WO2023042345A1 - 光通信システム、管理制御装置及び制御信号伝送方法 - Google Patents

光通信システム、管理制御装置及び制御信号伝送方法 Download PDF

Info

Publication number
WO2023042345A1
WO2023042345A1 PCT/JP2021/034137 JP2021034137W WO2023042345A1 WO 2023042345 A1 WO2023042345 A1 WO 2023042345A1 JP 2021034137 W JP2021034137 W JP 2021034137W WO 2023042345 A1 WO2023042345 A1 WO 2023042345A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
subscriber
control signal
unit
Prior art date
Application number
PCT/JP2021/034137
Other languages
English (en)
French (fr)
Inventor
慎 金子
拓也 金井
一貴 原
淳一 可児
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023548035A priority Critical patent/JPWO2023042345A1/ja
Priority to PCT/JP2021/034137 priority patent/WO2023042345A1/ja
Priority to CN202180101955.4A priority patent/CN117882355A/zh
Publication of WO2023042345A1 publication Critical patent/WO2023042345A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks

Definitions

  • the present invention relates to an optical communication system, a management control device, and a control signal transmission method.
  • FIG. 7 and 8 are diagrams for explaining a method of opening an optical path in the conventional optical communication system 100.
  • the conventional optical communication system 100 includes a plurality of subscriber units 200-1 to 200-3, a plurality of subscriber units 300-1 to 300-3, and a plurality of control units 400-1. 400-2 and a plurality of optical SWs 500-1 to 500-2.
  • Subscriber units 200-1 to 200-3 are connected to optical SW 500-1 via optical transmission lines, and subscriber units 300-1 to 300-3 are connected to optical SW 500-2 via optical transmission lines. be done.
  • the optical SW 500-1 and the optical SW 500-2 are connected via an optical communication NW 600 composed of an optical transmission line.
  • Control unit 400-1 manages subscriber unit 200 and controls the operation of optical SW 500-1.
  • Control unit 400-2 manages subscriber unit 300 and controls the operation of optical SW 500-2.
  • optical SW control unit 410 sets the connection between the ports of optical SW 500-1 so that subscriber unit 200-1 communicates with subscriber unit management control unit 420. .
  • information required for registration and authentication of the subscriber device 200-1 is exchanged between the subscriber device 200-1 and the subscriber device management control unit 420, and the subscriber device management control unit 420 It is possible to instruct the emission wavelength to the person device 200-1.
  • a control signal called AMCC is used as a signal for managing and controlling subscriber units.
  • the AMCC signal includes status information indicating, for example, the transmission/reception wavelength of the optical transmitter/receiver, transmission light intensity, temperature, and the like.
  • the optical SW is set so that the optical signal transmitted from the subscriber device 200-1 is transferred to the subscriber device 300-1, which is the communication partner.
  • the control unit 410 changes the setting of the port-to-port connection of the optical SW 500-1.
  • control unit 400-2 sets the port-to-port connection of optical SW 500-2 so that the optical signal transmitted from subscriber unit 200-1 is transferred to subscriber unit 300-1, which is the communication partner. to change As a result, as shown in FIG. 8, an optical path directly connecting the subscriber device 200-1 and the subscriber device 300-1 can be opened.
  • FIG. 9 is a diagram showing a configuration in which a conventional optical communication system 100 is provided with a control signal superimposing unit.
  • an optical communication system 100a includes a plurality of subscriber units 200-1 to 200-3, a plurality of subscriber units 300-1 to 300-3, and a plurality of controllers 400a-1 to 400a. -2, a plurality of optical SWs 500-1 to 500-2, a plurality of optical branching units 650-1 to 650-3, and a plurality of control signal superimposing units 660-1 to 660-3.
  • Optical branching units 650-1 to 650-3 are provided on respective optical transmission lines, and branch optical signals transmitted from subscriber units 200-1 to 200-3.
  • the optical signals branched by optical branching units 650-1 to 650-3 are output to control signal receiving unit 430 of control unit 400a-1 and control signal superimposing units 660-1 to 660-3.
  • the control signal receiving unit 430 acquires control signals from the optical signals branched by the optical branching units 650-1 to 650-3.
  • the control signal superimposing units 660-1 to 660-3 superimpose the control signals transmitted from the control unit 400a-2 on the optical signals branched by the optical branching units 650-1 to 650-3.
  • the optical signal on which the control signal is superimposed by control signal superimposing units 660-1 to 660-3 is transmitted to subscriber unit 300 via optical SW 500-2.
  • One aspect of the present invention is a management control device that manages communication between one or more first subscriber devices and one or more second subscriber devices provided at positions facing the first subscriber devices.
  • the management control device includes a control signal generator for generating a control signal used for management and control transmitted to the first subscriber device, and the control signal converting the control signal generated by the generator into an optical signal having a wavelength different from the wavelength of the main signal transmitted by the second subscriber unit communicating with the first subscriber unit, and transmitting the optical signal; and an optical transmission unit provided on a communication path between the first subscriber device and the second subscriber device, the main signal transmitted by the second subscriber device and the optical transmission and an optical multiplexer for multiplexing the optical signal transmitted from the optical communication system.
  • One aspect of the present invention is a management control device that manages communication between one or more first subscriber devices and one or more second subscriber devices provided at positions facing the first subscriber devices.
  • a control signal generator for generating a control signal used for management and control to be transmitted to the first subscriber device; converting the optical signal into an optical signal having a wavelength different from the wavelength of the main signal transmitted by the second subscriber device communicating with the first subscriber device, and transmitting the optical signal to the first subscriber device and the second subscriber device;
  • Management control comprising: an optical transmission unit provided on a communication path with a subscriber unit and transmitting the main signal transmitted by the second subscriber unit and another optical signal to an optical multiplexing unit that multiplexes the main signal and another optical signal. It is a device.
  • One aspect of the present invention is a management control device that manages communication between one or more first subscriber devices and one or more second subscriber devices provided at positions facing the first subscriber devices.
  • the management control device generates a control signal used for management and control transmitted to the first subscriber device, and the generated control converts the signal into an optical signal having a wavelength different from the wavelength of the main signal transmitted by the second subscriber unit communicating with the first subscriber unit, and transmits the optical signal; provided on a communication path between the first subscriber device and the second subscriber device, and for transmitting the main signal transmitted by the second subscriber device and the optical signal transmitted from the management control device;
  • This is a multiplexing control signal transmission method.
  • the present invention it is possible to transmit a control signal to a subscriber device even if the optical signal transmitted from the subscriber device does not reach the opposite subscriber device.
  • FIG. 1 is a diagram illustrating a configuration example of an optical communication system according to a first embodiment
  • FIG. 3 is a diagram showing the configuration of a subscriber device in the first embodiment
  • FIG. 4 is a sequence diagram showing the flow of processing in the optical communication system according to the first embodiment
  • FIG. FIG. 4 is a diagram showing another configuration of the subscriber unit in the first embodiment
  • FIG. FIG. 10 is a diagram illustrating a configuration example of an optical communication system according to a second embodiment
  • FIG. 12 is a diagram illustrating a configuration example of an optical communication system according to a third embodiment
  • FIG. FIG. 2 is a diagram for explaining a method of opening an optical path in a conventional optical communication system
  • FIG. 2 is a diagram for explaining a method of opening an optical path in a conventional optical communication system
  • FIG. 10 is a diagram showing a configuration in which a control signal superimposing unit is provided in a conventional optical communication system;
  • FIG. 1 is a diagram showing a configuration example of an optical communication system 1 according to the first embodiment.
  • the optical communication system 1 includes a subscriber device 10 , a subscriber device 20 , a management control device 30 and an optical multiplexer 40 .
  • FIG. 1 shows a configuration in which the optical communication system 1 includes one subscriber device 10 and one subscriber device 20, a plurality of subscriber devices 10 and 20 may be provided.
  • the subscriber device 10 and the subscriber device 20 are connected via an optical transmission line 45.
  • the optical transmission line 45 is, for example, an optical fiber.
  • a configuration for transmitting an optical signal from the subscriber unit 10 to the subscriber unit 20 will be described.
  • the subscriber unit 10 converts the main signal into an optical signal with a wavelength ⁇ s (s is an integer equal to or greater than 1) and transmits the optical signal to the optical transmission line 45 . Specifically, the subscriber unit 10 converts the main signal into an optical signal of wavelength ⁇ s, which is the wavelength instructed by the management control unit 30 , and transmits the optical signal to the optical transmission line 45 .
  • the subscriber device 20 is a device that communicates with the subscriber device 10.
  • the subscriber unit 20 receives the optical signal output from the optical multiplexer 40 .
  • the optical signal received by the subscriber unit 20 is the optical signal multiplexed by the optical multiplexer 40 .
  • the subscriber unit 20 may, for example, separate the received optical signal into a main signal and a control signal having different wavelengths, and then receive the main signal and the control signal by detecting and demodulating the signals. If the control signal is an AMCC signal whose frequency band does not overlap with that of the main signal, the subscriber unit 20, for example, detects the received optical signal, converts it into an electrical signal, and branches it into the main signal and the control signal.
  • the main signal and the AMCC signal may be received by demodulating each of the received electrical signals.
  • the management control device 30 controls the subscriber devices 10 and 20, monitors control signals, and performs control based on the control signals.
  • the control of the subscriber units 10 and 20 means, for example, instructions to stop optical operation, wavelength change, etc., to the subscriber units 10 and 20 .
  • the management control device 30 includes an optical transmitter 31 and a control signal generator 32 .
  • the optical transmitter 31 is composed of a control signal transmitter 33 .
  • the optical transmitter 31 and the optical multiplexer 40 are connected via an optical transmission line.
  • the control signal generator 32 generates a control signal for the destination to be controlled (the subscriber device 20 in the first embodiment).
  • the control signals generated by the control signal generation unit 32 include "communication end notification to connection destination device (light emission stop instruction)", “wavelength change due to connection destination switching or path switching”, and “response to request to subscriber device”. ” and other information is included.
  • the AMCC signal is an example of a control signal.
  • the control signal transmitter 33 converts the control signal generated by the control signal generator 32 into an optical signal having a wavelength (for example, wavelength ⁇ c) different from the wavelength ⁇ s of the optical signal (main signal) transmitted by the subscriber unit 10. do.
  • the control signal transmitter 33 transmits the converted optical signal to the optical multiplexer 40 .
  • the control signal transmitting unit 33 identifies the wavelength of the optical signal transmitted by the subscriber unit 10 based on information on the wavelength used by the subscriber unit 10 stored in a memory (not shown).
  • the optical signal of wavelength ⁇ s transmitted by the subscriber unit 10 and the optical signal of wavelength ⁇ c transmitted by the control signal transmission unit 33 are input to the optical multiplexing unit 40 .
  • the optical multiplexing unit 40 multiplexes the input optical signal of wavelength ⁇ s and the optical signal of wavelength ⁇ c.
  • the optical multiplexer 40 outputs the multiplexed optical signal to the subscriber unit 20 via the optical transmission line 45 .
  • the optical multiplexing unit 40 transmits only the optical signal having the wavelength ⁇ c transmitted by the control signal transmitting unit 33 to the subscriber via the optical transmission line 45. It will be output to the device 20 .
  • the optical multiplexing unit 40 may be optical multiplexing means without wavelength selectivity (for example, an optical coupler) or may be wavelength multiplexing means with wavelength selectivity (for example, a wavelength filter).
  • FIG. 2 is a diagram showing the configuration of the subscriber device 20 in the first embodiment.
  • FIG. 2 shows the configuration of an optical receiver for receiving an optical signal in the subscriber unit 20.
  • the subscriber unit 20 has an optical receiver 21 .
  • the optical receiver 21 is composed of a wavelength demultiplexer 22, PD23-1, and PD23-2.
  • the wavelength demultiplexer 22 demultiplexes the input optical signal according to wavelength.
  • the wavelength demultiplexer 22 is connected to PD23-1 and PD23-2. For example, an optical signal of wavelength ⁇ s is output to PD23-1, and an optical signal of wavelength ⁇ c is output to PD23-2.
  • the PD 23-1 converts the input optical signal of wavelength ⁇ s into an electrical signal. Thereby, the subscriber unit 20 can acquire the main signal.
  • the PD 23-2 converts the input optical signal of wavelength ⁇ c into an electrical signal. Thereby, the subscriber unit 20 can acquire the control signal.
  • PDs 23-1 and 23-2 are examples of receivers.
  • the configuration shown in FIG. 2 is a configuration for direct detection using a photodiode, but a similar configuration can be used when coherent reception is applied.
  • the frequency band of the control signal may be different from or may overlap with that of the main signal.
  • FIG. 3 is a sequence diagram showing the processing flow of the optical communication system 1 according to the first embodiment.
  • the subscriber unit 10 transmits an optical signal of wavelength ⁇ s to the optical transmission line 45 (step S101).
  • An optical signal having a wavelength ⁇ s transmitted from the subscriber unit 10 is input to the optical multiplexer 40 via the optical transmission line 45 .
  • the control signal generator 32 of the management control device 30 generates a control signal to be transmitted to the subscriber device 20 (step S102).
  • the control signal generator 32 outputs the generated control signal to the control signal transmitter 33 .
  • the control signal transmitter 33 converts the control signal output from the control signal generator 32 into an optical signal having a wavelength ⁇ c different from the wavelength ⁇ s of the optical signal transmitted by the subscriber unit 10 .
  • the control signal transmitter 33 transmits the converted optical signal of wavelength ⁇ c to the optical multiplexer 40 (step S103).
  • the optical signal of wavelength ⁇ s transmitted by the subscriber unit 10 and the optical signal of wavelength ⁇ c transmitted by the control signal transmission unit 33 are input to the optical multiplexing unit 40 .
  • the optical multiplexing unit 40 multiplexes the input optical signal of wavelength ⁇ s and the optical signal of wavelength ⁇ c (step S104).
  • the optical signal multiplexed by the optical multiplexer 40 is input to the subscriber unit 20 via the optical transmission line 45 .
  • the wavelength demultiplexer 22 of the subscriber unit 20 demultiplexes the input optical signal (step S105). For example, the wavelength demultiplexer 22 demultiplexes the input optical signal into an optical signal of wavelength ⁇ s and an optical signal of wavelength ⁇ c.
  • the PD 23-1 converts the optical signal of wavelength ⁇ s demultiplexed by the wavelength demultiplexer 22 into an electrical signal.
  • the PD 23-2 converts the optical signal of wavelength ⁇ c demultiplexed by the wavelength demultiplexer 22 into an electrical signal (step S106).
  • the management control device 30 converts the control signal into an optical signal having a wavelength different from that of the optical signal transmitted from the subscriber device 10, and
  • the optical signal transmitted from 10 is multiplexed by the optical multiplexer 40 .
  • the optical multiplexing unit 40 multiplexes the input optical signal with an optical signal having a different wavelength and outputs the combined optical signal to the subscriber unit 20 .
  • the optical multiplexing unit 40 outputs only the optical signal of the control signal transmitted from the management control unit 30 to the subscriber unit 20. .
  • the optical communication system 1 even when the optical signal transmitted from the subscriber unit 10 does not reach the subscriber unit 20 on the opposite side, it is possible to transmit the control signal to the subscriber unit 20. Become.
  • the optical communication system 1 in order to transmit the control signal, it is not necessary to provide an in-line control signal superimposing unit for each subscriber unit to which the control signal is addressed, unlike the conventional art.
  • the optical communication system 1 has a simple configuration in which the optical multiplexing unit 40 is provided on the optical transmission line 45 between the subscriber unit 10 and the subscriber unit 20. Even after the optical path is once opened, can also transmit control signals to subscriber units.
  • FIG. 4 is a diagram showing another configuration of the subscriber unit 20 in the first embodiment.
  • FIG. 4 shows the configuration of an optical receiver for receiving an optical signal in the subscriber unit 20.
  • the subscriber unit 20 has an optical receiver 21a.
  • the optical receiver 21 a includes a PD 23 and an LPF 24 .
  • the PD 23 converts the input optical signal into an electrical signal.
  • the electrical signal converted by the PD 23 is branched and input to the LPF 24 .
  • the LPF 24 separates the AMCC signal from the main signal in the electric stage to acquire the AMCC signal.
  • the wavelengths are branched and demodulated respectively. Both AMCC signals can be received.
  • the wavelength of the AMCC signal must be set in the management control device 30 so that the beat component of the wavelength that carries the main signal and the wavelength that carries the AMCC signal do not overlap the AMCC signal component and the main signal component.
  • the wavelength of the AMCC signal only needs to satisfy this condition, and in an optical communication system in which a plurality of optical paths are wavelength-multiplexed, it is not necessary to change the wavelength of the AMCC signal for each optical path.
  • the management control device 30 uses the same wavelength as the main signal.
  • the transmission timing or frequency of the AMCC signal is set in the subscriber unit 10 so that the signal is time division multiplexed (TDM) or frequency division multiplexed (FDM).
  • steps S102 and S103 shown in FIG. 3 may be executed before the process of step S101.
  • FIG. 5 is a diagram showing a configuration example of an optical communication system 1a according to the second embodiment.
  • the optical communication system 1a includes a subscriber unit 10, a subscriber unit 20, a management control unit 30a, and a plurality of optical multiplexers 40-1 and 40-2.
  • FIG. 5 shows a configuration in which the optical communication system 1a includes one subscriber device 10 and one subscriber device 20, a plurality of subscriber devices 10 and 20 may be provided.
  • the subscriber unit 10 converts the main signal into an optical signal with wavelength ⁇ s1 and transmits the optical signal to the optical transmission line 45 .
  • the subscriber unit 10 converts the main signal into an optical signal of wavelength ⁇ s1, which is the wavelength instructed by the management control unit 30a, and transmits the optical signal to the optical transmission line 45.
  • the subscriber unit 20 converts the main signal into an optical signal with wavelength ⁇ s2 and transmits the optical signal to the optical transmission line 45 .
  • the subscriber unit 20 converts the main signal into an optical signal of wavelength ⁇ s2, which is the wavelength instructed by the management control unit 30a, and transmits the optical signal to the optical transmission line 45.
  • the subscriber units 10 and 20 have the configuration of the optical receiver 21 shown in FIG. 2 or the optical receiver 21a shown in FIG.
  • the management control device 30a includes a plurality of optical transmitters 31-1 to 31-2 and a plurality of control signal generators 32-1 to 32-2.
  • the optical transmitter 31-1 is composed of a control signal transmitter 33-1.
  • the optical transmitter 31-1 and the optical multiplexer 40-1 are connected via an optical transmission line.
  • the optical transmitter 31-2 is composed of a control signal transmitter 33-2.
  • the optical transmitter 31-2 and the optical multiplexer 40-2 are connected via an optical transmission line.
  • the control signal generator 32-1 generates a control signal for the destination to be controlled (the subscriber unit 20 in the second embodiment).
  • the control signal transmitter 33-1 transmits the control signal generated by the control signal generator 32-1 to a wavelength (for example, wavelength ⁇ c2) different from the wavelength ⁇ s1 of the optical signal (main signal) transmitted by the subscriber unit 10. Convert to optical signal.
  • the control signal transmitter 33-1 transmits the converted optical signal to the optical multiplexer 40-1.
  • the control signal generator 32-2 generates an AMCC signal for the destination to be controlled (the subscriber unit 10 in the second embodiment).
  • the control signal transmitter 33-2 transmits the control signal generated by the control signal generator 32-2 to a wavelength (for example, wavelength ⁇ c1) different from the wavelength ⁇ s2 of the optical signal (main signal) transmitted by the subscriber unit 20. Convert to optical signal.
  • the control signal transmitter 33-2 transmits the converted optical signal to the optical multiplexer 40-2.
  • the optical transmission line 45 is provided with optical multiplexers 40-1 and 40-2.
  • the optical multiplexer 40-1 receives the optical signal of wavelength ⁇ s1 transmitted by the subscriber unit 10 and the optical signal of wavelength ⁇ c2 transmitted by the control signal transmitter 33-1.
  • the optical multiplexer 40-1 multiplexes the input optical signal of wavelength ⁇ s1 and the optical signal of wavelength ⁇ c2.
  • the optical multiplexer 40-1 outputs the multiplexed optical signal to the subscriber unit 20 via the optical transmission line 45.
  • FIG. When the optical signal from the subscriber unit 10 is not input to the optical multiplexer 40-1, the optical multiplexer 40-1 transmits only the optical signal of wavelength ⁇ c2 transmitted by the control signal transmitter 33-1 to the optical transmission line. 45 to the subscriber unit 20.
  • the optical multiplexer 40-2 receives the optical signal of wavelength ⁇ s2 transmitted by the subscriber unit 20 and the optical signal of wavelength ⁇ c1 transmitted by the control signal transmitter 33-2.
  • the optical multiplexer 40-2 multiplexes the input optical signal of wavelength ⁇ s2 and the optical signal of wavelength ⁇ c1.
  • the optical multiplexer 40-2 outputs the multiplexed optical signal to the subscriber unit 10 via the optical transmission line 45.
  • FIG. When the optical signal from the subscriber unit 20 is not input to the optical multiplexer 40-2, the optical multiplexer 40-2 transmits only the optical signal of wavelength ⁇ c1 transmitted by the control signal transmitter 33-2 to the optical transmission line. 45 to the subscriber unit 10.
  • optical communication system 1a of the second embodiment configured as described above, it is possible to obtain the same effects as in the first embodiment even in two-way communication.
  • FIG. 5 shows a configuration in which optical signals transmitted and received in both directions flow through the same optical fiber core wire.
  • FIG. 6 is a diagram showing a configuration example of an optical communication system 1b according to the third embodiment.
  • An optical communication system 1b includes a plurality of subscriber units 10-1 to 10-N (N is an integer equal to or greater than 2), subscriber units 20-1 to 20-N, a management control unit 30b, and a plurality of optical multiplexers. It includes sections 40-1-1 to 40-1-N, 40-2-1 to 40-2-N, and a plurality of optical SWs 50-1 to 50-2.
  • each subscriber unit 10 is connected to the optical SW 50-1 via the optical transmission line
  • each subscriber unit 20 is connected to the optical SW 50-2 via the optical transmission line.
  • the optical SW 50-1 and the optical SW 50-2 are connected via a plurality of optical transmission lines 45-1 to 45-N.
  • Each subscriber unit 10 converts the main signal into an optical signal and transmits it to the optical SW 50-1.
  • Each subscriber unit 20 converts the main signal into an optical signal and transmits it to the optical SW 50-2.
  • the configuration shown in FIG. 6 is a configuration in which the optical SW 50-1 and the optical SW 50-2 are connected via a plurality of optical transmission lines 45-1 to 45-N. It may be configured to be connected by a transmission line.
  • each subscriber unit 10 converts the main signal into an optical signal with a different wavelength and transmits the optical signal to the optical SW 50-1.
  • Each subscriber unit 20 converts the main signal into an optical signal with a different wavelength and transmits the optical signal to the optical SW 50-2.
  • the management control device 30b includes a plurality of optical transmitters 31b-1 to 31b-2, a plurality of control signal generators 32b-1 to 32b-2, and a plurality of controllers 34-1 to 34-2.
  • the optical transmitter 31b-1 is composed of a plurality of control signal transmitters 33-1-1 to 33-1-N. Thus, the optical transmitter 31b-1 includes the same number of control signal transmitters 33-1 as the optical transmission lines 45.
  • FIG. Each control signal transmitter 33-1 is connected to each optical multiplexer 40-1 provided on the optical transmission line 45 via the optical transmission line.
  • the optical transmitter 31b-2 is composed of a plurality of control signal transmitters 33-2-1 to 33-2-N. Thus, the optical transmitter 31b-2 includes the same number of control signal transmitters 33-2 as the number of optical transmission lines 45.
  • FIG. Each control signal transmitter 33-2 is connected to each optical multiplexer 40-2 provided on the optical transmission line 45 via the optical transmission line.
  • the control signal generation unit 32b-1 generates a control signal for each destination to be controlled (subscriber devices 20-1 to 20-N in the third embodiment).
  • the control signal generator 32b-1 is a control signal transmitter that connects the generated control signal to the optical multiplexer 40-1 provided in the optical transmission line 45 to which the subscriber unit 20 as a transmission destination is connected. Output to 33-1.
  • the control signal generation unit 32b-1 holds information indicating which optical transmission line 45 each subscriber unit 20 is connected to, and the optical transmission line 45 to which the destination subscriber unit 20 is connected. may be specified.
  • the control signal transmitters 33-1-1 to 33-1-N convert the control signals generated by the control signal generator 32b-1 into optical signals (main signals) transmitted by the subscriber units 10-1 to 10-N. ) into an optical signal with a different wavelength.
  • each of the control signal transmitters 33-1-1 to 33-1-N transmits an optical signal transmitted by the subscriber unit 10 connected to the optical transmission line 45 provided with the connected optical multiplexer 40-1. It is converted into an optical signal with a wavelength different from the wavelength of the (main signal).
  • the control signal generator 32b-2 generates a control signal for each destination to be controlled (subscriber devices 10-1 to 10-N in the third embodiment).
  • the control signal generator 32b-2 is a control signal transmitter that connects the generated control signal to the optical multiplexer 40-2 provided in the optical transmission line 45 to which the subscriber unit 10 as a transmission destination is connected. Output to 33-2.
  • the control signal generation unit 32b-2 holds information indicating which optical transmission line 45 each subscriber unit 10 is connected to, and the optical transmission line 45 to which the destination subscriber unit 10 is connected. may be specified.
  • the control signal transmitters 33-2-1 to 33-2-N convert the control signals generated by the control signal generator 32b-2 into optical signals (main signals) transmitted by the subscriber units 20-1 to 20-N. ) into an optical signal with a different wavelength.
  • each of the control signal transmitters 33-2-1 to 33-2-N transmits an optical signal transmitted by the subscriber unit 20 connected to the optical transmission line 45 provided with the connected optical multiplexer 40-2. It is converted into an optical signal with a wavelength different from the wavelength of the (main signal).
  • the control unit 34-1 includes an optical SW control unit 35-1 and a subscriber device management control unit 36-1.
  • the optical SW control unit 35-1 sets connections between the ports of the optical SW 50-2.
  • the subscriber unit management control unit 36-1 performs processing for opening an optical path when a new subscriber unit 20 is connected to the optical SW 50-2.
  • the controller 34-2 includes an optical SW controller 35-2 and a subscriber device management controller 36-2.
  • the optical SW controller 35-2 sets connections between the ports of the optical SW 50-1.
  • the subscriber unit management control unit 36-2 performs processing for opening an optical path when a new subscriber unit 10 is connected to the optical SW 50-1.
  • the controllers 34-1 and 34-2 may be composed of one or more processors.
  • the optical SW 50-1 has multiple first ports and multiple second ports.
  • a first port of the optical SW 50-1 is connected to a plurality of subscriber units 10-1 to 10-N via optical transmission lines, and a second port of the optical SW 50-1 is connected to a plurality of optical transmission lines 45-1 to 45-N. -N are connected.
  • An optical signal input to one port of the optical SW 50-1 is output from another port.
  • an optical signal input to the first port of the optical SW 50-1 is output from the second port.
  • the optical SW 50-2 has a plurality of first ports and a plurality of second ports.
  • a first port of the optical SW 50-2 is connected to a plurality of subscriber units 20-1 to 20-N via optical transmission lines, and a second port of the optical SW 50-2 is connected to a plurality of optical transmission lines 45-1 to 45-N. -N are connected.
  • An optical signal input to a port of the optical SW 50-2 is output from another port. For example, an optical signal input to the first port of the optical SW 50-2 is output from the second port.
  • the subscriber unit 10-1 is connected to the optical transmission line 45-1 through the optical SW50-1, and is connected to the subscriber unit 20-1 through the optical SW50-2.
  • the control signal transmitter 33-1-1 of the management control device 30b generates the control signal generated by the control signal generator 32b-1 with a wavelength different from that of the optical signal (main signal) transmitted by the subscriber device 10-1. Convert the wavelength into an optical signal.
  • the control signal transmitter 33-1-1 transmits the converted optical signal to the optical multiplexer 40-1-1.
  • the optical signal transmitted by the subscriber unit 10-1 and the optical signal transmitted by the control signal transmitter 33-1-1 are input to the optical multiplexer 40-1-1.
  • the optical signal transmitted by the subscriber unit 10-1 and the optical signal transmitted by the control signal transmitter 33-1-1 are optical signals with different wavelengths.
  • the optical multiplexer 40-1-1 multiplexes the input optical signal and the optical signal.
  • the optical signal multiplexed by the optical multiplexer 40-1-1 is output to the subscriber unit 20-1 via the optical transmission line 45 and the optical SW 50-2.
  • optical communication system 1b of the third embodiment configured as described above, the same effects as those of the first embodiment can be obtained even when a plurality of subscriber units 10 and 20 are provided.
  • the optical communication system 1b may be modified similarly to the first embodiment.
  • the management control device 30b needs to include the same number of control signal transmitters 33-1 and 33-2 as the number of optical transmission lines 45.
  • the optical transmitter 31b-1 and each of the optical multiplexers 40-2-1 to 40-2-N , and optical switches may be provided between the optical transmitter 31b-2 and the optical multiplexers 40-1-1 to 40-1-N.
  • the optical transmitters 31b-1 and 31b-2 may each include one control signal transmitter 33-1 and 33-2.
  • the output of the control signal transmission unit 33-1 is switched by the optical switch and output to any one of the optical multiplexing units 40-1-1 to 40-1-N, and the output of the control signal transmission unit 33-2 is It may be output to any one of the optical multiplexers 40-2-1 to 40-2-N by switching with the optical SW. As a result, it is possible to reduce the number of control signal transmitters.
  • Some functional units of the management control devices 30, 30a, and 30b in the above-described embodiments may be realized by computers.
  • a program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read into a computer system and executed.
  • the "computer system” referred to here includes hardware such as an OS and peripheral devices.
  • “computer-readable recording medium” refers to portable media such as flexible disks, magneto-optical disks, ROMs and CD-ROMs, and storage devices such as hard disks built into computer systems.
  • “computer-readable recording medium” means a medium that dynamically retains a program for a short period of time, like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include something that holds the program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or client in that case.
  • the program may be for realizing a part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system. It may be implemented using a programmable logic device such as FPGA.
  • the present invention can be applied to optical communication systems using control signals (eg, AMCC signals).
  • control signals eg, AMCC signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

1以上の第1の加入者装置と、第1の加入者装置と対向する位置に設けられる1以上の第2の加入者装置との通信を管理する管理制御装置とを備える光通信システムであって、管理制御装置は、第1の加入者装置に対して送信する管理及び制御のために用いられる制御信号を生成する制御信号生成部と、制御信号生成部により生成された制御信号を、第1の加入者装置と通信を行う第2の加入者装置が送信する主信号の波長と異なる波長の光信号に変換し、光信号を送信する光送信部と、を備え、第1の加入者装置と第2の加入者装置との通信経路上に設けられ、第2の加入者装置が送信した主信号と、光送信部から送信された光信号とを合波する光合波部と、を備える光通信システム。 

Description

光通信システム、管理制御装置及び制御信号伝送方法
 本発明は、光通信システム、管理制御装置及び制御信号伝送方法に関する。
 従来の光通信システムでは、加入者装置は、通信を行うために通信相手となる加入者装置と接続するための光パスを開通する必要がある。図7及び図8は、従来の光通信システム100における光パスの開通方法を説明するための図である。図7に示すように、従来の光通信システム100は、複数の加入者装置200-1~200-3と、複数の加入者装置300-1~300-3と、複数の制御部400-1~400-2と、複数の光SW500-1~500-2とを備える。
 加入者装置200-1~200-3は、光伝送路を介して光SW500-1に接続され、加入者装置300-1~300-3は、光伝送路を介して光SW500-2に接続される。光SW500-1と光SW500-2とは、光伝送路で構成される光通信NW600を介して接続される。制御部400-1は、加入者装置200の管理を行うとともに、光SW500-1の動作を制御する。制御部400-2は、加入者装置300の管理を行うとともに、光SW500-2の動作を制御する。
 ここで、加入者装置200-1が新たに光SW500-1に接続されたとする。加入者装置200-1の初期接続時は、加入者装置200-1が加入者装置管理制御部420と通信するように、光SW制御部410が光SW500-1のポート間の接続を設定する。これにより、加入者装置200-1と加入者装置管理制御部420との間で加入者装置200-1の登録及び認証に必要な情報のやりとりを行ったり、加入者装置管理制御部420から加入者装置200-1に対して発光波長を指示することができる。このように、加入者装置の管理及び制御のための信号としてAMCC(Auxiliary Management and Control Channel)と呼ばれる制御信号が用いられる。AMCC信号は、例えば、光送受信器の送受信波長、送信光強度、温度などを示す状態情報を含む。
 加入者装置200-1の登録及び認証や波長設定などが完了すると、加入者装置200-1から送信される光信号が通信相手となる加入者装置300-1へ転送されるように、光SW制御部410は光SW500-1のポート間接続の設定を変更する。同様に、制御部400-2は、加入者装置200-1から送信される光信号が通信相手となる加入者装置300-1へ転送されるように、光SW500-2のポート間接続の設定を変更する。これにより、図8に示すように加入者装置200-1と加入者装置300-1とを直接接続する光パスを開通することができる。
 しかしながら、従来の光通信システム100の構成では、光パスが一旦開通した後は、制御部400-1又は400-2からの制御信号を加入者装置に伝送する制御チャネルが存在しない。そこで、従来では、図9に示すように、光伝送路中に制御信号重畳部を設けて、加入者装置200が加入者装置300に向けて出力した光信号に、制御部からの制御信号をAMCCとして重畳することにより、光パス開通済の加入者装置に対して制御部からの制御信号を伝送することができる。
 図9は、従来の光通信システム100に制御信号重畳部を設けた構成を示す図である。図9に示すように、光通信システム100aは、複数の加入者装置200-1~200-3と、複数の加入者装置300-1~300-3と、複数の制御部400a-1~400a-2と、複数の光SW500-1~500-2と、複数の光分岐部650-1~650-3と、複数の制御信号重畳部660-1~660-3を備える。光分岐部650-1~650-3は、各光伝送路上に設けられ、加入者装置200-1~200-3から送信された光信号を分岐する。光分岐部650-1~650-3により分岐された光信号は、制御部400a-1の制御信号受信部430と、制御信号重畳部660-1~660-3に出力される。
 制御信号受信部430は、光分岐部650-1~650-3により分岐された光信号から制御信号を取得する。制御信号重畳部660-1~660-3は、制御部400a-2から送信された制御信号を、光分岐部650-1~650-3により分岐された光信号に重畳する。制御信号重畳部660-1~660-3により制御信号が重畳された光信号は、光SW500-2を介して加入者装置300に伝送される。
金井拓也 本田一暁 田中康就 金子慎 原一貴 可児淳一 吉田智暁, "All-Photonics Networkを支えるPhotonic Gateway," 信学会総合大会, B-8-20, 2021年3月.
 しかしながら、図9に示す構成では、制御部400a-2から加入者装置300に対する制御信号を、加入者装置300の対向装置である加入者装置200から送信される光信号に重畳する必要がある。そのため、加入者装置200から送信された光信号が制御信号重畳部660-1~660-3に到達しない場合には、制御信号を伝送することができない。例えば、加入者装置200の送信器故障、光伝送路の断線、経路中の光SW500-1のポート間接続の誤設定や誤動作などが発生すると、加入者装置200から送信された光信号が制御信号重畳部660-1~660-3に到達しなくなってしまう。このような場合、加入者装置に対して制御信号を伝送することができないという問題があった。
 上記事情に鑑み、本発明は、加入者装置から送信された光信号が対向する加入者装置に到達しない場合であっても、制御信号を加入者装置に伝送することができる技術の提供を目的としている。
 本発明の一態様は、1以上の第1の加入者装置と、前記第1の加入者装置と対向する位置に設けられる1以上の第2の加入者装置との通信を管理する管理制御装置とを備える光通信システムであって、前記管理制御装置は、前記第1の加入者装置に対して送信する管理及び制御のために用いられる制御信号を生成する制御信号生成部と、前記制御信号生成部により生成された前記制御信号を、前記第1の加入者装置と通信を行う第2の加入者装置が送信する主信号の波長と異なる波長の光信号に変換し、前記光信号を送信する光送信部と、を備え、前記第1の加入者装置と前記第2の加入者装置との通信経路上に設けられ、前記第2の加入者装置が送信した主信号と、前記光送信部から送信された前記光信号とを合波する光合波部と、を備える光通信システムである。
 本発明の一態様は、1以上の第1の加入者装置と、前記第1の加入者装置と対向する位置に設けられる1以上の第2の加入者装置との通信を管理する管理制御装置であって、前記第1の加入者装置に対して送信する管理及び制御のために用いられる制御信号を生成する制御信号生成部と、前記制御信号生成部により生成された前記制御信号を、前記第1の加入者装置と通信を行う第2の加入者装置が送信する主信号の波長と異なる波長の光信号に変換し、前記光信号を、前記第1の加入者装置と前記第2の加入者装置との通信経路上に設けられ、前記第2の加入者装置が送信した主信号と、他の光信号とを合波する光合波部に送信する光送信部と、を備える管理制御装置である。
 本発明の一態様は、1以上の第1の加入者装置と、前記第1の加入者装置と対向する位置に設けられる1以上の第2の加入者装置との通信を管理する管理制御装置を備える光通信システムにおける制御信号伝送方法であって、前記管理制御装置が、前記第1の加入者装置に対して送信する管理及び制御のために用いられる制御信号を生成し、生成した前記制御信号を、前記第1の加入者装置と通信を行う第2の加入者装置が送信する主信号の波長と異なる波長の光信号に変換し、前記光信号を送信し、光合波部が、前記第1の加入者装置と前記第2の加入者装置との通信経路上に設けられ、前記第2の加入者装置が送信した主信号と、前記管理制御装置から送信された前記光信号とを合波する制御信号伝送方法である。
 本発明により、加入者装置から送信された光信号が対向する加入者装置に到達しない場合であっても、制御信号を加入者装置に伝送することが可能となる。
第1の実施形態における光通信システムの構成例を示す図である。 第1の実施形態における加入者装置の構成を示す図である。 第1の実施形態における光通信システムの処理の流れを示すシーケンス図である。 第1の実施形態における加入者装置の他の構成を示す図である。 第2の実施形態における光通信システムの構成例を示す図である。 第3の実施形態における光通信システムの構成例を示す図である。 従来の光通信システムにおける光パスの開通方法を説明するための図である。 従来の光通信システムにおける光パスの開通方法を説明するための図である。 従来の光通信システムに制御信号重畳部を設けた構成を示す図である。
 以下、本発明の一実施形態を、図面を参照しながら説明する。
(第1の実施形態)
 図1は、第1の実施形態における光通信システム1の構成例を示す図である。光通信システム1は、加入者装置10と、加入者装置20と、管理制御装置30と、光合波部40とを備える。図1では、光通信システム1が加入者装置10及び加入者装置20をそれぞれ1台備える構成を示しているが、加入者装置10及び加入者装置20は、複数台備えられてもよい。
 図1において、加入者装置10と加入者装置20とは、光伝送路45を介して接続される。光伝送路45は、例えば光ファイバである。第1の実施形態では、加入者装置10から加入者装置20に対して光信号を送信する場合の構成について説明する。
 加入者装置10は、主信号を波長λs(sは1以上の整数)の光信号に変換して光伝送路45に送信する。具体的には、加入者装置10は、主信号を管理制御装置30から指示された波長である波長λsの光信号に変換して光伝送路45に送信する。
 加入者装置20は、加入者装置10と通信を行う装置である。加入者装置20は、光合波部40から出力された光信号を受信する。加入者装置20が受信する光信号は、光合波部40により合波された光信号である。加入者装置20は、例えば、受信した光信号を波長が異なる主信号と制御信号に分離した後に、検波及び復調することにより主信号と制御信号とを受信してもよい。制御信号が主信号と周波数帯域が重ならないAMCC信号である場合、加入者装置20は、例えば、受信した光信号を検波して電気信号に変換した後に主信号と制御信号に分岐して、分岐された各電気信号を復調することにより主信号とAMCC信号とを受信してもよい。
 管理制御装置30は、加入者装置10及び20の制御、制御信号の監視及び制御信号に基づく制御を行う。ここで加入者装置10及び20の制御とは、例えば加入者装置10及び20に対する光停止指示、波長変更の指示等である。管理制御装置30は、光送信部31と、制御信号生成部32とを備える。光送信部31は、制御信号送信部33で構成される。光送信部31と、光合波部40とは、光伝送路を介して接続される。
 制御信号生成部32は、制御対象となる宛先(第1の実施形態では、加入者装置20)に対する制御信号を生成する。制御信号生成部32が生成する制御信号には、「接続先装置への通信終了連絡(発光停止指示)」、「接続先切替や経路切替による波長変更」、「加入者装置へのリクエストに対する応答」等の情報が含まれる。AMCC信号は、制御信号の一例である。
 制御信号送信部33は、制御信号生成部32により生成された制御信号を、加入者装置10が送信する光信号(主信号)の波長λsと異なる波長(例えば、波長λc)の光信号に変換する。制御信号送信部33は、変換後の光信号を光合波部40に送信する。例えば、制御信号送信部33は、不図示のメモリに保存された加入者装置10が利用する波長の情報に基づいて、加入者装置10が送信する光信号の波長を特定する。
 光合波部40には、加入者装置10が送信した波長λsの光信号と、制御信号送信部33が送信した波長λcの光信号とが入力される。光合波部40は、入力された波長λsの光信号と、波長λcの光信号とを合波する。光合波部40は、合波後の光信号を、光伝送路45を介して加入者装置20に出力する。なお、加入者装置10からの光信号が光合波部40に入力されない場合、光合波部40は制御信号送信部33が送信した波長λcの光信号のみを、光伝送路45を介して加入者装置20に出力することになる。光合波部40は、波長選択性のない光合波手段(例えば、光カプラ)であってもよいし、波長選択性のある波長合波手段(例えば、波長フィルタ)であってもよい。
 図2は、第1の実施形態における加入者装置20の構成を示す図である。図2では、加入者装置20における光信号を受信する光受信部の構成を示している。加入者装置20は、光受信部21を備える。光受信部21は、波長分離部22と、PD23-1と、PD23-2とで構成される。波長分離部22は、入力された光信号を波長に応じて分波する。波長分離部22には、PD23-1と、PD23-2とが接続されている。例えば、波長λsの光信号はPD23-1に出力され、波長λcの光信号はPD23-2に出力される。
 PD23-1は、入力された波長λsの光信号を電気信号に変換する。これにより、加入者装置20は、主信号を取得することができる。PD23-2は、入力された波長λcの光信号を電気信号に変換する。これにより、加入者装置20は、制御信号を取得することができる。PD23-1及び23-2は、受信部の一例である。図2に示す構成は、フォトダイオードを用いて直接検波する場合の構成であるが、コヒーレント受信を適用する場合においても同様の構成をとることができる。なお、加入者装置20が、図2に示す構成である場合には、制御信号の周波数帯域が主信号と異なっていてもよいし、重なっていてもよい。
 図3は、第1の実施形態における光通信システム1の処理の流れを示すシーケンス図である。
 加入者装置10は、波長λsの光信号を光伝送路45に送信する(ステップS101)。加入者装置10から送信された波長λsの光信号は、光伝送路45を介して光合波部40に入力される。
 管理制御装置30の制御信号生成部32は、加入者装置20に対して送信する制御信号を生成する(ステップS102)。制御信号生成部32は、生成した制御信号を制御信号送信部33に出力する。制御信号送信部33は、制御信号生成部32から出力された制御信号を、加入者装置10が送信した光信号の波長λsと異なる波長である波長λcの光信号に変換する。制御信号送信部33は、変換した波長λcの光信号を光合波部40に送信する(ステップS103)。
 光合波部40には、加入者装置10が送信した波長λsの光信号と、制御信号送信部33が送信した波長λcの光信号とが入力される。光合波部40は、入力された波長λsの光信号と、波長λcの光信号とを合波する(ステップS104)。光合波部40により合波された光信号は、光伝送路45を介して加入者装置20に入力される。加入者装置20の波長分離部22は、入力された光信号を波長分離する(ステップS105)。例えば、波長分離部22により、入力された光信号が波長λsの光信号と、波長λcの光信号とに分波される。
 PD23-1は、波長分離部22により分波された波長λsの光信号を電気信号に変換する。PD23-2は、波長分離部22により分波された波長λcの光信号を電気信号に変換する(ステップS106)。
 以上のように構成された光通信システム1によれば、管理制御装置30において制御信号を、加入者装置10から送信された光信号の波長と異なる波長の光信号に変換して、加入者装置10から送信された光信号に光合波部40で合波させる。光合波部40では、加入者装置10から送信された光信号が入力された場合には、入力された光信号に、異なる波長の光信号を合波して加入者装置20に出力する。一方で、光合波部40では、加入者装置10から送信された光信号が入力されていない場合には、管理制御装置30から送信された制御信号の光信号のみを加入者装置20に出力する。このように、光通信システム1では、加入者装置10から送信された光信号が対向する加入者装置20に到達しない場合であっても、制御信号を加入者装置20に伝送することが可能になる。
 さらに、光通信システム1では、従来のように制御信号を伝送するために、インラインの制御信号重畳部を制御信号の宛先とする加入者装置毎に設ける必要がない。そして、光通信システム1では、加入者装置10と加入者装置20との間の光伝送路45上に、光合波部40を備えるといったシンプルな構成で、光パスが一旦開通した後であっても制御信号を加入者装置に伝送することが可能になる。
(第1の実施形態における変形例)
 制御信号の信号帯域が主信号の信号帯域と重ならないAMCC信号を制御信号とする場合には、加入者装置20は、図4に示す光受信部21を備えるように構成されてもよい。図4は、第1の実施形態における加入者装置20の他の構成を示す図である。図4では、加入者装置20における光信号を受信する光受信部の構成を示している。加入者装置20は、光受信部21aを備える。光受信部21aは、PD23と、LPF24とを備える。PD23は、入力された光信号を電気信号に変換する。PD23により変換された電気信号は、分岐されてLPF24に入力される。LPF24では、電気段で主信号からAMCC信号を分離し、AMCC信号を取得する。
 上記のように、図4の構成では、主信号を搬送する波長とAMCC信号を搬送する波長を一括で検波した後に分岐し、それぞれ復調することにより、シンプルな光受信部の構成で主信号とAMCC信号の両方を受信することができる。なお、主信号を搬送する波長とAMCC信号を搬送する波長のビート成分がAMCC信号成分及び主信号成分と重ならないように、管理制御装置30においてAMCC信号の波長を設定する必要がある。AMCC信号の波長は、この条件を満たせばよく、複数の光パスが波長多重される光通信システムにおいて、光パス毎にAMCC信号の波長を変えなくてもよい。
 ここで、加入者装置10が、管理制御装置30に対する制御信号を、主信号と信号帯域が重ならない周波数に重畳してAMCC信号として送信する場合、管理制御装置30は、主信号と同じ波長に残留するAMCC信号と、主信号と異なる波長(例えば、λc)で搬送されるAMCC信号とが、図4に示す加入者装置20の光受信部21内の検波後に干渉しないように、検波後にAMCC信号が時間分割多重(TDM:Time Division Multiplexing)又は周波数分割多重(FDM:Frequency Division Multiplexing)されるようにAMCC信号の送信タイミング又は周波数を加入者装置10に設定する。
 図3に示すステップS102及びS103の処理は、ステップS101の処理より前に実行されてもよい。
(第2の実施形態)
 第2の実施形態では、双方向で通信を行う場合の構成について説明する。
 図5は、第2の実施形態における光通信システム1aの構成例を示す図である。光通信システム1aは、加入者装置10と、加入者装置20と、管理制御装置30aと、複数の光合波部40-1,40-2とを備える。図5では、光通信システム1aが加入者装置10及び加入者装置20をそれぞれ1台備える構成を示しているが、加入者装置10及び加入者装置20は、複数台備えられてもよい。
 第2の実施形態では、加入者装置10は、主信号を波長λs1の光信号に変換して光伝送路45に送信する。具体的には、加入者装置10は、主信号を管理制御装置30aから指示された波長である波長λs1の光信号に変換して光伝送路45に送信する。
 第2の実施形態では、加入者装置20は、主信号を波長λs2の光信号に変換して光伝送路45に送信する。具体的には、加入者装置20は、主信号を管理制御装置30aから指示された波長である波長λs2の光信号に変換して光伝送路45に送信する。
 加入者装置10及び20は、図2に示す光受信部21又は図4に示す光受信部21aの構成を備える。
 管理制御装置30aは、複数の光送信部31-1~31-2と、複数の制御信号生成部32-1~32-2とを備える。光送信部31-1は、制御信号送信部33-1で構成される。光送信部31-1と、光合波部40-1とは、光伝送路を介して接続される。光送信部31-2は、制御信号送信部33-2で構成される。光送信部31-2と、光合波部40-2とは、光伝送路を介して接続される。
 制御信号生成部32-1は、制御対象となる宛先(第2の実施形態では、加入者装置20)に対する制御信号を生成する。制御信号送信部33-1は、制御信号生成部32-1により生成された制御信号を、加入者装置10が送信する光信号(主信号)の波長λs1と異なる波長(例えば、波長λc2)の光信号に変換する。制御信号送信部33-1は、変換後の光信号を光合波部40-1に送信する。
 制御信号生成部32-2は、制御対象となる宛先(第2の実施形態では、加入者装置10)に対するAMCC信号を生成する。制御信号送信部33-2は、制御信号生成部32-2により生成された制御信号を、加入者装置20が送信する光信号(主信号)の波長λs2と異なる波長(例えば、波長λc1)の光信号に変換する。制御信号送信部33-2は、変換後の光信号を光合波部40-2に送信する。
 図5において、光伝送路45上には、光合波部40-1及び40-2が備えられている。光合波部40-1には、加入者装置10が送信した波長λs1の光信号と、制御信号送信部33-1が送信した波長λc2の光信号とが入力される。光合波部40-1は、入力された波長λs1の光信号と、波長λc2の光信号とを合波する。光合波部40-1は、合波後の光信号を、光伝送路45を介して加入者装置20に出力する。なお、加入者装置10からの光信号が光合波部40-1に入力されない場合、光合波部40-1は制御信号送信部33-1が送信した波長λc2の光信号のみを、光伝送路45を介して加入者装置20に出力することになる。
 光合波部40-2には、加入者装置20が送信した波長λs2の光信号と、制御信号送信部33-2が送信した波長λc1の光信号とが入力される。光合波部40-2は、入力された波長λs2の光信号と、波長λc1の光信号とを合波する。光合波部40-2は、合波後の光信号を、光伝送路45を介して加入者装置10に出力する。なお、加入者装置20からの光信号が光合波部40-2に入力されない場合、光合波部40-2は制御信号送信部33-2が送信した波長λc1の光信号のみを、光伝送路45を介して加入者装置10に出力することになる。
 以上のように構成された第2の実施形態における光通信システム1aによれば、双方向通信においても第1の実施形態と同様の効果を得ることができる。
(第2の実施形態における変形例)
 光通信システム1aは、第1の実施形態と同様に変形されてもよい。
 図5では、双方向で送受信される光信号が同一の光ファイバ芯線を流れる構成を示しているが、双方向で送受信される光信号がそれぞれ異なる光ファイバ芯線を流れる区間が存在する構成であってもよい。
(第3の実施形態)
 第3の実施形態では、第2の実施形態の構成に加えて、加入者装置間に、複数の光SWを備える構成について説明する。
 図6は、第3の実施形態における光通信システム1bの構成例を示す図である。光通信システム1bは、複数の加入者装置10-1~10-N(Nは2以上の整数)と、加入者装置20-1~20-Nと、管理制御装置30bと、複数の光合波部40-1-1~40-1-N,40-2-1~40-2-Nと、複数の光SW50-1~50-2を備える。
 第3の実施形態では、各加入者装置10は光伝送路を介して光SW50-1に接続され、各加入者装置20は光伝送路を介して光SW50-2に接続される。光SW50-1と光SW50-2とは、複数の光伝送路45-1~45-Nを介して接続される。各加入者装置10は、主信号を光信号に変換して光SW50-1に送信する。各加入者装置20は、主信号を光信号に変換して光SW50-2に送信する。図6に示す構成は、光SW50-1と光SW50-2とを複数の光伝送路45-1~45-Nを介して接続する構成であるが、波長分割多重を用いて1本の光伝送路で接続する構成であってもよい。この場合、各加入者装置10は、主信号を互いに異なる波長の光信号に変換して光SW50-1に送信する。各加入者装置20は、主信号を互いに異なる波長の光信号に変換して光SW50-2に送信する。
 管理制御装置30bは、複数の光送信部31b-1~31b-2と、複数の制御信号生成部32b-1~32b-2と、複数の制御部34-1~34-2を備える。光送信部31b-1は、複数の制御信号送信部33-1-1~33-1-Nで構成される。このように、光送信部31b-1は、光伝送路45の数と同じ数の制御信号送信部33-1を備える。各制御信号送信部33-1は、光伝送路45上に備えられる各光合波部40-1と光伝送路を介して接続される。光送信部31b-2は、複数の制御信号送信部33-2-1~33-2-Nで構成される。このように、光送信部31b-2は、光伝送路45の数と同じ数の制御信号送信部33-2を備える。各制御信号送信部33-2は、光伝送路45上に備えられる各光合波部40-2と光伝送路を介して接続される。
 制御信号生成部32b-1は、制御対象となる宛先(第3の実施形態では、加入者装置20-1~20-N)それぞれに対する制御信号を生成する。制御信号生成部32b-1は、生成した制御信号を、送信先となる加入者装置20が接続されている光伝送路45に備えられている光合波部40-1と接続する制御信号送信部33-1に出力する。
 なお、制御信号生成部32b-1は、各加入者装置20がどの光伝送路45に接続されているかを示す情報を保持して、宛先となる加入者装置20が接続される光伝送路45を特定してもよい。
 制御信号送信部33-1-1~33-1-Nは、制御信号生成部32b-1により生成された制御信号を、加入者装置10-1~10-Nが送信する光信号(主信号)の波長と異なる波長の光信号に変換する。例えば、制御信号送信部33-1-1~33-1-Nそれぞれは、接続している光合波部40-1が備えられる光伝送路45に接続される加入者装置10が送信する光信号(主信号)の波長と異なる波長の光信号に変換する。
 制御信号生成部32b-2は、制御対象となる宛先(第3の実施形態では、加入者装置10-1~10-N)それぞれに対する制御信号を生成する。制御信号生成部32b-2は、生成した制御信号を、送信先となる加入者装置10が接続されている光伝送路45に備えられている光合波部40-2と接続する制御信号送信部33-2に出力する。
 なお、制御信号生成部32b-2は、各加入者装置10がどの光伝送路45に接続されているかを示す情報を保持して、宛先となる加入者装置10が接続される光伝送路45を特定してもよい。
 制御信号送信部33-2-1~33-2-Nは、制御信号生成部32b-2により生成された制御信号を、加入者装置20-1~20-Nが送信する光信号(主信号)の波長と異なる波長の光信号に変換する。例えば、制御信号送信部33-2-1~33-2-Nそれぞれは、接続している光合波部40-2が備えられる光伝送路45に接続される加入者装置20が送信する光信号(主信号)の波長と異なる波長の光信号に変換する。
 制御部34-1は、光SW制御部35-1と、加入者装置管理制御部36-1とを備える。光SW制御部35-1は、光SW50-2のポート間の接続を設定する。加入者装置管理制御部36-1は、光SW50-2に新たに加入者装置20が接続された場合に、光パスの開通の処理を行う。
 制御部34-2は、光SW制御部35-2と、加入者装置管理制御部36-2とを備える。光SW制御部35-2は、光SW50-1のポート間の接続を設定する。加入者装置管理制御部36-2は、光SW50-1に新たに加入者装置10が接続された場合に、光パスの開通の処理を行う。
 制御部34-1及び34-2は、1以上のプロセッサで構成されてもよい。
 光SW50-1は、複数の第1ポートと、複数の第2ポートとを有する。光SW50-1の第1ポートには複数の加入者装置10-1~10-Nが光伝送路で接続され、光SW50-1の第2ポートには複数の光伝送路45-1~45-Nが接続される。光SW50-1のあるポートに入力された光信号は、他のポートから出力される。例えば、光SW50-1の第1ポートに入力された光信号は、第2ポートから出力される。
 光SW50-2は、複数の第1ポートと、複数の第2ポートとを有する。光SW50-2の第1ポートには複数の加入者装置20-1~20-Nが光伝送路で接続され、光SW50-2の第2ポートには複数の光伝送路45-1~45-Nが接続される。光SW50-2のあるポートに入力された光信号は、他のポートから出力される。例えば、光SW50-2の第1ポートに入力された光信号は、第2ポートから出力される。
 図6に示す例では、加入者装置10-1は、光SW50-1を介して光伝送路45-1に接続され、光SW50-2を介して加入者装置20-1に接続される。ここで、加入者装置10-1から加入者装置20-1宛に送信された光信号に、加入者装置20-1宛の制御信号を合波する場合の処理について考えられる。管理制御装置30bの制御信号送信部33-1-1は、制御信号生成部32b-1により生成された制御信号を、加入者装置10-1が送信する光信号(主信号)の波長と異なる波長の光信号に変換する。制御信号送信部33-1-1は、変換後の光信号を光合波部40-1-1に送信する。
 光合波部40-1-1には、加入者装置10-1が送信した光信号と、制御信号送信部33-1-1が送信した光信号とが入力される。加入者装置10-1が送信した光信号と、制御信号送信部33-1-1が送信した光信号とは、異なる波長の光信号である。光合波部40-1-1は、入力された光信号と、光信号とを合波する。光合波部40-1-1により合波された光信号は、光伝送路45及び光SW50-2を介して加入者装置20-1に出力される。
 以上のように構成された第3の実施形態における光通信システム1bによれば、複数の加入者装置10及び20が備えられる場合においても第1の実施形態と同様の効果を得ることができる。
(第3の実施形態における変形例)
 光通信システム1bは、第1の実施形態と同様に変形されてもよい。
 図6に示す構成では、管理制御装置30bは、光伝送路45の数と同じ数だけ制御信号送信部33-1や制御信号送信部33-2を備える必要がある。そこで、制御信号送信部33-1及び制御信号送信部33-2の数を削減するために、光送信部31b-1と各光合波部40-2-1~40-2-Nとの間、及び、光送信部31b-2と各光合波部40-1-1~40-1-Nとの間にそれぞれ光SWを備えるように構成されてもよい。このように構成される場合、光送信部31b-1及び31b-2はそれぞれ1つの制御信号送信部33-1及び33-2を備えればよい。そして、制御信号送信部33-1の出力を、光SWにより切り替えて光合波部40-1-1~40-1-Nのいずれかに出力し、制御信号送信部33-2の出力を、光SWにより切り替えて光合波部40-2-1~40-2-Nのいずれかに出力すればよい。
 その結果、制御信号送信部の数を削減することが可能になる。
 上述した実施形態における管理制御装置30,30a,30bの一部の機能部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、制御信号(例えば、AMCC信号)を用いる光通信システムに適用できる。
10、10-1~10-N…加入者装置, 20、20-1~20-N…加入者装置, 21、21a…光受信部, 22…波長分離部, 23-1、23-2…PD, 24…LPF, 30、30a、30b…管理制御装置, 31、31-1、31-2、31b-1、31b-2…光送信部, 32、32-1、32-2、32b-1、32b-2…制御信号生成部, 33、33-1、33-2、33-1-1~33-1-N、33-2-1~33-2-N…制御信号送信部, 34-1、34-2…制御部, 35-1、35-2…光SW制御部, 36-1、36-2…加入者装置管理制御部, 40、40-1、40-2、40-1-1~40-1-N、40-2-1~40-2-N…光合波部, 50-1、50-2…光SW

Claims (8)

  1.  1以上の第1の加入者装置と、前記第1の加入者装置と対向する位置に設けられる1以上の第2の加入者装置との通信を管理する管理制御装置を備える光通信システムであって、
     前記管理制御装置は、
     前記第1の加入者装置に対して送信する管理及び制御のために用いられる制御信号を生成する制御信号生成部と、
     前記制御信号生成部により生成された前記制御信号を、前記第1の加入者装置と通信を行う第2の加入者装置が送信する主信号の波長と異なる波長の光信号に変換し、前記光信号を送信する光送信部と、
     を備え、
     前記第1の加入者装置と前記第2の加入者装置との通信経路上に設けられ、前記第2の加入者装置が送信した主信号と、前記光送信部から送信された前記光信号とを合波する光合波部と、
     を備える光通信システム。
  2.  前記第1の加入者装置は、
     前記光合波部で合波された光信号を第1光信号及び第2光信号に分波する波長分波部と、
     前記第1光信号を電気信号の主信号に変換する第1受信部と、
     前記第2光信号を電気信号の制御信号に変換する第2受信部と、
     を備える、請求項1に記載の光通信システム。
  3.  前記第1の加入者装置は、
     前記光合波部で合波された光信号を電気信号に変換する受信部と、
     前記電気信号から前記制御信号を取得するフィルタと、
     を備える、請求項1に記載の光通信システム。
  4.  前記第1の加入者装置及び前記第2の加入者装置が複数台備えられる場合、
     前記光送信部及び前記光合波部は、前記第1の加入者装置と前記第2の加入者装置との通信経路の数だけ備えられ、
     各光送信部は、前記制御信号生成部により生成された前記制御信号を、各通信経路における前記第2の加入者装置が送信する主信号の波長と異なる波長の光信号に変換し、前記光信号を送信する、請求項1から3のいずれか一項に記載の光通信システム。
  5.  前記第1の加入者装置及び前記第2の加入者装置が複数台備えられる場合、
     前記光合波部は、前記第1の加入者装置と前記第2の加入者装置との通信経路の数だけ備えられ、
     前記光送信部と、各光合波部との間に設けられ、前記光送信部から送信された光信号を入力として、前記光信号を入力したポートと、各光合波部が接続された出力ポートとを接続するように経路を切り替える光スイッチ、
     をさらに備える、請求項1から3のいずれか一項に記載の光通信システム。
  6.  前記制御信号生成部は、第1制御信号生成部と、第2制御信号生成部であり、
     前記光送信部は、第1光送信部と、第2光送信部であり、
     前記光合波部は、第1光合波部と、第2光合波部であり、
     前記第1制御信号生成部は、前記第1の加入者装置に対して送信する管理及び制御のために用いられる制御信号を生成し、
     前記第1光送信部は、前記第1制御信号生成部により生成された前記制御信号を、前記第2の加入者装置が送信する主信号の波長と異なる波長の光信号に変換し、前記光信号を送信し、
     前記第1光合波部は、前記第1の加入者装置と前記第2の加入者装置との通信経路上に設けられ、前記第2の加入者装置が送信した主信号と、前記第1光送信部から送信された前記光信号とを合波し、
     前記第2制御信号生成部は、前記第2の加入者装置に対して送信する管理及び制御のために用いられる制御信号を生成し、
     前記第2光送信部は、前記第2制御信号生成部により生成された前記制御信号を、前記第1の加入者装置が送信する主信号の波長と異なる波長の光信号に変換し、前記光信号を送信し、
     前記第2光合波部は、前記第1の加入者装置と前記第2の加入者装置との通信経路上に設けられ、前記第1の加入者装置が送信した主信号と、前記第2光送信部から送信された前記光信号とを合波する、請求項1から5のいずれか一項に記載の光通信システム。
  7.  1以上の第1の加入者装置と、前記第1の加入者装置と対向する位置に設けられる1以上の第2の加入者装置との通信を管理する管理制御装置であって、
     前記第1の加入者装置に対して送信する管理及び制御のために用いられる制御信号を生成する制御信号生成部と、
     前記制御信号生成部により生成された前記制御信号を、前記第1の加入者装置と通信を行う第2の加入者装置が送信する主信号の波長と異なる波長の光信号に変換し、前記光信号を、前記第1の加入者装置と前記第2の加入者装置との通信経路上に設けられ、前記第2の加入者装置が送信した主信号と、他の光信号とを合波する光合波部に送信する光送信部と、
     を備える管理制御装置。
  8.  1以上の第1の加入者装置と、前記第1の加入者装置と対向する位置に設けられる1以上の第2の加入者装置との通信を管理する管理制御装置を備える光通信システムにおける制御信号伝送方法であって、
     前記管理制御装置が、
     前記第1の加入者装置に対して送信する管理及び制御のために用いられる制御信号を生成し、
     生成した前記制御信号を、前記第1の加入者装置と通信を行う第2の加入者装置が送信する主信号の波長と異なる波長の光信号に変換し、前記光信号を送信し、
     光合波部が、前記第1の加入者装置と前記第2の加入者装置との通信経路上に設けられ、前記第2の加入者装置が送信した主信号と、前記管理制御装置から送信された前記光信号とを合波する制御信号伝送方法。
PCT/JP2021/034137 2021-09-16 2021-09-16 光通信システム、管理制御装置及び制御信号伝送方法 WO2023042345A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023548035A JPWO2023042345A1 (ja) 2021-09-16 2021-09-16
PCT/JP2021/034137 WO2023042345A1 (ja) 2021-09-16 2021-09-16 光通信システム、管理制御装置及び制御信号伝送方法
CN202180101955.4A CN117882355A (zh) 2021-09-16 2021-09-16 光通信系统、管理控制装置及控制信号传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/034137 WO2023042345A1 (ja) 2021-09-16 2021-09-16 光通信システム、管理制御装置及び制御信号伝送方法

Publications (1)

Publication Number Publication Date
WO2023042345A1 true WO2023042345A1 (ja) 2023-03-23

Family

ID=85602609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034137 WO2023042345A1 (ja) 2021-09-16 2021-09-16 光通信システム、管理制御装置及び制御信号伝送方法

Country Status (3)

Country Link
JP (1) JPWO2023042345A1 (ja)
CN (1) CN117882355A (ja)
WO (1) WO2023042345A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101670A (ja) * 2008-10-22 2010-05-06 Fujitsu Ltd 光ファイバ伝送路測定装置および光ファイバ伝送路測定システム
JP2012124731A (ja) * 2010-12-09 2012-06-28 Fujitsu Telecom Networks Ltd 光パケット交換装置、光パケット交換システムおよび光パケット中継装置
JP2014165574A (ja) * 2013-02-22 2014-09-08 Fujitsu Telecom Networks Ltd 光伝送システム
JP2015070421A (ja) * 2013-09-27 2015-04-13 日本電気株式会社 光伝送装置、光伝送システムおよび光伝送方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101670A (ja) * 2008-10-22 2010-05-06 Fujitsu Ltd 光ファイバ伝送路測定装置および光ファイバ伝送路測定システム
JP2012124731A (ja) * 2010-12-09 2012-06-28 Fujitsu Telecom Networks Ltd 光パケット交換装置、光パケット交換システムおよび光パケット中継装置
JP2014165574A (ja) * 2013-02-22 2014-09-08 Fujitsu Telecom Networks Ltd 光伝送システム
JP2015070421A (ja) * 2013-09-27 2015-04-13 日本電気株式会社 光伝送装置、光伝送システムおよび光伝送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKUYA KANAIKAZUAKI HONDAYASUNARI TANAKASHIN KANEKOKAZUKI HARAJUNICHI KANITOMOAKI YOSHIDA: "Photonic Gateway for All-Photonics Network", IEICE GENERAL CONFERENCE, March 2021 (2021-03-01), pages 8 - 20

Also Published As

Publication number Publication date
JPWO2023042345A1 (ja) 2023-03-23
CN117882355A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
JP4899577B2 (ja) 光ネットワーク及びノード
US8280244B2 (en) Optical ring network system
JP4899589B2 (ja) 光ネットワーク、光ネットワークのプロテクション方法及びノード
US20060250681A1 (en) Inter-network optical fiber sharing system
US20120251097A1 (en) Passive architectural optical distribution network
JP2010041602A (ja) 波長分割多重装置及び波長分割多重ネットワークにおける再生中継方法
US7120360B2 (en) System and method for protecting traffic in a hubbed optical ring network
CN106605381B (zh) 光网络中的可重新配置的分插复用器
US7302180B2 (en) Dual homing for DWDM networks in fiber rings
KR20100040532A (ko) 파장 분할 다중화 시스템에서 광 회선 분배 장치 및 방법
WO2023042345A1 (ja) 光通信システム、管理制御装置及び制御信号伝送方法
US20230361875A1 (en) Optical network, network management device, and network management method
WO2022224298A1 (ja) 光アクセスシステム及び制御信号重畳方法
WO2018142907A1 (ja) 光パスネットワーク
JP7343821B2 (ja) 光通信システム及び光信号処理方法
JP4408806B2 (ja) Wdmネットワークのためのパス保護の方法及びそれに応じたノード
JP4488813B2 (ja) 直接的に接続された光学素子を管理するための方法及びシステム
CN111988082A (zh) 单端激活、操作并提供1+1保护光保护交换机的系统和方法
WO2024069807A1 (ja) 光通信装置及び光通信経路開通方法
WO2023089724A1 (ja) 光通信システム及び光通信方法
US20230353912A1 (en) Optical branching/coupling device and method for controlling same
WO2022215244A1 (ja) 光アクセスシステム及び監視方法
WO2023199399A1 (ja) 通信制御装置及び通信制御方法
JP3551115B2 (ja) 通信ネットワークノード
US20230421933A1 (en) Optical communication apparatus, optical communication system and optical communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101955.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023548035

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021957526

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021957526

Country of ref document: EP

Effective date: 20240416