WO2020186465A1 - 用于两步随机接入的方法、终端设备和网络设备 - Google Patents

用于两步随机接入的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020186465A1
WO2020186465A1 PCT/CN2019/078782 CN2019078782W WO2020186465A1 WO 2020186465 A1 WO2020186465 A1 WO 2020186465A1 CN 2019078782 W CN2019078782 W CN 2019078782W WO 2020186465 A1 WO2020186465 A1 WO 2020186465A1
Authority
WO
WIPO (PCT)
Prior art keywords
rnti
terminal device
pdcch
network device
rar
Prior art date
Application number
PCT/CN2019/078782
Other languages
English (en)
French (fr)
Inventor
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2021556595A priority Critical patent/JP7496834B2/ja
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP19920020.5A priority patent/EP3927094A4/en
Priority to CN201980093530.6A priority patent/CN113519200A/zh
Priority to KR1020217030855A priority patent/KR20210139282A/ko
Priority to CN202111305652.2A priority patent/CN114025433B/zh
Priority to PCT/CN2019/078782 priority patent/WO2020186465A1/zh
Priority to CN201980093548.6A priority patent/CN113519201A/zh
Priority to EP19920380.3A priority patent/EP3930414A4/en
Priority to PCT/CN2019/079939 priority patent/WO2020186546A1/zh
Priority to CN202111184645.1A priority patent/CN113905453B/zh
Publication of WO2020186465A1 publication Critical patent/WO2020186465A1/zh
Priority to US17/469,818 priority patent/US20210410195A1/en
Priority to US17/477,048 priority patent/US12048021B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0836Random access procedures, e.g. with 4-step access with 2-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/0858Random access procedures, e.g. with 4-step access with collision treatment collision detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to methods, terminal devices, and network devices for random access.
  • the two-step random access process is in the process of standardization and discussion, which is in the research stage.
  • the two-step random access can increase the delay and reduce the signaling overhead.
  • the two-step random access procedure may include the first step and the second step.
  • the first step includes: the terminal device sends a message A (msgA) to the network device.
  • the msgA is composed of a preamble and a payload.
  • the preamble is the preamble of the four-step random access process.
  • the preamble is in the PRACH Resource transfer.
  • Payload can carry the information in msg3 of the 4-step random access process, which is transmitted by PUSCH.
  • the second step includes: the terminal device receives the message B (msgB) sent by the network device, and msgB may include msg2 and msg4 in the four-step random access process.
  • a method, terminal equipment and network equipment for random access are provided, which can effectively resolve the conflict in the two-step RACH.
  • a method for two-step random access includes:
  • the terminal device sends the preamble sequence and the cell access radio network temporary identifier medium access control control element C-RNTI MAC CE to the network device, where the C-RNTI MAC CE includes the C-RNTI;
  • the terminal equipment blindly detects the physical downlink control channel PDCCH scrambled by the C-RNTI;
  • the terminal device determines whether the contention conflict in the two-step random access process has been resolved according to the blind detection result of the C-RNTI.
  • the network device sends a PDCCH to the terminal device according to the decoding result of the preamble sequence and the decoding result of the C-RNTI MAC CE, and the terminal device can use the C-RNTI to scramble through blind detection.
  • PDCCH determine whether the contention conflict in the two-step random access process has been resolved. Specifically, if the PDCCH scrambled with the C-RNTI is blindly detected, it means that the contention conflict in the two-step random access process has been resolved. If the PDCCH scrambled with the C-RNTI is not blindly detected, then It shows that the contention conflict in the two-step random access process is not successfully resolved.
  • a method for two-step random access includes:
  • the network device receives the preamble sequence and the cell access radio network temporary identifier medium access control control element C-RNTI MAC CE sent by the terminal device, where the C-RNTI MAC CE includes the C-RNTI;
  • the network device decodes the preamble sequence and the C-RNTI MAC CE
  • the network device sends the physical downlink control channel PDCCH to the terminal device according to the decoding result of the preamble sequence and the decoding result of the C-RNTI MAC CE.
  • a terminal device which is used to execute the method in the foregoing first aspect or each of its implementation manners.
  • the terminal device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a network device configured to execute the method in the second aspect or its implementation manners.
  • the network device includes a functional module for executing the method in the foregoing second aspect or each implementation manner thereof.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the foregoing first aspect or each of its implementation manners.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each implementation manner thereof.
  • a chip for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the second aspect or each implementation manner thereof Method in.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product which includes computer program instructions that cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • Figure 1 is an example of the application scenario of this application.
  • Fig. 2 is a schematic flowchart of competing random access according to an embodiment of the present application.
  • Fig. 3 is a schematic block diagram of a MAC PDU according to an embodiment of the present application.
  • Fig. 4 is a schematic block diagram of a BI subheader in an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a RAPID subheader in an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of a MAC RAR according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for two-step random access according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a chip of an embodiment of the present application.
  • Fig. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120.
  • the network device 120 may communicate with the terminal device 110 through an air interface.
  • the terminal device 110 and the network device 120 support multi-service transmission.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • NR New Radio
  • 5G systems etc.
  • the main application scenarios of 5G include: Enhance Mobile Broadband (eMBB), Ultra-Reliable and Low Latency Communication (URLLC), and large-scale machine communication (URLLC) machine type of communication, mMTC).
  • eMBB aims at users to obtain multimedia content, services and data, and its demand is growing rapidly.
  • URLLC massive machine communication
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety protection, etc.
  • Typical features of mMTC include: high connection density, small data volume, delay-insensitive services, low-cost modules and long service life.
  • the network coverage in the embodiments of the present application can use wide-area Long Term Evolution (LTE) coverage and NR island coverage mode.
  • LTE Long Term Evolution
  • NR island coverage mode In order to protect mobile operators' early investment in LTE, a tight interworking mode between LTE and NR can be further used.
  • the network device 120 may be an access network device that communicates with the terminal device 110.
  • the access network device can provide communication coverage for a specific geographic area, and can communicate with terminal devices 110 (for example, UE) located in the coverage area.
  • the network device 120 may be a base station (Base Transceiver Station, BTS) in a global system of mobile communication (GSM) system or a code division multiple access (Code Division Multiple Access, CDMA), or it may be The base station (NodeB, NB) in the Wideband Code Division Multiple Access (WCDMA) system, and the network device 120 may also be the Evolutional Node B (Evolutional Node B) in the Long Term Evolution (LTE) system. eNB or eNodeB).
  • the network device 120 may also be a next generation radio access network (Next Generation Radio Access Network, NG RAN), or a base station (gNB) in an NR system, or a cloud radio access network (Cloud Radio Access).
  • Next Generation Radio Access Network Next Generation Radio Access Network
  • gNB base station
  • Cloud Radio Access Cloud Radio Access
  • CRAN public Land Mobile Network
  • PLMN Land Mobile Network
  • the terminal device 110 may be any terminal device, including but not limited to: connected via a wired line, such as via a public switched telephone network (PSTN), a digital subscriber line (Digital Subscriber Line, DSL), Digital cable, direct cable connection; and/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital television networks such as DVB-H networks , Satellite network, AM-FM broadcast transmitter; and/or another terminal device set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a "wireless terminal” or a "mobile terminal".
  • Examples of mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 110.
  • the wireless communication system 100 may also include a core network device 130 that communicates with the network device 120.
  • the core network device 130 may be a 5G core network (5G Core, 5GC) device, for example, access and mobility management functions (Access and Mobility Management).
  • Management Function for example, authentication server function (Authentication Server Function, AUSF), for example, user plane function (User Plane Function, UPF), for example, session management function (Session Management Function, SMF).
  • the core network device 130 may also be an Evolved Packet Core (EPC) device of the LTE network, for example, a session management function + a data gateway (Session Management Function+Core Packet Gateway, SMF+PGW-) of the LTE network.
  • EPC Evolved Packet Core
  • C C) Equipment. It should be understood that SMF+PGW-C can simultaneously realize the functions that SMF and PGW-C can realize.
  • each functional unit may establish a connection through a next generation network (NG) interface to implement communication.
  • NG next generation network
  • the terminal equipment establishes an air interface connection with the access network equipment through the NR interface to transmit user plane data and control plane signaling; the terminal equipment can establish a control plane signaling connection with the AMF through the NG interface 1 (abbreviated as N1); access Network equipment such as the next generation wireless access base station (gNB) can establish a user plane data connection with UPF through NG interface 3 (abbreviated as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (abbreviated as N2) Connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (N4 for short); UPF can exchange user plane data with the data network through NG interface 6 (N6 for short); AMF can communicate with SMF through NG interface 11 (N11 for short) SMF establishes control plane signaling connection; SMF can establish control plane signaling connection with PCF through NG interface 7 (abbreviated as N7).
  • N1 next generation wireless access base station
  • gNB next generation wireless access base station
  • the part shown in Figure 2 is only an exemplary architecture diagram.
  • the network architecture may also include other functional units or functional entities, such as: core network equipment may also Other functional units such as unified data management (UDM) are included, which are not specifically limited in the embodiment of the present application.
  • UDM unified data management
  • FIG. 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and the coverage of each base station may include other numbers of terminals
  • the device is not limited in this embodiment of the application.
  • Fig. 2 is a schematic flowchart of competing random access according to an embodiment of the present application.
  • the terminal device After the cell search process, the terminal device has already achieved downlink synchronization with the cell, so the terminal device can receive downlink data. However, the terminal equipment can only perform uplink transmission if it has achieved uplink synchronization with the cell.
  • the terminal device establishes a connection with the cell and obtains uplink synchronization through a random access procedure (Random Access Procedure).
  • RRC Connection Re-establishment procedure RRC Connection Re-establishment procedure
  • Beam failure recovery Beam failure recovery
  • the process of the competitive random access includes:
  • the terminal device sends a preamble to the network device to tell the network device that there is a random access request, and at the same time, the network device can estimate the transmission delay between it and the terminal device and use this to calibrate the uplink timing.
  • the preamble sequence may also be referred to as a preamble.
  • the terminal device selects a preamble sequence index (preamble index) and a physical random access channel (PRACH) resource used to send the preamble; thus, the preamble is transmitted on the PRACH.
  • preamble index a preamble sequence index
  • PRACH physical random access channel
  • the network device will broadcast the System Information Block (System Information Block, SIB) to notify all terminal devices of competing random access resources, for example, SIB1.
  • SIB System Information Block
  • each cell has 64 available preamble sequences, and the terminal device will select one of them (or designated by the network device) to transmit on the PRACH.
  • sequences can be divided into two parts, one part is used for contention-based random access, and the other part is used for non-contention-based random access.
  • the network device sends a random access response (Random Access Response, RAR) to the terminal device.
  • RAR Random Access Response
  • the terminal device After the terminal device sends the preamble, it will monitor the corresponding physical downlink control channel (Random Access Radio Network Temporary Identifier, RA-RNTI) value within the time window of monitoring RAR. Physical Downlink Control Channel, PDCCH) to receive the RAR corresponding to RA-RNTI. If the RAR from the network device is not received within this RAR time window, it is considered that this random access procedure has failed. It should be understood that both the terminal device and the eNB need to uniquely determine the value of RA-RNTI, otherwise the terminal device will not be able to decode the RAR.
  • the RA-RNTI may be determined by the time-frequency Position to calculate the value of RA-RNTI.
  • the RA-RNTI associated with the preamble is calculated by the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id.
  • s_id is the index of the first OFDM symbol of the PRACH opportunity (0 ⁇ s_id ⁇ 14), and t_id is the index of the first time slot of the PRACH opportunity in the system frame (0 ⁇ t_id ⁇ 80).
  • f_id is the index of PRACH opportunity in the frequency domain (0 ⁇ f_id ⁇ 8), and ul_carrier_id is the UL carrier used for random access preamble transmission (0 represents NUL carrier, 1 represents SUL carrier).
  • the network device since the time-frequency position of the preamble sent by the terminal device is determined, the network device also obtains the time-frequency position of the preamble when decoding the preamble, and then knows the RA-RNTI that needs to be used in the RAR.
  • the terminal device successfully receives a RAR (using the determined RA-RNTI for decoding), and the preamble index in the RAR is the same as the preamble index sent by the terminal device, it is considered that the RAR has been successfully received, and the terminal device can Stop listening to RAR.
  • the RAR may be carried in the MAC PDU.
  • the information carried by the RAR will be introduced from the perspective of the configuration of the MAC PDU including the RAR with reference to FIG. 3.
  • a MAC protocol data unit may include multiple MAC sub-PDUs (subPDU) and possible padding (padding) bits.
  • the first MAC subPDU may be an E/T/R/R/BI subheader.
  • the MAC subPDU following the E/T/R/R/BI subheader may include the E/T/RAPID subheader.
  • the MAC subPDU following the E/T/R/R/BI subheader may only include the E/T/RAPID subheader, or it may include both the E/T/RAPID subheader and the E/T/RAPID subheader.
  • the corresponding MAC random access response (Random Access Response, RAR).
  • RAR Random Access Response
  • the second MAC subPDU only includes the E/T/RAPID subheader
  • the third MAC subPDU includes both the E/T/RAPID subheader and the RAR corresponding to the E/T/RAPID subheader. .
  • MAC PDU It can be seen from the structure of MAC PDU that if a network device detects random access requests from multiple terminal devices on the same PRACH resource, it can use one MAC PDU to respond to these access requests. Each random access The response to the request (corresponding to a preamble index) corresponds to a RAR. In other words, if multiple terminal devices send the preamble on the same PRACH resource (the same time and frequency position, using the same RA-RNTI), the corresponding RAR is multiplexed in the same MAC PDU.
  • the MAC PDU is transmitted on the DL-SCH and is scheduled through the PDCCH scrambled with RA-RNTI.
  • the MAC PDU can only be scrambled with one RA-RNTI, this also means that the RAR corresponding to the preamble sent using different PRACH resources (different time and frequency positions) cannot be multiplexed into the same MAC PDU.
  • a MAC header consists of one or more MAC subheaders. Except for the Backoff Index subheader (Backoff Indicator subheader), each subheader corresponds to a RAR.
  • Fig. 4 is a schematic block diagram of a BI subheader in an embodiment of the present application.
  • the backoff indication BI subheader may include an extension field (E), a type field (T), two reserved fields (R), and a BI value.
  • the BI subheader appears only once and is located at the first subheader of the MAC header. If the terminal device receives a BI subheader, it will save a backoff value, which corresponds to the BI value in the subheader; otherwise, the terminal device will set the Backoff value to 0.
  • BI Backoff Indicator
  • BI specifies the time range that the terminal device needs to wait before resending the preamble. If the terminal device does not receive the RAR within the RAR time window, or if none of the received RARs matches the preamble selected by the terminal, it is considered that this RAR reception fails. At this time, the terminal device needs to wait for a period of time before initiating random access.
  • the waiting time is a random value selected from 0 to the waiting time specified by BI.
  • the time that the terminal device designated by BI needs to wait before resending the preamble may conflict with the physical layer timing.
  • how to select the subframe for sending the preamble may depend on the implementation of the terminal device, or the physical layer timing is only "ready" for sending, and the actual sending time is still determined by the MAC layer.
  • the embodiments of this application do not make specific limitations.
  • Fig. 5 is a schematic block diagram of a RAPID subheader in an embodiment of the present application.
  • the random access sequence identifier (Random Access Preamble Identifier, RAPID) subheader may include an E, a T, and a RAPID value.
  • the random access sequence identifier (Random Access Preamble Identifier, RAPID) is the preamble index obtained when the network device detects the preamble. If the terminal device finds that the value is the same as the index used when sending the preamble, it is considered that the corresponding RAR has been successfully received.
  • the indication information carried in the RAPID subheader occupies the bits used to indicate whether the terminal device has the BI subheader in the original format.
  • Fig. 6 is a schematic block diagram of a MAC RAR according to an embodiment of the present application.
  • MAC RAR may include: reserved bits R, time alignment command (Timing alignment Command, TAC), uplink grant (UL grant), and temporary Cell Radio Network Temporary Identifier, TC-RNTI).
  • TAC time alignment command
  • UL grant uplink grant
  • TC-RNTI temporary Cell Radio Network Temporary Identifier
  • the time alignment command (Timing Alignment Command, TAC) is used to specify the amount of time adjustment required for the uplink synchronization of the terminal device, which can occupy 12 bits.
  • UL grant specifies the uplink resources allocated to Msg3.
  • TC-RNTI is used for subsequent transmission of terminal equipment and network equipment. After the conflict is resolved, the value may become C-RNIT.
  • the terminal device sends a message 3 (Msg3) to the network device.
  • Msg3 The terminal device will carry its own unique identifier in Msg3, for example, the Cell Radio Network Temporary Identifier (C-RNTI), or for example, from the core
  • C-RNTI Cell Radio Network Temporary Identifier
  • S-TMSI The terminal equipment identifier of the network (S-TMSI or a random number).
  • the network device sends a contention resolution message to the terminal device.
  • the network device will carry the unique identifier of the winning terminal device in the contention resolution (Msg4).
  • Other terminal devices that did not win the conflict resolution will re-initiate random access.
  • This application provides a random access method in a 2-step access process to improve access efficiency.
  • the 4-step RACH process shown in Figure 2 is realized through 2-step RACH. Specifically, in the 2-step RACH, msgA transmits msg1+msg3 in the 4-step RACH, and msgB transmits msg2+msg4 in the 4-step RACH.
  • the 2-step access process may include:
  • step 1
  • the terminal device sends msgA to the network device.
  • the msgA is composed of a preamble and a payload.
  • the preamble is a 4-step RACH preamble, and the preamble is transmitted on the PRACH resource.
  • Payload can carry information in msg3 of 4-step RACH, such as RRC signaling when RRC is in an idle or inactive state, and C-RNTI when RRC is in a connected state, and the payload can be transmitted by PUSCH.
  • the preamble can be transmitted using a pre-configured PRACH resource, and the payload can be transmitted using a pre-configured PUSCH channel.
  • the terminal device receives the msgB sent by the network device, and the msgB may include msg2 and msg4 of the 4-step RACH.
  • an embodiment of the present application provides a method for competing random access, which can enable the terminal device to effectively resolve the access conflict in the 2-step RACH.
  • the payload may include a MAC CE; the MAC CE may include an ID, and the ID is C-RNTI; that is, the terminal device can send a C-RNTI MAC CE to the network device, and the terminal device passes through the network The device determines whether the contention conflict of two-step random access has been resolved by the response message of the C-RNTI MAC CE.
  • FIG. 7 is a schematic block diagram of a random access method 300 according to an embodiment of the present application.
  • the method 300 may include:
  • the terminal device sends a preamble sequence and a Cell Radio Network Temporary Identifier (C-RNTI) Media Access Control (MAC) control element (CE) to the network device, where
  • C-RNTI Cell Radio Network Temporary Identifier
  • MAC Media Access Control
  • CE Control element
  • S220 The network device decodes the preamble sequence and the C-RNTI MAC CE.
  • the network device sends a Physical Downlink Control Channel (PDCCH) to the terminal device according to the decoding result of the preamble sequence and the decoding result of the C-RNTI MAC CE.
  • PDCCH Physical Downlink Control Channel
  • the terminal device blindly detects the PDCCH scrambled by the C-RNTI
  • S250 The terminal device determines whether the contention conflict in the two-step random access process has been resolved according to the blind detection result of the C-RNTI.
  • the terminal device sends the preamble sequence and C-RNTI MAC CE to the network device, where the C-RNTI MAC CE includes the C-RNTI; the terminal device blindly detects the PDCCH scrambled by the C-RNTI; the terminal device according to The blind detection result of the C-RNTI determines whether the contention conflict in the two-step random access process has been resolved.
  • the network device receives the preamble sequence and the C-RNTI MAC CE sent by the terminal device, the network device decodes the preamble sequence and the C-RNTI MAC CE; the network device decodes the preamble sequence and the C-RNTI MAC CE; the network device decodes the preamble sequence and the C-RNTI MAC CE; -The decoding result of RNTI MAC CE sends the PDCCH to the terminal device.
  • the network device sends a PDCCH to the terminal device according to the decoding result of the preamble sequence and the decoding result of the C-RNTI MAC CE, and the terminal device can use the C-RNTI to scramble through blind detection.
  • PDCCH determine whether the contention conflict in the two-step random access process has been resolved. Specifically, if the PDCCH scrambled with the C-RNTI is blindly detected, it means that the contention conflict in the two-step random access process has been resolved. If the PDCCH scrambled with the C-RNTI is not blindly detected, then It shows that the contention conflict in the two-step random access process is not successfully resolved.
  • the terminal device may blindly detect the PDCCH scrambled with the C-RNTI within a timer or time window.
  • the terminal device After the terminal device sends the preamble sequence and/or the C-RNTI MAC CE to the network device, it starts a first timer or a first time window; the preamble sequence is sent on the PRACH resource, so The C-RNTI MAC CE is sent on the PUSCH resource. At this time, the terminal device blindly detects the PDCCH scrambled with the C-RNTI after the first timer is started or within the first time window.
  • the duration of the timer or the duration of the time window is configured by the network device. In other words, the first timer or the first time window may be started after the PRACH transmission, or after the PUSCH transmission.
  • the duration of the timer or the duration of the time window may also be a pre-configured duration.
  • the duration of the timer or the duration of the time window may be the duration specified by the protocol, that is, for the terminal device
  • the duration of the timer and the duration of the time window may be a predetermined duration.
  • the network device After the network device receives the Physical Random Access Channel (PRACH) where the preamble sequence is located and/or the PUSCH where the C-RNTI MAC CE is located, it starts the first timer or first timer. Time window; at this time, after the first timer is started or within the first time window, the network device reports the decoding result of the preamble sequence and the C-RNTI MAC CE to the The terminal device sends the PDCCH.
  • the duration of the timer or the duration of the time window is the information configured by the network device to the terminal device, and may also be the duration specified by the protocol, which is not specifically limited in this application.
  • the network device needs to receive and decode the preamble sequence and the C-RNTI MAC CE in S220, and then the network The device sends different PDCCHs according to different decoding conditions. For example, PDCCH including different information.
  • the result of the network device decoding the preamble sequence and C-RNTI MAC CE may include the following three situations:
  • the first case the network device successfully decodes one or more preambles.
  • the second case the network device successfully decodes one or more preambles and one or more C-RNTI MAC CE.
  • the third case the network device successfully decodes the C-RNTI MAC CE but does not decode the preamble. Since the network device decodes the preamble first, and then decodes the C-RNTI MAC CE, the possibility of this situation is relatively small.
  • the network device cannot distinguish the terminal device corresponding to the preamble. Since the preamble may correspond to multiple terminal devices, that is, the multiple terminal devices use the same PRACH resource to transmit the preamble. At this time, the network device may respond to the preamble or not respond to the preamble. When the network device responds to the preamble, it sends a RAR in the four-step RACH to respond to the preamble. At this time, the terminal device performing the two-step RACH can fall back to the four-step RACH.
  • the terminal device can perform S210 again, that is, the terminal device sends a preamble sequence and C-RNTI MAC CE to the network device, where the C-RNTI MAC CE includes the C-RNTI.
  • the network device may also send an indication message so that the terminal device performing the two-step RACH stops blindly detecting the PDCCH scrambled with the C-RNTI, so that the terminal device performing the two-step RACH can re-execute the above S210 as soon as possible.
  • the network device can at least distinguish the terminal device corresponding to the ID (such as C-RNTI) in the C-RNTI MAC.
  • the network device can respond to the C-RNTI MAC CE, that is, the terminal device can send the PDCCH scrambled by the C-RNTI to the terminal device.
  • the network device may respond to the C-RNTI MAC CE. For example, if the C-RNTI MAC CE corresponding to the successfully decoded preamble is not successfully decoded, the network device may or may not respond to the preamble. If the C-RNTI MAC CE corresponding to the successfully decoded preamble is successfully decoded, the network device may respond to the C-RNTI MAC CE. Further, since multiple terminal devices may use the successfully decoded preamble at the same time, the network device may further respond to the successfully decoded preamble.
  • PUSCH physical uplink shared channel
  • the network device when the network device successfully decodes the preamble sequence and decodes the C-RNTI MAC CE unsuccessfully, it sends the PDCCH for scheduling the RAR corresponding to the preamble sequence to the terminal device.
  • the network device when the network device successfully decodes the preamble sequence and decodes the C-RNTI MAC CE successfully, it sends a PDCCH for scheduling the RAR corresponding to the preamble sequence to the terminal device; further, the When the network device successfully decodes the preamble sequence and decodes the C-RNTI MAC CE successfully, the network device may also send the PDCCH scrambled with the C-RNTI to the terminal device.
  • the terminal device blindly detects the PDCCH scrambled with the C-RNTI in S240, in S250, the terminal device determines that the contention conflict has been resolved.
  • the terminal device stops the first timer or stops using the blind detection in the first time window PDCCH scrambled by C-RNTI.
  • the terminal device decodes Downlink Control Information (DCI) in the PDCCH; wherein, the DCI includes scheduling information used to schedule downlink data or uplink data.
  • the DCI may also include a time alignment command (Timing alignment Command, TAC).
  • TAC time alignment command
  • the DCI may include scheduling information for scheduling downlink data, or scheduling information for scheduling uplink data, or both scheduling information and TAC for scheduling downlink data, or including scheduling information for scheduling uplink data.
  • TAC is used for the uplink timing adjustment when the terminal device performs the next uplink transmission.
  • the terminal device determines that the contention conflict is not resolved.
  • the terminal device reselects the resource for sending the preamble sequence and/or the C-RNTI MAC CE, and resends the preamble sequence and/or the C-RNTI MAC CE to the network device CE. That is, the terminal device re-executes S210 to perform the two-step random access procedure again.
  • the terminal device blindly detects the PDCCH scrambled with the C-RNTI, and blindly detects the PDCCH scrambled with the RA-RNTI. That is, the terminal equipment blindly detects both the PDCCH scrambled with the C-RNTI and the PDCCH scrambled with the RA-RNTI.
  • the method for determining the RA-RNTI by the terminal device may be the same as or different from the prior art, which is not specifically limited in the embodiment of this application.
  • the terminal device may be used for transmission
  • the RA-RNTI determined by the resources of the C-RNTI MAC CE and/or the resources used to transmit the preamble sequence.
  • the terminal device may determine the RA-RNTI according to the following formula:
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id.
  • s_id is the index of the first OFDM symbol of the PRACH opportunity (0 ⁇ s_id ⁇ 14), and t_id is the index of the first time slot of the PRACH opportunity in the system frame (0 ⁇ t_id ⁇ 80).
  • f_id is the index of the PRACH opportunity in the frequency domain (0 ⁇ f_id ⁇ 8), and ul_carrier_id is the UL carrier used for random access preamble transmission (0 means NUL carrier, 1 means SUL carrier).
  • f_id is fixed to 0.
  • the terminal device if the terminal device blindly detects the PDCCH scrambled with the RA-RNTI, and the RAR scheduled by the PDCCH scrambled by the RA-RNTI does not include the RAPID corresponding to the preamble sequence, the terminal The device continues to blindly detect the PDCCH scrambled with the C-RNTI.
  • the terminal device determines that the contention conflict has been successfully resolved, and stops continuing to blindly.
  • the PDCCH scrambled with the C-RNTI is detected. If the terminal device fails to monitor the C-RNTI successfully, the terminal device re-executes 210, that is, the terminal device reselects the resource for sending the preamble sequence and/or the C-RNTI MAC CE, and Re-send the preamble sequence and/or the C-RNTI MAC CE to the network device. That is, the terminal device re-executes S210 to perform the two-step random access procedure again.
  • the terminal device blindly detects the PDCCH scrambled with the RA-RNTI, and the RAR scheduled by the PDCCH scrambled by the RA-RNTI includes the RAPID corresponding to the preamble sequence, the terminal The device stops blindly detecting the PDCCH scrambled with the C-RNTI.
  • the terminal device if the terminal device blindly detects the PDCCH scrambled with the RA-RNTI, and the RAR scheduled by the PDCCH scrambled by the RA-RNTI includes the RAPID corresponding to the preamble sequence, the terminal device stops timing Or stop blindly detecting the PDCCH scrambled with the C-RNTI within the time window.
  • the terminal device regards the received RAR as msg2 in the four-step RACH process, and uses the UL GRANT scheduled in the RAR to transmit msg3, that is, the UE falls back to the four-step RACH process. That is, the terminal device goes back to step 3 in the 4-step random access process, and sends message 3 to the network device.
  • the terminal device obtains UL-Grant information of the uplink grant in the RAR; the terminal device sends the message 3 to the network device on the resource indicated by the UL-Grant information. Since the 4-step random access process can be the same as the random access process in the prior art, in order to avoid repetition, it will not be repeated here.
  • the terminal device blindly detects the PDCCH scrambled with the RA-RNTI, and the random access response RAR scheduled by the PDCCH scrambled by the RA-RNTI includes the RAPID corresponding to the preamble sequence, the terminal device continues Blind detection uses the PDCCH scrambled by the C-RNTI.
  • the terminal device blindly detects the PDCCH scrambled with the C-RNTI, it is determined that the contention conflict has been resolved. If the terminal device does not blindly detect the PDCCH scrambled with the C-RNTI, the terminal device uses the RAR corresponding to RAPID to send message 3 to the network device. That is, the terminal device goes back to step 3 in the 4-step random access process, and sends message 3 to the network device. For example, the terminal device obtains UL-Grant information of the uplink grant in the RAR; the terminal device sends the message 3 to the network device on the resource indicated by the UL-Grant information. Since the 4-step random access process can be the same as the random access process in the prior art, in order to avoid repetition, it will not be repeated here.
  • the terminal device determines not to send the message 3; and/or if the terminal device does not blindly detect the C-RNTI RNTI scrambled PDCCH, the terminal device determines to send the message 3.
  • the terminal device blindly detects the PDCCH scrambled with the RA-RNTI, and the random access response RAR scheduled by the PDCCH scrambled by the RA-RNTI includes the RAPID corresponding to the preamble sequence At this time, the terminal device will continue to blindly detect the PDCCH scrambled by the C-RNTI. Therefore, the terminal device needs to determine whether it needs to fall back to 4-step random access based on the blind detection result of the C-RNTI Step 3 in the process. That is, the terminal device needs to determine whether to send the message 3 to the network device.
  • the blindly detected PDCCH scrambled with the C-RNTI is used to implicitly instruct the terminal device not to send the message 3. But this application is not limited to this.
  • the network device may also send instruction information to the terminal device for explicitly indicating whether the terminal device sends the message 3 to the network device.
  • the terminal device determines whether to send the message 3 to the network device according to the first indication information, and the first indication information is carried in the PDCCH scrambled with the C-RNTI. That is, the terminal device determines whether to send the message 3 to the network device according to the first indication information in the PDCCH scrambled with the C-RNTI.
  • the first indication information may also be carried in the downlink data scheduled by the PDCCH scrambled by the C-RNTI.
  • the PDSCH scheduled by the PDCCH scrambled by the C-RNTI may include MAC CE,
  • the MAC CE may include the first indication information. The embodiments of the present application do not specifically limit this.
  • the RAR includes second indication information, where the second indication information is used to indicate whether to continue when the terminal device blindly detects the PDCCH scrambled with the RA-RNTI Blind detection uses the PDCCH scrambled by the C-RNTI or whether to continue to obtain the RAPID included in the RAR corresponding to the RA-RNTI.
  • the second indication information is specifically used to indicate that when the terminal device blindly detects the PDCCH scrambled with the RA-RNTI, it continues to acquire the RAPID included in the RAR corresponding to the RA-RNTI, and the When the RAPID included in the RAR corresponding to the RA-RNTI is the same as the RAPID corresponding to the preamble sequence, whether the terminal device sends the message 3 to the network device on the resource indicated by the UL-Grant information included in the RAR.
  • the terminal device may be based on the second indication information, so that the terminal device can clarify the subsequent operation process after blindly detecting the PDCCH scrambled with the RA-RNTI.
  • the second indication information may be carried in the RAR corresponding to the RAPID.
  • the RAR format in the existing 4-step RACH it is the RAR format in the existing 4-step RACH, and the second indication information may use the reserved bit R therein to indicate the following two situations:
  • the first case Instruct the UE to ignore the RAR and continue to monitor the C-RNTI.
  • the second case instruct the UE to treat the RAR as msg2 of the four-step RACH, and use the UL GRANT in the RAR to transmit msg3, so as to fall back to the four-step RACH and stop monitoring the C-RNTI scrambled PDCCH.
  • the second indication information may be carried in the BI subheader of the MAC PDU of the RAR.
  • the second indication information may be carried in the BI subheader of the MAC PDU of the RAR.
  • one or two of the two reserved bits in the BI subheader of the MAC PDU of the RAR may be set as the second indication information.
  • the value of the reserved bit is set to the first value (such as 0 ), which means that the terminal device performing two-step random access needs to continue to search for the RAPID header behind the RAR, and if there is a corresponding RAPID header, it will directly fall back to the four-step random access process.
  • the value of the reserved bit is set to the second value (for example, 1), it means that the terminal device performing two-step random access does not need to continue to search for the RAR, (this can save the UE's overhead), and further continue in the window And/or blindly detect PDCCH scrambled with C-RNTI in the timer.
  • the combination of the two reserved bits can indicate four situations, some possibilities
  • the conditions indicated include:
  • the terminal device blindly detects the PDCCH scrambled with the RA-RNTI, and the RAR scheduled by the RA-RNTI scrambled PDCCH does not include the RAPID corresponding to the preamble sequence, the terminal device continues to use blind detection The PDCCH scrambled by the C-RNTI.
  • the terminal device blindly detects the PDCCH scrambled with the RA-RNTI, and the RAR scheduled by the PDCCH scrambled by the RA-RNTI includes the RAPID corresponding to the preamble sequence, the terminal device stops the blind detection using all The C-RNTI scrambled PDCCH.
  • the terminal device blindly detects the PDCCH scrambled with the RA-RNTI, and the random access response RAR scheduled by the PDCCH scrambled by the RA-RNTI includes the RAPID corresponding to the preamble sequence, the terminal device continues Blind detection uses the PDCCH scrambled by the C-RNTI.
  • the network device may set the BI value to a reserve value. For example, if the index in Table 1 is 14 or 15, the 4-step RACH UE will consider the backoff to be 0. .
  • the backout value indicated by the backout index in the backout index BI subheader may be a reserved value.
  • the network device can instruct the 4-step RACH UE not to backoff, and at the same time send the second indication information to the 2-step RACH UE, thereby preventing the second indication information from affecting the traditional 4-step RACH UE. step RACH UE.
  • the timer used when blindly detecting the PDCCH scrambled by the RA-RNTI and the timer used when blindly detecting the PDCCH scrambled by the C-RNTI are the same timer or different Timer.
  • the blind detection uses the RA-
  • the duration of the timer used when the PDCCH scrambled by the RNTI is used may be greater than or equal to the duration of the timer used when the PDCCH scrambled by the C-RNTI is blindly detected.
  • the timer used when the PDCCH scrambled with the C-RNTI is blindly detected is a timer started when or after the PDCCH scrambled with the RA-RNTI is blindly detected.
  • the terminal device blindly detects the PDCCH scrambled with the RA-RNTI, and the random access response RAR scheduled by the PDCCH scrambled by the RA-RNTI includes the RAPID corresponding to the preamble sequence
  • the terminal The device continues to blindly detect the PDCCH scrambled with the C-RNTI.
  • the terminal device starts the first timer or the first time window, and stops the timer or time window used when blindly detecting the PDCCH scrambled by the RA-RNTI; the first timer Or the duration of the time window may be less than or equal to the preset threshold, and the potential C-RNTI scheduling is blindly checked in the first timer or time window.
  • the timer used when blindly detecting the PDCCH scrambled by the C-RNTI is set to the timer that is started when or after the blindly detecting the PDCCH scrambled by the RA-RNTI, which can effectively reduce the terminal The power consumption of the device.
  • the size of the sequence number of the foregoing processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in this application.
  • the implementation process of the example constitutes any limitation.
  • FIG. 8 is a schematic block diagram of a terminal device 300 according to an embodiment of the present application.
  • the terminal device 3500 may include:
  • the communication unit 310 is configured to send the preamble sequence and the cell access radio network temporary identifier medium access control control element C-RNTI MAC CE to the network equipment, where the C-RNTI MAC CE includes the C-RNTI;
  • the blind detection unit 320 is configured to blindly detect the physical downlink control channel PDCCH scrambled by the C-RNTI;
  • the determining unit 330 is configured to determine whether the contention conflict in the two-step random access process has been resolved according to the blind detection result of the C-RNTI.
  • the terminal device 300 further includes:
  • the initiating unit is used for the communication unit 310 to start the first physical random access channel PRACH where the preamble sequence is located and/or the physical uplink shared channel PUSCH where the C-RNTI MAC CE is located to the network device Timer or first time window;
  • the blind inspection unit 320 is specifically configured to:
  • the duration of the timer or the duration of the time window is configured by the network device.
  • the determining unit 330 is specifically configured to:
  • the blind detection unit 320 blindly detects the PDCCH scrambled with the C-RNTI, it is determined that the contention conflict has been resolved.
  • the terminal device further includes:
  • a decoding unit configured to decode the downlink control information DCI in the PDCCH
  • the DCI includes scheduling information for scheduling downlink data or uplink data.
  • the DCI further includes a time alignment instruction TAC.
  • the DCI when the DCI includes scheduling information for scheduling a physical downlink shared channel PDSCH, the PDSCH includes a MAC CE, and the MAC CE includes the time alignment instruction TAC.
  • the determining unit 330 is specifically configured to:
  • blind detection unit 320 does not blindly detect the PDCCH scrambled with the C-RNTI, determine that the contention conflict is not resolved;
  • the communication unit 310 is also used for:
  • the blind detection unit 320 is further configured to:
  • Blind detection uses random access to access the scrambled PDCCH of the radio network temporary identifier RA-RNTI.
  • the blind detection unit 320 is specifically configured to:
  • the blind detection unit 320 blindly detects the PDCCH scrambled with the RA-RNTI, and the random access response RAR scheduled by the PDCCH scrambled by the RA-RNTI does not include the RAPID corresponding to the preamble sequence, continue blindly Detect the PDCCH scrambled by the C-RNTI.
  • the blind detection unit 320 is specifically configured to:
  • blind detection unit 320 blindly detects the PDCCH scrambled with the RA-RNTI, and the random access response RAR scheduled by the PDCCH scrambled by the RA-RNTI includes the RAPID corresponding to the preamble sequence, stop blind detection PDCCH scrambled with the C-RNTI;
  • the communication unit 310 is also used for:
  • the communication unit 310 is specifically configured to:
  • the blind detection unit 320 is specifically configured to:
  • blind detection unit 320 blindly detects the PDCCH scrambled with the RA-RNTI, and the random access response RAR scheduled by the RA-RNTI scrambled PDCCH includes the RAPID corresponding to the preamble sequence, continue blind detection PDCCH scrambled with the C-RNTI;
  • the determining unit 330 is specifically configured to:
  • the blind detection unit 320 blindly detects the PDCCH scrambled with the C-RNTI, it is determined that the contention conflict has been resolved.
  • the communication unit 310 is further configured to:
  • the blind detection unit 320 does not blindly detect the PDCCH scrambled with the C-RNTI, obtain the uplink grant UL-Grant information in the RAR;
  • the determining unit 330 is further configured to:
  • the determining unit 330 is specifically configured to:
  • the blind detection unit 320 blindly detects the PDCCH scrambled with the C-RNTI, it determines not to send the message 3; and/or
  • the blind detection unit 320 determines to send the message 3.
  • the determining unit 330 is specifically configured to:
  • the RAR includes second indication information, where the second indication information is used to indicate when the terminal device blindly detects the PDCCH scrambled with the RA-RNTI , Whether to continue blind detection of the PDCCH scrambled with the C-RNTI or whether to continue to obtain the RAPID included in the RAR corresponding to the RA-RNTI.
  • the second indication information is specifically used to instruct the terminal device to continue to obtain the corresponding RA-RNTI when blindly detecting the PDCCH scrambled with the RA-RNTI
  • the RAPID included in the RAR, and the RAPID included in the RAR corresponding to the RA-RNTI is the same as the RAPID corresponding to the preamble sequence, whether the terminal device is on the resource indicated by the UL-Grant information included in the RAR Send message 3 to the network device.
  • the second indication information is carried in the backoff index BI subheader of the media access control MAC protocol data unit PDU of the RAR.
  • the backout value indicated by the backout index in the backout index BI subheader is a reserved value.
  • the timer used when blindly detecting the PDCCH scrambled by the RA-RNTI and the timer used when blindly detecting the PDCCH scrambled by the C-RNTI have the same timing Or a different timer.
  • the timer used when blindly detecting the PDCCH scrambled with the C-RNTI is a timer started when or after the blind detecting the PDCCH scrambled with the RA-RNTI .
  • the determining unit 330 is further configured to:
  • the RA-RNTI determined according to the resource used to transmit the C-RNTI MAC CE and/or the resource used to transmit the preamble sequence.
  • FIG. 9 is a schematic block diagram of a network device 400 according to an embodiment of the present application.
  • the network device 400 may include:
  • the communication unit 410 is configured to receive the preamble sequence and the cell access radio network temporary identifier medium access control control element C-RNTI MAC CE sent by the terminal equipment, where the C-RNTI MAC CE includes the C-RNTI;
  • the decoding unit 420 is configured to decode the preamble sequence and the C-RNTI MAC CE;
  • the communication unit 410 is further configured to send a physical downlink control channel PDCCH to the terminal device according to the decoding result of the preamble sequence and the decoding result of the C-RNTI MAC CE.
  • the network device further includes:
  • the starting unit is used for the communication unit 410 to start the first timer or the first timer after receiving the physical random access channel PRACH where the preamble sequence is located and/or the physical uplink shared channel PUSCH where the C-RNTI MAC CE is located A time window
  • the communication unit 410 is specifically configured to:
  • the terminal device After the first timer is started or within the first time window, send the physical downlink control channel PDCCH to the terminal device according to the decoding result of the preamble sequence and the decoding result of the C-RNTI MAC CE.
  • the duration of the timer or the duration of the time window is information configured by the network device to the terminal device.
  • the communication unit 410 is specifically configured to:
  • the decoding unit 420 When the decoding unit 420 successfully decodes the preamble sequence and decodes the C-RNTI MAC CE unsuccessfully, it sends a PDCCH for scheduling the random access response RAR corresponding to the preamble sequence to the terminal device.
  • the communication unit 410 is specifically configured to:
  • the decoding unit 420 When the decoding unit 420 successfully decodes the preamble sequence and decodes the C-RNTI MAC CE successfully, it sends a PDCCH for scheduling the random access response RAR corresponding to the preamble sequence to the terminal device.
  • the communication unit 410 is further configured to:
  • the PDCCH scrambled with the C-RNTI includes first indication information, and the first indication information is used to indicate whether the terminal device transmits to the network device Message 3.
  • the RAR includes second indication information, where the second indication information is used to indicate when the terminal device blindly detects the PDCCH scrambled with the RA-RNTI , Whether to continue blind detection of the PDCCH scrambled with the C-RNTI or whether to continue to obtain the RAPID included in the RAR corresponding to the RA-RNTI.
  • the second indication information is specifically used to instruct the terminal device to continue to obtain the corresponding RA-RNTI when blindly detecting the PDCCH scrambled with the RA-RNTI
  • the RAPID included in the RAR, and the RAPID included in the RAR corresponding to the RA-RNTI is the same as the RAPID corresponding to the preamble sequence, whether the terminal device is on the resource indicated by the UL-Grant information included in the RAR Send message 3 to the network device.
  • the second indication information is carried in the backoff index BI subheader of the media access control MAC protocol data unit PDU of the RAR.
  • the backout value indicated by the backout index in the backout index BI subheader is a reserved value.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment.
  • the terminal device 300 shown in FIG. 8 may correspond to the corresponding main body in the method 200 that executes the embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the terminal device 300 are used to realize the The corresponding process in each method.
  • the network device 400 shown in FIG. 9 may correspond to the corresponding main body in the method 200 that executes the embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the network device 400 are used to realize the For the sake of brevity, the corresponding procedures in each method of the method are not repeated here.
  • the communication device of the embodiment of the present application is described above from the perspective of functional modules in conjunction with FIG. 8 and FIG. 9. It should be understood that the functional module can be implemented in the form of hardware, can also be implemented in the form of software instructions, or can be implemented in a combination of hardware and software modules.
  • the steps of the method embodiments in the embodiments of the present application can be completed by hardware integrated logic circuits in the processor and/or instructions in the form of software, and the steps of the methods disclosed in the embodiments of the present application can be directly embodied as hardware.
  • the execution of the decoding processor is completed, or the execution is completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps in the foregoing method embodiments in combination with its hardware.
  • the communication unit in the embodiment of the present application may be implemented by a transceiver, and its decoding unit, starting unit, and determining unit may be implemented by a processor.
  • FIG. 10 is a schematic structural diagram of a communication device 500 according to an embodiment of the present application.
  • the communication device 500 shown in FIG. 10 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520.
  • the memory 520 may be used to store instruction information, and may also be used to store codes and instructions executed by the processor 510.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 500 may be a terminal device of an embodiment of the application, and the communication device 500 may implement the corresponding process implemented by the terminal device in each method of the embodiment of the application, that is,
  • the communication device 500 may correspond to the terminal device 300 in the embodiment of the present application, and may correspond to a corresponding subject in executing the method 200 according to the embodiment of the present application.
  • details are not described herein again.
  • the communication device 500 may be a network device in an embodiment of the present application, and the communication device 500 may implement corresponding processes implemented by the network device in each method in the embodiments of the present application. That is to say, the communication device 500 in the embodiment of the present application may correspond to the network device 400 in the embodiment of the present application, and may correspond to the corresponding subject in executing the method 200 according to the embodiment of the present application. Repeat.
  • the various components in the communication device 500 are connected by a bus system, where in addition to a data bus, the bus system also includes a power bus, a control bus, and a status signal bus.
  • an embodiment of the present application also provides a chip, which may be an integrated circuit chip with signal processing capability, and can implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the chip can be applied to various communication devices, so that the communication device installed with the chip can execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • Fig. 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 600 shown in FIG. 10 includes a processor 610, and the processor 610 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be used to store instruction information, and may also be used to store codes and instructions executed by the processor 610.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the chip 600 may further include an input interface 630.
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 600 may further include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip. It should also be understood that the various components in the chip 600 are connected by a bus system, where in addition to a data bus, the bus system also includes a power bus, a control bus, and a status signal bus.
  • the processor may include but is not limited to:
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the processor may be used to implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the storage includes but is not limited to:
  • Non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • DR RAM Direct Rambus RAM
  • memories of the systems and methods described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium stores one or more programs, and the one or more programs include instructions that, when executed by a portable electronic device that includes multiple application programs, can cause the portable electronic device to execute the implementation shown in method 200 Example method.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application ,
  • the computer program enables the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application ,
  • I will not repeat it here.
  • the embodiments of the present application also provide a computer program product, including a computer program.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for It's concise, so I won't repeat it here.
  • the embodiment of the application also provides a computer program.
  • the computer program When the computer program is executed by a computer, the computer can execute the method of the embodiment shown in method 200.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the embodiment of the present application also provides a communication system.
  • the communication system may include a terminal device 300 as shown in FIG. 8 and a network device 400 as shown in FIG. 9.
  • the terminal device 300 can be used to implement the corresponding functions implemented by the terminal device in the above method 200
  • the network device 400 can be used to implement the corresponding functions implemented by the network device in the above method 200.
  • This will not be repeated here.
  • system in this article may also be referred to as “network management architecture” or “network system”.
  • the technical solutions of the embodiments of the present application can be embodied in the form of software products in essence or the parts that contribute to the prior art or the parts of the technical solutions, and the computer software products are stored in a storage medium.
  • Including several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • the division of units or modules or components in the device embodiments described above is only a logical function division, and there may be other divisions in actual implementation.
  • multiple units or modules or components can be combined or integrated.
  • To another system, or some units or modules or components can be ignored or not executed.
  • the units/modules/components described as separate/display components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units/modules/components can be selected according to actual needs to achieve the purpose of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种用于随机接入的方法、终端设备和网络设备。该方法包括:该终端设备向网络设备发送前导序列和小区接入无线网络临时标识符媒体接入控制控制元素C-RNTI MAC CE,其中该C-RNTI MAC CE包括C-RNTI;该终端设备盲检用该C-RNTI加扰的物理下行控制信道PDCCH;该终端设备根据该C-RNTI的盲检结果,确定是否已解决两步随机接入过程中的竞争冲突。本申请实施例中,网络设备根据该前导序列的解码结果和该C-RNTI MAC CE的解码结果向该终端设备发送PDCCH,进而终端设备可以通过盲检用该C-RNTI加扰的PDCCH,确定是否已解决两步随机接入过程中的竞争冲突。

Description

用于两步随机接入的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及用于随机接入的方法、终端设备和网络设备。
背景技术
目前,两步随机接入过程正在标准化讨论过程,其处于研究阶段。两步随机接入可以提高时延,同时也能降低信令开销。
具体地,所述两步随机接入过程可以包括第1步和第2步。其中,第1步包括:终端设备向网络设备发送消息消息A(msgA),msgA由前导序列(preamble)和有效负载(payload)组成,preamble为四步随机接入过程的preamble,该preamble在PRACH资源上传输。Payload可以携带4步随机接入过程的msg3中的信息,由PUSCH传输。第2步包括:终端设备接收网络设备发送的消息B(msgB),msgB可包含四步随机接入过程中的msg2和msg4。
但是,由于msgA可以由多个终端设备共享,因此,需要考虑竞争冲突的问题,以及如何解决冲突。
发明内容
提供了一种用于随机接入的方法、终端设备和网络设备,能够有效解决两步RACH中的冲突。
第一方面,提供了一种用于两步随机接入的方法,所述方法包括:
所述终端设备向网络设备发送前导序列和小区接入无线网络临时标识符媒体接入控制控制元素C-RNTI MAC CE,其中所述C-RNTI MAC CE包括C-RNTI;
所述终端设备盲检用所述C-RNTI加扰的物理下行控制信道PDCCH;
所述终端设备根据所述C-RNTI的盲检结果,确定是否已解决两步随机接入过程中的竞争冲突。
本申请实施例中,网络设备根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送PDCCH,进而终端设备可以通过盲检用所述C-RNTI加扰的PDCCH,确定是否已解决两步随机接入过程中的竞争冲突。具体地,如果盲检到用所述C-RNTI加扰的PDCCH,则说明已解决两步随机接入过程中的竞争冲突,如果未盲检到用所述C-RNTI加扰的PDCCH,则说明没有成功解决两步随机接入过程中的竞争冲突。
第二方面,提供了一种用于两步随机接入的方法,所述方法包括:
网络设备接收终端设备发送的前导序列和小区接入无线网络临时标识符媒体接入控制控制元素C-RNTI MAC CE,其中所述C-RNTI MAC CE包括C-RNTI;
所述网络设备解码所述前导序列和所述C-RNTI MAC CE;
所述网络设备根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送物理下行控制信道PDCCH。
第三方面,提供了一种终端设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述终端设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面或其各实现方式中的方法。具体地,所述网络设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
附图说明
图1是本申请应用场景的示例。
图2是本申请实施例的竞争随机接入的示意性流程图。
图3是本申请实施例的MAC PDU的示意性框图。
图4是本申请实施例的BI子头的示意性框图。
图5是本申请实施例的RAPID子头的示意性框图。
图6是本申请实施例的MAC RAR的示意性框图。
图7是本申请实施例的用于两步随机接入的方法的示意性流程图。
图8是本申请实施例的终端设备的示意性框图。
图9是本申请实施例的网络设备的示意性框图。
图10是本申请实施例的通信设备的示意性框图。
图11是本申请实施例的芯片的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是本申请实施例的一个应用场景的示意图。
如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、新无线(New Radio,NR)或未来的5G系统等。
以5G系统为例,5G的主要应用场景包括:增强移动超宽带(Enhance Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable and Low Latency Communication,URLLC)、大规模机器类通信(massive machine type of communication,mMTC)。其中,eMBB以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。由于eMBB可能部署在不同的场景中。例如,室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,可以结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
由于完整的5G NR覆盖很难获取,因此,本申请实施例的网络覆盖可以用广域的长期演进(Long Term Evolution,LTE)覆盖和NR的孤岛覆盖模式。同时,为了保护移动运营商前期在LTE投资,进一步地可以用LTE和NR之间紧密连接(tight interworking)的工作模式。
在图1所示的通信系统100中,网络设备120可以是与终端设备110通信的接入网设备。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
可选地,该网络设备120可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),网络设备120还可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB)。可选地,该网络设备120还可以是下一代无线接入网(Next Generation Radio Access Network,NG RAN),或者是NR系统中的基站(gNB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
可选地,该终端设备110可以是任意终端设备,包括但不限于:经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line, DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备110之间可以进行终端直连(Device to Device,D2D)通信。
无线通信系统100还可以包括与网络设备120进行通信的核心网设备130,该核心网设备130可以是5G核心网(5G Core,5GC)设备,例如,接入与移动性管理功能(Access and Mobility Management Function,AMF),又例如,认证服务器功能(Authentication Server Function,AUSF),又例如,用户面功能(User Plane Function,UPF),又例如,会话管理功能(Session Management Function,SMF)。可选地,核心网络设备130也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。
可选地,在通信系统100中,各功能单元之间可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。需要说明的是,图2所示的部分仅为示例性架构图,除过图1所示的功能单元之外,该网络架构还可以包括其他功能单元或功能实体,如:核心网络设备还可以包含统一数据管理功能(unified data management,UDM)等其他功能单元,本申请实施例不进行具体限定。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合图2对本申请实施例的竞争随机接入进行说明。
图2是本申请实施例的竞争随机接入的示意性流程图。
应理解,在小区搜索过程之后,终端设备已经与小区取得了下行同步,因此终端设备能够接收下行数据。但终端设备只有与小区取得上行同步,才能进行上行传输。终端设备通过随机接入过程(Random Access Procedure)与小区建立连接并取得上行同步。
随机接入的主要目的:
来自RRC_IDLE的初始访问(Initial access from RRC_IDLE);
RRC连接重建过程(RRC Connection Re-establishment procedure);
切换(Handover);
当UL同步状态为“非同步”时,在RRC_CONNECTED期间DL或UL数据到达(DL or UL data arrival during RRC_CONNECTED when UL synchronisation status is"non-synchronised");
当没有用于SR的PUCCH资源时,在RRC_CONNECTED期间UL数据到达(UL data arrival during  RRC_CONNECTED when there are no PUCCH resources for SR available);
SR失败(SR failure);
RRC在同步重配置时的请求(Request by RRC upon synchronous reconfiguration);
从RRC_INACTIVE过渡(Transition from RRC_INACTIVE);
在SCell添加时建立时间对齐(To establish time alignment at SCell addition);
要求其他SI(Request for Other SI);
波束故障恢复(Beam failure recovery)。
如图2所示,本申请实施例中,该竞争随机接入的流程包括:
210,终端设备向网络设备发送前导序列(preamble),以告诉网络设备有一个随机接入请求,同时使得网络设备能估计其与终端设备之间的传输时延并以此校准上行定时(timing)。所述前导序列也可以称为前导码。
具体而言,终端设备选择前导序列索引(preamble index)和用于发送preamble的物理随机接入信道(Physical Random Access Channel,PRACH)资源;由此,Preamble在PRACH上传输。
其中,网络设备会通过广播系统信息系统信息块(System Information Block,SIB)来通知所有的终端设备的竞争随机接入资源,例如,SIB1。此外,每个小区有64个可用的preamble序列,终端设备会选择其中一个(或由网络设备指定)在PRACH上传输。这些序列可以分成两部分,一部分用于基于竞争的随机接入,另一部分用于基于非竞争的随机接入。
220,网络设备向终端设备发送随机接入响应(Random Access Response,RAR)。
具体地,终端设备发送了preamble之后,会在监听RAR的时间窗内根据随机访问无线网络临时标识符(Random Access Radio Network Temporary Identifier,RA-RNTI)值来监听对应的物理下行链路控制信道(Physical Downlink Control Channel,PDCCH),以接收对应RA-RNTI的RAR。如果在此RAR时间窗内没有接收到网络设备回复的RAR,则认为此次随机接入过程失败。应理解,终端设备和eNB都需要唯一的确定RA-RNTI的值,否则终端设备就无法解码RAR,可选地,本申请实施例中,RA-RNTI可以通过收发双方都明确的Preamble的时频位置来计算RA-RNTI的值。
具体地,与preamble相关联的RA-RNTI通过如下公式计算:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id。
其中,s_id为PRACH时机的第一个OFDM符号的索引(0≤s_id<14),t_id为系统帧中PRACH时机的第一个时隙的索引(0≤t_id<80)。f_id是频域中的PRACH时机的索引(0≤f_id<8),ul_carrier_id是用于随机接入前导序列传输的UL载波(0表示NUL载波,1表示SUL载波)。
换句话说,由于终端设备发送的preamble时频位置是确定的,网络设备在解码preamble时,也获得了该preamble的时频位置,进而知道了RAR中需要使用的RA-RNTI。当终端设备成功地接收到一个RAR(使用确定的RA-RNTI来解码),且该RAR中的preamble index与终端设备发送的preamble index相同时,则认为成功接收了RAR,此时终端设备就可以停止监听RAR了。
本申请实施例中,所述RAR可以携带在MAC PDU内,下面结合图3从包括RAR的MAC PDU构成的角度来介绍RAR携带的信息。
如图3所示,由MAC协议数据单元(Protocol Data Unit,PDU)可以包括多个MAC子PDU(subPDU)以及可能存在的填充(padding)比特。
具体而言,如图3所示,第一个MAC subPDU可以是E/T/R/R/BI子头。E/T/R/R/BI子头后面的MAC subPDU可以包括E/T/RAPID子头。具体地,E/T/R/R/BI子头后面的MAC subPDU可以仅包括E/T/RAPID子头,也可以同时包括E/T/RAPID子头和所述E/T/RAPID子头对应的MAC随机接入响应(Random Access Response,RAR)。例如,请继续参见图3,第二个MAC subPDU仅包括E/T/RAPID子头,第三个MAC subPDU同时包括E/T/RAPID子头和所述E/T/RAPID子头对应的RAR。
注意:MAC PDU与MAC RAR的区别:1个MAC PDU包含1个或多个MAC RAR。
从MAC PDU的结构可以看出,如果网络设备在同一PRACH资源上检测到来自多个终端设备的随机接入请求,则使用一个MAC PDU就可以对这些接入请求进行响应,每个随机接入请求(对应一个preamble index)的响应对应一个RAR。换句话说,如果多个终端设备在同一PRACH资源(时频位置相同,使用同一RA-RNTI)发送preamble,则对应的RAR复用在同一MAC PDU中。
MAC PDU在DL-SCH上传输,并通过以RA-RNTI加扰的PDCCH来调度。
即,使用相同PRACH资源发送preamble(不一定相同)的所有终端设备都监听相同的RA-RNTI加扰的PDCCH,并接收相同的MAC PDU,但采用不同preamble index的UE会根据对应的RAPID值找到对应的RAR。
由于MAC PDU只能使用一个RA-RNTI加扰,这也意味着使用不同PRACH资源(时频位置不 同)发送的preamble对应的RAR不能复用到同一个MAC PDU中。
请继续参见图3,一个MAC header由一个或多个MAC subheader组成。除了回退索引子头(Backoff Indicator subheader)外,每个subheader对应一个RAR。
图4是本申请实施例的BI子头的示意性框图。
如图4所示,回退指示BI子头可以包括一个扩展字段(E)、一个类型字段(T)、两个预留字段(R)以及BI值。
针对BI子头,则该BI子头只出现一次,且位于MAC header的第一个subheader处。如果终端设备收到了一个BI子头,则会保存一个回退(Backoff)值,该值对应该subheader中的BI值;否则终端设备会将Backoff值设为0。BI(Backoff Indicator)指定了终端设备重发preamble前需要等待的时间范围。如果终端设备在RAR时间窗内没有接收到RAR,或接收到的RAR中没有一个RAPID与该终端选择的preamble的相符合,则认为此次RAR接收失败。此时终端设备需要等待一段时间后,再发起随机接入。等待的时间为在0至BI指定的等待时间区间内选取一个随机值。
需要注意的是:BI指定的终端设备重发preamble前需要等待的时间可能与物理层timing存在冲突。
本申请实施例中,如何选择发送preamble的子帧,可以取决于终端设备的实现,也可以是物理层timing只是“准备好”发送,实际发送的时间还是由MAC层来决定。本申请实施例不作具体限定。
图5是本申请实施例的RAPID子头的示意性框图。
如图5所示,随机访问序列标识符(Random Access Preamble Identifier,RAPID)子头可以包括一个E、一个T以及RAPID值。
其中,随机访问序列标识符(Random Access Preamble Identifier,RAPID)为网络设备在检测preamble时得到的preamble index。如果终端设备发现该值与自己发送preamble时使用的索引相同,则认为成功接收到对应的RAR。
应理解,由于该RAPID子头中携带有该指示信息占据了原有格式中用于指示终端设备是否具有BI子头的比特。
图6是本申请实施例的MAC RAR的示意性框图。
如图6所示,MAC RAR可以包括:预留比特R、时间对齐指令(Timing alignment Command,TAC)、上行授权(UL grant)、以及临时的小区无线网络临时标识(temporal Cell Radio Network Temporary Identifier,TC-RNTI)。
其中,时间对齐指令(Timing alignment Command,TAC)用于指定终端设备上行同步所需要的时间调整量,可以占据12比特。UL grant指定了分配给Msg3的上行资源。当有上行数据传输时,例如需要解决冲突,网络设备在RAR中分配的grant不能小于56比特。TC-RNTI用于终端设备和网络设备的后续传输。冲突解决后,该值可能变成C-RNIT。
230,终端设备向网络设备发送消息3(Msg3),终端设备会在Msg3有携带自己唯一的标志,例如,小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI),又例如,来自核心网络的终端设备标志(S-TMSI或一个随机数)。
240,网络设备向终端设备发送冲突解决消息(contention resolution)。
具体地,网络设备在冲突解决机制中,会在contention resolution(Msg4)中携带胜出的终端设备的唯一的标志。而其它没有在冲突解决中胜出的终端设备将重新发起随机接入。
本申请提供了一种2步接入过程的随机接入方法,以提高接入效率。
即通过2步RACH实现如图2所示的4步RACH过程。具体地,在2步RACH中,msgA传输4步RACH中的msg1+msg3,msgB传输4步RACH的msg2+msg4。
更具体地,2步接入过程可以包括:
第1步:
终端设备向网络设备发送msgA,msgA由preamble和payload组成,preamble为4步RACH的preamble,该preamble在PRACH资源上传输。Payload可以携带4步RACH的msg3中的信息,比如RRC处于空闲态或非激活态时的RRC信令,以及RRC处于连接态时的C-RNTI,payload可由PUSCH传输。例如,该preamble可以用预先配置的PRACH资源传输,payload可以用预先配置的PUSCH信道传输。
第2步:
终端设备接收网络设备发送的msgB,msgB可包含4步RACH的msg2和msg4。
但是,由于msgA可以由多个UE共享,因此需要考虑冲突的问题,以及如何解决冲突。为了解决上述问题,本申请实施例中提供了一种用于竞争随机接入的方法,能够使得终端设备有效地解决2 步RACH中的接入冲突。本申请实施例中,payload中可以包括一个MAC CE;该MAC CE可以包含一个ID,该ID为C-RNTI;即所述终端设备可向网络设备发送一个C-RNTI MAC CE,终端设备通过网络设备对该C-RNTI MAC CE的响应消息,确定是否已解决两步随机接入的竞争冲突。
图7是本申请实施例的随机接入方法300的示意性框图。
如图7所示,所述方法300可以包括:
S210,所述终端设备向网络设备发送前导序列和小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)媒体接入控制(Media Access Control,MAC)控制元素(control element,CE),其中所述C-RNTI MAC CE包括C-RNTI;
S220,所述网络设备解码所述前导序列和所述C-RNTI MAC CE。
S230,所述网络设备根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送物理下行控制信道(Physical Downlink Control Channel,PDCCH)。
S240,所述终端设备盲检用所述C-RNTI加扰的PDCCH;
S250,所述终端设备根据所述C-RNTI的盲检结果,确定是否已解决两步随机接入过程中的竞争冲突。
终端设备向网络设备发送前导序列和C-RNTI MAC CE,其中所述C-RNTI MAC CE包括C-RNTI;所述终端设备盲检用所述C-RNTI加扰的PDCCH;所述终端设备根据所述C-RNTI的盲检结果,确定是否已解决两步随机接入过程中的竞争冲突。网络设备接收终端设备发送的前导序列和C-RNTI MAC CE,所述网络设备解码所述前导序列和所述C-RNTI MAC CE;所述网络设备根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送PDCCH。
本申请实施例中,网络设备根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送PDCCH,进而终端设备可以通过盲检用所述C-RNTI加扰的PDCCH,确定是否已解决两步随机接入过程中的竞争冲突。具体地,如果盲检到用所述C-RNTI加扰的PDCCH,则说明已解决两步随机接入过程中的竞争冲突,如果未盲检到用所述C-RNTI加扰的PDCCH,则说明没有成功解决两步随机接入过程中的竞争冲突。
可选地,终端设备可以在一个定时器或时间窗内盲检用所述C-RNTI加扰的PDCCH。
例如,所述终端设备向所述网络设备发送所述前导序列和/或所述C-RNTI MAC CE之后,启动第一定时器或第一时间窗;所述前导序列在PRACH资源上发送,所述C-RNTI MAC CE在所述PUSCH资源上发送。此时,所述终端设备在所述第一定时器启动后或所述第一时间窗内,盲检用所述C-RNTI加扰的PDCCH。可选地,所述定时器的时长或所述时间窗的时长由所述网络设备配置。换句话说,所述第一定时器或所述第一时间窗既可以在所述PRACH传输之后启动,也可以在PUSCH传输之后启动。
当然,所述定时器的时长或所述时间窗的时长也可以是预配置的时长,例如所述定时器的时长或所述时间窗的时长可以是协议规定的时长,即针对所述终端设备和所述网络设备来说,所述定时器的时长和所述时间窗的时长可以是预先规定的时长。
换句话说,网络设备收到所述前导序列所在的物理随机接入信道(Physical Random Access Channel,PRACH)和/或所述C-RNTI MAC CE所在的PUSCH之后,启动第一定时器或第一时间窗;此时,所述网络设备在所述第一定时器启动后或所述第一时间窗内,根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送PDCCH。同样地,所述定时器的时长或所述时间窗的时长为所述网络设备配置给所述终端设备的信息,也可以是协议规定的时长,本申请不做具体限制。
下面对网络设备执行S220和S230的具体实现方式进行详细说明。
在S230中,所述终端设备向网络设备发送前导序列和C-RNTI MAC CE之后,所述网络设备需要在S220中接收并解码所述前导序列和所述C-RNTI MAC CE,然后所述网络设备根据不同的解码情况发送不同的PDCCH。例如,包括不同信息的PDCCH。
具体地,在S220中,网络设备解码前导序列和C-RNTI MAC CE的结果可以包括以下三种情况:
第一种情况:网络设备成功解码出一个或者多个前导序列(preamble)。
第二种情况:网络设备成功解码出一个或者多个preamble,及一个或者多个C-RNTI MAC CE。
第三种情况:网络设备成功解码C-RNTI MAC CE但是没有解码出preamble,由于网络设备是先解码preamble,然后解码C-RNTI MAC CE的,因此这种情况发生的可能性比较小。
在第一种情况中,如果网络设备只解码出preamble,则网络设备不能区分出所述preamble对应的终端设备。由于所述preamble可能对应有多个终端设备,即所述多个终端设备采用相同的PRACH资源传输preamble。此时,所述网络设备可以响应所述preamble,也可以不响应所述preamble。所述网 络设备响应所述preamble时,发送一个四步RACH中的RAR来响应preamble,此时可以使得进行两步RACH的终端设备回退到四步RACH。所述网络设备不响应所述preamble时,终端设备可以重新执行上述S210,即所述终端设备向网络设备发送前导序列和C-RNTI MAC CE,其中所述C-RNTI MAC CE包括C-RNTI。
需要注意的是,在这种情况下,如果网络设备能够区分出解码出的preamble对应的终端设备为进行4步RACH的终端设备或者为进行两步RACH的终端设备(比如通过配置不同的PRACH资源),则网络设备也可以发送一个指示信息,使得进行两步RACH的终端设备停止盲检用所述C-RNTI加扰的PDCCH,从而能够使得进行两步RACH的终端设备尽快重新执行上述S210。
在第二种情况中,如果所述网络设备解码出preamble以及C-RNTI MAC CE,则所述网络设备能够至少区分出C-RNTI MAC中ID(例如C-RNTI)对应的终端设备,此时所述网络设备能够响应C-RNTI MAC CE,即所述终端设备可以向终端设备发送采用C-RNTI加扰的PDCCH。
需要注意的是,承载preamble的PRACH和承载C-RNTI MAC CE的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)之间存在一定关联关系,如果网络设备响应C-RNTI MAC CE时,需要基于上述关联关系响应C-RNTI MAC CE。例如,如果已成功解码的preamble对应的C-RNTI MAC CE解码没有成功时,所述网络设备可以响应preamble,也可以不响应preamble。如果已成功解码的preamble对应的C-RNTI MAC CE解码成功时,所述网络设备可以响应C-RNTI MAC CE。进一步地,由于多个终端设备可能同时使用了所述已成功解码的preamble,因此,所述网络设备还可以进一步可以响应所述已成功解码的preamble。
也就是说,所述网络设备解码所述前导序列成功,且解码所述C-RNTI MAC CE未成功时,向所述终端设备发送用于调度所述前导序列对应的RAR的PDCCH。又例如,所述网络设备解码所述前导序列成功,且解码所述C-RNTI MAC CE成功时,向所述终端设备发送用于调度所述前导序列对应的RAR的PDCCH;进一步地,所述网络设备解码所述前导序列成功,且解码所述C-RNTI MAC CE成功时,所述网络设备还可以向所述终端设备发送用所述C-RNTI加扰的PDCCH。
下面对所述终端设备执行S240和S250的具体实现方式进行详细说明。
实施例一:
若所述终端设备在S240中盲检到用所述C-RNTI加扰的PDCCH,在S250中,所述终端设备确定已解决所述竞争冲突。
或者,若所述终端设备在S240中盲检到用所述C-RNTI加扰的PDCCH,所述终端设备停止所述第一定时器或停止在所述第一时间窗内盲检用所述C-RNTI加扰的PDCCH。
此时,所述终端设备解码所述PDCCH中的下行控制信息(Downlink Control Information,DCI);其中,所述DCI包括用于调度下行数据或上行数据的调度信息。可选地,所述DCI还可以包括时间对齐指令(Timing alignment Command,TAC)。可选地,所述DCI包括用于调度PDSCH的调度信息时,所述PDSCH包括MAC CE,所述MAC CE包括所述时间对齐指令TAC。也就是说,所述DCI可以包括用于调度下行数据的调度信息,或者包括用于调度上行数据的调度信息,或者同时包括用于调度下行数据的调度信息和TAC,或者同时包括用于调度上行数据的调度信息和TAC。该TAC用于所述终端设备在进行接下来的上行传输时的上行时序调增。
若所述终端设备在S240未盲检到用所述C-RNTI加扰的PDCCH,在S250中,所述终端设备确定未解决所述竞争冲突。
此时,所述终端设备重新选择用于发送所述前导序列和/或所述C-RNTI MAC CE的资源,并重新向所述网络设备发送所述前导序列和/或所述C-RNTI MAC CE。即所述终端设备重新执行S210,以重新进行两步随机接入过程。
实施例二:
所述终端设备盲检用所述C-RNTI加扰的PDCCH,并且盲检用RA-RNTI所述加扰的PDCCH。即所述终端设备既盲检用所述C-RNTI加扰的PDCCH,还盲检用RA-RNTI所述加扰的PDCCH。
其中,所述终端设备确定的所述RA-RNTI的方法可以和现有技术一样,也可以不一样,本申请实施例对此不做具体限定,例如,所述终端设备可以根据用于传输所述C-RNTI MAC CE的资源和/或用于传输所述前导序列的资源确定的所述RA-RNTI。
以所述终端设备根据用于传输所述前导序列的资源确定所述RA-RNTI为例,所述终端设备可以按照以下公式确定所述RA-RNTI:
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id。
其中,s_id为PRACH时机的第一个OFDM符号的索引(0≤s_id<14),t_id为系统帧中PRACH时机的第一个时隙的索引(0≤t_id<80)。f_id是频域中的PRACH时机的索引(0≤f_id<8),ul_carrier_id是 用于随机接入前导序列传输的UL载波(0表示NUL载波,1表示SUL载波)。对于FDD而言,每个子帧只有一个PRACH资源,因此,f_id固定为0。
作为一个实施例,若所述终端设备盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的RAR不包含所述前导序列对应的RAPID,所述终端设备继续盲检用所述C-RNTI加扰的PDCCH。
进一步地,若所述终端设备在所述时间窗结束或者定时器超时之前盲检到用所述C-RNTI加扰的PDCCH,则所述终端设备确定已成功解决竞争冲突,此时停止继续盲检到用所述C-RNTI加扰的PDCCH。若所述终端设备没有成功监听到C-RNTI,则所述终端设备重新执行210,即所述终端设备重新选择用于发送所述前导序列和/或所述C-RNTI MAC CE的资源,并重新向所述网络设备发送所述前导序列和/或所述C-RNTI MAC CE。即所述终端设备重新执行S210,以重新进行两步随机接入过程。
作为另一个实施例,若所述终端设备盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的RAR包含所述前导序列对应的RAPID,所述终端设备停止盲检用所述C-RNTI加扰的PDCCH。
或者说,若所述终端设备盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的RAR包含所述前导序列对应的RAPID,所述终端设备停止定时器或停止在时间窗内盲检用所述C-RNTI加扰的PDCCH。
此时,所述终端设备把该接收到的RAR当成是四步RACH流程中的msg2,且使用RAR中调度的UL GRANT传输msg3,也就是说UE回退到四步RACH流程。即所述终端设备回退到4步随机接入过程中的步骤3中,向所述网络设备发送消息3。例如,所述终端设备获取所述RAR中的上行授权UL-Grant信息;所述终端设备在所述UL-Grant信息指示的资源上向所述网络设备发送消息3。由于4步随机接入过程可以和现有技术中的随机接入过程相同,为避免重复,此处不再赘述。
实施例三:
若所述终端设备盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR包含所述前导序列对应的RAPID,所述终端设备继续盲检用所述C-RNTI加扰的PDCCH。
进一步地,若所述终端设备盲检到用所述C-RNTI加扰的PDCCH,确定已解决所述竞争冲突。若所述终端设备未盲检到用所述C-RNTI加扰的PDCCH,所述终端设备使用RAPID对应的RAR向所述网络设备发送消息3。即所述终端设备回退到4步随机接入过程中的步骤3中,向所述网络设备发送消息3。例如,所述终端设备获取所述RAR中的上行授权UL-Grant信息;所述终端设备在所述UL-Grant信息指示的资源上向所述网络设备发送消息3。由于4步随机接入过程可以和现有技术中的随机接入过程相同,为避免重复,此处不再赘述。
更进一步的,若终端设备盲检到用所述C-RNTI加扰的PDCCH,所述终端设备确定不发送所述消息3;和/或若所述终端设备未盲检到用所述C-RNTI加扰的PDCCH,所述终端设备确定发送所述消息3。
本申请实施例中,由于所述终端设备盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR包含所述前导序列对应的RAPID时,所述终端设备还会继续盲检用所述C-RNTI加扰的PDCCH,因此,所述终端设备需要基于所述C-RNTI的盲检结果确定是否需要回退到4步随机接入过程中的第3步。即所述终端设备需要确定是否向所述网络设备发送消息3。
在本实施例中,盲检到的用所述C-RNTI加扰的PDCCH用于隐式的指示所述终端设备不发所述消息3。但本申请不限于此。
例如,在可替代实施例中,所述网络设备还可以向所述终端设备发送指示信息,用于明确指示所述终端设备是否向所述网络设备发送所述消息3。例如,所述终端设备根据第一指示信息,确定是否向所述网络设备发送所述消息3,所述第一指示信息携带在用所述C-RNTI加扰的PDCCH内。即所述终端设备根据用所述C-RNTI加扰的PDCCH内的第一指示信息确定是否向所述网络设备发送所述消息3。当然,所述第一指示信息也可以携带在用所述C-RNTI加扰的PDCCH所调度的下行数据中,例如,用所述C-RNTI加扰的PDCCH所调度的PDSCH可以包括MAC CE,所述MAC CE可以包括所述第一指示信息。本申请实施例对此不做具体限定。
在本申请的一些实施例中,所述RAR包括第二指示信息,其中,所述第二指示信息用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,是否继续盲检用所述C-RNTI加扰的PDCCH或者是否继续获取所述RA-RNTI对应的RAR中包括的RAPID。
进一步地,所述第二指示信息具体用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH 时,继续获取所述RA-RNTI对应的RAR中包括的RAPID,且所述RA-RNTI对应的RAR中包括的RAPID和所述前导序列对应的RAPID相同时,所述终端设备是否在所述RAR中包括的UL-Grant信息指示的资源上向所述网络设备发送消息3。
本申请实施例中,所述终端设备可以基于所述第二指示信息,使得所述终端设备在盲检到用所述RA-RNTI加扰的PDCCH后能够明确后续的操作流程。
在一种可实现方式中,所述第二指示信息可以携带在所述RAPID对应的RAR中。比如,如图6所示,是现有4步RACH中的RAR格式,所述第二指示信息可以用其中的预留比特R来指示如下两种情况:
第一种情况:指示UE忽视该RAR,继续监听C-RNTI。
第二种情况:指示UE把该RAR当成四步RACH的msg2,使用该RAR中的UL GRANT传输msg3,从而回退到四步RACH,并停止监听C-RNTI加扰的PDCCH。
在另一种可实现方式中,所述第二指示信息可以携带在所述RAR的MAC PDU的BI子头内。例如,如图4所示,可以将所述RAR的MAC PDU的BI子头内的两个预留比特中的一个或者两个设置为所述第二指示信息。
例如,将所述RAR的MAC PDU的BI子头内的两个预留比特中的一个设置为所述第二指示信息时,若所述预留比特的值设置为第一值时(比如0),表示进行二步随机接入的终端设备需要继续查找该RAR后面的RAPID包头,如果有对应的RAPID包头,则直接回退到四步随机接入过程。若所述预留比特的值设置为第二值时(比如1),表示进行二步随机接入的终端设备不需要继续查找该RAR,(这样可以节省UE的开销),而进一步继续在窗口和/或定时器中盲检用C-RNTI加扰的PDCCH。
又例如,将所述RAR的MAC PDU的BI子头内的两个预留比特均设置为所述第二指示信息时,则两个两个预留比特的组合可以指示四种情况,一些可能指示的情况包括:
实施例二中的情况:
若所述终端设备盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的RAR不包含所述前导序列对应的RAPID,所述终端设备继续盲检用所述C-RNTI加扰的PDCCH。
若所述终端设备盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的RAR包含所述前导序列对应的RAPID,所述终端设备停止盲检用所述C-RNTI加扰的PDCCH。
实施例三中的情况:
若所述终端设备盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR包含所述前导序列对应的RAPID,所述终端设备继续盲检用所述C-RNTI加扰的PDCCH。
本申请实施例中,所述网络设备可以将BI值设置成保留(reserve)值,例如,如表1中的索引(index)为14或15,此时4-step RACH UE会认为backoff为0。
表1索引和回退参数值的对应关系
索引 回退参数值(ms)
0 5
1 10
2 20
3 30
4 40
5 60
6 80
7 120
8 160
9 240
10 320
11 480
12 960
13 1920
14 Reserved
15 Reserved
本申请实施例中,如表1所示,所述回退索引BI子头中的回退索引指示的回退值可以为预留值。此时,网络设备可以指示4-step RACH UE不回退(backoff)的同时,向2-step RACH UE发送所述第 二指示信息,进而避免了所述第二指示信息影响到传统的4-step RACH UE。
应理解,本申请实施例中,盲检用所述RA-RNTI加扰的PDCCH时使用的定时器和盲检用所述C-RNTI加扰的PDCCH时使用的定时器为同一定时器或者不同的定时器。
例如,盲检用所述RA-RNTI加扰的PDCCH时使用的定时器和盲检用所述C-RNTI加扰的PDCCH时使用的定时器为不同定时器时,盲检用所述RA-RNTI加扰的PDCCH时使用的定时器的时长可以大于或等于盲检用所述C-RNTI加扰的PDCCH时使用的定时器的时长。
或者,盲检用所述C-RNTI加扰的PDCCH时使用的定时器为盲检到用所述RA-RNTI加扰的PDCCH时或后启动的定时器。
例如,若所述终端设备盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR包含所述前导序列对应的RAPID,所述终端设备继续盲检用所述C-RNTI加扰的PDCCH。此时所述终端设备启动所述第一定时器或所述第一时间窗,并停止盲检用所述RA-RNTI加扰的PDCCH时使用的定时器或时间窗;所述第一定时器或时间窗的时长可以小于或等于预设阈值,在所述第一定时器或时间窗中盲检潜在的C-RNTI调度。
本申请实施例中,盲检用所述C-RNTI加扰的PDCCH时使用的定时器设置为盲检到用所述RA-RNTI加扰的PDCCH时或后启动的定时器,能够有效降低终端设备的功耗。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文结合图1至图7,详细描述了本申请的方法实施例,下文结合图8至图9,详细描述本申请的装置实施例。
图8是本申请实施例的终端设备300的示意性框图。
具体地,如图8所示,终端设备3500可以包括:
通信单元310,用于向网络设备发送前导序列和小区接入无线网络临时标识符媒体接入控制控制元素C-RNTI MAC CE,其中所述C-RNTI MAC CE包括C-RNTI;
盲检单元320,用于盲检用所述C-RNTI加扰的物理下行控制信道PDCCH;
确定单元330,用于根据所述C-RNTI的盲检结果,确定是否已解决两步随机接入过程中的竞争冲突。
可选地,在一些可能的实现方式中,所述终端设备300还包括:
启动单元,用于所述通信单元310向所述网络设备发送所述前导序列所在的物理随机接入信道PRACH和/或所述C-RNTI MAC CE所在的物理上行共享信道PUSCH之后,启动第一定时器或第一时间窗;
所述盲检单元320具体用于:
在所述第一定时器启动后或所述第一时间窗内,盲检用所述C-RNTI加扰的PDCCH。
可选地,在一些可能的实现方式中,所述定时器的时长或所述时间窗的时长由所述网络设备配置。
可选地,在一些可能的实现方式中,所述确定单元330具体用于:
若所述盲检单元320盲检到用所述C-RNTI加扰的PDCCH,确定已解决所述竞争冲突。
可选地,在一些可能的实现方式中,所述终端设备还包括:
解码单元,用于解码所述PDCCH中的下行控制信息DCI;
其中,所述DCI包括用于调度下行数据或上行数据的调度信息。
可选地,在一些可能的实现方式中,所述DCI还包括时间对齐指令TAC。
可选地,在一些可能的实现方式中,所述DCI包括用于调度物理下行共享信道PDSCH的调度信息时,所述PDSCH包括MAC CE,所述MAC CE包括所述时间对齐指令TAC。
可选地,在一些可能的实现方式中,所述确定单元330具体用于:
若所述盲检单元320未盲检到用所述C-RNTI加扰的PDCCH,确定未解决所述竞争冲突;
所述通信单元310还用于:
重新向所述网络设备发送所述前导序列和/或所述C-RNTI MAC CE。
可选地,在一些可能的实现方式中,所述盲检单元320还用于:
盲检用随机访问接入无线网络临时标识符RA-RNTI所述加扰的PDCCH。
可选地,在一些可能的实现方式中,所述盲检单元320具体用于:
若所述盲检单元320盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR不包含所述前导序列对应的RAPID,继续盲检用所述C-RNTI加扰的PDCCH。
可选地,在一些可能的实现方式中,所述盲检单元320具体用于:
若所述盲检单元320盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR包含所述前导序列对应的RAPID,停止盲检用所述C-RNTI加扰的PDCCH;
所述通信单元310还用于:
使用RAPID对应的RAR向网络设备发送消息3。
可选地,在一些可能的实现方式中,所述通信单元310具体用于:
获取所述RAR中的上行授权UL-Grant信息;
在所述UL-Grant信息指示的资源上向所述网络设备发送消息3。
可选地,在一些可能的实现方式中,所述盲检单元320具体用于:
若所述盲检单元320盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR包含所述前导序列对应的RAPID,继续盲检用所述C-RNTI加扰的PDCCH;
所述确定单元330具体用于:
若所述盲检单元320盲检到用所述C-RNTI加扰的PDCCH,确定已解决所述竞争冲突。
可选地,在一些可能的实现方式中,所述通信单元310还用于:
若所述盲检单元320未盲检到用所述C-RNTI加扰的PDCCH,获取所述RAR中的上行授权UL-Grant信息;
在所述UL-Grant信息指示的资源上向所述网络设备发送消息3。
可选地,在一些可能的实现方式中,所述确定单元330还用于:
确定是否向所述网络设备发送消息3。
可选地,在一些可能的实现方式中,所述确定单元330具体用于:
若所述盲检单元320盲检到用所述C-RNTI加扰的PDCCH,确定不发送所述消息3;和/或
若所述盲检单元320未盲检到用所述C-RNTI加扰的PDCCH,确定发送所述消息3。
可选地,在一些可能的实现方式中,所述确定单元330具体用于:
根据第一指示信息,确定是否向所述网络设备发送所述消息3,所述第一指示信息携带在用所述C-RNTI加扰的PDCCH内。
可选地,在一些可能的实现方式中,所述RAR包括第二指示信息,其中,所述第二指示信息用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,是否继续盲检用所述C-RNTI加扰的PDCCH或者是否继续获取所述RA-RNTI对应的RAR中包括的RAPID。
可选地,在一些可能的实现方式中,所述第二指示信息具体用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,继续获取所述RA-RNTI对应的RAR中包括的RAPID,且所述RA-RNTI对应的RAR中包括的RAPID和所述前导序列对应的RAPID相同时,所述终端设备是否在所述RAR中包括的UL-Grant信息指示的资源上向所述网络设备发送消息3。
可选地,在一些可能的实现方式中,所述第二指示信息携带在所述RAR的媒体接入控制MAC协议数据单元PDU的回退索引BI子头内。
可选地,在一些可能的实现方式中,所述回退索引BI子头中的回退索引指示的回退值为预留值。
可选地,在一些可能的实现方式中,盲检用所述RA-RNTI加扰的PDCCH时使用的定时器和盲检用所述C-RNTI加扰的PDCCH时使用的定时器为同一定时器或者不同的定时器。
可选地,在一些可能的实现方式中,盲检用所述C-RNTI加扰的PDCCH时使用的定时器为盲检到用所述RA-RNTI加扰的PDCCH时或后启动的定时器。
可选地,在一些可能的实现方式中,所述确定单元330还用于:
根据用于传输所述C-RNTI MAC CE的资源和/或用于传输所述前导序列的资源确定的所述RA-RNTI。
图9是本申请实施例的网络设备400的示意性框图。
如图4所示,所述网络设备400可以包括:
通信单元410,用于接收终端设备发送的前导序列和小区接入无线网络临时标识符媒体接入控制控制元素C-RNTI MAC CE,其中所述C-RNTI MAC CE包括C-RNTI;
解码单元420,用于解码所述前导序列和所述C-RNTI MAC CE;
所述通信单元410还用于:根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送物理下行控制信道PDCCH。
可选地,在一些可能的实现方式中,所述网络设备还包括:
启动单元,用于所述通信单元410收到所述前导序列所在的物理随机接入信道PRACH和/或所述C-RNTI MAC CE所在的物理上行共享信道PUSCH之后,启动第一定时器或第一时间窗;
其中,所述通信单元410具体用于:
在所述第一定时器启动后或所述第一时间窗内,根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送物理下行控制信道PDCCH。
可选地,在一些可能的实现方式中,所述定时器的时长或所述时间窗的时长为所述网络设备配置给所述终端设备的信息。
可选地,在一些可能的实现方式中,所述通信单元410具体用于:
所述解码单元420解码所述前导序列成功,且解码所述C-RNTI MAC CE未成功时,向所述终端设备发送用于调度所述前导序列对应的随机接入响应RAR的PDCCH。
可选地,在一些可能的实现方式中,所述通信单元410具体用于:
所述解码单元420解码所述前导序列成功,且解码所述C-RNTI MAC CE成功时,向所述终端设备发送用于调度所述前导序列对应的随机接入响应RAR的PDCCH。
可选地,在一些可能的实现方式中,所述通信单元410还用于:
向所述终端设备发送用所述C-RNTI加扰的PDCCH。
可选地,在一些可能的实现方式中,所述用所述C-RNTI加扰的PDCCH包括第一指示信息,所述第一指示信息用于指示所述终端设备是否向所述网络设备发送消息3。
可选地,在一些可能的实现方式中,所述RAR包括第二指示信息,其中,所述第二指示信息用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,是否继续盲检用所述C-RNTI加扰的PDCCH或者是否继续获取所述RA-RNTI对应的RAR中包括的RAPID。
可选地,在一些可能的实现方式中,所述第二指示信息具体用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,继续获取所述RA-RNTI对应的RAR中包括的RAPID,且所述RA-RNTI对应的RAR中包括的RAPID和所述前导序列对应的RAPID相同时,所述终端设备是否在所述RAR中包括的UL-Grant信息指示的资源上向所述网络设备发送消息3。
可选地,在一些可能的实现方式中,所述第二指示信息携带在所述RAR的媒体接入控制MAC协议数据单元PDU的回退索引BI子头内。
可选地,在一些可能的实现方式中,所述回退索引BI子头中的回退索引指示的回退值为预留值。
应理解,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。具体地,图8所示的终端设备300可以对应于执行本申请实施例的方法200中的相应主体,并且终端设备300中的各个单元的前述和其它操作和/或功能分别为了实现图1中的各个方法中的相应流程。类似地,图9所示的网络设备400可以对应于执行本申请实施例的方法200中的相应主体,并且网络设备400中的各个单元的前述和其它操作和/或功能分别为了实现图1中的各个方法中的相应流程,为了简洁,在此不再赘述。
上文中结合图8和图9从功能模块的角度描述了本申请实施例的通信设备。应理解,该功能模块可以通过硬件形式实现,也可以通过软件形式的指令实现,还可以通过硬件和软件模块组合实现。
具体地,本申请实施例中的方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路和/或软件形式的指令完成,结合本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。
可选地,软件模块可以位于随机存储器,闪存、只读存储器、可编程只读存储器、电可擦写可编程存储器、寄存器等本领域的成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法实施例中的步骤。
例如,本申请实施例中通信单元可由收发器实现,其解码单元、启动单元以及确定单元可以由处理器实现。
图10是本申请实施例的通信设备500示意性结构图。图10所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备500还可以包括存储器520。该存储器520可以用于存储指示信息,还可以用于存储处理器510执行的代码、指令等。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图10所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备500可为本申请实施例的终端设备,并且该通信设备500可以实现本申请实施例的各个方法中由终端设备实现的相应流程,也就是说,本申请实施例的通信设备500可对应于本申请实施例中的终端设备300,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。
可选地,该通信设备500可为本申请实施例的网络设备,并且该通信设备500可以实现本申请实施例的各个方法中由网络设备实现的相应流程。也就是说,本申请实施例的通信设备500可对应于本申请实施例中的网络设备400,并可以对应于执行根据本申请实施例的方法200中的相应主体,为了简洁,在此不再赘述。
应当理解,该通信设备500中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
此外,本申请实施例中还提供了一种芯片,该芯片可能是一种集成电路芯片,具有信号的处理能力,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。
可选地,该芯片可应用到各种通信设备中,使得安装有该芯片的通信设备能够执行本申请实施例中的公开的各方法、步骤及逻辑框图。
图10是根据本申请实施例的芯片的示意性结构图。
图10所示的芯片600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。该存储器620可以用于存储指示信息,还可以用于存储处理器610执行的代码、指令等。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该芯片600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。还应理解,该芯片600中的各个组件通过总线系统相连,其中,总线系统除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
所述处理器可以包括但不限于:
通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。
所述处理器可以用于实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
所述存储器包括但不限于:
易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、 动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中还提供了一种计算机可读存储介质,用于存储计算机程序。该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行方法200所示实施例的方法。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序产品,包括计算机程序。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例中还提供了一种计算机程序。当该计算机程序被计算机执行时,使得计算机可以执行方法200所示实施例的方法。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种通信系统,所述通信系统可以包括如图8所示的终端设备300和如图9所示的网络设备400。其中,所述终端设备300可以用于实现上述方法200中由终端设备实现的相应的功能,所述网络设备400可以用于实现上述方法200中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
需要说明的是,本文中的术语“系统”等也可以称为“网络管理架构”或者“网络系统”等。
还应当理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。
例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
所属领域的技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。
例如,以上所描述的装置实施例中单元或模块或组件的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如,多个单元或模块或组件可以结合或者可以集成到另一个系统,或一些单元或模块或组件可以忽略,或不执行。
又例如,上述作为分离/显示部件说明的单元/模块/组件可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者 全部单元/模块/组件来实现本申请实施例的目的。
最后,需要说明的是,上文中显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
以上内容,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以权利要求的保护范围为准。

Claims (80)

  1. 一种用于两步随机接入的方法,其特征在于,所述方法包括:
    终端设备向网络设备发送前导序列和小区接入无线网络临时标识符媒体接入控制控制元素C-RNTI MAC CE,其中所述C-RNTI MAC CE包括C-RNTI;
    所述终端设备盲检用所述C-RNTI加扰的物理下行控制信道PDCCH;
    所述终端设备根据所述C-RNTI的盲检结果,确定是否已解决两步随机接入过程中的竞争冲突。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送所述前导序列所在的物理随机接入信道PRACH和/或所述C-RNTI MAC CE所在的物理上行共享信道PUSCH之后,启动第一定时器或第一时间窗;
    其中,所述终端设备盲检用所述C-RNTI加扰的物理下行控制信道PDCCH,包括:
    所述终端设备在所述第一定时器启动后或所述第一时间窗内,盲检用所述C-RNTI加扰的PDCCH。
  3. 根据权利要求2所述的方法,其特征在于,所述定时器的时长或所述时间窗的时长由所述网络设备配置。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述终端设备根据所述C-RNTI的盲检结果,确定是否已解决两步随机接入过程中的竞争冲突,包括:
    若所述终端设备盲检到用所述C-RNTI加扰的PDCCH,所述终端设备确定已解决所述竞争冲突。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述终端设备解码所述PDCCH中的下行控制信息DCI;
    其中,所述DCI包括用于调度下行数据或上行数据的调度信息。
  6. 根据权利要求5所述的方法,其特征在于,所述DCI还包括时间对齐指令TAC。
  7. 根据权利要求5所述的方法,其特征在于,所述DCI包括用于调度物理下行共享信道PDSCH的调度信息,所述PDSCH包括MAC CE,所述MAC CE包括所述时间对齐指令TAC。
  8. 根据权利要求1至4中任一项所述的方法,其特征在于,所述终端设备根据所述C-RNTI的盲检结果,确定是否已解决两步随机接入过程中的竞争冲突,包括:
    若所述终端设备未盲检到用所述C-RNTI加扰的PDCCH,所述终端设备确定未解决所述竞争冲突;
    所述方法还包括:
    所述终端设备重新向所述网络设备发送所述前导序列和/或所述C-RNTI MAC CE。
  9. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备盲检用随机访问接入无线网络临时标识符RA-RNTI所述加扰的PDCCH。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备盲检用所述C-RNTI加扰的物理下行控制信道PDCCH,包括:
    若所述终端设备盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR不包含所述前导序列对应的RAPID,所述终端设备继续盲检用所述C-RNTI加扰的PDCCH。
  11. 根据权利要求9或10所述的方法,其特征在于,所述终端设备盲检用所述C-RNTI加扰的物理下行控制信道PDCCH,包括:
    若所述终端设备盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR包含所述前导序列对应的RAPID,所述终端设备停止盲检用所述C-RNTI加扰的PDCCH;
    所述方法还包括:
    所述终端设备使用RAPID对应的RAR向所述网络设备发送消息3。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述终端设备获取所述RAR中的上行授权UL-Grant信息;
    所述终端设备在所述UL-Grant信息指示的资源上向所述网络设备发送消息3。
  13. 根据权利要求9所述的方法,其特征在于,所述终端设备盲检用所述C-RNTI加扰的物理下行控制信道PDCCH,包括:
    若所述终端设备盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR包含所述前导序列对应的RAPID,所述终端设备继续盲检用所述C-RNTI加扰的PDCCH;
    其中,所述所述终端设备根据所述C-RNTI的盲检结果,确定是否已解决两步随机接入过程中的竞争冲突,包括:
    若所述终端设备盲检到用所述C-RNTI加扰的PDCCH,确定已解决所述竞争冲突。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    若所述终端设备未盲检到用所述C-RNTI加扰的PDCCH,所述终端设备获取所述RAR中的上行授权UL-Grant信息;
    所述终端设备在所述UL-Grant信息指示的资源上向所述网络设备发送消息3。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    所述终端设备确定是否向所述网络设备发送消息3。
  16. 根据权利要求15所述的方法,其特征在于,所述终端设备确定是否向所述网络设备发送消息3,包括:
    若所述终端设备盲检到用所述C-RNTI加扰的PDCCH,所述终端设备确定不发送所述消息3;和/或
    若所述终端设备未盲检到用所述C-RNTI加扰的PDCCH,所述终端设备确定发送所述消息3。
  17. 根据权利要求15所述的方法,其特征在于,所述终端设备确定是否向所述网络设备发送消息3,包括:
    所述终端设备根据第一指示信息,确定是否向所述网络设备发送所述消息3,所述第一指示信息携带在用所述C-RNTI加扰的PDCCH内。
  18. 根据权利要求9至17中任一项所述的方法,其特征在于,所述RAR包括第二指示信息,其中,所述第二指示信息用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,是否继续盲检用所述C-RNTI加扰的PDCCH或者是否继续获取所述RA-RNTI对应的RAR中包括的RAPID。
  19. 根据权利要求18所述的方法,其特征在于,所述第二指示信息具体用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,继续获取所述RA-RNTI对应的RAR中包括的RAPID,且所述RA-RNTI对应的RAR中包括的RAPID和所述前导序列对应的RAPID相同时,所述终端设备是否在所述RAR中包括的UL-Grant信息指示的资源上向所述网络设备发送消息3。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第二指示信息携带在所述RAR的媒体接入控制MAC协议数据单元PDU的回退索引BI子头内。
  21. 根据权利要求20所述的方法,其特征在于,所述回退索引BI子头中的回退索引指示的回退值为预留值。
  22. 根据权利要求9至21中任一项所述的方法,其特征在于,盲检用所述RA-RNTI加扰的PDCCH时使用的定时器和盲检用所述C-RNTI加扰的PDCCH时使用的定时器为同一定时器或者不同的定时器。
  23. 根据权利要求9至21中任一项所述的方法,其特征在于,盲检用所述C-RNTI加扰的PDCCH时使用的定时器为盲检到用所述RA-RNTI加扰的PDCCH时或后启动的定时器。
  24. 根据权利要求9至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据用于传输所述C-RNTI MAC CE的资源和/或用于传输所述前导序列的资源确定的所述RA-RNTI。
  25. 一种用于两步随机接入的方法,其特征在于,包括:
    网络设备接收终端设备发送的前导序列和小区接入无线网络临时标识符媒体接入控制控制元素C-RNTI MAC CE,其中所述C-RNTI MAC CE包括C-RNTI;
    所述网络设备解码所述前导序列和所述C-RNTI MAC CE;
    所述网络设备根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送物理下行控制信道PDCCH。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述网络设备收到所述前导序列所在的物理随机接入信道PRACH和/或所述C-RNTI MAC CE所在的物理上行共享信道PUSCH之后,启动第一定时器或第一时间窗;
    其中,所述网络设备根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送物理下行控制信道PDCCH,包括:
    所述网络设备在所述第一定时器启动后或所述第一时间窗内,根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送物理下行控制信道PDCCH。
  27. 根据权利要求26所述的方法,其特征在于,所述定时器的时长或所述时间窗的时长为所述网络设备配置给所述终端设备的信息。
  28. 根据权利要求25至27中任一项所述的方法,其特征在于,所述网络设备根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送物理下行控制信道PDCCH,包括:
    所述网络设备解码所述前导序列成功,且解码所述C-RNTI MAC CE未成功时,向所述终端设备发送用于调度所述前导序列对应的随机接入响应RAR的PDCCH。
  29. 根据权利要求25至27中任一项所述的方法,其特征在于,所述网络设备根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送物理下行控制信道PDCCH,包括:
    所述网络设备解码所述前导序列成功,且解码所述C-RNTI MAC CE成功时,向所述终端设备发送用于调度所述前导序列对应的随机接入响应RAR的PDCCH。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送用所述C-RNTI加扰的PDCCH。
  31. 根据权利要求30所述的方法,其特征在于,所述用所述C-RNTI加扰的PDCCH包括第一指示信息,所述第一指示信息用于指示所述终端设备是否向所述网络设备发送消息3。
  32. 根据权利要求28至31中任一项所述的方法,其特征在于,所述RAR包括第二指示信息,其中,所述第二指示信息用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,是否继续盲检用所述C-RNTI加扰的PDCCH或者是否继续获取所述RA-RNTI对应的RAR中包括的RAPID。
  33. 根据权利要求32所述的方法,其特征在于,所述第二指示信息具体用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,继续获取所述RA-RNTI对应的RAR中包括的RAPID,且所述RA-RNTI对应的RAR中包括的RAPID和所述前导序列对应的RAPID相同时,所述终端设备是否在所述RAR中包括的UL-Grant信息指示的资源上向所述网络设备发送消息3。
  34. 根据权利要求32或33所述的方法,其特征在于,所述第二指示信息携带在所述RAR的媒体接入控制MAC协议数据单元PDU的回退索引BI子头内。
  35. 根据权利要求34所述的方法,其特征在于,所述回退索引BI子头中的回退索引指示的回退值为预留值。
  36. 一种终端设备,其特征在于,包括:
    通信单元,用于向网络设备发送前导序列和小区接入无线网络临时标识符媒体接入控制控制元素C-RNTI MAC CE,其中所述C-RNTI MAC CE包括C-RNTI;
    盲检单元,用于盲检用所述C-RNTI加扰的物理下行控制信道PDCCH;
    确定单元,用于根据所述C-RNTI的盲检结果,确定是否已解决两步随机接入过程中的竞争冲突。
  37. 根据权利要求36所述的终端设备,其特征在于,所述终端设备还包括:
    启动单元,用于所述通信单元向所述网络设备发送所述前导序列所在的物理随机接入信道PRACH和/或所述C-RNTI MAC CE所在的物理上行共享信道PUSCH之后,启动第一定时器或第一时间窗;
    所述盲检单元具体用于:
    在所述第一定时器启动后或所述第一时间窗内,盲检用所述C-RNTI加扰的PDCCH。
  38. 根据权利要求37所述的终端设备,其特征在于,所述定时器的时长或所述时间窗的时长由所述网络设备配置。
  39. 根据权利要求36至38中任一项所述的终端设备,其特征在于,所述确定单元具体用于:
    若所述盲检单元盲检到用所述C-RNTI加扰的PDCCH,确定已解决所述竞争冲突。
  40. 根据权利要求39所述的终端设备,其特征在于,所述终端设备还包括:
    解码单元,用于解码所述PDCCH中的下行控制信息DCI;
    其中,所述DCI包括用于调度下行数据或上行数据的调度信息。
  41. 根据权利要求40所述的终端设备,其特征在于,所述DCI还包括时间对齐指令TAC。
  42. 根据权利要求40所述的终端设备,其特征在于,所述DCI包括用于调度物理下行共享信道PDSCH的调度信息时,所述PDSCH包括MAC CE,所述MAC CE包括所述时间对齐指令TAC。
  43. 根据权利要求36至39中任一项所述的终端设备,其特征在于,所述确定单元具体用于:
    若所述盲检单元未盲检到用所述C-RNTI加扰的PDCCH,确定未解决所述竞争冲突;
    所述通信单元还用于:
    重新向所述网络设备发送所述前导序列和/或所述C-RNTI MAC CE。
  44. 根据权利要求36至38中任一项所述的终端设备,其特征在于,所述盲检单元还用于:
    盲检用随机访问接入无线网络临时标识符RA-RNTI所述加扰的PDCCH。
  45. 根据权利要求44所述的终端设备,其特征在于,所述盲检单元具体用于:
    若所述盲检单元盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR不包含所述前导序列对应的RAPID,继续盲检用所述C-RNTI加扰的PDCCH。
  46. 根据权利要求44或45所述的终端设备,其特征在于,所述盲检单元具体用于:
    若所述盲检单元盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR包含所述前导序列对应的RAPID,停止盲检用所述C-RNTI加扰的PDCCH;
    所述通信单元还用于:
    使用RAPID对应的RAR向网络设备发送消息3。
  47. 根据权利要求46所述的终端设备,其特征在于,所述通信单元具体用于:
    获取所述RAR中的上行授权UL-Grant信息;
    在所述UL-Grant信息指示的资源上向所述网络设备发送消息3。
  48. 根据权利要求44所述的终端设备,其特征在于,所述盲检单元具体用于:
    若所述盲检单元盲检到用所述RA-RNTI加扰的PDCCH,且所述RA-RNTI加扰的PDCCH调度的随机接入响应RAR包含所述前导序列对应的RAPID,继续盲检用所述C-RNTI加扰的PDCCH;
    所述确定单元具体用于:
    若所述盲检单元盲检到用所述C-RNTI加扰的PDCCH,确定已解决所述竞争冲突。
  49. 根据权利要求48所述的终端设备,其特征在于,所述通信单元还用于:
    若所述盲检单元未盲检到用所述C-RNTI加扰的PDCCH,获取所述RAR中的上行授权UL-Grant信息;
    在所述UL-Grant信息指示的资源上向所述网络设备发送消息3。
  50. 根据权利要求48或49所述的终端设备,其特征在于,所述确定单元还用于:
    确定是否向所述网络设备发送消息3。
  51. 根据权利要求50所述的终端设备,其特征在于,所述确定单元具体用于:
    若所述盲检单元盲检到用所述C-RNTI加扰的PDCCH,确定不发送所述消息3;和/或
    若所述盲检单元未盲检到用所述C-RNTI加扰的PDCCH,确定发送所述消息3。
  52. 根据权利要求50所述的终端设备,其特征在于,所述确定单元具体用于:
    根据第一指示信息,确定是否向所述网络设备发送所述消息3,所述第一指示信息携带在用所述C-RNTI加扰的PDCCH内。
  53. 根据权利要求44至52中任一项所述的终端设备,其特征在于,所述RAR包括第二指示信息,其中,所述第二指示信息用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,是否继续盲检用所述C-RNTI加扰的PDCCH或者是否继续获取所述RA-RNTI对应的RAR中包括的RAPID。
  54. 根据权利要求53所述的终端设备,其特征在于,所述第二指示信息具体用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,继续获取所述RA-RNTI对应的RAR中包括的RAPID,且所述RA-RNTI对应的RAR中包括的RAPID和所述前导序列对应的RAPID相同时,所述终端设备是否在所述RAR中包括的UL-Grant信息指示的资源上向所述网络设备发送消息3。
  55. 根据权利要求53或54所述的终端设备,其特征在于,所述第二指示信息携带在所述RAR的媒体接入控制MAC协议数据单元PDU的回退索引BI子头内。
  56. 根据权利要求55所述的终端设备,其特征在于,所述回退索引BI子头中的回退索引指示的回退值为预留值。
  57. 根据权利要求44至56中任一项所述的终端设备,其特征在于,盲检用所述RA-RNTI加扰的PDCCH时使用的定时器和盲检用所述C-RNTI加扰的PDCCH时使用的定时器为同一定时器或者不同的定时器。
  58. 根据权利要求44至56中任一项所述的终端设备,其特征在于,盲检用所述C-RNTI加扰的PDCCH时使用的定时器为盲检到用所述RA-RNTI加扰的PDCCH时或后启动的定时器。
  59. 根据权利要求44至58中任一项所述的终端设备,其特征在于,所述确定单元还用于:
    根据用于传输所述C-RNTI MAC CE的资源和/或用于传输所述前导序列的资源确定的所述RA-RNTI。
  60. 一种网络设备,其特征在于,包括:
    通信单元,用于接收终端设备发送的前导序列和小区接入无线网络临时标识符媒体接入控制控制元素C-RNTI MAC CE,其中所述C-RNTI MAC CE包括C-RNTI;
    解码单元,用于解码所述前导序列和所述C-RNTI MAC CE;
    所述通信单元还用于:根据所述前导序列的解码结果和所述C-RNTI MAC CE的解码结果向所述终端设备发送物理下行控制信道PDCCH。
  61. 根据权利要求60所述的网络设备,其特征在于,所述网络设备还包括:
    启动单元,用于所述通信单元收到所述前导序列所在的物理随机接入信道PRACH和/或所述C-RNTI MAC CE所在的物理上行共享信道PUSCH之后,启动第一定时器或第一时间窗;
    其中,所述通信单元具体用于:
    在所述第一定时器启动后或所述第一时间窗内,根据所述前导序列的解码结果和所述C-RNTIMAC CE的解码结果向所述终端设备发送物理下行控制信道PDCCH。
  62. 根据权利要求61所述的网络设备,其特征在于,所述定时器的时长或所述时间窗的时长为所述网络设备配置给所述终端设备的信息。
  63. 根据权利要求60至62中任一项所述的网络设备,其特征在于,所述通信单元具体用于:
    所述解码单元解码所述前导序列成功,且解码所述C-RNTI MAC CE未成功时,向所述终端设备发送用于调度所述前导序列对应的随机接入响应RAR的PDCCH。
  64. 根据权利要求60至62中任一项所述的网络设备,其特征在于,所述通信单元具体用于:
    所述解码单元解码所述前导序列成功,且解码所述C-RNTI MAC CE成功时,向所述终端设备发送用于调度所述前导序列对应的随机接入响应RAR的PDCCH。
  65. 根据权利要求64所述的网络设备,其特征在于,所述通信单元还用于:
    向所述终端设备发送用所述C-RNTI加扰的PDCCH。
  66. 根据权利要求65所述的网络设备,其特征在于,所述用所述C-RNTI加扰的PDCCH包括第一指示信息,所述第一指示信息用于指示所述终端设备是否向所述网络设备发送消息3。
  67. 根据权利要求63至66中任一项所述的网络设备,其特征在于,所述RAR包括第二指示信息,其中,所述第二指示信息用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,是否继续盲检用所述C-RNTI加扰的PDCCH或者是否继续获取所述RA-RNTI对应的RAR中包括的RAPID。
  68. 根据权利要求67所述的网络设备,其特征在于,所述第二指示信息具体用于指示所述终端设备盲检到用所述RA-RNTI加扰的PDCCH时,继续获取所述RA-RNTI对应的RAR中包括的RAPID,且所述RA-RNTI对应的RAR中包括的RAPID和所述前导序列对应的RAPID相同时,所述终端设备是否在所述RAR中包括的UL-Grant信息指示的资源上向所述网络设备发送消息3。
  69. 根据权利要求67或68所述的网络设备,其特征在于,所述第二指示信息携带在所述RAR的媒体接入控制MAC协议数据单元PDU的回退索引BI子头内。
  70. 根据权利要求69所述的网络设备,其特征在于,所述回退索引BI子头中的回退索引指示的回退值为预留值。
  71. 一种终端设备,其特征在于,包括:
    处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求1至24中任一项所述的方法。
  72. 一种网络设备,其特征在于,包括:
    处理器、存储器和收发器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行权利要求25至35中任一项所述的方法。
  73. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至24中任一项所述的方法。
  74. 一种芯片,其特征在于,包括:
    处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求25至35中任一项所述的方法。
  75. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法。
  76. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求25至35中任一项所述的方法。
  77. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求1至24中任一项所述的方法。
  78. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令使得计算机执行如权利要求25至35中任一项所述的方法。
  79. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法。
  80. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求25至35中任一项所述的方法。
PCT/CN2019/078782 2019-03-19 2019-03-19 用于两步随机接入的方法、终端设备和网络设备 WO2020186465A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
PCT/CN2019/078782 WO2020186465A1 (zh) 2019-03-19 2019-03-19 用于两步随机接入的方法、终端设备和网络设备
EP19920020.5A EP3927094A4 (en) 2019-03-19 2019-03-19 PROCEDURE FOR DIRECT ACCESS IN TWO STEPS, TERMINAL AND NETWORK DEVICE
CN201980093530.6A CN113519200A (zh) 2019-03-19 2019-03-19 用于两步随机接入的方法、终端设备和网络设备
KR1020217030855A KR20210139282A (ko) 2019-03-19 2019-03-19 2 단계의 랜덤 액세스를 위한 방법, 단말 디바이스 및 네트워크 디바이스
CN202111305652.2A CN114025433B (zh) 2019-03-19 2019-03-19 用于两步随机接入的方法、终端设备和网络设备
JP2021556595A JP7496834B2 (ja) 2019-03-19 2019-03-19 2ステップのランダムアクセスのための方法、端末デバイス及びネットワークデバイス
CN201980093548.6A CN113519201A (zh) 2019-03-19 2019-03-27 随机接入的方法和设备
CN202111184645.1A CN113905453B (zh) 2019-03-19 2019-03-27 随机接入的方法和设备
PCT/CN2019/079939 WO2020186546A1 (zh) 2019-03-19 2019-03-27 随机接入的方法和设备
EP19920380.3A EP3930414A4 (en) 2019-03-19 2019-03-27 RANDOM ACCESS METHOD AND DEVICE
US17/469,818 US20210410195A1 (en) 2019-03-19 2021-09-08 Method for two-step random access, terminal device and network device
US17/477,048 US12048021B2 (en) 2019-03-19 2021-09-16 Random access method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078782 WO2020186465A1 (zh) 2019-03-19 2019-03-19 用于两步随机接入的方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/469,818 Continuation US20210410195A1 (en) 2019-03-19 2021-09-08 Method for two-step random access, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2020186465A1 true WO2020186465A1 (zh) 2020-09-24

Family

ID=72519523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078782 WO2020186465A1 (zh) 2019-03-19 2019-03-19 用于两步随机接入的方法、终端设备和网络设备

Country Status (6)

Country Link
US (1) US20210410195A1 (zh)
EP (1) EP3927094A4 (zh)
JP (1) JP7496834B2 (zh)
KR (1) KR20210139282A (zh)
CN (2) CN114025433B (zh)
WO (1) WO2020186465A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022152003A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 非激活态下数据传输方法及装置
WO2023151482A1 (zh) * 2022-02-11 2023-08-17 华为技术有限公司 通信方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118139207A (zh) 2019-05-02 2024-06-04 上海诺基亚贝尔股份有限公司 随机接入过程中的竞争解决
CN114245477B (zh) * 2022-01-27 2023-08-18 新拓尼克科技(成都)有限公司 一种竞争随机接入失败后的快速处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872899A (zh) * 2016-09-23 2018-04-03 中兴通讯股份有限公司 一种随机接入方法、装置和设备
CN108271275A (zh) * 2017-01-04 2018-07-10 电信科学技术研究院 一种竞争随机接入的方法和装置
CN108282899A (zh) * 2017-01-05 2018-07-13 电信科学技术研究院 一种两步竞争随机接入方法和装置
CN108282901A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种随机接入响应方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548015A (zh) * 2012-01-13 2012-07-04 电信科学技术研究院 一种随机接入及其控制方法、装置和系统
CN109392188B (zh) * 2017-08-11 2020-12-25 华为技术有限公司 随机接入方法、设备及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872899A (zh) * 2016-09-23 2018-04-03 中兴通讯股份有限公司 一种随机接入方法、装置和设备
CN108271275A (zh) * 2017-01-04 2018-07-10 电信科学技术研究院 一种竞争随机接入的方法和装置
CN108282899A (zh) * 2017-01-05 2018-07-13 电信科学技术研究院 一种两步竞争随机接入方法和装置
CN108282901A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种随机接入响应方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3927094A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022152003A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 非激活态下数据传输方法及装置
WO2023151482A1 (zh) * 2022-02-11 2023-08-17 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN113519200A (zh) 2021-10-19
CN114025433B (zh) 2023-03-10
JP7496834B2 (ja) 2024-06-07
EP3927094A1 (en) 2021-12-22
KR20210139282A (ko) 2021-11-22
EP3927094A4 (en) 2022-03-09
US20210410195A1 (en) 2021-12-30
JP2022532291A (ja) 2022-07-14
CN114025433A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
US12048021B2 (en) Random access method and device
US20210410195A1 (en) Method for two-step random access, terminal device and network device
US11690097B2 (en) Method for contention-based random access, network device and terminal device
WO2020186466A1 (zh) 无线通信的方法、终端设备和网络设备
US20210153247A1 (en) Random access method and terminal device
US20230345525A1 (en) Random access method, and electronic device and storage medium
US20220086921A1 (en) Method and device for random access
WO2020223878A1 (zh) 随机接入的方法、终端设备和网络设备
WO2020215330A1 (zh) 随机接入过程中传输信息的方法、终端设备和网络设备
US20220015153A1 (en) Channel transmission method, electronic device, and storage medium
WO2020210963A1 (zh) 消息传输的方法和设备
WO2020087476A1 (zh) 传输系统信息的方法和设备
WO2020227907A1 (zh) 一种资源确定方法及装置、终端
WO2021077377A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
WO2020082394A1 (zh) 随机接入的方法、终端设备和网络设备
US12114375B2 (en) Random access method and apparatus, and user equipment and network device
JP7542064B2 (ja) ランダムアクセス問題の報告方法、端末デバイス及び記憶媒体
WO2024103320A1 (zh) 无线通信方法、终端设备以及网络设备
US20230363007A1 (en) Methods for channel transmission and terminal device
WO2020186468A1 (zh) 随机接入的方法和设备
WO2020177135A1 (zh) 功率控制方法及随机接入方法、装置、终端
WO2020206597A1 (zh) 功率分配的方法和终端设备
WO2020147089A1 (zh) 一种随机接入方法及终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556595

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019920020

Country of ref document: EP

Effective date: 20210915

ENP Entry into the national phase

Ref document number: 20217030855

Country of ref document: KR

Kind code of ref document: A