WO2023042186A1 - Vehicle control system and electronic control device - Google Patents

Vehicle control system and electronic control device Download PDF

Info

Publication number
WO2023042186A1
WO2023042186A1 PCT/IB2022/060459 IB2022060459W WO2023042186A1 WO 2023042186 A1 WO2023042186 A1 WO 2023042186A1 IB 2022060459 W IB2022060459 W IB 2022060459W WO 2023042186 A1 WO2023042186 A1 WO 2023042186A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
unit
abnormality
server
electronic control
Prior art date
Application number
PCT/IB2022/060459
Other languages
French (fr)
Japanese (ja)
Inventor
堀田都
永崎健
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to DE112022002882.3T priority Critical patent/DE112022002882T5/en
Publication of WO2023042186A1 publication Critical patent/WO2023042186A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/20Information sensed or collected by the things relating to the thing itself
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/20Analytics; Diagnosis

Definitions

  • the present disclosure relates to vehicle control systems and electronic controllers.
  • Patent Document 1 Claim 1, Paragraph 0005, etc.
  • the in-vehicle device includes operation information acquisition means, travel information acquisition means, position information acquisition means, and control means.
  • the operation information acquisition means acquires information on vehicle operation by the driver.
  • the traveling information acquiring means acquires information about the traveling state of the vehicle.
  • the position information obtaining means obtains current position information of the vehicle.
  • the control means when estimating that an operation has been performed to cope with an emergency based on the operation information, controls to transmit the various information to the outside.
  • the danger location information collection device receives the various information from the vehicle-mounted device and determines that there is a high possibility that the operation was actually performed to deal with an emergency
  • the danger occurrence location information collection device collects the location information related to the danger occurrence location. Collect as information. This determination of the possibility of an emergency is made based on the operation information, the travel information, the traffic rule information of the road on which the vehicle is located, and/or the information regarding the situation around the vehicle.
  • Patent document 1 JP 2007-323281 A
  • the above-described conventional system uses the current position information of the vehicle as information regarding the location of danger when it is highly likely that the driver actually operated the vehicle in order to deal with an emergency. collect.
  • the vehicle in order to drive the vehicle safely by recognizing the external environment using the in-vehicle sensors, it is not enough to rely only on the information on the dangerous locations based on the driver's operation.
  • the present disclosure provides a vehicle control system and an electronic control device that enable the vehicle to run safely by recognizing the external environment using on-vehicle sensors.
  • One aspect of the present disclosure is a vehicle control system comprising: each electronic control device mounted on each of a plurality of vehicles; and at least one server communicably connected to each electronic control device.
  • Each of the electronic control units includes a recognition unit for recognizing road conditions based on the detection results of external sensors mounted on the respective vehicles, and an abnormality including poor recognition of the road conditions by the recognition unit. and anomaly information including the position of each vehicle at the time of the anomaly judgment by the judging unit, the time, and the type of the judged anomaly to the server via a communication device mounted on each of the vehicles.
  • the server includes a recording unit that records abnormality occurrence information in which the abnormality information received from each electronic control device is associated with each node or link of map information; a calculating unit for calculating a travel difficulty based on the abnormality determination frequency for each of the nodes or links included in the abnormality occurrence information; and a transmitter for transmitting the safe route to each of the electronic control units as a recommended route.
  • FIG. 1 is a block diagram showing Embodiment 1 of a vehicle control system and an electronic control device of the present disclosure
  • FIG. FIG. 2 is a flow chart showing an example of processing by the electronic control unit of FIG. 1
  • FIG. 2 is a flowchart showing an example of processing by the server in FIG. 1
  • FIG. 4 is a flowchart showing details of the process of selecting a safe route in FIG. 3
  • FIG. 4 is a diagram showing an example of map information used in the process of selecting a safe route in FIG. 3
  • 5 is a graph showing an example of a result of processing for acquiring the frequency of occurrence of anomalies in FIG. 4
  • 5 is a graph showing an example of a result of processing for acquiring the frequency of occurrence of anomalies in FIG. 4
  • FIG. 4 is a graph showing an example of a result of processing for acquiring the frequency of occurrence of anomalies in FIG. 4;
  • FIG. 4 is a flow chart showing an example of processing for acquiring the frequency of occurrence of anomal
  • FIG. 8 is a block diagram of a server in Embodiment 3 of the vehicle control system of the present disclosure
  • FIG. 9 is a flowchart showing an example of processing by the server of FIG. 8
  • An example of a display screen by the countermeasure support unit in FIG. 8 An example of a display screen by the countermeasure support unit in FIG. 8 .
  • FIG. 10 is an example of a display screen for displaying the traveling difficulty level of each node/link in FIG. 9
  • FIG. 12 is a graph showing the travel difficulty for each abnormality type of the link selected in FIG. 11
  • FIG. 9 is a flowchart showing an example of processing by the server of FIG. 8;
  • FIG. 1 is a block diagram showing Embodiment 1 of a vehicle control system and an electronic control device of the present disclosure.
  • the vehicle control system 100 of this embodiment is, for example, an automatic driving support system that supports automatic driving of a plurality of vehicles 200 .
  • illustration of the plurality of vehicles 200 is omitted, and only one vehicle 200 is illustrated.
  • the vehicle control system 100 includes, for example, at least one server 110 and a plurality of electronic control units 120 (not shown). That is, the vehicle control system 100 may include multiple servers 110 . Each electronic control unit 120 of the plurality of electronic control units 120 is mounted in each vehicle 200 of the plurality of vehicles 200 .
  • the server 110 is, for example, a computer configured by hardware such as a central processing unit (CPU), memories such as ROM and RAM, timers, and input/output units.
  • Server 110 is communicably connected to electronic control unit 120 via, for example, Internet line 300, communication device 400 such as a radio base station, a radio communication line, communication device 210 mounted on vehicle 200, and an in-vehicle network. ing.
  • the server 110 has, for example, a recording unit 111, a calculation unit 112, a route selection unit 113, and a transmission unit 114.
  • the server 110 may also have a storage unit 115 .
  • Each part of these vehicle control system 100 expresses each function of vehicle control system 100 realized by executing the program recorded on memory by CPU of vehicle control system 100, for example.
  • the electronic control device 120 is, for example, a vehicle control device mounted on the vehicle 200 .
  • the electronic control unit 120 is composed of, for example, one or more microcontrollers, and includes a CPU, memories such as ROM and RAM, timers, input/output units, and the like.
  • the electronic control unit 120 has, for example, a recognition unit 121, a determination unit 122, a transmission unit 123, and a vehicle control unit 124. Each part of these electronic control units 120 expresses each function of the electronic control unit 120 realized by executing the program recorded on memory by CPU of the electronic control unit 120, for example.
  • Each vehicle 200 is, for example, a gasoline vehicle, a diesel vehicle, a hybrid vehicle, an electric vehicle, or a fuel cell vehicle.
  • Vehicle 200 includes, in addition to electronic control device 120, communication device 210, external sensor 220, vehicle sensor 230, navigation system 240, actuator 250, and notification device 260, for example.
  • vehicle 200 includes a typical configuration of a vehicle, such as a prime mover, power transmission device, braking device, steering device, traveling device, frame, suspension, electrical device, safety device, etc., which are not shown.
  • the communication device 210 is an in-vehicle communication device of the vehicle 200 and is connected to the electronic control device 120 via an in-vehicle network. Communication device 210 performs wireless communication with communication device 400 such as a radio base station installed outside vehicle 200, for example.
  • the communication device 400 is, for example, connected to the communication device 210 of the vehicle 200 via a wireless communication line and connected to the server 110 via the Internet line 300 .
  • Communication device 400 receives information transmitted from vehicle 200 and transmits the information to server 110 , and receives information transmitted from server 110 and transmits the information to communication device 210 of vehicle 200 .
  • the external sensor 220 is, for example, a sensor that detects objects around the vehicle 200, and is connected to the electronic control unit 120 via an in-vehicle network.
  • External sensor 220 includes sensors such as a monocular camera, a stereo camera, a millimeter wave radar, a laser radar, and an ultrasonic sensor, for example.
  • the external sensor 220 includes at least a stereo camera.
  • the vehicle sensor 230 is, for example, a sensor that detects physical quantities related to the vehicle 200, and is connected to the electronic control unit 120 via an in-vehicle network.
  • Vehicle sensors 230 include, for example, wheel speed sensors, acceleration sensors, angular velocity sensors, angular acceleration sensors, steering angle sensors, shift position sensors, accelerator sensors, brake sensors, advanced driving assistance systems (ADAS) and automatic driving systems (ADS). Includes various sensors required for
  • the navigation system 240 includes, for example, a global positioning satellite system (GNSS) receiver, a storage device storing map information, a display device displaying a map and route information to the destination, and inputting the destination and the like. and an input device for Navigation system 240 is connected to electronic control unit 120 via an in-vehicle network, for example, and outputs information on the current position of vehicle 200 and the route to the destination to electronic control unit 120 .
  • GNSS global positioning satellite system
  • Actuator 250 for example, automatically operates the steering device, accelerator, brake, gear shift, etc. of vehicle 200 based on a control signal output from electronic control unit 120, thereby performing advanced driving assistance and automatic driving of vehicle 200. come true. That is, vehicle 200 is equipped with ADAS or ADS configured by communication device 210, external sensor 220, vehicle sensor 230, navigation system 240, electronic control unit 120, actuator 250, and the like.
  • the notification device 260 is, for example, a device that provides information, alerts, and warnings to the occupants of the vehicle 200 based on the control signal output from the electronic control device 120 .
  • Notification device 260 includes, for example, a display device and an audio output device.
  • the display device includes, for example, a liquid crystal display device, an organic EL display device, a head-up display, and the like.
  • Audio output devices include, for example, speakers and buzzers.
  • FIG. 2 is a flow chart showing an example of processing P10 by the electronic control unit 120 of FIG.
  • FIG. 3 is a flowchart showing an example of processing P20 of server 110 in FIG.
  • the electronic control unit 120 When starting the process P10 shown in FIG. 2, the electronic control unit 120 first executes the process P11 for acquiring the departure point and the destination. In this process P11, electronic control unit 120, for example, through vehicle control unit 124, acquires the current position of vehicle 200 from navigation system 240 as a departure point. Further, the electronic control unit 120 acquires the position information of the destination input to the input device of the navigation system 240 by the vehicle control unit 124, for example.
  • the electronic control unit 120 executes a process P12 of requesting route information from the server 110.
  • the electronic control unit 120 uses the transmission unit 123 to transmit a request for a recommended route from the departure point to the destination to the server 110 via the communication device 210 .
  • the information of the starting point and destination of the vehicle 200 included in the request for the recommended route is transmitted in a format that can be compared with the point information included in the map information stored in the storage unit 115 of the server 110, for example. .
  • the information on the departure point and destination of vehicle 200 transmitted from electronic control unit 120 to server 110 includes, for example, the latitude and longitude of each of the departure point and destination.
  • the request for the recommended route transmitted from electronic control unit 120 to server 110 includes, for example, the date and time when vehicle 200 travels from the departure point to the destination.
  • the route selection unit 113 of the server 110 for example, when it determines that it has received a request for a recommended route including a departure point and a destination from the electronic control unit 120 of at least one vehicle 200, route information is requested (YES).
  • the server 110 executes the process P22 of selecting a safe route. This process P22 will be described later in detail with reference to FIG.
  • the server 110 executes a process P23 of transmitting the safe route obtained in the previous process P22 as a recommended route to the electronic control unit 120 of the vehicle 200 that requested the route information.
  • server 110 transmits the recommended route from the departure point of vehicle 200 to the destination to communication device 210 of vehicle 200 via Internet line 300 and communication device 400, for example, using transmission unit 114.
  • electronic control unit 120 of vehicle 200 executes process P13 for receiving route information, for example, as shown in FIG.
  • electronic control unit 120 receives the recommended route from the departure point to the destination transmitted from server 110 by vehicle control unit 124 via communication device 210 of vehicle 200 , for example.
  • electronic control unit 120 of vehicle 200 executes vehicle travel control process P14 for causing vehicle 200 to travel along the received recommended route.
  • the electronic control unit 120 of the vehicle 200 controls the actuator 250 of the vehicle 200 by means of the vehicle control unit 124, for example, so that the vehicle 200 travels along the recommended route. Further, after starting the process P14, the electronic control unit 120 executes a process P15 for recognizing the road condition and a process P16 for determining whether there is an abnormality. It should be noted that these processes P15 and P16 may be executed, for example, at each control cycle while the vehicle travel control process P14 is being executed, or may be executed as appropriate.
  • the electronic control unit 120 acquires the detection results of the external sensor 220 and the vehicle sensor 230 mounted on the vehicle 200 by the recognition unit 121, and recognizes the road condition based on the detection results.
  • the recognition unit 121 recognizes, as road conditions, for example, areas where the vehicle 200 can travel, objects that the vehicle 200 should avoid, and situations in which it is difficult to recognize the road conditions.
  • recognition unit 121 recognizes a road and road edges in front of vehicle 200, lane markings on the road, and the like based on the detection result of external sensor 220, so that vehicle 200 can move. Recognize possible areas. For example, recognition unit 121 recognizes an object in front of vehicle 200 based on the detection result of external sensor 220, and detects an object that may collide with vehicle 200 based on the detection result of vehicle sensor 230. do.
  • the recognition unit 121 recognizes the type of object, such as a car, a motorcycle, a pedestrian, a falling object, and a bump for reducing the speed of the vehicle, based on the detection result of the external sensor 220, for example. Further, the recognition unit 121 recognizes a situation in which it is difficult to recognize the road state based on the detection result of the external sensor 220 .
  • a situation in which it is difficult to recognize the road state is, for example, a situation in which it is difficult for the camera included in the external sensor 220 to recognize an object due to backlight, heavy rain, or snowfall, or a situation in which the external sensor 220 fails to detect lane markings. Including inability to recognize at least one of the left and right lanes.
  • Recognition unit 121 controls notification device 260 of vehicle 200, for example, when at least one of the left and right lanes cannot be recognized or when the road state becomes difficult to recognize. A warning of unrecognized lanes and unrecognized road conditions is issued to the occupants. For example, when recognition unit 121 recognizes an object that may collide with vehicle 200, recognition unit 121 controls notification device 260 to issue a collision avoidance warning to the occupants of vehicle 200, and Information on the object is output to the vehicle control unit 124 .
  • recognition unit 121 detects, for example, when the inter-vehicle distance to the preceding vehicle becomes shorter than a threshold, or when a collision is predicted from the position and speed of vehicle 200 and the positions and speeds of other vehicles. Then, it recognizes those vehicles as potential collision objects. Also, when a collision is predicted from the position and speed of the vehicle 200 and the position and speed of a pedestrian running out onto the road, the pedestrian is recognized as an object that may collide.
  • the recognition unit 121 recognizes a speed reduction bump
  • the recognition unit 121 recognizes the bump as an object that requires deceleration when the vehicle 200 passes through.
  • the vehicle control unit 124 controls the actuator 250 of the vehicle 200 to avoid collision.
  • the steering operation for the purpose and the collision damage mitigation brake (AEB) etc. are operated.
  • the recognition unit 121 recognizes, for example, poor recognition of road conditions, recognition of road conditions different from normal conditions, occurrence of warnings to the occupants of the vehicle 200, occurrence of collision avoidance control of the vehicle 200, etc. as abnormalities. Further, the recognizing unit 121 records, for example, the type of the recognized abnormality as abnormality information together with the position and the date and time when the abnormality occurred.
  • the location where the abnormality occurs includes, for example, location information of vehicle 200 acquired from navigation system 240 and identification information of a link and/or node of map information where vehicle 200 is located.
  • the electronic control unit 120 executes, for example, a process P16 of determining whether there is an abnormality including poor recognition of the road condition by the recognition unit 121.
  • the determination unit 122 determines whether or not there is an abnormality based on, for example, the presence or absence of abnormality information recorded by the recognition unit 121 in the previous process P15.
  • the electronic control unit 120 executes a process P17 of transmitting abnormality information to the server 110.
  • the determination unit 122 determines that there is no abnormality (NO)
  • the electronic control unit 120 Control device 120 executes a process P18 of determining whether vehicle 200 has arrived at the destination.
  • electronic control unit 120 transmits abnormality information to server 110 by transmission unit 123 via communication device 210 mounted on vehicle 200, external communication device 400, and Internet line 300, for example. Send information.
  • server 110 repeatedly executes process P24 of determining whether or not abnormality information has been received from electronic control unit 120 of each vehicle 200 at a predetermined cycle.
  • the server 110 determines whether or not abnormality information has been received from the electronic control unit 120 by the recording unit 111 in this process P24, for example.
  • this process P24 when it is determined that the recording unit 111 has not received the abnormality information from the electronic control unit 120 (NO), the server 110 ends the process P20 shown in FIG. 3 and starts the process P20 again.
  • the electronic control unit 120 determines that the recording unit 111 has received the abnormality information from the electronic control unit 120 (YES)
  • the server 110 uses the recording unit 111 to create abnormality occurrence information in which the abnormality information received from each electronic control unit 120 is associated with each of the nodes N1 to N4 or links L1 to L7 of the map information. Record.
  • Table 1 below shows an example of abnormality occurrence information recorded in the storage unit 115 by the recording unit 111 .
  • the anomaly occurrence information corresponds to, for example, an anomaly type code, date, time, latitude and longitude as anomaly information, and a position code including each link L1-L7 and/or each node N1-N4. It is information that has been attached.
  • the abnormality type code is a code representing the type of abnormality.
  • the storage unit 115 records in advance the abnormality type information in which the abnormality type and the corresponding abnormality type code are defined. Therefore, based on the abnormality type information shown in Table 2, the abnormality type corresponding to the abnormality type code of the abnormality occurrence information shown in Table 1 can be specified. Also, in the example shown in Table 2, the abnormality type information includes a weighting factor corresponding to the abnormality type. This weighting factor is, for example, an index representing the magnitude of the impact on the safety of vehicle 200 .
  • the abnormality occurrence information is the weather at the position of each vehicle 200 at the time of abnormality determination by the determination unit 122 of each electronic control unit 120, each link L1-L7 and/or each node N1.
  • - Information associated with N4 For example, when it is difficult to detect the weather by external sensor 220 of vehicle 200, recording unit 111 of server 110 records the date and time of anomaly occurrence included in the anomaly occurrence information and the location information of vehicle 200 at that time. may be obtained from a weather database (not shown).
  • the recording unit 111 of the server 110 receives, for example, abnormality information from the electronic control units 120 of the plurality of vehicles 200, and records abnormality occurrence information as shown in Table 1 in the storage unit 115. .
  • This enables statistical processing based on a specific place, a specific time period, a specific type of abnormality, etc., using a large amount of abnormality information included in the abnormality occurrence information recorded in the storage unit 115 .
  • the server 110 terminates the process P20 shown in FIG. 3 after completing the process P25 of recording the abnormality information.
  • the server 110 repeats the process P20 shown in FIG. 3 at a predetermined cycle.
  • FIG. 4 is a flowchart showing details of the process P22 for selecting a safe route in FIG.
  • FIG. 5 is a diagram showing an example of route candidates CR1, CR2, and CR3 of vehicle 200 based on map information MI stored in storage unit 115 of server 110.
  • the map information MI includes, for example, a road network in which links L1-L7 such as roads are connected via nodes N1-N4 such as intersections.
  • the route selection unit 113 executes the process P221 of searching for a plurality of route candidates CR1, CR2, CR3 from the map information MI as shown in FIG. .
  • the route selection unit 113 acquires, for example, the information of the departure point S and the destination G of the vehicle 200 included in the request for route information received from each electronic control unit 120, and obtains the map information MI stored in the storage unit 115. to select a plurality of route candidates CR1, CR2, and CR3 that can reach the destination G from the departure point S.
  • the server 110 executes a process P222 of extracting the links L1-L7 and/or the nodes N1-N4 included in the plurality of selected route candidates CR1, CR2, CR3 by the route selection unit 113.
  • the route selection unit 113 selects the links L1-L5 and/or N1-N4 of the route candidate CR1 and the links L1, L2, L6, L5 and/or the nodes N1, N2, N4 of the route candidate CR2. , and links L1, L7, L4, L5 and/or nodes N1, N3, N4 of route candidate CR3.
  • the server 110 uses the route selection unit 113 to execute the process P223 of acquiring the abnormality occurrence frequency.
  • the route selection unit 113 receives abnormality information from the electronic control units 120 of the plurality of vehicles 200 for each of the links L1-L7 and/or the nodes N1-N4 extracted in the previous process P222. Get the received frequency.
  • route selection unit 113 extracts, for example, abnormality occurrence information that matches the traveling conditions including the month, time zone, weather, etc. in which vehicle 200 travels from departure point S to destination G. do.
  • the time period used for extracting the abnormality occurrence information may be a time period based on the time when the electronic control unit 120 of the vehicle 200 transmits the route request, or the required time from the departure point S to the destination G and the time period that takes into account the predicted passage time of each link or each node.
  • Table 3 below shows an example of the reception frequency of abnormality information on the link L6 in FIG.
  • Table 3 shows that the server 110, from each of the electronic control units 120 mounted on one or more vehicles 200 that traveled on the link L6 under the traveling conditions of 8:00 am and fine weather in October, This indicates that the anomaly information has been received multiple times.
  • the route selection unit 113 calculates the abnormality determination frequency by counting the number (number of lines) of the abnormality occurrence information extracted as shown in Table 3, for example.
  • the route selection unit 113 acquires, for example, an abnormality occurrence frequency for each abnormality type for each of the links L1 to L7 and/or the nodes N1 to N4 that satisfy a predetermined travel condition.
  • FIGS. 6 and 7 are graphs showing an example of the result of the process P223 for acquiring the abnormality occurrence frequency described above.
  • the horizontal axis is the abnormality type code indicating the type of the abnormality information
  • the vertical axis is the number of receptions of the abnormality information, that is, the frequency of abnormality occurrence or the frequency of abnormality determination.
  • the abnormality type codes 1 to 4 on the horizontal axis of the graph are, respectively, collision damage mitigation braking (AEB) by pedestrian recognition, lane recognition unrecognizable (lane unrecognized), backlight, and Represents obstacle avoidance.
  • AEB collision damage mitigation braking
  • the server 110 receives, as abnormality information from the electronic control units 120 of the plurality of vehicles 200 that have traveled on the link L6 in October, between 8:00 am and in fine weather, an abnormality indicating that the lane cannot be recognized.
  • the type code 2 is received at a frequency of about 150 times.
  • the server 110 recognizes a pedestrian as abnormal information from the electronic control units 120 of the plurality of vehicles 200 that traveled on the link L3 in October between 8:00 am and in fine weather.
  • Anomaly type code 1 which indicates the operation of the AEB by the aircraft, is received at a frequency of about 79 times.
  • the links L1, L2, L4, L5, L7 and the nodes N1-N4, excluding the links L3 and L6, have the same running conditions as the links L3 and L6, and the server 110 has not received any abnormality information.
  • lane recognition failure (abnormality type code: 2) that occurs at the same point on link L6 is, for example, a case where the road division line is faded due to wear over time. occurs in Lane recognition by electronic control unit 120 is necessary for automatic driving of vehicle 200 by electronic control unit 120 . Therefore, the electronic control unit 120 of each of the plurality of vehicles 200 transmits to the server 110 as abnormality information the abnormality type code: 2 indicating that the lane cannot be recognized. Lane unrecognizable is an abnormality type for which a large amount of information is collected regardless of the month or time period.
  • AEB due to pedestrian recognition may be a sudden event.
  • AEBs abnormality type code: 1
  • the following situation can be assumed.
  • AEBs abnormality type code: 1
  • the following situation can be assumed as a situation in which many abnormalities due to the environment around the road occur during a specific time period.
  • a specific time period For example, there is a store such as a supermarket facing the road, and the number of vehicles that can be parked in the store's parking lot is smaller than the number of parking spaces required for the number of visitors that concentrate in a particular time period.
  • obstacle avoidance (abnormality type code: 4) occurs frequently to avoid vehicles parked on the road without entering the parking lot during the specific time period.
  • anomalies caused by natural phenomena such as backlighting (abnormality type code: 3) can occur, for example, in specific places, specific seasons, and specific time periods.
  • backlight for example, the image captured by the camera included in external sensor 220 of vehicle 200 may be overexposed, which may interfere with object recognition.
  • server 110 receives such information on anomalies caused by the natural environment from electronic control units 120 of each of vehicles 200, it is possible to specify places, seasons, and time periods in which anomalies occur frequently. .
  • the frequency of abnormal occurrences as described above is affected by the weather, for example. More specifically, it is conceivable that the number of parked vehicles around stores and educational facilities as described above will increase or decrease depending on whether it is raining or fine. Therefore, the number of obstacle avoidance (abnormality type code: 4) for avoiding parked vehicles can be affected by the weather. Also, abnormalities caused by natural phenomena such as backlighting occur only in specific weather conditions such as fine weather. Therefore, when the abnormality occurrence information includes the weather, it is possible to grasp the abnormality occurrence frequency according to the weather.
  • the server 110 executes, for example, the process P224 of acquiring the average traffic volume.
  • the server 110 obtains, for example, the average traffic volume of each link L1-L7 and/or each node N1-N4.
  • the route selection unit 113 of the server 110 stores in the storage unit 115, for example, each of the links L1 to L7 and/or each of the nodes N1 to N4 extracted in the above process P222. Get the average traffic volume
  • the route selection unit 113 selects, for example, the average traffic volume corresponding to the travel conditions such as the month, the time period, and the weather in which the vehicle 200 that requested the route information travels along the route candidates CR1, CR2, and CR3. is acquired from the storage unit 115 .
  • the average traffic volumes of link L6 and link L3 are obtained as 450 vehicles/hour and 1100 vehicles/hour, respectively.
  • the average traffic volume does not necessarily have to be stored in the storage unit 115 and may be acquired by the route selection unit 113 from outside the server 110 via the Internet line 300 .
  • the server 110 executes a process P225 of calculating the traveling difficulty of each link L1-L7 and/or each node N1-N4.
  • the calculation unit 112 of the server 110 calculates the driving difficulty ADD based on the frequency of occurrence of anomalies for each of the nodes N1-N4 or the links L1-L7 of the anomaly occurrence information, for example, using the following equation (1). .
  • N is the number of abnormality types
  • H(n) is the frequency of occurrence of the abnormality types
  • Wn is the weighting factor of the abnormality types
  • Q is the previous process P224.
  • the driving difficulty ADD is given by the above formula (1), Table 2, and FIG. 6 and FIG. 7, they can be calculated as follows.
  • the abnormality occurrence information includes the weather at the time of abnormality determination associated with each of the nodes N1-N4 or the links L1-L7.
  • the calculation unit 112 obtains the current weather of each of the nodes N1-N4 or the links L1-L7 included in the plurality of route candidates CR1, CR2, CR3 of the map information when calculating the travel difficulty ADD. good too.
  • the calculation unit 112 may calculate the driving difficulty level ADD based on abnormality occurrence information in which the weather at the time of abnormality determination matches the current weather.
  • the server 110 executes a process P226 of calculating the travel difficulty ADD of each route candidate CR1, CR2, CR3.
  • the route selection unit 113 calculates the total travel difficulty ADD of all nodes N1-N4 or links L1-L7 included in each route candidate CR1, CR2, CR3.
  • the travel difficulty ADD of each route candidate CR1, CR2, CR3 can be calculated, for example, as follows.
  • the server 110 executes a process P227 of selecting a safe route, as shown in FIG.
  • the route selection unit 113 of the server 110 selects the safe route that minimizes the total travel difficulty ADD from the plurality of route candidates CR1, CR2, and CR3 of the map information MI.
  • the travel difficulty ADD of the route candidate CR1 is 0.043
  • the travel difficulty ADD of the route candidate CR2 is 0.23
  • the travel difficulty ADD of the route candidate CR3 is 0. .
  • the route selection unit 113 selects the route candidate CR3 as a safe route.
  • the server 110 ends the process P22 shown in FIG. 4, and executes the process P23 of transmitting the recommended route shown in FIG. 3 as described above.
  • the transmission unit 114 transmits the route candidate CR3 selected as the safe route as a recommended route to the electronic control unit 120 of the vehicle 200 that has performed the route information requesting process P12 shown in FIG.
  • the electronic control unit 120 of the vehicle 200 executes the processes P14 to P18 shown in FIG. 2 as described above to drive the vehicle 200 to the destination along the recommended route.
  • the vehicle control system 100 of the present embodiment includes each electronic control device 120 mounted on each of the plurality of vehicles 200 and at least one server communicably connected to each electronic control device 120. 110 and.
  • Each electronic control unit 120 has a recognition section 121 , a determination section 122 and a transmission section 123 .
  • the recognition unit 121 recognizes road conditions based on the detection results of the external sensor 220 mounted on each vehicle 200 .
  • the determination unit 122 determines an abnormality including poor recognition of road conditions by the recognition unit 121 .
  • Transmitter 123 transmits abnormality information including the position and time of each vehicle 200 at the time of abnormality determination by determination unit 122 and the type of determined abnormality to server 110 via communication device 210 mounted on each vehicle 200. Send.
  • the server 110 has a recording unit 111 , a calculation unit 112 , a route selection unit 113 and a transmission unit 114 .
  • the recording unit 111 records abnormality occurrence information in which the abnormality information received from each electronic control unit 120 is associated with each of the nodes N1 to N4 or the links L1 to L7 of the map information MI.
  • the calculation unit 112 calculates the traveling difficulty level ADD based on the abnormality determination frequency for each of the nodes N1 to N4 or the links L1 to L7 of the abnormality occurrence information.
  • the route selection unit 113 selects a safe route that minimizes the total travel difficulty ADD from a plurality of route candidates CR1, CR2, and CR3 of the map information MI.
  • the transmission unit 114 transmits the selected safe route to each electronic control unit 120 as a recommended route.
  • the vehicle control system 100 of the present embodiment uses at least one server 110 to transmit the position of each vehicle 200, the time, and the determined abnormality from the electronic control unit 120 of each of the plurality of vehicles 200.
  • Anomaly information including type can be collected.
  • server 110 records abnormality occurrence information in which abnormality information collected from each electronic control unit 120 is associated with each node N1-N4 or link L1-L7 of map information MI.
  • the server 110 calculates the travel difficulty ADD based on the frequency of occurrence of anomalies for each of the nodes N1-N4 or the links L1-L7 of the anomaly occurrence information, and selects the route candidate CR3 with a low travel difficulty ADD as a safe route.
  • the selected safe route can be transmitted to the electronic control unit 120 of the vehicle 200 as a recommended route. Therefore, according to the vehicle control system 100 of the present embodiment, the abnormality determined by the electronic control unit 120 mounted on any vehicle 200 is also controlled by the electronic control unit 120 mounted on the other vehicle 200 in automatic driving control. can be used as an experience of As a result, it is possible to avoid a route in which abnormalities frequently occur, including poor recognition of road conditions, recognition of road conditions different from the steady state, generation of warnings to the occupants of the vehicle 200, and generation of collision avoidance control of the vehicle 200. It is possible to improve the safety of automatic driving and driving assistance of the vehicle 200 by the control device 120 . More specifically, for example, it is possible to avoid a route in which obstacle avoidance by parked vehicles and AEB due to pedestrian recognition occur frequently during a specific time period.
  • the computing unit 112 of the server 110 determines that the node N1 to N4 or the link L1 of the abnormality occurrence information increases as the abnormality determination frequency by the determination unit 122 of each electronic control unit 120 increases. - Calculate a high driving difficulty ADD for each L7.
  • the server 110 of the vehicle control system 100 of the present embodiment selects the route candidate CR3, which has a lower abnormality determination frequency by each of the electronic control units 120, as a safe route from among the route candidates CR1, CR2, and CR3. Select as Further, server 110 transmits the selected safe route as a recommended route to electronic control unit 120 of vehicle 200 that requested the route. Therefore, according to the vehicle control system 100 of the present embodiment, it is possible to improve the safety of automatic driving and driving assistance of the vehicle 200 by the electronic control device 120 .
  • the recording unit 111 of the server 110 stores the weather at the position of each vehicle 200 at the time of abnormality determination by the determination unit 122 of each electronic control unit 120 in each node N1- Abnormal occurrence information associated with N4 or links L1-L7 is recorded. Then, the calculation unit 112 of the server 110 acquires the current weather of each of the nodes N1 to N4 or the links L1 to L7 included in the plurality of route candidates CR1, CR2, CR3 of the map information MI when calculating the travel difficulty ADD. However, it is also possible to calculate the driving difficulty level ADD based on abnormality occurrence information in which the weather at the time of abnormality determination matches the current weather.
  • the server 110 of the vehicle control system 100 of the present embodiment even if the occurrence frequency of the abnormality depends on the weather, based on the determination frequency of the abnormality corresponding to the weather when the vehicle 200 is running, It is possible to calculate the travel difficulty ADD of the route candidates CR1, CR2, and CR3. Therefore, according to the vehicle control system 100 of the present embodiment, it is possible to further improve the safety of automatic driving and driving assistance of the vehicle 200 by the electronic control device 120 .
  • each electronic control unit 120 when the type of abnormality determined by the determination unit 122 cannot be specified, transmits the abnormality information together with the camera included in the external sensor 220 by the transmission unit 123. image can also be sent to the server 110 .
  • the vehicle control system 100 of this embodiment may be able to determine the type of abnormality by analyzing the camera image transmitted from each 120 in the server 110 .
  • Examples of cases in which the type of abnormality cannot be specified include the case where the imaging environment of the camera deteriorates and the object cannot be recognized, or the jumping out of the object in front of the vehicle 200 is detected, but the pedestrian, bicycle, animal, etc. are detected.
  • the type of the object is unknown.
  • each electronic control unit 120 includes a vehicle control unit 124 that causes each vehicle 200 to travel along the recommended route received from the server 110 .
  • the vehicle control system 100 of the present embodiment enables each electronic control unit 120 that has received the recommended route from the server 110 to drive each vehicle 200 along the recommended route. Therefore, according to the vehicle control system 100 of the present embodiment, it is possible to further improve the safety of automatic driving and driving assistance of the vehicle 200 by the electronic control device 120 .
  • the electronic control device 120 of the present embodiment is a control device mounted on the vehicle 200 .
  • the electronic control unit 120 has a recognition section 121 , a determination section 122 , a transmission section 123 and a vehicle control section 124 .
  • the recognition unit 121 recognizes road conditions based on the detection results of the external sensor 220 mounted on the vehicle 200 .
  • the determination unit 122 determines an abnormality including poor recognition of road conditions by the recognition unit 121 .
  • Transmission unit 123 transmits abnormality information including the position of vehicle 200 at the time of abnormality determination by determination unit 122 , the time, and the type of the determined abnormality to server 110 outside vehicle 200 via communication device 210 mounted on vehicle 200 .
  • Send to Vehicle control unit 124 causes vehicle 200 to travel along the recommended route received from server 110 .
  • the electronic control unit 120 of the present embodiment avoids routes in which abnormalities occur frequently, and improves the safety of automatic driving and driving assistance of the vehicle 200 in the same manner as the vehicle control system 100 described above. becomes possible.
  • the vehicle control system and the electronic control device according to the present disclosure are not limited to the above-described embodiments.
  • an example of using the traffic volume as a numerical value for normalizing the calculation formula of the driving difficulty level ADD was described, but if the abnormality determination frequency can be calculated for all passing vehicles, other can be used.
  • the required time limit may be transmitted to the server 110 at the same time that the request for route information is transmitted from the electronic control unit 120 of the vehicle 200 to the server 110 .
  • the route selection unit 113 of the server 110 selects, for example, from among the plurality of route candidates CR1, CR2, and CR3, a route that satisfies the required time limit and has the lowest travel difficulty ADD as a safe route. can be done.
  • the transmission unit 114 of the server 110 determines whether a node or link requiring caution, which is N1-N4 or a link L1-L7, for which the frequency of abnormality determination on the recommended route is higher than a predetermined frequency. is included, the node or link that needs attention may be sent to each electronic controller 120 .
  • the determination unit 122 of each electronic control unit 120 determines the priority of determining the type of abnormality determined at a higher frequency than a predetermined frequency in a node or link requiring caution, and the priority of determining the type of other abnormality. can be higher than
  • the caution node when the recognition unit 121 of each electronic control unit 120 always executes a plurality of recognition processes and the upper limit of the processing time of each recognition process is specified, the caution node Alternatively, it is conceivable to extend the upper limit of the processing time only when passing through a link. For example, in the above caution node or link where AEB due to pedestrian recognition occurs frequently, by extending the upper limit of the processing time of pedestrian recognition, pedestrian recognition processing is performed on more objects than usual, and walking is performed. Unrecognized person can be prevented.
  • Embodiment 2 of the vehicle control system according to the present disclosure will be described below with reference to FIGS. 1 to 7 of Embodiment 1 described above.
  • the vehicle control system 100 of this embodiment differs from the vehicle control system 100 according to the first embodiment described above in the configuration of the recording unit 111 and the calculation unit 112 of the server 110 .
  • Other configurations of the vehicle control system 100 of the present embodiment are the same as those of the vehicle control system 100 of the first embodiment described above.
  • each of the electronic control units 120 mounted on the plurality of vehicles 200 uses the recognition unit 121 in the process P15 shown in FIG. 220 and vehicle sensor 230, the road condition is recognized and abnormality information is recorded. Further, in the present embodiment, the electronic control unit 120, in the process P17 shown in FIG. .
  • the recording unit 111 of the server 110 associates the type of the external sensor 220 included in the abnormality information with each of the nodes N1-N4 or the links L1-L7. Occurrence information is recorded in storage unit 115 .
  • Table 4 below shows an example of abnormality occurrence information recorded in the storage unit 115 by the recording unit 111 in this embodiment.
  • the sensor code is a code indicating the type of the external sensor 220 .
  • the sensor code is defined for each type of external sensor 220 and recorded in storage unit 115 in advance, as shown in Table 5 below, for example.
  • the server 110 performs the following process in the process P223 of acquiring the abnormality occurrence frequency shown in FIG.
  • the route selection unit 113 of the server 110 determines that the sensor code indicating the type of the external sensor matches in addition to the traveling conditions including the month, time zone, weather, etc., in which the vehicle 200 travels from the starting point S to the destination G. Extract the frequency of anomalies.
  • the recording unit 111 of the server 110 stores the type of the external sensor 220 of each vehicle 200 at the time of abnormality determination by the determination unit 122 of each electronic control unit 120, Abnormal occurrence information associated with each of the nodes N1-N4 or links L1-L7 is recorded. Further, the calculation unit 112 of the server 110 acquires the type of the external sensor 220 of each vehicle 200 when calculating the traveling difficulty level ADD, and determines the type of the external sensor 220 when determining the abnormality. Based on the abnormality occurrence information that matches the type of the sensor 220, the driving difficulty level ADD is calculated.
  • the vehicle control system 100 of the present embodiment avoids routes in which abnormalities peculiar to the type of the external sensor 220 mounted on each vehicle 200 frequently occur, and automatically drives the vehicle 200 and assists driving. It is possible to improve the safety of More specifically, for example, when the type of abnormality is backlight, if the type of external sensor 220 is a camera, it will be affected by blown-out highlights, but if the type of external sensor 220 is a laser radar, it will not be affected. can be considered. In such a case, the vehicle control system 100 of the present embodiment allows the vehicle 200 to travel along a route suitable for the type of the external sensor 220 mounted on the vehicle 200 .
  • FIG. 8 is a block diagram showing the configuration of the server 110 of the vehicle control system 100 of this embodiment.
  • the server 110 shown in FIG. 8 has, for example, the same configuration as the server 110 of Embodiment 1 shown in FIG. I have.
  • Other configurations of the vehicle control system 100 of the present embodiment are the same as those of the vehicle control system 100 of the first embodiment described above, so the same parts are denoted by the same reference numerals and descriptions thereof are omitted.
  • FIG. 9 is a flow diagram showing an example of the process P30 for supporting planning of countermeasures for reducing the occurrence of abnormalities by the server 110 of FIG.
  • the countermeasure support unit 116 executes the process P31 of receiving the input of the extraction condition.
  • FIG. 10 is an example of a display screen by the countermeasure support unit 116 of the server 110 of FIG.
  • Countermeasure support unit 116 includes, for example, a display device such as a liquid crystal display device or an organic EL display device, and an input device such as a touch panel, keyboard, or mouse. As shown in FIG. 10, the countermeasure support unit 116 causes the display device to display a map including each link L1-L7 and/or each node N1-N4 and extraction conditions such as month, time zone, weather, and abnormality type. .
  • the countermeasure support unit 116 receives input of extraction conditions, for example, via an input device. For example, as shown in FIG. 10, the user of the server 110 scrolls the map displayed on the display device of the countermeasure support unit 116 and selects an area on the map for which countermeasures to reduce the occurrence of anomalies are desired. Select each link L1-L7 and/or each node N1-N4 in the region.
  • the user selects extraction conditions such as the month, time zone, weather, and abnormality type using a scroll bar displayed on the display device, for example, as shown in FIG.
  • the countermeasure support unit 116 receives the input of the extraction condition selected by the user and inputs it to the calculation unit 112 .
  • “all data” has been input as extraction conditions for month, time period, weather, and abnormality type.
  • the server 110 executes a process P32 of acquiring an abnormality occurrence frequency.
  • the calculation unit 112 of the server 110 extracts, from the abnormality occurrence information recorded in the storage unit 115, abnormality occurrence information that matches the extraction conditions input from the countermeasure support unit 116 in the previous process P31. do. Furthermore, based on the extracted abnormality occurrence information, the calculation unit 112 calculates the abnormality occurrence frequency of each of the links L1 to L7 and/or each of the nodes N1 to N4, similarly to the process P223 shown in FIG. 4 of the first embodiment. get.
  • the server 110 executes the process P33 of acquiring the average traffic volume shown in FIG.
  • the computing unit 112 of the server 110 for example, similarly to the process P224 shown in FIG.
  • the average traffic volume stored in the storage unit 115 is acquired.
  • the extraction conditions for the month, time period, and weather are "all data”
  • the average traffic volume for all months, time periods, and weather is obtained.
  • the server 110 executes a process P34 for calculating the travel difficulty ADD of each link L1-L7 and/or each node N1-N4 shown in FIG.
  • the calculation unit 112 of the server 110 similarly to the process P225 shown in FIG.
  • a driving difficulty level ADD based on the frequency is calculated and input to the countermeasure support unit 116 .
  • the server 110 executes a process P35 of displaying the travel difficulty ADD of each link L1-L7 and/or each node N1-N4.
  • FIG. 11 is an example of a display screen of process P35 for displaying the travel difficulty ADD of each link L1-L7 and/or each node N1-N4 in FIG.
  • the countermeasure support unit 116 displays the travel difficulty of each link L1-L7 and/or each node N1-N4 input from the calculation unit 112 in the previous process P34, as shown in FIG. display on the device.
  • the travel difficulty of each link L1-L7 and/or each node N1-N4 included in the area selected on the map is displayed.
  • FIG. 12 is a graph showing the travel difficulty for each abnormality type of link L6 selected in FIG.
  • the user selects each link L1-L7 and/or each node N1-N4 in FIG. and then click or touch the icon labeled "Details".
  • FIG. 12 it is possible to display the travel difficulty level for each abnormality type of the selected link L6 on the display device of the countermeasure support unit 116.
  • the calculation unit 112 of the server 110 calculates the travel difficulty ADD for each of the nodes N1 to N4 or the links L1 to L7 of the abnormality occurrence information extracted using the extraction condition including the time or type of abnormality, Displayed on the display device of the server 110 .
  • the vehicle control system 100 of the present embodiment it is possible to support planning of countermeasures for reducing the occurrence of abnormalities in each of the links L1-L7 and/or each of the nodes N1-N4.
  • the user can understand that the driving difficulty due to the unrecognized lane of abnormality type code: 2 is significantly higher than other abnormality types. can be done.
  • the user can determine the road boundary line of the link L6 as a measure for reducing the travel difficulty level ADD of the link L6. can plan the re-installation of
  • the countermeasure support unit 116 periodically analyzes the abnormality occurrence information recorded in the storage unit 115, and extracts conditions for increasing the travel difficulty ADD of each link L1-L7 and/or each node N1-N4. may be specified. In this case, for example, when it is predicted that the month, time zone, and weather conditions match the extraction conditions specified by the analysis, countermeasure support unit 116 selects each link L1 to L7 and/or The running difficulty ADD of each node N1-N4 is displayed on the display device together with the extraction conditions.
  • the travel difficulty level of each of the selected links L1-L7 and/or each of the nodes N1-N4 is displayed on the display device of the countermeasure support unit 116, and the user It is possible to support the determination of the priority of countermeasures and the narrowing down of countermeasures. Therefore, according to the vehicle control system 100 of the present embodiment, in addition to the effects of the vehicle control system 100 of the above-described first embodiment, the infrastructure for safe automatic driving by the electronic control unit 120 of the vehicle 200 is improved. Can assist with prioritization.
  • FIG. 13 is a flow chart showing an example of processing P40 for verifying countermeasures for reducing the occurrence of anomalies by the server 110 of FIG. 13, the server 110 of the present embodiment performs a process P41 of reproducing the traffic flow before taking measures to reduce the occurrence of abnormalities by means of the traffic flow simulator 117.
  • FIG. 13 is a flow chart showing an example of processing P40 for verifying countermeasures for reducing the occurrence of anomalies by the server 110 of FIG. 13, the server 110 of the present embodiment performs a process P41 of reproducing the traffic flow before taking measures to reduce the occurrence of abnormalities by means of the traffic flow simulator 117.
  • the traffic flow simulator 117 simulates the running behavior of each of the plurality of vehicles 200 by inputting parameters such as traffic volume at representative points and right/left turn rates at each intersection.
  • the traffic flow simulator 117 can be implemented using known technology such as the road traffic simulation system described in Japanese Patent Application Laid-Open No. 5-250594.
  • process P41 by adjusting the parameters to be input to the traffic flow simulator 117, the known traffic flow before taking measures to reduce the occurrence of abnormalities is reproduced. More specifically, the known traffic volume of each link L1-L7 and/or each node N1-N4 and the traffic volume of each link L1-L7 and/or each node N1-N4 reproduced by the traffic flow simulator 117 and The parameters input to the traffic flow simulator 117 are adjusted so that
  • the server 110 performs a process P42 of calculating the travel difficulty ADD of each of the links L1-L7 and/or each of the nodes N1-N4 after taking measures to reduce the occurrence of abnormalities.
  • the calculation unit 112 assumes, for example, that the abnormality occurrence frequency of each link and/or each node after the countermeasure is implemented is zero, and similarly to the processes P31 to P34 shown in FIG. Calculate the difficulty level ADD of L1-L7 and/or each of the nodes N1-N4.
  • the traffic flow simulator 117 executes a process P43 of changing the right/left turn rate parameter, as shown in FIG.
  • link L6 shown in FIG. 10 when taking measures to reduce the frequency of occurrence of anomalies, another link L3 is connected to node N2 connected to link L6.
  • the traffic flow simulator 117 changes, for example, the right and left turn rates from the node N2 to the links L6 and L3 before and after implementing the countermeasure on the link L6, as shown in Table 6 below.
  • the rate of automatically traveling vehicles 200 in the total traffic volume is 34%, and that 100% of the vehicles 200 were turning right from node N2 to link L3 before the implementation of the countermeasure.
  • the server 110 executes the process P44 of simulating the traffic flow after the implementation of the countermeasure.
  • the traffic flow simulator 117 uses, for example, the parameters shown in Table 6, including right and left turn rates after implementation of the countermeasure, to The traffic flow is simulated when the difficulty level ADD is changed.
  • the server 110 executes a process P45 of comparing the traffic flow of each link L1-L7 and/or each node N1-N4 before and after implementing the countermeasure.
  • this process for example, it is possible to confirm the effect of countermeasures for reducing the occurrence of anomalies, such as traffic jam elimination by dispersing the traffic flow to the link L6 and the link L3, and to verify the countermeasures.
  • the server 110 includes a traffic flow simulator 117 that simulates traffic flow when the travel difficulty level of each node or link of the map information MI is changed.
  • a traffic flow simulator 117 that simulates traffic flow when the travel difficulty level of each node or link of the map information MI is changed.
  • Vehicle control system 110 Server 111 Recording unit 112 Calculation unit 113 Route selection unit 114 Transmission unit 117 Traffic flow simulator 120 Electronic control unit 121 Recognition unit 122 Judgment unit 123 Transmission unit 124 Vehicle control unit 200 Vehicle 210 Communication device 220 External sensor ADD Travel Difficulty level CR1-CR3 Route candidate L1-L7 Link MI Map information N1-N4 Node

Abstract

The present invention provides a vehicle control system and an electronic control device that make it possible to safely drive a vehicle by means of external environment recognition using vehicle-mounted sensors. This vehicle control system 100 comprises electronic control devices 120 that are each mounted to a respective vehicle 200 among a plurality of vehicles 200, and at least one server 110 that is connected to the electronic control devices 120 in a manner enabling communication therewith. The electronic control devices 120 are each provided with a recognition unit 121 that recognizes the state of a road, a determination unit 122 that determines anomalies, a transmission unit 123 that transmits, to the server 110, anomaly information including the date and time and the location of the vehicle 200 when an anomaly was determined by the determination unit 122 and the type of anomaly determined, and a vehicle control unit 124 that causes the vehicle 200 to travel along a recommended route received from the server 110. The server 110 is provided with a recording unit 111 that records anomaly occurrence information in which anomaly information received from the electronic control devices 120 is associated with nodes or links in map information, a computation unit 112 that calculates a degree of travel difficulty that is based on the anomaly determination frequency for each node or link in the anomaly occurrence information, a route selection unit 113 that selects a safe route having the smallest total degree of travel difficulty from among a plurality of route candidates in the map information, and a transmission unit 114 that transmits the safe route to the electronic control devices 120 as the recommended route.

Description

車両制御システムおよび電子制御装置Vehicle control system and electronic controller
 本開示は、車両制御システムおよび電子制御装置に関する。The present disclosure relates to vehicle control systems and electronic controllers.
 従来から車載機と危険発生箇所情報収集装置とを備えた危険発生箇所情報収集システムが知られている(特許文献1、請求項1、第0005段落等)。Conventionally, there has been known a dangerous location information collection system that includes an on-vehicle device and a dangerous location information collection device (Patent Document 1, Claim 1, Paragraph 0005, etc.).
 前記車載機は、操作情報取得手段と、走行情報取得手段と、位置情報取得手段と、制御手段とを備えている。前記操作情報取得手段は、ドライバによる車両の操作に関する情報を取得する。前記走行情報取得手段は、前記車両の走行状態に関する情報を取得する。前記位置情報取得手段は、前記車両の現在位置情報を取得する。前記制御手段は、前記操作情報に基づいて緊急時に対処するために行われた操作が発生したと推定すると、上記各種情報を外部に送信するように制御する。The in-vehicle device includes operation information acquisition means, travel information acquisition means, position information acquisition means, and control means. The operation information acquisition means acquires information on vehicle operation by the driver. The traveling information acquiring means acquires information about the traveling state of the vehicle. The position information obtaining means obtains current position information of the vehicle. The control means, when estimating that an operation has been performed to cope with an emergency based on the operation information, controls to transmit the various information to the outside.
 前記危険発生箇所情報収集装置は、前記車載機から前記各種情報を受信し、前記操作が実際に緊急時に対処するために行われた可能性が高いと判断すると、前記位置情報を危険発生箇所に関する情報として収集する。この緊急時の可能性の判断は、前記操作情報と、前記走行情報ならびに前記車両が位置する道路の交通規則情報および/または前記車両周辺の状況に関する情報とに基づいて行われる。When the danger location information collection device receives the various information from the vehicle-mounted device and determines that there is a high possibility that the operation was actually performed to deal with an emergency, the danger occurrence location information collection device collects the location information related to the danger occurrence location. Collect as information. This determination of the possibility of an emergency is made based on the operation information, the travel information, the traffic rule information of the road on which the vehicle is located, and/or the information regarding the situation around the vehicle.
特許文献1:特開2007-323281号公報Patent document 1: JP 2007-323281 A
 上記従来のシステムは、前述のように、ドライバによる車両の操作が実際に緊急時に対処するために行われた可能性が高いと判断した場合に、車両の現在位置情報を危険発生箇所に関する情報として収集する。しかしながら、車載センサによる外界認識で車両を安全に走行させるためには、ドライバの操作に基づく危険発生箇所に関する情報だけでは不十分である。As described above, the above-described conventional system uses the current position information of the vehicle as information regarding the location of danger when it is highly likely that the driver actually operated the vehicle in order to deal with an emergency. collect. However, in order to drive the vehicle safely by recognizing the external environment using the in-vehicle sensors, it is not enough to rely only on the information on the dangerous locations based on the driver's operation.
 本開示は、車載センサによる外界認識で車両を安全に走行させることが可能な車両制御システムおよび電子制御装置を提供する。The present disclosure provides a vehicle control system and an electronic control device that enable the vehicle to run safely by recognizing the external environment using on-vehicle sensors.
 本開示の一態様は、複数の車両の各々に搭載される各々の電子制御装置と、該各々の電子制御装置と通信可能に接続される少なくとも一つのサーバと、を備えた車両制御システムであって、前記各々の電子制御装置は、前記各々の車両に搭載された外界センサの検出結果に基づいて道路状態を認識する認識部と、該認識部による前記道路状態の認識不良を含む異常を判定する判定部と、該判定部による異常判定時の前記各々の車両の位置、時刻および判定された前記異常の種別を含む異常情報を前記各々の車両に搭載された通信装置を介して前記サーバへ送信する送信部と、を有し、前記サーバは、前記各々の電子制御装置から受信した前記異常情報を地図情報の各々のノードまたはリンクに対応づけた異常発生情報を記録する記録部と、前記異常発生情報に含まれる前記ノードまたはリンクごとに前記異常の判定頻度に基づく走行難易度を算出する演算部と、前記地図情報の複数の経路候補から前記走行難易度の合計が最小となる安全経路を選択する経路選択部と、前記安全経路を前記各々の電子制御装置へ推奨経路として送信する送信部と、を有することを特徴とする車両制御システムである。One aspect of the present disclosure is a vehicle control system comprising: each electronic control device mounted on each of a plurality of vehicles; and at least one server communicably connected to each electronic control device. Each of the electronic control units includes a recognition unit for recognizing road conditions based on the detection results of external sensors mounted on the respective vehicles, and an abnormality including poor recognition of the road conditions by the recognition unit. and anomaly information including the position of each vehicle at the time of the anomaly judgment by the judging unit, the time, and the type of the judged anomaly to the server via a communication device mounted on each of the vehicles. a transmitting unit that transmits, the server includes a recording unit that records abnormality occurrence information in which the abnormality information received from each electronic control device is associated with each node or link of map information; a calculating unit for calculating a travel difficulty based on the abnormality determination frequency for each of the nodes or links included in the abnormality occurrence information; and a transmitter for transmitting the safe route to each of the electronic control units as a recommended route.
 本開示の上記一態様によれば、車両に搭載された外界センサによる外界認識で車両を安全に走行させることが可能な車両制御システムおよび電子制御装置を提供することができる。According to the above aspect of the present disclosure, it is possible to provide a vehicle control system and an electronic control device capable of safely driving a vehicle by recognizing the external environment using an external sensor mounted on the vehicle.
   本開示の車両制御システムと電子制御装置の実施形態1を示すブロック図。
   図1の電子制御装置による処理の一例を示すフロー図。
   図1のサーバによる処理の一例を示すフロー図。
   図3の安全経路を選択する処理の詳細を示すフロー図。
   図3の安全経路を選択する処理で用いられる地図情報の一例を示す図。
   図4の異常発生頻度を取得する処理の結果の一例を示すグラフ。
   図4の異常発生頻度を取得する処理の結果の一例を示すグラフ。
   本開示の車両制御システムの実施形態3におけるサーバのブロック図。
   図8のサーバによる処理の一例を示すフロー図。
   図8の対策支援部による表示画面の一例。
   図9の各ノード・リンクの走行難易度を表示する処理の表示画面の一例。
   図11で選択したリンクの異常種別ごとの走行難易度を示すグラフ。
   図8のサーバによる処理の一例を示すフロー図。
1 is a block diagram showing Embodiment 1 of a vehicle control system and an electronic control device of the present disclosure; FIG.
FIG. 2 is a flow chart showing an example of processing by the electronic control unit of FIG. 1;
FIG. 2 is a flowchart showing an example of processing by the server in FIG. 1;
FIG. 4 is a flowchart showing details of the process of selecting a safe route in FIG. 3;
FIG. 4 is a diagram showing an example of map information used in the process of selecting a safe route in FIG. 3;
5 is a graph showing an example of a result of processing for acquiring the frequency of occurrence of anomalies in FIG. 4;
5 is a graph showing an example of a result of processing for acquiring the frequency of occurrence of anomalies in FIG. 4;
FIG. 8 is a block diagram of a server in Embodiment 3 of the vehicle control system of the present disclosure;
FIG. 9 is a flowchart showing an example of processing by the server of FIG. 8;
An example of a display screen by the countermeasure support unit in FIG. 8 .
FIG. 10 is an example of a display screen for displaying the traveling difficulty level of each node/link in FIG. 9 ; FIG.
12 is a graph showing the travel difficulty for each abnormality type of the link selected in FIG. 11;
FIG. 9 is a flowchart showing an example of processing by the server of FIG. 8;
 以下、図面を参照して本開示に係る車両制御システムおよび電子制御装置の実施形態を説明する。Embodiments of a vehicle control system and an electronic control device according to the present disclosure will be described below with reference to the drawings.
[実施形態1]
 図1は、本開示の車両制御システムおよび電子制御装置の実施形態1を示すブロック図である。本実施形態の車両制御システム100は、たとえば、複数の車両200の自動運転を支援する自動運転支援システムである。なお、図1では、複数の車両200の図示を省略し、一台の車両200のみを図示している。
[Embodiment 1]
FIG. 1 is a block diagram showing Embodiment 1 of a vehicle control system and an electronic control device of the present disclosure. The vehicle control system 100 of this embodiment is, for example, an automatic driving support system that supports automatic driving of a plurality of vehicles 200 . In addition, in FIG. 1, illustration of the plurality of vehicles 200 is omitted, and only one vehicle 200 is illustrated.
 車両制御システム100は、たとえば、少なくとも一つのサーバ110と、図示を省略する複数の電子制御装置120を備えている。すなわち、車両制御システム100は、複数のサーバ110を備えてもよい。複数の電子制御装置120の各々の電子制御装置120は、複数の車両200の各々の車両200に搭載される。The vehicle control system 100 includes, for example, at least one server 110 and a plurality of electronic control units 120 (not shown). That is, the vehicle control system 100 may include multiple servers 110 . Each electronic control unit 120 of the plurality of electronic control units 120 is mounted in each vehicle 200 of the plurality of vehicles 200 .
 サーバ110は、たとえば、中央処理装置(CPU)、ROMやRAMなどのメモリ、タイマ、および入出力部などのハードウェアによって構成されたコンピュータである。サーバ110は、たとえば、インターネット回線300、無線基地局などの通信装置400、無線通信回線、車両200に搭載された通信装置210および車載ネットワークなどを介して、電子制御装置120と通信可能に接続されている。The server 110 is, for example, a computer configured by hardware such as a central processing unit (CPU), memories such as ROM and RAM, timers, and input/output units. Server 110 is communicably connected to electronic control unit 120 via, for example, Internet line 300, communication device 400 such as a radio base station, a radio communication line, communication device 210 mounted on vehicle 200, and an in-vehicle network. ing.
 サーバ110は、たとえば、記録部111と、演算部112と、経路選択部113と、送信部114とを有している。また、サーバ110は、格納部115を有してもよい。これらの車両制御システム100の各部は、たとえば、車両制御システム100のCPUによってメモリに記録されたプログラムを実行することにより実現される車両制御システム100の各機能を表している。The server 110 has, for example, a recording unit 111, a calculation unit 112, a route selection unit 113, and a transmission unit 114. The server 110 may also have a storage unit 115 . Each part of these vehicle control system 100 expresses each function of vehicle control system 100 realized by executing the program recorded on memory by CPU of vehicle control system 100, for example.
 電子制御装置120は、たとえば、車両200に搭載される車両制御装置である。電子制御装置120は、たとえば、一つ以上のマイクロコントローラによって構成され、CPU、ROMやRAMなどのメモリ、タイマ、および入出力部などを備えている。The electronic control device 120 is, for example, a vehicle control device mounted on the vehicle 200 . The electronic control unit 120 is composed of, for example, one or more microcontrollers, and includes a CPU, memories such as ROM and RAM, timers, input/output units, and the like.
 電子制御装置120は、たとえば、認識部121と、判定部122と、送信部123と、車両制御部124と、を有している。これら電子制御装置120の各部は、たとえば、電子制御装置120のCPUによってメモリに記録されたプログラムを実行することにより実現される電子制御装置120の各機能を表している。The electronic control unit 120 has, for example, a recognition unit 121, a determination unit 122, a transmission unit 123, and a vehicle control unit 124. Each part of these electronic control units 120 expresses each function of the electronic control unit 120 realized by executing the program recorded on memory by CPU of the electronic control unit 120, for example.
 各々の車両200は、たとえば、ガソリン車、ディーゼル車、ハイブリッド車、電気自動車、または燃料電池車などの自動車である。車両200は、電子制御装置120の他に、たとえば、通信装置210と、外界センサ220と、車両センサ230と、ナビゲーションシステム240と、アクチュエータ250と、報知装置260を備えている。また、車両200は、たとえば、図示を省略する原動機、動力伝達装置、制動装置、操舵装置、走行装置、フレーム、サスペンション、電気装置、安全装置など、車両の一般的な構成を備えている。Each vehicle 200 is, for example, a gasoline vehicle, a diesel vehicle, a hybrid vehicle, an electric vehicle, or a fuel cell vehicle. Vehicle 200 includes, in addition to electronic control device 120, communication device 210, external sensor 220, vehicle sensor 230, navigation system 240, actuator 250, and notification device 260, for example. In addition, vehicle 200 includes a typical configuration of a vehicle, such as a prime mover, power transmission device, braking device, steering device, traveling device, frame, suspension, electrical device, safety device, etc., which are not shown.
 通信装置210は、車両200の車載通信機であり、車載ネットワークを介して電子制御装置120に接続されている。通信装置210は、たとえば、車両200の外部に設置された無線基地局などの通信装置400との間で無線通信を行う。The communication device 210 is an in-vehicle communication device of the vehicle 200 and is connected to the electronic control device 120 via an in-vehicle network. Communication device 210 performs wireless communication with communication device 400 such as a radio base station installed outside vehicle 200, for example.
 通信装置400は、たとえば、無線通信回線を介して車両200の通信装置210に接続され、インターネット回線300を介してサーバ110に接続されている。通信装置400は、車両200から送信された情報を受信してサーバ110へ送信するとともに、サーバ110から送信された情報を受信して車両200の通信装置210へ送信する。The communication device 400 is, for example, connected to the communication device 210 of the vehicle 200 via a wireless communication line and connected to the server 110 via the Internet line 300 . Communication device 400 receives information transmitted from vehicle 200 and transmits the information to server 110 , and receives information transmitted from server 110 and transmits the information to communication device 210 of vehicle 200 .
 外界センサ220は、たとえば、車両200の周囲の物体を検出するセンサであり、車載ネットワークを介して電子制御装置120に接続されている。外界センサ220は、たとえば、単眼カメラ、ステレオカメラ、ミリ波レーダ、レーザレーダ、超音波センサなどのセンサを含む。本実施形態において、外界センサ220は、少なくともステレオカメラを含んでいる。The external sensor 220 is, for example, a sensor that detects objects around the vehicle 200, and is connected to the electronic control unit 120 via an in-vehicle network. External sensor 220 includes sensors such as a monocular camera, a stereo camera, a millimeter wave radar, a laser radar, and an ultrasonic sensor, for example. In this embodiment, the external sensor 220 includes at least a stereo camera.
 車両センサ230は、たとえば、車両200に関する物理量を検出するセンサであり、車載ネットワークを介して電子制御装置120に接続されている。車両センサ230は、たとえば、車輪速センサ、加速度センサ、角速度センサ、角加速度センサ、舵角センサ、シフトポジションセンサ、アクセルセンサ、ブレーキセンサなど、高度運転支援システム(ADAS)や自動運転システム(ADS)に必要な各種のセンサを含む。The vehicle sensor 230 is, for example, a sensor that detects physical quantities related to the vehicle 200, and is connected to the electronic control unit 120 via an in-vehicle network. Vehicle sensors 230 include, for example, wheel speed sensors, acceleration sensors, angular velocity sensors, angular acceleration sensors, steering angle sensors, shift position sensors, accelerator sensors, brake sensors, advanced driving assistance systems (ADAS) and automatic driving systems (ADS). Includes various sensors required for
 ナビゲーションシステム240は、たとえば、全球測位衛星システム(GNSS)の受信機と、地図情報が記憶された記憶装置と、地図や目的地までの経路の情報を表示する表示装置と、目的地などを入力するための入力装置と、を備えている。ナビゲーションシステム240は、たとえば、車載ネットワークを介して電子制御装置120に接続され、車両200の現在の位置や、目的地までの経路の情報を電子制御装置120へ出力する。The navigation system 240 includes, for example, a global positioning satellite system (GNSS) receiver, a storage device storing map information, a display device displaying a map and route information to the destination, and inputting the destination and the like. and an input device for Navigation system 240 is connected to electronic control unit 120 via an in-vehicle network, for example, and outputs information on the current position of vehicle 200 and the route to the destination to electronic control unit 120 .
 アクチュエータ250は、たとえば、電子制御装置120から出力される制御信号に基づいて、車両200の操舵装置、アクセル、ブレーキ、ギヤシフトなどを自動的に操作して、車両200の高度運転支援や自動運転を実現する。すなわち、車両200は、通信装置210、外界センサ220、車両センサ230、ナビゲーションシステム240、電子制御装置120、およびアクチュエータ250などによって構成されるADASまたはADSを搭載した車両である。 Actuator 250, for example, automatically operates the steering device, accelerator, brake, gear shift, etc. of vehicle 200 based on a control signal output from electronic control unit 120, thereby performing advanced driving assistance and automatic driving of vehicle 200. come true. That is, vehicle 200 is equipped with ADAS or ADS configured by communication device 210, external sensor 220, vehicle sensor 230, navigation system 240, electronic control unit 120, actuator 250, and the like.
 報知装置260は、たとえば、電子制御装置120から出力される制御信号に基づいて、車両200の乗員に情報提供、注意喚起、警告などの報知を行う装置である。報知装置260は、たとえば、表示装置と音声出力装置とを含む。表示装置は、たとえば、液晶表示装置、有機EL表示装置、ヘッドアップディスプレイなどを含む。音声出力装置は、たとえば、スピーカやブザーを含む。The notification device 260 is, for example, a device that provides information, alerts, and warnings to the occupants of the vehicle 200 based on the control signal output from the electronic control device 120 . Notification device 260 includes, for example, a display device and an audio output device. The display device includes, for example, a liquid crystal display device, an organic EL display device, a head-up display, and the like. Audio output devices include, for example, speakers and buzzers.
 以下、図2および図3を参照して、本実施形態の車両制御システム100および電子制御装置120の動作を説明する。図2は、図1の電子制御装置120による処理P10の一例を示すフロー図である。図3は、図1のサーバ110の処理P20の一例を示すフロー図である。The operations of the vehicle control system 100 and the electronic control unit 120 of this embodiment will be described below with reference to FIGS. FIG. 2 is a flow chart showing an example of processing P10 by the electronic control unit 120 of FIG. FIG. 3 is a flowchart showing an example of processing P20 of server 110 in FIG.
 電子制御装置120は、図2に示す処理P10を開始すると、まず、出発地と目的地を取得する処理P11を実行する。この処理P11において、電子制御装置120は、たとえば、車両制御部124により、ナビゲーションシステム240から車両200の現在の位置を、出発地として取得する。また、電子制御装置120は、たとえば、車両制御部124により、ナビゲーションシステム240の入力装置に入力された目的地の位置情報を取得する。When starting the process P10 shown in FIG. 2, the electronic control unit 120 first executes the process P11 for acquiring the departure point and the destination. In this process P11, electronic control unit 120, for example, through vehicle control unit 124, acquires the current position of vehicle 200 from navigation system 240 as a departure point. Further, the electronic control unit 120 acquires the position information of the destination input to the input device of the navigation system 240 by the vehicle control unit 124, for example.
 次に、電子制御装置120は、サーバ110に経路情報を要求する処理P12を実行する。この処理P12において、電子制御装置120は、たとえば、送信部123により、通信装置210を介して、出発地から目的地までの推奨経路の要求をサーバ110へ送信する。ここで、推奨経路の要求に含まれる車両200の出発地と目的地の情報は、たとえば、サーバ110の格納部115に格納される地図情報に含まれる地点情報と照合可能な形式で送信される。Next, the electronic control unit 120 executes a process P12 of requesting route information from the server 110. In this process P<b>12 , the electronic control unit 120 , for example, uses the transmission unit 123 to transmit a request for a recommended route from the departure point to the destination to the server 110 via the communication device 210 . Here, the information of the starting point and destination of the vehicle 200 included in the request for the recommended route is transmitted in a format that can be compared with the point information included in the map information stored in the storage unit 115 of the server 110, for example. .
 具体的には、電子制御装置120からサーバ110へ送信される車両200の出発地と目的地の情報は、たとえば、出発地と目的地のそれぞれの緯度と経度を含む。また、電子制御装置120からサーバ110へ送信される推奨経路の要求は、たとえば、車両200が出発地から目的地まで走行する日時を含む。Specifically, the information on the departure point and destination of vehicle 200 transmitted from electronic control unit 120 to server 110 includes, for example, the latitude and longitude of each of the departure point and destination. Further, the request for the recommended route transmitted from electronic control unit 120 to server 110 includes, for example, the date and time when vehicle 200 travels from the departure point to the destination.
 一方、サーバ110は、図3に示す処理P20を開始すると、まず、電子制御装置120からの経路情報の要求の有無を判定する処理P21を実行する。この処理P21において、サーバ110の経路選択部113は、いずれの車両200の電子制御装置120からも推奨経路の要求を受信していないと判定すると、経路情報の要求なし(NO)と判定して、後述する処理P24を実行する。On the other hand, when the server 110 starts the process P20 shown in FIG. In this process P21, when the route selection unit 113 of the server 110 determines that the request for the recommended route has not been received from the electronic control unit 120 of any vehicle 200, it determines that there is no request for route information (NO). , a process P24, which will be described later, is executed.
 一方、この処理P21において、サーバ110の経路選択部113は、たとえば、少なくとも一つの車両200の電子制御装置120から出発地と目的地を含む推奨経路の要求を受信したことを判定すると、経路情報の要求あり(YES)と判定する。この場合、サーバ110は、安全経路を選択する処理P22を実行する。この処理P22については、後で図4を参照して詳細に説明する。On the other hand, in this process P21, the route selection unit 113 of the server 110, for example, when it determines that it has received a request for a recommended route including a departure point and a destination from the electronic control unit 120 of at least one vehicle 200, route information is requested (YES). In this case, the server 110 executes the process P22 of selecting a safe route. This process P22 will be described later in detail with reference to FIG.
 その後、サーバ110は、前の処理P22で得られた安全経路を、経路情報の要求を行った車両200の電子制御装置120へ推奨経路として送信する処理P23を実行する。この処理P23において、サーバ110は、たとえば、送信部114により、インターネット回線300および通信装置400を介して、車両200の通信装置210へ車両200の出発地から目的地までの推奨経路を送信する。After that, the server 110 executes a process P23 of transmitting the safe route obtained in the previous process P22 as a recommended route to the electronic control unit 120 of the vehicle 200 that requested the route information. In this process P23, server 110 transmits the recommended route from the departure point of vehicle 200 to the destination to communication device 210 of vehicle 200 via Internet line 300 and communication device 400, for example, using transmission unit 114. FIG.
 次に、車両200の電子制御装置120は、たとえば、図2に示すように、経路情報を受信する処理P13を実行する。この処理P13において、電子制御装置120は、たとえば、車両制御部124により、車両200の通信装置210を介して、サーバ110から送信された出発地から目的地までの推奨経路を受信する。次に、車両200の電子制御装置120は、受信した推奨経路に沿って車両200を走行させる車両走行制御処理P14を実行する。Next, electronic control unit 120 of vehicle 200 executes process P13 for receiving route information, for example, as shown in FIG. In this process P<b>13 , electronic control unit 120 receives the recommended route from the departure point to the destination transmitted from server 110 by vehicle control unit 124 via communication device 210 of vehicle 200 , for example. Next, electronic control unit 120 of vehicle 200 executes vehicle travel control process P14 for causing vehicle 200 to travel along the received recommended route.
 この処理P14において、車両200の電子制御装置120は、たとえば、車両制御部124により、車両200のアクチュエータ250を制御して、推奨経路に沿って車両200を走行させる。また、電子制御装置120は、処理P14を開始すると、道路状態を認識する処理P15と、異常の有無を判定する処理P16を実行する。なお、これらの処理P15,P16は、たとえば、車両走行制御処理P14を実行中に、制御周期毎に実行してもよく、必要に応じて適宜実施してもよい。In this process P14, the electronic control unit 120 of the vehicle 200 controls the actuator 250 of the vehicle 200 by means of the vehicle control unit 124, for example, so that the vehicle 200 travels along the recommended route. Further, after starting the process P14, the electronic control unit 120 executes a process P15 for recognizing the road condition and a process P16 for determining whether there is an abnormality. It should be noted that these processes P15 and P16 may be executed, for example, at each control cycle while the vehicle travel control process P14 is being executed, or may be executed as appropriate.
 電子制御装置120は、処理P15において、たとえば、認識部121により、車両200に搭載された外界センサ220および車両センサ230の検出結果を取得して、その検出結果に基づいて道路状態を認識する。ここで、認識部121は、道路状態として、たとえば、車両200が走行可能な領域と、車両200が回避すべき物体と、道路状態の認識が困難な状況と、を認識する。In process P15, the electronic control unit 120 acquires the detection results of the external sensor 220 and the vehicle sensor 230 mounted on the vehicle 200 by the recognition unit 121, and recognizes the road condition based on the detection results. Here, the recognition unit 121 recognizes, as road conditions, for example, areas where the vehicle 200 can travel, objects that the vehicle 200 should avoid, and situations in which it is difficult to recognize the road conditions.
 より具体的には、認識部121は、たとえば、外界センサ220の検出結果に基づいて、車両200の前方の道路および道路端と、道路上の区画線などを認識することで、車両200が走行可能な領域を認識する。また、認識部121は、たとえば、外界センサ220の検出結果に基づいて車両200の前方の物体を認識し、車両センサ230の検出結果に基づいて車両200との衝突の可能性がある物体を検出する。More specifically, recognition unit 121 recognizes a road and road edges in front of vehicle 200, lane markings on the road, and the like based on the detection result of external sensor 220, so that vehicle 200 can move. Recognize possible areas. For example, recognition unit 121 recognizes an object in front of vehicle 200 based on the detection result of external sensor 220, and detects an object that may collide with vehicle 200 based on the detection result of vehicle sensor 230. do.
 また、認識部121は、たとえば、外界センサ220の検出結果に基づいて、自動車、二輪車、歩行者、落下物、車両の速度を低下させるためバンプなど、物体の種別を認識する。また、認識部121は、外界センサ220の検出結果に基づいて、道路状態の認識が困難な状況を認識する。ここで、道路状態の認識が困難な状況は、たとえば、外界センサ220に含まれるカメラによる物体の認識が、逆光、豪雨、降雪などによって困難な状況や、外界センサ220による区画線の検出不良に起因する左右の車線の少なくとも一方の認識不可などを含む。In addition, the recognition unit 121 recognizes the type of object, such as a car, a motorcycle, a pedestrian, a falling object, and a bump for reducing the speed of the vehicle, based on the detection result of the external sensor 220, for example. Further, the recognition unit 121 recognizes a situation in which it is difficult to recognize the road state based on the detection result of the external sensor 220 . Here, a situation in which it is difficult to recognize the road state is, for example, a situation in which it is difficult for the camera included in the external sensor 220 to recognize an object due to backlight, heavy rain, or snowfall, or a situation in which the external sensor 220 fails to detect lane markings. Including inability to recognize at least one of the left and right lanes.
 認識部121は、たとえば、左右の車線の少なくとも一方が認識不可となった場合や、道路状態の認識が困難な状況になった場合に、車両200の報知装置260を制御して、車両200の乗員に対して車線未認識の警告や、道路状態未認識の警告を発する。また、認識部121は、たとえば、車両200との衝突の可能性がある物体を認識した場合に、報知装置260を制御して、車両200の乗員に対して衝突回避の警告を発するとともに、その物体の情報を車両制御部124へ出力する。 Recognition unit 121 controls notification device 260 of vehicle 200, for example, when at least one of the left and right lanes cannot be recognized or when the road state becomes difficult to recognize. A warning of unrecognized lanes and unrecognized road conditions is issued to the occupants. For example, when recognition unit 121 recognizes an object that may collide with vehicle 200, recognition unit 121 controls notification device 260 to issue a collision avoidance warning to the occupants of vehicle 200, and Information on the object is output to the vehicle control unit 124 .
 ここで、認識部121は、たとえば、先行車両との車間距離がしきい値よりも短くなった場合や、車両200の位置および速度と他の車両の位置および速度から衝突が予測される場合などに、それらの車両を衝突の可能性がある物体として認識する。また、車両200の位置および速度と、道路に飛び出した歩行者の位置および速度から衝突が予測される場合に、その歩行者を衝突の可能性がある物体として認識する。Here, recognition unit 121 detects, for example, when the inter-vehicle distance to the preceding vehicle becomes shorter than a threshold, or when a collision is predicted from the position and speed of vehicle 200 and the positions and speeds of other vehicles. Then, it recognizes those vehicles as potential collision objects. Also, when a collision is predicted from the position and speed of the vehicle 200 and the position and speed of a pedestrian running out onto the road, the pedestrian is recognized as an object that may collide.
 また、認識部121は、たとえば、速度低減用のバンプを認識した場合に、そのバンプを車両200の通過時に減速が必要な物体として認識する。車両制御部124は、たとえば、認識部121から車両200との衝突の可能性がある物体や、減速が必要な物体の情報が入力されると、車両200のアクチュエータ250を制御して、衝突回避のためのステアリング操作や、衝突被害軽減ブレーキ(AEB)などを作動させる。For example, when the recognition unit 121 recognizes a speed reduction bump, the recognition unit 121 recognizes the bump as an object that requires deceleration when the vehicle 200 passes through. For example, when information about an object that may collide with the vehicle 200 or an object that requires deceleration is input from the recognition unit 121, the vehicle control unit 124 controls the actuator 250 of the vehicle 200 to avoid collision. The steering operation for the purpose and the collision damage mitigation brake (AEB) etc. are operated.
 また、認識部121は、たとえば、道路状態の認識不良、定常状態とは異なる道路状態の認識、車両200の乗員に対する警告の発生、車両200の衝突回避制御の発生などを、異常として認識する。また、認識部121は、たとえば、認識した異常の種別を、その異常が発生した位置および日時とともに、異常情報として記録する。ここで、異常が発生した位置は、たとえば、ナビゲーションシステム240から取得される車両200の位置情報や、車両200が位置している地図情報のリンクおよび/またはノードの識別情報を含む。In addition, the recognition unit 121 recognizes, for example, poor recognition of road conditions, recognition of road conditions different from normal conditions, occurrence of warnings to the occupants of the vehicle 200, occurrence of collision avoidance control of the vehicle 200, etc. as abnormalities. Further, the recognizing unit 121 records, for example, the type of the recognized abnormality as abnormality information together with the position and the date and time when the abnormality occurred. Here, the location where the abnormality occurs includes, for example, location information of vehicle 200 acquired from navigation system 240 and identification information of a link and/or node of map information where vehicle 200 is located.
 次に、電子制御装置120は、たとえば、認識部121による道路状態の認識不良を含む異常の有無を判定する処理P16を実行する。この処理P16において、判定部122は、たとえば、前の処理P15で認識部121によって記録された異常情報の有無に基づいて、異常の有無を判定する。ここで、判定部122が異常あり(YES)と判定すると、電子制御装置120は、異常情報をサーバ110へ送信する処理P17を実行し、判定部122が異常なし(NO)と判定すると、電子制御装置120は、車両200の目的地への到着を判定する処理P18を実行する。Next, the electronic control unit 120 executes, for example, a process P16 of determining whether there is an abnormality including poor recognition of the road condition by the recognition unit 121. In this process P16, the determination unit 122 determines whether or not there is an abnormality based on, for example, the presence or absence of abnormality information recorded by the recognition unit 121 in the previous process P15. Here, if the determination unit 122 determines that there is an abnormality (YES), the electronic control unit 120 executes a process P17 of transmitting abnormality information to the server 110. If the determination unit 122 determines that there is no abnormality (NO), the electronic control unit 120 Control device 120 executes a process P18 of determining whether vehicle 200 has arrived at the destination.
 異常情報を送信する処理P17において、電子制御装置120は、たとえば、送信部123により、サーバ110へ、車両200に搭載された通信装置210、外部の通信装置400およびインターネット回線300を介して、異常情報を送信する。ここで、サーバ110は、たとえば、図3に示すように、各々の車両200の電子制御装置120から異常情報を受信したか否かを判定する処理P24を所定の周期で繰り返し実行している。In processing P17 for transmitting abnormality information, electronic control unit 120 transmits abnormality information to server 110 by transmission unit 123 via communication device 210 mounted on vehicle 200, external communication device 400, and Internet line 300, for example. Send information. Here, for example, as shown in FIG. 3, server 110 repeatedly executes process P24 of determining whether or not abnormality information has been received from electronic control unit 120 of each vehicle 200 at a predetermined cycle.
 サーバ110は、この処理P24において、たとえば、記録部111により、電子制御装置120から異常情報を受信したか否かを判定する。この処理P24において、記録部111が電子制御装置120から異常情報を受信していないこと(NO)を判定すると、サーバ110は、図3に示す処理P20を終了し、再度、処理P20を開始する。一方、この処理P24において、電子制御装置120は、記録部111が電子制御装置120から異常情報を受信したこと(YES)を判定すると、異常情報を記録する処理P25を実行する。The server 110 determines whether or not abnormality information has been received from the electronic control unit 120 by the recording unit 111 in this process P24, for example. In this process P24, when it is determined that the recording unit 111 has not received the abnormality information from the electronic control unit 120 (NO), the server 110 ends the process P20 shown in FIG. 3 and starts the process P20 again. . On the other hand, in this process P24, when the electronic control unit 120 determines that the recording unit 111 has received the abnormality information from the electronic control unit 120 (YES), it executes the process P25 of recording the abnormality information.
 この処理P25において、サーバ110は、たとえば、記録部111により、各々の電子制御装置120から受信した異常情報を地図情報の各々のノードN1-N4またはリンクL1-L7に対応づけた異常発生情報を記録する。以下の表1に、記録部111によって格納部115に記録される異常発生情報の一例を示す。In this process P25, the server 110, for example, uses the recording unit 111 to create abnormality occurrence information in which the abnormality information received from each electronic control unit 120 is associated with each of the nodes N1 to N4 or links L1 to L7 of the map information. Record. Table 1 below shows an example of abnormality occurrence information recorded in the storage unit 115 by the recording unit 111 .
  [表1]
Figure pctxmlib-appb-I000001
[Table 1]
Figure pctxmlib-appb-I000001


 表1に示すように、異常発生情報は、たとえば、異常情報としての異常種別コード、日付、時刻、緯度および経度を、各リンクL1-L7および/または各ノードN1-N4を含む位置コードに対応づけた情報である。ここで、異常種別コードは、異常の種別を表すコードである。


As shown in Table 1, the anomaly occurrence information corresponds to, for example, an anomaly type code, date, time, latitude and longitude as anomaly information, and a position code including each link L1-L7 and/or each node N1-N4. It is information that has been attached. Here, the abnormality type code is a code representing the type of abnormality.
 たとえば、以下の表2に示すように、あらかじめ、異常種別とそれに対応する異常種別コードが規定された異常種別情報が、格納部115に記録されている。したがって、表2に示す異常種別情報に基づいて、表1に示す異常発生情報の異常種別コードに対応する異常種別を特定することができる。また、表2に示す例において、異常種別情報は、異常種別に対応する重み係数を含む。この重み係数は、たとえば、車両200の安全性に与える影響の大きさを表す指標である。For example, as shown in Table 2 below, the storage unit 115 records in advance the abnormality type information in which the abnormality type and the corresponding abnormality type code are defined. Therefore, based on the abnormality type information shown in Table 2, the abnormality type corresponding to the abnormality type code of the abnormality occurrence information shown in Table 1 can be specified. Also, in the example shown in Table 2, the abnormality type information includes a weighting factor corresponding to the abnormality type. This weighting factor is, for example, an index representing the magnitude of the impact on the safety of vehicle 200 .
  [表2]
Figure pctxmlib-appb-I000002
[Table 2]
Figure pctxmlib-appb-I000002


 また、表1に示す例において、異常発生情報は、各々の電子制御装置120の判定部122による異常判定時の各々の車両200の位置における天気を、各リンクL1-L7および/または各ノードN1-N4に対応づけた情報である。天気は、たとえば、車両200の外界センサ220によって検出することが困難である場合、サーバ110の記録部111によって、異常発生情報に含まれる異常発生日時と、その時点での車両200の位置情報とに基づいて、図示を省略する天気データベースから取得してもよい。


Further, in the example shown in Table 1, the abnormality occurrence information is the weather at the position of each vehicle 200 at the time of abnormality determination by the determination unit 122 of each electronic control unit 120, each link L1-L7 and/or each node N1. - Information associated with N4. For example, when it is difficult to detect the weather by external sensor 220 of vehicle 200, recording unit 111 of server 110 records the date and time of anomaly occurrence included in the anomaly occurrence information and the location information of vehicle 200 at that time. may be obtained from a weather database (not shown).
 このように、サーバ110の記録部111は、たとえば、複数の車両200の各々の電子制御装置120から異常情報を受信して、表1に示すような異常発生情報を、格納部115に記録する。これにより、格納部115に記録された異常発生情報に含まれる多数の異常情報を用い、特定の場所、特定の時間帯、特定の異常種別などに基づく統計的な処理が可能になる。図3に示すように、サーバ110は、異常情報を記録する処理P25が終了すると、図3に示す処理P20を終了させる。また、サーバ110は、所定の周期で図3に示す処理P20を繰り返す。In this way, the recording unit 111 of the server 110 receives, for example, abnormality information from the electronic control units 120 of the plurality of vehicles 200, and records abnormality occurrence information as shown in Table 1 in the storage unit 115. . This enables statistical processing based on a specific place, a specific time period, a specific type of abnormality, etc., using a large amount of abnormality information included in the abnormality occurrence information recorded in the storage unit 115 . As shown in FIG. 3, the server 110 terminates the process P20 shown in FIG. 3 after completing the process P25 of recording the abnormality information. Moreover, the server 110 repeats the process P20 shown in FIG. 3 at a predetermined cycle.
 以下、図4から図7を参照して、図3に示す安全経路を選択する処理P22の詳細を説明する。図4は、図3の安全経路を選択する処理P22の詳細を示すフロー図である。図5は、サーバ110の格納部115に格納された地図情報MIに基づく車両200の経路候補CR1,CR2,CR3の一例を示す図である。地図情報MIは、たとえば、道路などのリンクL1-L7が交差点などのノードN1-N4を介して接続された道路ネットワークを含む。The details of the process P22 for selecting the safe route shown in FIG. 3 will be described below with reference to FIGS. 4 to 7. FIG. FIG. 4 is a flowchart showing details of the process P22 for selecting a safe route in FIG. FIG. 5 is a diagram showing an example of route candidates CR1, CR2, and CR3 of vehicle 200 based on map information MI stored in storage unit 115 of server 110. As shown in FIG. The map information MI includes, for example, a road network in which links L1-L7 such as roads are connected via nodes N1-N4 such as intersections.
 サーバ110は、図4に示す処理P22を開始すると、たとえば、経路選択部113により、図5に示すように、地図情報MIから複数の経路候補CR1,CR2,CR3を探索する処理P221を実行する。経路選択部113は、たとえば、各々の電子制御装置120から受信した経路情報の要求に含まれる車両200の出発地Sと目的地Gの情報を取得し、格納部115に格納された地図情報MIを探索して、出発地Sから目的地Gに到達可能な複数の経路候補CR1,CR2,CR3を選択する。When the server 110 starts the process P22 shown in FIG. 4, for example, the route selection unit 113 executes the process P221 of searching for a plurality of route candidates CR1, CR2, CR3 from the map information MI as shown in FIG. . The route selection unit 113 acquires, for example, the information of the departure point S and the destination G of the vehicle 200 included in the request for route information received from each electronic control unit 120, and obtains the map information MI stored in the storage unit 115. to select a plurality of route candidates CR1, CR2, and CR3 that can reach the destination G from the departure point S.
 次に、サーバ110は、たとえば、経路選択部113により、選択した複数の経路候補CR1,CR2,CR3に含まれるリンクL1-L7および/またはノードN1-N4を抽出する処理P222を実行する。図5に示す例において、経路選択部113は、経路候補CR1のリンクL1-L5および/またはN1-N4と、経路候補CR2のリンクL1,L2,L6,L5および/またはノードN1,N2,N4と、経路候補CR3のリンクL1,L7,L4,L5および/またはノードN1,N3,N4と、を抽出する。Next, the server 110, for example, executes a process P222 of extracting the links L1-L7 and/or the nodes N1-N4 included in the plurality of selected route candidates CR1, CR2, CR3 by the route selection unit 113. In the example shown in FIG. 5, the route selection unit 113 selects the links L1-L5 and/or N1-N4 of the route candidate CR1 and the links L1, L2, L6, L5 and/or the nodes N1, N2, N4 of the route candidate CR2. , and links L1, L7, L4, L5 and/or nodes N1, N3, N4 of route candidate CR3.
 次に、サーバ110は、たとえば、経路選択部113により、異常発生頻度を取得する処理P223を実行する。この処理P223において、経路選択部113は、たとえば、前の処理P222で抽出したリンクL1-L7および/またはノードN1-N4のそれぞれについて、複数の車両200の各々の電子制御装置120から異常情報を受信した頻度を取得する。Next, the server 110, for example, uses the route selection unit 113 to execute the process P223 of acquiring the abnormality occurrence frequency. In this process P223, the route selection unit 113 receives abnormality information from the electronic control units 120 of the plurality of vehicles 200 for each of the links L1-L7 and/or the nodes N1-N4 extracted in the previous process P222. Get the received frequency.
 より具体的には、処理P223において、経路選択部113は、たとえば、車両200が出発地Sから目的地Gまで走行する月、時間帯、天気などを含む走行条件が一致する異常発生情報を抽出する。ここで、異常発生情報の抽出に用いる時間帯は、車両200の電子制御装置120が経路要求を送信した時点の時刻を基準とする時間帯でもよく、出発地Sから目的地Gまでの所要時間と各リンクまたは各ノードの予測通過時刻を考慮した時間帯でもよい。車両200の走行条件として、10月、午前8時台、かつ晴天を指定して抽出した図5のリンクL6における異常情報の受信頻度の一例を、以下の表3に示す。More specifically, in process P223, route selection unit 113 extracts, for example, abnormality occurrence information that matches the traveling conditions including the month, time zone, weather, etc. in which vehicle 200 travels from departure point S to destination G. do. Here, the time period used for extracting the abnormality occurrence information may be a time period based on the time when the electronic control unit 120 of the vehicle 200 transmits the route request, or the required time from the departure point S to the destination G and the time period that takes into account the predicted passage time of each link or each node. Table 3 below shows an example of the reception frequency of abnormality information on the link L6 in FIG.
  [表3]
Figure pctxmlib-appb-I000003
[Table 3]
Figure pctxmlib-appb-I000003


 表3は、サーバ110が、10月、午前8時台、かつ晴天という走行条件でリンクL6を走行した一台以上の車両200に搭載された各々の電子制御装置120から、異常種別コード2の異常情報を複数回に亘って受信したことを示している。経路選択部113は、たとえば、表3のように抽出された異常発生情報の数(行数)をカウントすることで、異常の判定頻度を算出する。処理P223において、経路選択部113は、たとえば、所定の走行条件を満たすリンクL1-L7および/またはノードN1-N4のそれぞれについて、異常発生頻度を異常種別ごとに取得する。


Table 3 shows that the server 110, from each of the electronic control units 120 mounted on one or more vehicles 200 that traveled on the link L6 under the traveling conditions of 8:00 am and fine weather in October, This indicates that the anomaly information has been received multiple times. The route selection unit 113 calculates the abnormality determination frequency by counting the number (number of lines) of the abnormality occurrence information extracted as shown in Table 3, for example. In process P223, the route selection unit 113 acquires, for example, an abnormality occurrence frequency for each abnormality type for each of the links L1 to L7 and/or the nodes N1 to N4 that satisfy a predetermined travel condition.
 図6および図7は、前述の異常発生頻度を取得する処理P223の結果の一例を示すグラフである。これらのグラフにおいて、横軸は、異常情報の種別を示す異常種別コードであり、縦軸は異常情報の受信回数、すなわち異常発生頻度または異常判定頻度である。たとえば、表2に示すように、グラフの横軸の異常種別コードの1から4は、それぞれ、歩行者の認識による衝突被害軽減ブレーキ(AEB)、車線認識不可(車線未認識)、逆光、および障害物回避を表している。FIGS. 6 and 7 are graphs showing an example of the result of the process P223 for acquiring the abnormality occurrence frequency described above. In these graphs, the horizontal axis is the abnormality type code indicating the type of the abnormality information, and the vertical axis is the number of receptions of the abnormality information, that is, the frequency of abnormality occurrence or the frequency of abnormality determination. For example, as shown in Table 2, the abnormality type codes 1 to 4 on the horizontal axis of the graph are, respectively, collision damage mitigation braking (AEB) by pedestrian recognition, lane recognition unrecognizable (lane unrecognized), backlight, and Represents obstacle avoidance.
 すなわち、図6に示す例において、サーバ110は、リンクL6を10月、午前8時台、かつ晴天時に走行した複数の車両200の電子制御装置120から、異常情報として、車線認識不可を示す異常種別コード2を、150回程度の頻度で受信している。また、図7に示す例において、サーバ110は、リンクL3を10月、午前8時台、かつ晴天時に走行した複数の車両200の電子制御装置120から、異常情報として、歩行者を認識したことによるAEBの作動を示す異常種別コード1を、79回程度の頻度で受信している。That is, in the example shown in FIG. 6, the server 110 receives, as abnormality information from the electronic control units 120 of the plurality of vehicles 200 that have traveled on the link L6 in October, between 8:00 am and in fine weather, an abnormality indicating that the lane cannot be recognized. The type code 2 is received at a frequency of about 150 times. Further, in the example shown in FIG. 7, the server 110 recognizes a pedestrian as abnormal information from the electronic control units 120 of the plurality of vehicles 200 that traveled on the link L3 in October between 8:00 am and in fine weather. Anomaly type code 1, which indicates the operation of the AEB by the aircraft, is received at a frequency of about 79 times.
 ここでは、リンクL3,L6を除くリンクL1,L2,L4,L5,L7およびノードN1-N4では、リンクL3,L6と同じ走行条件で、サーバ110が異常情報を受信していないものとする。Here, it is assumed that the links L1, L2, L4, L5, L7 and the nodes N1-N4, excluding the links L3 and L6, have the same running conditions as the links L3 and L6, and the server 110 has not received any abnormality information.
 異常種別のうち、表3に示すように、リンクL6上の同じ地点で発生する車線認識不可(異常種別コード:2)は、たとえば、道路の区画線が経時的な摩耗によってかすれている場合などに発生する。電子制御装置120による車線認識は、電子制御装置120による車両200の自動運転に必要である。そのため、複数の車両200の各々の電子制御装置120は、車線認識不可の異常種別コード:2を、異常情報としてサーバ110へ送信する。車線認識不可は、月や時間帯に関係なく、多数の情報が収集される異常種別である。Among the error types, as shown in Table 3, lane recognition failure (abnormality type code: 2) that occurs at the same point on link L6 is, for example, a case where the road division line is faded due to wear over time. occurs in Lane recognition by electronic control unit 120 is necessary for automatic driving of vehicle 200 by electronic control unit 120 . Therefore, the electronic control unit 120 of each of the plurality of vehicles 200 transmits to the server 110 as abnormality information the abnormality type code: 2 indicating that the lane cannot be recognized. Lane unrecognizable is an abnormality type for which a large amount of information is collected regardless of the month or time period.
 また、異常種別のうち、歩行者認識によるAEBは、突発的な事象であることも考えられる。しかし、図7に示すように、リンクL3において、同時間帯に歩行者認識によるAEB(異常種別コード:1)が多数発生している場合には、次のような状況を想定することができる。たとえば、リンクL3の道路に面して多数の社員が出勤する職場があり、その職場の道路を挟んで反対側に駐車場があり、職場と駐車場との間に横断歩道が設置されていない状況である。Also, among the types of anomalies, AEB due to pedestrian recognition may be a sudden event. However, as shown in FIG. 7, when many AEBs (abnormality type code: 1) due to pedestrian recognition occur in the same time period on link L3, the following situation can be assumed. . For example, there is a workplace where many employees go to work facing the road of link L3, and there is a parking lot on the opposite side of the road across the road of the workplace, and no pedestrian crossing is installed between the workplace and the parking lot. situation.
 このような状況では、出勤時に最短距離で職場へ向かおうとする多数の歩行者が、横断歩道が設置されていない道路を横断する。その結果、図7に示すように、職場の出勤時間帯に歩行者認識によるAEB(異常種別コード:1)が多数発生することになる。このように、特定の時間帯に道路周辺の環境に起因する異常が多数発生する道路上の地点は、その時間帯における車両200の安全な通行の妨げになる。In such a situation, many pedestrians cross roads without pedestrian crossings to take the shortest route to work. As a result, as shown in FIG. 7, many AEBs (abnormality type code: 1) occur due to pedestrian recognition during the working hours of the workplace. In this way, a point on the road where many abnormalities due to the environment around the road occur during a specific time period hinders safe passage of the vehicle 200 during that time period.
 また、上記のような状況以外にも、特定の時間帯に道路周辺の環境に起因する異常が多数発生する状況として、次のような状況を想定することができる。たとえば、道路に面してスーパーマーケットなどの店舗があり、その店舗の駐車場に駐車可能な台数が、特定の時間帯に集中する来客数に必要な駐車台数よりも少ない場合である。このような場合、その特定の時間帯に駐車場に入れずに路上駐車した車両を回避するための障害物回避(異常種別コード:4)が多数発生することが想定される。In addition to the above situation, the following situation can be assumed as a situation in which many abnormalities due to the environment around the road occur during a specific time period. For example, there is a store such as a supermarket facing the road, and the number of vehicles that can be parked in the store's parking lot is smaller than the number of parking spaces required for the number of visitors that concentrate in a particular time period. In such a case, it is assumed that obstacle avoidance (abnormality type code: 4) occurs frequently to avoid vehicles parked on the road without entering the parking lot during the specific time period.
 より具体的には、上記のような店舗の近くでは、たとえば、買い物客が集中する午後5時台から6時台に多数の車両が路上に駐車することで、駐車車両を回避するための障害物回避(異常種別コード:4)が多数発生することになる。その一方で、たとえば、店舗の開店前の午前8時台には、店舗の近くの路上には買い物客による駐車車両がなく、駐車車両を回避するための障害物回避は発生しない。同様に、特定の時間帯に生徒の送迎が集中するような教育関連施設の近くでも、特定の時間帯に多数の車両が路上に駐車し、駐車車両を回避するための障害物回避(異常種別コード:4)が多数発生することが想定される。More specifically, in the vicinity of the above-mentioned stores, for example, a large number of vehicles are parked on the road between 5:00 pm and 6:00 pm, when shoppers are concentrated. Object avoidance (abnormality type code: 4) will occur a lot. On the other hand, for example, around 8:00 am before the opening of the store, there are no parked vehicles by shoppers on the street near the store, and obstacle avoidance to avoid the parked vehicles does not occur. Similarly, even near educational facilities where there is a concentration of students picking up and dropping off during a specific time period, many vehicles park on the road during a specific time period, and obstacle avoidance (abnormality type) is used to avoid parked vehicles. Code: 4) is assumed to occur many times.
 また、逆光(異常種別コード:3)などの自然現象に起因する異常は、たとえば、特定の場所、特定の季節、かつ特定の時間帯に起こり得る。逆光が生じると、たとえば、車両200の外界センサ220に含まれるカメラの画像に白飛びが発生し、物体の認識に支障を来す場合がある。このような自然環境に起因する異常情報も、サーバ110が複数の車両200の各々の電子制御装置120から受信することで、異常発生頻度が高い場所、季節、および時間帯を特定することができる。In addition, anomalies caused by natural phenomena such as backlighting (abnormality type code: 3) can occur, for example, in specific places, specific seasons, and specific time periods. When backlight occurs, for example, the image captured by the camera included in external sensor 220 of vehicle 200 may be overexposed, which may interfere with object recognition. When server 110 receives such information on anomalies caused by the natural environment from electronic control units 120 of each of vehicles 200, it is possible to specify places, seasons, and time periods in which anomalies occur frequently. .
 また、上記のような異常発生頻度は、たとえば、天気の影響を受ける。より具体的には、上記のような店舗や教育関連施設の周辺の駐車車両の数は、雨天時と晴天時で増減することが考えられる。そのため、駐車車両を回避するための障害物回避(異常種別コード:4)の数は、天気の影響を受け得る。また、逆光などの自然現象に起因する異常は、たとえば、晴天時などの特定の天気のときにのみ発生する。そのため、異常発生情報が天気を含む場合には、天気に応じた異常発生頻度を把握することが可能になる。In addition, the frequency of abnormal occurrences as described above is affected by the weather, for example. More specifically, it is conceivable that the number of parked vehicles around stores and educational facilities as described above will increase or decrease depending on whether it is raining or fine. Therefore, the number of obstacle avoidance (abnormality type code: 4) for avoiding parked vehicles can be affected by the weather. Also, abnormalities caused by natural phenomena such as backlighting occur only in specific weather conditions such as fine weather. Therefore, when the abnormality occurrence information includes the weather, it is possible to grasp the abnormality occurrence frequency according to the weather.
 サーバ110は、図4に示す異常発生頻度を取得する処理P223が終了すると、たとえば、平均交通量を取得する処理P224を実行する。この処理P224において、サーバ110は、たとえば、各リンクL1-L7および/または各ノードN1-N4の平均交通量を取得する。より具体的には、この処理P224において、サーバ110の経路選択部113は、たとえば、前述の処理P222で抽出した各リンクL1-L7および/または各ノードN1-N4について、格納部115に格納されている平均交通量を取得する。After completing the process P223 of acquiring the frequency of occurrence of anomalies shown in FIG. 4, the server 110 executes, for example, the process P224 of acquiring the average traffic volume. In this process P224, the server 110 obtains, for example, the average traffic volume of each link L1-L7 and/or each node N1-N4. More specifically, in this process P224, the route selection unit 113 of the server 110 stores in the storage unit 115, for example, each of the links L1 to L7 and/or each of the nodes N1 to N4 extracted in the above process P222. Get the average traffic volume
 この処理P224において、経路選択部113は、たとえば、経路情報の要求を行った車両200が経路候補CR1,CR2,CR3を走行する月、時間帯、および天気などの走行条件に対応する平均交通量を、格納部115から取得する。これにより、たとえば、リンクL6およびリンクL3の平均交通量が、それぞれ、450台/時間および1100台/時間のように取得される。なお、平均交通量は、必ずしも格納部115に格納されている必要はなく、経路選択部113がサーバ110の外部からインターネット回線300を介して取得してもよい。In this process P224, the route selection unit 113 selects, for example, the average traffic volume corresponding to the travel conditions such as the month, the time period, and the weather in which the vehicle 200 that requested the route information travels along the route candidates CR1, CR2, and CR3. is acquired from the storage unit 115 . As a result, for example, the average traffic volumes of link L6 and link L3 are obtained as 450 vehicles/hour and 1100 vehicles/hour, respectively. Note that the average traffic volume does not necessarily have to be stored in the storage unit 115 and may be acquired by the route selection unit 113 from outside the server 110 via the Internet line 300 .
 次に、サーバ110は、たとえば、各リンクL1-L7および/または各ノードN1-N4の走行難易度を算出する処理P225を実行する。この処理P225において、サーバ110の演算部112は、たとえば、以下の式(1)により、異常発生情報のノードN1-N4またはリンクL1-L7ごとに異常発生頻度に基づく走行難易度ADDを算出する。Next, the server 110, for example, executes a process P225 of calculating the traveling difficulty of each link L1-L7 and/or each node N1-N4. In this process P225, the calculation unit 112 of the server 110 calculates the driving difficulty ADD based on the frequency of occurrence of anomalies for each of the nodes N1-N4 or the links L1-L7 of the anomaly occurrence information, for example, using the following equation (1). .
  [数1]
Figure pctxmlib-appb-I000004
[Number 1]
Figure pctxmlib-appb-I000004


 上記式(1)において、Nは、異常種別の数であり、H(n)は、異常種別の発生頻度であり、Wnは、異常種別の重み係数であり、Qは、前の処理P224で取得した各リンクL1-L7および/または各ノードN1-N4の平均交通量である。すなわち、演算部112は、各々の電子制御装置120の判定部122による異常の判定頻度が高いほど、異常発生情報のノードN1-N4またはリンクL1-L7ごとの走行難易度ADDを高く算出する。


In the above formula (1), N is the number of abnormality types, H(n) is the frequency of occurrence of the abnormality types, Wn is the weighting factor of the abnormality types, and Q is the previous process P224. The obtained average traffic volume of each link L1-L7 and/or each node N1-N4. That is, the calculation unit 112 calculates the traveling difficulty level ADD of each of the nodes N1 to N4 or the links L1 to L7 of the abnormality occurrence information to be higher as the abnormality determination frequency by the determination unit 122 of each electronic control unit 120 is higher.
 前述のように、たとえば、リンクL6およびリンクL3の平均交通量Qが、それぞれ、450台/時間および1100台/時間である場合、走行難易度ADDは、上記式(1)、表2、図6および図7に基づいて、それぞれ以下のように算出することができる。
 リンクL6:走行難易度ADD=(150×0.7)/450=0.23
 リンクL3:走行難易度ADD=(79×0.6)/1100=0.043
As described above, for example, when the average traffic volume Q of the link L6 and the link L3 is 450 vehicles/hour and 1100 vehicles/hour, respectively, the driving difficulty ADD is given by the above formula (1), Table 2, and FIG. 6 and FIG. 7, they can be calculated as follows.
Link L6: Driving difficulty ADD=(150×0.7)/450=0.23
Link L3: Driving difficulty ADD=(79×0.6)/1100=0.043
 なお、表1に示すように、本実施形態において、異常発生情報は、各々のノードN1-N4またはリンクL1-L7に関連づけられた異常判定時の天気を含む。この場合、演算部112は、走行難易度ADDの算出時に、地図情報の複数の経路候補CR1,CR2,CR3に含まれる各々のノードN1-N4またはリンクL1-L7の現在の天気を取得してもよい。この場合、演算部112は、異常判定時の天気が現在の天気に一致する異常発生情報に基づいて、走行難易度ADDを算出してもよい。As shown in Table 1, in this embodiment, the abnormality occurrence information includes the weather at the time of abnormality determination associated with each of the nodes N1-N4 or the links L1-L7. In this case, the calculation unit 112 obtains the current weather of each of the nodes N1-N4 or the links L1-L7 included in the plurality of route candidates CR1, CR2, CR3 of the map information when calculating the travel difficulty ADD. good too. In this case, the calculation unit 112 may calculate the driving difficulty level ADD based on abnormality occurrence information in which the weather at the time of abnormality determination matches the current weather.
 次に、サーバ110は、図4に示すように、各々の経路候補CR1,CR2,CR3の走行難易度ADDを算出する処理P226を実行する。この処理P226において、経路選択部113は、たとえば、各々の経路候補CR1,CR2,CR3に含まれるすべてのノードN1-N4またはリンクL1-L7の走行難易度ADDの合計を算出する。これにより、各々の経路候補CR1,CR2,CR3の走行難易度ADDは、たとえば、以下のように算出することができる。Next, the server 110, as shown in FIG. 4, executes a process P226 of calculating the travel difficulty ADD of each route candidate CR1, CR2, CR3. In this process P226, the route selection unit 113, for example, calculates the total travel difficulty ADD of all nodes N1-N4 or links L1-L7 included in each route candidate CR1, CR2, CR3. As a result, the travel difficulty ADD of each route candidate CR1, CR2, CR3 can be calculated, for example, as follows.
 経路候補CR1の走行難易度ADD=リンクL1の走行難易度ADD(0)+リンクL2の走行難易度ADD(0)+リンクL3の走行難易度ADD(0.043)+リンクL4の走行難易度ADD(0)+リンクL5の走行難易度ADD(0)=0.043Traveling difficulty ADD of route candidate CR1 = Traveling difficulty of link L1 ADD (0) + Traveling difficulty of link L2 ADD (0) + Traveling difficulty of link L3 ADD (0.043) + Traveling difficulty of link L4 ADD(0)+driving difficulty level ADD(0) of link L5=0.043
 経路候補CR2の走行難易度ADD=リンクL1の走行難易度ADD(0)+リンクL2の走行難易度ADD(0)+リンクL6の走行難易度ADD(0.23)+リンクL5の走行難易度ADD(0)=0.23Traveling difficulty ADD of route candidate CR2 = Traveling difficulty ADD (0) of link L1 + Traveling difficulty ADD (0) of link L2 + Traveling difficulty ADD (0.23) of link L6 + Traveling difficulty of link L5 ADD(0)=0.23
 経路候補CR3の走行難易度ADD=リンクL1の走行難易度ADD(0)+リンクL7の走行難易度ADD(0)+リンクL4の走行難易度ADD(0)+リンクL5の走行難易度ADD(0)=0Travel difficulty ADD of route candidate CR3 = Travel difficulty ADD (0) of link L1 + Travel difficulty ADD (0) of link L7 + Travel difficulty ADD (0) of link L4 + Travel difficulty ADD of link L5 ( 0) = 0
 次に、サーバ110は、図4に示すように、安全経路を選択する処理P227を実行する。この処理P227において、サーバ110の経路選択部113は、地図情報MIの複数の経路候補CR1,CR2,CR3から走行難易度ADDの合計が最小となる安全経路を選択する。本実施形態では、前述のように、経路候補CR1の走行難易度ADDが0.043、経路候補CR2の走行難易度ADDが0.23、経路候補CR3の走行難易度ADDが0となっている。Next, the server 110 executes a process P227 of selecting a safe route, as shown in FIG. In this process P227, the route selection unit 113 of the server 110 selects the safe route that minimizes the total travel difficulty ADD from the plurality of route candidates CR1, CR2, and CR3 of the map information MI. In this embodiment, as described above, the travel difficulty ADD of the route candidate CR1 is 0.043, the travel difficulty ADD of the route candidate CR2 is 0.23, and the travel difficulty ADD of the route candidate CR3 is 0. .
 したがって、この処理P227において、経路選択部113は、経路候補CR3を安全経路として選択する。その後、サーバ110は、図4に示す処理P22を終了し、前述のように、図3に示す推奨経路を送信する処理P23を実行する。この処理P23において、送信部114は、安全経路として選択された経路候補CR3を、図2に示す経路情報を要求する処理P12を行った車両200の電子制御装置120へ、推奨経路として送信する。その後、車両200の電子制御装置120は、前述のように、図2に示す処理P14から処理P18を実行して、推奨経路に沿って車両200を目的地まで走行させる。Therefore, in this process P227, the route selection unit 113 selects the route candidate CR3 as a safe route. After that, the server 110 ends the process P22 shown in FIG. 4, and executes the process P23 of transmitting the recommended route shown in FIG. 3 as described above. In this process P23, the transmission unit 114 transmits the route candidate CR3 selected as the safe route as a recommended route to the electronic control unit 120 of the vehicle 200 that has performed the route information requesting process P12 shown in FIG. After that, the electronic control unit 120 of the vehicle 200 executes the processes P14 to P18 shown in FIG. 2 as described above to drive the vehicle 200 to the destination along the recommended route.
 以下、本実施形態の車両制御システム100および電子制御装置120の作用を説明する。The actions of the vehicle control system 100 and the electronic control unit 120 of this embodiment will be described below.
 本実施形態の車両制御システム100は、前述のように、複数の車両200の各々に搭載される各々の電子制御装置120と、各々の電子制御装置120と通信可能に接続される少なくとも一つのサーバ110と、を備えている。各々の電子制御装置120は、認識部121と、判定部122と、送信部123と、を有している。認識部121は、各々の車両200に搭載された外界センサ220の検出結果に基づいて道路状態を認識する。判定部122は、認識部121による道路状態の認識不良を含む異常を判定する。送信部123は、判定部122による異常判定時の各々の車両200の位置、時刻および判定された異常の種別を含む異常情報を各々の車両200に搭載された通信装置210を介してサーバ110へ送信する。一方、サーバ110は、記録部111と、演算部112と、経路選択部113と、送信部114と、を有している。記録部111は、各々の電子制御装置120から受信した異常情報を地図情報MIの各々のノードN1-N4またはリンクL1-L7に対応づけた異常発生情報を記録する。演算部112は、異常発生情報のノードN1-N4またはリンクL1-L7ごとに異常の判定頻度に基づく走行難易度ADDを算出する。経路選択部113は、地図情報MIの複数の経路候補CR1,CR2,CR3から走行難易度ADDの合計が最小となる安全経路を選択する。送信部114は、選択された安全経路を各々の電子制御装置120へ推奨経路として送信する。As described above, the vehicle control system 100 of the present embodiment includes each electronic control device 120 mounted on each of the plurality of vehicles 200 and at least one server communicably connected to each electronic control device 120. 110 and. Each electronic control unit 120 has a recognition section 121 , a determination section 122 and a transmission section 123 . The recognition unit 121 recognizes road conditions based on the detection results of the external sensor 220 mounted on each vehicle 200 . The determination unit 122 determines an abnormality including poor recognition of road conditions by the recognition unit 121 . Transmitter 123 transmits abnormality information including the position and time of each vehicle 200 at the time of abnormality determination by determination unit 122 and the type of determined abnormality to server 110 via communication device 210 mounted on each vehicle 200. Send. On the other hand, the server 110 has a recording unit 111 , a calculation unit 112 , a route selection unit 113 and a transmission unit 114 . The recording unit 111 records abnormality occurrence information in which the abnormality information received from each electronic control unit 120 is associated with each of the nodes N1 to N4 or the links L1 to L7 of the map information MI. The calculation unit 112 calculates the traveling difficulty level ADD based on the abnormality determination frequency for each of the nodes N1 to N4 or the links L1 to L7 of the abnormality occurrence information. The route selection unit 113 selects a safe route that minimizes the total travel difficulty ADD from a plurality of route candidates CR1, CR2, and CR3 of the map information MI. The transmission unit 114 transmits the selected safe route to each electronic control unit 120 as a recommended route.
 このような構成により、本実施形態の車両制御システム100は、少なくとも一つのサーバ110によって、複数の車両200の各々の電子制御装置120から、各々の車両200の位置、時刻および判定された異常の種別を含む異常情報を収集することができる。さらに、サーバ110は、各々の電子制御装置120から収集した異常情報を地図情報MIの各々のノードN1-N4またはリンクL1-L7に対応づけた異常発生情報を記録する。これにより、サーバ110は、異常発生情報のノードN1-N4またはリンクL1-L7ごとに、異常発生頻度に基づく走行難易度ADDを算出し、走行難易度ADDが低い経路候補CR3を安全経路として選択し、選択した安全経路を車両200の電子制御装置120へ推奨経路として送信することができる。したがって、本実施形態の車両制御システム100によれば、任意の車両200に搭載された電子制御装置120が判定した異常を、他の車両200に搭載された電子制御装置120においても、自動運転制御の経験として利用することが可能になる。これにより、道路状態の認識不良、定常状態とは異なる道路状態の認識、車両200の乗員に対する警告の発生、および車両200の衝突回避制御の発生を含む異常が多発する経路を回避して、電子制御装置120による車両200の自動運転や運転支援の安全性を向上させることが可能になる。より具体的には、たとえば、特定の時間帯に駐車車両による障害物回避や歩行者認識によるAEBが多発するような経路を回避することが可能になる。With such a configuration, the vehicle control system 100 of the present embodiment uses at least one server 110 to transmit the position of each vehicle 200, the time, and the determined abnormality from the electronic control unit 120 of each of the plurality of vehicles 200. Anomaly information including type can be collected. Further, server 110 records abnormality occurrence information in which abnormality information collected from each electronic control unit 120 is associated with each node N1-N4 or link L1-L7 of map information MI. As a result, the server 110 calculates the travel difficulty ADD based on the frequency of occurrence of anomalies for each of the nodes N1-N4 or the links L1-L7 of the anomaly occurrence information, and selects the route candidate CR3 with a low travel difficulty ADD as a safe route. Then, the selected safe route can be transmitted to the electronic control unit 120 of the vehicle 200 as a recommended route. Therefore, according to the vehicle control system 100 of the present embodiment, the abnormality determined by the electronic control unit 120 mounted on any vehicle 200 is also controlled by the electronic control unit 120 mounted on the other vehicle 200 in automatic driving control. can be used as an experience of As a result, it is possible to avoid a route in which abnormalities frequently occur, including poor recognition of road conditions, recognition of road conditions different from the steady state, generation of warnings to the occupants of the vehicle 200, and generation of collision avoidance control of the vehicle 200. It is possible to improve the safety of automatic driving and driving assistance of the vehicle 200 by the control device 120 . More specifically, for example, it is possible to avoid a route in which obstacle avoidance by parked vehicles and AEB due to pedestrian recognition occur frequently during a specific time period.
 また、本実施形態の車両制御システム100において、サーバ110の演算部112は、各々の電子制御装置120の判定部122による異常の判定頻度が高いほど、異常発生情報のノードN1-N4またはリンクL1-L7ごとの走行難易度ADDを高く算出する。Further, in the vehicle control system 100 of the present embodiment, the computing unit 112 of the server 110 determines that the node N1 to N4 or the link L1 of the abnormality occurrence information increases as the abnormality determination frequency by the determination unit 122 of each electronic control unit 120 increases. - Calculate a high driving difficulty ADD for each L7.
 このような構成により、本実施形態の車両制御システム100のサーバ110は、経路候補CR1,CR2,CR3の中から、各々の電子制御装置120による異常の判定頻度がより低い経路候補CR3を安全経路として選択する。さらに、サーバ110は、選択した安全経路を、経路要求を行った車両200の電子制御装置120へ、推奨経路として送信する。したがって、本実施形態の車両制御システム100によれば、電子制御装置120による車両200の自動運転や運転支援の安全性を向上させることが可能になる。With such a configuration, the server 110 of the vehicle control system 100 of the present embodiment selects the route candidate CR3, which has a lower abnormality determination frequency by each of the electronic control units 120, as a safe route from among the route candidates CR1, CR2, and CR3. Select as Further, server 110 transmits the selected safe route as a recommended route to electronic control unit 120 of vehicle 200 that requested the route. Therefore, according to the vehicle control system 100 of the present embodiment, it is possible to improve the safety of automatic driving and driving assistance of the vehicle 200 by the electronic control device 120 .
 また、本実施形態の車両制御システム100において、サーバ110の記録部111は、各々の電子制御装置120の判定部122による異常判定時の各々の車両200の位置における天気を、各々のノードN1-N4またはリンクL1-L7に対応づけた異常発生情報を記録する。そして、サーバ110の演算部112は、走行難易度ADDの算出時に地図情報MIの複数の経路候補CR1,CR2,CR3に含まれる各々のノードN1-N4またはリンクL1-L7の現在の天気を取得し、異常判定時の天気が現在の天気に一致する異常発生情報に基づいて、走行難易度ADDを算出することも可能である。In the vehicle control system 100 of the present embodiment, the recording unit 111 of the server 110 stores the weather at the position of each vehicle 200 at the time of abnormality determination by the determination unit 122 of each electronic control unit 120 in each node N1- Abnormal occurrence information associated with N4 or links L1-L7 is recorded. Then, the calculation unit 112 of the server 110 acquires the current weather of each of the nodes N1 to N4 or the links L1 to L7 included in the plurality of route candidates CR1, CR2, CR3 of the map information MI when calculating the travel difficulty ADD. However, it is also possible to calculate the driving difficulty level ADD based on abnormality occurrence information in which the weather at the time of abnormality determination matches the current weather.
 このような構成により、本実施形態の車両制御システム100のサーバ110は、発生頻度が天気に依存する異常であっても、車両200の走行時の天気に対応する異常の判定頻度に基づいて、経路候補CR1,CR2,CR3の走行難易度ADDを算出することができる。したがって、本実施形態の車両制御システム100によれば、電子制御装置120による車両200の自動運転や運転支援の安全性をさらに向上させることが可能になる。With such a configuration, the server 110 of the vehicle control system 100 of the present embodiment, even if the occurrence frequency of the abnormality depends on the weather, based on the determination frequency of the abnormality corresponding to the weather when the vehicle 200 is running, It is possible to calculate the travel difficulty ADD of the route candidates CR1, CR2, and CR3. Therefore, according to the vehicle control system 100 of the present embodiment, it is possible to further improve the safety of automatic driving and driving assistance of the vehicle 200 by the electronic control device 120 .
 また、本実施形態の車両制御システム100において、各々の電子制御装置120は、判定部122によって判定された異常の種別が特定できない場合に、送信部123によって異常情報とともに外界センサ220に含まれるカメラの画像をサーバ110へ送信することもできる。Further, in the vehicle control system 100 of the present embodiment, each electronic control unit 120, when the type of abnormality determined by the determination unit 122 cannot be specified, transmits the abnormality information together with the camera included in the external sensor 220 by the transmission unit 123. image can also be sent to the server 110 .
 このような構成により、本実施形態の車両制御システム100は、各々の120から送信されたカメラの画像を、サーバ110において解析することで、異常の種別の判定が可能になる可能性がある。なお、異常の種別が特定できない場合としては、たとえば、カメラの撮像環境が悪化して物体を認識できなくなった場合や、車両200の前方の物体の飛び出しを検出したが、歩行者、自転車、動物などの物体の種別が不明な場合などが考えられる。With such a configuration, the vehicle control system 100 of this embodiment may be able to determine the type of abnormality by analyzing the camera image transmitted from each 120 in the server 110 . Examples of cases in which the type of abnormality cannot be specified include the case where the imaging environment of the camera deteriorates and the object cannot be recognized, or the jumping out of the object in front of the vehicle 200 is detected, but the pedestrian, bicycle, animal, etc. are detected. For example, the type of the object is unknown.
 また、本実施形態の車両制御システム100において、各々の電子制御装置120は、サーバ110から受信する推奨経路に沿って各々の車両200を走行させる車両制御部124を備えている。In addition, in the vehicle control system 100 of this embodiment, each electronic control unit 120 includes a vehicle control unit 124 that causes each vehicle 200 to travel along the recommended route received from the server 110 .
 このような構成により、本実施形態の車両制御システム100は、サーバ110から推奨経路を受信した各々の電子制御装置120により、各々の車両200を推奨経路に沿って走行させることが可能になる。したがって、本実施形態の車両制御システム100によれば、電子制御装置120による車両200の自動運転や運転支援の安全性をさらに向上させることが可能になる。With such a configuration, the vehicle control system 100 of the present embodiment enables each electronic control unit 120 that has received the recommended route from the server 110 to drive each vehicle 200 along the recommended route. Therefore, according to the vehicle control system 100 of the present embodiment, it is possible to further improve the safety of automatic driving and driving assistance of the vehicle 200 by the electronic control device 120 .
 また、本実施形態の電子制御装置120は、車両200に搭載される制御装置である。電子制御装置120は、認識部121と、判定部122と、送信部123と、車両制御部124とを有している。認識部121は、車両200に搭載された外界センサ220の検出結果に基づいて道路状態を認識する。判定部122は、認識部121による道路状態の認識不良を含む異常を判定する。送信部123は、判定部122による異常判定時の車両200の位置、時刻および判定された異常の種別を含む異常情報を車両200に搭載された通信装置210を介して車両200の外部のサーバ110へ送信する。車両制御部124は、サーバ110から受信する推奨経路に沿って車両200を走行させる。Also, the electronic control device 120 of the present embodiment is a control device mounted on the vehicle 200 . The electronic control unit 120 has a recognition section 121 , a determination section 122 , a transmission section 123 and a vehicle control section 124 . The recognition unit 121 recognizes road conditions based on the detection results of the external sensor 220 mounted on the vehicle 200 . The determination unit 122 determines an abnormality including poor recognition of road conditions by the recognition unit 121 . Transmission unit 123 transmits abnormality information including the position of vehicle 200 at the time of abnormality determination by determination unit 122 , the time, and the type of the determined abnormality to server 110 outside vehicle 200 via communication device 210 mounted on vehicle 200 . Send to Vehicle control unit 124 causes vehicle 200 to travel along the recommended route received from server 110 .
 このような構成により、本実施形態の電子制御装置120は、前述の車両制御システム100と同様に、異常が多発する経路を回避して、車両200の自動運転や運転支援の安全性を向上させることが可能になる。With such a configuration, the electronic control unit 120 of the present embodiment avoids routes in which abnormalities occur frequently, and improves the safety of automatic driving and driving assistance of the vehicle 200 in the same manner as the vehicle control system 100 described above. becomes possible.
 以上、本開示に係る車両制御システムおよび電子制御装置の実施形態1を詳述したが、本開示に係る車両制御システムおよび電子制御装置は、前述の実施形態に限定されない。たとえば、前述の実施形態では、走行難易度ADDの算出式を正規化する数値として交通量を使用する例を説明したが、全通過車両に対して異常の判定頻度を算出することができれば、他の数値を使用してもよい。Although the first embodiment of the vehicle control system and the electronic control device according to the present disclosure has been described above, the vehicle control system and the electronic control device according to the present disclosure are not limited to the above-described embodiments. For example, in the above-described embodiment, an example of using the traffic volume as a numerical value for normalizing the calculation formula of the driving difficulty level ADD was described, but if the abnormality determination frequency can be calculated for all passing vehicles, other can be used.
 また、車両200の電子制御装置120からサーバ110へ経路情報の要求を送信するのと同時に、所要時間の制限をサーバ110へ送信してもよい。この場合、サーバ110の経路選択部113は、たとえば、複数の経路候補CR1,CR2,CR3の中から、所要時間の制限を満たしかつ走行難易度ADDが最小の経路を、安全経路として選択することができる。Also, the required time limit may be transmitted to the server 110 at the same time that the request for route information is transmitted from the electronic control unit 120 of the vehicle 200 to the server 110 . In this case, the route selection unit 113 of the server 110 selects, for example, from among the plurality of route candidates CR1, CR2, and CR3, a route that satisfies the required time limit and has the lowest travel difficulty ADD as a safe route. can be done.
 また、本実施形態の車両制御システム100において、サーバ110の送信部114は、たとえば、推奨経路に異常の判定頻度が所定頻度よりも高いN1-N4またはリンクL1-L7である要注意ノードまたはリンクが含まれる場合に、その要注意ノードまたはリンクを各々の電子制御装置120へ送信してもよい。この場合、各々の電子制御装置120の判定部122は、要注意ノードまたはリンクにおいて所定頻度よりも高い頻度で判定された異常の種別を判定する優先度を、他の異常の種別を判定する優先度よりも高くすることができる。Further, in the vehicle control system 100 of the present embodiment, the transmission unit 114 of the server 110, for example, determines whether a node or link requiring caution, which is N1-N4 or a link L1-L7, for which the frequency of abnormality determination on the recommended route is higher than a predetermined frequency. is included, the node or link that needs attention may be sent to each electronic controller 120 . In this case, the determination unit 122 of each electronic control unit 120 determines the priority of determining the type of abnormality determined at a higher frequency than a predetermined frequency in a node or link requiring caution, and the priority of determining the type of other abnormality. can be higher than
 より具体的には、たとえば、各々の電子制御装置120の認識部121が常時、複数の認識処理を実行しており、各認識処理の処理時間の上限が規定されている場合、上記要注意ノードまたはリンクを通過する場合のみ、前記処理時間の上限を延長することが考えられる。たとえば、歩行者認識によるAEBが多発する上記要注意ノードまたはリンクでは、歩行者認識の処理時間の上限を延長することで、通常よりも多くの物体に対して歩行者認識処理を行って、歩行者の未認識を防止することができる。More specifically, for example, when the recognition unit 121 of each electronic control unit 120 always executes a plurality of recognition processes and the upper limit of the processing time of each recognition process is specified, the caution node Alternatively, it is conceivable to extend the upper limit of the processing time only when passing through a link. For example, in the above caution node or link where AEB due to pedestrian recognition occurs frequently, by extending the upper limit of the processing time of pedestrian recognition, pedestrian recognition processing is performed on more objects than usual, and walking is performed. Unrecognized person can be prevented.
[実施形態2]
 以下、前述の実施形態1の図1から図7を援用して、本開示に係る車両制御システムの実施形態2を説明する。本実施形態の車両制御システム100は、サーバ110の記録部111と演算部112の構成が、前述の実施形態1に係る車両制御システム100と異なっている。本実施形態の車両制御システム100のその他の構成は、前述の実施形態1の車両制御システム100と同様であるため、同様の部分には同一の符号を付して説明を省略する。
[Embodiment 2]
Embodiment 2 of the vehicle control system according to the present disclosure will be described below with reference to FIGS. 1 to 7 of Embodiment 1 described above. The vehicle control system 100 of this embodiment differs from the vehicle control system 100 according to the first embodiment described above in the configuration of the recording unit 111 and the calculation unit 112 of the server 110 . Other configurations of the vehicle control system 100 of the present embodiment are the same as those of the vehicle control system 100 of the first embodiment described above.
 本実施形態の車両制御システム100において、複数の車両200に搭載された各々の電子制御装置120は、前述の実施形態1と同様に、図2に示す処理P15において、認識部121により、外界センサ220および車両センサ230の検出結果に基づいて道路状態を認識して異常情報を記録する。さらに、本実施形態において、電子制御装置120は、図2に示す処理P17において、送信部123によって、処理P15で異常の認識に用いた外界センサ220の種別を含む異常情報をサーバ110へ送信する。In the vehicle control system 100 of this embodiment, each of the electronic control units 120 mounted on the plurality of vehicles 200 uses the recognition unit 121 in the process P15 shown in FIG. 220 and vehicle sensor 230, the road condition is recognized and abnormality information is recorded. Further, in the present embodiment, the electronic control unit 120, in the process P17 shown in FIG. .
 また、本実施形態の車両制御システム100において、サーバ110の記録部111は、たとえば、異常情報に含まれる外界センサ220の種別を、各々のノードN1-N4またはリンクL1-L7に対応づけた異常発生情報を、格納部115へ記録する。以下の表4に、本実施形態において記録部111が格納部115へ記録する異常発生情報の一例を示す。Further, in the vehicle control system 100 of the present embodiment, the recording unit 111 of the server 110, for example, associates the type of the external sensor 220 included in the abnormality information with each of the nodes N1-N4 or the links L1-L7. Occurrence information is recorded in storage unit 115 . Table 4 below shows an example of abnormality occurrence information recorded in the storage unit 115 by the recording unit 111 in this embodiment.
  [表4]
Figure pctxmlib-appb-I000005
[Table 4]
Figure pctxmlib-appb-I000005


 なお、表4において、センサコードは、外界センサ220の種別を示すコードである。センサコードは、たとえば、以下の表5に示すように、あらかじめ、外界センサ220の種別ごとに規定されて、格納部115に記録されている。


In addition, in Table 4, the sensor code is a code indicating the type of the external sensor 220 . The sensor code is defined for each type of external sensor 220 and recorded in storage unit 115 in advance, as shown in Table 5 below, for example.
  [表5]
Figure pctxmlib-appb-I000006
[Table 5]
Figure pctxmlib-appb-I000006


 さらに、本実施形態の車両制御システム100において、サーバ110は、図4に示す異常発生頻度を取得する処理P223において、次のような処理を実行する。サーバ110の経路選択部113は、たとえば、車両200が出発地Sから目的地Gまで走行する月、時間帯、天気などを含む走行条件に加えて、外界センサの種別を示すセンサコードが一致する異常発生頻度を抽出する。


Furthermore, in the vehicle control system 100 of this embodiment, the server 110 performs the following process in the process P223 of acquiring the abnormality occurrence frequency shown in FIG. For example, the route selection unit 113 of the server 110 determines that the sensor code indicating the type of the external sensor matches in addition to the traveling conditions including the month, time zone, weather, etc., in which the vehicle 200 travels from the starting point S to the destination G. Extract the frequency of anomalies.
 より具体的には、表4に示すように、リンクL1-L7ごとに、車両200が走行する8月、17時台、かつ晴天の走行条件に一致し、かつセンサコードがステレオカメラを表すセンサコード:1である異常発生頻度を抽出する。本実施形態の車両制御システム100のその他の処理は、前述の実施形態1の車両制御システム100と同様である。More specifically, as shown in Table 4, for each of the links L1 to L7, sensors that match the driving conditions of August when the vehicle 200 is running, between 17:00 and fine weather, and whose sensor codes represent stereo cameras Extract the frequency of occurrence of anomalies with a code of 1. Other processes of the vehicle control system 100 of this embodiment are the same as those of the vehicle control system 100 of the first embodiment.
 以上のように、本実施形態の車両制御システム100において、サーバ110の記録部111は、各々の電子制御装置120の判定部122による異常判定時の各々の車両200の外界センサ220の種別を、各々のノードN1-N4またはリンクL1-L7に対応づけた異常発生情報を記録する。また、サーバ110の演算部112は、走行難易度ADDの算出時に各々の車両200の外界センサ220の種別を取得し、異常判定時の外界センサ220の種別が走行難易度ADDの算出時の外界センサ220の種別に一致する異常発生情報に基づいて、走行難易度ADDを算出する。As described above, in the vehicle control system 100 of the present embodiment, the recording unit 111 of the server 110 stores the type of the external sensor 220 of each vehicle 200 at the time of abnormality determination by the determination unit 122 of each electronic control unit 120, Abnormal occurrence information associated with each of the nodes N1-N4 or links L1-L7 is recorded. Further, the calculation unit 112 of the server 110 acquires the type of the external sensor 220 of each vehicle 200 when calculating the traveling difficulty level ADD, and determines the type of the external sensor 220 when determining the abnormality. Based on the abnormality occurrence information that matches the type of the sensor 220, the driving difficulty level ADD is calculated.
 このような構成により、本実施形態の車両制御システム100は、各々の車両200に搭載された外界センサ220の種別に特有の異常が多発する経路を回避して、車両200の自動運転や運転支援の安全性を向上させることが可能になる。より具体的には、たとえば、異常種別が逆光である場合、外界センサ220の種別がカメラであれば白飛びなどの影響を受けるが、外界センサ220の種別がレーザレーダであれば影響を受けないことが考えられる。このような場合に、本実施形態の車両制御システム100によれば、車両200に搭載された外界センサ220の種別に適した経路に沿って車両200を走行させることが可能になる。With such a configuration, the vehicle control system 100 of the present embodiment avoids routes in which abnormalities peculiar to the type of the external sensor 220 mounted on each vehicle 200 frequently occur, and automatically drives the vehicle 200 and assists driving. It is possible to improve the safety of More specifically, for example, when the type of abnormality is backlight, if the type of external sensor 220 is a camera, it will be affected by blown-out highlights, but if the type of external sensor 220 is a laser radar, it will not be affected. can be considered. In such a case, the vehicle control system 100 of the present embodiment allows the vehicle 200 to travel along a route suitable for the type of the external sensor 220 mounted on the vehicle 200 .
[実施形態3]
 最後に、図1から図7を援用し、図8から図13を参照して、本開示に係る車両制御システムの実施形態3を説明する。図8は、本実施形態の車両制御システム100のサーバ110の構成を示すブロック図である。本実施形態の車両制御システム100において、図8に示すサーバ110は、たとえば、図1に示す実施形態1のサーバ110と同様の構成に加えて、対策支援部116と、交通流シミュレータ117とを備えている。本実施形態の車両制御システム100のその他の構成は、前述の実施形態1の車両制御システム100と同様であるため、同様の部分には同一の符号を付して説明を省略する。
[Embodiment 3]
Finally, Embodiment 3 of the vehicle control system according to the present disclosure will be described with reference to FIGS. 1 to 7 and FIGS. 8 to 13 . FIG. 8 is a block diagram showing the configuration of the server 110 of the vehicle control system 100 of this embodiment. In the vehicle control system 100 of this embodiment, the server 110 shown in FIG. 8 has, for example, the same configuration as the server 110 of Embodiment 1 shown in FIG. I have. Other configurations of the vehicle control system 100 of the present embodiment are the same as those of the vehicle control system 100 of the first embodiment described above, so the same parts are denoted by the same reference numerals and descriptions thereof are omitted.
 図9は、図8のサーバ110による異常発生を低減する対策の立案を支援する処理P30の一例を示すフロー図である。本実施形態のサーバ110は、図9に示す処理P30を開始すると、対策支援部116によって抽出条件の入力を受け付ける処理P31を実行する。FIG. 9 is a flow diagram showing an example of the process P30 for supporting planning of countermeasures for reducing the occurrence of abnormalities by the server 110 of FIG. When the server 110 of the present embodiment starts the process P30 shown in FIG. 9, the countermeasure support unit 116 executes the process P31 of receiving the input of the extraction condition.
 図10は、図8のサーバ110の対策支援部116による表示画面の一例である。対策支援部116は、たとえば、液晶表示装置や有機EL表示装置などの表示装置と、タッチパネル、キーボード、マウスなどの入力装置とを含む。対策支援部116は、図10に示すように、各リンクL1-L7および/または各ノードN1-N4を含む地図と、月、時間帯、天気、異常種別などの抽出条件を表示装置に表示させる。FIG. 10 is an example of a display screen by the countermeasure support unit 116 of the server 110 of FIG. Countermeasure support unit 116 includes, for example, a display device such as a liquid crystal display device or an organic EL display device, and an input device such as a touch panel, keyboard, or mouse. As shown in FIG. 10, the countermeasure support unit 116 causes the display device to display a map including each link L1-L7 and/or each node N1-N4 and extraction conditions such as month, time zone, weather, and abnormality type. .
 処理P31において、対策支援部116は、たとえば、入力装置を介して抽出条件の入力を受け付ける。サーバ110のユーザは、たとえば、図10に示すように、対策支援部116の表示装置に表示された地図をスクロールして異常発生の低減対策を実施したい地図上の領域を選択することで、その領域内の各リンクL1-L7および/または各ノードN1-N4を選択する。In process P31, the countermeasure support unit 116 receives input of extraction conditions, for example, via an input device. For example, as shown in FIG. 10, the user of the server 110 scrolls the map displayed on the display device of the countermeasure support unit 116 and selects an area on the map for which countermeasures to reduce the occurrence of anomalies are desired. Select each link L1-L7 and/or each node N1-N4 in the region.
 さらに、ユーザは、たとえば、図10に示すように、表示装置に表示されたスクロールバーにより、月、時間帯、天気、異常種別などの抽出条件を選択する。対策支援部116は、ユーザが選択した抽出条件の入力を受け付けて、演算部112へ入力する。ここでは、月、時間帯、天気、および異常種別の抽出条件として、「全データ」が入力されたものとする。次に、サーバ110は、異常発生頻度を取得する処理P32を実行する。Furthermore, the user selects extraction conditions such as the month, time zone, weather, and abnormality type using a scroll bar displayed on the display device, for example, as shown in FIG. The countermeasure support unit 116 receives the input of the extraction condition selected by the user and inputs it to the calculation unit 112 . Here, it is assumed that "all data" has been input as extraction conditions for month, time period, weather, and abnormality type. Next, the server 110 executes a process P32 of acquiring an abnormality occurrence frequency.
 この処理P32において、サーバ110の演算部112は、格納部115に記録された異常発生情報の中から、前の処理P31で対策支援部116から入力された抽出条件に一致する異常発生情報を抽出する。さらに、演算部112は、抽出した異常発生情報に基づいて、前述の実施形態1の図4に示す処理P223と同様に、各リンクL1-L7および/または各ノードN1-N4の異常発生頻度を取得する。In this process P32, the calculation unit 112 of the server 110 extracts, from the abnormality occurrence information recorded in the storage unit 115, abnormality occurrence information that matches the extraction conditions input from the countermeasure support unit 116 in the previous process P31. do. Furthermore, based on the extracted abnormality occurrence information, the calculation unit 112 calculates the abnormality occurrence frequency of each of the links L1 to L7 and/or each of the nodes N1 to N4, similarly to the process P223 shown in FIG. 4 of the first embodiment. get.
 次に、サーバ110は、図9に示す平均交通量を取得する処理P33を実行する。この処理P33において、サーバ110の演算部112は、たとえば、前述の実施形態1の図4に示す処理P224と同様に、前述の処理P32で抽出した各リンクL1-L7および/または各ノードN1-N4について、格納部115に格納されている平均交通量を取得する。ここでは、月、時間帯、天気の抽出条件が「全データ」であるため、すべての、月、時間帯、天気の平均交通量を取得する。Next, the server 110 executes the process P33 of acquiring the average traffic volume shown in FIG. In this process P33, the computing unit 112 of the server 110, for example, similarly to the process P224 shown in FIG. For N4, the average traffic volume stored in the storage unit 115 is acquired. Here, since the extraction conditions for the month, time period, and weather are "all data," the average traffic volume for all months, time periods, and weather is obtained.
 次に、サーバ110は、図9に示す各リンクL1-L7および/または各ノードN1-N4の走行難易度ADDを算出する処理P34を実行する。この処理P34において、サーバ110の演算部112は、前述の図4に示す処理P225と同様に、上記の式(1)により、異常発生情報のノードN1-N4またはリンクL1-L7ごとに異常発生頻度に基づく走行難易度ADDを算出して対策支援部116へ入力する。その後、サーバ110は、各リンクL1-L7および/または各ノードN1-N4の走行難易度ADDを表示する処理P35を実行する。Next, the server 110 executes a process P34 for calculating the travel difficulty ADD of each link L1-L7 and/or each node N1-N4 shown in FIG. In this process P34, the calculation unit 112 of the server 110, similarly to the process P225 shown in FIG. A driving difficulty level ADD based on the frequency is calculated and input to the countermeasure support unit 116 . After that, the server 110 executes a process P35 of displaying the travel difficulty ADD of each link L1-L7 and/or each node N1-N4.
 図11は、図9の各リンクL1-L7および/または各ノードN1-N4の走行難易度ADDを表示する処理P35の表示画面の一例である。この処理P35において、対策支援部116は、前の処理P34で演算部112から入力された各リンクL1-L7および/または各ノードN1-N4の走行難易度を、図11に示すように、表示装置に表示させる。ここでは、図10に示すように、地図上で選択した領域に含まれる各リンクL1-L7および/または各ノードN1-N4の走行難易度が表示される。FIG. 11 is an example of a display screen of process P35 for displaying the travel difficulty ADD of each link L1-L7 and/or each node N1-N4 in FIG. In this process P35, the countermeasure support unit 116 displays the travel difficulty of each link L1-L7 and/or each node N1-N4 input from the calculation unit 112 in the previous process P34, as shown in FIG. display on the device. Here, as shown in FIG. 10, the travel difficulty of each link L1-L7 and/or each node N1-N4 included in the area selected on the map is displayed.
 図12は、図11で選択したリンクL6の異常種別ごとの走行難易度を示すグラフである。図11に示す対策支援部116の表示装置の表示画面において、ユーザは、たとえば、対策支援部116の入力装置を用いて、図11の各リンクL1-L7および/または各ノードN1-N4を選択し、「詳細表示」と記載されたアイコンをクリックまたはタッチする。これにより、図12に示すように、選択したリンクL6の異常種別ごとの走行難易度を、対策支援部116の表示装置に表示させることができる。FIG. 12 is a graph showing the travel difficulty for each abnormality type of link L6 selected in FIG. On the display screen of the display device of countermeasure support unit 116 shown in FIG. 11, the user selects each link L1-L7 and/or each node N1-N4 in FIG. and then click or touch the icon labeled "Details". As a result, as shown in FIG. 12, it is possible to display the travel difficulty level for each abnormality type of the selected link L6 on the display device of the countermeasure support unit 116. FIG.
 以上のように、サーバ110の演算部112は、時刻または異常の種別を含む抽出条件を用いて抽出した異常発生情報のノードN1-N4またはリンクL1-L7ごとに算出した走行難易度ADDを、サーバ110の表示装置に表示させる。これにより、本実施形態の車両制御システム100によれば、各リンクL1-L7および/または各ノードN1-N4における異常発生を低減する対策の立案を支援することができる。As described above, the calculation unit 112 of the server 110 calculates the travel difficulty ADD for each of the nodes N1 to N4 or the links L1 to L7 of the abnormality occurrence information extracted using the extraction condition including the time or type of abnormality, Displayed on the display device of the server 110 . Thus, according to the vehicle control system 100 of the present embodiment, it is possible to support planning of countermeasures for reducing the occurrence of abnormalities in each of the links L1-L7 and/or each of the nodes N1-N4.
 より具体的には、たとえば、図11に示すように、特定のリンクL6において他のリンクL1-L5,L7よりも高い走行難易度ADDが算出された場合、ユーザは、リンクL6を選択して、「詳細表示」のアイコンをクリックまたは押下する。これにより、図12に示すように、対策支援部116および演算部112によって、選択したリンクL6の異常種別ごとの走行難易度ADDが表示される。More specifically, for example, as shown in FIG. 11, when a higher travel difficulty ADD is calculated for a specific link L6 than the other links L1-L5 and L7, the user selects the link L6. , click or press the "detailed display" icon. As a result, as shown in FIG. 12 , the travel difficulty ADD for each abnormality type of the selected link L6 is displayed by the countermeasure support unit 116 and the calculation unit 112 .
 その結果、ユーザは、たとえば、図12に示すように、リンクL6では、異常種別コード:2の車線未認識による走行難易度が他の異常種別よりも突出して高くなっていることを把握することができる。これにより、ユーザは、対策支援部116の表示装置に表示された異常種別ごとの走行難易度ADDに基づいて、リンクL6の走行難易度ADDを低減するための対策として、リンクL6の道路境界線の再設置を立案することができる。As a result, for example, as shown in FIG. 12, on link L6, the user can understand that the driving difficulty due to the unrecognized lane of abnormality type code: 2 is significantly higher than other abnormality types. can be done. As a result, based on the travel difficulty level ADD for each abnormality type displayed on the display device of the countermeasure support unit 116, the user can determine the road boundary line of the link L6 as a measure for reducing the travel difficulty level ADD of the link L6. can plan the re-installation of
 なお、対策支援部116は、定期的に格納部115に記録された異常発生情報を解析して、各リンクL1-L7および/または各ノードN1-N4の走行難易度ADDが上昇する抽出条件を特定してもよい。この場合、対策支援部116は、たとえば、月、時間帯、天気の条件が、解析によって特定した抽出条件に一致することが予測されると、その抽出条件に基づく各リンクL1-L7および/または各ノードN1-N4の走行難易度ADDを、その抽出条件とともに表示装置に表示する。Note that the countermeasure support unit 116 periodically analyzes the abnormality occurrence information recorded in the storage unit 115, and extracts conditions for increasing the travel difficulty ADD of each link L1-L7 and/or each node N1-N4. may be specified. In this case, for example, when it is predicted that the month, time zone, and weather conditions match the extraction conditions specified by the analysis, countermeasure support unit 116 selects each link L1 to L7 and/or The running difficulty ADD of each node N1-N4 is displayed on the display device together with the extraction conditions.
 これにより、ユーザは、対策支援部116に表示された各リンクL1-L7および/または各ノードN1-N4の走行難易度ADDに基づいて、走行難易度ADDを低減させる対策を立案することが可能になる。たとえば、前述のように、朝の通勤時間帯など、特定の時間帯において、歩行者認識によるAEBが多数発生して走行難易度ADDが上昇している場合には、ユーザは、職場と駐車場との間の道路に横断歩道を設置するなどの対策を立案することができる。This allows the user to formulate measures to reduce the difficulty level ADD of the links L1-L7 and/or the difficulty levels ADD of the nodes N1-N4 displayed in the measure support unit 116. become. For example, as described above, in a specific time period such as the morning commuting time period, when many AEBs due to pedestrian recognition occur and the driving difficulty level ADD increases, the user may decide between the workplace and the parking lot. measures such as installing crosswalks on roads between
 以上のように、本実施形態の車両制御システム100によれば、選択した各リンクL1-L7および/または各ノードN1-N4の走行難易度を、対策支援部116の表示装置に表示させ、ユーザの対策の優先度の決定や対策の絞り込みを支援することができる。したがって、本実施形態の車両制御システム100によれば、前述の実施形態1の車両制御システム100の効果に加えて、車両200の電子制御装置120による自動運転を安全に実施するためのインフラ整備の優先度決定を支援することができる。As described above, according to the vehicle control system 100 of the present embodiment, the travel difficulty level of each of the selected links L1-L7 and/or each of the nodes N1-N4 is displayed on the display device of the countermeasure support unit 116, and the user It is possible to support the determination of the priority of countermeasures and the narrowing down of countermeasures. Therefore, according to the vehicle control system 100 of the present embodiment, in addition to the effects of the vehicle control system 100 of the above-described first embodiment, the infrastructure for safe automatic driving by the electronic control unit 120 of the vehicle 200 is improved. Can assist with prioritization.
 図13は、図8のサーバ110による異常発生を低減するための対策を検証する処理P40の一例を示すフロー図である。本実施形態のサーバ110は、図13に示す処理P40を開始すると、異常発生を低減するための対策を実施する前の交通流を、交通流シミュレータ117によって再現する処理P41を実施する。FIG. 13 is a flow chart showing an example of processing P40 for verifying countermeasures for reducing the occurrence of anomalies by the server 110 of FIG. 13, the server 110 of the present embodiment performs a process P41 of reproducing the traffic flow before taking measures to reduce the occurrence of abnormalities by means of the traffic flow simulator 117. FIG.
 ここで、交通流シミュレータ117は、たとえば、代表地点の交通量や、交差点ごとの右左折率などのパラメータを入力することで、複数の車両200の各々の走行挙動をシミュレートする。交通流シミュレータ117は、たとえば、特開平5-250594に記載の道路交通シミュレーションシステムなど、公知の技術を用いて実現することができる。Here, the traffic flow simulator 117 simulates the running behavior of each of the plurality of vehicles 200 by inputting parameters such as traffic volume at representative points and right/left turn rates at each intersection. The traffic flow simulator 117 can be implemented using known technology such as the road traffic simulation system described in Japanese Patent Application Laid-Open No. 5-250594.
 処理P41では、交通流シミュレータ117に入力するパラメータを調整することにより、異常発生を低減するための対策を実施する前の既知の交通流を再現する。より詳細には、各リンクL1-L7および/または各ノードN1-N4の既知の交通量と、交通流シミュレータ117で再現された各リンクL1-L7および/または各ノードN1-N4の交通量とが一致するように、交通流シミュレータ117に入力するパラメータを調整する。In process P41, by adjusting the parameters to be input to the traffic flow simulator 117, the known traffic flow before taking measures to reduce the occurrence of abnormalities is reproduced. More specifically, the known traffic volume of each link L1-L7 and/or each node N1-N4 and the traffic volume of each link L1-L7 and/or each node N1-N4 reproduced by the traffic flow simulator 117 and The parameters input to the traffic flow simulator 117 are adjusted so that
 次に、サーバ110は、図13に示すように、異常発生を低減するための対策を実施後の各リンクL1-L7および/または各ノードN1-N4の走行難易度ADDを算出する処理P42を実行する。この処理P42において、演算部112は、たとえば、対策実施後の各リンクおよび/または各ノードの異常発生頻度がゼロであると仮定して、図9に示す処理P31-P34と同様に、各リンクL1-L7および/または各ノードN1-N4の走行難易度ADDを算出する。Next, as shown in FIG. 13, the server 110 performs a process P42 of calculating the travel difficulty ADD of each of the links L1-L7 and/or each of the nodes N1-N4 after taking measures to reduce the occurrence of abnormalities. Execute. In this process P42, the calculation unit 112 assumes, for example, that the abnormality occurrence frequency of each link and/or each node after the countermeasure is implemented is zero, and similarly to the processes P31 to P34 shown in FIG. Calculate the difficulty level ADD of L1-L7 and/or each of the nodes N1-N4.
 次に、交通流シミュレータ117は、図13に示すように、右左折率のパラメータを変更する処理P43を実行する。たとえば、図10に示すリンクL6において、異常発生頻度を低下させる対策を実施する場合、このリンクL6に接続するノードN2には、他のリンクL3が接続している。交通流シミュレータ117は、たとえば、リンクL6における対策実施前後のノードN2からリンクL6,L3への右左折率を、たとえば、以下の表6に示すように変更する。Next, the traffic flow simulator 117 executes a process P43 of changing the right/left turn rate parameter, as shown in FIG. For example, in link L6 shown in FIG. 10, when taking measures to reduce the frequency of occurrence of anomalies, another link L3 is connected to node N2 connected to link L6. The traffic flow simulator 117 changes, for example, the right and left turn rates from the node N2 to the links L6 and L3 before and after implementing the countermeasure on the link L6, as shown in Table 6 below.
  [表6]
Figure pctxmlib-appb-I000007
[Table 6]
Figure pctxmlib-appb-I000007


 表6に示すように、たとえば、リンクL6における車線境界線の再設置などの対策が実施された結果、リンクL6の走行難易度が対策実施前後で0.23から0になっている。その結果、リンクL6における対策実施前後で、ノードN2からリンクL6とリンクL3への右左折率である0.2と0.8が、0.472と0.528へ変更されている。このような右左折率の増減は、たとえば、電子制御装置120の制御によって自動走行する車両200の、ノードN2における交通量全体に対する混入率に基づいて算出することができる。


As shown in Table 6, for example, as a result of taking measures such as re-installation of lane boundary lines on link L6, the driving difficulty of link L6 has decreased from 0.23 to 0 before and after taking measures. As a result, the ratios of right and left turns from node N2 to link L6 and link L3, 0.2 and 0.8, are changed to 0.472 and 0.528 before and after the implementation of countermeasures for link L6. Such an increase/decrease in the right/left turn rate can be calculated, for example, based on the mixing rate of the vehicle 200 automatically traveling under the control of the electronic control unit 120 with respect to the overall traffic volume at the node N2.
 たとえば、自動走行する車両200の交通量全体に対する混入率が34%であり、対策実施前に、車両200が100%の割合でノードN2からリンクL3へ右折していたとする。この場合、ノードN2からリンクL3へ右折する車両200の交通量全体に対する割合は、27.2%となる(0.8×0.34=0.272)。これらの車両200が、対策実施後にノードN2においてリンクL6へ左折するようになったと仮定すると、対策実施後のノードN2からリンクL6への右左折率は、0.2+0.272=0.472となる。For example, assume that the rate of automatically traveling vehicles 200 in the total traffic volume is 34%, and that 100% of the vehicles 200 were turning right from node N2 to link L3 before the implementation of the countermeasure. In this case, the ratio of the total traffic volume of vehicles 200 turning right from node N2 to link L3 is 27.2% (0.8×0.34=0.272). Assuming that these vehicles 200 turn left at node N2 to link L6 after the countermeasure is implemented, the right/left turn rate from node N2 to link L6 after the countermeasure is implemented is 0.2+0.272=0.472. Become.
 表6に示すように、対策実施前は、リンクL6の走行難易度ADDがリンクL3の走行難易度ADDよりも大幅に高かったため、リンクL6への右左折率はリンクL3への右左折率よりも大幅に低かった。しかし、対策実施後は、リンクL6の走行難易度ADDが0になり、リンクL3の走行難易度ADDである0.043よりも低くなったため、リンクL6への右左折率が増加して、リンクL6とリンクL3との右左折率の差が減少してほぼなくなっている。As shown in Table 6, before the implementation of the countermeasure, the travel difficulty ADD of link L6 was significantly higher than the travel difficulty ADD of link L3, so the right/left turn rate to link L6 was higher than the right/left turn rate to link L3. was also significantly lower. However, after the implementation of the measures, the travel difficulty level ADD of link L6 became 0, which was lower than the travel difficulty level ADD of 0.043 of link L3. The difference in right/left turn rate between L6 and link L3 has decreased and almost disappeared.
 次に、サーバ110は、対策実施後の交通流をシミュレートする処理P44を実行する。この処理P44において、交通流シミュレータ117は、たとえば、表6に示す対策実施後の右左折率を含むパラメータを用いて、地図情報MIの各リンクL1-L7および/または各ノードN1-N4の走行難易度ADDを変化させたときの交通流をシミュレートする。Next, the server 110 executes the process P44 of simulating the traffic flow after the implementation of the countermeasure. In this process P44, the traffic flow simulator 117 uses, for example, the parameters shown in Table 6, including right and left turn rates after implementation of the countermeasure, to The traffic flow is simulated when the difficulty level ADD is changed.
 次に、サーバ110は、対策実施前後の各リンクL1-L7および/または各ノードN1-N4の交通流を比較する処理P45を実行する。この処理により、たとえば、リンクL6とリンクL3へ交通流が分散することによる渋滞解消など、異常発生を低減する対策による効果を確認し、対策の検証を行うことができる。Next, the server 110 executes a process P45 of comparing the traffic flow of each link L1-L7 and/or each node N1-N4 before and after implementing the countermeasure. By this process, for example, it is possible to confirm the effect of countermeasures for reducing the occurrence of anomalies, such as traffic jam elimination by dispersing the traffic flow to the link L6 and the link L3, and to verify the countermeasures.
 以上のように、本実施形態の車両制御システム100において、サーバ110は、地図情報MIの前記各々のノードまたはリンクの前記走行難易度を変化させたときの交通流をシミュレートする交通流シミュレータ117を有している。このような構成により、本実施形態の車両制御システム100は、前述の実施形態1の車両制御システム100の効果に加えて、渋滞などの道路の混雑度の改善を評価することが可能になる。As described above, in the vehicle control system 100 of the present embodiment, the server 110 includes a traffic flow simulator 117 that simulates traffic flow when the travel difficulty level of each node or link of the map information MI is changed. have. With such a configuration, the vehicle control system 100 of the present embodiment makes it possible to evaluate improvements in road congestion such as congestion, in addition to the effects of the vehicle control system 100 of the first embodiment.
 以上、図面を用いて本開示に係る車両制御システムおよび電子制御装置の実施形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。Although the embodiments of the vehicle control system and the electronic control device according to the present disclosure have been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment and does not depart from the gist of the present disclosure. Even if there are design changes etc. within the scope, they are included in the present disclosure.
100     車両制御システム
110     サーバ
111     記録部
112     演算部
113     経路選択部
114     送信部
117     交通流シミュレータ
120     電子制御装置
121     認識部
122     判定部
123     送信部
124     車両制御部
200     車両
210     通信装置
220     外界センサ
ADD     走行難易度
CR1-CR3 経路候補
L1-L7   リンク
MI      地図情報
N1-N4   ノード
100 Vehicle control system 110 Server 111 Recording unit 112 Calculation unit 113 Route selection unit 114 Transmission unit 117 Traffic flow simulator 120 Electronic control unit 121 Recognition unit 122 Judgment unit 123 Transmission unit 124 Vehicle control unit 200 Vehicle 210 Communication device 220 External sensor ADD Travel Difficulty level CR1-CR3 Route candidate L1-L7 Link MI Map information N1-N4 Node

Claims (10)

  1.  複数の車両の各々に搭載される各々の電子制御装置と、該各々の電子制御装置と通信可能に接続される少なくとも一つのサーバと、を備えた車両制御システムであって、
     前記各々の電子制御装置は、前記各々の車両に搭載された外界センサの検出結果に基づいて道路状態を認識する認識部と、該認識部による前記道路状態の認識不良を含む異常を判定する判定部と、該判定部による異常判定時の前記各々の車両の位置、時刻および判定された前記異常の種別を含む異常情報を前記各々の車両に搭載された通信装置を介して前記サーバへ送信する送信部と、を有し、
     前記サーバは、前記各々の電子制御装置から受信した前記異常情報を地図情報の各々のノードまたはリンクに対応づけた異常発生情報を記録する記録部と、前記異常発生情報に含まれる前記ノードまたはリンクごとに前記異常の判定頻度に基づく走行難易度を算出する演算部と、前記地図情報の複数の経路候補から前記走行難易度の合計が最小となる安全経路を選択する経路選択部と、前記安全経路を前記各々の電子制御装置へ推奨経路として送信する送信部と、を有することを特徴とする車両制御システム。
    A vehicle control system comprising: each electronic control device mounted on each of a plurality of vehicles; and at least one server communicably connected to each electronic control device,
    Each of the electronic control units includes a recognition unit that recognizes road conditions based on the detection result of an external sensor mounted on each of the vehicles, and a judgment that determines an abnormality including poor recognition of the road conditions by the recognition unit. and abnormality information including the position of each vehicle at the time of abnormality determination by the determination unit, the time, and the type of the determined abnormality are transmitted to the server via a communication device mounted on each of the vehicles. a transmitter;
    The server includes a recording unit for recording abnormality occurrence information in which the abnormality information received from each electronic control unit is associated with each node or link of map information, and the node or link included in the abnormality occurrence information. a calculation unit for calculating a travel difficulty level based on the frequency of determination of the abnormality for each route; a route selection unit for selecting a safe route that minimizes the sum of the travel difficulty levels from a plurality of route candidates in the map information; and a transmitter for transmitting the route to each of the electronic control units as a recommended route.
  2.  前記サーバの前記演算部は、前記各々の電子制御装置の前記判定部による前記異常の判定頻度が高いほど、前記異常発生情報の前記ノードまたはリンクごとの前記走行難易度を高く算出することを特徴とする請求項1に記載の車両制御システム。The calculation unit of the server calculates the traveling difficulty level for each node or link of the abnormality occurrence information to be higher as the frequency of determination of the abnormality by the determination unit of each electronic control unit is higher. The vehicle control system according to claim 1, wherein:
  3.  前記サーバの前記記録部は、前記各々の電子制御装置の前記判定部による異常判定時の前記各々の車両の位置における天気を、前記各々のノードまたはリンクに対応づけた前記異常発生情報を記録し、
     前記サーバの前記演算部は、前記走行難易度の算出時に前記地図情報の前記複数の経路候補に含まれる前記各々のノードまたはリンクの現在の天気を取得し、前記異常判定時の天気が前記現在の前記天気に一致する前記異常発生情報に基づいて、前記走行難易度を算出することを特徴とする請求項1に記載の車両制御システム。
    The recording unit of the server records the abnormality occurrence information in which the weather at the position of each vehicle at the time of abnormality determination by the determination unit of each electronic control unit is associated with each node or link. ,
    The calculation unit of the server acquires the current weather of each of the nodes or links included in the plurality of route candidates of the map information when calculating the travel difficulty level, and obtains the current weather of each of the nodes or links included in the plurality of route candidates of the map information. 2. The vehicle control system according to claim 1, wherein said driving difficulty level is calculated based on said abnormality occurrence information that matches said weather.
  4.  前記サーバの前記記録部は、前記各々の電子制御装置の前記判定部による異常判定時の前記各々の車両の前記外界センサの種別を、前記各々のノードまたはリンクに対応づけた前記異常発生情報を記録し、
     前記サーバの前記演算部は、前記走行難易度の算出時に前記各々の車両の前記外界センサの種別を取得し、前記異常判定時の前記外界センサの種別が前記走行難易度の算出時の前記外界センサの種別に一致する前記異常発生情報に基づいて、前記走行難易度を算出することを特徴とする請求項1に記載の車両制御システム。
    The recording unit of the server stores the abnormality occurrence information in which the type of the external sensor of each vehicle at the time of abnormality determination by the determination unit of each electronic control unit is associated with each node or link. record and
    The computing unit of the server acquires the type of the external sensor of each vehicle when calculating the traveling difficulty level, and the type of the external sensor at the time of the abnormality determination is the external world at the time of calculating the traveling difficulty level. 2. The vehicle control system according to claim 1, wherein the driving difficulty level is calculated based on the abnormality occurrence information that matches the sensor type.
  5.  前記サーバの前記送信部は、前記推奨経路に前記異常の判定頻度が所定頻度よりも高い前記ノードまたはリンクである要注意ノードまたはリンクが含まれる場合に、該要注意ノードまたはリンクを前記各々の電子制御装置へ送信し、
     前記各々の電子制御装置の前記判定部は、前記要注意ノードまたはリンクにおいて前記所定頻度よりも高い頻度で判定された前記異常の種別を判定する優先度を、他の前記異常の種別を判定する優先度よりも高くすることを特徴とする請求項1に記載の車両制御システム。
    When the recommended route includes a node or link requiring caution, which is the node or link whose abnormality determination frequency is higher than a predetermined frequency, the transmitting unit of the server transmits the node or link requiring caution to each of the above sent to the electronic control unit,
    The judging unit of each electronic control unit judges the priority for judging the type of abnormality judged at a frequency higher than the predetermined frequency in the node or link requiring attention, and judges the type of the other abnormality. 2. The vehicle control system according to claim 1, wherein the priority is set higher than the priority.
  6.  前記電子制御装置は、前記判定部によって判定された前記異常の種別が特定できない場合に、前記送信部によって前記異常情報とともに前記外界センサに含まれるカメラの画像を前記サーバへ送信することを特徴とする請求項1に記載の車両制御システム。In the electronic control device, when the type of the abnormality determined by the determination unit cannot be specified, the transmission unit transmits an image of a camera included in the external sensor together with the abnormality information to the server. The vehicle control system according to claim 1.
  7.  前記サーバの前記演算部は、前記時刻または前記異常の種別を含む抽出条件を用いて抽出した前記異常発生情報の前記ノードまたはリンクごとに算出した前記走行難易度を前記サーバの表示装置に表示させることを特徴とする請求項1に記載の車両制御システム。The computing unit of the server causes the display device of the server to display the traveling difficulty calculated for each of the nodes or links of the abnormality occurrence information extracted using the extraction condition including the time or the type of abnormality. The vehicle control system according to claim 1, characterized in that:
  8.  前記サーバは、前記地図情報の前記各々のノードまたはリンクの前記走行難易度を変化させたときの交通流をシミュレートする交通流シミュレータを有することを特徴とする請求項7に記載の車両制御システム。8. The vehicle control system according to claim 7, wherein the server has a traffic flow simulator that simulates traffic flow when the travel difficulty level of each node or link of the map information is changed. .
  9.  前記各々の電子制御装置は、前記サーバから受信する推奨経路に沿って前記各々の車両を走行させる車両制御部を備えることを特徴とする請求項1に記載の車両制御システム。The vehicle control system according to claim 1, wherein each of the electronic control units includes a vehicle control section that causes each of the vehicles to travel along the recommended route received from the server.
  10.  車両に搭載される電子制御装置であって、
     前記車両に搭載された外界センサの検出結果に基づいて道路状態を認識する認識部と、該認識部による前記道路状態の認識不良を含む異常を判定する判定部と、該判定部による異常判定時の前記車両の位置、時刻および判定された前記異常の種別を含む異常情報を前記車両に搭載された通信装置を介して前記車両の外部のサーバへ送信する送信部と、前記サーバから受信する推奨経路に沿って前記車両を走行させる車両制御部と、を有することを特徴とする電子制御装置。
    An electronic control device mounted on a vehicle,
    a recognition unit that recognizes road conditions based on the detection results of an external sensor mounted on the vehicle; a determination unit that determines an abnormality including poor recognition of the road conditions by the recognition unit; a transmission unit for transmitting abnormality information including the position of the vehicle, the time, and the type of the determined abnormality to a server outside the vehicle via a communication device mounted on the vehicle; and a vehicle control unit that causes the vehicle to travel along the route.
PCT/IB2022/060459 2021-09-15 2022-10-31 Vehicle control system and electronic control device WO2023042186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022002882.3T DE112022002882T5 (en) 2021-09-15 2022-10-31 VEHICLE CONTROL SYSTEM AND ELECTRONIC CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021150575A JP2023043074A (en) 2021-09-15 2021-09-15 Vehicle control system and electronic control device
JP2021-150575 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023042186A1 true WO2023042186A1 (en) 2023-03-23

Family

ID=85602518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/060459 WO2023042186A1 (en) 2021-09-15 2022-10-31 Vehicle control system and electronic control device

Country Status (3)

Country Link
JP (1) JP2023043074A (en)
DE (1) DE112022002882T5 (en)
WO (1) WO2023042186A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250594A (en) * 1992-03-04 1993-09-28 Hitachi Ltd Road traffic simulation system
JP2006047246A (en) * 2004-08-09 2006-02-16 Xanavi Informatics Corp Route searching method for navigation system
JP2011215080A (en) * 2010-04-01 2011-10-27 Denso Corp Route search device and route guidance system
JP2019020127A (en) * 2017-07-11 2019-02-07 日産自動車株式会社 Route search method and route search device for driving support vehicle
JP2019032174A (en) * 2017-08-04 2019-02-28 トヨタ自動車株式会社 Information processing system and information processing method
JP2020160027A (en) * 2019-03-28 2020-10-01 株式会社Jvcケンウッド Navigation device, navigation method and program
JP2021507206A (en) * 2017-12-15 2021-02-22 ウェイモ エルエルシー Use of vehicle routing scene difficulty prediction model

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323281A (en) 2006-05-31 2007-12-13 Denso Corp Danger occurrence point information collection system, on-vehicle device, and danger occurrence point information collection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250594A (en) * 1992-03-04 1993-09-28 Hitachi Ltd Road traffic simulation system
JP2006047246A (en) * 2004-08-09 2006-02-16 Xanavi Informatics Corp Route searching method for navigation system
JP2011215080A (en) * 2010-04-01 2011-10-27 Denso Corp Route search device and route guidance system
JP2019020127A (en) * 2017-07-11 2019-02-07 日産自動車株式会社 Route search method and route search device for driving support vehicle
JP2019032174A (en) * 2017-08-04 2019-02-28 トヨタ自動車株式会社 Information processing system and information processing method
JP2021507206A (en) * 2017-12-15 2021-02-22 ウェイモ エルエルシー Use of vehicle routing scene difficulty prediction model
JP2020160027A (en) * 2019-03-28 2020-10-01 株式会社Jvcケンウッド Navigation device, navigation method and program

Also Published As

Publication number Publication date
DE112022002882T5 (en) 2024-03-21
JP2023043074A (en) 2023-03-28

Similar Documents

Publication Publication Date Title
US10989556B1 (en) Traffic risk a avoidance for a route selection system
US11257377B1 (en) System for identifying high risk parking lots
US11656094B1 (en) System for driver&#39;s education
US11105640B1 (en) Using train telematics data to reduce accident risk
US11727495B1 (en) Collision risk-based engagement and disengagement of autonomous control of a vehicle
US11636760B2 (en) Detection and estimation of variable speed signs
US10490078B1 (en) Technology for providing real-time route safety and risk feedback
CN101727741B (en) Safe driving evaluation system and safe driving evaluation program
CN111739344B (en) Early warning method and device and electronic equipment
JP5840046B2 (en) Information providing apparatus, information providing system, information providing method, and program
US20190042857A1 (en) Information processing system and information processing method
CN112740188A (en) Log-based simulation using biases
JPWO2017110002A1 (en) Prediction device, prediction system, prediction method, and prediction program
CN113692373B (en) Retention and range analysis for autonomous vehicle services
US20210270620A1 (en) Traffic Risk Notification System
JP7400247B2 (en) Report creation support system, server device, and computer program
CN112106124A (en) System and method for using V2X and sensor data
CN113748316A (en) System and method for vehicle telemetry
CN106662455A (en) Warning notification system, warning notification method, and program
JP2018180907A (en) Traffic prediction program, traffic prediction apparatus, and traffic prediction method
WO2023042186A1 (en) Vehicle control system and electronic control device
WO2007119348A1 (en) Information providing apparatus, information providing method, information providing program and recording medium
JP7144124B2 (en) system
JP2019175492A (en) Predictor, prediction system, prediction method, and prediction program
CN116168542B (en) Early warning method and system based on behavior monitoring of large vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869533

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022002882

Country of ref document: DE