WO2023040839A1 - 一种随机接入方法、终端、基站 - Google Patents

一种随机接入方法、终端、基站 Download PDF

Info

Publication number
WO2023040839A1
WO2023040839A1 PCT/CN2022/118514 CN2022118514W WO2023040839A1 WO 2023040839 A1 WO2023040839 A1 WO 2023040839A1 CN 2022118514 W CN2022118514 W CN 2022118514W WO 2023040839 A1 WO2023040839 A1 WO 2023040839A1
Authority
WO
WIPO (PCT)
Prior art keywords
msg4
terminal
rnti
base station
terminals
Prior art date
Application number
PCT/CN2022/118514
Other languages
English (en)
French (fr)
Inventor
赵殊伦
王森
金婧
王启星
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2023040839A1 publication Critical patent/WO2023040839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a random access party, a terminal, and a base station.
  • embodiments of the present invention provide a random access method, a base station, a terminal, a chip, and a computer-readable storage medium.
  • the random access method provided in the embodiment of the present application is applied to a four-step random access process, and the method includes:
  • the base station receives a message Msg3 sent by multiple terminals, and the Msg3 is sent and received in a first multiple access mode;
  • the base station determines respective cell-radio network temporary identities (Cell-Radio Network Tempory Identity, C-RNTI) for the at least some of the terminals through Msg4.
  • C-RNTI Cell-Radio Network Tempory Identity
  • the random access method provided in the embodiment of this application is applied to a four-step random access process, and the method includes:
  • the terminal sends Msg3 to the base station, and the Msg3 is sent and received in the first multiple access mode;
  • the terminal receives the Msg4 sent by the base station, and determines its own first identity based on the Msg4.
  • the random access device provided in the embodiment of the present application is applied to a base station in a four-step random access process, and the device includes:
  • the receiving unit is configured to receive the message Msg3 sent by multiple terminals, and the Msg3 is sent and received in the first multiple access mode;
  • a processing unit configured to identify terminal identities of at least some of the multiple terminals based on the Msg3 sent by the multiple terminals;
  • the sending unit is configured to determine respective C-RNTIs for at least some of the terminals through Msg4.
  • the random access device provided in the embodiment of the present application is applied to a terminal in a four-step random access process, and the device includes:
  • a sending unit configured to send Msg3 to the base station, where the Msg3 is sent and received using the first multiple access method
  • the receiving unit is configured to receive the Msg4 sent by the base station, and determine its own first identity based on the Msg4.
  • the base station provided in the embodiment of the present application includes: a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, and execute any one of the above random access methods.
  • the terminal provided in the embodiment of the present application includes: a processor and a memory, where the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, and execute any one of the above random access methods.
  • the chip provided by the embodiment of the present application includes: a processor, configured to invoke and run a computer program from a memory, so that a device installed with the chip executes any one of the above methods.
  • the core computer-readable storage medium provided by the embodiment of the present application is used for storing a computer program, and the computer program causes a computer to execute any one of the above-mentioned methods.
  • the non-orthogonal multiple access technology is used to send and receive Msg3, so that the terminal identifiers of multiple colliding terminals can be identified at the base station, and for These terminals are allocated their respective C-RNTIs, so as to realize one-time access of multiple colliding terminals and improve the probability of successful random access.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application
  • FIG. 2 is a flow chart of a four-step random access provided by an embodiment of the present application
  • FIG. 3 is a first schematic flow diagram of a random access method provided by an embodiment of the present application.
  • FIG. 4 is a second schematic flow diagram of a random access method provided in an embodiment of the present application.
  • FIG. 5 is a third schematic flow diagram of a random access method provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the cascaded Msg4 provided by the embodiment of the present application.
  • FIG. 7 is a first structural diagram of a random access device provided by an embodiment of the present application.
  • FIG. 8 is a second structural diagram of a random access device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • a communication system 100 may include a terminal 110 and a network device 120 .
  • the network device 120 can communicate with the terminal 110 through an air interface. Multi-service transmission is supported between the terminal 110 and the network device 120 .
  • the embodiment of the present application is only described by using the communication system 100 as an example, but the embodiment of the present application is not limited thereto. That is to say, the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: Long Term Evolution (Long Term Evolution, LTE) system, LTE Time Division Duplex (Time Division Duplex, TDD), Universal Mobile Communication System (Universal Mobile Telecommunication System, UMTS), Internet of Things (Internet of Things, IoT) system, Narrow Band Internet of Things (NB-IoT) system, enhanced Machine-Type Communications (eMTC) system, 5G communication system (also known as New Radio (NR) communication system), or future communication systems, etc.
  • LTE Long Term Evolution
  • LTE Time Division Duplex Time Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Telecommunication System Universal Mobile Telecommunication System
  • UMTS Universal Mobile Communication System
  • Internet of Things Internet of Things
  • NB-IoT Narrow Band Internet of Things
  • eMTC enhanced Machine-Type Communications
  • the network device 120 may be an access network device that communicates with the terminal 110 .
  • the access network device can provide communication coverage for a specific geographic area, and can communicate with terminals 110 (such as UEs) located in the coverage area.
  • the network device 120 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (Long Term Evolution, LTE) system, or a Next Generation Radio Access Network (NG RAN) device, Either a base station (gNB) in the NR system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wearable Devices, hubs, switches, bridges, routers, or network devices in the future evolution of the Public Land Mobile Network (Public Land Mobile Network, PLMN), etc.
  • Evolutional Node B, eNB or eNodeB in a Long Term Evolution (Long Term Evolution, LTE) system
  • NG RAN Next Generation Radio Access Network
  • gNB base station
  • CRAN Cloud Radio Access Network
  • the network device 120 can be a relay station, an access point, a vehicle-mounted device, a wear
  • the terminal 110 may be any terminal, including but not limited to a terminal connected to the network device 120 or other terminals by wire or wirelessly.
  • the terminal 110 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device , User Agent, or User Device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, IoT devices, satellite handheld terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistant , PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in 5G networks or terminals in future evolution networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal 110 can be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the wireless communication system 100 may also include a core network device 130 that communicates with the base station.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, Access and Mobility Management Function (Access and Mobility Management Function , AMF), and for example, authentication server function (Authentication Server Function, AUSF), and for example, user plane function (User Plane Function, UPF), and for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be a packet core evolution (Evolved Packet Core, EPC) device of the LTE network, for example, a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW- C) equipment.
  • EPC packet core evolution
  • SMF+PGW-C can realize the functions of SMF and PGW-C at the same time.
  • the above-mentioned core network equipment may be called by other names, or a new network entity may be formed by dividing functions of the core network, which is not limited in this embodiment of the present application.
  • Various functional units in the communication system 100 may also establish a connection through a next generation network (next generation, NG) interface to implement communication.
  • NG next generation network
  • the terminal establishes an air interface connection with the access network device through the NR interface to transmit user plane data and control plane signaling; the terminal can establish a control plane signaling connection with the AMF through the NG interface 1 (N1 for short); the access network device
  • a next-generation wireless access base station gNB
  • UPF can establish a user plane data connection with UPF through NG interface 3 (N3 for short); an access network device can establish a control plane signaling connection with AMF through NG interface 2 (N2 for short);
  • UPF can establish control plane signaling connection with SMF through NG interface 4 (abbreviated as N4);
  • UPF can exchange user plane data with data network through NG interface 6 (abbreviated as N6);
  • AMF can establish with SMF through NG interface 11 (abbreviated as N11)
  • Control plane signaling connection the SMF can establish a control plane signaling connection with the PCF through the NG interface 7 (N7 for short).
  • FIG. 1 exemplarily shows a base station, a core network device, and two terminals.
  • the wireless communication system 100 may include multiple base station devices and each base station may include other numbers of terminals within the coverage area. This embodiment of the present application does not limit it.
  • FIG. 1 is only an illustration of a system applicable to this application, and of course, the method shown in the embodiment of this application may also be applicable to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B can mean: A exists alone, A and B exist simultaneously, and there exists alone B these three situations.
  • the character "/" in this article generally indicates that the contextual objects are an "or” relationship.
  • the "indication” mentioned in the embodiments of the present application may be a direct indication, an indirect indication, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the "correspondence” mentioned in the embodiments of the present application may mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated. , configuration and configured relationship.
  • predefined or “predefined rules” mentioned in the embodiments of this application can be used to indicate related information, and this application does not limit its specific implementation. For example, pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, and this application does not limit this .
  • Step 201 the terminal sends Msg1 to the base station.
  • the terminal sends Msg1 to the base station on a random access channel, where Msg1 is a preamble (preamble) sequence used for timing advance (Time Advance, TA) estimation by the base station.
  • Msg1 is a preamble (preamble) sequence used for timing advance (Time Advance, TA) estimation by the base station.
  • Step 202 the base station sends Msg2 to the terminal.
  • Msg2 is the random access response (Random Access Response, RAR) of Msg1, which includes the preamble sequence identifier, TA indication, uplink authorization information, temporary cell-radio network temporary identifier (Temporary Cell-Radio Network Temporary Identifier, TC-RNTI ).
  • RAR Random Access Response
  • the preamble sequence identifier is the identifier of the preamble sequence received by the base station and sent by the terminal, and the preamble sequence identifier may also be called a preamble index (preamble index).
  • the uplink authorization information is used to determine the PUSCH resource for the terminal to send Msg3 to the base station.
  • the TC-RNTI is used by the terminal to scramble the Msg3 sent to the base station.
  • Step 203 the terminal sends Msg3 to the base station.
  • the terminal when the terminal reads the preamble identifier corresponding to Msg1 in Msg2, the terminal uses the uplink grant information in Msg2 to send Msg3 to the base station on the PUSCH resource.
  • Step 204 the base station sends Msg4 to the terminal.
  • Msg4 is a response to resolve contention conflicts.
  • the terminal detects that Msg4 contains the contention resolution identification information corresponding to Msg3, it is deemed that the random access is successful, and the terminal can move from the RRC idle state or RRC inactive state to the RRC connected state, and then the terminal entering the RRC connected state can The transmission of uplink service data can be started.
  • the first step of random access is that the terminal randomly selects one of the orthogonal preamble sequences configured by the base station, and transmits it in a random access opportunity (RACH Occasion, RO).
  • RACH Occasion the maximum size of the preamble candidate set of a single cell is 64. Therefore, once two or more terminals select the same preamble sequence on the same RO for random access, a collision will occur.
  • the 6G network may reach a connection density of 10 million devices per square kilometer. Even if the activation probability of each terminal is as low as 0.01%, there will still be 1,000 devices in the same cell at the same time initiating a random access request. If If the size of the existing preamble candidate set is also maintained, collisions are likely to occur.
  • Msg2 For multiple terminals that collide, they will receive the same RAR in Msg2, which includes the same TA, the same preamble sequence identifier, the same uplink authorization information, and the same TC-RNTI. Therefore, these collided terminals will use the same PUSCH resource to send Msg3, and use the same TC-RNTI to scramble Msg3.
  • the content of Msg3 will carry the unique identifier of the terminal. If the terminal is known to the access network, then the allocated C-RNTI is used as the terminal identifier and carried in Msg3. Otherwise, the terminal needs to use the terminal identifier of the core network. Carried in Msg3.
  • the current 5G system only supports orthogonal multiple access technology, for multiple terminals sending Msg3 on the same PUSCH resource, only one terminal's Msg3 can be successfully received by the base station, and the Msg3 of other terminals will not be able to receive. was successfully received by the base station. That is to say, during the conflict resolution process at the base station, at most one terminal ID can be recognized by the base station, and the terminal IDs of other terminals are unknown to the base station.
  • the only terminal identified by the terminal identified by the base station will receive the Msg4 sent by the base station as a successful random access user, and the rest of the terminals will restart random access from Msg1 as random access failed users.
  • Non-Orthogonal Multiple Access has received extensive attention. If the NOMA technology can be introduced into the random access process, then multiple terminals can send Msg3 in a non-orthogonal manner in the power domain and/or code domain on the same PUSCH resource, and the base station can also use the serial interference cancellation (Successive Interference Cancellation, SIC) or Message Passing Algorithm (MPA), etc. to achieve correct demodulation of Msg3. Therefore, after using the NOMA technology, the respective terminal identities of multiple colliding terminals are also expected to be recognized by the base station as the content of Msg3.
  • SIC Serial Interference Cancellation
  • MPA Message Passing Algorithm
  • this application considers a new Msg4 configuration scheme, which allocates multiple different C-RNTIs to multiple terminals that collide, so that the above-mentioned collided terminals can successfully access at one time without restarting from Msg1 .
  • the Msg3 of these terminals can be sent and received in a non-orthogonal multiple access mode, so that the base station can solve the respective terminal identities of multiple colliding terminals.
  • the base station will send Msg4 to each of these terminals in unicast mode, and these terminals with C-RNTI will use their respective C-RNTI -
  • the RNTI is addressed on the PDCCH, and if it detects its own C-RNTI, it is regarded as a successful random access.
  • the base station will send a cascaded Msg4 to these terminals in a multicast manner.
  • the cascaded Msg4 includes the cascaded One or more Msg4, each Msg4 corresponds to a collision terminal without a C-RNTI but whose core network terminal identity has been identified by the base station. Only one of these terminals with only core network terminal identifiers can upgrade the TC-RNTI received in Msg2 to C-RNTI, and the C-RNTIs of the other terminals are uniquely given by the base station in their corresponding Msg4.
  • first multiple access mode described in the implementation of this application may be, but not limited to, be based on non-orthogonal multiple access.
  • Fig. 3 is a schematic flow diagram of a random access method provided in an embodiment of the present application, which is applied to a four-step random access process. As shown in Fig. 3, the random access method includes:
  • Step 301 the base station receives a message Msg3 sent by multiple terminals, and the Msg3 is received in a first multiple access manner.
  • the method further includes: the base station receiving Msg1 sent by the multiple terminals, wherein a collision occurs when the multiple terminals send Msg1; the base station sends the Msg1 to the Multiple terminals send Msg2, wherein the Msg2 sent by the base station to the multiple terminals carries the same RAR, and the RAR includes at least one of the following: TA, preamble identifier, uplink authorization information, and TC-RNTI.
  • the collision of multiple terminals when sending Msg1 means that multiple terminals use the same preamble sequence and the same random access opportunity resource when sending Msg1.
  • the random access opportunity resources may be RO resources.
  • the multiple terminals use the same PUSCH resource when sending the Msg3, and the PUSCH resource is determined based on the uplink authorization information in the Msg2.
  • the multiple terminals use the same TC-RNTI for scrambling when sending the Msg3, and the TC-RNTI is the TC-RNTI in the Msg2.
  • Msg3 is sent and received in a non-orthogonal multiple access manner.
  • the Msg3 is sent using the first multiple access method, which means: the Msg3 is sent using at least one of the following methods: power domain non-orthogonal multiple access, code domain non-orthogonal way of multiple addresses.
  • the solution for the terminal to send Msg3 includes, but is not limited to, the terminal sending Msg3 by using power domain non-orthogonal multiple access and/or code domain non-orthogonal multiple access.
  • the Msg3 is received in the first multiple access manner, which means that the Msg3 is received in at least one of the following manners: a SIC manner and an MPA manner.
  • the solution for the base station to receive Msg3 includes, but is not limited to, the base station receiving Msg3 in a manner of SIC or MPA.
  • Msg3 carries the terminal identifier.
  • the terminal identifier carried in Msg3 sent by the terminal is the C-RNTI that the terminal already has.
  • the terminal identifier carried in Msg3 sent by the terminal is the core network terminal identifier of the terminal.
  • Step 302 The base station identifies terminal identities of at least some of the multiple terminals based on the Msg3 sent by the multiple terminals.
  • the base station can identify terminal identities of at least some of the multiple terminals.
  • the base station may identify terminal identities of n terminals among the m terminals, where m is a positive integer, and n is a positive integer less than or equal to m.
  • Step 303 the base station determines respective C-RNTIs for at least some of the terminals through Msg4.
  • the C-RNTI is used by the terminal to determine that the random access is successful. Specifically, after the at least some terminals determine their respective C-RNTIs, it indicates that the random access is successful.
  • the base station sends Msg4 in unicast mode or multicast mode according to whether each of the at least some terminals already has a C-RNTI, and determines the respective C-RNTI for the at least some terminals through the Msg4. RNTI. It is explained below.
  • Solution 1 The solution where the base station sends Msg4 in unicast mode
  • the at least some terminals include n terminals, and a terminal among the n terminals already has a C-RNTI; n is a positive integer, and a is a positive integer less than or equal to n; the The base station sends Msg4 to the a terminals in a unicast manner, wherein the Msg4 corresponding to each of the a terminals is scrambled by the C-RNTI that the terminal already has, and the terminal uses the C-RNTI that it already has. - After the RNTI addresses the PDCCH successfully, it is determined that the C-RNTI of the terminal is the C-RNTI already owned by the terminal.
  • the successful addressing of the PDCCH by the terminal using the C-RNTI it already has means that the terminal uses the C-RNTI it already has to descramble the PDCCH. If the descrambling is successful (that is, the addressing is successful), it is considered that the PDCCH is scheduled Msg4 is the Msg4 of the terminal, and it is considered that the random access of the terminal is successful.
  • the C-RNTI of the terminal is the C-RNTI already owned by the terminal, where the C-RNTI of the terminal serves as the unique identifier of the terminal in the cell after the random access succeeds.
  • the base station if the base station recognizes the terminal identities of n terminals that collided in Msg1 during the receiving process of Msg3, then for a terminal that already has a C-RNTI among them, the base station sends a unicast message to this terminal Send Msg4 separately, each terminal successfully addresses the PDCCH with its own C-RNTI, which means random access is successful, and the existing C-RNTI is used as the unique identifier of the terminal in the cell after successful random access.
  • Solution 2 The solution in which the base station sends Msg4 in multicast mode
  • the at least some terminals include n terminals, and b terminals in the n terminals do not have a C-RNTI; n is a positive integer, and b is a positive integer less than or equal to n; the base station Send the concatenated Msg4 to the b terminals in a multicast manner, the concatenated Msg4 is scrambled by TC-RNTI, and each terminal in the b terminals uses TC-RNTI to address the PDCCH successfully and obtains the Cascading Msg4, searching for a Msg4 matching the terminal from the cascading Msg4, and determining the C-RNTI of the terminal according to the matching Msg4.
  • TC-RNTI refers to TC-RNTI in Msg2.
  • the successful addressing of the PDCCH by the terminal using the TC-RNTI means that the terminal uses the TC-RNTI to descramble the PDCCH. If the descrambling is successful (that is, the addressing is successful), it is considered that the concatenated Msg4 scheduled by the PDCCH contains the Msg4 of the terminal, and then Finding a Msg4 matching the terminal from the cascaded Msg4, and determining the C-RNTI of the terminal according to the matching Msg4, after determining the C-RNTI of the terminal, it is considered that the random access of the terminal is successful. Wherein, the C-RNTI of the terminal is used as the unique identifier of the terminal in the cell after the random access is successful.
  • a terminal sends a cascaded Msg4 (including b cascaded Msg4s), each terminal uses TC-RNTI to address the cascaded Msg4, and then searches for a Msg4 content that matches its own ID MAC CE from the cascaded Msg4, And determine their respective C-RNTIs according to their respective Msg4 contents, thereby declaring that the random access is successful.
  • the cascaded Msg4 includes one Msg4 header (Msg4 header) and one or more Msg4 contents (Msg4 content); wherein, the Msg4 header carries Msg4 type indication information, and the one or Each of the Msg4 contents in the plurality of Msg4 contents corresponds to one terminal.
  • the Msg4 content includes ID MAC CE information and C-RNTI indication information; wherein, the Msg4 content is carried by a MAC sub-PDU (MAC subPDU), and the MAC sub-PDU includes an ID MAC CE field and a C-RNTI indication ( C-RNTI indicator) field, the ID MAC CE field is used to carry the ID MAC CE information, and the C-RNTI indicator field is used to carry the C-RNTI indication information.
  • MAC subPDU MAC sub-PDU
  • C-RNTI indication C-RNTI indicator
  • the Msg4 content its composition is as follows: add a C-RNTI indication field on each MAC sub-PDU, optionally, the C-RNTI indication field is located after the ID MAC CE field, optionally, the C-RNTI
  • the length of the indication field is 16 bits, and the ID MAC CE field and the C-RNTI indication field together form a Msg4 content.
  • the Msg4 header may carry Msg4 type indication information in the following manner: the Msg4 type indication information is carried by a non-orthogonal multiple access indication (NOMA indicator) field in the Msg4 header, in,
  • NOMA indicator non-orthogonal multiple access indication
  • the Msg4 type indication information is used to indicate at least one of the following: the base station implements an orthogonal multiple access reception scheme, and there is one Msg4 content after the Msg4 header.
  • the first sequence is a sequence of all 0s. If the first indication field is a sequence of all 0s, it means that the base station implements the orthogonal multiple access receiving scheme. There is only one Msg4 content after the Msg4 header, and only the terminal whose ID MAC CE matches the Msg4 content can access successfully. Upgrade TC-RNTI to C-RNTI.
  • the Msg4 type indication information is used to indicate at least one of the following: the base station implements a non-orthogonal multiple access reception scheme, and there are b pieces of Msg4 content after the Msg4 header.
  • the second sequence is a sequence of all 1s. If the first indication field is a sequence of all 1s, it means that the base station implements a non-orthogonal multiple access receiving scheme, and there are b pieces of Msg4 content after the Msg4 header, corresponding to b terminals whose core network terminal identities are deciphered by the base station.
  • the way for each of the b terminals to obtain the C-RNTI includes:
  • the terminal searches the MAC sub-PDU that matches the ID MAC CE of the terminal from the concatenated Msg4, wherein the MAC sub-PDU that matches the ID MAC CE of the terminal refers to a MAC sub-PDU that contains the ID MAC CE of the terminal MAC sub-PDU;
  • the terminal upgrades the TC-RNTI to a C-RNTI
  • the terminal uses the second bit sequence as the C-RNTI of the terminal.
  • the first bit sequence is an all-0 bit sequence.
  • the second bit sequence is a non-all-0 bit sequence.
  • the terminal can search the MAC sub-PDU matching the ID MAC CE of the terminal from the concatenated Msg4 in the following manner: the terminal obtains the first MAC sub-PDU in the concatenated Msg4 The PDU starts to search until one of the MAC sub-PDUs contains the ID MAC CE that matches the ID MAC CE of the terminal.
  • the non-orthogonal multiple access method is used to transmit and receive, so that the base station can solve the terminal identifiers of multiple terminals that collided in Msg1; the base station According to whether these terminals already have C-RNTIs, the end determines the respective C-RNTIs for these terminals in Msg4 in a unicast or multicast manner, and announces that all the collided terminals have successfully random access.
  • Fig. 4 is a schematic flow diagram of the second random access method provided by the embodiment of the present application, which is applied to a four-step random access process. As shown in Fig. 4, the random access method includes:
  • Step 401 the terminal sends a Msg3 to the base station, and the Msg3 is sent using the first multiple access method.
  • the method further includes: the terminal sends Msg1 to the base station, wherein the terminal collides with other terminals when sending Msg1.
  • the terminal receives the Msg2 sent by the base station, wherein the Msg2 sent by the base station to multiple terminals that collide carries the same RAR, and the RAR includes at least one of the following: TA, preamble sequence identifier, uplink authorization information, TC-RNTI.
  • the collision of multiple terminals when sending Msg1 means that multiple terminals use the same preamble sequence and the same random access opportunity resource when sending Msg1.
  • the random access opportunity resources may be RO resources.
  • Msg3 is sent and received in a non-orthogonal multiple access manner.
  • the Msg3 is sent using the first multiple access method, which means: the Msg3 is sent using at least one of the following methods: power domain non-orthogonal multiple access, code domain non-orthogonal way of multiple addresses.
  • the Msg3 is received in the first multiple access manner, which means that the Msg3 is received in at least one of the following manners: a SIC manner and an MPA manner.
  • Msg3 carries the terminal identifier.
  • the terminal identifier carried in Msg3 sent by the terminal is the C-RNTI that the terminal already has.
  • the terminal identifier carried in Msg3 sent by the terminal is the core network terminal identifier of the terminal.
  • Step 402 The terminal receives the Msg4 sent by the base station, and determines its own first identity based on the Msg4.
  • the first identifier is a C-RNTI
  • the C-RNTI is used by the terminal to determine that the random access is successful. Specifically, after the terminal determines its own C-RNTI, it indicates that the random access is successful.
  • Scheme A The terminal addresses the PDCCH by using the C-RNTI it already has, obtains Msg4 after the addressing is successful, and determines that its own C-RNTI is the C-RNTI already owned by the terminal.
  • the successful addressing of the PDCCH by the terminal using the C-RNTI it already has means that the terminal uses the C-RNTI it already has to descramble the PDCCH. If the descrambling is successful (that is, the addressing is successful), it is considered that the PDCCH is scheduled Msg4 is the Msg4 of the terminal, and it is considered that the random access of the terminal is successful.
  • the C-RNTI of the terminal is the C-RNTI already owned by the terminal, where the C-RNTI of the terminal serves as the unique identifier of the terminal in the cell after the random access succeeds.
  • Scheme B The terminal uses TC-RNTI to address the PDCCH, obtains the concatenated Msg4 after the addressing is successful, searches for a Msg4 that matches the terminal from the concatenated Msg4, and determines the terminal according to the matched Msg4 The C-RNTI.
  • TC-RNTI refers to TC-RNTI in Msg2.
  • the successful addressing of the PDCCH by the terminal using the TC-RNTI means that the terminal uses the TC-RNTI to descramble the PDCCH. If the descrambling is successful (that is, the addressing is successful), it is considered that the concatenated Msg4 scheduled by the PDCCH contains the Msg4 of the terminal, and then Finding a Msg4 matching the terminal from the cascaded Msg4, and determining the C-RNTI of the terminal according to the matching Msg4, after determining the C-RNTI of the terminal, it is considered that the random access of the terminal is successful. Wherein, the C-RNTI of the terminal is used as the unique identifier of the terminal in the cell after the random access is successful.
  • the concatenated Msg4 includes one Msg4 header and one or more Msg4 contents; wherein, the Msg4 header carries Msg4 type indication information, and each of the one or more Msg4 contents The content of Msg4 corresponds to a terminal.
  • the Msg4 content includes ID MAC CE information and C-RNTI indication information; wherein, the Msg4 content is carried by a MAC sub-PDU, and the MAC sub-PDU includes an ID MAC CE field and a C-RNTI indication field, and the ID The MAC CE field is used to carry the ID MAC CE information, and the C-RNTI indication field is used to carry the C-RNTI indication information.
  • the Msg4 type indication information is carried by a first indication field in the Msg4 header, wherein,
  • the Msg4 type indication information is used to indicate at least one of the following: the base station implements an orthogonal multiple access reception scheme, and there is one Msg4 content after the Msg4 header.
  • the first sequence is a sequence of all 0s.
  • the Msg4 type indication information is used to indicate at least one of the following: the base station implements a non-orthogonal multiple access reception scheme, and there are b pieces of Msg4 content after the Msg4 header.
  • the second sequence is a sequence of all 1s.
  • the terminal searches the concatenated Msg4 for a MAC sub-PDU that matches the ID MAC CE of the terminal, wherein the terminal matches the
  • the MAC sub-PDU matched by the ID MAC CE refers to the MAC sub-PDU that contains the ID MAC CE of the terminal; if the C-RNTI indication field in the matched MAC sub-PDU is the first bit sequence, the terminal will The TC-RNTI is upgraded to a C-RNTI; if the C-RNTI indication field in the matched MAC sub-PDU is a second bit sequence, the terminal uses the second bit sequence as the C-RNTI of the terminal.
  • the first bit sequence is an all 0 bit sequence
  • the second bit sequence is a non-all 0 bit sequence.
  • the terminal can search the MAC sub-PDU matching the ID MAC CE of the terminal from the concatenated Msg4 in the following manner: The MAC sub-PDUs start to search until one of the MAC sub-PDUs contains the ID MAC CE that matches the ID MAC CE of the terminal.
  • Fig. 5 is a schematic flow diagram of the random access method provided by the embodiment of the present application III, which is applied to the four-step random access process. Random access methods include:
  • Step 501 m UEs send Msg1, wherein collision occurs when m UEs send Msg1.
  • Step 502 m UEs receive the same RAR.
  • m UEs receive the same RAR, which can be understood as m UEs receive the same TA, the same preamble sequence identifier (that is, preamble index), the same uplink grant information, and the same TC-RNTI.
  • Step 503 m UEs send Msg3 on the same PUSCH resource.
  • Step 504 the base station receives Msg3 of m UEs.
  • Step 505 the base station identifies the terminal identities of the n UEs, and executes step 506 or step 510.
  • n is a positive integer less than or equal to m.
  • Step 506 For a UEs that already have C-RNTI, the base station sends a Msg4 in unicast mode.
  • Step 507 a UE addresses the PDCCH with its own C-RNTI.
  • Step 508 The UE successfully addresses the PDCCH.
  • Step 509 the random access of the UE succeeds, and the procedure ends.
  • Step 510 For b UEs without C-RNTI, the base station sends concatenated Msg4 in multicast mode, and the concatenated Msg4 includes b concatenated Msg4.
  • Step 511 b UEs use TC-RNTI to address the PDCCH.
  • Step 512 The UE successfully addresses the PDCCH.
  • Step 513 The b UEs find the Msg4 matching their own ID MAC CE from the cascaded Msg4.
  • Step 514 If the matched Msg4 indicates to upgrade the TC-RNTI to a C-RNTI, the UE upgrades the TC-RNTI to a C-RNTI.
  • Step 515 If the matched Msg4 indicates a new C-RNTI, the UE takes the new C-RNTI as the UE's C-RNTI, and performs step 509.
  • the base station performs conflict resolution according to the traditional orthogonal multiple access scheme, the base station only needs to solve the Msg3 of one terminal (such as terminal 1) at most and obtain its terminal identifier, and the other terminals (such as terminal 2, terminal 3, and terminal 4 , the terminal identity of the terminal 5) are unknown to the base station.
  • Terminal 1 will receive Msg4 sent by the base station in unicast mode, and announce the success of the random access.
  • Terminal 2, Terminal 3, Terminal 4, and Terminal 5 do not receive Msg4, they all fail to access randomly, and re-connect at any time from Msg1. It can be seen that the existing random access scheme has a high probability of access failure during collision, which easily causes a large access delay.
  • this application adopts a non-orthogonal multiple access scheme.
  • the terminal uses a non-orthogonal method in the code domain and/or a non-orthogonal method in the power domain to send Msg3.
  • Msg4 content 1 corresponds to a MAC subPDU
  • the MAC subPDU includes ID MAC CE1 and C-RNTI indication information 1
  • Msg4 content 2 corresponds to another MAC subPDU
  • the MAC subPDU includes ID MAC CE2 and C-RNTI indication information 2.
  • Two terminals that only have the core network terminal identifier obtain the concatenated Msg4 after addressing the PDCCH with TC-RNTI, judge the Msg4 header, and find that the first indication field in the Msg4 header is a sequence of all 1s, indicating that the base station is right Msg3 adopts a non-orthogonal multiple access scheme, and the number of Msg4 contents after the Msg4 header may be more than one. Therefore, the two terminals use their own ID MAC CE (carried in the CCCH SDU used in the Msg3 transmission process) to match the ID MAC CE in the Msg4 content to find the corresponding Msg4 content. For example, the Msg4 content corresponding to terminal 4 is Msg4 content 1, and the Msg4 content corresponding to terminal 5 is Msg4 content 2.
  • the terminal For a terminal receiving content 1 of Msg4, if its C-RNTI indication field is a sequence of all 0 bits, the terminal can upgrade the TC-RNTI received in Msg2 to C-RNTI and complete the random access process; For the terminal receiving Msg4 content 2, if its C-RNTI indication field is a non-all-0 bit sequence, the terminal will use the non-all-0 sequence as the C-RNTI of the terminal, and the terminal also completes the random access process .
  • the four colliding terminals identified by the base station have completed access, avoiding the need to restart sending preambles from Msg1, and greatly reducing the access delay.
  • the technical solutions of the embodiments of the present application have at least the following differences: 1) In the related technologies, in the Msg3 stage, the base station can only recognize at most the terminal ID of one colliding terminal, and the terminal IDs of other terminals cannot be identified, that is, Unable to receive Msg4, only re-initiate random access from Msg1. However, in the technical solution of the embodiment of the present application, by using non-orthogonal multiple access technology, the terminal identifiers of multiple colliding terminals are identified at the base station, and multiple C-RNTIs are allocated to these terminals, so as to realize the one-time authentication of multiple colliding terminals. access.
  • the Msg4 in the related art is all unicast, and the terminal can use the C-RNTI or TC-RNTI to address its own Msg4.
  • the terminal can use the C-RNTI or TC-RNTI to address its own Msg4.
  • a C-RNTI indication field is introduced, and the C-RNTI used by the terminal is determined by this field. If the field is a sequence of all 0 bits, the terminal confirms that it can upgrade the unique TC-RNTI to C-RNTI; if the field is not a sequence of all 0 bits, the terminal confirms that it should use the value corresponding to this field as its own The C-RNTI is used.
  • the technical solutions of the embodiments of the present application have at least the following advantages: 1) Increase the success probability of random access.
  • the current 5G NR system once a collision occurs in the Msg1 transmission phase, at most one terminal can win in the Msg3 phase, and the rest of the terminals will fail to access randomly.
  • the reason is that the orthogonal multiple access technology is used, so at most only one copy of Msg3 content transmitted by multiple terminals on the same PUSCH resource is decoded, and the terminal identities of other terminals are unknown to the base station.
  • This application introduces non-orthogonal multiple access technology.
  • the base station can use SIC or MPA to solve the terminal identification of multiple terminals, and can also allocate multiple different C-RNTIs to multiple terminals, so that multiple collision terminals can be Sex access is successful. 2) Reduce the average delay of random access.
  • the terminal fails in conflict resolution, it needs to wait for the timer ra-ContensionResolutionTimer to expire, confirm that it has not successfully decoded Msg4 or failed in conflict resolution, and then wait for a period of time before resending Msg1.
  • the random access process of the scheme is not friendly to failed terminals, and the access time is relatively long.
  • non-orthogonal multiple access technology is used in the receiving process of Msg3, so that the base station can solve the terminal identification of multiple terminals, so that multiple colliding terminals can be successfully connected by allocating multiple C-RNTIs, and the system random The average access delay is reduced.
  • the signal processing complexity of the terminal will not be increased. Since the non-orthogonal multiple access reception scheme will increase the signal processing complexity of the receiver, but in the scheme of this application, the increase in complexity is borne by the base station. Compared with the terminal, the signal processing capability of the base station side is significantly stronger. High, so this solution will not increase the complexity of signal processing on the terminal side.
  • Fig. 7 is a schematic diagram of the structure and composition of the random access device provided by the embodiment of the present application. It is applied to the base station in the four-step random access process. As shown in Fig. 7, the random access device includes:
  • the receiving unit 701 is configured to receive Msg3 sent by multiple terminals, and the Msg3 is received by using the first multiple access method;
  • the processing unit 702 is configured to identify terminal identities of at least some of the multiple terminals based on the Msg3 sent by the multiple terminals;
  • the sending unit 703 is configured to determine respective C-RNTIs for at least some of the terminals through Msg4.
  • the C-RNTI is used by the terminal to determine that the random access is successful. Specifically, after the at least some terminals determine their respective C-RNTIs, it indicates that the random access is successful.
  • the Msg3 is sent using the first multiple access method, which means: the Msg3 is sent using at least one of the following methods: power domain non-orthogonal multiple access, code domain non-orthogonal way of multiple addresses.
  • the Msg3 is received in the first multiple access manner, which means: the Msg3 is received in at least one of the following manners: a serial interference cancellation SIC manner, and a message delivery algorithm MPA manner.
  • the sending unit 703 is configured to send Msg4 in a unicast or multicast manner according to whether each of the at least some terminals has a C-RNTI, and the Msg4 is used for the at least Some terminals determine their respective C-RNTIs.
  • the at least some terminals include n terminals, and a terminal among the n terminals already has a C-RNTI; n is a positive integer, and a is a positive integer less than or equal to n;
  • the sending unit 703 is configured to send Msg4 to the a terminals respectively in a unicast manner, wherein the Msg4 corresponding to each terminal in the a terminals is scrambled by the C-RNTI that the terminal already has, the After successfully addressing the PDCCH by using the C-RNTI it already has, the terminal determines that the C-RNTI of the terminal is the C-RNTI already owned by the terminal.
  • the at least some terminals include n terminals, and b terminals in the n terminals do not have a C-RNTI; n is a positive integer, and b is a positive integer less than or equal to n;
  • the sending unit 703 is configured to send the concatenated Msg4 to the b terminals in a multicast manner, the concatenated Msg4 is scrambled by TC-RNTI, and each of the b terminals uses TC-RNTI to find The concatenated Msg4 is obtained after the PDCCH is successfully located, a Msg4 that matches the terminal is found from the concatenated Msg4, and the C-RNTI of the terminal is determined according to the matched Msg4.
  • the concatenated Msg4 includes one Msg4 header and one or more Msg4 contents; wherein, the Msg4 header carries Msg4 type indication information, and the one or more Msg4 contents Each Msg4 content corresponds to a terminal.
  • the Msg4 content includes ID MAC CE information and C-RNTI indication information; wherein,
  • the Msg4 content is carried by a MAC sub-PDU, the MAC sub-PDU includes an ID MAC CE field and a C-RNTI indication field, the ID MAC CE field is used to carry the ID MAC CE information, and the C-RNTI indication field Used to carry the C-RNTI indication information.
  • the Msg4 type indication information is carried by a first indication field in the Msg4 header, wherein,
  • the Msg4 type indication information is used to indicate at least one of the following: the base station implements an orthogonal multiple access reception scheme, and there is one Msg4 content after the Msg4 header;
  • the Msg4 type indication information is used to indicate at least one of the following: the base station implements a non-orthogonal multiple access reception scheme, and there are b pieces of Msg4 content after the Msg4 header.
  • the first sequence is a sequence of all 0s
  • the second sequence is a sequence of all 1s.
  • the terminal meeting the following conditions upgrades the TC-RNTI to a C-RNTI: the ID MAC CE of the terminal and the ID in the content of Msg4 The MAC CE matches successfully.
  • the way for each of the b terminals to obtain the C-RNTI includes:
  • the terminal searches the MAC sub-PDU that matches the ID MAC CE of the terminal from the concatenated Msg4, wherein the MAC sub-PDU that matches the ID MAC CE of the terminal refers to a MAC sub-PDU that contains the ID MAC CE of the terminal MAC sub-PDU;
  • the terminal upgrades the TC-RNTI to a C-RNTI
  • the terminal uses the second bit sequence as the C-RNTI of the terminal.
  • the first bit sequence is an all 0 bit sequence
  • the second bit sequence is a non-all 0 bit sequence
  • the terminal searches the MAC sub-PDU matching the ID MAC CE of the terminal from the concatenated Msg4, including:
  • the terminal starts searching from the first MAC sub-PDU in the concatenated Msg4 until one of the MAC sub-PDUs contains the ID MAC CE matching the terminal's ID MAC CE.
  • the receiving unit 701 is further configured to receive the Msg1 sent by the multiple terminals, where the multiple terminals collide when sending the Msg1, that is, the multiple terminals The same preamble sequence and random access opportunity resources are used when sending the Msg1; the sending unit 703 is further configured to send Msg2 to the multiple terminals, wherein the Msg2 sent by the base station to the multiple terminals The same random access response RAR is carried, and the RAR includes at least one of the following: timing advance TA, preamble sequence identifier, uplink authorization information, and TC-RNTI.
  • the multiple terminals use the same PUSCH resource when sending the Msg3, and the PUSCH resource is determined based on the uplink grant information.
  • the multiple terminals use the same TC-RNTI for scrambling when sending the Msg3.
  • each unit in the random access device shown in FIG. 7 can be understood with reference to the relevant description of the foregoing method.
  • the functions of each unit in the random access device shown in FIG. 7 may be realized by a program running on a processor, or may be realized by a specific logic circuit.
  • Fig. 8 is a schematic diagram of the second structural composition of the random access device provided by the embodiment of the present application, which is applied to a terminal in the four-step random access process.
  • the random access device includes:
  • the sending unit 801 is configured to send Msg3 to the base station, and the Msg3 is sent using the first multiple access method;
  • the receiving unit 802 is configured to receive the Msg4 sent by the base station, and determine the first identity of itself based on the Msg4.
  • the terminal collides with other terminals when sending Msg1.
  • the first identifier is a C-RNTI
  • the C-RNTI is used by the terminal to determine that the random access is successful. Specifically, after the terminal determines its own C-RNTI, it indicates that the random access is successful.
  • the Msg3 is sent using the first multiple access method, which means: the Msg3 is sent using at least one of the following methods: power domain non-orthogonal multiple access, code domain non-orthogonal way of multiple addresses.
  • the Msg3 is received in the first multiple access manner, which means that the Msg3 is received in at least one of the following manners: a SIC manner and an MPA manner.
  • the receiving unit 802 is configured to use the C-RNTI it already has to address the PDCCH, obtain Msg4 after the addressing is successful, and determine that its own C-RNTI is the one that the terminal already has C-RNTI.
  • the receiving unit 802 is configured to use TC-RNTI to address the PDCCH, obtain the concatenated Msg4 after the addressing is successful, and find a Msg4 that matches the terminal from the concatenated Msg4, And determine the C-RNTI of the terminal according to the matched Msg4.
  • the concatenated Msg4 includes one Msg4 header and one or more Msg4 contents; wherein, the Msg4 header carries Msg4 type indication information, and the one or more Msg4 contents Each Msg4 content corresponds to a terminal.
  • the Msg4 content includes ID MAC CE information and C-RNTI indication information; wherein,
  • the Msg4 content is carried by a MAC sub-PDU, the MAC sub-PDU includes an ID MAC CE field and a C-RNTI indication field, the ID MAC CE field is used to carry the ID MAC CE information, and the C-RNTI indication field Used to carry the C-RNTI indication information.
  • the Msg4 type indication information is carried by a first indication field in the Msg4 header, wherein,
  • the Msg4 type indication information is used to indicate at least one of the following: the base station implements an orthogonal multiple access reception scheme, and there is one Msg4 content after the Msg4 header;
  • the Msg4 type indication information is used to indicate at least one of the following: the base station implements a non-orthogonal multiple access reception scheme, and there are b pieces of Msg4 content after the Msg4 header.
  • the first sequence is a sequence of all 0s
  • the second sequence is a sequence of all 1s.
  • the terminal when the first indication field is the first sequence, if the ID MAC CE of the terminal matches the ID MAC CE in the Msg4 content successfully, the terminal sends the TC-RNTI was upgraded to C-RNTI.
  • the step of finding a Msg4 that matches the terminal from the cascaded Msg4, and determining the C-RNTI of the terminal according to the matched Msg4 includes:
  • the terminal searches the MAC sub-PDU that matches the ID MAC CE of the terminal from the concatenated Msg4, wherein the MAC sub-PDU that matches the ID MAC CE of the terminal refers to the ID MAC CE that contains the terminal MAC sub-PDU;
  • the terminal upgrades the TC-RNTI to a C-RNTI
  • the terminal uses the second bit sequence as the C-RNTI of the terminal.
  • the first bit sequence is an all 0 bit sequence
  • the second bit sequence is a non-all 0 bit sequence
  • the terminal searches the MAC sub-PDU matching the ID MAC CE of the terminal from the concatenated Msg4, including:
  • the terminal searches from the first MAC sub-PDU in the concatenated Msg4 until one of the MAC sub-PDUs contains the ID MAC CE matching the ID MAC CE of the terminal.
  • each unit in the random access device shown in FIG. 8 can be understood with reference to the relevant description of the foregoing method.
  • the functions of each unit in the random access device shown in FIG. 8 may be realized by a program running on a processor, or may be realized by a specific logic circuit.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device may be a terminal or a base station.
  • the communication device 900 shown in FIG. 9 includes a processor 910, and the processor 910 may call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 900 may further include a memory 920 .
  • the processor 910 can invoke and run a computer program from the memory 920, so as to implement the method in the embodiment of the present application.
  • the memory 920 may be an independent device independent of the processor 910 , or may be integrated in the processor 910 .
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices, specifically, to send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include antennas, and the number of antennas may be one or more.
  • the communication device 900 may specifically be the base station of the embodiment of the present application, and the communication device 900 may implement the corresponding processes implemented by the base station in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the communication device 900 may specifically be the mobile terminal/terminal of the embodiment of the present application, and the communication device 900 may implement the corresponding processes implemented by the mobile terminal/terminal in each method of the embodiment of the present application. For the sake of brevity, in This will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 1000 may further include a memory 1020 .
  • the processor 1010 can invoke and run a computer program from the memory 1020, so as to implement the method in the embodiment of the present application.
  • the memory 1020 may be an independent device independent of the processor 1010 , or may be integrated in the processor 1010 .
  • the chip 1000 may also include an input interface 1030 .
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may also include an output interface 1040 .
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the base station in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the base station in the methods of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the base station in the methods of the embodiments of the present application.
  • the chip can be applied to the mobile terminal/terminal in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application. For the sake of brevity, no more repeat.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the base station in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the base station in the methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the base station in the methods of the embodiments of the present application.
  • no more repeat may be applied to the base station in the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the methods of the embodiments of the present application, for It is concise and will not be repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product may be applied to the base station in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the base station in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the base station in each method of the embodiment of the present application.
  • details are not repeated here. .
  • the computer program product can be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the base station in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the base station in each method of the embodiment of the present application. For brevity, the This will not be repeated here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiments of the present application.
  • the computer program executes the corresponding functions implemented by the mobile terminal/terminal in the methods of the embodiments of the present application. For the sake of brevity, the process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a base station, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种随机接入方法、基站、终端,所述方法包括:基站接收多个终端发送的消息Msg3,所述Msg3采用第一多址方式进行发送以及接收;其中,所述多个终端在发送Msg1时发生碰撞;所述基站基于所述多个终端发送的Msg3,识别出所述多个终端中的至少部分终端的终端标识;所述基站通过Msg4为所述至少部分终端确定各自的小区-无线网络临时标识C-RNTI。

Description

一种随机接入方法、终端、基站
相关申请的交叉引用
本申请基于申请号为202111080503.0、申请日为2021年09月15日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种随机接入方、终端、基站。
背景技术
由于目前的5G系统只支持正交多址接入技术,因此对于在相同的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源上发送消息(Msg)3的多个终端来说,最多只能有一个终端的Msg3被基站成功接收,其余终端的Msg3将无法被基站成功接收。也就是说,在基站端的冲突解决过程中,最多只能有一个终端的终端标识被基站识别,其余终端的终端标识对于基站都是未知的。被基站识别终端标识的唯一终端将作为随机接入成功的终端收到基站下发的Msg4,而其余终端将作为随机接入失败的终端从Msg1重新开始进行随机接入。
发明内容
为解决上述技术问题,本发明实施例提供了一种随机接入方法、基站、终端、芯片及计算机可读存储介质。
本申请实施例提供的随机接入方法,应用于四步随机接入过程,所述 方法包括:
基站接收多个终端发送的消息Msg3,所述Msg3采用第一多址方式进行发送以及接收;
所述基站基于所述多个终端发送的Msg3,识别出所述多个终端中的至少部分终端的终端标识;
所述基站通过Msg4为所述至少部分终端确定各自的小区-无线网络临时标识(Cell-Radio Network Tempory Identity,C-RNTI)。
本申请实施例提供的随机接入方法,应用于四步随机接入过程,所述方法包括:
终端向基站发送Msg3,所述Msg3采用第一多址方式进行发送以及接收;
所述终端接收所述基站发送的Msg4,基于所述Msg4确定自身的第一标识。
本申请实施例提供的随机接入装置,应用于四步随机接入过程中的基站,所述装置包括:
接收单元,配置为收多个终端发送的消息Msg3,所述Msg3采用第一多址方式进行发送以及接收;
处理单元,配置为基于所述多个终端发送的Msg3,识别出所述多个终端中的至少部分终端的终端标识;
发送单元,配置为通过Msg4为所述至少部分终端确定各自的C-RNTI。
本申请实施例提供的随机接入装置,应用于四步随机接入过程中的终端,所述装置包括:
发送单元,配置为向基站发送Msg3,所述Msg3采用第一多址方式进行发送以及接收;
接收单元,配置为接收所述基站发送的Msg4,基于所述Msg4确定自 身的第一标识。
本申请实施例提供的基站,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行上述任意一种随机接入方法。
本申请实施例提供的终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行上述任意一种随机接入方法。
本申请实施例提供的芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述任意一种方法。
本申请实施例提供的芯计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述任意一种方法。
本申请实施例的技术方案中,在四步随机接入过程中,通过使用非正交多址技术进行Msg3的发送以及接收,从而可以实现在基站端识别多个碰撞终端的终端标识,并为这些终端分配各自的C-RNTI,从而实现多个碰撞终端的一次性接入,提升了随机接入成功的概率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是本申请实施例的一个应用场景的示意图;
图2是本申请实施例提供的一种四步随机接入流程图;
图3是本申请实施例提供的随机接入方法的流程示意图一;
图4是本申请实施例提供的随机接入方法的流程示意图二;
图5是本申请实施例提供的随机接入方法的流程示意图三;
图6是本申请实施例提供的级联Msg4的示意图;
图7是本申请实施例提供的随机接入装置的结构组成示意图一;
图8是本申请实施例提供的随机接入装置的结构组成示意图二;
图9是本申请实施例提供的一种通信设备示意性结构图;
图10是本申请实施例的芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端110和网络设备120。网络设备120可以通过空口与终端110通信。终端110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、5G通信系统(也称为新无线(New Radio,NR)通信系统),或未来的通信系统等。
在图1所示的通信系统100中,网络设备120可以是与终端110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端110(例如UE)进行通信。
网络设备120可以是长期演进(Long Term Evolution,LTE)系统中的 演进型基站(Evolutional Node B,eNB或eNodeB),或者是下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备,或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备120可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
终端110可以是任意终端,其包括但不限于与网络设备120或其它终端采用有线或者无线连接的终端。
例如,所述终端110可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、IoT设备、卫星手持终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进网络中的终端等。
终端110可以用于设备到设备(Device to Device,D2D)的通信。
无线通信系统100还可以包括与基站进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway, SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间 接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”或“预定义规则”可以通过在设备(例如,包括终端和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
在四步随机接入(4-step Random Access Channel,4-step RACH)技术中,终端和基站间需要进行4次信息交互才能完成随机接入过程,如图2所示,分别为:
步骤201:终端向基站发送Msg1。
这里,终端在随机接入信道上向基站发送Msg1,其中,Msg1为前导(preamble)序列,用于基站进行定时提前(Time Advance,TA)估计。
步骤202:基站向终端发送Msg2。
这里,Msg2为Msg1的随机接入响应(Random Access Response,RAR),其中包含前导序列标识、TA指示、上行授权信息、临时小区-无线网络临时标识(Temporary Cell-Radio Network Temporary Identifier,TC-RNTI)。
其中,前导序列标识是基站接收到的终端发送的前导序列的标识,前导序列标识也可以称为前导索引(preamble index)。上行授权信息用于确定终端向基站发送Msg3的PUSCH资源。TC-RNTI用于终端对发送给基站的Msg3进行加扰。
步骤203:终端向基站发送Msg3。
这里,当终端在Msg2中读取到Msg1对应的前导序列标识时,终端利用Msg2中的上行授权信息在PUSCH资源上向基站发送Msg3。
步骤204:基站向终端发送Msg4。
这里,Msg4为解决竞争冲突的响应。当终端检测到Msg4中包含对应Msg3中的竞争解决标识信息时,视为随机接入成功,终端可以由RRC空闲态或RRC非激活态迁移至RRC连接态,之后,进入RRC连接态的终端才可以开始上行业务数据的传输。
在4-step RACH中,随机接入的第一步是终端从基站配置的正交的前导序列中随机选取一个,并在某个随机接入时机(RACH Occasion,RO)中传输。然而,在目前的4-step RACH中,单小区的前导序列候选集合大小最大为64个。因此,一旦有两个或两个以上的终端在相同的RO上选择了相同的前导序列进行随机接入,就会产生碰撞。未来6G网络将有可能达到每平方千米1000万设备的连接数密度,即使每个终端激活概率低至0.01%,在同一时刻同一小区内将仍会有1000个设备发起随机接入请求,如果还维持现有的前导序列候选集合大小,则很有可能发生碰撞。
对于发生碰撞的多个终端而言,在Msg2中会收到相同的RAR,其中包含相同的TA、相同的前导序列标识、相同的上行授权信息、相同的TC-RNTI。因此,这些碰撞的终端会使用相同的PUSCH资源发送Msg3,并使用同一个TC-RNTI加扰Msg3。在Msg3的内容中将携带终端的唯一标识,如果终端对于接入网是已知的,那么已经分配的C-RNTI就用作终端标 识携带在Msg3中,否则该终端就需要使用核心网终端标识携带在Msg3中。
由于目前的5G系统只支持正交多址接入技术,因此对于在相同PUSCH资源上发送Msg3的多个终端来说,最多只能有一个终端的Msg3被基站成功接收,其余终端的Msg3将无法被基站成功接收。也就是说,在基站端的冲突解决过程中,最多只能有一个终端的终端标识被基站识别,其余终端的终端标识对于基站都是未知的。被基站识别终端标识的唯一终端将作为随机接入成功用户收到基站下发的Msg4,而其余终端将作为随机接入失败用户从Msg1重新开始进行随机接入。
非正交多址接入技术(Non-Orthogonal Multiple Access,NOMA)受到广泛关注。如果能够在随机接入过程中引入NOMA技术,那么多个终端就可以在相同的PUSCH资源上以功率域和/或码域非正交方式发送Msg3,基站端也可以通过串行干扰删除(Successive Interference Cancellation,SIC)或消息传递算法(Message Passing Algorithm,MPA)等方式对Msg3实现正确解调。因此,在使用NOMA技术后,发生碰撞的多个终端各自的终端标识也有望作为Msg3的内容被基站识别。综上所述,本申请考虑一种全新的Msg4配置方案,为发生碰撞的多个终端分配多个不同的C-RNTI,从而让上述碰撞终端一次性接入成功,而不需要从Msg1重新开始。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
本申请实施例的技术方案中,当有多个终端在四步随机接入过程的Msg1中利用相同RO发送了相同的前导序列,即这些终端发生碰撞时,若这些终端所在的小区支持非正交多址技术,则这些终端的Msg3可以采用非正交多址方式发送与接收,从而使基站端解出多个碰撞终端各自的终端标 识。1)如果上述被基站识别的碰撞终端中有一个或多个终端已经分配了C-RNTI,那么基站就以单播的方式为这些终端各自发送Msg4,这些具有C-RNTI的终端用各自的C-RNTI在PDCCH上进行寻址,如果检测到自己的C-RNTI即视为随机接入成功。2)如果上述被基站识别的碰撞终端中有一个或多个终端没有C-RNTI,只有核心网终端标识,那么基站就以组播的方式为这些终端发送级联Msg4,级联Msg4包括级联的一个或多个Msg4,每个Msg4对应一个没有C-RNTI但其核心网终端标识已被基站识别的碰撞终端。这些只有核心网终端标识的终端中只有一个可以将Msg2中收到的TC-RNTI升级为C-RNTI,其余终端的C-RNTI由基站在各自对应的Msg4中唯一给定。
需要说明的是,本申请实施中描述的“第一多址方式”可以但不局限于是基于非正交多址的方式。
图3是本申请实施例提供的随机接入方法的流程示意图一,应用于四步随机接入过程,如图3所示,所述随机接入方法包括:
步骤301:基站接收多个终端发送的消息Msg3,所述Msg3采用第一多址方式进行接收。
本申请实施例中,在步骤301之前,所述方法还包括:所述基站接收所述多个终端发送的Msg1,其中,所述多个终端在发送Msg1时发生碰撞;所述基站向所述多个终端发送Msg2,其中,所述基站向所述多个终端发送的Msg2携带相同的RAR,所述RAR包括以下至少之一:TA、前导序列标识、上行授权信息、TC-RNTI。
需要说明的是,多个终端在发送Msg1时发生碰撞,是指:多个终端在发送Msg1时采用了相同的前导序列以及相同的随机接入时机资源。这里,随机接入时机资源可以是RO资源。
上述方案中,所述多个终端在发送所述Msg3时采用相同的PUSCH资 源,所述PUSCH资源基于所述Msg2中的上行授权信息确定。
上述方案中,所述多个终端在发送所述Msg3时采用相同的TC-RNTI进行加扰,所述TC-RNTI即为所述Msg2中的TC-RNTI。
本申请实施例中,Msg3采用非正交多址的方式进行发送以及接收。
在一些可选实施方式中,所述Msg3采用第一多址方式进行发送,是指:所述Msg3采用以下至少一种方式进行发送:功率域非正交多址的方式、码域非正交多址的方式。
这里,需要说明的是,终端发送Msg3的方案包括但不限于终端采功率域非正交多址的方和/或码域非正交多址的方式发送Msg3。
在一些可选实施方式中,所述Msg3采用第一多址方式进行接收,是指:所述Msg3采用以下至少一种方式进行接收:SIC的方式、MPA的方式。
这里,需要说明的是,基站接收Msg3的方案包括但不限于基站采用SIC的方式或MPA的方式接收Msg3。
本申请实施例中,Msg3携带终端标识。在一种情况下,若一个终端已经具有C-RNTI(即已经被分配了C-RNTI),则该终端发送的Msg3中携带的终端标识为该终端已经具有的C-RNTI。在另一种情况下,若一个终端未有C-RNTI(即未被分配C-RNTI),则该终端发送的Msg3中携带的终端标识为该终端的核心网终端标识。
步骤302:所述基站基于所述多个终端发送的Msg3,识别出所述多个终端中的至少部分终端的终端标识。
本申请实施例中,由于Msg3采用非正交多址的方式进行发送以及接收,因而所述基站端可以识别出所述多个终端中的至少部分终端的终端标识。
作为示例:所述基站端可以识别出m个终端中的n个终端的终端标识,m为正整数,n为小于等于m的正整数。
步骤303:所述基站通过Msg4为所述至少部分终端确定各自的C-RNTI。
这里,所述C-RNTI用于终端确定随机接入成功。具体地,所述至少部分终端在确定出各自的C-RNTI后表征随机接入成功。
本申请实施例中,所述基站根据所述至少部分终端各自是否已经具有C-RNTI,分别以单播方式或组播方式发送Msg4,通过所述Msg4为所述至少部分终端确定各自的C-RNTI。以下对其进行说明。
方案一:基站以单播方式发送Msg4的方案
在一些可选实施方式中,所述至少部分终端包括n个终端,所述n个终端中的a个终端已经具有C-RNTI;n为正整数,a为小于等于n的正整数;所述基站以单播方式向所述a个终端分别发送Msg4,其中,所述a个终端中的每个终端对应的Msg4通过该终端已经具有的C-RNTI加扰,该终端采用其已经具有的C-RNTI寻址PDCCH成功后确定该终端的C-RNTI为该终端已经具有的C-RNTI。
这里,终端采用其已经具有的C-RNTI寻址PDCCH成功,是指:终端采用其已经具有的C-RNTI解扰PDCCH,如果解扰成功(也即寻址成功),则认为该PDCCH调度的Msg4是该终端的Msg4,以及认为该终端随机接入成功。终端的C-RNTI为该终端已经具有的C-RNTI,其中,终端的C-RNTI作为随机接入成功后该终端在小区中的唯一标识。
作为示例:若基站在Msg3的接收过程中共识别了n个在Msg1中发生碰撞的终端的终端标识,则对于其中的a个已经具有C-RNTI的终端,基站以单播方式向这a个终端分别发送Msg4,每个终端用各自的C-RNTI寻址PDCCH成功后即表示随机接入成功,已经具有的C-RNTI即作为随机接入成功后该终端在小区中的唯一标识。
方案二:基站以组播方式发送Msg4的方案
在一些可选实施方式中,所述至少部分终端包括n个终端,所述n个终端中的b个终端没有C-RNTI;n为正整数,b为小于等于n的正整数;所述基站以组播方式向所述b个终端发送级联Msg4,所述级联Msg4通过TC-RNTI加扰,所述b个终端中的每个终端采用TC-RNTI寻址PDCCH成功后获取到所述级联Msg4,从所述级联Msg4中寻找一个与该终端匹配的Msg4,并根据所述匹配的Msg4确定该终端的C-RNTI。
这里,TC-RNTI是指Msg2中的TC-RNTI。终端采用TC-RNTI寻址PDCCH成功,是指:终端采用TC-RNTI解扰PDCCH,如果解扰成功(也即寻址成功),则认为该PDCCH调度的级联Msg4包含该终端的Msg4,进而从所述级联Msg4中寻找一个与该终端匹配的Msg4,并根据所述匹配的Msg4确定该终端的C-RNTI,确定出该终端的C-RNTI后,认为该终端随机接入成功。其中,终端的C-RNTI作为随机接入成功后该终端在小区中的唯一标识。
具体地,若基站在Msg3的接收过程中共识别了n个在Msg1中发生碰撞的终端的终端标识,则对于b(b=n-a)个没有C-RNTI的终端,基站以组播方式向这b个终端发送级联Msg4(包括级联的b个Msg4),每个终端用TC-RNTI寻址到级联Msg4后,再从级联Msg4中寻找一个与自己的ID MAC CE匹配的Msg4内容,并根据各自的Msg4内容确定各自的C-RNTI,从而宣布随机接入成功。
以下对级联Msg4的实现进行说明。
本申请实施例中,所述级联Msg4包括1个Msg4头部(Msg4 header)和一个或多个Msg4内容(Msg4 content);其中,所述Msg4头部承载Msg4类型指示信息,所述一个或多个Msg4内容中的每个Msg4内容与一个终端对应。
进一步,所述Msg4内容包括ID MAC CE信息和C-RNTI指示信息; 其中,所述Msg4内容通过MAC子PDU(MAC subPDU)携带,所述MAC子PDU包括ID MAC CE字段和C-RNTI指示(C-RNTI indicator)字段,所述ID MAC CE字段用于携带所述ID MAC CE信息,所述C-RNTI指示字段用于携带所述C-RNTI指示信息。
这里,对于Msg4内容来说,其构成方式如下:在每个MAC子PDU上添加C-RNTI指示字段,可选地,C-RNTI指示字段位于ID MAC CE字段后,可选地,C-RNTI指示字段的长度为16bit,ID MAC CE字段和C-RNTI指示字段共同构成一个Msg4内容。
在一些可选实施方式中,所述Msg4头部可以通过以下方式承载Msg4类型指示信息:所述Msg4类型指示信息通过所述Msg4头部中的非正交多址指示(NOMA indicator)字段携带,其中,
若所述第一指示字段为第一序列,则所述Msg4类型指示信息用于指示以下至少之一:基站执行正交多址接收方案、Msg4头部后有1个Msg4内容。作为示例,所述第一序列为全0序列。若第一指示字段为全0序列时,则代表基站端执行正交多址接收方案,Msg4头部后只有1个Msg4内容,只有ID MAC CE与Msg4内容匹配的终端才接入成功,该终端将TC-RNTI升级为C-RNTI。
若所述第一指示字段为第二序列,则所述Msg4类型指示信息用于指示以下至少之一:基站端执行非正交多址接收方案、Msg4头部后有b个Msg4内容。作为示例,所述第二序列为全1序列。若第一指示字段为全1序列,则代表基站端执行非正交多址接收方案,Msg4头部后有b个Msg4内容,分别对应b个被基站解出核心网终端标识的终端。
方案2-1)所述第一指示字段为第一序列的情况下,满足以下条件的终端将所述TC-RNTI升级为C-RNTI:终端的ID MAC CE与Msg4内容中的ID MAC CE匹配成功。
方案2-2)所述第一指示字段为第二序列的情况下,所述b个终端中的每个终端获取C-RNTI的方式,包括:
该终端从所述级联Msg4中查找与该终端的ID MAC CE匹配的MAC子PDU,其中,所述与该终端的ID MAC CE匹配的MAC子PDU是指包含有该终端的ID MAC CE的MAC子PDU;
若该匹配的MAC子PDU中的C-RNTI指示字段为第一比特序列,则该终端将所述TC-RNTI升级为C-RNTI;
若该匹配的MAC子PDU中的C-RNTI指示字段为第二比特序列,则该终端将所述第二比特序列作为该终端的C-RNTI。
作为示例,所述第一比特序列为全0比特序列。所述第二比特序列为非全0比特序列。终端的ID MAC CE与Msg4内容中的ID MAC CE匹配成功的情况下,1)若该Msg4内容中的ID MAC CE后的C-RNTI指示字段为全0比特序列,则表示终端可以将Msg2中收到的TC-RNTI升级为C-RNTI,并完成随机接入过程。2)若该Msg4内容中的ID MAC CE后的C-RNTI指示字段为非全0比特序列,则该非全0比特序列即为终端对应的C-RNTI,该终端也完成随机接入过程。
在一些可选实施方式中,该终端可以通过以下方式从所述级联Msg4中查找与该终端的ID MAC CE匹配的MAC子PDU:该终端从所述级联Msg4中的第一个MAC子PDU开始搜索,直到其中一个MAC子PDU中含有与该终端的ID MAC CE匹配的ID MAC CE为止。
本申请实施例的技术方案中,对于四步随机接入过程的Msg3,采用非正交多址方式发送与接收,如此,基站可以解出多个在Msg1中发生碰撞的终端的终端标识;基站端根据这些终端各自是否已经具有C-RNTI,分别以单播或组播的方式为这些终端在Msg4中确定各自的C-RNTI,并宣布这些发生碰撞的终端全部随机接入成功。
图4是本申请实施例提供的随机接入方法的流程示意图二,应用于四步随机接入过程,如图4所示,所述随机接入方法包括:
步骤401:终端向基站发送Msg3,所述Msg3采用第一多址方式进行发送。
本申请实施例中,在步骤401之前,所述方法还包括:终端向基站发送Msg1,其中,所述终端在发送Msg1时与其他终端发生碰撞。所述终端接收所述基站发送的Msg2,其中,所述基站向发生碰撞的多个终端发送的Msg2携带相同的RAR,所述RAR包括以下至少之一:TA、前导序列标识、上行授权信息、TC-RNTI。
需要说明的是,多个终端在发送Msg1时发生碰撞,是指:多个终端在发送Msg1时采用了相同的前导序列以及相同的随机接入时机资源。这里,随机接入时机资源可以是RO资源。
本申请实施例中,Msg3采用非正交多址的方式进行发送以及接收。
在一些可选实施方式中,所述Msg3采用第一多址方式进行发送,是指:所述Msg3采用以下至少一种方式进行发送:功率域非正交多址的方式、码域非正交多址的方式。
在一些可选实施方式中,所述Msg3采用第一多址方式进行接收,是指:所述Msg3采用以下至少一种方式进行接收:SIC的方式、MPA的方式。
本申请实施例中,Msg3携带终端标识。在一种情况下,若一个终端已经具有C-RNTI(即已经被分配了C-RNTI),则该终端发送的Msg3中携带的终端标识为该终端已经具有的C-RNTI。在另一种情况下,若一个终端未有C-RNTI(即未被分配C-RNTI),则该终端发送的Msg3中携带的终端标识为该终端的核心网终端标识。
步骤402:所述终端接收所述基站发送的Msg4,基于所述Msg4确定自身的第一标识。
在一些可选实施方式中,所述第一标识为C-RNTI,所述C-RNTI用于终端确定随机接入成功。具体地,所述终端在确定出自身的C-RNTI后表征随机接入成功。
方案A:所述终端采用其已经具有的C-RNTI寻址PDCCH,寻址成功后获取到Msg4,并确定自身的C-RNTI为所述终端已经具有的C-RNTI。
这里,终端采用其已经具有的C-RNTI寻址PDCCH成功,是指:终端采用其已经具有的C-RNTI解扰PDCCH,如果解扰成功(也即寻址成功),则认为该PDCCH调度的Msg4是该终端的Msg4,以及认为该终端随机接入成功。终端的C-RNTI为该终端已经具有的C-RNTI,其中,终端的C-RNTI作为随机接入成功后该终端在小区中的唯一标识。
方案B:所述终端采用TC-RNTI寻址PDCCH,寻址成功后获取到级联Msg4,从所述级联Msg4中寻找一个与该终端匹配的Msg4,并根据所述匹配的Msg4确定该终端的C-RNTI。
这里,TC-RNTI是指Msg2中的TC-RNTI。终端采用TC-RNTI寻址PDCCH成功,是指:终端采用TC-RNTI解扰PDCCH,如果解扰成功(也即寻址成功),则认为该PDCCH调度的级联Msg4包含该终端的Msg4,进而从所述级联Msg4中寻找一个与该终端匹配的Msg4,并根据所述匹配的Msg4确定该终端的C-RNTI,确定出该终端的C-RNTI后,认为该终端随机接入成功。其中,终端的C-RNTI作为随机接入成功后该终端在小区中的唯一标识。
以下对级联Msg4的实现进行说明。
本申请实施例中,所述级联Msg4包括1个Msg4头部和一个或多个Msg4内容;其中,所述Msg4头部承载Msg4类型指示信息,所述一个或多个Msg4内容中的每个Msg4内容与一个终端对应。
进一步,所述Msg4内容包括ID MAC CE信息和C-RNTI指示信息; 其中,所述Msg4内容通过MAC子PDU携带,所述MAC子PDU包括ID MAC CE字段和C-RNTI指示字段,所述ID MAC CE字段用于携带所述ID MAC CE信息,所述C-RNTI指示字段用于携带所述C-RNTI指示信息。
在一些可选实施方式中,所述Msg4类型指示信息通过所述Msg4头部中的第一指示字段携带,其中,
若所述第一指示字段为第一序列,则所述Msg4类型指示信息用于指示以下至少之一:基站执行正交多址接收方案、Msg4头部后有1个Msg4内容。作为示例,所述第一序列为全0序列。
若所述第一指示字段为第二序列,则所述Msg4类型指示信息用于指示以下至少之一:基站端执行非正交多址接收方案、Msg4头部后有b个Msg4内容。作为示例,所述第二序列为全1序列。
方案b-1)所述第一指示字段为第一序列的情况下,若所述终端的ID MAC CE与所述Msg4内容中的ID MAC CE匹配成功,则所述终端将所述TC-RNTI升级为C-RNTI。
方案b-2)所述第一指示字段为第二序列的情况下,所述终端从所述级联Msg4中查找与该终端的ID MAC CE匹配的MAC子PDU,其中,所述与该终端的ID MAC CE匹配的MAC子PDU是指包含有该终端的ID MAC CE的MAC子PDU;若该匹配的MAC子PDU中的C-RNTI指示字段为第一比特序列,则所述终端将所述TC-RNTI升级为C-RNTI;若该匹配的MAC子PDU中的C-RNTI指示字段为第二比特序列,则所述终端将所述第二比特序列作为该终端的C-RNTI。作为示例,所述第一比特序列为全0比特序列,所述第二比特序列为非全0比特序列。
在一些可选实施方式中,所述终端可以通过以下方式从所述级联Msg4中查找与该终端的ID MAC CE匹配的MAC子PDU:所述终端从所述级联Msg4中的第一个MAC子PDU开始搜索,直到其中一个MAC子PDU中 含有与该终端的ID MAC CE匹配的ID MAC CE为止。
需要说明的是,上述图3所示的方案与图4所示的方案可以进行任意的结合进行实施。
图5是本申请实施例提供的随机接入方法的流程示意图三,应用于四步随机接入过程,需要说明的是,本实施例以终端为UE进行说明,如图5所示,所述随机接入方法包括:
步骤501:m个UE发送Msg1,其中,m个UE发送Msg1时产生碰撞。
步骤502:m个UE收到相同的RAR。
这里,m个UE收到相同的RAR,可以理解为,m个UE收到相同的TA、相同的前导序列标识(也即preamble index)、相同的上行授权信息、以及相同的TC-RNTI。
步骤503:m个UE在相同的PUSCH资源上发送Msg3。
步骤504:基站接收m个UE的Msg3。
步骤505:基站识别出其中n个UE的终端标识,执行步骤506或步骤510。
这里,n为小于等于m的正整数。
这里,n个UE中有a个UE已具有C-RNTI,其余的b个UE没有C-RNTI,只有核心网终端标识。a+b=n。
步骤506:对于已具有C-RNTI的a个UE,基站以单播方式发送a个Msg4。
步骤507:a个UE使用各自的C-RNTI寻址PDCCH。
步骤508:UE寻址PDCCH成功。
步骤509:UE随机接入成功,流程结束。
步骤510:对于没有C-RNTI的b个UE,基站以组播方式发送级联Msg4,级联Msg4包括级联的b个Msg4。
步骤511:b个UE使用TC-RNTI寻址PDCCH。
步骤512:UE寻址PDCCH成功。
步骤513:b个UE从级联Msg4中找到与自己的ID MAC CE匹配的Msg4。
步骤514:若匹配的Msg4指示将TC-RNTI升级为C-RNTI,则UE将TC-RNTI升级为C-RNTI。
步骤515:若匹配的Msg4指示一个新的C-RNTI,则UE将该新的C-RNTI作为该UE的C-RNTI,执行步骤509。
以下结合具体应用实例对本申请实施例的技术方案进行举例说明,需要说明的是,以下应用实例可以与本申请的上述方案进行任何的结合进行实施。
在四步随机接入过程的Msg1中,发生碰撞的终端的数目为5(即m=5),具体地,5个终端在Msg1中使用相同RO传输相同前导序列,那么,这5个终端发生碰撞。
如果基站按照传统的正交多址方案进行冲突解决,则基站最多只需要解出一个终端(如终端1)的Msg3并获取其终端标识即可,其余终端(如终端2、终端3、终端4、终端5)的终端标识对于基站都是未知的。终端1将收到基站以单播方式发送的Msg4,并宣布随机接入成功。而终端2、终端3、终端4、终端5由于没有收到Msg4,均会随机接入失败,并从Msg1开始重新进行随时接入。可见现有随机接入方案在碰撞时的接入失败概率很高,容易引起较大的接入时延。
为此,本申请采用非正交多址接入方案,终端采用码域域非正交方式和/或功率域非正交方式发送Msg3,基站端在收到上述5个终端的Msg3后采用SIC或MPA等方式进行解析,并成功解出其中4个终端(即n=4)的终端标识,则这4个终端在本方案下均可实现一次性随机接入成功。
若这4个终端中已经获取C-RNTI和使用核心网终端标识的终端均为2个,即a=b=2。则对于2个已经拥有C-RNTI的终端,基站以单播方式分别向这2个终端发送Msg4。这2个终端使用C-RNTI在PDCCH上寻址成功后即视为随机接入成功。对于另外2个只有核心网终端标识的终端而言,基站以组播方式发送级联Msg4,该级联Msg4示意图如图6所示,包括1个Msg4头部和2个Msg4内容(分别为Msg4内容1和Msg4内容2),其中,Msg4内容1对应一个MAC subPDU,该MAC subPDU包括ID MAC CE1和C-RNTI指示信息1,Msg4内容2对应另一个MAC subPDU,该MAC subPDU包括ID MAC CE2和C-RNTI指示信息2。两个只有核心网终端标识的终端在用TC-RNTI寻址到PDCCH后获取到级联Msg4,对Msg4 header进行判断,发现Msg4头部中的第一指示字段为全1序列,表明基站端对Msg3采用非正交多址接收方案,Msg4头部之后的Msg4内容是数目可能多于一个。因此,这两个终端用自己的ID MAC CE(携带在Msg3传输过程中使用的CCCH SDU中)与Msg4内容中的ID MAC CE进行匹配,找到各自对应的Msg4内容。例如终端4对应的Msg4内容为Msg4内容1,终端5对应的Msg4内容为Msg4内容2。
对于收到Msg4内容1的终端而言,若其C-RNTI指示字段为全0比特序列,则该终端可以将Msg2中收到的TC-RNTI升级为C-RNTI,并完成随机接入过程;对于收到Msg4内容2的终端而言,若其C-RNTI指示字段为非全0比特序列,则该终端将该非全0序列作为该终端的C-RNTI,该终端也完成随机接入过程。
综上所述,在小区应用非正交多址技术后,4个被基站识别终端标识的碰撞终端都完成了接入,避免了从Msg1重新开始发送preamble,大幅降低了接入时延。
本申请实施例的技术方案相对于相关技术来说,至少具有以下区别:1) 相关技术中在Msg3阶段基站最多只能识别一个碰撞终端的终端标识,其他终端的终端标识均无法识别,也就无法收到Msg4,只能从Msg1开始重新发起随机接入。而本申请实施例的技术方案,通过使用非正交多址技术,在基站端识别多个碰撞终端的终端标识,并为这些终端分配多个C-RNTI,从而实现多个碰撞终端的一次性接入。2)相关技术中的Msg4都是单播的,终端使用C-RNTI或TC-RNTI寻址到属于自己的Msg4即可。而本申请实施例的技术方案,可能出现多个被识别的碰撞终端均只有核心网终端标识,并共用一个TC-RNTI的情况。因此,考虑对没有C-RNTI的终端采用组播的方式发送级联Msg4,并根据ID MAC CE寻找到属于自己的Msg4,进而根据Msg4确定自己的C-RNTI。3)对于多个碰撞终端均只有核心网终端标识,并共用一个TC-RNTI的情况,引入C-RNTI指示字段,由该字段确定终端使用的C-RNTI。若该字段为全0比特序列,则终端确认自己可以将唯一的TC-RNTI升级为C-RNTI使用;若该字段为非全0比特序列,则终端确认自己应该将该字段对应的值作为自己的C-RNTI使用。
本申请实施例的技术方案相对于相关技术来说,至少具有以下优势:1)升随机接入成功概率。在目前的5G NR系统中,一旦在Msg1传输阶段发生碰撞,最终最多有一个终端能够在Msg3阶段胜出,其余终端都会随机接入失败。其原因就在于使用了正交多址技术,因此在多个终端在相同PUSCH资源上传输的Msg3内容最多只有一份被解出,其余终端的终端标识对基站而言都是未知的。本申请引入非正交多址技术,基站利用SIC或MPA等方式可以解出多个终端的终端标识,也就可以为多个终端分配多个不同的C-RNTI,从而让多个碰撞终端一次性接入成功。2)降低随机接入平均时延。在相关技术中,如果终端在冲突解决中失败,需要等待定时器ra-ContensionResolutionTimer超时后,确认自己没有成功译码Msg4或者在冲突解决中失败,随后还要等待一段时间才能重新发送Msg1,可见相关方 案的随机接入过程对于失败终端不够友好,接入时间较长。本申请在Msg3的接收过程中利用非正交多址技术,使得基站解出多个终端的终端标识,那么就可以通过分配多个C-RNTI让多个碰撞终端均接入成功,实现系统随机接入平均时延的降低。3)不会增加终端的信号处理复杂度。由于非正交多址接收方案会增加接收方的信号处理复杂度,但在本申请的方案中,复杂度的提升是由基站来承担的,相比于终端,基站侧的信号处理能力明显更高,因此该方案不会增加终端侧的信号处理复杂度。
图7是本申请实施例提供的随机接入装置的结构组成示意图一,应用于四步随机接入过程中的基站,如图7示,所述随机接入装置包括:
接收单元701,配置为收多个终端发送的Msg3,所述Msg3采用第一多址方式进行接收;
处理单元702,配置为基于所述多个终端发送的Msg3,识别出所述多个终端中的至少部分终端的终端标识;
发送单元703,配置为通过Msg4为所述至少部分终端确定各自的C-RNTI。
在一些可选实施方式中,所述C-RNTI用于终端确定随机接入成功。具体第,所述至少部分终端在确定出各自的C-RNTI后表征随机接入成功。
在一些可选实施方式中,所述Msg3采用第一多址方式进行发送,是指:所述Msg3采用以下至少一种方式进行发送:功率域非正交多址的方式、码域非正交多址的方式。
在一些可选实施方式中,所述Msg3采用第一多址方式进行接收,是指:所述Msg3采用以下至少一种方式进行接收:串行干扰删除SIC的方式、消息传递算法MPA的方式。
在一些可选实施方式中,所述发送单元703,配置为根据所述至少部分终端各自是否已经具有C-RNTI,分别以单播方式或组播方式发送Msg4, 通过所述Msg4为所述至少部分终端确定各自的C-RNTI。
在一些可选实施方式中,所述至少部分终端包括n个终端,所述n个终端中的a个终端已经具有C-RNTI;n为正整数,a为小于等于n的正整数;
所述发送单元703,配置为以单播方式向所述a个终端分别发送Msg4,其中,所述a个终端中的每个终端对应的Msg4通过该终端已经具有的C-RNTI加扰,该终端采用其已经具有的C-RNTI寻址PDCCH成功后确定该终端的C-RNTI为该终端已经具有的C-RNTI。
在一些可选实施方式中,所述至少部分终端包括n个终端,所述n个终端中的b个终端没有C-RNTI;n为正整数,b为小于等于n的正整数;
所述发送单元703,配置为以组播方式向所述b个终端发送级联Msg4,所述级联Msg4通过TC-RNTI加扰,所述b个终端中的每个终端采用TC-RNTI寻址PDCCH成功后获取到所述级联Msg4,从所述级联Msg4中寻找一个与该终端匹配的Msg4,并根据所述匹配的Msg4确定该终端的C-RNTI。
在一些可选实施方式中,所述级联Msg4包括1个Msg4头部和一个或多个Msg4内容;其中,所述Msg4头部承载Msg4类型指示信息,所述一个或多个Msg4内容中的每个Msg4内容与一个终端对应。
在一些可选实施方式中,所述Msg4内容包括ID MAC CE信息和C-RNTI指示信息;其中,
所述Msg4内容通过MAC子PDU携带,所述MAC子PDU包括ID MAC CE字段和C-RNTI指示字段,所述ID MAC CE字段用于携带所述ID MAC CE信息,所述C-RNTI指示字段用于携带所述C-RNTI指示信息。
在一些可选实施方式中,所述Msg4类型指示信息通过所述Msg4头部中的第一指示字段携带,其中,
若所述第一指示字段为第一序列,则所述Msg4类型指示信息用于指示以下至少之一:基站执行正交多址接收方案、Msg4头部后有1个Msg4内容;
若所述第一指示字段为第二序列,则所述Msg4类型指示信息用于指示以下至少之一:基站端执行非正交多址接收方案、Msg4头部后有b个Msg4内容。
在一些可选实施方式中,所述第一序列为全0序列,所述第二序列为全1序列。
在一些可选实施方式中,所述第一指示字段为第一序列的情况下,满足以下条件的终端将所述TC-RNTI升级为C-RNTI:终端的ID MAC CE与Msg4内容中的ID MAC CE匹配成功。
在一些可选实施方式中,所述第一指示字段为第二序列的情况下,所述b个终端中的每个终端获取C-RNTI的方式,包括:
该终端从所述级联Msg4中查找与该终端的ID MAC CE匹配的MAC子PDU,其中,所述与该终端的ID MAC CE匹配的MAC子PDU是指包含有该终端的ID MAC CE的MAC子PDU;
若该匹配的MAC子PDU中的C-RNTI指示字段为第一比特序列,则该终端将所述TC-RNTI升级为C-RNTI;
若该匹配的MAC子PDU中的C-RNTI指示字段为第二比特序列,则该终端将所述第二比特序列作为该终端的C-RNTI。
在一些可选实施方式中,所述第一比特序列为全0比特序列,所述第二比特序列为非全0比特序列。
在一些可选实施方式中,所述该终端从所述级联Msg4中查找与该终端的ID MAC CE匹配的MAC子PDU,包括:
该终端从所述级联Msg4中的第一个MAC子PDU开始搜索,直到其 中一个MAC子PDU中含有与该终端的ID MAC CE匹配的ID MAC CE为止。
在一些可选实施方式中,所述接收单元701,还用于接收所述多个终端发送的Msg1,其中,其中,所述多个终端在发送Msg1时发生碰撞,也即所述多个终端在发送所述Msg1时采用相同的前导序列和随机接入时机资源;所述发送单元703,还用于向所述多个终端发送Msg2,其中,所述基站向所述多个终端发送的Msg2携带相同的随机接入响应RAR,所述RAR包括以下至少之一:定时提前TA、前导序列标识、上行授权信息、TC-RNTI。
在一些可选实施方式中,所述多个终端在发送所述Msg3时采用相同的PUSCH资源,所述PUSCH资源基于所述上行授权信息确定。
在一些可选实施方式中,所述多个终端在发送所述Msg3时采用相同的所述TC-RNTI进行加扰。
本领域技术人员应当理解,图7所示的随机接入装置中的各单元的实现功能可参照前述方法的相关描述而理解。图7所示的随机接入装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
图8是本申请实施例提供的随机接入装置的结构组成示意图二,应用于四步随机接入过程中的终端,如图8所示,所述随机接入装置包括:
发送单元801,配置为向基站发送Msg3,所述Msg3采用第一多址方式进行发送;
接收单元802,配置为接收所述基站发送的Msg4,基于所述Msg4确定自身的第一标识。
在一些可选实施方式中,所述终端在发送Msg1时与其他终端发生碰撞。
在一些可选实施方式中,所述第一标识为C-RNTI,所述C-RNTI用于 终端确定随机接入成功。具体地,所述终端在确定出自身的C-RNTI后表征随机接入成功。
在一些可选实施方式中,所述Msg3采用第一多址方式进行发送,是指:所述Msg3采用以下至少一种方式进行发送:功率域非正交多址的方式、码域非正交多址的方式。
在一些可选实施方式中,所述Msg3采用第一多址方式进行接收,是指:所述Msg3采用以下至少一种方式进行接收:SIC的方式、MPA的方式。
在一些可选实施方式中,所述接收单元802,配置为采用其已经具有的C-RNTI寻址PDCCH,寻址成功后获取到Msg4,并确定自身的C-RNTI为所述终端已经具有的C-RNTI。
在一些可选实施方式中,所述接收单元802,配置为采用TC-RNTI寻址PDCCH,寻址成功后获取到级联Msg4,从所述级联Msg4中寻找一个与该终端匹配的Msg4,并根据所述匹配的Msg4确定该终端的C-RNTI。
在一些可选实施方式中,所述级联Msg4包括1个Msg4头部和一个或多个Msg4内容;其中,所述Msg4头部承载Msg4类型指示信息,所述一个或多个Msg4内容中的每个Msg4内容与一个终端对应。
在一些可选实施方式中,所述Msg4内容包括ID MAC CE信息和C-RNTI指示信息;其中,
所述Msg4内容通过MAC子PDU携带,所述MAC子PDU包括ID MAC CE字段和C-RNTI指示字段,所述ID MAC CE字段用于携带所述ID MAC CE信息,所述C-RNTI指示字段用于携带所述C-RNTI指示信息。
在一些可选实施方式中,所述Msg4类型指示信息通过所述Msg4头部中的第一指示字段携带,其中,
若所述第一指示字段为第一序列,则所述Msg4类型指示信息用于指示以下至少之一:基站执行正交多址接收方案、Msg4头部后有1个Msg4内 容;
若所述第一指示字段为第二序列,则所述Msg4类型指示信息用于指示以下至少之一:基站端执行非正交多址接收方案、Msg4头部后有b个Msg4内容。
在一些可选实施方式中,所述第一序列为全0序列,所述第二序列为全1序列。
在一些可选实施方式中,所述第一指示字段为第一序列的情况下,若所述终端的ID MAC CE与所述Msg4内容中的ID MAC CE匹配成功,则所述终端将所述TC-RNTI升级为C-RNTI。
在一些可选实施方式中,所述第一指示字段为第二序列的情况下,
所述从所述级联Msg4中寻找一个与该终端匹配的Msg4,并根据所述匹配的Msg4确定该终端的C-RNTI,包括:
所述终端从所述级联Msg4中查找与该终端的ID MAC CE匹配的MAC子PDU,其中,所述与该终端的ID MAC CE匹配的MAC子PDU是指包含有该终端的ID MAC CE的MAC子PDU;
若该匹配的MAC子PDU中的C-RNTI指示字段为第一比特序列,则所述终端将所述TC-RNTI升级为C-RNTI;
若该匹配的MAC子PDU中的C-RNTI指示字段为第二比特序列,则所述终端将所述第二比特序列作为该终端的C-RNTI。
在一些可选实施方式中,所述第一比特序列为全0比特序列,所述第二比特序列为非全0比特序列。
在一些可选实施方式中,所述终端从所述级联Msg4中查找与该终端的ID MAC CE匹配的MAC子PDU,包括:
所述终端从所述级联Msg4中的第一个MAC子PDU开始搜索,直到其中一个MAC子PDU中含有与该终端的ID MAC CE匹配的ID MAC CE 为止。
本领域技术人员应当理解,图8所示的随机接入装置中的各单元的实现功能可参照前述方法的相关描述而理解。图8所示的随机接入装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
图9是本申请实施例提供的一种通信设备900示意性结构图。该通信设备可以是终端或者基站,图9所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本申请实施例的基站,并且该通信设备900可以实现本申请实施例的各个方法中由基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本申请实施例的移动终端/终端,并且该通信设备900可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的基站,并且该芯片可以实现本申请实施例的各个方法中由基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通 用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和 任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的基站,并且该计算机程序使得计算机执行本申请实施例的各个方法中由基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的基站,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由基站实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地 方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者基站等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (27)

  1. 一种随机接入方法,应用于四步随机接入过程,所述方法包括:
    基站接收多个终端发送的消息Msg3,所述Msg3采用第一多址方式进行接收;
    所述基站基于所述多个终端发送的Msg3,识别出所述多个终端中的至少部分终端的终端标识;
    所述基站通过Msg4为所述至少部分终端确定各自的小区-无线网络临时标识C-RNTI。
  2. 根据权利要求1所述的方法,其中,所述Msg3采用第一多址方式进行接收,是指:所述Msg3采用以下至少一种方式进行接收:串行干扰删除SIC的方式、消息传递算法MPA的方式。
  3. 根据权利要求1所述的方法,其中,所述至少部分终端包括n个终端,所述n个终端中的b个终端没有C-RNTI;n为正整数,b为小于等于n的正整数;
    所述基站通过Msg4为所述至少部分终端确定各自的C-RNTI,包括:
    所述基站以组播方式向所述b个终端发送级联Msg4,所述级联Msg4通过临时小区-无线网络临时标识TC-RNTI加扰。
  4. 根据权利要求3所述的方法,其中,所述级联Msg4包括1个Msg4头部和一个或多个Msg4内容;其中,所述Msg4头部承载Msg4类型指示信息,所述一个或多个Msg4内容中的每个Msg4内容与一个终端对应。
  5. 根据权利要求4所述的方法,其中,所述Msg4内容包括标识ID媒体接入控制MAC控制单元CE信息和C-RNTI指示信息;其中,
    所述Msg4内容通过MAC子PDU携带,所述MAC子PDU包括ID MAC CE字段和C-RNTI指示字段,所述ID MAC CE字段用于携带所述ID MAC  CE信息,所述C-RNTI指示字段用于携带所述C-RNTI指示信息。
  6. 根据权利要求4或5所述的方法,其中,所述Msg4类型指示信息通过所述Msg4头部中的第一指示字段携带,其中,
    若所述第一指示字段为第一序列,则所述Msg4类型指示信息用于指示以下至少之一:基站执行正交多址接收方案、Msg4头部后有1个Msg4内容;
    若所述第一指示字段为第二序列,则所述Msg4类型指示信息用于指示以下至少之一:基站端执行非正交多址接收方案、Msg4头部后有b个Msg4内容。
  7. 根据权利要求1至5中任一项所述的方法,其中,所述基站接收多个终端发送的消息Msg3之前,所述方法还包括:
    所述基站接收所述多个终端发送的Msg1,其中,所述多个终端在发送所述Msg1时采用相同的前导序列和随机接入时机资源;
    所述基站向所述多个终端发送Msg2,其中,所述基站向所述多个终端发送的Msg2携带相同的随机接入响应RAR,所述RAR包括以下至少之一:定时提前TA、前导序列标识、上行授权信息、TC-RNTI。
  8. 根据权利要求1至5中任一项所述的方法,其中,所述C-RNTI用于终端确定随机接入成功。
  9. 一种随机接入方法,应用于四步随机接入过程,所述方法包括:
    终端向基站发送Msg3,所述Msg3采用第一多址方式进行发送;
    所述终端接收所述基站发送的Msg4,基于所述Msg4确定自身的第一标识。
  10. 根据权利要求9所述的方法,其中,所述Msg3采用第一多址方式进行发送,是指:所述Msg3采用以下至少一种方式进行发送:功率域非正交多址的方式、码域非正交多址的方式。
  11. 根据权利要求9所述的方法,其中,所述终端接收所述基站发送的Msg4,基于所述Msg4确定自身的C-RNTI,包括:
    所述终端采用TC-RNTI寻址PDCCH,寻址成功后获取到级联Msg4,从所述级联Msg4中寻找一个与该终端匹配的Msg4,并根据所述匹配的Msg4确定该终端的C-RNTI。
  12. 根据权利要求11所述的方法,其中,所述级联Msg4包括1个Msg4头部和一个或多个Msg4内容;其中,所述Msg4头部承载Msg4类型指示信息,所述一个或多个Msg4内容中的每个Msg4内容与一个终端对应。
  13. 根据权利要求12所述的方法,其中,所述Msg4内容包括ID MAC CE信息和C-RNTI指示信息;其中,
    所述Msg4内容通过MAC子PDU携带,所述MAC子PDU包括ID MAC CE字段和C-RNTI指示字段,所述ID MAC CE字段用于携带所述ID MAC CE信息,所述C-RNTI指示字段用于携带所述C-RNTI指示信息。
  14. 根据权利要求12或13所述的方法,其中,所述Msg4类型指示信息通过所述Msg4头部中的第一指示字段携带,其中,
    若所述第一指示字段为第一序列,则所述Msg4类型指示信息用于指示以下至少之一:基站执行正交多址接收方案、Msg4头部后有1个Msg4内容;
    若所述第一指示字段为第二序列,则所述Msg4类型指示信息用于指示以下至少之一:基站端执行非正交多址接收方案、Msg4头部后有b个Msg4内容。
  15. 根据权利要求14所述的方法,其中,所述第一序列为全0序列,所述第二序列为全1序列。
  16. 根据权利要求14所述的方法,其中,所述第一指示字段为第一序列的情况下,若所述终端的ID MAC CE与所述Msg4内容中的ID MAC CE 匹配成功,则所述终端将所述TC-RNTI升级为C-RNTI。
  17. 根据权利要求14所述的方法,其中,所述第一指示字段为第二序列的情况下,
    所述从所述级联Msg4中寻找一个与该终端匹配的Msg4,并根据所述匹配的Msg4确定该终端的C-RNTI,包括:
    所述终端从所述级联Msg4中查找与该终端的ID MAC CE匹配的MAC子PDU,其中,所述与该终端的ID MAC CE匹配的MAC子PDU是指包含有该终端的ID MAC CE的MAC子PDU;
    若该匹配的MAC子PDU中的C-RNTI指示字段为第一比特序列,则所述终端将所述TC-RNTI升级为C-RNTI;
    若该匹配的MAC子PDU中的C-RNTI指示字段为第二比特序列,则所述终端将所述第二比特序列作为该终端的C-RNTI。
  18. 根据权利要求17所述的方法,其中,所述第一比特序列为全0比特序列,所述第二比特序列为非全0比特序列。
  19. 根据权利要求17所述的方法,其中,所述终端从所述级联Msg4中查找与该终端的ID MAC CE匹配的MAC子PDU,包括:
    所述终端从所述级联Msg4中的第一个MAC子PDU开始搜索,直到其中一个MAC子PDU中含有与该终端的ID MAC CE匹配的ID MAC CE为止。
  20. 根据权利要求9至13、15至19中任一项所述的方法,其中,所述终端在发送Msg1时与其他终端发生碰撞。
  21. 根据权利要求9至13、15至19中任一项所述的方法,其中,所述第一标识为C-RNTI,所述C-RNTI用于终端确定随机接入成功。
  22. 一种随机接入装置,应用于四步随机接入过程中的基站,所述装置包括:
    接收单元,配置为收多个终端发送的消息Msg3,所述Msg3采用第一多址方式进行发送以及接收;其中,所述多个终端在发送Msg1时发生碰撞;
    处理单元,配置为基于所述多个终端发送的Msg3,识别出所述多个终端中的至少部分终端的终端标识;
    发送单元,配置为通过Msg4为所述至少部分终端确定各自的C-RNTI,其中,所述至少部分终端在确定出各自的C-RNTI后表征随机接入成功。
  23. 一种随机接入装置,应用于四步随机接入过程中的终端,所述装置包括:
    发送单元,配置为向基站发送Msg3,所述Msg3采用第一多址方式进行发送以及接收;其中,所述终端在发送Msg1时与其他终端发生碰撞;
    接收单元,配置为接收所述基站发送的Msg4,基于所述Msg4确定自身的C-RNTI,其中,所述终端在确定出自身的C-RNTI后表征随机接入成功。
  24. 一种基站,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至8中任一项所述的方法。
  25. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求9至21中任一项所述的方法。
  26. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至8中任一项所述的方法,或者权利要求9至21中任一项所述的方法。
  27. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至8中任一项所述的方法,或者权利要求9至21中任一项所述的方法。
PCT/CN2022/118514 2021-09-15 2022-09-13 一种随机接入方法、终端、基站 WO2023040839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111080503.0A CN115942503A (zh) 2021-09-15 2021-09-15 一种基于非正交多址的随机接入方法、终端、基站
CN202111080503.0 2021-09-15

Publications (1)

Publication Number Publication Date
WO2023040839A1 true WO2023040839A1 (zh) 2023-03-23

Family

ID=85602435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118514 WO2023040839A1 (zh) 2021-09-15 2022-09-13 一种随机接入方法、终端、基站

Country Status (2)

Country Link
CN (1) CN115942503A (zh)
WO (1) WO2023040839A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107105504A (zh) * 2016-02-19 2017-08-29 中兴通讯股份有限公司 一种系统接入的资源分配方法和装置
US20190289513A1 (en) * 2017-11-16 2019-09-19 Comcast Cable Communications, Llc Power Control for Bandwidth Part Switching
CN110392443A (zh) * 2018-04-18 2019-10-29 华为技术有限公司 一种数据信道传输方法、接收方法及装置
CN111586861A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种随机接入方法、设备及系统
CN112753265A (zh) * 2018-09-27 2021-05-04 康维达无线有限责任公司 新无线电的未经许可的频谱中的子频带操作

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107105504A (zh) * 2016-02-19 2017-08-29 中兴通讯股份有限公司 一种系统接入的资源分配方法和装置
US20190289513A1 (en) * 2017-11-16 2019-09-19 Comcast Cable Communications, Llc Power Control for Bandwidth Part Switching
CN110392443A (zh) * 2018-04-18 2019-10-29 华为技术有限公司 一种数据信道传输方法、接收方法及装置
CN112753265A (zh) * 2018-09-27 2021-05-04 康维达无线有限责任公司 新无线电的未经许可的频谱中的子频带操作
CN111586861A (zh) * 2019-02-15 2020-08-25 华为技术有限公司 一种随机接入方法、设备及系统

Also Published As

Publication number Publication date
CN115942503A (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
JP7088603B2 (ja) データ伝送方法、端末デバイス及びアクセスネットワークデバイス
CN111837446B (zh) 随机接入的方法和通信设备
US8837352B2 (en) Method for allocating resources in a broadband wireless access system
WO2020020278A1 (zh) 随机接入的方法和通信设备
WO2012071681A1 (zh) 无线通信终端、无线通信基站和它们的通信方法,以及实现该通信方法的程序和存储该程序的介质
CN111083798B (zh) 一种基于竞争的随机接入方法和装置
WO2020019230A1 (zh) 一种资源配置方法及装置、终端设备、网络设备
CN108271256B (zh) 资源映射方法和装置
WO2020186465A1 (zh) 用于两步随机接入的方法、终端设备和网络设备
US20230044554A1 (en) Communication method and communication apparatus
WO2014089831A1 (zh) 随机接入方法及设备
WO2020024616A1 (zh) 一种随机接入方法及相关设备
EP3955686A1 (en) Resource allocation method, base station and terminal
CN111770584B (zh) 用于竞争随机接入的方法、网络设备和终端设备
WO2023040839A1 (zh) 一种随机接入方法、终端、基站
WO2023198022A1 (zh) 随机接入方法及设备
WO2020024614A1 (zh) 一种随机接入的方法、设备及计算机存储介质
JP2019503613A (ja) アップリンクブロードキャストの方法、端末デバイス及びネットワークノード
CN114245471B (zh) 随机接入信号处理方法、随机接入方法、装置及存储介质
CN109963349B (zh) 一种竞争随机接入方法和系统
EP3930368B1 (en) Transmitting prach configuration information from a central unit (cu) of an access network device to a distributed unit (du) connected to the central unit (cu) by means of an f1 interface
WO2020020348A1 (zh) 一种信息传输方法及装置、终端设备、网络设备
CN113424641A (zh) 无线通信网络中的随机接入
WO2020082394A1 (zh) 随机接入的方法、终端设备和网络设备
WO2016137366A1 (en) Method and apparatus for resolving preamble collisions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE