末端のブロモメチル基のブロモ基全てがノルマルブチルジメチルアンモニウムブロミド基に、それぞれ置換された、対アニオンとしてハロゲン化物イオンを有するノルマルブチルジメチルアンモニウム構造含有ポリエーテル化合物D’13であると同定された。得られたポリエーテル化合物D’13の数平均分子量(Mn)は22,500、平均繰り返し単位数は116量体であった。
〔製造例13’’〕
(ポリエーテル化合物D’13のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 製造例13’にて得られたポリエーテル化合物D’13 5.0gと、リチウムビス(トリフルオロメタンスルホニル)イミド10.0gと、イオン交換水20mLとを攪拌機付きガラス反応器に添加した。室温で30分間反応させた後、50℃で12時間減圧乾燥し、得られた固液混合物を水で洗浄して無機塩を除去した後、アセトンで液相を抽出した。得られたトルエン溶液を50℃で12時間減圧乾燥したところ、粘性液状物質10.7gが得られた。得られた粘性液状物質について1H-NMRスペクトル測定と元素分析を行ったところ、出発原料であるポリエーテル化合物D’13の、塩化物イオンおよび臭化物イオンの全てが、ビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するノルマルブチルジメチルアンモニウム構造含有ポリエーテル化合物D’’13であると同定された。得られたポリエーテル化合物D’’13の数平均分子量(Mn)は50,800、平均繰り返し単位数は116量体であった。
〔製造例14’〕
(ベースポリマーFのノルマルブチルジメチルアミンによる4級化)
 製造例Fで得られたベースポリマーF5.0gと、ノルマルブチルジメチルアミン32.8gと、アセトニトリル10.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止した。得られた反応物をトルエン/メタノール/水の等質量混合溶液にて洗浄した後、ノルマルブチルジメチルアミンおよびトルエンを含む有機相を除去して、水相を50℃で12時間減圧乾燥したところ、薄赤色の固体10.0gが得られた。この固体について、1H-NMR測定および元素分析を行ったところ、出発原料のベースポリマーFの、繰り返し単位におけるクロロ基全てがノルマルブチルジメチルアンモニウムクロリド基に、重合開始末端のブロモメチル基のブロモ基全てがノルマルブチルジメチルアンモニウムブロミド基に、それぞれ置換された、対アニオンとしてハロゲン化物イオンを有するノルマルブチルジメチルアンモニウム構造含有ポリエーテル化合物F’14であると同定された。得られたポリエーテル化合物F’14の数平均分子量(Mn)は68,000、平均繰り返し単位数は351量体であった。
〔製造例14’’〕
(ポリエーテル化合物F’14のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 製造例14’にて得られたポリエーテル化合物F’14 5.0gと、リチウムビス(トリフルオロメタンスルホニル)イミド10.0gと、イオン交換水20mLとを攪拌機付きガラス反応器に添加した。室温で30分間反応させた後、50℃で12時間減圧乾燥し、得られた固液混合物を水で洗浄して無機塩を除去した後、アセトンで液相を抽出した。得られたトルエン溶液を50℃で12時間減圧乾燥したところ、粘性液状物質10.8gが得られた。得られた粘性液状物質について1H-NMRスペクトル測定と元素分析を行ったところ、出発原料であるポリエーテル化合物F’14の、塩化物イオンおよび臭化物イオンの全てが、ビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するノルマルブチルジメチルアンモニウム構造含有ポリエーテル化合物F’’14であると同定された。得られたポリエーテル化合物F’’14の数平均分子量(Mn)は154,000、平均繰り返し単位数は351量体であった。
〔製造例15’〕
(ベースポリマーBの1-メチルピロリジンによる4級化)
 製造例Bで得られたベースポリマーB 4.0gと、1-メチルピロリジン11.4gと、N, N-ジメチルホルムアミド8.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止した。得られた反応溶液を50℃で120時間減圧乾燥をしたところ、薄褐色の樹脂状の物質7.7gが得られた。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料のベースポリマーBの全てのエピクロロヒドリン単位におけるクロロ基が、1-メチルピロリジニウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルピロリジニウムブロミド基に、それぞれ置換された、対アニオンとしてハロゲン化物イオンを有する1-メチルピロリジニウム構造含有ポリエーテル化合物B’15であると同定された。得られたポリエーテル化合物B’15の数平均分子量(Mn)は4,090、平均繰り返し単位数は23量体であった。
〔製造例15’’〕
(ポリエーテル化合物B’15のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド26.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例15’で得られたポリエーテル化合物B’15 7.7gを蒸留水100mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色ゴム状物質ポリエーテル化合物を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られたゴム状物質を50℃で12時間減圧乾燥したところ、薄褐色ゴム状物質18.0gが得られた。得られた薄褐色ゴム状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例15’で得られたポリエーテル化合物B’15の繰り返し単位中の1-メチルピロリジニウムクロリド基の塩化物イオンと重合開始末端の1-メチルピロリジニウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するピロリジニウム構造含有ポリエーテル化合物B’’15であると同定された。得られたポリエーテル化合物B’’15の数平均分子量(Mn)は9,710、平均繰り返し単位数は23量体であった。
〔製造例16’〕
(ベースポリマーCの1-メチルピロリジンによる4級化)
 製造例Cで得られたベースポリマーC 4.0gと、1-メチルピロリジン11.4gと、N, N-ジメチルホルムアミド8.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止した。得られた反応溶液を50℃で120時間減圧乾燥をしたところ、薄褐色の樹脂状の物質7.6gが得られた。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料のベースポリマーCの全てのエピクロロヒドリン単位におけるクロロ基が、1-メチルピロリジニウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルピロリジニウムブロミド基に、それぞれ置換された、対アニオンとしてハロゲン化物イオンを有する1-メチルピロリジニウム構造含有ポリエーテル化合物C’16であると同定された。得られたポリエーテル化合物C’16の数平均分子量(Mn)は10,300、平均繰り返し単位数は58量体であった。
〔製造例16’’〕
(ポリエーテル化合物C’16のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド26.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例16’で得られたポリエーテル化合物C’16 7.7gを蒸留水100mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色ゴム状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られたゴム状物質を50℃で12時間減圧乾燥したところ、薄褐色ゴム状物質18.0gが得られた。得られた薄褐色ゴム状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例16’で得られたポリエーテル化合物C’16の繰り返し単位中の1-メチルピロリジニウムクロリド基の塩化物イオンと重合開始末端の1-メチルピロリジニウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するピロリジニウム構造含有ポリエーテル化合物C’’16であると同定された。得られたポリエーテル化合物C’’16の数平均分子量(Mn)は24,500、平均繰り返し単位数は58量体であった。
〔製造例17’〕
(ベースポリマーDのピリジンによる4級化)
 製造例Dで得られたベースポリマーD 4.0gと、ピリジン13.6gと、N, N-ジメチルホルムアミド10.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止した。得られた反応溶液を50℃で120時間減圧乾燥をしたところ、薄褐色の樹脂状の物質7.3gが得られた。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料のベースポリマーDの全てのエピクロロヒドリン単位におけるクロロ基が、ピリジニウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、ピリジニウムブロミド基に、それぞれ置換された、対アニオンとしてハロゲン化物イオンを有するピリジニウム構造含有ポリエーテル化合物D’17であると同定された。得られたポリエーテル化合物D’17の数平均分子量(Mn)は19,800、平均繰り返し単位数は116量体であった。
〔製造例17’’〕
(ポリエーテル化合物D’17のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド16.8gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例17’で得られたポリエーテル化合物D’ 17 5.0gを蒸留水100mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色ゴム状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られたゴム状物質を50℃で12時間減圧乾燥したところ、薄褐色ゴム状物質12.1gが得られた。得られた薄褐色ゴム状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例17’で得られたポリエーテル化合物D’17の繰り返し単位中のピリジニウムクロリド基の塩化物イオンと重合開始末端のピリジニウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するピリジニウム構造含有ポリエーテル化合物D’’17であると同定された。得られたポリエーテル化合物D’’17の数平均分子量(Mn)は48,000、平均繰り返し単位数は116量体であった。
〔製造例18’〕
(ベースポリマーAのピリジンによる4級化)
 製造例Aで得られたベースポリマーA 4.0gと、ピリジン13.6gと、N, N-ジメチルホルムアミド10.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止した。得られた反応溶液を50℃で120時間減圧乾燥をしたところ、薄褐色の樹脂状の物質7.3gが得られた。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料のベースポリマーAの全てのエピクロロヒドリン単位におけるクロロ基が、ピリジニウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、ピリジニウムブロミド基に、それぞれ置換された、対アニオンとしてハロゲン化物イオンを有するピリジニウム構造含有ポリエーテル化合物A’18であると同定された。得られたポリエーテル化合物A’18の数平均分子量(Mn)は1,950、平均繰り返し単位数は11量体であった。
〔製造例18’’〕
(ポリエーテル化合物A’18のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド16.8gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例18’で得られたポリエーテル化合物A’18 5.0gを蒸留水100mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色ゴム状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られたゴム状物質を50℃で12時間減圧乾燥したところ、薄褐色ゴム状物質12.1gが得られた。得られた薄褐色ゴム状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例18’で得られたポリエーテル化合物A’18の繰り返し単位中のピリジニウムクロリド基の塩化物イオンと重合開始末端のピリジニウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するピリジニウム構造含有ポリエーテル化合物A’’18であると同定された。得られたポリエーテル化合物A’’18の数平均分子量(Mn)は4,730、平均繰り返し単位数は11量体であった。
〔製造例19’〕
(ベースポリマーD中のエピクロロヒドリン単位の1-メチルイミダゾールによる部分4級化)
 製造例Dで得られたベースポリマーD10.0gと、1-メチルイミダゾール1.34gと、N, N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質11.3gを得た。この樹脂状物質について、H‐NMR測定および元素分析を行ったところ、出発原料の製造例Dで得られたベースポリマーD中の14モル%のエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、1-メチルイミダゾリウムハライド基とクロロメチル基86モル%とを有するポリエーテル化合物D’19であると同定された。得られたポリエーテル化合物D’19の数平均分子量(Mn)は12,100、平均繰り返し単位数は116量体であった。
〔製造例19’’〕
(1-メチルイミダゾリウムハライド基とクロロメチルとを有するポリエーテル化合物D’19のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド5.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例17’で得られた1-メチルイミダゾリウムハライド基とクロロメチル基とを有するポリエーテル化合物D’19 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質6.4gを得た。得られた薄褐色の粘稠オイル状物質についてH‐NMR測定および元素分析を行ったところ、出発原料である製造例19’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物D’19の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物D’’ 19であると同定された。得られたポリエーテル化合物D’’19の数平均分子量(Mn)は16,000、平均繰り返し単位数は116量体であった。
〔製造例20’〕
(ベースポリマーD中のエピクロロヒドリン単位の1-メチルイミダゾールによる部分4級化)
 製造例Dで得られたベースポリマーD10.0gと、1-メチルイミダゾール2.68gと、N, N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質13.3gを得た。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料の製造例Dで得られたベースポリマーD中の29モル%のエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、1-メチルイミダゾリウムハライド基とクロロメチル基71モル%とを有するポリエーテル化合物D’20であると同定された。得られたポリエーテル化合物D’20の数平均分子量(Mn)は13,500、平均繰り返し単位数は116量体であった。
〔製造例20’’〕
(1-メチルイミダゾリウムハライド基とクロロメチル基とを有するポリエーテル化合物D’20のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド5.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例20’で得られた1-メチルイミダゾリウムハライド基とクロロメチル基とを有するポリエーテル化合物D’20 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質8.0gを得た。得られた薄褐色の粘稠オイル状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例20’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物D’20の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物D’’20であると同定された。得られたポリエーテル化合物D’’20の数平均分子量(Mn)は21,700、平均繰り返し単位数は116量体であった。
〔製造例21’〕
(ベースポリマーI中のエピクロロヒドリン単位の1-メチルイミダゾールによる4級化による、ベースポリマーIの部分4級化)
 製造例Iで得られたベースポリマーI 10.0gと、1-メチルイミダゾール1.34gと、N,N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質11.4gを得た。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料の製造例Iで得られたベースポリマーI中の11モル%のエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、1-メチルイミダゾリウムハライド基とプロピレンオキシド単位由来のメチル基89モル%とを有するポリエーテル化合物I’21であると同定された。得られたポリエーテル化合物I’21の数平均分子量(Mn)は12,100、平均繰り返し単位数は171量体であった。
〔製造例21’’〕
(1-メチルイミダゾリウムハライド基とプロピレンオキシド単位由来のメチル基とを有するポリエーテル化合物I’21のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド5.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例21’で得られた1-メチルイミダゾリウムハライド基とプロピレンオキシド単位由来のメチル基とを有するポリエーテル化合物I’21 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質6.4gを得た。得られた薄褐色の粘稠オイル状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例21’で得られた1-メチルイミダゾリウムハライド基とプロピレンオキシド単位由来のメチル基とを有するポリエーテル化合物I’21の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物I’’21であると同定された。得られたポリエーテル化合物I’’21の数平均分子量(Mn)は16,000、平均繰り返し単位数は171量体であった。
〔製造例22’〕
(ベースポリマーJ中のエピクロロヒドリン単位の1-メチルイミダゾールによる4級化による、ベースポリマーJの部分4級化)
 製造例Jで得られたベースポリマーJ 10.0gと、1-メチルイミダゾール1.34gと、N, N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質12.0gを得た。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料の製造例Iで得られたベースポリマーJ中の12モル%のエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、エチレンオキシド鎖中に部分的に1-メチルイミダゾリウムハライド基を有するポリエーテル化合物J’ 22であると同定された。得られたポリエーテル化合物J’22の数平均分子量(Mn)は18,100、平均繰り返し単位数は303量体であった。
〔製造例22’’〕
(エチレンオキシド鎖中に部分的に1-メチルイミダゾリウムハライド基を有するポリエーテル化合物J’22のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド5.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例22’で得られたエチレンオキシド鎖中に部分的に1-メチルイミダゾリウムハライド基を有するポリエーテル化合物J’22 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質7.4gを得た。得られた薄褐色の粘稠オイル状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例22’で得られたエチレンオキシド鎖中に部分的に1-メチルイミダゾリウムハライド基を有するポリエーテル化合物J’22の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物J’’22であると同定された。得られたポリエーテル化合物J’’22の数平均分子量(Mn)は26,200、平均繰り返し単位数は303量体であった。
〔製造例23’’〕
(1-メチルイミダゾリウムハライド基を有するポリエーテル化合物A’のリチウムテトラフルオロボレートよるアニオン交換)
 リチウムテトラフルオロボレート4.0gを溶解させた蒸留水100mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例1’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物A’ 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトニトリルに溶解させた後、そのアセトニトリル溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の樹脂状物質6.4gを得た。得られた薄褐色の粘稠オイル状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例1’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物A’の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがテトラフルオロボレートアニオンに交換された、対アニオンとしてテトラフルオロボレートアニオンを有するイミダゾリウム構造含有ポリエーテル化合物A’’23であると同定された。得られたポリエーテル化合物A’’23の数平均分子量(Mn)は2,490、平均繰り返し単位数は11量体であった。
〔製造例24’’〕
(1-メチルイミダゾリウムハライド基を有するポリエーテル化合物C’のリチウムテトラフルオロボレートよるアニオン交換)
 リチウムテトラフルオロボレート4.0gを溶解させた蒸留水100mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例3’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物C’ 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトニトリルに溶解させた後、そのアセトニトリル溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の樹脂状物質6.4gを得た。得られた薄褐色の粘稠オイル状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例3’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物C’の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがテトラフルオロボレートアニオンに交換された、対アニオンとしてテトラフルオロボレートアニオンを有するイミダゾリウム構造含有ポリエーテル化合物C’’24であると同定された。得られたポリエーテル化合物C’’24の数平均分子量(Mn)は13,100、平均繰り返し単位数は58量体であった。
〔製造例25’’〕
(1-メチルイミダゾリウムハライド基を有するポリエーテル化合物B’の酢酸銀よるアニオン交換)
 酢酸銀4.8gを溶解させた蒸留水600mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例2’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物B’ 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、析出している塩化銀を、遠心分離とろ過にて除去し、水を留去した。さらに50℃で12時間減圧乾燥したところ、薄褐色の樹脂状物質5.6gを得た。得られた薄褐色の樹脂状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例2’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物B’の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てが酢酸アニオンに交換された、対アニオンとして酢酸アニオンを有するイミダゾリウム構造含有ポリエーテル化合物B’’25であると同定された。得られたポリエーテル化合物B’’25の数平均分子量(Mn)は4,480、平均繰り返し単位数は23量体であった。
〔製造例26’’〕
(1-メチルイミダゾリウムハライド基を有するポリエーテル化合物C’の酢酸銀よるアニオン交換)
 酢酸銀4.8gを溶解させた蒸留水600mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例3’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物C’ 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、析出している塩化銀を、遠心分離とろ過にて除去し、水を留去した。さらに50℃で12時間減圧乾燥したところ、薄褐色の樹脂状物質5.6gを得た。得られた薄褐色の樹脂状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例3’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物C’の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てが酢酸アニオンに交換された、対アニオンとして酢酸アニオンを有するイミダゾリウム構造含有ポリエーテル化合物C’’26であると同定された。得られたポリエーテル化合物C’’26の数平均分子量(Mn)は11,500、平均繰り返し単位数は58量体であった。
〔製造例27’〕
(ベースポリマーHのピリジンによる4級化)
 製造例Hで得られたベースポリマーH 4.0gと、ピリジン13.6gと、N, N-ジメチルホルムアミド10.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止した。得られた反応溶液を50℃で120時間減圧乾燥をしたところ、薄褐色の樹脂状の物質7.3gが得られた。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料のベースポリマーHの全てのエピクロロヒドリン単位におけるクロロ基が、ピリジニウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、ピリジニウムブロミド基に、それぞれ置換された、対アニオンとしてハロゲン化物イオンを有するピリジニウム構造含有ポリエーテル化合物H’27であると同定された。得られたポリエーテル化合物H’27の数平均分子量(Mn)は105,700、平均繰り返し単位数は606量体であった。
〔製造例27’’〕
(ピリジニウム構造含有ポリエーテル化合物H’27の酢酸銀よるアニオン交換)
 酢酸銀4.9gを溶解させた蒸留水600mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例27’で得られたピリジニウム構造含有ポリエーテル化合物H’ 22,1 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、析出している塩化銀を、遠心分離とろ過にて除去し、水を留去した。さらに50℃で12時間減圧乾燥したところ、薄褐色の樹脂状物質5.7gを得た。得られた薄褐色の樹脂状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例27’で得られたピリジニウム構造含有ポリエーテル化合物H’27の繰り返し単位中のピリジニウム基の塩化物イオンと重合開始末端のピリジニウムブロミド基の臭化物イオンの全てが酢酸アニオンに交換された、対アニオンとして酢酸アニオンを有するピリジニウム構造含有ポリエーテル化合物H’’27であると同定された。得られたポリエーテル化合物H’’27の数平均分子量(Mn)は120,000、平均繰り返し単位数は606量体であった。
〔製造例28’〕
(ベースポリマーF中のエピクロロヒドリン単位の1-メチルイミダゾールによる部分4級化)
 製造例6で得られたベースポリマーF10.0gと、1-メチルイミダゾール2.68gと、N, N-ジメチルホルムアミド16.0gとを、アルゴンで置換した攪拌機付きガラス反応器に添加し、80℃に加熱した。80℃で144時間反応させた後、室温に冷却し反応を停止し、得られた反応溶液を50℃で120時間減圧乾燥をしたところ、赤褐色の樹脂状の物質13.3gを得た。この樹脂状物質について、1H‐NMR測定および元素分析を行ったところ、出発原料の製造例6で得られたベースポリマーF中の28モル%のエピクロロヒドリン単位におけるクロロ基が、1-メチルイミダゾリウムクロリド基に、全ての重合開始末端のブロモメチル基のブロモ基が、1-メチルイミダゾリウムブロミド基に、それぞれ置換された、1-メチルイミダゾリウムハライド基とクロロメチル基72モル%とを有するポリエーテル化合物F’28であると同定された。得られたポリエーテル化合物F’28の数平均分子量(Mn)は41,300、平均繰り返し単位数は351量体であった。
〔製造例28’’〕
(1-メチルイミダゾリウムハライド基とクロロメチルとを有するポリエーテル化合物F’28のリチウムビス(トリフルオロメタンスルホニル)イミドによるアニオン交換)
 リチウムビス(トリフルオロメタンスルホニル)イミド5.0gを溶解させた蒸留水300mlを攪拌機付きガラス反応器に添加した。これとは別に、製造例28’で得られた1-メチルイミダゾリウムハライド基とクロロメチル基とを有するポリエーテル化合物F’ 28 5.0gを蒸留水50mlに溶解し、これを、上記ガラス反応器に滴下し室温で30分間反応させた。反応後、沈殿した薄褐色の粘稠オイル状物質を回収し、アセトンに溶解させた後、そのアセトン溶液を蒸留水300mlに滴下し、ポリマー凝固により無機塩を除去した。凝固により得られた薄褐色の粘稠オイル状物質を50℃で12時間減圧乾燥したところ、薄褐色の粘稠オイル状物質8.0gを得た。得られた薄褐色の粘稠オイル状物質について1H‐NMR測定および元素分析を行ったところ、出発原料である製造例28’で得られた1-メチルイミダゾリウムハライド基を有するポリエーテル化合物F’28の繰り返し単位中の1-メチルイミダゾリウムクロリド基の塩化物イオンと重合開始末端の1-メチルイミダゾリウムブロミド基の臭化物イオンの全てがビス(トリフルオロメタンスルホニル)イミドアニオンに交換された、対アニオンとしてビス(トリフルオロメタンスルホニル)イミドアニオンを有するイミダゾリウム構造含有ポリエーテル化合物F’’28であると同定された。得られたポリエーテル化合物F’’28の数平均分子量(Mn)は67,000、平均繰り返し単位数は351量体であった。
〔実施例1~19および比較例1~7〕
 表1~2に記載の、ポリエーテル化合物の製造方法に従い、ベースポリマーの種類およびオニウム化剤の種類を選択し、ベースポリマーの4級化を行った後、アニオン交換を行うことで、二酸化炭素吸収剤としてのポリエーテル化合物を得た。得られた二酸化炭素吸収剤(ポリエーテル化合物)を用いて、二酸化炭素吸収量の測定および二酸化炭素吸収剤の多孔質膜からの脱落試験1を行った。結果を表1~2に示す。
〔実施例20~30および比較例8~11〕
 表3に記載の、ポリエーテル化合物の製造方法に従い、ベースポリマーの種類およびオニウム化剤の種類を選択し、ベースポリマーの4級化を行った後、アニオン交換を行うことで、ポリエーテル化合物を得た。得られたポリエーテル化合物、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド(BMImTFSI、25℃における粘度:51mPa・s、分子量:419.36)、1-エチル-1-メチルピロリジニウムテトラフルオロボラート(EMPyBF4、融点:294℃、分子量201.01)、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド(N221EtOMeTFSI、融点:-91℃、比重(密度):1.42g/cm(25 ℃)、分子量426.397)、メチルエチルケトン、テトラエチレングリコールジメチルエーテルおよびテトラエチレングリコールを、表3に記載の配合比率で、混合することで、二酸化炭素吸収剤としての組成物を得た。得られた二酸化炭素吸収剤(組成物)を用いて、二酸化炭素吸収量の測定および二酸化炭素吸収剤の多孔質膜からの脱落試験2を行った。結果を表3に示す。
 なお、表1~3における、オニウム化剤の種類、対アニオンの種類および組成物に配合する材料の略称は、以下のとおりである。
   MeIm    :1-メチルイミダゾール
   BuIm    :1-ノルマルブチルイミダゾール
   nBuMe2N :ノルマルブチルジメチルアミン
   Pyridine: ピリジン
   Me-py   :1-メチルピロリジン
   TFSI    :ビス(トリフルオロメタンスルホニル)イミドアニオン
   BF4     :テトラフルオロボレートアニオン
   acetate :酢酸アニオン
   BMImTFSI:1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
   N221EtOMeTFSI:N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド
   EMPyBF4 :1-エチル-1-メチルピロリジニウムテトラフルオロボラート
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表1~2に示すように、一般式(1)で表される特定の繰り返し単位を1分子あたりの平均個数として50個以上含み、かつ、一般式(2)で表される、窒素含有カチオン性基を含む繰り返し単位を含有したポリエーテル化合物からなる二酸化炭素吸収剤は、二酸化炭素吸収性に優れ、かつ、多孔質膜に保持させた場合における多孔質膜からの脱落が抑制されたものであった(実施例1~19)。
 一方、一般式(1)で表される特定の繰り返し単位を1分子あたりの平均個数として50個未満含むポリエーテル化合物からなる二酸化炭素吸収剤は、二酸化炭素吸収性に劣り、多孔質膜に保持させた場合における多孔質膜からの脱落も生じやすいものであった(比較例1~7)。
Figure JPOXMLDOC01-appb-T000019
 表3に示すように、一般式(1)で表される特定の繰り返し単位を1分子あたりの平均個数として50個以上含み、かつ、一般式(2)で表される、窒素含有カチオン性基を含む繰り返し単位を含有したポリエーテル化合物を含む二酸化炭素吸収剤は、二酸化炭素吸収性に優れ、かつ、多孔質膜に保持させた場合における多孔質膜からの脱落が抑制されたものであった(実施例20~30)。
 一方、一般式(1)で表される特定の繰り返し単位を1分子あたりの平均個数として50個未満含むポリエーテル化合物を含む二酸化炭素吸収剤は、二酸化炭素吸収性に劣り、多孔質膜に保持させた場合における多孔質膜からの脱落も生じやすいものであった(比較例8~11)。

Claims (7)

  1.  ポリエーテル化合物を含有する二酸化炭素吸収剤であって、
     前記ポリエーテル化合物が、下記一般式(1)で表される繰り返し単位を1分子あたりの平均個数として50個以上含んでなるものであり、
     前記ポリエーテル化合物が、前記一般式(1)で表される繰り返し単位の少なくとも一部として、下記一般式(2)で表される繰り返し単位を含むことを特徴とする二酸化炭素吸収剤。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)において、Aは一価の基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、A’は窒素含有カチオン性基を表す。また、一般式(2)において、Xはアニオンを表す。)
  2.  前記一般式(2)で表される繰り返し単位が、下記一般式(3-1)で表される繰り返し単位、下記一般式(3-2)で表される繰り返し単位、または下記一般式(4)で表される繰り返し単位である請求項1に記載の二酸化炭素吸収剤。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3-1)において、R~Rはそれぞれ独立に水素原子または置換基を表し、RおよびRは互いに結合していてもよい。また、一般式(3-1)において、Xはアニオンを表す。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(3-2)において、R11~R15はそれぞれ独立に水素原子または置換基を表し、R11~R15から任意に選択される2つが互いに結合していてもよい。また、一般式(3-2)において、Xはアニオンを表す。)
    Figure JPOXMLDOC01-appb-C000005
    (一般式(4)において、R~Rはそれぞれ独立に水素原子または置換基を表し、RおよびRは互いに結合していてもよい。また、一般式(4)において、Xはアニオンを表す。)
  3.  前記ポリエーテル化合物が、一般式(1)で表される繰り返し単位を1分子あたりの平均個数として101個以上含んでなるものである請求項1または2に記載の二酸化炭素吸収剤。
  4.  前記ポリエーテル化合物における、前記一般式(1)で表される繰り返し単位が占める割合が、前記ポリエーテル化合物の全繰り返し単位に対して、90~100モル%である請求項1~3のいずれかに記載の二酸化炭素吸収剤。
  5.  前記ポリエーテル化合物における、前記一般式(2)で表される繰り返し単位が占める割合が、前記一般式(1)で表される繰り返し単位全体に対して、5~100モル%である請求項1~4のいずれかに記載の二酸化炭素吸収剤。
  6.  さらにイオン液体または酸素含有極性有機溶媒を含む請求項1~5のいずれかに記載の二酸化炭素吸収剤。
  7.  前記一般式(2)において、Xが、それぞれ独立に、ハロゲン化物イオン、スルホニルイミド化物イオン、カルボン酸化物イオン、スルホン酸化物イオン、OH、BF 、PF 、ClO 、B(CN) 、SCN、(NC)から選択されるアニオンを表す請求項1~6のいずれかに記載の二酸化炭素吸収剤。
PCT/JP2022/033751 2021-09-15 2022-09-08 二酸化炭素吸収剤 WO2023042748A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023548443A JPWO2023042748A1 (ja) 2021-09-15 2022-09-08
CN202280059566.4A CN117916007A (zh) 2021-09-15 2022-09-08 二氧化碳吸收剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021150223 2021-09-15
JP2021-150223 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023042748A1 true WO2023042748A1 (ja) 2023-03-23

Family

ID=85602188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033751 WO2023042748A1 (ja) 2021-09-15 2022-09-08 二酸化炭素吸収剤

Country Status (3)

Country Link
JP (1) JPWO2023042748A1 (ja)
CN (1) CN117916007A (ja)
WO (1) WO2023042748A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4627534B1 (ja) 1967-10-27 1971-08-10
JP2002246066A (ja) 2001-02-15 2002-08-30 Fuji Photo Film Co Ltd 電解質組成物、電気化学電池、光電気化学電池及び非水二次電池
US20080125559A1 (en) * 2004-11-10 2008-05-29 Maciej Radosz Polymers and Copolymers of Ionic Liquids as Radio Frequency Absorbing Materials
US20090266230A1 (en) * 2004-08-05 2009-10-29 Maciej Radosz Poly(ionic liquid)s as new materials for co2 separation and other applications
JP2010053217A (ja) 2008-08-27 2010-03-11 Nippon Zeon Co Ltd ポリエーテル系重合体の製造方法およびポリエーテル系重合体
US20130280151A1 (en) * 2012-04-23 2013-10-24 Ut-Battelle, Llc Ionic liquid-functionalized mesoporous sorbents and their use in the capture of polluting gases
WO2014148598A1 (ja) * 2013-03-21 2014-09-25 日本ゼオン株式会社 色素増感太陽電池素子
JP2018001131A (ja) * 2016-07-07 2018-01-11 株式会社クラレ 二酸化炭素分離装置
WO2018038202A1 (ja) * 2016-08-25 2018-03-01 日本ゼオン株式会社 イオン性組成物および架橋物
WO2020066743A1 (ja) * 2018-09-28 2020-04-02 日本ゼオン株式会社 ポリエーテル化合物および気体分離膜
WO2021187352A1 (ja) * 2020-03-17 2021-09-23 日本ゼオン株式会社 ポリエーテル化合物、イオン性組成物、および成形体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4627534B1 (ja) 1967-10-27 1971-08-10
JP2002246066A (ja) 2001-02-15 2002-08-30 Fuji Photo Film Co Ltd 電解質組成物、電気化学電池、光電気化学電池及び非水二次電池
US20090266230A1 (en) * 2004-08-05 2009-10-29 Maciej Radosz Poly(ionic liquid)s as new materials for co2 separation and other applications
US20080125559A1 (en) * 2004-11-10 2008-05-29 Maciej Radosz Polymers and Copolymers of Ionic Liquids as Radio Frequency Absorbing Materials
JP2010053217A (ja) 2008-08-27 2010-03-11 Nippon Zeon Co Ltd ポリエーテル系重合体の製造方法およびポリエーテル系重合体
US20130280151A1 (en) * 2012-04-23 2013-10-24 Ut-Battelle, Llc Ionic liquid-functionalized mesoporous sorbents and their use in the capture of polluting gases
WO2014148598A1 (ja) * 2013-03-21 2014-09-25 日本ゼオン株式会社 色素増感太陽電池素子
JP2018001131A (ja) * 2016-07-07 2018-01-11 株式会社クラレ 二酸化炭素分離装置
WO2018038202A1 (ja) * 2016-08-25 2018-03-01 日本ゼオン株式会社 イオン性組成物および架橋物
WO2020066743A1 (ja) * 2018-09-28 2020-04-02 日本ゼオン株式会社 ポリエーテル化合物および気体分離膜
WO2021187352A1 (ja) * 2020-03-17 2021-09-23 日本ゼオン株式会社 ポリエーテル化合物、イオン性組成物、および成形体

Also Published As

Publication number Publication date
CN117916007A (zh) 2024-04-19
JPWO2023042748A1 (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
JP6398720B2 (ja) ポリエーテル共重合体、架橋性ポリエーテル共重合体組成物及び電解質
US9806314B2 (en) Polymerized ionic liquid block copolymers as battery membranes
US9790323B2 (en) Polymer conductor for lithium-ion batteries
US6727024B2 (en) Polyalkylene oxide polymer composition for solid polymer electrolytes
EP2692773B1 (en) Polyether compound, cross-linking composition, and electrolyte
US20050159561A1 (en) Copolymer of ethylene oxide and at least one substituted oxirane carrying a cross-linkable function, process for preparation thereof, and use thereof for producing ionically conductive materials
US9469612B2 (en) Polyether compound and electrolyte composition
KR101720049B1 (ko) 탄닌산 유도체로 가교된 고분자를 포함하는 리튬 이차전지용 고체상 고분자 전해질
WO2021187352A1 (ja) ポリエーテル化合物、イオン性組成物、および成形体
JP2012214792A (ja) ポリエーテル化合物組成物および電解質
WO2023042748A1 (ja) 二酸化炭素吸収剤
US6855788B2 (en) Copolymer of ethylene oxide and at least one substituted oxirane carrying a cross-linkable function, process for preparation thereof, and use thereof for producing ionically conductive materials
KR101295678B1 (ko) 단일이온 전도체를 함유하는 폴리실록산 고분자 레진 및 이를 이용하는 리튬이차전지용 고체 고분자 전해질
JP4155245B2 (ja) 電池
JP2018006290A (ja) イオン伝導性組成物およびイオン伝導膜
KR102366929B1 (ko) 폴리(아릴렌에테르술폰)에 폴리(에틸렌글리콜)이 이중으로 그라프트된 공중합체, 이를 포함하는 리튬 이차전지용 고분자 전해질막 및 이의 제조 방법
JP2018119058A (ja) ポリイオンコンプレックス、電気二重層キャパシタ用電解質および電気二重層キャパシタ
KR100228029B1 (ko) 고무탄성 공중합체의 제조방법, 이를 함유하는 이온전도성 박막 조성물, 이온전도성 박막 및 그의 제조방법, 그리고 이를 함유하는 고체 전기화학소자
Hu Synthesis of poly (ionic liquids) both in solution and on surface of silica nanoparticles as novel quasi-solid state electrolytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869895

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548443

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280059566.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022869895

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022869895

Country of ref document: EP

Effective date: 20240415