WO2012071681A1 - 无线通信终端、无线通信基站和它们的通信方法,以及实现该通信方法的程序和存储该程序的介质 - Google Patents

无线通信终端、无线通信基站和它们的通信方法,以及实现该通信方法的程序和存储该程序的介质 Download PDF

Info

Publication number
WO2012071681A1
WO2012071681A1 PCT/CN2010/001929 CN2010001929W WO2012071681A1 WO 2012071681 A1 WO2012071681 A1 WO 2012071681A1 CN 2010001929 W CN2010001929 W CN 2010001929W WO 2012071681 A1 WO2012071681 A1 WO 2012071681A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
wireless communication
physical random
access channel
base station
Prior art date
Application number
PCT/CN2010/001929
Other languages
English (en)
French (fr)
Inventor
鲁艳玲
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/CN2010/001929 priority Critical patent/WO2012071681A1/zh
Priority to CN2010800699571A priority patent/CN103238365A/zh
Publication of WO2012071681A1 publication Critical patent/WO2012071681A1/zh
Priority to US13/892,874 priority patent/US20130250888A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • Wireless communication terminal wireless communication base station, and communication method thereof, and program for realizing the communication method and medium storing the program
  • the present invention relates to the field of wireless communications, and in particular to a wireless communication terminal, a wireless communication base station, and a communication method therefor, and a program for implementing the communication method and a medium for storing the program.
  • Background technique
  • the UE In the wireless communication system, in order to implement uplink synchronization, the UE (User Equipment) needs to perform uplink random access. After the uplink is synchronized, the terminal UE can transmit uplink and downlink data and messages with the eNodeB (evolved Node Base station).
  • eNodeB evolved Node Base station
  • the 3GPP LTE (Long Term Evolution) system adopts random access technology to achieve uplink synchronization.
  • the terminal UE performs random access using a random access preamble and a physical random access channel PRACH (Physical Random Access Channel) designated by the base station eNB.
  • PRACH Physical Random Access Channel
  • the terminal UE may select a random access preamble and a physical random access channel PRACH for random access.
  • Figure 1 shows a prior art contention based random access procedure.
  • Non-Patent Document 1 when the terminal UE performs random access with the base station eNB, as shown in FIG. 1, in step S101, the terminal UE utilizes a random The selected uplink physical random access channel PRACH transmits a random access preamble arbitrarily selected in the optional preamble to the base station eNB.
  • the base station eNB may respond within the window, and send a random access response message RAR (Random Access Response) to the terminal UE in the access response window, or may not respond, and randomly connect Within the receiving window of the incoming response, the random access response message RAR is not sent to the terminal UE.
  • RAR Random Access Response
  • the response message sent by the base station eNB to the terminal UE includes information indicating a physical downlink control channel PDCCH (Physical Downlink Control CHannel) of the random access response message RAR in the subframe.
  • PDCCH Physical Downlink Control CHannel
  • the terminal can only obtain the location of the RAR by decoding the PDCCH sent to itself.
  • the PDCCH is used to indicate resource allocation of the uplink and downlink and perform other control.
  • the channel is scrambled with a certain codeword.
  • the PDCCH channel transmitted to different terminal UEs for different purposes uses different scrambling code words.
  • the base station eNB scrambles the PDCCH channel using a random access-Radio Network Temporary Identify RA-RNTI (hereinafter, abbreviated as RA-RNTI).
  • RA-RNTI random access-Radio Network Temporary Identify RA-RNTI
  • step S103 the response window begins. Once the response window begins, the terminal UE needs to use the RA-RNTI to detect the PDCCH channel for each subframe within the response window.
  • the terminal UE can obtain the RA-RNTI according to the equation (13) according to the specific location of the transmission preamble (the subframe number in the time domain, the PRACH channel number in the frequency domain). As indicated by the arrow in S102, after the terminal UE detects the scrambled PDCCH transmitted by the base station eNB by using the RA-RNTI, the location of the random access response message RAR can be obtained.
  • the terminal UE further decodes the random access response message RAR, and determines whether the preamble sent by the terminal UE is included in the random access response message RAR. Random access response The message RAR includes the preamble sent by the terminal UE, and then proceeds to step S104 to perform identity identification of the terminal UE.
  • the terminal UE If the terminal UE does not find the preamble sent by itself in the random access response message RAR, the terminal UE continues to decode in the random access response receiving window until the preamble sent by itself is found, or the random access response receiving window ends, this time. The sending leader failed.
  • step S104 the terminal UE transmits the message msg3 in the uplink bandwidth allocated in the random access response message RAR.
  • the message msg3 contains information identifying the identity of the terminal UE to distinguish between different terminal UEs transmitting the same preamble in the same physical random access channel PRACH.
  • step S105 the base station eNB confirms the identity of the terminal UE after receiving the message msg3. After the base station eNB confirms the identity of the terminal UE, it transmits a message msg4 to the terminal UE. When the terminal UE receives the message msg4, it obtains the identity confirmation of the base station eNB, and considers that its uplink has been synchronized, and the random access procedure ends. Thereafter, the terminal UE can perform data transmission in the bandwidth allocated in the random access response message RAR.
  • RA-R TI is a key parameter in the terminal random access procedure.
  • the terminal UE supports a working bandwidth of at most 20 MHz.
  • the carrier aggregation CA Cross er Aggregation
  • the terminal UE can operate in a bandwidth of up to 100 MHz and can aggregate multiple carriers.
  • CA carrier aggregation
  • Some important processes such as random access procedures
  • uplink feedback (such as physical uplink control channel) are only performed on the primary carrier, and on the secondary carrier, uplink and downlink data and some control information can be transmitted.
  • CA 2 shows a prior art random access procedure applied to a carrier aggregation (CA) system Timing diagram of the problem at the time.
  • CA carrier aggregation
  • step S201 and step S202 the plurality of terminals UE-A and UE-B transmit the same preamble on the physical random access channel PRACH of the same location on different carriers.
  • the base station eNB transmits a random access response message RAR for the preamble transmitted through the plurality of carriers.
  • the base station eNB can only calculate one RA-RNTI value if it adopts the existing RA-RNTI calculation method. This RA-RNTI value is used to scramble the PDCCH, and the PDCCH is used to indicate the corresponding random access response message RAR.
  • step 205 and step 206 after the terminal UE-A and the UE-B receive the random access response message RAR, if the preamble sent by the self is found to be included in the random access response message RAR, the terminal UE-A and the UE- B judges that the preamble sent by itself is successfully received, and then both transmit the message msg3 in the bandwidth allocated in the random access response message RAR. At this time, both UEs A-A and UE-B judge that the preamble sent by themselves is successfully received. If the two terminals transmit msg3 in the bandwidth allocated in the random access response message RAR on the same carrier, it is obvious that two msg3 are There will be a collision.
  • the two terminals respectively transmit msg3 in the bandwidth allocated in the random access response message RAR on the carrier on which the respective preamble is transmitted, then if the base station actually allocates bandwidth to msg3 on only one of the carriers, then on the other carrier
  • msg3 sent by another terminal may cause unnecessary interference to other users on another carrier.
  • the base station does allocate bandwidth of the same location on both uplink carriers at the same time, it will impose restrictions on the scheduling of the base station because it needs to select the bandwidth of the same location on different carriers. At the same time, because the reasons for triggering random access are different, the bandwidth required by msg3 is also different.
  • the above problem also occurs when the same terminal UE transmits the same preamble on the PRACH channel at the same position of different carriers.
  • Non-Patent Document 1 3GPP TS 36.321 V9.3.0 (2010-06) Medium Access
  • Non-Patent Document 2 R2-106854 Corrections and new agreements on Carrier Aggregation Nokia Siemens Networks
  • Patent Document 1 Chinese Patent Publication CN101742684A
  • Patent Document 2 Chinese Patent Publication CN101674661A
  • Patent Document 3 Chinese Patent Publication CN101742682A
  • the present invention has been made in view of the above problems in the prior art, and an object thereof is to provide a wireless communication terminal, a wireless communication base station, and a communication method thereof, and a program for realizing the communication method and a medium storing the program, It is possible to efficiently perform random access in a carrier aggregation (CA) system to achieve synchronization.
  • CA carrier aggregation
  • the present invention provides a wireless communication terminal that communicates with a wireless communication base station, comprising: a transmitting unit that transmits a random access preamble to a wireless communication base station; a receiving unit that receives a response message from the wireless communication base station; and a control unit And generating a random access temporary identifier to obtain a response message to implement synchronization; wherein, the control unit controls the sending unit to send the random access preamble on any one of the multiple carriers; and the control unit sends the random access preamble according to the physical random connection
  • the location of the incoming channel within the carrier and the carrier where the physical random access channel is located generate a random access temporary identifier.
  • the present invention provides a wireless communication base station for communicating with a wireless communication terminal, comprising: a receiving unit that receives a random access preamble from a wireless communication terminal; and a control unit that generates a random access temporary identifier of the wireless communication terminal and a response message for the random access preamble, and using the random access temporary identifier scrambling response message; and a sending unit, which sends the scrambled response message to the wireless communication terminal; wherein, the control unit controls the receiving unit on the multiple carriers Receiving a random access preamble; the control unit generates a random access temporary identifier of the wireless communication terminal according to the location of the physical random access channel of the random access preamble in the carrier and the carrier where the physical random access channel is located.
  • the present invention provides a wireless communication terminal communication method for a wireless communication terminal to communicate with a wireless communication base station, comprising the steps of: transmitting a wireless communication terminal to a wireless communication base station on any one of a plurality of carriers when performing random access Random access preamble, the location of the radio communication terminal in the carrier according to the physical random access channel transmitting the random access preamble Generating a random access temporary identifier with the carrier where the physical random access channel is located.
  • the present invention provides a wireless communication base station communication method for a wireless communication base station to communicate with a wireless communication terminal, including: when performing random access, the wireless communication base station receives a random access preamble sent by the wireless communication terminal on multiple carriers. And the wireless communication base station generates a random access temporary identifier of the wireless communication terminal according to the location of the physical random access channel of the random access preamble in the carrier and the carrier where the physical random access channel is located.
  • the present invention provides a program for realizing the communication method as described above and a medium storing the program.
  • the wireless communication terminal, the wireless communication base station, and the communication method thereof of the present invention, and the program for realizing the communication method and the medium storing the program can efficiently perform random access in the carrier aggregation (CA) system to realize synchronization.
  • CA carrier aggregation
  • FIG. 1 is an explanatory diagram of a random access procedure in the prior art.
  • FIG. 2 is a diagram illustrating a problem existing in the prior art random access procedure.
  • Fig. 3 is a block diagram of a terminal UE according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram of a base station eNB according to a second embodiment of the present invention.
  • Fig. 5 is a flowchart of a terminal UE according to a third embodiment of the present invention.
  • Fig. 6 is a flowchart of a terminal UE according to a fourth embodiment of the present invention.
  • Fig. 7 is a flowchart of a base station eNB according to a fifth embodiment of the present invention.
  • Fig. 8 is a flowchart of a base station eNB according to a sixth embodiment of the present invention.
  • Fig. 9 is an explanatory diagram showing random access by a terminal UE and a base station eNB according to a seventh embodiment of the present invention. detailed description
  • FIG. 3 is a block diagram of a terminal UE according to the first embodiment of the present invention.
  • the terminal UE 300 has a transmitting unit 310, a receiving unit 320, and a control unit 330.
  • the control unit 330 controls the transmitting unit 310 to transmit a preamble for performing random access using a plurality of uplink carriers.
  • the transmitting unit 310 transmits a wireless signal to the base station eNB under the control of the control unit 330; the receiving unit 320 receives the wireless signal transmitted from the base station eNB under the control of the control unit 330.
  • the control unit 330 has a preamble control unit 331, a temporary identification generating unit 332, a detecting unit 333, and a message generating unit 334.
  • the preamble control unit 331 selects a preamble for random access and a physical random access channel (PRACH) for transmitting the preamble, and outputs the selected preamble and PRACH information to the transmitting unit 310.
  • the transmitting unit 310 transmits the selected preamble to the base station eNB through the physical random access channel selected by the preamble control unit 331.
  • PRACH physical random access channel
  • the temporary identifier generation unit 332 generates a random access temporary identifier RA-RNTI (Random Access-Radio Network Temporary Identify) based on the PRACH and carrier information selected by the preamble control unit 331.
  • RA-RNTI Random Access-Radio Network Temporary Identify
  • the base station eNB receives the random access preamble of the terminal UE 300, it generates a random access generated by the control unit 330 of the terminal UE 300 according to the location of the PRACH used in the preamble and the information of the carrier where the PRACH is located. Temporarily identifying the same random access temporary identifier RA-RNTI, and scrambling the PDCCH belonging to the terminal UE 300 by using the random access temporary identifier, and transmitting the scrambled PDCCH and the PDCCH in a specified access response window The specified random access response message RAR.
  • the detecting unit 333 selects the preamble and the PRACH in the preamble control unit 331 and is transmitted by the transmitting unit.
  • the eNB After being sent to the eNB, the eNB detects the response message sent by the eNB, and de-scrambles the physical downlink control channel PDCCH scrambled by the temporary identifier RA-RNTI according to the temporary identifier RA-RNTI generated by the temporary identifier generating unit 332, and obtains the belonging terminal.
  • the message generating unit 334 transmits a message 3 (Msg3) to the base station eNB for identity confirmation to complete the random access.
  • Msg3 message 3
  • the control unit 430 controls the receiving unit 420 to receive the preamble of the random access from the terminal UE 300 on a plurality of uplink carriers.
  • the base station eNB 400 has a transmitting unit 410, a receiving unit 420, and a control unit 430.
  • the transmitting unit 410 is configured to transmit a wireless signal;
  • the receiving unit 420 is configured to receive a wireless signal;
  • the control unit 430 controls the transmitting unit 410 and the receiving unit 420 to implement communication of the wireless communication network.
  • control unit 430 has a preamble receiving unit 431 and a temporary identification generating unit.
  • the preamble receiving unit 431 receives the preamble transmitted from the terminal UE 300 at the time of random access, and performs detection to obtain the position of the PRACH used in the preamble and the carrier on which the PRACH is located.
  • the temporary identification generating unit 432 generates a random access temporary identifier of the terminal UE 300 based on the position of the PRACH used in the preamble obtained by the preamble receiving unit 431 and the carrier information of the PRACH.
  • the response unit 433 responds to the preamble of the terminal UE 300 by scrambling the PDCCH by the random access temporary identifier generated by the temporary identifier generating unit 432, so that the terminal UE 300 can only detect the PDCCH belonging to the terminal UE 300, thereby The RAR of the terminal UE 300 is found.
  • the random access response message RAR is generated by the preamble received by the preamble receiving unit 431.
  • the message detecting unit 420 detects the message 3 (Msg3) from the terminal UE 300 via the receiving unit 420 to complete the subsequent process of the random access procedure.
  • Fig. 5 is a flowchart of the terminal UE of the third embodiment.
  • step S501 the terminal UE selects a physical random access channel PRACH and a preamble of any one of the plurality of uplink carriers, or transmits the PRACH on the PRACH according to the physical random access channel PRACH and the preamble designated by the base station eNB.
  • the lead the terminal UE selects a physical random access channel PRACH and a preamble of any one of the plurality of uplink carriers, or transmits the PRACH on the PRACH according to the physical random access channel PRACH and the preamble designated by the base station eNB.
  • a random access temporary identifier RA-R TI is generated according to the location of the physical random access channel in the carrier and the carrier where the physical random access channel is located.
  • step S503 the PE>CCH from the base station eNB is detected by using the random access temporary identifier RA-R TI generated in step S502, and then the random access response message RAR transmitted by the base station eNB is obtained.
  • the terminal UE selects a physical random access channel on the carrier and the carrier; and after receiving the response message from the base station eNB, generates and sends a message 3 (Msg3) to complete the subsequent randomization. Access process.
  • Msg3 message 3
  • the terminal UE may also perform a non-contention random access procedure, and needs to receive the preamble and the physical random access channel PRACH specified by the base station eNB before transmitting the preamble.
  • a specific operation flow of a terminal UE that implements a random access method in a contention mode or a non-contention mode will be described in detail.
  • Fig. 6 is a flowchart showing the operation of the terminal UE of the fourth embodiment.
  • the terminal UE has a transmitting unit, a receiving unit, and a control unit.
  • the control unit of the terminal UE controls the transmitting unit to transmit a preamble for performing random access using a plurality of uplink carriers.
  • the terminal UE is capable of performing a competitive and non-contention random access procedure.
  • step S601 the control unit selects a physical random access channel PRACH and a preamble of any one of the plurality of uplink carriers, or controls according to a physical random access channel PRACH and a preamble designated by the base station eNB.
  • the transmitting unit transmits the preamble on the PRACH.
  • step S602 the control unit generates a random access temporary identifier according to the location of the preamble PRACH in the carrier and the carrier information of the PRACH.
  • step S603 the control unit waits for the access response window of the base station eNB, and if the access response window starts, it proceeds to step S604.
  • step S604 and S605 the control unit continuously detects the PDCCH scrambled with the random access temporary identifier of the terminal UE throughout the access response window until the access response window ends. If the PDCCH belonging to the terminal UE is not found until the end of the access response window in step S605, the process proceeds to step S606, where it is determined that the preamble transmission has failed. If the control unit detects the PDCCH belonging to the terminal UE in step S604, it proceeds to step S607.
  • step S607 the preamble identifier of the terminal UE provided by the base station eNB in the random access response message RAR is detected according to the position indicated by the correctly descrambled PDCCH.
  • step S608 if the preamble identifier is detected, it is considered that the preamble transmission is successful, and the process proceeds to step S609. If the preamble identifier of the terminal UE is not found, the process proceeds to step S605.
  • step S609 the control unit detects the random access response message RAR information according to the random access response message RAR position indicated by the correctly descrambled PDCCH, so that the control unit can adjust the uplink according to the random access response message RAR information. Give.
  • step S610 it is determined whether the preamble is selected by the MAC layer.
  • the random access procedure is completed (step S611).
  • the control unit performs control.
  • the uplink sending message 3 (Msg3) allocated in the access response message completes the subsequent steps of the random access procedure.
  • Fig. 7 is a flowchart of a base station eNB of the fifth embodiment.
  • step S701 the base station eNB receives a preamble from the terminal UE for performing random access.
  • the base station eNB After receiving the preamble, in step S702, the base station eNB generates a random access temporary identifier of the terminal UE according to the location of the physical random access channel used in the preamble and the carrier where the physical random access channel is located. ⁇ -1 ⁇ 11.
  • step S703 the base station eNB scrambles the PDCCH of the terminal UE by using the random access temporary identifier RA-R TI generated in step S702, and transmits the PDCCH and the corresponding random access response information RAR to the terminal.
  • the base station eNB After transmitting the response message, the base station eNB detects the message 3 (Msg3) from the terminal UE to complete the subsequent random access procedure.
  • Msg3 message 3
  • the base station eNB may also perform a non-contention random access procedure, and send a designated preamble and a physical random access channel PRACH to the terminal before receiving the preamble from the terminal UE.
  • Fig. 8 is a flowchart showing the operation of the base station eNB of the sixth embodiment.
  • the base station eNB has a transmitting unit, a receiving unit, and a control unit.
  • the control unit controls the receiving unit to receive the preamble of the random access from the terminal UE on the plurality of uplink carriers.
  • the base station eNB is capable of performing a competitive and non-contention random access procedure.
  • step S801 the control unit of the base station eNB controls the receiving unit to receive the preamble of the random access from the terminal UE on the plurality of uplink carriers.
  • step S802 when the preamble of the terminal UE is received in step S802, the process proceeds to step S803, and the random access temporary identifier of the terminal UE is generated according to the location of the preamble PRACH in the carrier and the information of the carrier where the PRACH is located.
  • step S804 the control unit waits for the start of the access response window.
  • the access response window is reached, if the base station does not have an uplink grant and can be allocated to the terminal, it may not be the terminal even if it correctly receives the preamble sent by the terminal. Respond until the step When it is judged in S806 that the access response window is over, the process proceeds to step S807, and the response message transmission fails.
  • Step S803 may occur after step S804, as long as it is before step s805, that is, before the PDCCH scrambled by the random access temporary identifier.
  • step S805 the control unit completes the scrambling of the PDCCH of the terminal UE before the end of the access response window
  • step S808 the random access response message RAR of the terminal UE is transmitted at the location indicated by the PDCCH, The preamble identifier of the terminal UE and the uplink grant assigned to the terminal UE are included.
  • step S809 the control unit determines whether the preamble of the terminal UE is selected by the MAC layer of the terminal UE. For the non-contention access mode, since the preamble is specified by the base station eNB, the process proceeds to step S810 to complete the random access procedure. For the manner of contention access, since the preamble is selected by the MAC layer of the terminal UE, the process proceeds to step S811, and the message 3 sent after the PDCCH and the RAR are received by the UE in the uplink given to the terminal UE (Msg3) ). When the message 3 (Msg3) is received in step S813, the subsequent process of the random access procedure is completed. If the message 3 (Msg3) is not received, the process proceeds to step S812, and the message 3 (Msg3) reception fails.
  • the random access temporary identifier generated by the terminal UE side of the fifth embodiment and the base station eNB side of the sixth embodiment is generated according to the same condition, thereby ensuring that the terminal UE can uniquely detect the own from the base station eNB. response.
  • the control unit of the terminal UE when the random access is performed, the control unit of the terminal UE generates a random access temporary identifier according to the location of the PRACH in which the random access preamble is transmitted and the carrier where the PRACH is located, so that the terminal UE can be in multiple carriers.
  • the random access preamble is sent on, and the random access error shown in Figure 2 does not occur.
  • the terminal of the present invention will be described in detail by taking competitive random access as an example with reference to FIG.
  • Fig. 9 is an explanatory diagram showing random access by a terminal UE and a base station eNB according to a seventh embodiment of the present invention.
  • the terminal UE-A and the terminal UE-B have the configuration of the terminal UE 300 of the present embodiment as described above.
  • the terminal UE A and the terminal UE B transmit a random access preamble to the base station eNB 400 at the same location of different carriers, that is, on the same PRACH of different carriers.
  • the base station eNB 400 After receiving the preamble from the terminal UE-A and the terminal UE-B, the base station eNB 400 transmits the position of the respective preamble PRACH in the carrier and the carrier where the PRACH is located according to the terminal UE-A and the terminal UE-B, respectively.
  • the preamble carrier information is transmitted by each terminal when generating the random access temporary identifier RA-RNTI of the terminal UE-A and the terminal UE-B, different random connections can be generated for the terminal UE-A and the terminal UE-B. Enter the temporary identification RA-R TI.
  • the random access temporary identifier belonging to itself is generated in the same manner as the base station eNB 400 according to the PRACH used by the respective transmission preamble and the carrier information of the PRACH. RA-R TI.
  • step S902 when the base station eNB 400 transmits a response message to the terminal UE-A and the terminal UE-B in the access response window, respectively, the base station eNB 400 uses the random access temporary identifier RA-RNTI of the terminal UE-A and the terminal UE-B, respectively.
  • the PDCCH belonging to the terminal UE-A and belonging to the terminal UE-B is scrambled to transmit random access response messages RAR1, RAR2 to the terminal UE-A and the terminal UE-B, respectively.
  • the base station may respond to the terminal UE-A and the terminal UE-B respectively in the same subframe as shown in FIG. 9, or may respectively perform the terminal UE-A and the terminal UE-B in different subframes. Respond, but you must ensure that the response message is within the response window.
  • the terminal access UE-A and the terminal UE-B have different random access temporary identifiers, and thus the terminal UE-A and the terminal UE-B can correctly descramble the PDCCHs belonging to themselves, and find their respective positions at the positions indicated by the respective PDCCHs. Random access response message RAR.
  • the terminal UE-A and the terminal UE-B respectively according to respective random access response messages
  • a message 3 (Msg3) is transmitted to the base station eNB 400, respectively. Since the uplink grants allocated in the random access response message RAR of the terminal UE-A and the terminal UE-B are different, the Msg3 of the two does not collide, so that the random access procedure can be successfully completed.
  • the base station eNB and the terminal UE are caused to be in the carrier and the carrier of the PRACH according to the PRACH used by the terminal when transmitting the preamble.
  • the information is used to generate the random access temporary identifier of the terminal UE, so that the Msg3 of the terminal UE-A and the terminal UE-B can be prevented from colliding, so that multiple uplink carriers can be used for the random access process at the same time, so that more users can complete the random connection at the same time.
  • a specific example of generating the random access temporary identifier RA-R TI on the terminal UE side and the base station eNB side in the present invention will be described in detail.
  • each frame on a carrier is divided into 10 subframes in the time domain, and is divided into six channels in the frequency domain in each subframe. Therefore, the random access temporary identifier RA-RNTI generated according to the present invention can be expressed by the following formula 14:
  • RA-RNTI 1 + t_id + 10 * f_id + 60 * Cell-Index (14)
  • t - id is the sequence number of the first subframe in which the specific PRACH (ie, the preamble of the transmitting preamble) is located
  • F—id is the sequence number of the PRACH in the subframe
  • Cell-Index is the identifier of the carrier where the PRACH is located.
  • the maximum value of the random access temporary identifier RA-RNTI becomes 60.
  • the random access temporary identifier generated by the terminal UE side and the base station eNB side during random access can be associated with all available PRACHs on all carriers, and an error in the random access process can be avoided.
  • the coefficient is not limited to the use of the maximum value "60", and the present invention can be realized as long as it is not less than the maximum value.
  • the bit length of the random access temporary identifier is 16 bits, and even if the terminal UE can work in a bandwidth of up to 100 MHz in the carrier aggregation of the 3GPP Release 10, that is, a maximum of 5 can be aggregated.
  • the random access Pro generated according to the present invention The number of time stamps also does not exceed the 16-bit field specified by 3GPP, that is, the number of 2 16 . Therefore, the present invention can be compatible with the existing 3GPP version, that is, the base station eNB according to the present invention can guarantee the provision.
  • the random access temporary identifier RA-R TI has a bit length of 16 bits.
  • the random access temporary identifier RA-RNTI is extended to more bits, such as 20 bits or 24 bits, on the existing 16-bit basis. Therefore, the random access temporary identifier RA-RNTI generated according to the present invention can be expressed as follows: [Expression 15]
  • RA-RNTI l+t_id+10*f_id+Cell-Index*2 T (15)
  • T is a positive integer not less than the bit length of the random access temporary identifier specified by 3GPP. That is, when the present invention is implemented on the basis of the existing 3GPP standard, T can be a positive integer not less than 16 by extending the existing random access temporary identifier RA-RNTI from 16 bits. :
  • the random access temporary identifier RA-RNTI can support more available PRACH.
  • the random access temporary identifier is generated in the subframe. .
  • the random access temporary identifiers uniquely corresponding to all PRACHs on all carriers are obtained.
  • the random access temporary identifier RA-RNTI is expressed as follows:
  • RA-R TI 1 + t_id + 10 * f_id_new (16)
  • f_ id_new is the sequence number of the PRACH that can be uniquely identified in the frequency domain as the designated PRACH in all PRACHs on all carriers, since The frame has 6 channels in the frequency domain and aggregates 5 carriers, so 0 f - id_new ⁇ 30, and each PRACH is usually sorted in ascending order of frequency domain.
  • the random access temporary identifier generated when the terminal UE side and the base station eNB side are randomly accessed can also uniquely correspond to all available PRACHs on all carriers, thereby performing multiple uplink carriers. When random access is performed, random access can be performed efficiently.
  • the terminal UE and the base station eNB can respectively transmit and receive a random access preamble on a plurality of carriers, and complete the random access procedure.
  • more users can be allowed to perform random access at the same time, which greatly improves the ability of the wireless communication system to handle random access and improves the success rate of random access.
  • the storage medium may be any one of a storage medium such as an optical disk, a hard disk, or a flash memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

无线通信终端、 无线通信基站和它们的通信方法, 以及实现该通信方 法的程序和存储该程序的介质 技术领域
本发明涉及无线通信领域, 具体涉及无线通信终端、 无线通信基 站和它们的通信方法, 以及实现该通信方法的程序和存储该程序的介 质。 背景技术
无线通信系统中, 为了实现上行链路同步, 无线终端 UE(User Equipment)需要进行上行随机接入。只有上行链路实现了同步之后, 终 端 UE才能与基站 eNB (evolved Node Base station)进行上下行数据和 消息的传输。
3GPP的 LTE (Long Term Evolution) 系统采取随机接入的技术取 得上行链路的同步。 随机接入过程分为两种: 基于竞争的随机接入过 程和非竞争的随机接入过程。 在非竞争的随机接入过程中, 终端 UE 使用由基站 eNB 指定的随机接入前导和物理随机接入信道 PRACH(Physical Random Access Channel)进行随机接入。在基于竞争的 随机接入过程中,终端 UE可以选择随机接入前导和物理随机接入信道 PRACH进行随机接入。
图 1显示现有技术中基于竞争的随机接入过程。
在当前的 于 3GPP版本 9的 LTE无线通信系统中 (请参照非专 利文献 1 ), 当终端 UE与基站 eNB进行随机接入时, 如图 1所示, 在 步骤 S101中, 终端 UE利用一个随机选择的上行链路物理随机接入信 道 PRACH向基站 eNB发送在可选的前导中任意选择的随机接入前导。
发送完前导之后再延迟三个子帧, 作为具有规定长度的接入响应 窗口的开始。 接收窗口的长度是半静态的, 基站可以通过广播消息周 期性地通知或通过专用消息通知终端本小区的接收窗口长度, 所以终 端在随机接入发起之前就已经获得接收窗口的长度。 在步骤 S102中, 接入响应窗口已经开始。 当基站 eNB接收到该 前导后, 在窗口内可能做出应答, 在接入响应窗口内, 向终端 UE发送 随机接入响应消息 RAR(Random Access Response ), 也可能不做出响 应,在随机接入响应的接收窗口内,不向终端 UE发送随机接入响应消 息 RAR。
在基站 eNB向终端 UE发送的响应消息中包含用来指示随机接入 响应消息 RAR在子帧内的位置的物理下行控制信道 PDCCH (Physical Downlink Control CHannel ) 的信息。 终端只有解码发送给自己的 PDCCH才能得到 RAR的位置。
物理下行控制信道 PDCCH用来指示上下行链路的资源分配以及 进行其他控制。 该信道用一定的码字加扰校验。 不同用途、 发送给不 同终端 UE的 PDCCH信道使用不同加扰码字。在随机接入过程中, 基 站 eNB 使用随机接入 -无线网络临时标识 RA-RNTI ( Random Access-Radio Network Temporary Identify) (以下, 简称为 RA-RNTI) 加扰 PDCCH信道。 终端要解码 PDCCH, 就必须要先得到 RA-RNTI。
在步骤 S103中, 响应窗口开始。 响应窗口一旦开始, 终端 UE就 需要对响应窗口内的每个子帧, 利用 RA-RNTI来检测 PDCCH信道。
RA-RNTI可通过以下公式计算: RA-RNTI= 1 +t_id+ 10 * f_id ( 13 ) 其中, t_id是指定的物理随机接入信道 PRACH所在的第一个子 帧的序号, 由于每个帧中包含 10个子帧, 0 t— id< 10; f— id是该指定 的物理随机接入信道 PRACH在该子帧内的序号,并且是按照频域升序 进行排序, 定义 0 f— id<6。
由式 (13 ) 可知, 根据发送前导的具体位置 (时域的子帧号, 频 域的 PRACH信道序号), 终端 UE按照式 (13 ) 可得到 RA-RNTI。 如 S102中的箭头所示, 终端 UE利用 RA-RNTI检测到基站 eNB发送的 加扰的 PDCCH之后, 可获知随机接入响应消息 RAR的位置。
终端 UE进一步对随机接入响应消息 RAR进行解码,判定终端 UE 发送的前导是否包含在随机接入响应消息 RAR内。如果随机接入响应 消息 RAR内包含终端 UE发送的前导, 则进入步骤 S104, 进行终端 UE的身份识别。
如果终端 UE在随机接入响应消息 RAR内没有发现自己发送的前 导,终端 UE则在随机接入响应接收窗口内持续解码,直到发现自己发 送的前导, 或者随机接入响应接收窗口结束, 此次发送前导失败。
在步骤 S104中, 终端 UE在随机接入响应消息 RAR中分配的上 行带宽中发送消息 msg3。 消息 msg3中包含识别终端 UE身份的信息, 以区别在相同的物理随机接入信道 PRACH 中发送相同的前导的不同 终端 UE。
在步骤 S105中: 基站 eNB在接收到消息 msg3之后, 对终端 UE 的身份进行确认。 在基站 eNB对终端 UE的身份进行确认之后, 向终 端 UE发送消息 msg4。终端 UE接收到消息 msg4,也就得到了基站 eNB 对自己的身份确认, 认为自己的上行链路已经同步, 随机接入过程结 束。 之后, 终端 UE可以在随机接入响应消息 RAR中分配的带宽中进 行数据传输。
如上所述, RA-R TI是终端随机接入过程中的关键参数。
另夕卜, 在现有的无线通信系统, 比如在 LTE的第 8版本中, 终端 UE最多支持 20MHz的工作带宽。 而为了满足第四代无线通信系统的 要求,面向未来高速率高带宽的业务需要,提出了载波聚合 CA(Carrier Aggregation)技术。 终端 UE可以工作在宽达 100MHz的带宽内, 可以 聚合多个载波。 在 LTE第 10版本中的载波聚合 (CA) 系统中, 对每 个终端 UE来讲, 在被聚合的载波中, 一个载波定义为主载波, 其余载 波定义为辅载波。一些重要的过程(比如随机接入过程)、上行反馈(比 如物理上行控制信道) 只在主载波上进行, 而在辅载波上, 可以传输 上下行数据和一些控制信息。
在 LTE第 10版本中, 由于随机接入过程只发生在主载波上, 该系 统与非载波聚合系统兼容。但在 LTE第 11版本以后的载波聚合(CA) 系统中, 随机接入过程可以发生在辅载波上, 并且会有多个随机接入 过程同时发生。 这时, 如图 1所示的现有技术中, 由于 RA-RNTI未考 虑载波信息,因此不能唯一地识别随机接入信道 PRACH,会产生错误。
图 2显示现有技术中的随机接入过程应用于载波聚合 (CA) 系统 时的问题的时序图。
在步骤 S201和步骤 S202中,多个终端 UE-A和 UE-B在不同的载 波上的相同位置的物理随机接入信道 PRACH上发送相同的前导。
在步骤 S203和步骤 S204中, 对于通过多个载波发送来的前导, 基站 eNB发送随机接入响应消息 RAR。 这时, 基站 eNB如果采用现 有的 RA-RNTI计算方法,只能计算出一个 RA-RNTI值。这个 RA-RNTI 值被用来加扰 PDCCH, 而 PDCCH被用来指示相应的随机接入响应消 息 RAR。
在步骤 205和步骤 206中,终端 UE-A和 UE-B接收到随机接入响 应消息 RAR之后,如果发现自己发送的前导被包含在该随机接入响应 消息 RAR, 终端 UE-A和 UE-B都判断自己发送的前导被成功接收, 然后都在随机接入响应消息 RAR中分配的带宽发送消息 msg3。 这时, 终端 UE-A和 UE-B都判断自己发送的前导被成功接收,如果这两个终 端在相同的载波上在随机接入响应消息 RAR中分配的带宽发送 msg3, 显然两个 msg3就会发生碰撞。如果这两个终端分别在各自发送前导的 载波上在随机接入响应消息 RAR中分配的带宽发送 msg3, 那么如果 基站实际上只在其中的一个载波上给 msg3分配了带宽,那么在另一个 载波上,另一个终端发送的 msg3就可能会对另一个载波上的其它用户 造成不必要的干扰。 如果基站的确同时在两个上行载波上分配了相同 位置的带宽, 那么, 就会给基站的调度造成限制, 因为它需要选择在 不同载波上相同位置的带宽。 同时, 由于触发随机接入的原因各不相 同, 因此 msg3需要的带宽也不相同。 这种情况下, 如果给所有这种情 况下的终端分配相同位置和大小的带宽, 如果过大, 就可能造成资源 的浪费, 如果过小, msg3不能正常传输。 因此, 最有效的方式是能够 灵活的给这种情况下的终端分别进行带宽分配, 也就是分别回复响应 消息。
以上问题同样出现于同一个终端 UE 在不同载波的相同位置的 PRACH信道上发送相同的前导的情形。
[非专利文献]
非专利文献 1 : 3GPP TS 36.321 V9.3.0(2010-06) Medium Access
Control(MAC) Protocol specification(Release 9). 非专利文献 2: R2-106854 Corrections and new agreements on Carrier Aggregation Nokia Siemens Networks
[专利文献]
专利文献 1 中国专利公开 CN101742684A号公报
专利文献 2 中国专利公开 CN101674661A号公报
专利文献 3 中国专利公开 CN101742682A号公报 发明内容
本发明是鉴于现有技术中存在的上述问题而进行的, 其目的在于 提供一种无线通信终端、 无线通信基站和它们的通信方法, 以及实现 该通信方法的程序和存储该程序的介质, 其能够在载波聚合(CA)系 统中有效地进行随机接入, 实现同步。
本发明提供了一种与无线通信基站进行通信的无线通信终端, 其 包括: 发送单元, 其向无线通信基站发送随机接入前导; 接收单元, 其接收来自无线通信基站的响应消息; 以及控制单元, 其生成随机接 入临时标识来获得响应消息, 以实现同步; 其中, 控制单元控制发送 单元在多个载波的任一个上发送随机接入前导; 控制单元根据发送随 机接入前导的物理随机接入信道在载波内的位置和该物理随机接入信 道所在的载波生成随机接入临时标识。
本发明提供了一种与无线通信终端进行通信的无线通信基站, 其 包括: 接收单元, 其接收来自无线通信终端的随机接入前导; 控制单 元, 其生成无线通信终端的随机接入临时标识和针对随机接入前导的 响应消息, 并利用随机接入临时标识加扰响应消息; 以及发送单元, 其向无线通信终端发送加扰后的响应消息; 其中, 控制单元控制接收 单元在多个载波上接收随机接入前导; 控制单元根据无线通信终端发 送随机接入前导的物理随机接入信道在载波内的位置和该物理随机接 入信道所在的载波来生成无线通信终端的随机接入临时标识。
本发明提供了一种无线通信终端与无线通信基站进行通信的无线 通信终端通信方法, 其包括以下步骤: 在进行随机接入时, 无线通信 终端在多个载波的任一个上向无线通信基站发送随机接入前导, 无线 通信终端根据发送随机接入前导的物理随机接入信道在载波内的位置 和该物理随机接入信道所在的载波生成随机接入临时标识。
本发明提供了一种无线通信基站与无线通信终端进行通信的无线 通信基站通信方法, 其包括: 在进行随机接入时, 无线通信基站在多 个载波上接收无线通信终端发送的随机接入前导, 无线通信基站根据 无线通信终端发送随机接入前导的物理随机接入信道在载波内的位置 和该物理随机接入信道所在的载波来生成无线通信终端的随机接入临 时标识。 ·
另外, 本发明还提供一种实现如上所述通信方法的程序和存储该 程序的介质。
本发明的无线通信终端、 无线通信基站和它们的通信方法, 以及 实现该通信方法的程序和存储该程序的介质, 能够在载波聚合(CA) 系统中有效地进行随机接入, 实现同步。 附图说明
图 1为现有技术中的随机接入过程的说明图。
图 2为说明现有技术的随机接入过程中存在的问题的图。
图 3为本发明的第一实施方式的终端 UE方框图。
图 4为本发明的第二实施方式的基站 eNB方框图。
图 5为本发明的第三实施方式的终端 UE的流程图。
图 6为本发明的第四实施方式的终端 UE的流程图。
图 7为本发明的第五实施方式的基站 eNB的流程图。
图 8为本发明的第六实施方式的基站 eNB的流程图。
图 9为本发明的第七实施方式的终端 UE与基站 eNB进行随机接 入的说明图。 具体实施方式
下面, 结合附图详细说明本发明的最佳实施方式。
首先以竞争方式的随机接入过程为例, 说明终端 UE 300 和基站 eNB 400的构成。 图 3为本发明的第一实施方式的终端 UE的方框图。 如图 3所示, 终端 UE 300具有发送单元 310、 接收单元 320和控 制单元 330。在本实施方式中,控制单元 330控制发送单元 310利用多 个上行载波发送用于进行随机接入的前导。
发送单元 310在控制单元 330的控制下向基站 eNB发送无线信号; 接收单元 320在控制单元 330的控制下接收发自基站 eNB的无线信号。
优选地,在控制单元 330中具有前导控制部 331、临时标识生成部 332、 检测部 333和消息生成部 334。 前导控制部 331选择用于随机接 入的前导和发送该前导的物理随机接入信道 (PRACH), 并将该选择的 前导和 PRACH的信息输出给发送单元 310。发送单元 310通过由前导 控制部 331选择的物理随机 入信道向基站 eNB发送该被选择的前导。
临时标识生成部 332根据前导控制部 331所选择的 PRACH和载波 信息来生成随机接入临时标识 RA-RNTI ( Random Access-Radio Network Temporary Identify) 。■
若基站 eNB接收到终端 UE 300的随机接入前导, 则会根据该前 导所使用的 PRACH在载波内的位置和该 PRACH所在的载波的信息生 成与终端 UE300的控制单元 330所生成的随机接入临时标识相同的随 机接入临时标识 RA-RNTI,并利用该随机接入临时标识对属于终端 UE 300的 PDCCH加扰后,在规定的接入响应窗口中发送该加扰的 PDCCH 和由该 PDCCH所指定的随机接入响应消息 RAR。
检测部 333,在前导控制部 331选择前导和 PRACH并由发送单元
310发送给基站 eNB后, 检测基站 eNB所发出的响应消息, 并根据临 时标识生成部 332生成的临时标识 RA-RNTI解扰由临时标识 RA-RNTI 加扰的物理下行控制信道 PDCCH, 获得属于终端 UE 300自己的随机 接入响应消息 RAR。 根据前导控制部 331选择的前导, 在检测部 333 检测到属于终端 UE 300自己的随机接入响应消息 RAR后, 消息生成 部 334向基站 eNB发送消息 3(Msg3)进行身份确认, 以完成随机接入 过程的后续过程。 图 4为本发明的第二实施方式的基站 eNB的方框图。 在本实施方 式中, 控制单元 430控制接收单元 420在多个上行载波上接收来自终 端 UE 300的随机接入的前导。 如图 4所示,基站 eNB 400具有发送单元 410,接收单元 420和控 制单元 430。发送单元 410用于发送无线信号;接收单元 420用于接收 无线信号; 控制单元 430对发送单元 410和接收单元 420进行控制, 以实现无线通信网络的通信。
优选地,在控制单元 430中具有前导接收部 431、临时标识生成部
432、 响应部 433和消息接收部 434。 前导接收部 431接收在随机接入 时从终端 UE 300 发送来的前导, 并进行检测, 取得该前导所使用的 PRACH在载波内的位置和该 PRACH所在的载波。临时标识生成部 432 根据由前导接收部 431取得的前导所使用的 PRACH在载波内的位置和 PRACH所在的载波的信息生成该终端 UE 300的随机接入临时标识。 响应部 433对该终端 UE 300的前导做出响应,通过以临时标识生成部 432生成的随机接入临时标识对 PDCCH加扰, 以使终端 UE 300仅能 够检测出属于终端 UE 300的 PDCCH,从而找到终端 UE 300的 RAR。 同时, 通过前导接收部 431 接收到的前导, 生成随机接入响应消息 RAR。 另夕卜, 在响应部 433通过发送单元 410发送响应消息后, 由消 息检测部 434经接收单元 420检测来自终端 UE 300的消息 3(Msg3), 以完成随机接入过程的后续过程。
图 5为第三实施方式的终端 UE的流程图。
首先, 在步骤 S501中, 终端 UE选择多个上行载波中的任一个载 波的物理随机接入信道 PRACH和前导, 或根据由基站 eNB指定的物 理随机接入信道 PRACH和前导, 在该 PRACH上发送该前导。
然后, 在步骤 S502中, 根据该物理随机接入信道在载波内的位置 和该物理随机接入信道所在的载波生成随机接入临时标识 RA-R TI。
接着, 在步骤 S503中, 利用在步骤 S502中生成的随机接入临时 标识 RA-R TI检测来自基站 eNB的 PE>CCH,进而得到基站 eNB发送 的随机接入响应消息 RAR。
在竞争方式的随机接入过程中,终端 UE选择载波和载波上的物理 随机接入信道; 并且, 在接收到来自基站 eNB的响应消息后, 生成并 发送消息 3(Msg3)以完成后续的随机接入过程。
终端 UE还可以进行非竞争方式的随机接入过程,在发送前导之前 需要接收基站 eNB指定的前导和物理随机接入信道 PRACH。 下面,对实现竞争方式和非竞争方式随机接入的终端 UE具体动作 流程的例子进行详细说明。
图 6为第四实施方式的终端 UE的动作流程图。 在本实施方式中, 终端 UE具有发送单元、接收单元和控制单元。终端 UE的控制单元控 制发送单元利用多个上行载波发送用于进行随机接入的前导。 与第一 实施方式的终端 UE300不同, 在本实施方式中, 终端 UE能够进行竞 争式和非竞争式随机接入过程。
如图 6所示, 在步骤 S601中, 控制单元选择多个上行载波中的任 一个载波的物理随机接入信道 PRACH和前导, 或根据由基站 eNB指 定的物理随机接入信道 PRACH和前导,控制发送单元在该 PRACH上 发送该前导。
接着, 在步骤 S602中, 控制单元根据上述发送前导的 PRACH在 载波内的位置和该 PRACH所在的载波信息生成随机接入临时标识。
在步骤 S603 中, 控制单元等待基站 eNB的接入响应窗口, 若接 入响应窗口开始, 则进入步骤 S604。
在步骤 S604和 S605中, 控制单元在整个接入响应窗口中持续检 测以终端 UE 的随机接入临时标识加扰的 PDCCH,直到接入响应窗口 结束为止。 若在步骤 S605中, 直到接入响应窗口结束也未找到属于终 端 UE 的 PDCCH, 则进入步骤 S606, 判定前导发送失败。 若控制单 元在步骤 S604中检测到属于终端 UE 的 PDCCH, 则进入步骤 S607。
在步骤 S607中, 根据正确解扰后的 PDCCH所指示的位置检测随 机接入响应消息 RAR中基站 eNB提供的终端 UE 的前导识别符。
在步骤 S608中, 如果检测到该前导识别符, 则认为是前导发送成 功,进入步骤 S609,若未找到终端 UE 的前导识别符,进入步骤 S605。
在步骤 S609中, 控制单元根据正确解扰后的 PDCCH所指示的随 机接入响应消息 RAR位置, 检测随机接入响应消息 RAR信息, 从而, 控制单元能够根据该随机接入响应消息 RAR信息调整上行给与。
接着, 在步骤 S610中, 判断前导是否是由 MAC层选择的。 对于 非竞争随机接入的方式, 由于前导是由基站 eNB指定的, 因此, 完成 随机接入过程 (步骤 S611)。 对于竞争随机接入的方式, 由于前导是由 终端 UE 的 MAC层选择的, 因此进入步骤 S612, 控制单元进行控制, 在接入响应消息中分配的上行给与中发送消息 3(Msg3),完成随机接入 过程的后续步骤。
图 7为第五实施方式的基站 eNB的流程图。
首先, 在步骤 S701中,基站 eNB接收来自终端 UE的用于进行随 机接入的前导。
在接收到前导后, 在步骤 S702中, 基站 eNB根据该前导所使用 的物理随机接入信道在载波内的位置和该物理随机接入信道所在的载 波生成该终端 UE的随机接入临时标识1^-1^11。
接着, 在步骤 S703中, 基站 eNB利用在步骤 S702中生成的随机 接入临时标识 RA-R TI对终端 UE的 PDCCH进行加扰, 向终端发送 PDCCH和对应的随机接入响应信息 RAR。
在竞争方式的随机接入过程中, 在发送响应消息后, 基站 eNB检 测来自终端 UE的消息 3(Msg3)以完成后续的随机接入过程。
在随机接入中,基站 eNB还可以进行非竞争方式的随机接入过程, 在接收来自终端 UE 的前导之前需要给终端发送指定的前导和物理随 机接入信道 PRACH。
下面, 对实现竞争方式和非竞争方式随机接入的基站 eNB具体动 作流程的例子进行详细说明。
图 8为第六实施方式的基站 eNB的动作流程图。在本实施方式中, 基站 eNB具有发送单元、 接收单元和控制单元。 控制单元控制接收单 元在多个上行载波上接收来自终端 UE 的随机接入的前导。 与第二实 施方式的基站 eNB400不同, 在本实施方式中, 基站 eNB能够进行竞 争式和非竞争式随机接入过程。
如图 8所示, 在步骤 S801中, 基站 eNB 的控制单元对接收单元 进行控制, 在多个上行载波上接收来自终端 UE 的随机接入的前导。
接着, 当在步骤 S802 中当接收到终端 UE 的前导时进入步骤 S803,根据该前导的 PRACH在载波内的位置和该 PRACH所在的载波 的信息生成终端 UE 的随机接入临时标识。
在步骤 S804中, 控制单元等待接入响应窗口的开始, 当到达接入 响应窗口时, 如果基站没有上行给与可以分配给终端, 那么它即便正 确接收了终端发送的前导, 它也可以不对终端进行响应, 直至在步骤 S806中判断接入响应窗口结束,则进入步骤 S807中,响应消息发送失 败。
其中, 步骤 S803 可以发生在步骤 S804之后, 只要是在步骤 S805 之前, 即发送以随机接入临时识别符加扰的 PDCCH之前。
若在步骤 S805中,控制单元在接入响应窗口结束之前完成了对终 端 UE 的 PDCCH的加扰, 则在步骤 S808中, 在该 PDCCH所表示的 位置发送终端 UE 的随机接入响应消息 RAR, 其中包含终端 UE 的前 导识别符和分配给终端 UE 的上行给与。
在步骤 S809 中, 控制单元判断该终端 UE 的前导是否是由终端 UE 的 MAC层选择的。对于非竞争接入的方式,由于前导是由基站 eNB 指定的的, 因此, 进入步骤 S810, 完成随机接入过程。 对于竞争接入 的方式,由于前导是由终端 UE 的 MAC层选择的,因此进入步骤 S811 , 在赋予终端 UE 的上行给与中等待终端 UE在接收到 PDCCH和 RAR 后所发送的消息 3(Msg3)。 当在步骤 S813中接收到消息 3(Msg3)后完 成随机接入过程的后续过程。若未能接收到消息 3(Msg3), 则进入步骤 S812, 消息 3(Msg3)接收失败。
在第五实施方式的终端 UE侧和第六实施方式的基站 eNB 侧生 成的随机接入临时标识, 根据相同的条件生成, 因此, 保证了终端 UE 能够唯一地检测出属于自己的来自基站 eNB 的响应。
如上所述, 终端 UE 的控制单元在进行随机接入时, 根据发送随 机接入前导的 PRACH在载波内的位置和该 PRACH所在的载波生成随 机接入临时标识, 使终端 UE 能够在多个载波上发送随机接入前导, 而不会发生图 2所示的随机接入错误。 下面, 参照图 9 以竞争式随机接入为例详细说明本发明的终端
UE-A和终端 UE-B与基站 eNB400进行随机接入的流程。
图 9为本发明的第七实施方式的终端 UE与基站 eNB进行随机接 入的说明图。
, 在图 9中,终端 UE-A和终端 UE-B具有如上所述本实施方式的终 端 UE 300的构成。 在竞争式随机接入过程中,在步骤 S901中终端 UE A和终端 UE B 在不同载波的相同的位置,即不同载波的同一 PRACH上, 向基站 eNB 400发送随机接入前导。
如上所述,基站 eNB 400在接收到来自终端 UE-A和终端 UE-B的 前导后, 分别根据终端 UE-A和终端 UE-B发送各自前导的 PRACH在 载波内的位置和 PRACH所在的载波信息生成终端 UE-A和终端 UE-B 的随机接入临时标识 RA-R TI。
由于在生成终端 UE-A 和终端 UE-B 的随机接入临时标识 RA-RNTI时, 使用了各终端发送前导的载波信息, 因此能够对于终端 UE-A和终端 UE-B生成不同的随机接入临时标识 RA-R TI。
另一方面, 在终端 UE-A和终端 UE-B中, 根据各自所选择的发送 前导所使用的 PRACH和该 PRACH所在的载波信息, 与基站 eNB 400 同样地生成属于自己的随机接入临时标识 RA-R TI。
在步骤 S902中,基站 eNB 400在接入响应窗口中分别对终端 UE-A 和终端 UE-B发送响应消息时,分别利用终端 UE-A和终端 UE-B的随 机接入临时标识 RA-RNTI 对属于终端 UE-A 和属于终端 UE-B 的 PDCCH加扰, 从而分别向终端 UE-A和终端 UE-B发送随机接入响应 消息 RAR1、 RAR2。
在步骤 S902中 ,基站可以如图 9所示在同一个子帧 内 对 终端 UE-A和终端 UE-B分别进行响应,也可以在不同的子帧内对终端 UE-A 和终端 UE-B分别进行响应, 但必须保证响应消息要在响应窗口之内。
终端 UE-A和终端 UE-B的随机接入临时标识不同,因而终端 UE-A 和终端 UE-B 能够正确地解扰分别属于自己的 PDCCH, 并在各自的 PDCCH所指示的位置找到各自的随机接入响应消息 RAR。
在终端 UE-A 和终端 UE-B 分别根据各自的随机接入响应消息
RAR中的信息进行调整后, 在步骤 S903中, 分别向基站 eNB 400发 送消息 3(Msg3)。 由于终端 UE-A和终端 UE-B 的随机接入响应消息 RAR中分配的上行给与不同, 因此两者的 Msg3不会发生冲突, 从而 能够顺利地完成随机接入过程。
如上所述, 在随机接入过程中, 通过使基站 eNB和终端 UE根据 终端发送前导时所使用的 PRACH在载波内的位置和该 PRACH的载波 信息来生成终端 UE的随机接入临时标识, 能够避免终端 UE-A、 终端 UE-B的 Msg3发生碰撞, 从而利用多个上行载波同时进行随机接入过 程, 能够使更多用户同时完成随机接入, 大大提高了无线通信系统处 理随机接入的能力。 下面, 对本发明中在终端 UE侧和基站 eNB侧分别生成随机接入 临时标识 RA-R TI的具体的例子进行详细说明。
实施例 1 '
在现有的 3GPP版本 9中规定, 将载波上的每个帧按照时域分为 10个子帧, 并且在每个子帧中按照频域分为 6个信道。 因此, 根据本 发明生成的随机接入临时标识 RA-RNTI可由下述式 14表示:
[式 14] RA-RNTI= 1 +t_id+ 10* f_id+60* Cell-Index (14) 其中, t— id为特定的 PRACH (即, 发送前导的 PRACH)所在的第一 个子帧的序号; f— id为该 PRACH在子帧内的序号, Cell-Index为 PRACH 所在的载波的识别符。
另外, 根据 3GPP的规定, 在一个帧的时域上具有 10个子帧, 即
0^t_id< 10, 在升序的频域上具有 6个信道, 即 0 f— id<6, 因此, 在单载波的情况下, 随机接入临时标识 RA-RNTI的最大值成为 60。利 用式 14能够使终端 UE侧和基站 eNB 侧在随机接入时所生成随机接 入临时标识在全部的载波上对所有可用的 PRACH—一对应,能够避免 随机接入过程中发生错误。 但在此, 作为式 14 的第三项 "60*Cell-IndeX", 其系数并不局限于使用该最大值" 60", 只要不小 于该最大值都能够实现本发明。
另外,根据现有的 3GPP的规定,随机接入临时标识的位长为 16bit, 而即使在 3GPP版本 10的载波聚合中规定了终端 UE可以工作在最多 100MHz的带宽内, 即最多可以聚合 5个载波的情况下, 即便将 5个载 波都用作能够发起随机接入的主载波, 根据本发明生成的随机接入临 时标识的数量也不会超过 3GPP所规定的 16位长的域, 即 216的数量, 因而, 本发明能够与现有 3GPP版本相兼容, 也就是说, 根据本发明的 基站 eNB 能够保证提供基于现有技术的服务的同时,实现在多个载波 上同时接收随机接入前导, 并做出响应; 且根据本发明的终端 UE , 能够在与本发明的基站 eNB 进行随机接入时实现在多个载波上同时 发送随机接入前导, 也能够与提供基于现有技术的服务的基站相兼容。 实施例 2 ^
作为另一个例子, 根据现有的 3GPP 的规定, 随机接入临时标识 RA-R TI 的位长为 16bit。 在本实施例中, 设定随机接入临时标识 RA-RNTI在现有的 16bit基础上扩充至更多位长, 例如 20bit或 24bit 等。 因此, 可以使根据本发明生成的随机接入临时标识 RA-RNTI可如 下表示: [式 15]
RA-RNTI=l+t_id+10*f_id+Cell-Index*2T (15)
其中, T为不小于根据 3GPP规定的随机接入临时标识的位长的正 整数。 即, 当在现有 3GPP标准的基础上实现本发明时, 通过将现有的 随机接入临时标识 RA-RNTI从 16bit扩展后, T可以是不小于 16的正 整数。:
根据本实施例, 通过使随机接入临时标识 RA-RNTI在目前的标准 的基础上扩充至更多位长, 能够使随机接入临时标识 RA-RNTI支持更 多的可用 PRACH。 实施例 3
在本实施例中,根据随机接入前导的 PRACH所在的第一个子帧的 序号和该子帧内,所述 PRACH在全部的所述载波的全部的 PRACH中 的序号生成随机接入临时标识。通过在频域上对全部的 PRACH进行排 列,得到与全部的载波上的全部的 PRACH唯一对应的随机接入临时标 识。: 具体为, 基于现有的 3GPP的规定, 在一个帧的时域上具有 10个 子帧, 即 0 t— id< 10, 在升序的频域上具有 6个信道, 即 0 f— id<6, 且根据 3GPP版本 10规定聚合 5个载波的情况下, 在本实施例中随机 接入临时标识 RA-RNTI表示如下:
[式 16]
RA-R TI= 1 +t_id+ 10* f_id_new (16) 其中, f— id— new为指定 PRACH在全部的载波上的全部 PRACH中按 照频域升序排列的可唯一识别此 PRACH的序号,由于对于一个帧在频 域上具有 6个信道, 且聚合 5个载波, 因此 0 f— id_new<30, 对于各 PRACH通常是按照频域升序排序。
根据本实施例, 也能够使在终端 UE侧和基站 eNB侧在随机接入 时所生成随机接入临时标识在全部的载波上对所有可用的 PRACH唯 一地对应, 从而在利用多个上行载波进行随机接入时, 能够有效地进 行随机接入。
根据本发明, 能够分别使终端 UE和基站 eNB在多个载波上发送 和接收随机接入前导, 并完成随机接入过程。 由此, 能够允许更多用 户同时进行随机接入, 大大提高了无线通信系统处理随机接入的能力, 提高随机接入的成功率。
另外, 根据本发明还能够提供实现上述无线通信终端和无线通信 基站通信方法的程序, 以及保存有该程序的存储介质。 该存储介质可 以是光盘、 硬盘、 闪速存储器等任何一种存储介质。
上述实施方式仅仅是为了解释本发明, 而不是对本发明保护范围 的限制。 本发明的保护范围由所附的权利要求书确定, 本发明的原理 和思想还 ¾1以由与上述实施方式等同或类似的方式加以实施。

Claims

权 利 要 求 书
1. 一种与无线通信基站进行通信的无线通信终端, 其特征在于, 包括:
发送单元, 其向所述无线通信基站发送随机接入前导,
接收单元, 其接收来自所述无线通信基站的响应消息, 以及 控制单元, 其生成随机接入临时标识来获得所述响应消息, 以实 现同步,
其中,
所述控制单元控制所述发送单元在多个载波的任一个上发送所述 随机接入前导,
所述控制单元根据发送所述随机接入前导的物理随机接入信道在 载波内的位置和该物理随机接入信道所在的载波生成所述随机接入临 时标识。
2. 如权利要求 1所述的无线通信终端, 其特征在于,
所述控制单元根据所述物理随机接入信道所在的第一个子帧的序 号, 所述物理随机接入信道在子帧内按照频域升序得到的序号, 和所 述物理随机接入信道所在的载波的识别符生成所述随机接入临时标 识。
3. 如权利要求 2所述的无线通信终端, 其特征在于- 所述随机接入临时标识根据公式 (1 ) 计算 l+t_id+X*f_id+Y*Cell-Index ( 1 ) 其中,
t_id为所述物理随机接入信道所在的第一个子帧的序号, f_id为所述物理随机接入信道在子帧内按照频域升序得到的序号, Cell-Index为所述物理随机接入信道所在的载波的识别符,
X为一个帧内所具有的子帧的数量, Y为不小于单载波上的随机接入临时标识的最大值的整数。 .
4. 如权利要求 2所述的无线通信终端, 其特征在于:
所述随机接入临时标识根据公式 (2) 计算 . l+t_id+X*f_id+Cell-Index*2T (2) 其中,
t_id为所述物理随机接入信道所在的第一个子帧的序号, f—id为所述物理随机接入信道在子帧内按照频域升序得到的序号, Cell-Index为所述物理随机接入信道所在的载波的识别符,
X为一个帧内所具有的子帧的数量,
τ为不小于遵循规定的随机接入临时标识的规定位长的正整数。
5. 如权利要求 1所述的无线通信终端, 其特征在于:
所述控制单元根据所述物理随机接入信道所在的第一个子帧的序 号, 和该子帧内, 所述物理随机接入信道在全部的所述载波上的所有 物理随机接入信道中按照频域升序得到的序号来生成所述随机接入临 时标识。
6. 如权利要求 5所述的无线通信终端, 其特征在于- 所述随机接入临时标识根据以下公式 (3 ) 计算 l+t_id+X*f_id_new (3 ) 其中,
t_id为所述物理随机接入信道所在的第一个子帧的序号, f—id— new 为在子帧内, 所述物理随机接入信道在全部的所述载波 的全部的物理随机接入信道中按照频域升序得到的序号,
X为一个帧内所具有的子帧的数量。
7. 一种与无线通信终端进行通信的无线通信基站, 其特征在于, 包括:
接收单元, 其接收来自所述无线通信终端的随机接入前导; 控制单元, 其生成所述无线通信终端的随机接入临时标识和针对 所述随机接入前导的响应消息, 并利用所述随机接入临时标识加扰所
5 述响应消息; 以及
发送单元, 其向所述无线通信终端发送加扰后的所述响应消息, 其中,
所述控制单元控制所述接收单元在多个载波上接收所述随机接入 前导,
10 所述控制单元根据所述无线通信终端发送随机接入前导的物理随 机接入信道在载波内的位置和该物理随机接入信道所在的载波来生成 所述无线通信终端的随机接入临时标识。
8. 如权利要求 7所述的无线通信基站, 其特征在于, 15 所述控制单元根据所述物理随机接入信道所在的第一个子帧的序 号, 所述物理随机接入信道在子帧内按照频域升序得到的序号, 和所 述物理随机接入信道所在的载波的识别符生成所述随机接入临时标 识。
20 9. 如权利要求 8所述的无线通信基站, 其特征在于:
所述随机接入临时标识根据公式 (4) 计算
1 +t_id+X* f_id+Y* Cell-Index (4)
25 其中,
t_id为所述物理随机接入信道所在的第一个子帧的序号, f— id为所述物理随机接入信道在子帧内按照频域升序得到的序号,
、 Cell-Index为所述物理随机接入信道所在的载波的识别符,
X为一个帧内所具有的子帧的数量,
30 Y为不小于单载波上的随机接入临时标识的最大值的整数。
10. 如权利要求 8所述的无线通信基站, 其特征在于:
所述随机接入临时标识根据公式 (5 ) 计算 l+t_id+X*f_id+Cell-Index*2T (5) 其中,
t— id为所述物理随机接入信道所在的第一个子帧的序号, f_id为所述物理随机接入信道在子帧内按照频域升序得到的序号, Cell-Index为所述物理随机接入信道所在的载波的识别符,
X为一个帧内所具有的子帧的数量,
T为不小于遵循规定的随机接入临时标识的规定位长的正整数。
11. 如权利要求 7所述的无线通信基站, 其特征在于:
所述控制单元根据所述物理随机接入信道所在的第一个子帧的序 号, 和该子帧内, 所述物理随机接入信道在全部的所述载波的全部的 物理随机接入信道中按照频域升序得到的序号生成所述随机接入临时 标识。
12. 如权利要求 11所述的无线通信基站, 其特征在于:
所述随机接入临时标识根据公式 (6) 计算 l+t_id+X*f_id_new (6) 其中,
t_id为所述物理随机接入信道所在的第一个子帧的序号, f— id— new 为在子帧内, 所述物理随机接入信道在全部的所述载波 的全部的物理随机接入信道中按照频域升序得到的序号,
X为一个帧内所具有的子帧的数量。
13. 一种无线通信终端与无线通信基站进行通信的无线通信终端 通信方法, 其特征在于, 包括以下步骤: 在进行随机接入时,
所述无线通信终端在多个载波的任一个上向所述无线通信基站发 送随机接入前导,
所述无线通信终端根据发送所述随机接入前导的物理随机接入信 道在载波内的位置和该物理随机接入信道所在的载波生成随机接入临 时标识。 .
14. 如权利要求 13所述无线通信终端通信方法, 其特征在于: 根据所述物理随机接入信道所在的第一个子帧的序号, 所述物理 随机接入信道在子帧内按照频域升序得到的序号, 和所述物理随机接 入信道所在的载波的识别符生成所述随机接入临时标识。
15. 如权利要求 14所述的无线通信终端通信方法, 其特征在于: 所述随机接入临时标识根据公式 (7) 计算
1 +t_id+X* f_id+Y* Cell-Index (7) 其中,
t_id为所述物理随机接入信道所在的第一个子帧的序号, f_id为所述物理随机接入信道在子帧内按照频域升序得到的序号,
Cell-Index为所述物理随机接入信道所在的载波的识别符,
X为一个帧内所具有的子帧的数量,
γ为不小于单载波上的随机接入临时标识的最大值的整数。
16. 如权利 求 14所述的无线通信终端通信方法, 其特征在于: 所述随机接入临时标识根据公式 (8) 计算 l+t_id+X*f_id+Cell-Index*2T ( 8 ) 其中,
t id为所述物理随机接入信道所在的第一个子帧的序号, f—id为所述物理随机接入信道在子帧内按照频域升序得到的序号, Cell-Index为所述物理随机接入信道所在的载波的识别符,
X为一个帧内所具有的子帧的数量,
τ为不小于遵循规定的随机接入临时标识的规定位长的正整数。
17. 如权利要求 13所述的无线通信终端通信方法, 其特征在于: 根据所述物理随机接入信道所在的第一个子帧的序号, 和该子帧 内, 所述物理随机接入信道在全部的所述载波的全部的物理随机接入 信道中按照频域升序得到的序号生成所述随机接入临时标识。
18. 如权利要求 17所述的无线通信终端通信方法, 其特征在于: 所述随机接入临时标识根据公式 (9) 计算 l+t_id+X*f_id_new (9) 其中,
t— id为所述物理随机接入信道所在的第一个子帧的序号, f—id— new 为在子帧内, 所述物理随机接入信道在全部的所述载波 的全部的物理随机接入信道中按照频域升序得到的序号,
X为一个帧内所具有的子帧的数量。
19. 一种无线通信基站与无线通信终端进行通信的无线通信基站 通信方法, 其特征在于:
在进行随机接入时,
所述无线通信基站在多个载波上接收所述无线通信终端发送的随 机接入前导,
所述无线通信基站根据所述无线通信终端发送所述随机接入前导 的物理随机接入信道在载波内的位置和该物理随机接入信道所在的载 波来生成所述无线通信终端的随机接入临时标识。
20. 如权利要求 19所述的无线通信基站通信方法, 其特征在于, 根据所述物理随机接入信道所在的第一个子帧的序号, 所述物理 随机接入信道在子帧内按照频域升序得到的序号, 和所述物理随机接 入信道所在的载波的识别符生成所述随机接入临时标识。。
21. 如权利要求 20所述的无线通信基站通信方法, 其特征在于: 所述随机接入临时标识根据公式 (10) 计算
1 +t_id+X* f_id+Y* Cell-Index ( 10) 其中,
t— id为所述物理随机接入信道所在的第一个子帧的序号, f_id为所述物理随机接入信道在子帧内按照频域升序得到的序号,
Cell-Index为所述物理随机接入信道所在的载波的识别符,
X为一个帧内所具有的子帧的数量,
Y为不小于单载波上的随机接入临时标识的最大值的整数。
22. 如权利要求20所述的无线通信基站通信方法, 其特征在于- 所述随机接入临时标识根据公式 (11 ) 计算 l+t_id+X*f_id+Cell-Index*2T ( 11 ) 其中,
t_id为所述物理随机接入信道所在的第一个子帧的序号, f_id为所述物理随机接入信道在子帧内按照频域升序得到的序号, Cell-Index为所述物理随机接入信道所在的载波的识别符,
X为一个帧内所具有的子帧的数量,
T为不小于遵循 ¾定的随机接入临时标识的规定位长的正整数。
23. 如权利要求 19所述的无线通信基站通信方法, 其特征在于- 根据所述物理随机接入信道所在的第一个子帧的序号, 和该子帧 内, 所述物理随机接入信道在全部的所述载波的全部的物理随机接入 信道中按照频域升序得到的序号生成所述随机接入临时标识。
24. 如权利要求 23所述的无线通信基站通信方法, 其特征在于- 所述随机接入临时标识根据公式 (12) 计算 l+t_id+X*f— id— new ( 12) 其中,
t— id为所述物理随机接入信道所在的第一个子帧的序号,
f— id— new 为在子帧内, 所述物理随机接入信道在全部的所述载波 的全部的物理随机接入信道中按照频域升序得到的序号,
X为一个帧内所具有的子帧的数量。
25. 一种驱动计算机实现无线通信终端通信方法的程序,该无线通 信终端通信方法包括以下步骤:
在进行随机接入时,
无线通信终端在多个载波的任一个上向无线通信基站发送随机接 入前导,
所述无线通信终端根据发送所述随机接入前导的物理随机接入信 道在载波内的位置和该物理随机接入信道所在的载波生成随机接入临 时标识。
26. 一种存储有驱动计算机实现无线通信终端通信方法的程序的 存储介质, 该无线通信终端通信方法包括以下步骤:
在进行随机接入时,
无线通信终端在多个载波的任一个上向无线通信基站发送随机接 入前导,
所述无线通信终端根据发送所述随机接入前导的物理随机接入信 道在载波内的位置和该物理随机接入信道所在的载波生成随机接入临 时标识。
27.一种驱动 f算机实现无线通信基站通信方法的程序,该无线通 信基站通信方法包括以下步骤:
在进行随机接入时,
无线通信基站在多个载波上接收无线通信终端发送的随机接入前 导,
所述无线通信基站根据所述无线通信终端发送所述随机接入前导 的物理随机接入信道在载波内的位置和该物理随机接入信道所在的载 波来生成所述无线通信终端的随机接入临时标识。
28. 一种存储有驱动计算机实现无线通信基站通信方法的程序的 存储介质, 该无线通信基站通信方法包括以下步骤:
在进行随机接入时,
无线通信基站在多个载波上接收无线通信终端发送的随机接入前 导,
所述无线通信基站根据所述无线通信终端发送所述随机接入前导 的物理随机接入信道在载波内的位置和该物理随机接入信道所在的载 波来生成所述无线通信终端的随机接入临时标识。
PCT/CN2010/001929 2010-11-30 2010-11-30 无线通信终端、无线通信基站和它们的通信方法,以及实现该通信方法的程序和存储该程序的介质 WO2012071681A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2010/001929 WO2012071681A1 (zh) 2010-11-30 2010-11-30 无线通信终端、无线通信基站和它们的通信方法,以及实现该通信方法的程序和存储该程序的介质
CN2010800699571A CN103238365A (zh) 2010-11-30 2010-11-30 无线通信终端、无线通信基站和它们的通信方法,以及实现该通信方法的程序和存储该程序的介质
US13/892,874 US20130250888A1 (en) 2010-11-30 2013-05-13 Radio communication terminal, radio communication base station and communication methods thereof, program for carrying out the communication method and medium for storing the program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/001929 WO2012071681A1 (zh) 2010-11-30 2010-11-30 无线通信终端、无线通信基站和它们的通信方法,以及实现该通信方法的程序和存储该程序的介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/892,874 Continuation US20130250888A1 (en) 2010-11-30 2013-05-13 Radio communication terminal, radio communication base station and communication methods thereof, program for carrying out the communication method and medium for storing the program

Publications (1)

Publication Number Publication Date
WO2012071681A1 true WO2012071681A1 (zh) 2012-06-07

Family

ID=46171141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001929 WO2012071681A1 (zh) 2010-11-30 2010-11-30 无线通信终端、无线通信基站和它们的通信方法,以及实现该通信方法的程序和存储该程序的介质

Country Status (3)

Country Link
US (1) US20130250888A1 (zh)
CN (1) CN103238365A (zh)
WO (1) WO2012071681A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619037A (zh) * 2013-11-01 2015-05-13 宏达国际电子股份有限公司 在无线通信系统中处理随机接入的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989708B2 (en) * 2013-05-21 2015-03-24 Verizon Patent And Licensing Inc. Network device access ID assignment and management
JP5913255B2 (ja) * 2013-10-31 2016-04-27 株式会社Nttドコモ 移動局及び移動通信方法
US9788322B2 (en) * 2015-04-19 2017-10-10 Alcatel Lucent Random access response position indication for coverage enhanced low complexity machine type communication
JP2017139673A (ja) * 2016-02-04 2017-08-10 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
EP3432660B1 (en) * 2016-04-01 2021-05-05 Huawei Technologies Co., Ltd. Resource scheduling method, and user equipment
CN110547015A (zh) * 2017-04-13 2019-12-06 华为技术有限公司 用于确定供用户设备使用的网络标识符的方法和装置
CN117377115A (zh) * 2017-06-07 2024-01-09 三星电子株式会社 识别随机接入响应的方法和装置
CN109392182B (zh) * 2017-08-11 2022-06-10 华为技术有限公司 一种信息发送、信息接收方法及装置
KR102472587B1 (ko) 2017-09-08 2022-12-01 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 무선 통신 방법, 네트워크 디바이스 및 단말기 디바이스
WO2019093793A1 (ko) * 2017-11-08 2019-05-16 엘지전자 주식회사 무선 통신 시스템에서 랜덤 엑세스 절차를 수행하기 위한 메시지를 전송하는 방법 및 이를 위한 장치
CN113994759A (zh) * 2019-09-12 2022-01-28 Oppo广东移动通信有限公司 随机接入的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640922A (zh) * 2009-01-24 2010-02-03 中兴通讯股份有限公司 一种随机接入过程中下行分量载波的标识方法及一种基站
CN101742682A (zh) * 2008-11-12 2010-06-16 中兴通讯股份有限公司 一种lte系统中的随机接入方法
US20110045837A1 (en) * 2009-08-21 2011-02-24 Samsung Electronics Co. Ltd. Method and apparatus for identifying downlink message responsive to random access preambles transmitted in different uplink channels in mobile communication system supporting carrier aggregation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493854B2 (en) * 2006-02-07 2013-07-23 Lg Electronics Inc. Method for avoiding collision using identifier in mobile network
CN101547421B (zh) * 2008-03-25 2012-06-13 中兴通讯股份有限公司 随机接入响应消息的群标识生成方法及随机接入方法
KR101378108B1 (ko) * 2009-04-23 2014-04-01 인터디지탈 패튼 홀딩스, 인크 멀티캐리어 무선 통신에서의 임의 접속을 위한 방법 및 장치
KR101742994B1 (ko) * 2010-02-09 2017-06-15 엘지전자 주식회사 이동통신시스템에서 랜덤접속을 수행하는 방법 및 이를 위한 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742682A (zh) * 2008-11-12 2010-06-16 中兴通讯股份有限公司 一种lte系统中的随机接入方法
CN101640922A (zh) * 2009-01-24 2010-02-03 中兴通讯股份有限公司 一种随机接入过程中下行分量载波的标识方法及一种基站
US20110045837A1 (en) * 2009-08-21 2011-02-24 Samsung Electronics Co. Ltd. Method and apparatus for identifying downlink message responsive to random access preambles transmitted in different uplink channels in mobile communication system supporting carrier aggregation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619037A (zh) * 2013-11-01 2015-05-13 宏达国际电子股份有限公司 在无线通信系统中处理随机接入的方法
CN104619037B (zh) * 2013-11-01 2018-05-15 宏达国际电子股份有限公司 在无线通信系统中处理随机接入的方法

Also Published As

Publication number Publication date
US20130250888A1 (en) 2013-09-26
CN103238365A (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2012071681A1 (zh) 无线通信终端、无线通信基站和它们的通信方法,以及实现该通信方法的程序和存储该程序的介质
CN108702751B (zh) 建立d2d通信组的系统和方法
KR102054043B1 (ko) 데이터 동시 전송을 위한 무선 통신 방법 및 이를 이용한 무선 통신 단말
US9374837B2 (en) Preventing misuse of random access procedure in wireless communication system
US20170099660A1 (en) Method and apparatus for transmitting uplink data
EP3668190A1 (en) Data transmission method and apparatus, and computer readable storage medium
KR100984303B1 (ko) 임의 접속에 이용되는 프리앰블을 위한 시그널링
JP4854821B2 (ja) 電気通信システムにおいてランダムアクセスを実行するための方法および装置
US9357563B2 (en) Preventing misuse of random access procedure in wireless communication system
CN106304392A (zh) 一种随机接入的方法、设备和系统
CN110268795B (zh) 随机接入消息传输方法、装置及存储介质
US9713032B2 (en) Transmission of a random access response message
WO2014023026A1 (zh) 随机接入方法、基站及终端
US20100322096A1 (en) Method of improving component carrier identification in a random access procedure in a wireless communication system and related communication device
TW201507424A (zh) 雙連結中分配無線網路暫時識別的方法
RU2638568C1 (ru) Мобильная станция, узел доступа и различные способы для реализации ускоренной процедуры осуществления доступа к системе
WO2015101041A1 (zh) 随机接入方法及装置
CN107026721B (zh) 前导序列的发送和接收方法、装置及系统
WO2012024996A1 (zh) 一种随机接入方法及实现随机接入的系统
EP2810520B1 (en) Connection setup with an access selection of a terminal
WO2014008845A1 (zh) 一种小区接入的方法、系统和设备
WO2019062582A1 (zh) 一种信息获取方法及终端
JP2019503613A (ja) アップリンクブロードキャストの方法、端末デバイス及びネットワークノード
CN114245471B (zh) 随机接入信号处理方法、随机接入方法、装置及存储介质
WO2023010351A1 (zh) 无线通信方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860353

Country of ref document: EP

Kind code of ref document: A1