WO2023040733A1 - 一类黄芩素衍生物、其制备方法和用途 - Google Patents

一类黄芩素衍生物、其制备方法和用途 Download PDF

Info

Publication number
WO2023040733A1
WO2023040733A1 PCT/CN2022/117692 CN2022117692W WO2023040733A1 WO 2023040733 A1 WO2023040733 A1 WO 2023040733A1 CN 2022117692 W CN2022117692 W CN 2022117692W WO 2023040733 A1 WO2023040733 A1 WO 2023040733A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
alkyl
substituted
general formula
unsubstituted
Prior art date
Application number
PCT/CN2022/117692
Other languages
English (en)
French (fr)
Inventor
沈敬山
许叶春
肖庚富
蒋翔锐
苏海霞
谢航
尚卫娟
张苏晴
王震
张磊砢
蒋华良
Original Assignee
中国科学院上海药物研究所
中国科学院武汉病毒研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海药物研究所, 中国科学院武汉病毒研究所 filed Critical 中国科学院上海药物研究所
Publication of WO2023040733A1 publication Critical patent/WO2023040733A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
    • C07D311/30Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only not hydrogenated in the hetero ring, e.g. flavones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
    • C07D311/322,3-Dihydro derivatives, e.g. flavanones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/60Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/06Benzopyran radicals
    • C07H17/065Benzo[b]pyrans
    • C07H17/07Benzo[b]pyran-4-ones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the field of medicinal chemistry, and relates to a class of baicalein derivatives, a preparation method thereof and an antiviral application thereof.
  • Scutellaria baicalensis also known as camellia root and Tujincha root, is used as medicine from the roots. It is bitter in taste and cold in nature. Hemoptysis embolism. Scutellaria baicalensis is an active ingredient in various heat-clearing and detoxifying Chinese patent medicines such as Qingfei Paidu Decoction, Jinhua Qinggan Granules, Shuanghuanglian Oral Liquid, and Lanqin Oral Liquid.
  • Baicalein one of the main active ingredients of Scutellaria baicalensis, has antiviral effects.
  • the EC 50 of baicalein inhibiting the replication of SARS virus is 12.5 ⁇ 25 ⁇ g/mL (Journal of Clinical Virology, 2004,31,69-75); the EC 50 of inhibiting the replication of influenza A virus (H1N1) is 0.018 ⁇ M (Evidence -Based Complementary and Alternative Medicine, 2013, 750803); meanwhile, baicalein also exhibits inhibitory activity against HIV and dengue virus (Molecules and Cells, 2001, 12, 127-130; Scientific Reports, 2014, 4, 5452).
  • Baicalein has SARS-CoV-2 3CLpro inhibitory effect.
  • the EC 50 of anti-SARS-CoV-2 replication is 2.94 ⁇ M (Acta Pharmacologica Sinica, 2020, 41, 1167- 1177).
  • Baicalein is well absorbed in the gastrointestinal tract and is mainly distributed in tissues and organs such as liver, kidney, and lung.
  • the metabolite of baicalein in rats is mainly the 7-hydroxyglucuronide of baicalein, which can be transported to the intestinal cavity through bile and intestinal mucosa to form reabsorption.
  • the original form of baicalein was hardly detected in the blood, the elimination half-life was 0.1 hour, the concentration of the original drug in plasma was extremely low, and the oral bioavailability was low (Journal of Chinese Mass Spectrometry Society, 2004, 25, 129-133; Journal of Pharmaceutical Sciences, 2014, 103, 2330-2337). It is of great significance to search for baicalein derivatives with antiviral effects and better pharmacokinetic properties in vivo.
  • One object of the present invention is to provide a new class of baicalein derivatives.
  • Another object of the present invention is to provide an application of the baicalein derivative in the preparation of anti-coronavirus drugs, especially anti-new coronavirus drugs.
  • Another object of the present invention is to provide an application of the baicalein derivative in the preparation of drugs against enterovirus EV71, Coxsackie virus and norovirus.
  • the present invention provides a baicalein derivative as shown in the following general formula I, its stereoisomer or pharmaceutically acceptable salt:
  • R and R are each independently selected from H, substituted or unsubstituted C1-C6 alkyl, C2-C6 fatty acyl, C6-C12 aromatic hydrocarbon, C7-C12 aroyl, -SO 2 OH,
  • R 11 is selected from C1-C6 alkyl, C3-C10 cycloalkyl; in particular, selected from C1-C4 alkyl, C3-C6 cycloalkyl;
  • R 12 is selected from C1-C6 alkyl, C3-C10 cycloalkyl; in particular, selected from C1-C4 alkyl, C3-6 cycloalkyl;
  • n 1, 2 or 3;
  • R 13 is selected from C1-C6 alkyl; especially selected from C1-C4 alkyl;
  • R 14 is selected from C1-C6 alkyl, C3-C8 cycloalkyl, especially selected from C1-C4 alkyl, C5-C6 cycloalkyl;
  • R 9 and R 10 are each independently selected from H, C1-C4 alkyl, C1-C4 alkoxyformyl substituted C1-C4 alkyl, C5-C6 cycloalkyloxyformyl substituted C1 -C4 alkyl;
  • R 1 and R 2 may both be H;
  • R3 is selected from H, cyano, halogen, nitro, unsubstituted or substituted C1-C6 alkyl, unsubstituted or substituted C2-C6 alkenyl, unsubstituted or substituted C3-C6 cycloalkyl, unsubstituted Or substituted C2-C6 fatty acyl group, C6-C12 aromatic hydrocarbon group or C7-C12 aroyl group, wherein, the substituent of C1-C6 alkyl group, C2-C6 alkenyl group, C3-C6 cycloalkyl group or C2-C6 fatty acyl group selected from halogen and hydroxyl; in particular, R3 is selected from H, cyano, halogen, unsubstituted or substituted C1-C4 alkyl, unsubstituted or substituted C2-C4 alkenyl, unsubstituted or substituted C3-C4 Cycloalkyl, or unsubsti
  • R 4 -R 8 are each independently selected from H, halogen, substituted or unsubstituted C1-C6 alkyl, nitro, -NR 15 R 16 , cyano, C1-C4 alkyl substituted or unsubstituted C6- C10 aryl, C2-C6 fatty acyl, wherein, the substituent of C1-C6 alkyl is halogen, R 15 and R 16 are each independently selected from H and C2-C6 fatty acyl; especially, R 4 -R 8 are each independently selected from H, halogen, substituted or unsubstituted C1-C6 alkyl, nitro, -NR 15 R 16 , cyano, methyl or ethyl substituted or unsubstituted C6-C10 aryl, wherein, The substituent of C1-C6 alkyl is halogen, R 15 and R 16 are each independently selected from H and C2-C4 fatty acyl; more particularly, R 4
  • baicalein derivatives of the general formula I are represented by the following general formulas II-IV:
  • R 4 -R 8 are as above respectively; in the above general formula IV, except that R 3 is not H, the definitions of R 3 and R 4 -R 8 are respectively as above .
  • R 1 and R 2 are each independently selected from H, substituted or unsubstituted C1-C6 alkyl, C2-C6 fatty acyl, C6-C12 aromatic hydrocarbon group, C7-C12 aroyl, - SO 2 OH,
  • R 11 is selected from C1-C6 alkyl
  • R 12 is selected from C1-C6 alkyl
  • n is selected from 1, 2 or 3;
  • R 13 is selected from C1-C6 alkyl
  • R 14 is selected from C1-C6 alkyl, C3-C8 Cycloalkyl, in particular, R 14 is selected from C1-C4 alkyl, C5-C6 cycloalkyl;
  • R3 is selected from H, cyano, halogen, nitro, unsubstituted or substituted C1-C6 alkyl, unsubstituted or substituted C2-C6 alkenyl, unsubstituted or substituted C3-C6 cycloalkyl, unsubstituted Or substituted C2-C6 fatty acyl group, C6-C12 aromatic hydrocarbon group or C7-C12 aroyl group, wherein, the substituent of C1-C6 alkyl group, C2-C6 alkenyl group, C3-C6 cycloalkyl group or C2-C6 fatty acyl group selected from halogen and hydroxyl;
  • R 4 -R 8 are each independently selected from H, halogen, substituted or unsubstituted C1-C6 alkyl, nitro, -NR 15 R 16 , cyano, C1-C4 alkyl substituted or unsubstituted C6- C10 aryl, C2-C6 fatty acyl, wherein, the substituent of C1-C6 alkyl is halogen, R 15 and R 16 are each independently selected from H and C2-C6 fatty acyl;
  • R 1 and R 2 are each independently selected from H, substituted or unsubstituted C1-C6 alkyl, C2-C6 fatty acyl, C6-C12 aromatic hydrocarbon group, C7-C12 aroyl, -SO 2 OH,
  • R 11 is selected from C1-C6 alkyl
  • R 12 is selected from C1-C6 alkyl
  • n is selected from 1, 2 or 3;
  • R 13 is selected from C1-C6 alkyl
  • R 14 is selected from C1-C6 alkyl, C3-C8 Cycloalkyl, especially selected from C1-C4 alkyl, C5-C6 cycloalkyl;
  • R is selected from H, cyano, F, Cl, Br, I, unsubstituted or substituted C1-C3 alkyl, C2-C4 alkenyl, C3-C4 cycloalkyl, or C2-C4 fatty acyl, wherein,
  • the substituent of C1-C3 alkyl is selected from F, Cl and hydroxyl, and the number of substituents can be one or more, such as 1, 2 or 3;
  • R 4 -R 8 are each independently selected from H, halogen, substituted or unsubstituted C1-C6 alkyl, nitro, -NR 15 R 16 , cyano, methyl or ethyl substituted or unsubstituted C6- C10 aryl, wherein, the substituent of C1-C6 alkyl is halogen, R 15 and R 16 are each independently selected from H and C2-C4 fatty acyl;
  • Both R1 and R2 are H;
  • R3 is selected from H, cyano, halogen, nitro, unsubstituted or substituted C1-C6 alkyl, unsubstituted or substituted C2-C6 alkenyl, unsubstituted or substituted C3-C6 cycloalkyl, unsubstituted Or substituted C2-C6 fatty acyl group, C6-C12 aromatic hydrocarbon group or C7-C12 aroyl group, wherein, the substituent of C1-C6 alkyl group, C2-C6 alkenyl group, C3-C6 cycloalkyl group or C2-C6 fatty acyl group selected from halogen and hydroxyl;
  • R 4 -R 8 are each independently selected from H, halogen, substituted or unsubstituted C1-C6 alkyl, nitro, -NR 15 R 16 , cyano, C1-C4 alkyl substituted or unsubstituted C6- C10 aryl, C2-C6 fatty acyl, wherein, the substituent of C1-C6 alkyl is halogen, R 15 and R 16 are each independently selected from H and C2-C6 fatty acyl;
  • Both R1 and R2 are H;
  • R is selected from H, cyano, F, Cl, Br, I, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, acetyl, trifluoromethyl, cyclopropyl , hydroxymethyl, vinyl, 1-propenyl, 2-propenyl, allyl, nitro;
  • R 4 -R 8 are each independently selected from H, cyano, halogen, trifluoromethyl, methyl, ethyl, nitro, amino, acetamido, phenyl, tolyl;
  • the baicalein derivative shown in general formula I of the present invention is selected from one of the following compounds:
  • the present invention also provides the preparation method of the baicalein derivative shown in the above-mentioned general formula I, and described method is carried out by one of the route that comprises the following steps:
  • R 1 and R 2 are C1-C6 alkyl, and R 3 -R 8 are as defined above;
  • R 3 in the general formula I is selected from CN, CF 3 , cyclopropyl and halogen, it can alternatively be prepared by the following route:
  • R 1 and R 2 are C1-C6 alkyl, R 4 -R 8 are respectively as defined above, and R 3 is selected from trifluoromethyl and cyclopropyl;
  • R 1 , R 2 and R 4 -R 8 are respectively as defined above, and R 3 is cyano;
  • R 1 and R 2 are C1-C6 alkyl, R 4 -R 8 are as defined above respectively, R 3 is halogen,
  • the compound of general formula I-A and the compound of general formula I-B are reacted in methanol under alkaline conditions, such as 10-50% sodium hydroxide or potassium hydroxide aqueous solution, at -20-50°C for 0.1-24h to obtain the compound of general formula I'-1 .
  • Compound I-F is mixed with acetic anhydride, nitromethane and aluminum chloride at -20-20°C and reacted at 0-50°C for 1-24h to obtain compound I-A.
  • the present invention also provides the preparation method of the above-mentioned baicalein derivatives of general formula II-IV,
  • the method includes:
  • reaction reagent such as halogenated reagent (such as N-chlorosuccinimide (NCS) or N-iodosuccinimide (NIS)), dichloro Dicyanobenzoquinone (DDQ), cyclopropyl borate or methyl fluorosulfonyl difluoroacetate (FSO 2 CF 2 COOCH 3 )) react to form formula IV' or formula IV substituted at the R 3 position
  • the compound of the general formula IV' reacts with BBr 3 in dichloromethane to generate the compound of the general formula IV.
  • step 2) reacting the reaction product of step 1) and trifluoroacetic acid at room temperature in the presence of triethylsilane;
  • step 3 reacting the reaction product of step 2), boron trifluoride diethyl ether and acetic acid at, for example, 95° C., and the obtained reaction product is used for subsequent preparation of a compound of general formula IV in which R 3 is a methyl group;
  • R 3 is the compound of the general formula IV of acetyl group
  • the product prepared according to the following reaction scheme is used to replace I1 in the above reaction formula and further carry out the same steps as the synthesis of the compound of the general formula II:
  • R 3 is the compound of the general formula IV of ethyl or isobutyl, taking compounds Ic10 and Ic11 as examples, the synthetic route is as follows:
  • the methylation product of the compound Ic15 of the present application undergoes a reduction reaction under the effect of stannous chloride dihydrate to generate the corresponding amino compound, and acetylation reaction occurs by adding acetic anhydride to the reaction product to generate the corresponding amide compound, and the amide
  • the compound undergoes a demethylation reaction under the action of boron tribromide to generate compound Ic18.
  • R 3 is the compound of general formula IV of isopropenyl, taking compound Ic20 as an example, the synthetic route is as follows:
  • the methylated product of the compound Ic1 of the present application is deiodinated in the presence of potassium carbonate, Xphos, potassium fluoride and palladium acetate to generate a deiodinated product, which is demethylated under the action of BBr to obtain the above-mentioned Ic20 compound.
  • the compound of the general formula Id' is dissolved in an organic solvent, and reacted with reactants having the corresponding groups of R 1 /R 2 as defined above under the action of a base to obtain the compound of the general formula Id.
  • R 1 The definitions of R 2 , R 4 -R 8 are as defined above, respectively.
  • the organic solvent is selected from acetonitrile, acetone, N,N-dimethylformamide (DMF), dichloromethane (DCM), tetrahydrofuran (THF) and N-methylpyrrolidone (NMP);
  • the base is selected from triethylamine, potassium carbonate, N,N-diisopropylethylamine and pyridine;
  • the reactant with corresponding groups of R 1 /R 2 is selected from ethyl isocyanatoacetate, Isopropyl isocyanatoacetate, ethyl 3-methylbutyrate-2-isocyanate, isopropyl 3-methylbutyrate-2-isocyanate, isopropyl propionate-2-isocyanate, isocyanatoacetate ring Hexyl ester, cyclopentyl isocyanatoacetate, 4-chloromethyl-5-methyl-1,3-dioxol-2-one, chloromethyl iso
  • the Id' compound was first reacted with acetic anhydride, then reacted with benzyl bromide in order to protect the hydroxyl group, followed by reduction with H 2 in the presence of Pd(OH) 2 /C, and then reacted the reaction product with acetyl bromide- ⁇ -D- Methyl glucuronate or acetyl bromide- ⁇ -D-glucose is reacted, and then the ester group in the compound is hydrolyzed with alkali to obtain the product.
  • the synthesis conditions in the above reaction steps are well known in the art. In the above reaction formula, The definitions of R 4 -R 8 are respectively as defined above.
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutically effective amount of one or more selected from the above-mentioned baicalein derivatives, their stereoisomers, and pharmaceutically acceptable salts as Pharmaceutically active ingredients, and optionally pharmaceutically acceptable excipients.
  • the present invention provides the above-mentioned baicalein derivatives, their stereoisomers or pharmaceutically acceptable salts thereof, or the use of the above-mentioned pharmaceutical composition in the preparation of a drug for inhibiting the main protease of the new coronavirus.
  • the present invention also provides the above-mentioned baicalein derivatives, their stereoisomers or pharmaceutically acceptable salts thereof, or the use of the above-mentioned pharmaceutical composition in the preparation of the following medicine, wherein the medicine has the ability to inhibit coronavirus
  • the medicine has the ability to inhibit coronavirus
  • the activity of the main protease, or the drug has anti-new coronavirus and its mutant strains (such as WIV04 strain or South African strain B.1.351), SARS virus, MERS virus, or the drug has anti-enterovirus EV71, Ke Saatchie virus and norovirus activity.
  • the compound of the present invention has stronger SARS-CoV-2 3CLpro inhibitory activity, stronger anti-new coronavirus replication effect and better pharmacokinetic properties, and shows significant anti-new coronavirus drug efficacy in mice , can be used for the prevention and treatment of diseases caused by novel coronaviruses.
  • the preparation method of the invention has the technical advantages of simple steps, high yield and readily available raw materials.
  • Figure 1 Curve of the inhibitory activity of compound Ia7 on SARS-CoV-2 3CLpro.
  • Figure 2 Curve of the inhibitory activity of compound Ib1 on SARS-CoV-2 3CLpro.
  • Figure 3 Curve of the inhibitory activity of compound Ib2 against SARS-CoV-2 3CLpro.
  • Figure 4 Curve of the inhibitory activity of compound Ib3 on SARS-CoV-2 3CLpro.
  • Figure 5 Curve of the inhibitory activity of compound Ic3 on SARS-CoV-2 3CLpro.
  • Figure 6 Curve of the inhibitory activity of compound Ic4 on SARS-CoV-2 3CLpro.
  • Figure 7 Curve of the inhibitory activity of compound Ic5 on SARS-CoV-2 3CLpro.
  • Figure 8 In vitro inhibitory activity of compound Ic5 on SARS-CoV-2 WIV04 strain.
  • Figure 9 In vitro inhibitory activity of compound Ic5 on SARS-CoV-2 South African strain B.1.351.
  • Figure 10 The effect of compound Ic5 on the viability of Vero E6 cells.
  • Figure 11 Inhibitory activity of compounds Ic5 and Id16 on SARS-CoV-2 viral replication in mice.
  • alkyl means a straight chain or branched chain alkyl group
  • C1-Cx alkyl means a straight chain or branched chain alkyl group containing 1-x carbon atoms.
  • alkyl means a straight chain or branched chain alkyl group containing 1-x carbon atoms.
  • C1-C6 alkyl means a linear or branched alkyl group having 1-6 carbon atoms.
  • alkenyl means a straight-chain or branched alkenyl group
  • C2-C6 alkenyl means a straight-chain or branched alkenyl group containing 2-6 carbon atoms, such as vinyl, 1-propenyl, 2 -propenyl, allyl, 1-butenyl, 2-butenyl, isobutenyl, etc.
  • C2-C6 fatty acyl means an acyl group with 2-6 carbon atoms, for example, including but not limited to, acetyl, propionyl, isopropionyl, butyryl, isobutyryl, tert-butyryl, pentanoyl, Isovaleryl, pivaloyl, hexanoyl, tert-hexanoyl and the like.
  • aryl means a substituent with a benzene ring
  • C6-C12 aryl means a substituent with 6-12 carbon atoms, preferably “C6-C12 aryl”, which means a substituent with 6-12 carbons Atoms of the aryl group.
  • aryl means a substituent with a benzene ring
  • C6-C12 aryl means a substituent with 6-12 carbon atoms, preferably “C6-C12 aryl”, which means a substituent with 6-12 carbons Atoms of the aryl group.
  • phenyl substituted phenyl, naphthyl, substituted naphthyl, and the like.
  • C7-C12 aroyl means an aryl acyl group having 7-12 carbon atoms, for example, including but not limited to, benzoyl, methylbenzoyl, ethylbenzoyl, naphthoyl and the like.
  • halogen is selected from fluorine, chlorine, bromine, iodine.
  • Embodiment 1 the synthesis of compound Ia1
  • Embodiment 2 the synthesis of compound Ia2
  • Embodiment 3 the synthesis of compound Ia3
  • Embodiment 4 the synthesis of compound Ia4
  • Embodiment 5 the synthesis of compound Ia5
  • Embodiment 6 the synthesis of compound Ia6
  • Embodiment 7 the synthesis of compound Ia7
  • Embodiment 8 the synthesis of compound Ib1
  • Embodiment 9 the synthesis of compound Ib2
  • Embodiment 10 the synthesis of compound Ib3
  • Embodiment 11 the synthesis of compound Ib4
  • Embodiment 12 the synthesis of compound Ib5
  • Embodiment 13 the synthesis of compound Ib6
  • Embodiment 14 the synthesis of compound Ib7
  • Embodiment 15 the synthesis of compound Ic1
  • Embodiment 16 the synthesis of compound Ic2
  • step 1) Add 200mg of the product in step 1) of Example 15, 114mg of dichlorodicyanobenzoquinone (DDQ), 92mg of copper acetate, 190mg of silver carbonate and 6mL of NMP into a 10mL sealed tube, and gradually heat up to 120°C, Reaction 20h. Cool the reaction solution to 25°C, filter the reaction solution, add the filtrate to 20 mL of water, stir for 30 minutes and then filter, the solid is 80 mg after drying.
  • DDQ dichlorodicyanobenzoquinone
  • Embodiment 17 the synthesis of compound Ic3
  • Embodiment 18 the synthesis of compound Ic4
  • Embodiment 19 the synthesis of compound Ic5
  • Ic14 was obtained by referring to the synthesis method of 4)-7) in Ic10, except that 4'-chlorobiphenyl-3-acyl chloride was used instead of o-chlorobenzoyl chloride.
  • MS (ESI, ev): m/z 394.2 [M+H] + .
  • Ic15 was obtained by referring to the synthesis method of 4)-7) in Ic10, except that 2-methyl-5-nitro-benzoyl chloride was used instead of o-chlorobenzoyl chloride.
  • MS(ESI,ev): m/z 344.1 [M+H] + .
  • Ic17 was obtained by referring to the synthesis method of 4)-7) in Ic10, except that 3-chloro-[1,1-biphenyl]-4-acyl chloride was used instead of o-chlorobenzoyl chloride.
  • MS (ESI, ev): m/z 394.2 [M+H] + .
  • the reaction system was extracted with DCM/H 2 O, the pH of the aqueous layer was adjusted to weak acidity with 1M HCl, the organic phase was dried over anhydrous sodium sulfate, filtered, concentrated, and the preparative liquid phase was separated to obtain two compounds, which were sent to hydrogen spectrum respectively.
  • reaction solution was extracted with DCM/H 2 O, the pH of the aqueous layer was adjusted to weak acidity with 1M HCl, separated, the organic phase was washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, purified and concentrated by column chromatography A total of 720 mg of compound Id16 and a total of 212 mg of compound Id20 were obtained, both of which were yellow solids.
  • reaction solution was extracted with EA/H 2 O, the pH of the aqueous layer was adjusted to weak acidity with 1M HCl, the liquid was separated, the organic phase was washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, concentrated, and successively washed with acetonitrile + Methanol, ethyl acetate beating and filtering to obtain compound Id25.
  • Post-processing the reaction solution was extracted with EA/H 2 O, the pH of the aqueous layer was adjusted to weak acidity with 1M HCl, the liquid was separated, the organic phase was washed with saturated sodium chloride solution, dried with anhydrous sodium sulfate, filtered, the sample was mixed with silica gel, and the column Chromatography and concentration yielded compounds Id28 and Id29.
  • reaction solution was extracted with DCM/H 2 O, the pH of the aqueous layer was adjusted to weak acidity with 1M hydrochloric acid, separated, the organic phase was washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, concentrated, and purified by column chromatography to obtain Compound Id32: yellow-brown solid, 30 mg.
  • reaction solution was extracted with DCM/H 2 O, the pH of the aqueous layer was adjusted to weak acidity with 1M HCl, separated, the organic phase was washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, purified and concentrated by column chromatography A total of 630 mg of yellow compound Id35 and a total of 100 mg of Id36 were obtained.
  • reaction solution was extracted with DCM/H 2 O, the pH of the aqueous layer was adjusted to weak acidity with 1M HCl, separated, the organic phase was washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, filtered, purified and concentrated by column chromatography A total of 450 mg of yellow compound Id38 and a total of 120 mg of Id39 were obtained.
  • the main reagents, instruments, cells and virus information used in the following pharmacological examples are as follows:
  • Vortexer vortex oscillator (SI-A256, Scientific Industries, Inc.);
  • StepOne Plus Real-time PCR system (4376600, ABI);
  • 3CL protease self-recombined full-length coronavirus 3CL protease based on the coronavirus genome sequence, GenBank numbers of SARS-CoV-2, SARS-CoV, MERS-CoV, H229E-CoV, HKU1-CoV, NL63-CoV and OC43-CoV genomes used They are MN908947.3, AAP13442.1, MT387202.1, AF304460.1, AY597011.2, AY567487.2, and AY903459.1.
  • the DNA sequences required for the expression of seven coronavirus 3CL protease proteins were provided by Nanjing KingScript Co., Ltd. Synthesis of companies;
  • Vero E6, HepG2, HEK293 and L02 cells were purchased from ATCC;
  • SARS-CoV-2 was obtained from the National Virus Resource Bank.
  • the inhibitory activity of baicalein derivatives Ia1-7, Ib1-7 and Ic1-8 on SARS-CoV-2 3CLpro enzyme activity was evaluated by fluorescence resonance energy transfer method.
  • the volume of the entire enzymatic reaction system is 120 ⁇ L, the final concentration of protease is 30 nM, and the final concentration of substrate is 20 ⁇ M.
  • the buffer of the reaction system includes 50mM Tris pH7.3, 1mM EDTA.
  • test time is 3.5min, and the fluorescence value is read every 35s.
  • the final result takes the reading value of the first 2 minutes to fit the reaction rate, and compares it with the control group (DMSO) to calculate the inhibition rate.
  • IC50 value and the inhibition rate curve were obtained by fitting the software GraphPad Prism 8.
  • Figures 1-7 are the inhibition curves of baicalein derivatives Ia7, Ib1-3, and Ic3-5 on SARS-CoV-2 3CLpro, respectively.
  • baicalein derivatives Ia1-7, Ib1-7 and Ic1-8 against SARS-CoV-2 3CLpro inhibition are listed in Table 1 below.
  • Table 1 Inhibitory effects of baicalein derivatives Ia1-7, Ib1-7 and Ic1-8 on SARS-CoV-2 3CLpro
  • the test compound Ic5 was dissolved in DMSO into a 40mM mother solution.
  • the compound mother solution was serially diluted 10 times with DMEM, that is, 1 ⁇ L of the compound mother solution was added to 9 ⁇ L DMSO, and after two 10-fold dilutions, a 0.4 mM dilution was obtained. Afterwards, 20-fold dilution to 20 ⁇ M, and then continued three-fold serial dilution to obtain 6.7, 2.2, 0.74, 0.25, 0.08 ⁇ M in sequence.
  • Vero E6 cells were used in the test, and Vero E6 cells (50,000 cells/well) were added to a 48-well plate, 100 ⁇ L/well of a medium containing gradient concentrations of compounds was added, and SARS-CoV-2 strain WIV04 or South African strain B was added one hour later .1.351, the multiplicity of infection (MOI) was 0.01. After co-incubating for 1 hour, the supernatant was aspirated, washed and re-added with 200 ⁇ L/well of medium containing gradient concentrations of compounds, and incubated at 37°C for 24 hours.
  • MOI multiplicity of infection
  • the cell supernatant was collected, viral RNA was extracted from the supernatant, and the virus copy number of the supernatant was detected by real-time fluorescent quantitative PCR method.
  • the inhibition rate of the compound was calculated according to the virus copy number, and the EC 50 of the compound was calculated.
  • Inhibition % [1–(I/I 0 )] ⁇ 100%
  • inhibition % represents the inhibitory percentage of the compound to SARS-CoV-2 replication
  • I and I represent respectively the copy number of SARS-CoV-2 virus RNA in the cell supernatant in the compound and the control well (DMSO group).
  • X is the Log value of the detected concentration of the test substance
  • Y is the inhibition percentage at the corresponding concentration
  • Bottom and Top are the minimum and maximum inhibition percentages, respectively.
  • the test results showed that the half effective concentration EC 50 of Ic5 inhibiting WIV04 strain in Vero E6 cells was 0.72 ⁇ 0.18 ⁇ M, as shown in FIG. 8 .
  • test results show that Ic5 can significantly inhibit the replication of SARS-CoV-2 South African strain B.1.351 in Vero E6 cells, with an EC 50 of 1.21 ⁇ 0.44, as shown in Figure 9.
  • the supernatant was removed from the cells in the 96-well plate, and the diluted compound Ic5 was added to each well. After incubation for 24 hours, the cell viability was detected with a CCK8 detection kit. The test results showed that the cytotoxicity of Ic5 was very weak, and the CC 50 for Vero E6 cells was greater than 500 ⁇ M, as shown in FIG. 10 .
  • ICR mice purchased from the Experimental Animal Management Department of Shanghai Family Planning Research Institute intravenously administered at a dose of 5 mg/Kg, solvent: 5% dimethyl sulfoxide + 5% ethanol + 40% polyethylene glycol 300 + 50% Physiological saline; intragastric administration group dose 100mg/Kg, vehicle: 5% dimethyl sulfoxide + 95% 0.5% hydroxypropyl methylcellulose solution.
  • Blood was collected through the submandibular vein, 0.03 mL/time point. Samples were placed in tubes containing K2-EDTA and stored on ice until centrifugation. Blood samples were centrifuged at 6800 g for 6 min at 2–8°C within 1 hour of collection and stored frozen at approximately -80°C.
  • Pharmacological Example 5 Test of the inhibitory activity of baicalein derivatives Ic10-21, Id5-6, Id8-9, Id14-16, Id18 and Id30-32 on SARS-CoV-2 3CLpro
  • the inhibitory activity of some baicalein derivatives on SARS-CoV-2 3CLpro enzyme activity was evaluated by fluorescence resonance energy transfer method.
  • the volume of the entire enzymatic reaction system is 120 ⁇ L, the final concentration of protease is 30 nM, and the final concentration of substrate is 20 ⁇ M.
  • the buffer of the reaction system includes 50mM Tris pH7.3, 1mM EDTA.
  • the test time is 3.5min, and the fluorescence value is read every 35s. For the final result, the reading value of the first 2 minutes was used to fit the reaction rate, and compared with the control group (DMSO), the inhibition rate was calculated.
  • DMSO control group
  • Table 3 Inhibitory effects of baicalein derivatives Ic10-21, Id5-6, Id8-9, Id14-16, Id18 and Id30-32 on SARS-CoV-2 3CLpro
  • Pharmacological Example 6 Evaluation of the inhibitory activity of some baicalein derivatives on the replication of SARS-CoV-2 WIV04 strain.
  • test compound was dissolved in DMSO into a 40 mM stock solution. On the day of the test, the compound stock solution was serially diluted with DMEM to obtain 1 ⁇ M.
  • Vero E6 cells were used in the test, and Vero E6 cells (50,000 cells/well) were added to a 48-well plate, 100 ⁇ L/well of medium containing gradient concentration compounds was added, and SARS-CoV-2 WIV04 strain was added one hour later or, the multiplicity of infection (MOI) is 0.01. After co-incubating for 1 hour, the supernatant was aspirated, washed and re-added with 200 ⁇ L/well medium containing 1 ⁇ M compound, and incubated at 37°C for 24 hours.
  • MOI multiplicity of infection
  • Intravenous injection dosage of ICR mice is 10mg/kg, vehicle: 40% PEG400+10% Solutol HS 15+50% distilled water; dosage of ICR mice intragastric administration group is 100mg/kg, vehicle: 5% DMSO+ 5% Solutol HS 15+90% normal saline, adjust the pH to 8 with sodium hydroxide.
  • Blood was collected through the submandibular vein, 0.03 mL/time point. Samples were placed in tubes containing K2-EDTA and stored on ice until centrifugation. Blood samples were centrifuged at 6800 g for 6 min at 2–8°C within 1 hour of collection and stored frozen at approximately -80°C.
  • a 20 ⁇ L plasma sample containing 10 ng/mL IS was precipitated with 400 ⁇ L methanol (1 mL methanol: 0.1 mL (1M HCl+1% VC)). The mixture was spun for 1 minute and centrifuged for 7 minutes. Transfer 400 ⁇ L of supernatant to a 96-well plate. Inject a 10 ⁇ L aliquot of the supernatant for LC-MS/MS analysis to detect Id16. As shown in Table 5 of the test results, the compound has a high oral bioavailability of 57.5% in mice, and the blood drug exposure is relatively high.
  • the dosage of the ICR mouse gavage administration group is 200 mg/kg, and the vehicle: 10% PEG400+90% (0.5% hydroxypropyl methylcellulose).
  • the vehicle 10% PEG400+90% (0.5% hydroxypropyl methylcellulose).
  • LC-MS/MS detected Id16, the hydrolyzed metabolite Ic5 and the hydrolyzed glucuronidated metabolite Id8, respectively.
  • the test results are shown in Table 6 below.
  • the metabolites Ic5 and Id8 of compound Id16 in mice still have good anti-new coronavirus activity. Id16, Ic5 and Id8 of drug exposure were also detected.
  • Cynomolgus monkeys (purchased from Guangzhou Xusheng Biotechnology Co., Ltd.) administered intravenously at a dose of 10 mg/kg, solvent: 5% DMSO+5% Solutol HS 15+90% normal saline, adjusted pH to 8 with sodium hydroxide; The dose of the crab monkey gavage administration group was 100 mg/kg, and the vehicle: 10% PEG400+90% (0.5% hydroxypropyl methylcellulose).
  • Blood will be collected via the femoral vein or other suitable vein, 1.0 mL/time point. Samples will be placed in tubes containing K2-EDTA and stored on ice until centrifugation.
  • Plasma samples were centrifuged at 2200g for 10 minutes at 2-8°C within 1 hour of collection and stored frozen at approximately -80°C.
  • 40 ⁇ L plasma samples were precipitated with 400 ⁇ L methanol (1 mL methanol: 0.1 mL (1M HCl+1% VC)) containing 10 ng/mL IS. The mixture was spun for 1 minute and centrifuged at 18000 g for 7 minutes. Transfer 400 ⁇ L of supernatant to a 96-well plate. Inject a 1 ⁇ L aliquot of the supernatant for LC-MS/MS analysis. Id16 and metabolites Ic5 and Id8 were detected, respectively. The test results are shown in Table 7 below. The compound Id16 and the metabolites Ic5 and Id8 have high blood drug exposure, and the PK properties in cynomolgus monkeys are good.
  • Each compound stock solution (100 ⁇ M in dimethylsulfoxide) was diluted to 200, 100, 50, 25, 10, 5, 2.5, 1, 0.5 ⁇ M with cell culture medium.
  • the negative control was 0.5% dimethyl sulfoxide in cell culture medium.
  • mice H11-K18-hACE2 mice aged 7-8 weeks were transferred to the BSL-3 laboratory of Wuhan Institute of Virology. Each mouse was infected with 1 ⁇ 10 3 PFU of SARS-CoV-2 virus by intranasal drip, and this day was regarded as day 0. Two hours after the mice were infected with SARS-CoV-2, the drug was administered by intragastric administration. Mice were divided into 3 groups. Control group (BID, oral administration of vehicle), Ic5 administration of 200mg/kg group (BID, oral administration) of 10 rats, Id16 administration of 200mg/kg group (BID, oral administration). The administration was once on the 0th day, twice on the 1st, 2nd, and 3rd days respectively, with an interval of 9 hours, and the body weight of the mice was recorded every day.
  • mice in each group were sacrificed, and on day 4, 5 mice in each group were sacrificed. Then the lung tissue of the mouse was extracted, and the right lung was ground with DMEM, and part of the homogenate was used to extract RNA, and the rest was stored at -80°C.
  • Determination of virus copy number Use the kit TaKaRa MiniBEST Viral RNA/DNA Extraction Kit Ver.5.0 to extract the RNA in the ground lung tissue, follow the instructions of the kit TaKaRa PrimeScript TM RT reagent Kit with gDNA Eraser to extract the RNA and perform reverse transcription , then via TaKaRa Premix Ex Taq TM II (Tli RNaseH Plus) uses real-time fluorescent quantitative PCR technology to detect the absolute quantitative detection of viral RNA copy number in tissues. Sample copy numbers were calculated from standard plasmid concentrations. The results are shown in Figure 11, Ic5 showed a certain anti-new coronavirus effect on the 4th day, and Id16 showed a significant anti-new coronavirus effect on the second day and the fourth day.
  • mice Male ICR mice were set up in the control group, 200mg/kg group, 400mg/kg group, and 800mg/kg group, with 10 mice in each group, administered once a day, and observed food intake, body weight and symptoms. The results showed that the administration was repeated for 7 days , the mice in each dose group had no obvious symptoms, no significant difference in body weight, and no significant difference in food intake. Based on the above, no obvious toxicity was found in the subacute toxicity test of compound Id16 on mice. See Tables 9a, 9b and 9c for details.
  • the inhibitory activity of Ic5 to other sources of 3CLpro enzyme activity was evaluated by fluorescence resonance energy transfer method.
  • the experimental method is the same as in Pharmacological Example 1, except that the 3CLpro enzyme is from other coronaviruses shown in Table 10 below.
  • the experimental results are shown in Table 10 below,
  • compound Ic5 has good inhibitory activity on different 3CLpro enzymes tested, with IC 50 all less than 0.5 ⁇ M.
  • the compound of the present invention has stronger SARS-CoV-2 3CLpro inhibitory activity, stronger cellular level anti-new coronavirus replication, and can be orally absorbed, and is expected to be used for the prevention and treatment of diseases caused by new coronavirus.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一类黄芩素衍生物、其制备方法和用途。本发明的黄芩素衍生物的结构如以下通式(I)所示。经过药理学实验验证,本发明的黄芩素衍生物对新型冠状病毒表现出抑制活性,可作为抗新型冠状病毒药物或治疗由新型冠状病毒引起的相关疾病的潜力药物。

Description

一类黄芩素衍生物、其制备方法和用途 技术领域
本发明属于药物化学领域,涉及一类黄芩素衍生物、其制备方法及其在抗病毒方面的用途。
背景技术
黄芩,别名山茶根、土金茶根,其以根入药,味苦、性寒,有清热燥湿、泻火解毒等功效,主治温热病、上呼吸道感染、肺热咳嗽、肺炎、痢疾、咳血等症。黄芩是清肺排毒汤、金花清感颗粒、双黄连口服液、蓝芩口服液多种清热解毒类中成药中的有效成分。
黄芩素是黄芩的主要活性成分之一,具有抗病毒作用。文献报道,黄芩素抑制SARS病毒复制的EC 50为12.5~25μg/mL(Journal of Clinical Virology,2004,31,69-75);抑制甲型流感病毒(H1N1)复制的EC 50为0.018μM(Evidence-Based Complementary and Alternative Medicine,2013,750803);同时黄芩素也表现出对艾滋病病毒和登革热病毒(Molecules and Cells,2001,12,127-130;Scientific Reports,2014,4,5452)的抑制活性。黄芩素有SARS-CoV-2 3CLpro抑制作用,在感染SARS-Cov-2的Vero E6细胞模型上,抗SARS-CoV-2复制的EC 50为2.94μM(Acta Pharmacologica Sinica,2020,41,1167-1177)。
黄芩素胃肠道吸收较好,主要分布在肝、肾、肺等组织器官中。黄芩素在大鼠体内代谢物主要是黄芩素7位羟基葡萄糖醛酸结合物,后者又可经胆汁和肠黏膜转运至肠腔,形成再吸收。大鼠口服给予黄芩素后,血中几乎检测不到黄芩素原形,消除半衰期为0.1小时,血浆原型药物浓度极低,口服生物利用度低(Journal of Chinese Mass Spectrometry Society,2004,25,129-133;Journal of Pharmaceutical Sciences,2014,103,2330-2337)。寻找具有抗病毒作用和更好的体内药物代谢动力学性质的黄芩素衍生物具有重要意义。
鉴于此,特提出本发明。
发明内容
本发明的一个目的是提供一类新的黄芩素衍生物。
本发明的再一目的是提供一种所述黄芩素衍生物在制备抗冠状病毒,特别是抗新型冠状病毒的药物中的应用。
本发明的又一目的是提供一种所述黄芩素衍生物在制备抗肠道病毒EV71、柯萨奇病毒和诺如病毒的药物中的应用。
为了完成上述目的,本发明提供一种如以下通式I所示的黄芩素衍生物、其立体异构体或药学上可接受的盐:
Figure PCTCN2022117692-appb-000001
在以上通式I中,R 1和R 2各自独立地选自H、取代或未取代的C1-C6烷基、C2-C6脂肪酰基、C6-C12芳烃基、C7-C12芳酰基、
Figure PCTCN2022117692-appb-000002
-SO 2OH、
Figure PCTCN2022117692-appb-000003
Figure PCTCN2022117692-appb-000004
其中,C1-C6烷基的取代基选自氰基、
Figure PCTCN2022117692-appb-000005
-O(CH 2) mOR 12、-OC(=O)OR 13
Figure PCTCN2022117692-appb-000006
R 11选自C1-C6烷基、C3-C10环烷基;特别地,选自C1-C4烷基、C3-C6环烷基;
R 12选自C1-C6烷基、C3-C10环烷基;特别地,选自C1-C4烷基、C3-6环烷基;
m表示1、2或3;
R 13选自C1-C6烷基;特别地选自C1-C4烷基;
其中,R 9和R 10各自独立地选自H、C1-C6烷基、被R 14OC(=O)-取代的C1-C10烷基(如被R 14OC(=O)-取代的C1-C6烷基);R 14选自C1-C6烷基、C3-C8环烷基,特别地选自C1-C4烷基、C5-C6环烷基;
特别地,R 9和R 10各自独立地选自H、C1-C4烷基、C1-C4烷氧基甲酰基取代的C1-C4烷基、C5-C6环烷基氧基甲酰基取代的C1-C4烷基;
特别地,
Figure PCTCN2022117692-appb-000007
可选自
Figure PCTCN2022117692-appb-000008
Figure PCTCN2022117692-appb-000009
特别地,
Figure PCTCN2022117692-appb-000010
可选自
Figure PCTCN2022117692-appb-000011
Figure PCTCN2022117692-appb-000012
特别地,
Figure PCTCN2022117692-appb-000013
可选自
Figure PCTCN2022117692-appb-000014
Figure PCTCN2022117692-appb-000015
特别地,R 1和R 2可均为H;
R 3选自H、氰基、卤素、硝基、未取代或取代的C1-C6烷基、未取代或取代的C2-C6烯基、未取代或取代的C3-C6环烷基、未取代或取代的C2-C6脂肪酰基、C6-C12芳烃基或C7-C12芳酰基,其中,C1-C6烷基、C2-C6烯基、C3-C6环烷基或C2-C6脂肪酰基的取代基选自卤素和羟基;特别地,R 3选自H、氰基、卤素、未取代或取代的C1-C4烷基、未取代或取代的C2-C4烯基、未取代或取代的C3-C4环烷基、或未取代或取代的C2-C4脂肪酰基,其中,C1-C4烷基、C2-C4烯基、C3-C4环烷基或C2-C4脂肪酰基的取代基选自卤素和羟基;更特别地,R 3选自H、氰基、F、Cl、Br、I、未取代或取代的C1-C3烷基、C2-C4烯基、C3-C4环烷基、或C2-C4脂肪酰基,其中,C1-C3烷基的取代基选自F、Cl和羟基,取代基的个数可为一个或多个,例如1、2或3个;更特别地,R 3选自H、氰基、F、Cl、Br、I、甲基、乙基、正丙基、异丙基、正丁基、异丁基、乙酰基、三氟甲基、环丙基、羟甲基、乙烯基、1-丙烯基、2-丙烯基、烯丙基、硝基;
R 4-R 8各自独立地选自H、卤素、取代或未取代的C1-C6烷基、硝基、-NR 15R 16、氰基、被C1-C4烷基取代或未取代的C6-C10芳基、C2-C6脂肪酰基,其中,C1-C6烷基的取代基为卤素,R 15和R 16各自独立地选自H和C2-C6脂肪酰基;特别地,R 4-R 8各自独立地选自H、卤素、取代或未取代的C1-C6烷基、硝基、-NR 15R 16、氰基、被甲基或乙基取代或未取代的C6-C10芳基,其中,C1-C6烷基的取代基为卤素,R 15和R 16各自独立地选自H和C2-C4脂肪酰基;更特别地,R 4-R 8各自独立地选自H、卤素、C1-C3烷基、被一个或多个(例如1、2或3个)F取代的C1-C3烷基、硝基、氨基、 乙酰氨基、氰基、苯基、甲苯基、乙苯基;更特别地,R 4-R 8各自独立地选自H、氰基、卤素、三氟甲基、甲基、乙基、硝基、氨基、乙酰氨基、苯基、甲苯基;
Figure PCTCN2022117692-appb-000016
表示单键或双键;
前提是R 1-R 8不同时为H,并且通式I的化合物排除化合物
Figure PCTCN2022117692-appb-000017
在具体实施方式中,所述通式I的黄芩素衍生物由以下通式II-IV表示:
Figure PCTCN2022117692-appb-000018
在以上通式II-III中,R 4-R 8的定义分别如上文所述;在以上通式IV中,除了R 3不为H以外,R 3和R 4-R 8的定义分别如上文。
例如,
在一具体实施方式中,
R 1和R 2各自独立地选自H、取代或未取代的C1-C6烷基、C2-C6脂肪酰基、C6-C12芳烃基、C7-C12芳酰基、
Figure PCTCN2022117692-appb-000019
- SO 2OH、
Figure PCTCN2022117692-appb-000020
Figure PCTCN2022117692-appb-000021
其中,C1-C6烷基的取代基选自氰基、
Figure PCTCN2022117692-appb-000022
-O(CH 2) mOR 12、-OC(=O)OR 13
Figure PCTCN2022117692-appb-000023
R 11选自C1-C6烷基;
R 12选自C1-C6烷基;
m选自1、2或3;
R 13选自C1-C6烷基;
其中,R 9和R 10各自独立地选自H、C1-C6烷基、被R 14OC(=O)-取代的C1-C10烷基;R 14选自C1-C6烷基、C3-C8环烷基,特别地,R 14选自C1-C4烷基、C5-C6环烷基;
R 3选自H、氰基、卤素、硝基、未取代或取代的C1-C6烷基、未取代或取代的C2-C6烯基、未取代或取代的C3-C6环烷基、未取代或取代的C2-C6脂肪酰基、C6-C12芳烃基或C7-C12芳酰基,其中,C1-C6烷基、C2-C6烯基、C3-C6环烷基或C2-C6脂肪酰基的取代基选自卤素和羟基;
R 4-R 8各自独立地选自H、卤素、取代或未取代的C1-C6烷基、硝基、-NR 15R 16、氰基、被C1-C4烷基取代或未取代的C6-C10芳基、C2-C6脂肪酰基,其中,C1-C6烷基的取代基为卤素,R 15和R 16各自独立地选自H和C2-C6脂肪酰基;
Figure PCTCN2022117692-appb-000024
表示单键或双键。
在一具体实施方式中,
R 1和R 2各自独立地选自H、取代或未取代的C1-C6烷基、C2-C6脂肪酰基、C6-C12芳烃基、C7-C12芳酰基、
Figure PCTCN2022117692-appb-000025
-SO 2OH、
Figure PCTCN2022117692-appb-000026
Figure PCTCN2022117692-appb-000027
其中,C1-C6烷基的取代基选自氰基、
Figure PCTCN2022117692-appb-000028
-O(CH 2) mOR 12、-OC(=O)OR 13
Figure PCTCN2022117692-appb-000029
R 11选自C1-C6烷基;
R 12选自C1-C6烷基;
m选自1、2或3;
R 13选自C1-C6烷基;
其中,R 9和R 10各自独立地选自H、C1-C6烷基、被R 14OC(=O)-取代的C1-C10烷基;R 14选自C1-C6烷基、C3-C8环烷基,特别地选自C1-C4烷基、C5-C6环烷基;
R 3选自H、氰基、F、Cl、Br、I、未取代或取代的C1-C3烷基、C2-C4烯基、C3-C4环烷基、或C2-C4脂肪酰基,其中,C1-C3烷基的取代基选自F、Cl和羟基,取代基的个数可为一个或多个,例如1、2或3个;
R 4-R 8各自独立地选自H、卤素、取代或未取代的C1-C6烷基、硝基、-NR 15R 16、氰基、被甲基或乙基取代或未取代的C6-C10芳基,其中,C1-C6烷基的取代基为卤素,R 15和R 16各自独立地选自H和C2-C4脂肪酰基;
Figure PCTCN2022117692-appb-000030
表示单键或双键。
在一具体实施方式中,
R 1和R 2均为H;
R 3选自H、氰基、卤素、硝基、未取代或取代的C1-C6烷基、未取代或取代的C2-C6烯基、未取代或取代的C3-C6环烷基、未取代或取代的C2-C6脂肪酰基、C6-C12芳烃基或C7-C12芳酰基,其中,C1-C6烷基、C2-C6烯基、C3-C6环烷基或C2-C6脂肪酰基的取代基选自卤素和羟基;
R 4-R 8各自独立地选自H、卤素、取代或未取代的C1-C6烷基、硝基、-NR 15R 16、氰基、被C1-C4烷基取代或未取代的C6-C10芳基、C2-C6脂肪酰基,其中,C1-C6烷基的取代基为卤素,R 15和R 16各自独立地选自H和C2-C6脂肪酰基;
Figure PCTCN2022117692-appb-000031
表示单键或双键。
在一具体实施方式中,
R 1和R 2均为H;
R 3选自H、氰基、F、Cl、Br、I、甲基、乙基、正丙基、异丙基、正丁基、异丁基、乙酰基、三氟甲基、环丙基、羟甲基、乙烯基、1-丙烯基、2-丙烯基、烯丙基、硝基;
R 4-R 8各自独立地选自H、氰基、卤素、三氟甲基、甲基、乙基、硝基、氨基、乙酰氨基、苯基、甲苯基;
Figure PCTCN2022117692-appb-000032
表示单键或双键。
在具体实施方式中,本发明的通式I所示的黄芩素衍生物选自以下化合物之一:
Figure PCTCN2022117692-appb-000033
Figure PCTCN2022117692-appb-000034
Figure PCTCN2022117692-appb-000035
Figure PCTCN2022117692-appb-000036
另一方面,本发明还提供上述通式I所示的黄芩素衍生物的制备方法,所述方法通过包括以下步骤的路线之一实施:
路线一:
Figure PCTCN2022117692-appb-000037
a)化合物I’-1与碘单质在二甲基亚砜中在惰性气氛例如氮气氛下于0-150℃反应1-36h生成化合物I”-1,
b)化合物I”-1与BBr 3在二氯甲烷中反应生成化合物I-1,
其中R 1、R 2为C1-C6烷基,R 3-R 8分别如上文中所定义;
或者
路线二:
Figure PCTCN2022117692-appb-000038
c)中间体I’-1与无水乙酸钠在无水乙醇中在惰性气氛例如氮气氛下于0-100℃,反应1-24h生成化合物I”-2;
d)化合物I”-2与BBr 3在二氯甲烷中反应生成化合物I-2,其中R 1、R 2为C1-C6烷基,R 3-R 8分别如上文中所定义;
或者
当通式I中的R 3选自CN、CF 3、环丙基以及卤素时,可选择地,通过如下路线制备:
路线三:
Figure PCTCN2022117692-appb-000039
e)通式I”’-2的化合物与卤代试剂(如N-氯代丁二酰亚胺(NCS)或N-碘代丁二酰亚胺(NIS))在乙腈或三氟乙酸中,在0-100℃下反应1-24h得通式I”’-3的化合物;
f)通式I”’-3的化合物在DMF中于氟磺酰基二氟乙酸甲酯、碘化亚铜存在下于0-130℃反应1-15h得通式I”’-4的化合物(R 3=三氟甲基);或在1,4-二氧六环中,于PdCl 2(DPPF)-CH 2Cl 2、碳酸钾、环丙基硼酸酯存在下,于惰性气氛例如氮气氛中在0-120℃反应1-48h反应得通式I”’-4的化合物(R 3=环丙基),
g)通式I”’-4的化合物与BBr 3在二氯甲烷中于惰性气氛例如氮气氛下于-78℃混合并于0-50℃反应生成通式I-3的化合物,
其中R 1、R 2为C1-C6烷基,R 4-R 8分别如上文中所定义,R 3选自三氟甲基、环丙基;
或者
f1)通式I”’-3的化合物在二氯二氰基苯醌(DDQ)、醋酸铜、碳酸银和NMP存在下于0-150℃反应1-28h得通式I”’-5的化合物,
g1)通式I”’-5的化合物与BBr 3在二氯甲烷中于惰性气氛例如氮气氛下于-78℃混合并于0-50℃反应生成通式I-4的化合物,
其中R 1、R 2以及R 4-R 8分别如上文中所定义,R 3为氰基;
或者
f2)通式I”’-3的化合物与BBr 3在二氯甲烷中于惰性气氛例如氮气氛下于-78℃混合并于0-50℃反应生成通式I-5的化合物,
其中R 1、R 2为C1-C6烷基,R 4-R 8分别如上文中所定义,R 3为卤素,
特别地,通式I’-1通过如下反应获得:
Figure PCTCN2022117692-appb-000040
通式I-A化合物与通式I-B化合物在甲醇中于碱性条件下,例如10-50%氢氧化钠或氢氧化钾水溶液中,-20-50℃反应0.1-24h得通式I’-1化合物。
在具体实施方式中,当R 3为甲基时,通式I-A化合物采用如下反应式获得:
Figure PCTCN2022117692-appb-000041
h)使化合物I-E与CHCl 2OMe在二氯甲烷中于TiCl 4存在下冰水浴条件下反应,得到化合物I-D,
i)将化合物I-D和三氟乙酸在三乙基硅烷存在下0-50℃反应,得到化合物I-C,
j)将化合物I-C与三氟化硼乙醚和醋酸在0-100℃下反应,得化合物I-A。
在具体实施方式中,当R 3为乙酰基时,通式I-A化合物采用如下反应式获得:
Figure PCTCN2022117692-appb-000042
使化合物I-F和醋酸酐、硝基甲烷于-20-20℃下与三氯化铝混合,0-50℃下反应1-24h得化合物I-A。
优选地,本发明还提供上述通式II-IV的黄芩素衍生物的制备方法,
Figure PCTCN2022117692-appb-000043
如以上反应式所示,所述方法包括:
1)起始反应物I1与苯甲醛类化合物反应生成中间体I1’,
2)中间体I1’与碘单质在二甲基亚砜中反应生成通式II’的化合物,
3)通式II’的化合物与BBr 3在二氯甲烷中反应生成通式II的化合物;
或者
1)起始反应物I1与苯甲醛类化合物反应生成中间体I1’,
2)中间体I1’与无水乙酸钠在无水乙醇中反应生成通式III’的化合物;
3)通式III’的化合物与BBr 3在二氯甲烷中反应生成通式III的化合物;
进一步地,通式II或II’的化合物与反应试剂(例如卤代试剂(如N-氯代丁二酰亚胺(NCS)或N-碘代丁二酰亚胺(NIS))、二氯二氰基苯醌(DDQ)、环丙基硼酸酯或者氟磺酰基二氟乙酸甲酯(FSO 2CF 2COOCH 3))反应生成在R 3位置经取代的通式IV’或通式IV的化合物,通式IV’的化合物与BBr 3在二氯甲烷中反应生成通式IV的化合物。
在具体实施方式中,当制备R 3为甲基的通式IV的化合物时,采用按照如上反应路线制备的产物替代以上反应式中的I1并进一步进行与通式II化合物合成相同的步骤。
Figure PCTCN2022117692-appb-000044
具体地,如以上反应路线所示:
1)将3,4,5-三甲氧基苯酚与CHCl 2OMe在二氯甲烷中于TiCl 4存在下冰水浴条件下反应;
2)将步骤1)的反应产物和三氟乙酸在三乙基硅烷存在下室温反应;
3)将步骤2)的反应产物、三氟化硼乙醚和乙酸在例如95℃下反应,所得反应产物用于后续制备R 3为甲基的通式IV的化合物;
在具体实施方式中,当制备R 3为乙酰基的通式IV的化合物时,采用按照如下反应路线制备的产物以替代以上反应式中的I1并进一步进行与通式II化合物合成相同的步骤:
Figure PCTCN2022117692-appb-000045
具体地,如以上反应路线所示:
将3,4,5-三甲氧基苯酚、醋酸酐、硝基甲烷于0℃下与三氯化铝混合,0-50℃下反应1-24h,所得反应产物用于后续制备R 3为乙酰基的通式IV的化合物。
在具体实施方式中,当制备R 3为乙基或异丁基的通式IV的化合物时,以化合物Ic10和Ic11为例,合成路线如下:
Figure PCTCN2022117692-appb-000046
化合物3,4,5-三甲氧基苯酚与醋酸或异丁酰氯在三氟化硼乙醚的存在进行酰基化反应;之后,在三氟醋酸和三乙基硅烷作用下发生还原反应;得到的反应产物又在三氟化硼乙醚和醋酸的存在下发生乙酰化反应,后与邻氯苯甲酰氯进行反应生成相应酯;生成的所述酯后续在碱的作用下发生重排反应,得到的重排粗品进一步在强酸(例如浓硫酸)作用下发生闭环反应,闭环后产品在三溴化硼作用下脱甲基得到最终产物Ic10或Ic11,其中,R为甲基或异丙基。
在具体实施方式中,具体化合物Ic18的合成如下所示:
Figure PCTCN2022117692-appb-000047
本申请的化合物Ic15的甲基化产物在二水合氯化亚锡的作用下发生还原反应,生成相应的氨基化合物,在反应产物中加入乙酸酐发生乙酰化反应生成相应的酰胺化合物,所述酰胺化合物在三溴化硼的作用下发生脱甲基反应,生成化合物Ic18。
在具体实施方式中,当制备R 3为异丙烯基的通式IV的化合物时,以化合物Ic20为例,合成路线如下:
Figure PCTCN2022117692-appb-000048
本申请的化合物Ic1的甲基化产物在碳酸钾,Xphos,氟化钾和醋酸钯的存在下脱碘,生成脱碘产物,所述脱碘产物在BBr 3的作用下脱甲基获得上述Ic20化合物。
路线四
以下示出通式I中R 1和R 2中至少一者不为H,R 3为甲基的化合物(例如上述化合物Id8-Id44)的合成路线:
Figure PCTCN2022117692-appb-000049
将通式Id’化合物溶于有机溶剂,在碱的作用下分别与带有如上定义的R 1/R 2相应基团的反应物反应得到通式Id化合物,在以上反应式中,R 1、R 2、R 4-R 8的定义分别如上文所定义。
在具体实施方式中,所述有机溶剂选自乙腈、丙酮、N,N-二甲基甲酰胺(DMF)、二氯甲烷(DCM)、四氢呋喃(THF)和N-甲基吡咯烷酮(NMP);所述碱选自三乙胺、碳酸钾、N,N-二异丙基乙胺以及吡啶;所述带有R 1/R 2相应基团的反应物选自异氰酰乙酰酸乙酯、异氰酰乙酸异丙酯、3-甲基丁酸乙酯-2-异氰酸酯、3-甲基丁酸异丙酯-2-异氰酸酯、丙酸异丙酯-2-异氰酸酯、异氰酰乙酸环己酯、异氰酰乙酸环戊酯、4-氯甲基-5-甲基-1,3-二氧杂环戊烯-2-酮、氯甲基碳酸异丙酯、溴乙腈、氯磺酸、异丁酸酐、2-甲氧基乙氧基甲基氯、N,N’-二甲氨基甲酰氯、异氰酸乙酯和甲胺基甲酰氯。
在通式I的化合物为上述Id8和Id9的情形下,合成过程可由以下反应式例示:
Figure PCTCN2022117692-appb-000050
将Id’化合物首先与乙酸酐反应,后与溴化苄反应以便保护羟基,接着在Pd(OH) 2/C存在下,用H 2还原,继而使反应产物与乙酰基溴-α-D-葡萄糖醛酸甲基酯或乙酰溴-α-D-葡萄糖反应,再用碱水解化合物中的酯基即得,以上反应步骤中的合成条件均为本领域中所熟知,在以上反应式中,R 4-R 8的定义分别如上文所定义。
再一方面,本发明还提供一种药物组合物,其包含药学上有效量的选自上述黄芩素衍生物、其立体异构体、以及药学上可接受的 盐中的一种或多种作为药物活性成分,以及任选地药学上可接受的辅料。
再一方面,本发明提供上述黄芩素衍生物、其立体异构体或其药学上可接受的盐,或者上述药物组合物在制备用于抑制新型冠状病毒主蛋白酶的药物中的用途。
再一方面,本发明还提供上述黄芩素衍生物、其立体异构体或其药学上可接受的盐,或者上述药物组合物在制备如下药物中的用途,其中,所述药物具有抑制冠状病毒主蛋白酶的活性,或者所述药物具有抗新型冠状病毒及其变异株(如WIV04株或南非株B.1.351)、SARS病毒、MERS病毒的活性,或者所述药物具有抗肠道病毒EV71、柯萨奇病毒和诺如病毒的活性。
本发明的技术方案至少具有以下技术效果:
本发明的化合物具有更强的SARS-CoV-2 3CLpro抑制活性、更强的抗新型冠状病毒复制作用和更好的药物代谢动力学性质,在小鼠体内表现出显著的抗新型冠状病毒药效,可用于新型冠状病毒引起的疾病的预防与治疗。
本发明的制备方法具有步骤简单、收率高且原料易得的技术优势。
附图说明
图1:化合物Ia7对SARS-CoV-2 3CLpro的抑制活性曲线图。
图2:化合物Ib1对SARS-CoV-2 3CLpro的抑制活性曲线图。
图3:化合物Ib2对SARS-CoV-2 3CLpro的抑制活性曲线图。
图4:化合物Ib3对SARS-CoV-2 3CLpro的抑制活性曲线图。
图5:化合物Ic3对SARS-CoV-2 3CLpro的抑制活性曲线图。
图6:化合物Ic4对SARS-CoV-2 3CLpro的抑制活性曲线图。
图7:化合物Ic5对SARS-CoV-2 3CLpro的抑制活性曲线图。
图8:化合物Ic5对SARS-CoV-2 WIV04株体外抑制活性。
图9:化合物Ic5对SARS-CoV-2南非株B.1.351体外抑制活性。
图10:化合物Ic5对Vero E6细胞活性的影响。
图11:化合物Ic5和Id16对小鼠体内SARS-CoV-2病毒复制的抑制活性。
具体实施方式
为了更好的说明本发明,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。
基团定义
术语“烷基”表示直链或支链的烷基,例如“C1-Cx烷基”表示直链或支链的含有1-x个碳原子的烷基。例如,包含但不限于甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、戊基、异戊基、己基、庚基、辛基、壬基、癸基等。例如“C1-C6烷基”表示直链或支链的含有1-6个碳原子的烷基。
术语“烯基”表示直链或支链的烯基,例如,C2-C6烯基表示直链或支链的含有2-6个碳原子的烯基,如乙烯基,1-丙烯基、2-丙烯基、烯丙基、1-丁烯基、2-丁烯基、异丁烯基等
术语“C2-C6脂肪酰基”表示具有2-6个碳原子的酰基,例如,包括但不限于,乙酰基、丙酰基、异丙酰基、丁酰基、异丁酰基、叔丁酰基、戊酰基、异戊酰基、新戊酰基、己酰基、叔己酰基等。
术语“芳烃基”表示具有苯环的取代基,“C6-C12芳烃基”表示具有6-12个碳原子的取代基,优选为“C6-C12芳基”,其表示具有6-12个碳原子的芳基。例如,包含但不限于苯基、取代的苯基、萘基、取代的萘基等。
术语“C7-C12芳酰基”表示具有7-12个碳原子的芳基酰基,例如,包括但不限于,苯甲酰基、甲基苯甲酰基、乙基苯甲酰基、萘酰基等。
术语“卤素”选自氟、氯、溴、碘。
为了进一步理解本发明,下面结合实施例对本发明作进一步的说明,这些实施例描述只是为进一步详细说明本发明的特征,而不是对本发明范围或本发明权利要求范围的限制。在本领域内技术人 员对发明所做的简单替换或改进等均属于本发明所保护的技术方案之内。
I.中间体的制备
制备例1:中间体I1的合成
Figure PCTCN2022117692-appb-000051
将3g 3,4,5-三甲氧基苯酚和6mL BH 3·OEt 2加入到50mL三口瓶中,氮气置换三次,将9mL乙酸缓慢滴加至反应液中,逐渐升温至80℃,反应2h。将反应液缓慢加入到30mL冰水中,搅拌2小时后过滤,烘干后得到2.8g黄色固体,收率76%。 1H NMR(600MHz,Chloroform-d)δ7.26(s,1H),6.28(s,1H),4.10(s,3H),3.97(s,3H),3.77(s,3H),2.81(s,3H).MS(ESI,ev):m/z=227.2[M+H] +
制备例2:中间体I2的合成
Figure PCTCN2022117692-appb-000052
将1g黄芩素、2.5g碳酸钾和10mL丙酮加入到50mL两口瓶中,加入1.6g硫酸二甲酯,逐渐升温至60℃,反应15h。将反应液降温至25℃,过滤反应液,减压蒸馏除去丙酮,加入50mL乙酸乙酯和50mL饱和碳酸氢钠溶液搅拌5min后分层,有机相加入50mL和食盐水搅拌5min后分层,无水硫酸钠干燥有机相1h,浓缩得到淡黄色固体920mg,收率80%。 1H NMR(600MHz,DMSO-d6)δ8.10-8.03(m,2H),7.62-7.54(m,3H),7.24(s,1H),6.82(s,1H),3.96(s,3H),3.81(s,3H),3.77(s,3H).MS(ESI,ev):m/z=313.1[M+H] +
制备例3:中间体I3的合成
Figure PCTCN2022117692-appb-000053
1)将226mg I1和5mL甲醇加入到25mL单口瓶中,加入140mg 2-氯苯甲醛和3mL 33%氢氧化钠水溶液,室温25℃反应12h。减压蒸馏除去甲醇,加入30mL稀盐酸和30mL乙酸乙酯搅拌5min后分层,有机相加入30mL饱和食盐水搅拌5min后分层,无水硫酸钠干燥有机相1h,通过柱层析法(SiO 2,石油醚:乙酸乙酯=10:1)进行纯化,得到300mg橘色固体产物,收率82%。
2)将300mg上一步反应产物、197mg碘单质和5mL二甲亚砜加入到25mL单口瓶中,氮气置换三次,逐渐升温至110℃,反应3h。加入10mL乙酸乙酯和10mL水搅拌5min后分层,有机相加入10mL和食盐水搅拌5min后分层,无水硫酸钠干燥有机相1h。通过柱层析法(SiO 2,石油醚:乙酸乙酯=10:1)进行纯化,得到150mg白色固体产物,收率50%。
3)将150mg上一步反应产物和2mL二氯甲烷加入到10mL三口瓶中,氮气置换三次,反应液温度降至-78℃,将4mL BBr 3缓慢滴加至反应液中,逐渐升温至25℃,反应15h。冰水浴条件下,缓慢向反应液加甲醇淬灭,体系分层后将有机相浓缩,经过柱层析法(SiO 2,二氯甲烷:甲醇=30:1)进行纯化,得到50mg棕色固体产物,收率37%。 1H NMR(500MHz,DMSO-d6)δ12.50(s,1H),10.66(s,1H),8.89(s,1H),7.77(dd,J=7.6,1.7Hz,1H),7.68(dd,J=8.1,1.2Hz,1H),7.61(td,J=7.8,1.7Hz,1H),7.54(td,J=7.5,1.3Hz,1H),6.53(s,1H),6.52(s,1H).MS(ESI,ev):m/z=305.01[M+H] +
II.化合物的制备
实施例1:化合物Ia1的合成
Figure PCTCN2022117692-appb-000054
除了以I1和3-氰基苯甲醛为原料以外,按照制备例3的方法,三步反应收率为15%。 1H NMR(500MHz,DMSO-d6)δ12.61(s,1H),10.60(s,1H),8.84(s,1H),8.49(d,J=2.1Hz,1H),8.31(d,J=7.9Hz,1H),8.14(d,J=7.8Hz,1H),7.71(s,1H),6.99(s,1H),6.64(s,1H).MS(ESI,ev):m/z=296.05[M+H] +
实施例2:化合物Ia2的合成
Figure PCTCN2022117692-appb-000055
除了以I1和3-碘苯甲醛为原料以外,按照制备例3的方法,三步反应收率为17%。 1H NMR(500MHz,Chloroform-d)δ8.27(d,J=1.8Hz,1H),7.87(dd,J=15.4,7.9Hz,2H),7.27(d,J=7.8Hz,1H),6.88(s,1H),6.79(d,J=17.0Hz,1H).MS(ESI,ev):m/z=297.13[M+H] +
实施例3:化合物Ia3的合成
Figure PCTCN2022117692-appb-000056
除了以I1和2-氯-3-氟苯甲醛为原料以外,按照制备例3的方法,三步反应收率为19%。 1H NMR(500MHz,DMSO-d6)δ12.44(s,1H),10.66(s,1H),8.88(s,1H),7.71–7.63(m,2H),7.59(td,J=8.0,5.2Hz,1H),6.58(s,1H),6.52(s,1H).MS(ESI,ev):m/z=323.67[M+H] +
实施例4:化合物Ia4的合成
Figure PCTCN2022117692-appb-000057
除了以I1和2-氯-5-氟苯甲醛为原料以外,按照制备例3的方法,三步反应收率为13%。 1H NMR(500MHz,DMSO-d6)δ12.44(s,1H),10.66(s,1H),8.88(s,1H),7.79–7.68(m,2H),7.57–7.41(m,1H),6.58(s,1H),6.53(s,1H).MS(ESI,ev):m/z=323.64[M+H] +
实施例5:化合物Ia5的合成
Figure PCTCN2022117692-appb-000058
除了以I1和2-三氟甲基苯甲醛为原料以外,按照制备例3的方法,三步反应收率为16%。 1H NMR(500MHz,DMSO-d6)δ12.46(s,1H),10.64(s,1H),7.98(d,J=7.6Hz,1H),7.87(d,J=4.0Hz,2H),7.83(dt,J=8.9,4.6Hz,1H),6.53(s,1H),6.45(s,1H).MS(ESI,ev):m/z=339.04[M+H] +
实施例6:化合物Ia6的合成
Figure PCTCN2022117692-appb-000059
除了以I1和2-乙基苯甲醛为原料以外,按照制备例3的方法,三步反应收率为14%。 1H NMR(500MHz,DMSO-d6)δ12.60(s,1H),10.54(s,1H),7.57-7.46(m,2H),7.44–7.39(m,2H),7.36(td,J=7.5,1.3Hz,2H),6.50(s,1H),6.39(s,1H),2.76–2.65(m,2H),1.19(td,J=7.5,4.2Hz,3H).MS(ESI,ev):m/z=299.08[M+H] +
实施例7:化合物Ia7的合成
Figure PCTCN2022117692-appb-000060
除了以I1和2,6-二氯苯甲醛为原料以外,按照制备例3的方法,三步反应收率为20%。MS(ESI,ev):m/z=229.98[M+H] +
实施例8:化合物Ib1的合成
Figure PCTCN2022117692-appb-000061
1)将1g I1和20mL甲醇加入到50mL单口瓶中,加入296mg 3-硝基苯甲醛和12mL 33%氢氧化钠水溶液,室温25℃反应12h。减压蒸馏除去甲醇,加入50mL稀盐酸和50mL乙酸乙酯搅拌5min后分层,有机相加入100mL饱和食盐水搅拌5min后分层,无水硫酸钠干燥有机相1h,通过柱层析法(SiO 2,石油醚:乙酸乙酯=10:1)进行纯化,得到1.02g橘色固体产物,收率64%。
2)将100mg上一步制备产物、159mg无水乙酸钠和15mL无水乙醇加入到25mL单口瓶中,氮气置换三次,逐渐升温至70℃, 反应13h。减压浓缩,通过柱层析法(SiO 2,石油醚:乙酸乙酯=10:1)进行纯化,得到50mg橘色固体产物,收率50%。
3)将50mg上一步制备产物和1mL二氯甲烷加入到10mL三口瓶中,氮气置换三次,反应液温度降至-78℃,将0.5mL BBr 3缓慢滴加至反应液中,逐渐升温至25℃,反应15h。冰水浴条件下,缓慢向反应液加甲醇淬灭,体系分层后将有机相浓缩,经过柱层析法(SiO 2,二氯甲烷:甲醇=30:1)进行纯化,得到25mg褐色固体产物,收率56%。 1H NMR(500MHz,DMSO-d6)δ11.92(s,1H),10.48(s,1H),8.38(t,J=2.0Hz,1H),8.33–8.21(m,2H),7.99(d,J=7.7Hz,1H),7.74(t,J=8.0Hz,1H),6.03(s,1H),5.71(dd,J=12.7,3.1Hz,1H),3.28–3.22(m,1H),2.87(dd,J=17.1,3.1Hz,1H).MS(ESI,ev):m/z=318.06[M+H] +
实施例9:化合物Ib2的合成
Figure PCTCN2022117692-appb-000062
除了以I1和2-氯-5-氟苯甲醛为原料以外,按照实施例8的方法,三步反应收率为18%。 1H NMR(500MHz,DMSO-d6)δ11.87(s,1H),7.59(dt,J=8.6,3.9Hz,2H),7.32(td,J=8.5,3.1Hz,1H),6.01(s,1H),5.72(dd,J=13.2,2.8Hz,1H),3.27–3.21(m,1H),2.74(dd,J=17.1,2.9Hz,1H).MS(ESI,ev):m/z=325.68[M+H] +
实施例10:化合物Ib3的合成
Figure PCTCN2022117692-appb-000063
除了以I1和3-三氟甲基苯甲醛为原料以外,按照实施例8的方法,三步反应收率为13%。 1H NMR(500MHz,DMSO-d6)δ11.93(s,1H),10.45(s,1H),8.26(s,1H),7.91–7.80(m,2H),7.76(d,J=7.8Hz,1H),7.68(t,J=7.5Hz,1H),6.01(s,1H),5.73–5.59(m,1H),3.24(s,1H),2.81(dd,J=17.1,2.9Hz,1H).MS(ESI,ev):m/z=341.25[M+H] +
实施例11:化合物Ib4的合成
Figure PCTCN2022117692-appb-000064
除了以I1和2-三氟甲基苯甲醛为原料以外,按照实施例8的方法,三步反应收率为17%。 1H NMR(500MHz,DMSO-d6)δ11.88(s,1H),10.49(s,1H),8.32(s,1H),8.02(d,J=7.9Hz,1H),7.83(t,J=8.0Hz,3H),7.66(t,J=7.8Hz,1H),5.98(s,1H),2.63(dd,J=17.1,2.8Hz,2H).MS(ESI,ev):m/z=341.20[M+H] +
实施例12:化合物Ib5的合成
Figure PCTCN2022117692-appb-000065
除了以I1和2-乙基苯甲醛为原料以外,按照实施例8的方法,三步反应收率为16%。 1H NMR(500MHz,DMSO-d6)δ12.62(s,1H),10.56(s,1H),8.88(s,1H),7.59(dd,J=7.4,2.0Hz,1H),7.38–7.26(m,3H),6.51(s,1H),5.80–5.73(m,1H),3.16(dd,J=16.7,13.5Hz,1H),2.72(dd,J=9.0,7.4Hz,2H),2.59(dd,J=16.6,2.7Hz,1H),1.18(t,J=7.5Hz,3H).MS(ESI,ev):m/z=301.3[M+H] +
实施例13:化合物Ib6的合成
Figure PCTCN2022117692-appb-000066
除了以I1和2-溴苯甲醛为原料以外,按照实施例8的方法,三步反应收率为17%。 1H NMR(500MHz,DMSO-d6)δ12.50(s,1H),11.43(s,1H),8.07–7.96(m,1H),7.78–7.66(m,1H),7.53–7.43(m,1H),7.23–7.14(m,1H),5.94(s,1H).MS(ESI,ev):m/z=399.1[M+H] +
实施例14:化合物Ib7的合成
Figure PCTCN2022117692-appb-000067
除了以I1和2-碘苯甲醛为原料以外,按照实施例8的方法,三步反应收率为18%。 1H NMR(500MHz,DMSO-d6)δ8.08–7.94(m,3H),7.82(dd,J=15.5,10.1Hz,1H),7.77–7.71(m,1H),7.50(t,J=7.6Hz,1H),7.22–7.12(m,1H),5.95(s,1H).MS(ESI,ev):m/z=399.1[M+H] +
实施例15:化合物Ic1的合成
Figure PCTCN2022117692-appb-000068
1)将62mg制备例2中制备的I2、54mg N-碘代丁二酰亚胺和1mL三氟醋酸加入到10mL单口瓶中,逐渐升温至70℃,反应4h。减压蒸馏反应液至小体积,加入10mL乙酸乙酯和10mL饱和碳酸氢钠溶液搅拌5min后分层,有机相加入10mL饱和食盐水搅拌5min后分层,无水硫酸钠干燥有机相1h,通过柱层析法(SiO 2,石油醚:乙酸乙酯=10:1)进行纯化,得到白色固体产物。
2)将100mg上一步的反应产物和2mL二氯甲烷加入到10mL三口瓶中,氮气置换三次,反应液温度降至-78℃,将1.4mL BBr 3缓慢滴加至反应液中,逐渐升温至25℃,反应15h。冰水浴条件下,缓慢向反应液加甲醇淬灭,体系分层后将有机相浓缩,经过柱层析法(SiO 2,二氯甲烷:甲醇=30:1)进行纯化,得到70mg黄色固体,收率55%。 1H NMR(500MHz,DMSO-d6)δ8.23-8.12(m,2H),7.66-7.54(m,3H),6.94(s,1H).MS(ESI,ev):m/z=396.8[M+H] +
实施例16:化合物Ic2的合成
Figure PCTCN2022117692-appb-000069
1)将200mg实施例15中步骤1)中的产物、114mg二氯二氰基苯醌(DDQ)、92mg醋酸铜、190mg碳酸银和6mL NMP加入到10mL封管中,逐渐升温至120℃,反应20h。将反应液降温至 25℃,过滤反应液,将滤液加入到20mL水中,搅拌30min后过滤,固体干燥后80mg。
2)将80mg上一步制备的反应产物和2mL二氯甲烷加入到10mL三口瓶中,氮气置换三次,反应液温度降至-78℃,将1.3mL BBr 3缓慢滴加至反应液中,逐渐升温至25℃,反应15h。冰水浴条件下,缓慢向反应液加甲醇淬灭,体系分层后将有机相浓缩,经过柱层析法(SiO 2,二氯甲烷:甲醇=30:1)进行纯化,得到50mg褐色固体,收率71.4%。 1H NMR(500MHz,DMSO-d6)δ13.21(s,1H),9.74(s,1H),8.07(s,2H),7.63(s,3H),7.15(s,1H).MS(ESI,ev):m/z=296.1[M+H] +
实施例17:化合物Ic3的合成
Figure PCTCN2022117692-appb-000070
将18mg I3、8mg N-氯代丁二酰亚胺和2mL乙腈加入到10mL单口瓶中,逐渐升温至40℃,反应24h。减压蒸馏反应液,加入3mL二氯甲烷打浆2h后过滤,烘干得黄色固体。 1H NMR(500MHz,DMSO-d6)δ12.59(s,1H),11.03(s,1H),9.66(s,1H),7.81(dt,J=7.6,2.3Hz,1H),7.70(dd,J=8.0,1.3Hz,1H),7.64(td,J=7.7,1.7Hz,1H),7.56(dd,J=7.5,1.3Hz,1H),6.68(s,1H).MS(ESI,ev):m/z=321.1[M+H] +
实施例18:化合物Ic4的合成
Figure PCTCN2022117692-appb-000071
除了以Ia7为原料以外,按照实施例17的方法,一步反应收率为87%。MS(ESI,ev):m/z=373.93[M+H] +
实施例19:化合物Ic5的合成
Figure PCTCN2022117692-appb-000072
1)将4.02g 3,4,5-三甲氧基苯酚和50mL二氯甲烷加入到100mL两口瓶中,冰水浴条件下,缓慢滴加9.10g TiCl 4,搅拌1h后再缓慢滴加3.26g CHCl 2OMe,反应1h。加入饱和氯化铵溶液淬灭,后加入100mL二氯甲烷搅拌5min后分层,有机相加入100mL饱和食盐水搅拌5min后分层,无水硫酸钠干燥有机相1h,通过柱层析法进行纯化,得到3.58g固体产物。
2)将3.57g上一步反应产物和30mL三氟乙酸加入到50mL两口瓶中,缓慢滴加.89g三乙基硅烷,室温反应1.5h。减压蒸馏反应液,通过柱层析法进行纯化,得到3g固体产物。
3)将2.72g上一步反应产物、10mL三氟化硼乙醚和15mL乙酸加入到50mL两口瓶中,逐渐升温至95℃,反应2h。将反应液降温至25℃,将反应液缓慢加入到150mL冰水中,搅拌2小时后过滤,烘干后得到3.2g固体,收率76%。
4)将3.17g上一步反应产物和20mL甲醇加入到50mL单口瓶中,加入3.71g 2-氯苯甲醛,然后缓慢滴加33%NaOH水溶液,反应1h。减压蒸馏除去甲醇,加入稀盐酸调节PH至中性,再加入50mL乙酸乙酯搅拌5min后分层,有机相加入100mL饱和食盐水搅拌5min后分层,无水硫酸钠干燥有机相1h,通过柱层析法进行纯化,得到1.2g固体产物。
5)将1.12g上一步反应产物、709mg碘单质和10mL DMSO中,逐渐升温至100℃,反应4h。加入60mL二氯甲烷和60mL水搅拌5min后分层,有机相加入60mL饱和食盐水搅拌5min后分层,无水硫酸钠干燥有机相1h,通过柱层析法进行纯化,得到500mg固体产物。
6)将452mg上一步反应产物和4mL二氯甲烷加入到10mL三口瓶中,氮气置换三次,反应液温度降至-78℃,将12.5mL BBr 3缓慢滴加至反应液中,逐渐升温至25℃,反应15h。冰水浴条件下, 缓慢向反应液加甲醇淬灭,体系分层后将有机相浓缩,经过柱层析法(SiO 2,二氯甲烷:甲醇=30:1)进行纯化,得到30mg褐色固体。 1H NMR(500MHz,DMSO-d6)δ12.53(s,1H),10.06(s,1H),9.21(s,1H),7.81(dd,J=7.6,1.7Hz,1H),7.69(dd,J=8.0,1.3Hz,1H),7.62(td,J=7.7,1.7Hz,1H),7.55(td,J=7.5,1.3Hz,1H),6.56(s,1H),2.15(s,3H).MS(ESI,ev):m/z=319.68[M+H] +
实施例20:化合物Ic6的合成
Figure PCTCN2022117692-appb-000073
1)将1.0g 3,4,5-三甲氧基苯酚、2.2g醋酸酐、10mL硝基甲烷加入到50mL三口瓶中,0℃条件下将2.2g三氯化铝加入至反应液中,25℃条件下反应15h。加入50mL乙酸乙酯和10mL 1N盐酸分层,有机相加入10mL水分层,有机相加入10mL饱和氯化钠分层,无水硫酸钠干燥有机相,浓缩有机相通过柱层析法(SiO 2,石油醚:乙酸乙酯=5:1)进行纯化,得到900mg白色固体。
2)将800mg上一步反应产物、210mg邻氯苯甲醛、10mL甲醇加入到50mL三口瓶中,0℃条件下将4mL 33%氢氧化钠水溶液加入至反应液中,25℃条件下反应10h。浓缩有机相,加入50mL乙酸乙酯、10mL 1N盐酸分层,有机相加入10mL水分层,有机相加入10mL饱和氯化钠分层,无水硫酸钠干燥有机相,浓缩有机相通过柱层析法(SiO 2,石油醚:乙酸乙酯=4:1)进行纯化,得到450mg白色固体。
3)将400mg上一步反应产物、240mg碘、5mL二甲亚砜加入到50mL三口瓶中,100℃反应4h。降温至25℃后加入50mL二氯甲烷、10mL水分层,有机相加入10mL饱和氯化钠分层,无水硫酸钠干燥有机相,有机相湿法通过柱层析法(SiO 2,二氯甲烷:甲醇=30:1)进行纯化,得到100mg白色固体。
4)将80mg上一步反应产物、5mL二甲亚砜加入到25mL单口瓶中,0℃条件下将2mL三溴化硼(1M in DCM)加入反应液中,25℃反应10h。将5mL水加入至反应液中,有固体析出,过滤固体并用水/甲醇打浆固体,再次过滤,烘干得到15mg淡黄色产物。 1H NMR(400MHz,DMSO-d6)δ13.75(s,1H),13.55(s,1H),9.22(s,1H),7.88(dd,J=7.6,1.8Hz,1H),7.72(dd,J=8.0,1.3Hz,1H),7.65(td,J=7.7,1.8Hz,1H),7.58(td,J=7.5,1.4Hz,1H),6.78(s,1H),2.66(s,3H).MS(ESI,ev):m/z=346.9[M+H] +
实施例21:化合物Ic7的合成
Figure PCTCN2022117692-appb-000074
1)将450mg 2’-氯-5,6,7-三甲氧基黄芩素和321mg N-碘代丁二酰亚胺溶解在4mL三氟乙酸中,氮气置换三次,逐渐升至70℃反应5h。冷却反应液至室温,减压蒸馏除去大部分三氟乙酸,加入二氯甲烷和饱和碳酸氢钠溶液多次分层,有机相合并干燥浓缩得500mg淡紫色固体。
2)将200mg上步产物和2mL DMF加入到10mL封管中,加入160mg氟磺酰基二氟乙酸甲酯、127mg碘化亚铜,密封后逐渐升至100℃反应12h。冷却反应液至室温,过滤除去不溶物,滤液加入乙酸乙酯和水分层,有机相干燥浓缩得190mg淡黄色固体。
3)将190mg上步产物和2mL二氯甲烷加入到10mL三口瓶中,氮气置换三次,反应液温度降至-78℃,将4.58mL BBr 3缓慢滴加至反应液中,逐渐升温至25℃,反应15h。冰水浴条件下,缓慢向反应液加甲醇淬灭,浓缩后加入甲醇和水打浆,过滤得到150mg黄色固体产物。 1H NMR(500MHz,DMSO-d6)δ13.31(s,1H),7.90(s,1H),7.80–7.74(m,1H),7.69(d,J=7.6Hz,1H),7.66–7.59(m,1H),6.75(d,J=2.0Hz,1H).MS(ESI,ev):m/z=372.2[M+H] +
实施例22:化合物Ic8的合成
Figure PCTCN2022117692-appb-000075
1)将450mg 2’-氯-5,6,7-三甲氧基黄芩素和321mg N-碘代丁二酰亚胺(1.1eq.)加入到4mL三氟乙酸中,氮气置换三次,逐渐升至70℃反应5h。冷却反应液至室温,减压蒸馏除去大部分三氟乙酸,加入二氯甲烷和饱和碳酸氢钠溶液多次分层,有机相合并干燥浓缩得500mg淡紫色固体。
2)将250mg上一步反应产物加入到4mL 1,4-二氧六环中,先后加入250mg PdCl 2(DPPF)-CH 2Cl 2(0.2eq.)、115mg碳酸钾(2eq.)、72mg环丙基硼酸酯(2eq.),氮气置换三次,逐渐升至95℃反应23h。冷却反应液至室温,减压蒸馏除去1,4-二氧六环,加入乙酸乙酯和饱和氯化铵溶液多次分层,有机相合并干燥浓缩柱层析分离得150mg黄褐色油状物。
3)将150mg上一步反应产物和2mL二氯甲烷加入到10mL三口瓶中,氮气置换三次,反应液温度降至-78℃,将3.88mL BBr 3缓慢滴加至反应液中,逐渐升温至25℃,反应15h。冰水浴条件下,缓慢向反应液加甲醇淬灭,浓缩后加入甲醇和水打浆,过滤得到56mg土黄色固体产物。MS(ESI,ev):m/z=344.2[M+H] +
实施例23:化合物Ic9的合成
Figure PCTCN2022117692-appb-000076
1)将200mg原料加入到2mL DCM中,冰浴下缓慢滴加236mgTiCl 4,搅拌1h后缓慢滴加85mg CHCl 2OMe,反应45min。用饱和氯化铵水溶液淬灭,水相用DCM萃取三次,合并有机相用饱和氯化钠洗涤,无水硫酸钠干燥浓缩过柱得150mg。
2)将100mg上一步反应产物加入到2mL四氢呋喃中,氮气置换三次,冰水浴加入20mg硼氢化钠,反应5h。冰水浴滴加1M HCl淬灭反应至无气泡生成,加入二氯甲烷和饱和碳酸氢钠溶液多次分层,有机相合并干燥浓缩得80mg。
3)将80mg上一步反应产物和2mL二氯甲烷加入到10mL三口瓶中,氮气置换三次,反应液温度降至-78℃,将2mL BBr 3缓慢滴加至反应液中,逐渐升温至25℃,反应15h。冰水浴条件下,缓 慢向反应液加甲醇淬灭,浓缩后加入甲醇和水打浆,过滤得到56mg黄色固体产物。MS(ESI,ev):m/z=335.9[M+H] +
实施例24:化合物Ic10的合成
Figure PCTCN2022117692-appb-000077
1)将3.0g 3,4,5-三甲氧基苯酚、6mL三氟化硼乙醚加入50mL三口瓶中,氮气置换后加入9mL醋酸,外温升温至90℃反应2.5h。将反应液缓慢倒入32mL冰水中并搅拌0.5h,大量固体析出,过滤,烘干固体得到3.5g黄色产物。MS(ESI,ev):m/z 249.02[M+Na] +.
2)将2.0g前一步产物和5mL三氟醋酸加入50mL三口瓶中。外温降至0℃后将3.5mL的三乙基硅烷滴加至反应液,25℃反应12h。浓缩有机相通过柱层析法进行纯化,得到1.0g白色固体,收率56.3%。MS(ESI,ev):212.6[M+H] +.
3)将850mg前一步产物、2mL三氟化硼乙醚和4mL醋酸加入50mL三口瓶中,外温升温至90℃反应10h。降温至25℃后加将4mL水和20mL EA加入反应液中,静置分层,有机相用5mL饱和氯化钠洗,无水硫酸钠干燥,浓缩有机相通过柱层析法进行纯化,得到470mg油状产物。MS(ESI,ev):254.7[M+H] +.
4)将440mg前一步产物、1mL DBU和5mL丙酮加入25mL三口瓶中,冰浴下将0.4mL邻氯苯甲酰氯缓慢滴加至反应液中,25℃反应3h。将1N HCl缓慢滴加至反应液中调节反应液pH=4-5,将10mL EA加入反应液中,静置分层,有机相用2mL饱和碳酸氢钠分层,有机相加入2mL饱和氯化钠分层,无水硫酸钠干燥,浓缩有机相得到645mg酯化后粗品。
5)将645mg酯化粗品、104mg氢氧化钠、5mL丙酮加入50mL三口瓶中。外温升温至65℃反应2h,将1N HCl慢滴加至反应液中调节反应液pH=4-5,将10mL EA加入反应液中,静置分层, 有机相加入2mL饱和氯化钠分层,无水硫酸钠干燥,浓缩有机相得到650mg重排后的粗品。
6)将650mg重排粗品、6mL乙腈加入25mL三口瓶中,外温升温至50℃后缓慢将0.2mL浓硫酸滴加至反应液中,50℃继续反应3h。浓缩干反应液,将10mL EA和2mL水加入反应液中,静置分层,有机相加入2mL饱和氯化钠分层,无水硫酸钠干燥,浓缩有机相并用3mL甲基叔丁醚打浆固体,过滤,滤液通过柱层析法进行纯化,得到348mg白色固体,MS(ESI,ev):374.6[M+H] +.
7)将280mg闭环后产物、3mL DCM加入25mL三口瓶中,冰水浴缓慢将6.7mL三溴化硼滴加至反应液,外温升温至25℃反应3h。将反应液缓慢倒入10mL冰水中并搅拌0.5h,有大量黄色固体析出,过滤固体并用3mL甲醇打浆固体,过滤,滤饼烘干得92mg淡黄色固体产物Ic10。 1H NMR(400MHz,DMSO-d 6)δ12.58(s,1H),10.00(s,1H),9.21(s,1H),7.79(dd,J=7.6,1.8Hz,1H),7.69(dd,J=8.0,1.3Hz,1H),7.62(td,J=7.7,1.8Hz,1H),7.55(td,J=7.5,1.4Hz,1H),6.54(s,1H),2.70(q,J=7.4Hz,2H),1.08(t,J=7.4Hz,3H).MS(ESI,ev):332.5[M+H] +.
实施例25:化合物Ic11的合成
Figure PCTCN2022117692-appb-000078
1)将3.0g 3,4,5-三甲氧基苯酚、1.9mL异丁酰氯、8.8mL三氟化硼乙醚和50mL DCM加入250mL三口瓶中,外温升温至80℃反应12h。浓缩反应液,将26mL 3N HCl和20mL EA加入至反应瓶,静置分层,有机相加入2mL饱和氯化钠分层,无水硫酸钠干燥,浓缩有机相通过柱层析法进行纯化,得到2.6g油状产物。
继续参照Ic10中2)~7)的合成方法得到Ic11。 1H NMR(400MHz,DMSO-d6)δ12.62(s,1H),9.94(s,1H),9.40-9.00(m,1H),7.76(dd,J=7.6,1.8Hz,1H),7.69(dd,J=8.0,1.3Hz,1H),7.61(td,J=7.7,1.8Hz,1H),7.55(td,J=7.4,1.3Hz,1H),6.54(s,1H),2.57(d,J=7.2 Hz,2H),1.90(hept,J=6.8Hz,1H),0.82(d,J=6.7Hz,6H).MS(ESI,ev):720.5[2M+H] +.
实施例26:化合物Ic12的合成
Figure PCTCN2022117692-appb-000079
1)将2.0g 3,4,5-三甲氧基苯酚、1.6g无水MgCl 2和16mL ACN加入100mL三口瓶中。外温降温至0℃后将6mL三乙胺加入至反应液,25℃搅拌30min后将1.2g多聚甲醛加入反应液中,外温升温至70℃反应1h。外温降温至25℃后,缓滴加1N盐酸至反应液中,调节反应液pH≤5,有机相加入20mL乙酸乙酯和5mL水,搅拌10min后静置分层,有机相加入5mL饱和食盐水分层,无水硫酸钠干燥有机相。浓缩有机相通过柱层析法进行纯化,得到1.9g淡黄色固体产物。MS(ESI,ev):212.6[M+H] +
继续参照Ic10中2)~7)的合成方法得到Ic12,不同之处在于以邻氟苯甲酰氯代替邻氯苯甲酰氯。 1H NMR(400MHz,DMSO-d6)δ12.50(s,1H),10.01(s,1H),9.16(s,1H),7.99(td,J=7.8,1.7Hz,1H),7.65(dddd,J=8.7,7.1,5.1,1.8Hz,1H),7.49-7.38(m,2H),6.67(s,1H),2.21(s,3H).MS(ESI,ev):302.8[M+H] +.
实施例27:化合物Ic14的合成
Figure PCTCN2022117692-appb-000080
参照Ic10中4)~7)的合成方法得到Ic14,不同之处在于以4'-氯联苯-3-酰氯代替邻氯苯甲酰氯。 1H NMR(500MHz,DMSO-d 6)δ12.56(s,1H),10.06(s,1H),9.21(s,1H),8.07(d,J=2.3Hz,1H),7.91(dd,J=8.4,2.3Hz,1H),7.82–7.73(m,3H),7.51(t,J=7.6Hz,2H),7.46–7.40(m,1H),6.71(s,1H),2.17(s,3H).MS(ESI,ev):m/z=394.2[M+H] +
实施例28:化合物Ic15的合成
Figure PCTCN2022117692-appb-000081
参照Ic10中4)~7)的合成方法得到Ic15,不同之处在于以2-甲基-5-硝基-苯甲酰氯代替邻氯苯甲酰氯。 1H NMR(500MHz,DMSO-d 6)δ12.58(s,1H),10.06(s,1H),9.22(s,1H),8.45(d,J=2.5Hz,1H),8.33(dd,J=8.5,2.5Hz,1H),7.73(d,J=8.5Hz,1H),6.63(s,1H),2.59(s,3H),2.16(s,3H).MS(ESI,ev):m/z=344.1[M+H] +
实施例29:化合物Ic16的合成
Figure PCTCN2022117692-appb-000082
将Ic15(14mg,0.041mmol)加入到甲醇(2mL)中,加入Pd/C(5mg),室温搅拌1小时,TLC监测反应完全。过滤,滤液浓缩,加入乙酸乙酯打浆搅拌,过滤,滤饼烘干得固体8mg,收率62%。 1H NMR(500MHz,DMSO-d 6)δ12.70(s,1H),9.54(s,2H),7.03(d,J=8.2Hz,1H),6.82(d,J=2.5Hz,1H),6.69(dd,J=8.2,2.5Hz,1H),6.29(s,1H),5.19(s,2H),2.28(s,3H),2.16(s,3H).MS(ESI,ev):m/z=314.1[M+H] +
实施例30:化合物Ic17的合成
Figure PCTCN2022117692-appb-000083
参照Ic10中4)~7)的合成方法得到Ic17,不同之处在于以3-氯-[1,1-联苯]-4-酰氯代替邻氯苯甲酰氯。 1H NMR(500MHz,DMSO-d 6)δ12.54(s,1H),10.05(s,1H),9.22–9.19(m,1H),7.98(d,J=1.8Hz,1H),7.96–7.83(m,2H),7.81(dd,J=7.2,1.8Hz,2H),7.53(dd,J=8.4,6.8Hz,3H),7.49–7.44(m,1H),6.62(s,1H),2.18(s,3H).MS(ESI,ev):m/z=394.2[M+H] +
实施例31:化合物Ic18的合成
Figure PCTCN2022117692-appb-000084
1)向含硝基的原料(200mg,0.52mmol)中加入乙醇(10mL),氮气保护,加入二水合氯化亚锡(720mg,6.4mmol,3.0eq),滴加2滴醋酸,加热至70℃,反应3h。TLC:原料消失。后处理:冷却后加入碳酸氢钠水溶液调pH至7,过滤,浓缩,加水稀释,EA萃取,有机相盐洗干燥过滤,浓缩至较小体积,边搅拌边加入氯化氢二氧六环溶液(1.1eq),大量固体析出,过滤,得氨基化合物173mg。 1H NMR(500MHz,DMSO-d 6)δ10.27(s,2H),7.65(d,J=2.2Hz,1H),7.52(d,J=8.2Hz,1H),7.47(dd,J=8.2,2.3Hz,1H),6.34(s,1H),3.91(s,3H),3.85(s,3H),3.82(s,3H),2.46(s,3H),2.27(s,3H).
2)向氨基化合物(50mg,0.13mmol)中加入DCM(1mL),氮气保护,加入乙酸酐(16mg,0.15mmol,1.2eq)和三乙胺(26mg,0.26mmol,2eq)环境温度(20℃)反应3h。TLC:原料少量剩余。后处理:加入氯化铵水溶液调pH至7,EA萃取,有机相盐洗干燥过滤,薄层层析法分离,得酰胺化合物共51mg。 1H NMR(500MHz,DMSO-d 6)δ10.09(s,1H),7.90(d,J=2.3Hz,1H),7.61(dd,J=8.3,2.3Hz,1H),7.31(d,J=8.4Hz,1H),6.27(s,1H),3.91(s,3H),3.85(s,3H),3.81(s,3H),2.39(s,3H),2.27(s,3H),2.06(s,3H).
3)前一步得到的产物(20mg,0.05mmol)和DCM(2mL),氮气保护,冰浴(0℃)下滴加三溴化硼溶液(1M,0.45mmol,9eq),撤去冰浴,环境温度(20℃)反应3h。TLC:原料消失。后处理:加入1滴甲醇淬灭,浓缩,残余物加入水打浆,过滤得到粗品。加入DCM和PE打浆,过滤得到化合物Ic18共7mg。 1H NMR(500MHz,DMSO-d 6)δ12.64(s,1H),10.09(s,1H),10.00(s,1H),9.17(s,1H),7.89(d,J=2.3Hz,1H),7.63(dd,J=8.3,2.3Hz,1H),7.32(d,J=8.4Hz,1H),6.37(s,1H),2.39(s,3H),2.16(s,3H),2.06(s,4H).MS(ESI,ev):m/z=356.1[M+H] +
实施例32:化合物Ic19的合成
Figure PCTCN2022117692-appb-000085
1)在反应瓶中依次加入取代的苯酚(528mg,2.2mmol,1.1eq),二氯甲烷(6ml),三乙胺(555μl,4mmol,2eq),DMAP(6mg,1mmol,0.05eq),冰浴下加入4'-甲基联苯-2-酰氯,加毕,撤冰浴,环境温度下搅拌。待反应完全后,依次用1M HCl溶液、饱和碳酸氢钠溶液,饱和氯化钠溶液洗涤,无水硫酸钠干燥,浓缩拌样,柱层析得酯化化合物共520mg。
2)叔丁醇钾(58mg,0.52mmol,1.3eq)加入到上一步产物(173mg,0.4mmol,1eq)的THF溶液中,N 2保护,搅拌,有大量黄色固体析出,5h后仍有大量原料未反应完,补加0.5eq叔丁醇钾,待反应完全后,停止反应,加水,滴加1M HCl调pH至6,乙酸乙酯萃取,无水硫酸钠干燥,浓缩拌样,柱层析得金黄色油状物重排化合物共143mg。
3)在反应瓶中加入上一步产物和冰醋酸(2ml),搅拌溶解,滴入3滴浓盐酸催化,N 2保护,110℃加热回流,两小时后反应完全,停止反应。加入水,滴加1M NaOH调pH至6,乙酸乙酯萃取,无水硫酸钠干燥,浓缩,厚制备板纯化,分离得闭环化合物共50mg。 1H NMR(500MHz,DMSO-d 6):δ7.77(d,J=7.4Hz,1H),7.66(t,J=7.3Hz,1H),7.53(dd,J=17.1,7.7Hz,2H),7.24(d,J=7.8Hz,2H),7.17(d,J=7.7Hz,2H),6.34(s,1H),3.79(d,J=15.7Hz,9H),2.29(s,3H),1.54(s,3H).
4)将上步所得闭环化合物溶于二氯甲烷中,冰浴下加入BBr 3(1ml,1mmol,10eq),加毕,撤冰浴,室温搅拌,反应液橘红色。待反应完全后,加甲醇淬灭,旋干,EA打浆,不纯,丙酮和水再次打浆纯化,得产物Ic19共20mg, 1H NMR(500MHz,DMSO-d 6):δ12.61(s,1H),9.87(s,1H),9.11(s,1H),7.78(d,J=7.7,1.1Hz,1H),7.67(dd,J=7.6,1.3Hz,1H),7.58–7.48(m,2H),7.18(dd,J=23.5,8.1Hz,4H),6.48(s,1H),2.28(s,3H),1.42(s,3H).MS(ESI,ev):m/z=375.1[M+H] +
实施例33:化合物Ic20的合成
Figure PCTCN2022117692-appb-000086
1)含碘原料(300mg,0.684mmol),碳酸钾(189mg,1.369mmol),Xphos(98mg,0.2052mmol),氟化钾(6mg,0.2052mmol),醋酸钯(31mg,0.1398mmol),加入DMF(5mL),氮气保护,外温105℃反应12小时,次日TLC显示产生的新点有脱碘产物,以及8位异丙烯基化合物。后处理:硅藻土助滤,乙酸乙酯/水萃取,水洗,brine洗,干燥,过滤,柱层析,得8位异丙烯基化合物150mg。
2)将前一步产物(75mg)溶于二氯甲烷(2mL),冰浴加入1M BBr 3溶液(0.6mL),加毕,转为室温反应3小时,TLC原料反应完全。后处理:将反应液滴加到甲醇(2mL),搅拌30分钟,浓缩,加入丙酮:水=2:1(3mL),过滤得黄色固体50mg。核磁显示有少量杂质。少量乙醇溶解固体,加入水,析出固体,搅拌,过滤得Ic20共37mg。 1H NMR(400MHz,DMSO-d 6)δ12.85(s,1H),9.91(s,1H),9.22(s,1H),8.08–8.03(m,1H),8.00(dd,J=7.4,2.3Hz,1H),7.58(p,J=5.0Hz,4H),6.99–6.91(m,1H),5.48(t,J=2.0Hz,1H),5.04(s,1H),2.08(s,3H).
实施例34:化合物Id1的合成
Figure PCTCN2022117692-appb-000087
将270mg黄芩素和4mL乙腈加入到10mL两口瓶中,氮气置换后将129mg异氰酰乙酰乙酯和101mg三乙胺加至反应液中,室温25oC反应12h。减压蒸馏除去乙腈,加入15mL乙酸乙酯和10mL水搅拌5min后分层,有机相加入10mL饱和食盐水搅拌5min后分层,无水硫酸钠干燥有机相1h。最后通过柱层析法(SiO2,二氯甲烷:甲醇=40:1)进行纯化,得到330mg白色固体产物,收率83.1%。1H NMR(500MHz,DMSO-d6)δ12.94(s,1H),11.28(s,1H), 8.17(t,J=6.1Hz,1H),8.12-8.08(m,2H),7.67-7.54(m,3H),7.02(s,1H),6.67(s,1H),4.13(q,J=7.2Hz,2H),3.85(d,J=6.1Hz,2H),1.22(t,J=7.1Hz,3H).MS(ESI,ev):m/z=400.1[M+H]+。
实施例35:化合物Id3的合成
Figure PCTCN2022117692-appb-000088
将152mg氯甲基碳酸异丙酯加入到3mL丙酮中,加入149mg NaI,升温至60℃反应3h,浓缩待用。将272mg黄芩素和276mg碳酸钾加入到5mL丙酮中,加入少许DMF助溶,再加入前面浓缩待用的油状物,环境温度12℃反应12h。浓缩反应液至小体积,加入EA和H 2O分层,有机相干燥浓缩柱层析分离得50mg黄色固体。 1H NMR(500MHz,DMSO-d6)δ12.66(s,1H),9.15(s,1H),8.17–8.11(m,2H),7.68–7.57(m,3H),7.09(d,J=10.0Hz,2H),5.93(s,2H),4.85(hept,J=6.2Hz,1H),1.26(d,J=6.3Hz,6H).MS(ESI,ev):m/z=387.1[M+H] +
实施例36:化合物Id5和Id6的合成
Figure PCTCN2022117692-appb-000089
将黄芩素(300mg,1.11mmol,1eq),无水碳酸钾(153mg,1.11mmol,1eq)投入到DMF(3ml)中,冰浴下缓慢加入溴乙腈(76μl,1.11mmol,1.1eq),室温搅拌10h。反应体系用DCM/H 2O萃取(水层用1M HCl调pH至弱酸性,水相粘稠),有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,浓缩。依次用DCM、DCM+PE打浆纯化,过滤,滤饼为化合物Id5, 1H NMR(400MHz,DMSO-d 6)δ13.08(s,1H),8.15–8.12(m,2H),7.67–7.60(m,3H),7.25(s,1H),7.16(s,1H),5.39(s,2H),5.05(s,2H).MS(ESI,ev):m/z=383.3[M-H] -
滤液浓缩后,通过柱层析进行纯化得到化合物Id6, 1H NMR(500MHz,DMSO-d 6)δ13.13(s,1H),11.33(s,1H),8.12–8.08(m,2H),7.65–7.56(m,3H),7.03(s,1H),6.68(s,1H),5.00(s,2H).MS(ESI,ev):m/z=308.2[M+H] +
实施例37:化合物Id8的合成
Figure PCTCN2022117692-appb-000090
1)将2.0g Ic5、15.0mL吡啶、3.5mL乙酸酐加入至100mL三口烧瓶中,升温至70℃反应10h。浓缩干反应液后将50mL乙酸乙酯和10mL水加入至粗品中,搅拌10min后静置分层,有机相加入10mL水分层,有机相加入10mL饱和食盐水分层,无水硫酸钠干燥有机相。浓缩有机相通过柱层析法进行纯化,得到1.7g三羟基乙酰化产物。MS(ESI,ev):m/z=445.0[M+H] +
2)将1.2g三羟基乙酰化化合物、3.0g碳酸钾、220mg碘化钾、20mL丙酮和1.6mL溴化苄加入至100mL三口烧瓶中,升温至60℃反应10h。过滤,浓缩有机相通过柱层析法进行纯化,得到420mg7位乙酰氧基替代为苄氧基的白色产物。MS(ESI,ev):m/z=492.9[M+H] +
3)将上一步产物400mg、40mg Pd(OH) 2/C和5mL四氢呋喃加入至25mL单口瓶中,氢气球置换氢气三次后,25℃反应15h。通过硅藻土过滤反应液,浓缩干有机相并用甲醇打浆粗品,过滤,烘干固体得到250mg脱苄基化合物。MS(ESI,ev):m/z=402.7[M+H] +
4)将150mg脱苄基化合物、296mg乙酰基溴-α-D-葡萄糖醛酸甲基酯、216mg氧化银、250mg
Figure PCTCN2022117692-appb-000091
分子筛和3mL喹啉加入至25mL单口瓶中,25℃反应10h。过滤反应液,浓缩有机相通过柱层析法进行纯化,得到135mg白色糖苷化产物。MS(ESI,ev):m/z=719.7[M+H] +
5)将80mg中间体4、2mL丙酮加入至10mL单口瓶中,外温降温至0℃后将0.6mL 2.5N氢氧化钠溶液滴加至反应液中,反应0.5h。在外温0℃条件下,缓滴加1N盐酸至反应液中,调节反应液pH≤3,有黄色固体生成,过滤固体,烘干后得到30mg黄色 产物Id8。 1H NMR(400MHz,Methanol-d4)δ7.75(dd,J=7.5,1.8Hz,1H),7.63(dd,J=8.0,1.4Hz,1H),7.58(td,J=7.6,1.6Hz,1H),7.52(td,J=7.4,1.5Hz,1H),6.55(s,1H),5.04(d,J=7.9Hz,1H),3.86(d,J=9.7Hz,1H),3.68-3.61(m,2H),3.53(d,J=9.1Hz,1H),2.39(s,3H).MS(ESI,ev):m/z=494.5[M+H] +
实施例38:化合物Id9的合成
Figure PCTCN2022117692-appb-000092
按照实施例Id8中相同的方法,不同之处在于以乙酰溴-α-D-葡萄糖代替乙酰基溴-α-D-葡萄糖醛酸甲基酯得到Id9。 1H NMR(400MHz,DMSO-d6)δ12.38(s,1H),9.15(s,1H),7.83(dd,J=7.6,1.8Hz,1H),7.71(dd,J=8.1,1.3Hz,1H),7.67-7.61(m,1H),7.57(td,J=7.5,1.4Hz,1H),6.66(s,1H),4.77(dd,J=7.8,4.6Hz,1H),3.67(d,J=11.5Hz,1H),3.48(dd,J=11.6,4.7Hz,1H),3.37(t,J=8.4Hz,1H),3.32-3.25(m,1H),3.23-3.18(m,2H),2.34(s,3H).MS(ESI,ev):m/z=480.5[M+H] +
实施例39:化合物Id14和Id15的合成
Figure PCTCN2022117692-appb-000093
将化合物Ic5(477mg,1.5mmol,1eq)投入到DCM(20mL)中,未溶解澄清,冰浴下加入NEt 3(0.6mL,4.5mmol,3eq),体系变澄清,氮气置换,加入用DCM稀释10倍的氯磺酸(1.5ml,2.25mmol,1.5eq),冰浴搅拌30分钟后,室温搅拌过夜,次日TLC显示原料少量剩余。反应体系用DCM/H 2O萃取,水层用1M HCl调pH至弱酸性,有机相无水硫酸钠干燥,过滤,浓缩,制备液相分离得到两个化合物,分别送氢谱。 1H NMR(400MHz,DMSO-d 6)δ12.32(s,1H),8.84(s,1H),8.78(s,1H),7.84(dt,J=7.7,2.0Hz,1H),7.70(dd,J=8.0,1.3Hz,1H),7.63(td,J=7.7,1.8Hz,1H),7.58–7.53(m,1H),6.65(s,1H),2.25(s,3H)和 1H NMR(400MHz,DMSO-d 6)δ12.63(s,1H), 10.38(s,1H),8.84(s,1H),7.84(dt,J=7.7,2.0Hz,1H),7.70(dd,J=8.0,1.3Hz,1H),7.63(td,J=7.7,1.8Hz,1H),7.60–7.52(m,1H),6.62(s,1H),2.15(s,3H).
实施例40:化合物Id16和Id20的合成
Figure PCTCN2022117692-appb-000094
将化合物Ic5(0.8g,2.52mmol,1eq)、DMF(6.5mL)依次加入到双颈瓶中,待溶解澄清后,冰浴下加入NEt 3(0.4mL,1.1eq),搅拌15mins后,继续滴加异氰酰乙酸乙酯(0.31ml,1.1eq),冰浴反应3h后,TLC显示原料基本反应完全。后处理:反应液用DCM/H 2O萃取,水层用1M HCl调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,柱层析纯化浓缩得到化合物Id16共720mg,化合物Id20共212mg,均为黄色固体。Id16: 1H NMR(500MHz,DMSO-d6)δ12.71(s,1H),10.68(s,1H),8.17(t,J=6.1Hz,1H),7.83(dd,J=7.6,1.8Hz,1H),7.70(dd,J=8.0,1.3Hz,1H),7.63(td,J=7.8,1.8Hz,1H),7.56(td,J=7.5,1.3Hz,1H),6.64(s,1H),4.13(q,J=7.1Hz,2H),3.86(d,J=6.1Hz,2H),2.17(s,3H),1.21(t,J=7.1Hz,3H).MS(ESI,ev):m/z=432.1[M+H] +。Id20: 1H NMR(500MHz,DMSO-d 6)δ12.67(s,1H),8.51(t,J=6.2Hz,1H),8.34(t,J=6.1Hz,1H),7.87(dd,J=7.7,1.7Hz,1H),7.71(dd,J=8.1,1.3Hz,1H),7.65(td,J=7.7,1.7Hz,1H),7.57(td,J=7.5,1.3Hz,1H),6.81(s,1H),4.13(q,J=7.1Hz,4H),3.88(d,J=6.1Hz,,4H),2.20(s,3H),1.21(t,J=7.1Hz,6H).MS(ESI,ev):m/z=576.1[M+H] +
实施例41:化合物Id18的合成
Figure PCTCN2022117692-appb-000095
将化合物Ic5(0.1g,0.3mmol,1eq)溶于4mL四氢呋喃,NEt 3(60mg,2eq)随后加入,冰浴下逐滴加入异丁酸酐(96mg,2eq),冰浴下搅拌一小时,TLC显示原料基本反应完全。后处理:反 应液加入EA/H 2O,水层用1M HCl调pH至弱酸性,EA萃取,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,柱层析纯化浓缩得到化合物Id18共25mg,MS(ESI,ev):m/z=389.1[M+H] +
实施例42:化合物Id21和Id22的合成
Figure PCTCN2022117692-appb-000096
将化合物Ic5(1g,3.14mmol,1eq)、DMF(6mL)依次加入到双颈瓶中,待溶解澄清后,氮气置换,冰浴下加入K 2CO 3(651mg,4.71mmol,1.5eq),反应液变浑浊,搅拌10mins后,继续滴加用DMF稀释10倍的2-甲氧基乙氧基甲基氯(538μL,4.71mmol,1.5eq),反应液逐渐澄清,冰浴反应2h后,TLC显示原料剩余约40%,补加0.5eq 2-甲氧基乙氧基甲基氯,转为室温反应过夜,次日TLC显示原料仍剩余10%。后处理:反应液用DCM/H 2O萃取,水层用1M HCl调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,浓缩,硅胶拌样,柱层析(DCM:MeOH=500:1),浓缩后分别得到化合物Id21和化合物Id22。Id21: 1H NMR(500MHz,DMSO-d 6)δ12.86(s,1H),10.27(s,1H),7.82(dd,J=7.6,1.7Hz,1H),7.70(dd,J=8.1,1.3Hz,1H),7.63(td,J=7.8,1.8Hz,1H),7.56(d,J=1.3Hz,1H),6.62(s,1H),5.18(s,2H),3.91(t,J=4.6Hz,2H),3.49(t,J=4.6Hz,3H),3.24(s,3H),2.16(s,3H).MS(ESI,ev):m/z=429.20[M+Na] +,Id22: 1H NMR(500MHz,DMSO-d 6)δ12.49(s,1H),9.27(s,1H),7.83(d,J=7.6Hz,1H),7.70(d,J=8.0Hz,1H),7.63(t,J=7.7Hz,1H),7.56(t,J=7.5Hz,1H),6.65(s,1H),5.31(s,2H),3.83(t,J=4.6Hz,2H),3.47(t,J=4.6Hz,3H),3.22(s,3H),2.25(s,3H).MS(ESI,ev):m/z=428.61[M+Na] +
实施例43:化合物Id23和Id24的合成
Figure PCTCN2022117692-appb-000097
将化合物Ic5(1g,3.14mmol,1eq)、THF(5mL)依次加入到双颈瓶中,未溶解澄清,冰浴下加入吡啶(585μL,2.3mmol,2.3eq),搅拌10分钟后,继续滴加N,N’-二甲氨基甲酰氯(637μl,6.9mmol,2.2eq),冰浴反应2小时后,TLC显示原料几乎反应,补加3.7eq吡啶,继续反应约22小时后,TLC显示原料仍剩余约30%。后处理:反应液用EA/H 2O萃取,水层用1M HCl调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,拌样,浓缩,柱层析、薄层色谱分离(DCM:MeOH=40:1),得到化合物Id23和Id24。Id23的氢谱 1H NMR(500MHz,DMSO-d 6)δ12.61(s,1H),7.87(d,J=7.7Hz,1H),7.71(d,J=7.9Hz,1H),7.65(t,J=7.8Hz,1H),7.58(t,J=7.7Hz,1H),6.81(s,1H),3.02(d,J=4.7Hz,6H),2.93(d,J=8.8Hz,6H),2.18(s,3H).MS(ESI,ev):m/z=461.3[M+H] +;Id24的氢谱: 1H NMR(500MHz,DMSO-d 6)δ12.68(s,1H),10.64(s,1H),7.83(dd,J=7.6,1.8Hz,1H),7.70(dd,J=8.1,1.3Hz,1H),7.63(td,J=7.7,1.8Hz,1H),7.56(td,J=7.6,1.3Hz,1H),6.63(s,1H),3.07(s,3H),2.92(s,3H),2.17(s,3H).MS(ESI,ev):m/z=390.3[M+H] +
实施例44:化合物Id25的合成
Figure PCTCN2022117692-appb-000098
将化合物Ic5(1g,3.14mmol,1eq)、DMF(6mL)依次加入到双颈瓶中,待溶解澄清后,冰浴下加入NEt 3(873μL,6.28mmol,2eq),搅拌10分钟后,继续滴加用DMF稀释10倍的异氰酸乙酯(513μl,6.28mmol,2eq),冰浴反应1小时后,TLC显示原料基本反应完全,产生一个主要荧光点。后处理:反应液用EA/H 2O萃取,水层用1M HCl调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,浓缩,依次用乙腈+甲醇、乙酸乙酯打浆,过滤,得到化合物Id25。 1H NMR(500MHz,DMSO-d 6)δ12.61(s,1H),7.99(q,J=4.6Hz,1H),7.86(dd,J=7.7,1.8Hz,1H),7.82(d,J=4.6Hz,1H),7.71(d,J=1.2Hz,1H),7.65(td,J=7.7,1.7Hz,1H), 7.58(td,J=7.5,1.3Hz,1H),6.80(s,1H),3.10(qd,J=7.2,5.5Hz,4H),2.15(s,3H).1.10(t,J=7.2Hz,6H).MS(ESI,ev):m/z=482.85[M+Na] +
实施例45:化合物Id27的合成
Figure PCTCN2022117692-appb-000099
将化合物Ic5(500mg,1.57mmol,1eq)、DMF(5mL)依次加入到双颈瓶中,待溶解澄清后,冰浴下加入NEt 3(219μL,1.57mmol,1eq),搅拌10分钟后,继续滴加用DMF稀释10倍的异氰酸乙酯(107μl,1.65mmol,1.05eq),冰浴反应1h后,TLC显示原料基本反应完全。后处理:反应液用EA/H 2O萃取,水层用1M HCl调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,浓缩,柱层析,浓缩得化合物Id27。 1H NMR(500MHz,DMSO-d 6)δ12.68(s,1H),10.61(s,1H),7.83(dd,J=7.6,1.7Hz,1H),7.75–7.69(m,2H),7.63(td,J=7.7,1.7Hz,1H),7.56(td,J=7.5,1.3Hz,1H),6.63(s,1H),3.10(qd,J=7.2,5.5Hz,2H),2.17(s,3H),1.10(t,J=7.2Hz,3H).MS(ESI,ev):m/z=411.83[M+Na] +
实施例46:化合物Id28和Id29的合成
Figure PCTCN2022117692-appb-000100
将化合物Ic5(500mg,1.57mmol,1eq)、DMF(5mL)依次加入到双颈瓶中,待溶解澄清后,冰浴下加入NEt 3(656μL,4.72mmol,3eq),搅拌10分钟后,继续滴加甲胺基甲酰氯(294mg,3.14mmol,2eq),冰浴反应2小时后,TLC显示原料基本反应完全,产生两个主要荧光点,继续反应2小时后,TLC显示无明显变化。后处理:反应液用EA/H 2O萃取,水层用1M HCl调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,硅胶拌样,柱 层析,浓缩得到化合物Id28和Id29。Id28的氢谱: 1H NMR(500MHz,DMSO-d 6)δ12.61(s,1H),7.99(q,J=4.6Hz,1H),7.86(dd,J=7.7,1.8Hz,1H),7.82(q,J=4.4Hz,1H),7.72(dd,J=8.1,1.2Hz,1H),7.65(td,J=7.7,1.7Hz,1H),7.58(td,J=7.5,1.3Hz,1H),6.80(s,1H),2.66(d,4.6Hz,6H),2.15(s,3H).MS(ESI,ev):m/z=454.87[M+Na] +。Id29的氢谱: 1H NMR(500MHz,DMSO-d 6)δ12.68(s,1H),10.61(s,1H),7.83(dd,J=7.7,1.7Hz,1H),7.70(dd,J=8.0,1.2Hz,1H),7.65–7.60(m,2H),7.56(td,J=7.6,1.3Hz,1H),6.63(s,1H),2.67(d,J=4.6Hz,3H),2.16(s,3H).MS(ESI,ev):m/z=397.79[M+Na] +
实施例47:化合物Id30的合成
Figure PCTCN2022117692-appb-000101
将化合物Ic17(1.5g,3.79mmol,1eq)、DMF(13mL)依次加入到双颈瓶中,未溶解澄清,氮气置换,冰浴下滴加NEt 3(581μl,4.17mmol,1.1eq),搅拌10分钟后,继续滴加用DCM稀释10倍的异氰酰乙酸乙酯(492μL,4.17mmol,1.1eq),冰浴反应约1.5h后,TLC显示原料几乎反应完全。后处理:反应液用DCM/H 2O萃取,水层用1M盐酸调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,浓缩,硅胶拌样,柱层析(DCM:MeOH=600:1出产物),浓缩后得到化合物Id30粗品,依次用PE:EA=1:1、乙腈+少量甲醇打浆纯化,得到化合物Id30:黄色固体,643mg。 1H NMR(500MHz,DMSO-d 6)δ12.73(s,1H),10.68(s,1H),8.16(t,J=6.1Hz,1H),8.00(d,J=1.8Hz,1H),7.92(d,J=8.1Hz,1H),7.87(dd,J=8.1,1.8Hz,1H),7.83–7.80(m,2H),7.53(td,J=7.2,6.3,1.3Hz,3H),7.50–7.45(m,1H),6.70(s,1H),4.13(q,J=7.1Hz,2H),3.86(d,J=6.1Hz,2H),2.20(s,3H),1.22(t,J=7.1Hz,3H).MS(ESI,ev):m/z=524.4[M+H] +
实施例48:化合物Id31的合成
Figure PCTCN2022117692-appb-000102
将化合物Ic14(200mg,0.5mmol,1eq)、DMF(2mL)依次加入到双颈瓶中,未溶解澄清,冰浴下滴加NEt 3(77μL,0.56mmol,1.1eq),搅拌10mins后,继续滴加用DCM稀释10倍的甲胺基甲酰氯(50mg,0.53mmol,1.05eq),冰浴反应约6h后。反应液用EA/H 2O萃取,水层用1M盐酸调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,浓缩,通过柱层析纯化得到化合物Id31:黄色固体,76mg。 1H NMR(400MHz,DMSO-d 6)δ12.70(s,1H),10.63(s,1H),7.99(s,1H),7.94–7.77(m,3H),7.65–7.42(m,5H),6.68(s,1H),2.68(s,3H),2.19(s,3H).MS(ESI,ev):m/z=452.3[M+H] +
实施例49:化合物Id32的合成
Figure PCTCN2022117692-appb-000103
将化合物Ic14(200mg,0.5mmol,1eq)、DMF(2mL)依次加入到双颈瓶中,未溶解澄清,冰浴下滴加NEt 3(77μL,0.56mmol,1.1eq),搅拌10mins后,继续滴加用DCM稀释10倍的N,N’-二甲胺基甲酰氯(49μl,0.53mmol,1.05eq),冰浴反应约1h后,TLC显示原料无明显变化,补加2eqNEt 3继续反应9h后。反应液用DCM/H 2O萃取,水层用1M盐酸调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,浓缩,通过柱层析纯化得到化合物Id32:黄棕色固体,30mg。 1H NMR(500MHz,DMSO-d 6)δ12.71(s,1H),10.65(s,1H),8.00(d,J=1.8Hz,1H),7.93(d,J=8.1Hz,1H),7.87(dd,J=8.1,1.8Hz,1H),7.83–7.80(m,2H),7.53(dd,J=8.4,6.8Hz,3H),7.49–7.45(m,1H),6.70(s,1H),3.08(s,3H),2.92(s,3H),2.20(s,3H).MS(ESI,ev):m/z=466.3[M+H] +
实施例50:化合物Id33的合成
Figure PCTCN2022117692-appb-000104
将化合物Ic5(636mg,2mmol,1eq)、NMP(8mL)依次加入到双颈瓶中,待溶解澄清后,加入粉末状碳酸钾(276mg,2mmol),冰浴搅拌15mins后,继续滴加异氰酰乙酸异丙酯(314mg,2.2mmol,1.1eq),冰浴反应3h后,TLC显示原料基本反应完全。后处理:反应液用DCM/H 2O萃取,水层用1M HCl调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,柱层析纯化浓缩得到黄色化合物Id33共530mg。 1H NMR(500MHz,DMSO-d6)δ12.71(s,1H),10.67(s,1H),8.14(t,J=6.1Hz,1H),7.82(dd,J=7.6,1.8Hz,1H),7.70(dd,J=8.1,1.3Hz,1H),7.63(td,J=7.7,1.7Hz,1H),7.56(td,J=7.6,1.3Hz,1H),6.63(s,1H),4.95(dq,J=12.5,6.5Hz,1H),3.82(d,J=6.1Hz,2H),2.17(s,3H),1.21(d,J=6.3Hz,6H).MS(ESI,ev):m/z=462.3[M+H] +
实施例51:化合物Id35和Id36的合成
Figure PCTCN2022117692-appb-000105
将化合物Ic5(636mg,2mmol,1eq)、NMP(8mL)依次加入到双颈瓶中,待溶解澄清后,加入粉末状碳酸钾(276mg,2mmol),冰浴搅拌15mins后,继续滴加异氰酰2-异丙基戊酸乙酯(376mg,2.2mmol,1.1eq),冰浴反应3h后,TLC显示原料基本反应完全。后处理:反应液用DCM/H 2O萃取,水层用1M HCl调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,柱层析纯化浓缩得到黄色化合物Id35共630mg,Id36共100mg。Id35: 1H NMR(500MHz,DMSO-d6)δ12.70(s,1H),10.69(s,1H),8.18(d,J=8.4Hz,1H),7.83(dd,J=7.7,1.7Hz,1H),7.70(dd,J=8.0,1.3Hz,1H),7.63(td,J=7.8,1.7Hz,1H),7.56(td,J=7.5,1.3Hz,1H),6.64(s, 1H),3.94(dd,J=8.5,6.6Hz,1H),3.07(s,1H),2.18(s,3H),2.09(h,J=6.8Hz,1H),1.22(t,J=7.1Hz,3H),1.00–0.90(m,6H).MS(ESI,ev):m/z=490.3[M+H] +,Id36: 1H NMR(500MHz,DMSO-d6)δ12.66(s,1H),8.55(d,J=8.3Hz,1H),8.38(d,J=8.4Hz,1H),7.86(dd,J=7.7,1.7Hz,1H),7.71(dd,J=8.1,1.3Hz,1H),7.65(td,J=7.7,1.8Hz,1H),7.57(td,J=7.5,1.3Hz,1H),4.21–4.03(m,4H),3.97–3.90(m,2H),2.17(s,3H),2.19–2.03(m,2H),1.20(q,J=7.1Hz,6H),1.01–0.91(m,12H).
实施例52:化合物Id37的合成
Figure PCTCN2022117692-appb-000106
将化合物Ic5(636mg,2mmol,1eq)、NMP(8mL)依次加入到双颈瓶中,待溶解澄清后,加入粉末状碳酸钾(276mg,2mmol),冰浴搅拌15mins后,继续滴加异氰酰2-异丙基戊酸异丙酯(407mg,2.2mmol,1.1eq),冰浴反应3h后,TLC显示原料基本反应完全。后处理:反应液用DCM/H 2O萃取,水层用1M HCl调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,柱层析纯化浓缩得到黄色化合物Id37共200mg。 1H NMR(500MHz,DMSO-d6)δ12.71(s,1H),10.64(s,1H),8.13(d,J=8.3Hz,1H),7.82(dd,J=7.7,1.8Hz,1H),7.70(dd,J=8.0,1.3Hz,1H),7.63(td,J=7.7,1.8Hz,1H),7.56(td,J=7.5,1.3Hz,1H),6.63(s,1H),4.94(tt,J=13.2,6.3Hz,1H),3.90(dd,J=8.4,6.4Hz,1H),2.17(s,3H),2.09(q,J=6.7Hz,1H),1.22(dd,J=6.3,1.2Hz,6H),1.00–0.90(m,6H).MS(ESI,ev):m/z=504.3[M+H] +
实施例53:化合物Id38和Id39的合成
Figure PCTCN2022117692-appb-000107
将化合物Ic5(636mg,2mmol,1eq)、NMP(8mL)依次加入到双颈瓶中,待溶解澄清后,加入粉末状碳酸钾(276mg,2mmol),冰浴搅拌15mins后,继续滴加异氰酰异丙酸异丙酯(345mg,2.2mmol, 1.1eq),冰浴反应3h后,TLC显示原料基本反应完全。后处理:反应液用DCM/H 2O萃取,水层用1M HCl调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,柱层析纯化浓缩得到黄色化合物Id38共450mg,Id39共120mg。Id38: 1H NMR(500MHz,DMSO-d6)δ12.71(s,1H),10.65(s,1H),8.25(d,J=7.3Hz,1H),7.83(dd,J=7.6,1.7Hz,1H),7.70(dd,J=8.0,1.3Hz,1H),7.63(td,J=7.7,1.8Hz,1H),7.56(td,J=7.5,1.3Hz,1H),6.64(s,1H),4.97–4.85(m,1H),4.07(p,J=7.2Hz,1H),2.17(s,3H),1.34(d,J=7.2Hz,3H),1.20(dd,J=6.3,5.2Hz,6H).MS(ESI,ev):m/z=498.3[M+18] +。Id39: 1H NMR(500MHz,DMSO-d6)δ12.67(s,1H),8.57(d,J=7.2Hz,1H),8.40(d,J=7.3Hz,1H),7.87(dd,J=7.7,1.8Hz,1H),7.72(dd,J=8.0,1.2Hz,1H),7.65(td,J=7.8,1.7Hz,1H),7.58(td,J=7.5,1.3Hz,1H),6.81(s,1H),4.91(pd,J=6.3,1.1Hz,2H),4.08(h,J=7.0Hz,2H),2.18(s,3H),1.33(dd,J=7.3,5.2Hz,6H),1.21–1.17(m,12H).
实施例54:化合物Id40的合成
Figure PCTCN2022117692-appb-000108
将化合物Ic5(636mg,2mmol,1eq)、NMP(8mL)依次加入到双颈瓶中,待溶解澄清后,加入粉末状碳酸钾(276mg,2mmol),冰浴搅拌15mins后,继续滴加异氰酰乙酸异丙酯(402mg,2.2mmol,1.1eq),冰浴反应3h后,TLC显示原料基本反应完全。后处理:反应液用DCM/H 2O萃取,水层用1M HCl调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,柱层析纯化浓缩得到黄色化合物Id40共450mg。 1H NMR(500MHz,DMSO-d6)δ12.71(s,1H),10.65(s,1H),8.15(t,J=6.1Hz,1H),7.83(dd,J=7.7,1.8Hz,1H),7.70(dd,J=8.1,1.3Hz,1H),7.67–7.62(m,1H),7.56(td,J=7.5,1.3Hz,1H),6.63(s,1H),4.72(tt,J=8.9,3.9Hz,1H),3.83(d,J=6.0Hz,2H),2.17(s,3H),1.79(tt,J=7.4,3.5Hz,2H),1.73–1.64(m,2H),1.56–1.20(m,6H).MS(ESI,ev):m/z=502.3[M+H] +
实施例55:化合物Id41的合成
Figure PCTCN2022117692-appb-000109
将化合物Ic5(636mg,2mmol,1eq)、NMP(8mL)依次加入到双颈瓶中,待溶解澄清后,加入粉末状碳酸钾(276mg,2mmol),冰浴搅拌15mins后,继续滴加异氰酰乙酸环戊酯(372mg,2.2mmol,1.1eq),冰浴反应3h后,TLC显示原料基本反应完全。后处理:反应液用DCM/H 2O萃取,水层用1M HCl调pH至弱酸性,分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,柱层析纯化浓缩得到黄色化合物Id41共450mg。 1H NMR(500MHz,DMSO-d6)δ12.71(s,1H),10.67(s,1H),8.15(t,J=6.1Hz,1H),7.83(dd,J=7.6,1.7Hz,1H),7.70(dd,J=8.3,1.4Hz,1H),7.63(td,J=7.7,1.7Hz,1H),7.56(td,J=7.5,1.3Hz,1H),6.64(s,1H),5.12(tt,J=5.9,2.7Hz,1H),3.81(d,J=6.0Hz,2H),2.17(s,3H),1.87–1.78(m,2H),1.73–1.49(m,6H).MS(ESI,ev):m/z=488.3[M+H] +
实施例56:化合物Id42、Id43和Id44的合成
Figure PCTCN2022117692-appb-000110
将化合物Ic5(1g,3.14mmol)、NMP(10mL)依次加入到茄形瓶中溶清后,加入K 2CO 3(434mg,3.14mmol,1eq),氮气置换,冰浴下加入4-氯甲基-5-甲基-1,3-二氧杂环戊烯-2-酮(171μL,3.14mmol,1eq),冰浴反应2h后,TLC显示无明显变化,补加0.5eq NaI,转为室温反应2h,TLC原料基本剩余约40%,升温至40℃反应2h无明显变化,继续补加1eq K 2CO 3,40℃反应2h后,TLC显示新生成的两个小极性点荧光变淡,原料变浓。后处理:滤液用DCM/H 2O萃取三次(水层用1M盐酸调pH至弱酸性),分液,有机相用饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,浓缩,通过柱层析纯化,分别得化合物:
Id41: 1H NMR(500MHz,DMSO-d6)δ12.89(s,1H),10.41(s,1H),7.67(dd,J=82.6,49.3Hz,4H),6.63(s,1H),4.89(s,2H),2.15(s,3H),2.04(s,3H).
Id42: 1H NMR(500MHz,DMSO-d6)δ12.51(s,1H),9.49(s,1H),7.83(d,J=7.7Hz,1H),7.70(d,J=7.7Hz,1H),7.63(t,J=7.4Hz,1H),7.57(d,J=7.6Hz,1H),6.67(s,1H),5.07(s,2H),2.19(s,3H),2.07(s,3H).
Id43: 1H NMR(500MHz,DMSO-d6)δ12.79(s,1H),7.85(dt,J=7.8,2.3Hz,1H),7.71(t,J=5.4Hz,1H),7.65(tt,J=5.2,2.0Hz,1H),7.57(t,J=7.6Hz,2H),6.77(s,1H),5.03(s,2H),4.93(s,2H),2.21(d,J=3.2Hz,3H),2.10(s,3H),1.99(s,3H).
药理实施例
以下药理实施例中使用的主要试剂、仪器、细胞和病毒信息如下:
主要试剂
Figure PCTCN2022117692-appb-000111
主要仪器
酶标仪(SYNERGY-H1);
微量分析天平(XP26,梅特勒-托莱多仪器上海有限公司);
Vortexer涡旋振荡器(SI-A256,Scientific Industries,Inc.);
离心机(5417R,Eppendorf);
移液枪(Eppendorf);
LC/MS-MS中LC(Waters),Mass(Applied Biosystems);
生物安全柜(AC2-3S1,ESCO);
二氧化碳培养箱(Thermo Scientific HERAcell 150i,Thermo Scientific);
纯水仪(渗源SYS超纯水机);
StepOne Plus Real-time PCR system(4376600,ABI);
TC20 TM自动细胞计数器(1450102,BIO-RAD);
T100 TMThermal Cycler(1861096,BIO-RAD);
离心机(Micro21/21R赛默飞,Thermo Scientific)。
酶、细胞和病毒
3CL蛋白酶:根据冠状病毒基因组序列自制重组全长冠状病毒3CL蛋白酶,所用SARS-CoV-2、SARS-CoV、MERS-CoV、H229E-CoV、HKU1-CoV、NL63-CoV和OC43-CoV基因组GenBank号分别为MN908947.3、AAP13442.1、MT387202.1、AF304460.1、AY597011.2、AY567487.2和AY903459.1,七种冠状病毒3CL蛋白酶蛋白表达所需DNA序列由南京金斯瑞生物科技有限公司合成;
Vero E6、HepG2、HEK293以及L02细胞均购自ATCC;
SARS-CoV-2从国家病毒资源库申请出库获得。
药理实施例1:黄芩素衍生物Ia1-7、Ib1-7和Ic1-8对SARS-CoV-2 3CLpro抑制活性的测试
利用荧光共振能量转移方法评价测定黄芩素衍生物Ia1-7、Ib1-7和Ic1-8对SARS-CoV-2 3CLpro酶活的抑制活性。整个酶促反应体系的体积为120μL,蛋白酶的终浓度为30nM,底物终浓度为20μM。反应体系的缓冲液包括50mM Tris pH7.3、1mM EDTA。在96孔板中加入SARS-CoV-2 3CLpro蛋白酶和不同浓度的化合物,30℃孵育10min,加入底物并迅速放入酶标仪中读数。激发光和发射光 分别为320nM和405nM。测试时间为3.5min,每隔35s读一次荧光值。最终结果取前2min的读值拟合出反应速率,并与对照组(DMSO)比较,计算抑制率,计算公式为:抑制率=[1–(测试组反应速率/对照组反应速率)]×100%。利用软件GraphPad Prism 8拟合得到IC 50值以及抑制率曲线。图1-7分别是黄芩素衍生物Ia7、Ib1-3、Ic3-5对SARS-CoV-2 3CLpro的抑制曲线图。
将黄芩素衍生物Ia1-7、Ib1-7和Ic1-8对SARS-CoV-2 3CLpro抑制的抑制率及IC 50值列于下表1中。
表1:黄芩素衍生物Ia1-7、Ib1-7和Ic1-8对SARS-CoV-2 3CLpro的抑制作用
Figure PCTCN2022117692-appb-000112
Figure PCTCN2022117692-appb-000113
Figure PCTCN2022117692-appb-000114
“-”表示未测得。
药理实施例2:化合物Ic5对SARS-CoV-2 WIV04株和南非株B.1.351复制抑制活性评价
测试化合物Ic5用DMSO溶解成40mM母液,测试当天,将化合物母液用DMEM进行10倍连续稀释,即取1μL的化合物母液加 入到9μL DMSO中,经过2个10倍稀释后,得到0.4mM的稀释液后,20倍稀释至20μM,然后继续三倍梯度稀释,依次得到6.7、2.2、0.74、0.25、0.08μM。
试验使用Vero E6细胞,在48孔板中加入Vero E6细胞(50000个细胞/孔),加入100μL/孔含梯度浓度化合物的培养基,一小时后加入SARS-CoV-2 WIV04株或南非株B.1.351,感染复数(MOI)为0.01。共孵育1小时后,吸走上清,清洗并重新加入200μL/孔含梯度浓度化合物的培养基,37℃培养24小时。24小时后,收集细胞上清,提取上清病毒RNA并利用实时荧光定量PCR的方法检测上清病毒拷贝数,根据病毒拷贝数算出化合物抑制率,并计算化合物的EC 50
数据分析处理采用GraphPad Prism 6和Excel软件。不同浓度化合物对SARS-CoV-2复制的抑制程度用以下公式计算:
抑制%=[1–(I/I 0)]×100%
其中,抑制%代表化合物对SARS-CoV-2复制的抑制百分率,I和I 0分别表示在化合物和对照孔(DMSO组)SARS-CoV-2病毒RNA在细胞上清的拷贝数。
化合物EC 50使用GraphPad Prism 6软件通过以下方程拟合计算得出:
Y=Bottom+(Top-Bottom)/(1+10^((LogIC 50-X)*HillSlope)
其中,X为供试品检测浓度的Log值,Y为对应浓度下抑制百分率,Bottom和Top分别为最小和最大抑制百分率。
试验结果显示,Ic5在Vero E6细胞中抑制WIV04株半数有效浓度EC 50为0.72±0.18μM,见图8。
试验结果显示,Ic5能够显著抑制SARS-CoV-2南非株B.1.351在Vero E6细胞复制,EC 50为1.21±0.44,见图9。
药理实施例3:检测化合物Ic5对细胞活力的影响
96孔板的细胞移除上清,每孔加入稀释好的化合物Ic5,孵育24小时后,用CCK8检测试剂盒检测细胞活力。试验结果显示,Ic5细胞毒性很弱,对Vero E6细胞的CC 50大于500μM,见图10。
药理实施例4:检测化合物Ic5的ICR小鼠PK性质测试实验
ICR小鼠(购自上海市计划生育科学研究所实验动物经营部)静脉注射给药剂量5mg/Kg,溶媒:5%二甲亚砜+5%乙醇+40%聚乙二醇300+50%生理盐水;灌胃给药组剂量100mg/Kg,溶媒:5%二甲亚砜+95%0.5%羟丙基甲基纤维素溶液。经下颌下静脉采血,0.03mL/时间点。样品置于含有K2-EDTA的试管中,并储存在冰上,直到离心。血液样本在收集后1小时内,在2-8℃下以6800g离心6分钟,并在约-80℃下冷冻储存。用400μL甲醇沉淀一份20μL血浆样品,其中含有10ng/mL IS。将混合物旋转1分钟,并离心7分钟。将400μL上清液转移至96孔板。注入一份10μL上清液进行LC-MS/MS分析。
Figure PCTCN2022117692-appb-000115
灌胃给药组剂量为100mg/Kg时,测试结果如下表2中所示:
表2
Figure PCTCN2022117692-appb-000116
药理实施例5:黄芩素衍生物Ic10-21、Id5-6、Id8-9、Id14-16、Id18和Id30-32对SARS-CoV-2 3CLpro的抑制活性的测试
利用荧光共振能量转移方法评价测定部分黄芩素衍生物对SARS-CoV-2 3CLpro酶活的抑制活性。整个酶促反应体系的体积为120μL,蛋白酶的终浓度为30nM,底物终浓度为20μM。反应体系的缓冲液包括50mM Tris pH7.3、1mM EDTA。在96孔板中加入SARS-CoV-2 3CLpro蛋白酶和不同浓度的化合物,30℃孵育10min,加入底物并迅速放入酶标仪中读数。激发光和发射光分别为320nM和405nM。测试时间为3.5min,每隔35s读一次荧光值。最终结果取前2min的读值拟合出反应速率,并与对照组(DMSO)比较,计算抑制率。
表3:黄芩素衍生物Ic10-21、Id5-6、Id8-9、Id14-16、Id18和Id30-32对SARS-CoV-2 3CLpro的抑制作用
Figure PCTCN2022117692-appb-000117
Figure PCTCN2022117692-appb-000118
Figure PCTCN2022117692-appb-000119
“-”表示未测得。
药理实施例6:部分黄芩素衍生物对SARS-CoV-2 WIV04株复制抑制活性评价。
测试化合物用DMSO溶解成40mM母液,测试当天,将化合物母液用DMEM进行连续稀释最终得到1μM。
试验使用Vero E6细胞,在48孔板中加入Vero E6细胞(50000个细胞/孔),加入100μL/孔含梯度浓度化合物的培养基,一小时后加入SARS-CoV-2 WIV04株或,感染复数(MOI)为0.01。共孵育1小时后,吸走上清,清洗并重新加入200μL/孔含1μM化合物的培养基,37℃培养24小时。24小时后,收集细胞上清,提取上清病毒RNA并利用实时荧光定量PCR的方法检测上清病毒拷贝数,根据病毒拷贝数算出化合物抑制率,结果分别用A、B或C表示,其中A:70~100%,B:30~69%,C:10~29%.
表4:黄芩素衍生物Ic13~18、Id8、Id16、Id18、Id21和Id28~32对SARS-CoV-2 WIV04株复制抑制活性
化合物编号 抑制率(%)@1μM
Ic13 B
Ic14 A
Ic15 C
Ic16 B
Ic17 A
Ic18 C
Id8 B
Id16 A
Id18 B
Id21 C
Id28 B
Id29 C
Id30 A
Id31 A
Id32 C
药理实施例7.化合物Id16的ICR小鼠PK性质测试实验
ICR小鼠静脉注射给药剂量10mg/kg,溶媒:40%PEG400+10%Solutol HS 15+50%蒸馏水;ICR小鼠灌胃给药组剂量100mg/kg,溶媒:5%二甲亚砜+5%Solutol HS 15+90%生理盐水,氢氧化钠调pH到8。经下颌下静脉采血,0.03mL/时间点。样品置于含有K2-EDTA的试管中,并储存在冰上,直到离心。血液样本在收集后1小时内,在2-8℃下以6800g离心6分钟,并在约-80℃下冷冻储存。用400μL甲醇(1mL甲醇:0.1mL(1M HCl+1%VC))沉淀一份20μL血浆样品,其中含有10ng/mL IS。将混合物旋转1分钟,并离心7分钟。将400μL上清液转移至96孔板。注入一份10μL上清液进行LC-MS/MS分析,检测Id16。测试结果表5所示,化合物在小鼠体内有较高的口服生物利用度57.5%,血药暴露量较高。
表5.Id16 ICR小鼠静脉注射10mg/kg及灌胃给药100mg/kg时的药代动力学参数
Figure PCTCN2022117692-appb-000120
ICR小鼠灌胃给药组剂量200mg/kg,溶媒:10%PEG400+90%(0.5%羟丙基甲基纤维素)。按照Id16灌胃给药组剂量为100mg/kg时相同的给药和血浆处理方法,LC-MS/MS分别检测Id16和水解代谢产物Ic5与水解后葡萄糖醛酸化代谢产物Id8。测试结果如下表6中所示,化合物Id16在小鼠体内的代谢产物Ic5和Id8依然具有良好的抗新冠病毒活性,在小鼠灌胃给药200mg/kg时,小鼠血浆中不仅存在高血药暴露量的Id16、同时也检测到了Ic5和Id8。
表6.Id16 ICR小鼠灌胃给药200mg/kg时的药代动力学参数
Figure PCTCN2022117692-appb-000121
药理实施例8.化合物Id16的食蟹猴PK性质测试实验
食蟹猴(购自广州市旭生生物科技有限公司)静脉注射给药剂量10mg/kg,溶媒:5%DMSO+5%Solutol HS 15+90%生理盐水,氢氧化钠调pH到8;食蟹猴灌胃给药组剂量100mg/kg,溶媒:10%PEG400+90%(0.5%羟丙基甲基纤维素)。血液将通过股静脉或其他合适的静脉采集,1.0mL/时间点。样品将置于含有K2-EDTA的试管中,并储存在冰上,直到离心。血液样本在采集后1小时内,在2-8℃下以2200g离心10分钟,并在约-80℃下冷冻保存。用400μL甲醇(1mL甲醇:0.1mL(1M HCl+1%VC))沉淀40μL血浆样品,其中含有10ng/mL IS。将混合物旋转1分钟,并在18000g下离心7分钟。将400μL上清液转移至96孔板。注入一份1μL上清液进行LC-MS/MS分析。分别检测Id16和代谢产物Ic5与Id8。 测试结果如下表7中所示,化合物Id16和代谢产物Ic5与Id8均有较高的血药暴露量,在食蟹猴体内的PK性质良好。
表7.Id16食蟹猴静脉注射给药10mg/kg和灌胃给药100mg/kg时的药代动力学参数
Figure PCTCN2022117692-appb-000122
药理实施例9.化合物Ic5、Id8、Id16细胞水平肝肾细胞毒性测试实验
用细胞培养基将每种化合物的母液(100μM的二甲亚砜溶液)稀释至200、100、50、25、10、5、2.5、1、0.5μM。阴性对照为细胞培养基中0.5%二甲基亚砜。将人肝癌细胞HepG2、人胚肾细胞HEK293和人正常肝细胞L02以每孔1×10 4个细胞的密度接种在96孔板中孵育48小时。然后向细胞加入不同浓度的化合物,共孵育48小时(n=6)。用CCK8检测试剂盒检测细胞毒。吸光度由自动微孔板阅读器(Biotek,Winooski,VT,USA)在450nm波长下测量。使用GraphPad Prism 6软件计算每种化合物的半抑制浓度(IC 50)值。结果如表8所示,被测三个化合物对不同肝肾细胞的IC 50均大于25μM。
表8.化合物Ic5、Id8、Id16对肝肾相关细胞的抑制活性。
Figure PCTCN2022117692-appb-000123
药理实施例10.化合物Ic5和Id16在腺病毒载体转导hACE2制备的新冠小鼠模型上的抗新冠病毒效果
7-8周龄的H11-K18-hACE2小鼠转移至武汉病毒研究所BSL-3实验室。采用滴鼻的方式,每只小鼠感染1×10 3PFU的SARS-CoV-2病毒,该天为第0天。小鼠感染SARS-CoV-2 2小时后,采用灌胃给药的方式进行药物处理。小鼠分为3组。对照组(BID,口服给溶媒),Ic5给药200mg/kg组10只(BID,口服给药)、Id16给药200mg/kg组(BID,口服给药)。其中第0天给药一次,第1、2、3天分别给药2次,间隔9h,并每天记录小鼠体重。
第2天,每组处死5只小鼠,第4天,每组处死5只小鼠。随后提取小鼠的肺组织,其中右肺用DMEM研磨后,取部分匀浆液用来提取RNA,其余-80℃保存。
病毒拷贝数测定:利用试剂盒TaKaRa MiniBEST Viral RNA/DNA Extraction Kit Ver.5.0提取研磨好的肺部组织中的RNA,按照试剂盒TaKaRa PrimeScript TMRT reagent Kit with gDNA Eraser说明书提取RNA并进行反转录,然后通过TaKaRa
Figure PCTCN2022117692-appb-000124
Premix Ex Taq TMII(Tli RNaseH Plus)利用实时荧光定量PCR技术对组织中的病毒RNA拷贝数进行绝对定量检测。样品拷贝数通过标准质粒浓度进行计算。结果如图11所示,Ic5在第4天表现出一定的抗新冠病毒作用,Id16在第2天和第4天均表现出显著的抗新冠病毒作用。
药理实施例11.化合物Id16对小鼠的亚急毒性测试
雄性ICR小鼠设置对照组、200mg/kg组、400mg/kg组、800mg/kg组,每组10只小鼠,每天给药一次,观察进食量、体重和症状,结果显示7天重复给药,各剂量组小鼠无明显症状,体重无明 显差别,进食量无明显差别,综合以上,化合物Id16对小鼠的亚急毒性测试中未见明显毒性,详见表9a、9b和9c。
表9a.化合物Id16在7天重复给药时小鼠症状观察
Figure PCTCN2022117692-appb-000125
表9b.化合物Id16在7天重复给药时小鼠体重变化
Figure PCTCN2022117692-appb-000126
表9c.化合物Id16在7天重复给药时小鼠进食量变化
Figure PCTCN2022117692-appb-000127
药理实施例12.化合物Ic5对不同3CLpro酶抑制活性的测试
利用荧光共振能量转移方法评价测定Ic5对其它来源3CLpro酶活的抑制活性。实验方法与药理实施例1中相同,不同之处在于3CLpro酶来自下表10中所示其它冠状病毒。实验结果如下表10所示,
表10.化合物Ic5对不同3CLpro酶的抑制活性
Figure PCTCN2022117692-appb-000128
如表10中所示,化合物Ic5对被测的不同3CLpro酶均具有良好的抑制活性,IC 50均小于0.5μM。
本发明的化合物具有更强的SARS-CoV-2 3CLpro抑制活性、更强的细胞水平抗新型冠状病毒复制作用,并且可以口服吸收,有望用于新型冠状病毒引起的疾病的预防与治疗。

Claims (10)

  1. 一种如以下通式I所示的黄芩素衍生物、其立体异构体或药学上可接受的盐:
    Figure PCTCN2022117692-appb-100001
    在以上通式I中,R 1和R 2各自独立地选自H、取代或未取代的C1-C6烷基、C2-C6脂肪酰基、C6-C12芳烃基、C7-C12芳酰基、
    Figure PCTCN2022117692-appb-100002
    -SO 2OH、
    Figure PCTCN2022117692-appb-100003
    Figure PCTCN2022117692-appb-100004
    其中,C1-C6烷基的取代基选自氰基、
    Figure PCTCN2022117692-appb-100005
    -O(CH 2) mOR 12、-OC(=O)OR 13
    Figure PCTCN2022117692-appb-100006
    R 11选自C1-C6烷基、C3-C10环烷基;特别地选自C1-C4烷基;
    R 12选自C1-C6烷基、C3-C10环烷基;特别地选自C1-C4烷基;
    m选自1、2或3;
    R 13选自C1-C6烷基;特别地选自C1-C4烷基;
    其中,R 9和R 10各自独立地选自H、C1-C6烷基、被R 14OC(=O)-取代的C1-C10烷基;R 14选自C1-C6烷基、C3-C8环烷基,特别地选自C1-C4烷基、C5-C6环烷基;
    特别地,R 9和R 10各自独立地选自H、C1-C4烷基、C1-C4烷氧基甲酰基取代的C1-C4烷基、C5-C6环烷氧基甲酰基取代的C1-C4烷基;
    特别地,
    Figure PCTCN2022117692-appb-100007
    选自
    Figure PCTCN2022117692-appb-100008
    Figure PCTCN2022117692-appb-100009
    特别地,
    Figure PCTCN2022117692-appb-100010
    选自
    Figure PCTCN2022117692-appb-100011
    Figure PCTCN2022117692-appb-100012
    特别地,
    Figure PCTCN2022117692-appb-100013
    选自
    Figure PCTCN2022117692-appb-100014
    Figure PCTCN2022117692-appb-100015
    特别地,R 1和R 2均为H;
    R 3选自H、氰基、卤素、硝基、未取代或取代的C1-C6烷基、未取代或取代的C2-C6烯基、未取代或取代的C3-C6环烷基、未取代或取代的C2- C6脂肪酰基、C6-C12芳烃基或C7-C12芳酰基,其中,C1-C6烷基、C2-C6烯基、C3-C6环烷基或C2-C6脂肪酰基的取代基选自卤素和羟基;
    特别地,R 3选自H、氰基、卤素、未取代或取代的C1-C4烷基、未取代或取代的C2-C4烯基、未取代或取代的C3-C4环烷基、或未取代或取代的C2-C4脂肪酰基,其中,C1-C4烷基、C2-C4烯基、C3-C4环烷基或C2-C4脂肪酰基的取代基选自卤素和羟基;
    更特别地,R 3选自H、氰基、F、Cl、Br、I、未取代或取代的C1-C3烷基、C2-C4烯基、C3-C4环烷基、或C2-C4脂肪酰基,其中,C1-C3烷基的取代基选自F、Cl和羟基,取代基的个数可为一个或多个,例如1、2或3个;
    更特别地,R 3选自H、氰基、F、Cl、Br、I、甲基、乙基、正丙基、异丙基、正丁基、异丁基、乙酰基、三氟甲基、环丙基、羟甲基、乙烯基、1-丙烯基、2-丙烯基、烯丙基和硝基;
    R 4-R 8各自独立地选自H、卤素、取代或未取代的C1-C6烷基、硝基、-NR 15R 16、氰基、被C1-C4烷基取代或未取代的C6-C10芳基、C2-C6脂肪酰基,其中,C1-C6烷基的取代基为卤素,R 15和R 16各自独立地选自H和C2-C6脂肪酰基;
    特别地,R 4-R 8各自独立地选自H、卤素、取代或未取代的C1-C6烷基、硝基、-NR 15R 16、氰基、被甲基或乙基取代或未取代的C6-C10芳基,其中,C1-C6烷基的取代基为卤素,R 15和R 16各自独立地选自H和C2-C4脂肪酰基;
    更特别地,R 4-R 8各自独立地选自H、卤素、C1-C3烷基、被一个或多个(例如1、2或3个)F取代的C1-C3烷基、硝基、氨基、乙酰氨基、氰基、苯基、甲苯基和乙苯基;
    更特别地,R 4-R 8各自独立地选自H、氰基、卤素、三氟甲基、甲基、乙基、硝基、氨基、乙酰氨基、苯基和甲苯基;
    Figure PCTCN2022117692-appb-100016
    表示单键或双键;
    前提是R 1-R 8不同时为H,并且通式I的化合物排除化合物
    Figure PCTCN2022117692-appb-100017
  2. 根据权利要求1所述的黄芩素衍生物、其立体异构体或药学上可接受的盐,其中,所述通式I的黄芩素衍生物由以下通式II-IV表示:
    Figure PCTCN2022117692-appb-100018
    在以上通式II-III中,R 4-R 8的定义分别如权利要求1中所述;在以上通式IV中,除了R 3不为H以外,R 3和R 4-R 8的定义分别如权利要求1中所定义。
  3. 根据权利要求1所述的黄芩素衍生物、其立体异构体或药学上可接受的盐,其中,R 1和R 2各自独立地选自H、取代或未取代的C1-C6烷基、C2-C6脂肪酰基、C6-C12芳烃基、C7-C12芳酰基、
    Figure PCTCN2022117692-appb-100019
    -SO 2OH、
    Figure PCTCN2022117692-appb-100020
    其中,C1-C6烷基的取代基选自氰基、
    Figure PCTCN2022117692-appb-100021
    -O(CH 2) mOR 12、-OC(=O)OR 13
    Figure PCTCN2022117692-appb-100022
    R 11选自C1-C6烷基;
    R 12选自C1-C6烷基;
    m选自1、2或3;
    R 13选自C1-C6烷基;
    其中,R 9和R 10各自独立地选自H、C1-C6烷基、被R 14OC(=O)-取代的C1-C10烷基;R 14选自C1-C6烷基、C3-C8环烷基;特别地选自C1-C4烷基、C5-C6环烷基;
    R 3选自H、氰基、卤素、硝基、未取代或取代的C1-C6烷基、未取代或取代的C2-C6烯基、未取代或取代的C3-C6环烷基、未取代或取代的C2-C6脂肪酰基、C6-C12芳烃基或C7-C12芳酰基,其中,C1-C6烷基、C2-C6烯基、C3-C6环烷基或C2-C6脂肪酰基的取代基选自卤素和羟基;
    R 4-R 8各自独立地选自H、卤素、取代或未取代的C1-C6烷基、硝基、-NR 15R 16、氰基、被C1-C4烷基取代或未取代的C6-C10芳基、C2-C6脂肪酰基,其中,C1-C6烷基的取代基为卤素,R 15和R 16各自独立地选自H和C2-C6脂肪酰基;
    Figure PCTCN2022117692-appb-100023
    表示单键或双键。
  4. 根据权利要求1所述的黄芩素衍生物、其立体异构体或药学上可接受的盐,其中,R 1和R 2各自独立地选自H、取代或未取代的C1-C6烷基、 C2-C6脂肪酰基、C6-C12芳烃基、C7-C12芳酰基、
    Figure PCTCN2022117692-appb-100024
    -SO 2OH、
    Figure PCTCN2022117692-appb-100025
    其中,C1-C6烷基的取代基选自氰基、
    Figure PCTCN2022117692-appb-100026
    -O(CH 2) mOR 12、-OC(=O)OR 13
    Figure PCTCN2022117692-appb-100027
    R 11选自C1-C6烷基;
    R 12选自C1-C6烷基;
    m选自1、2或3;
    R 13选自C1-C6烷基;
    其中,R 9和R 10各自独立地选自H、C1-C6烷基、被R 14OC(=O)-取代的C1-C10烷基;R 14选自C1-C6烷基、C3-C8环烷基;特别地选自C1-C4烷基、C5-C6环烷基;
    R 3选自H、氰基、F、Cl、Br、I、未取代或取代的C1-C3烷基、C2-C4烯基、C3-C4环烷基、或C2-C4脂肪酰基,其中,C1-C3烷基的取代基选自F、Cl和羟基,取代基的个数可为一个或多个,例如1、2或3个;
    R 4-R 8各自独立地选自H、卤素、取代或未取代的C1-C6烷基、硝基、-NR 15R 16、氰基、被甲基或乙基取代或未取代的C6-C10芳基,其中,C1-C6烷基的取代基为卤素,R 15和R 16各自独立地选自H和C2-C4脂肪酰基;
    Figure PCTCN2022117692-appb-100028
    表示单键或双键。
  5. 根据权利要求1所述的黄芩素衍生物、其立体异构体或药学上可接受的盐,其中,R 1和R 2均为H;
    R 3选自H、氰基、卤素、硝基、未取代或取代的C1-C6烷基、未取代或取代的C2-C6烯基、未取代或取代的C3-C6环烷基、未取代或取代的C2-C6脂肪酰基、C6-C12芳烃基或C7-C12芳酰基,其中,C1-C6烷基、C2-C6烯基、C3-C6环烷基或C2-C6脂肪酰基的取代基选自卤素和羟基;
    R 4-R 8各自独立地选自H、卤素、取代或未取代的C1-C6烷基、硝基、-NR 15R 16、氰基、被C1-C4烷基取代或未取代的C6-C10芳基、C2-C6脂肪酰基,其中,C1-C6烷基的取代基为卤素,R 15和R 16各自独立地选自H和C2-C6脂肪酰基;
    Figure PCTCN2022117692-appb-100029
    表示单键或双键。
  6. 根据权利要求1所述的黄芩素衍生物、其立体异构体或药学上可接受的盐,其中,R 1和R 2均为H;
    R 3选自H、氰基、F、Cl、Br、I、甲基、乙基、正丙基、异丙基、正丁基、异丁基、乙酰基、三氟甲基、环丙基、羟甲基、乙烯基、1-丙烯基、2-丙烯基、烯丙基和硝基;
    R 4-R 8各自独立地选自H、氰基、卤素、三氟甲基、甲基、乙基、硝基、氨基、乙酰氨基、苯基和甲苯基;
    Figure PCTCN2022117692-appb-100030
    表示单键或双键。
  7. 根据权利要求1所述的黄芩素衍生物、其立体异构体或药学上可接受的盐,其中,所述黄芩素衍生物选自以下化合物之一:
    Figure PCTCN2022117692-appb-100031
    Figure PCTCN2022117692-appb-100032
    Figure PCTCN2022117692-appb-100033
    Figure PCTCN2022117692-appb-100034
    Figure PCTCN2022117692-appb-100035
  8. 如权利要求1-7任一项所述的黄芩素衍生物的制备方法,所述方法通过包括以下步骤的路线之一实施:
    路线一:
    Figure PCTCN2022117692-appb-100036
    a)化合物I’-1与碘单质在二甲基亚砜中在惰性气氛例如氮气氛下于0-150℃反应1-36h生成化合物I”-1,
    b)化合物I”-1与BBr 3在二氯甲烷中反应生成化合物I-1,
    其中R 1、R 2为C1-C6烷基,R 3-R 8分别如权利要求1-7中任一项所定义;
    或者
    路线二:
    Figure PCTCN2022117692-appb-100037
    c)中间体I’-1与无水乙酸钠在无水乙醇中在惰性气氛例如氮气氛下于0-100℃,反应1-24h生成化合物I”-2;
    d)化合物I”-2与BBr 3在二氯甲烷中反应生成化合物I-2,其中R 1、R 2为C1-C6烷基,R 3-R 8分别如权利要求1-7中任一项所定义;
    或者
    当通式I中的R 3选自CN、CF 3、环丙基以及卤素时,通过如下路线制备:
    路线三:
    Figure PCTCN2022117692-appb-100038
    e)通式I”’-2的化合物与卤代试剂(如N-氯代丁二酰亚胺(NCS)或N-碘代丁二酰亚胺(NIS))在乙腈或三氟乙酸中,在0-100℃下反应1-24h得通式I”’-3的化合物;
    f)通式I”’-3的化合物在DMF中于氟磺酰基二氟乙酸甲酯、碘化亚铜存在下于0-130℃反应1-15h得通式I”’-4的化合物(R 3=三氟甲基);或在1,4-二氧六环中,于PdCl 2(DPPF)-CH 2Cl 2、碳酸钾、环丙基硼酸酯存在下,于惰性气氛例如氮气氛中在0-120℃反应1-48h反应得通式I”’-4的化合物(R 3=环丙基),
    g)通式I”’-4的化合物与BBr 3在二氯甲烷中于惰性气氛例如氮气氛下于-78℃混合并于0-50℃反应生成通式I-3的化合物,
    其中R 1、R 2为C1-C6烷基,R 4-R 8分别如权利要求1-7中任一项所定义,R 3选自三氟甲基、环丙基;
    或者
    f1)通式I”’-3的化合物在二氯二氰基苯醌(DDQ)、醋酸铜、碳酸银和NMP存在下于0-150℃反应1-28h得通式I”’-5的化合物,
    g1)通式I”’-5的化合物与BBr 3在二氯甲烷中于惰性气氛例如氮气氛下于-78℃混合并于0-50℃反应生成通式I-4的化合物,
    其中R 1、R 2以及R 4-R 8分别如权利要求1-7中任一项所定义,R 3为氰基;
    或者
    f2)通式I”’-3的化合物与BBr 3在二氯甲烷中于惰性气氛例如氮气氛下于-78℃混合并于0-50℃反应生成通式I-5的化合物,
    其中R 1、R 2为C1-C6烷基,R 4-R 8分别如权利要求1-7中任一项所定义,R 3为卤素,
    特别地,通式I’-1通过如下反应获得:
    Figure PCTCN2022117692-appb-100039
    通式I-A化合物与通式I-B化合物在甲醇中于碱性条件下,例如10-50%氢氧化钠或氢氧化钾水溶液中,-20-50℃反应0.1-24h得通式I’-1化合物;
    特别地,
    当R 3为甲基时,通式I-A化合物采用如下反应式获得:
    Figure PCTCN2022117692-appb-100040
    h)使化合物I-E与CHCl 2OMe在二氯甲烷中于TiCl 4存在下冰水浴条件下反应,得到化合物I-D,
    i)将化合物I-D和三氟乙酸在三乙基硅烷存在下0-50℃反应,得到化合物I-C,
    j)将化合物I-C与三氟化硼乙醚和醋酸在0-100℃下反应,得化合物I-A,
    当R 3为乙酰基时,通式I-A化合物采用如下反应式获得:
    Figure PCTCN2022117692-appb-100041
    使化合物I-F和醋酸酐、硝基甲烷于-20-20℃下与三氯化铝混合,0-50℃下反应1-24h得化合物I-A;
    特别地,具体化合物Ic10和Ic11的合成路线如下:
    Figure PCTCN2022117692-appb-100042
    化合物3,4,5-三甲氧基苯酚与醋酸或异丁酰氯在三氟化硼乙醚的存在进行酰基化反应;之后,在三氟醋酸和三乙基硅烷作用下发生还原反应;得到的反应产物又在三氟化硼乙醚和醋酸的存在下发生乙酰化反应,后与邻氯苯甲酰氯进行反应生成相应酯;生成的所述酯后续在碱的作用下发生重排反应,得到的重排粗品进一步在强酸(例如浓硫酸)作用下发生闭环反应,闭环后产品在三溴化硼作用下脱甲基得到最终产物Ic10或Ic11,其中,R为甲基或异丙基;
    特别地,具体化合物Ic18的合成路线如下所示:
    Figure PCTCN2022117692-appb-100043
    化合物Ic15的甲基化产物在二水合氯化亚锡的作用下发生还原反应,生成相应的氨基化合物,在反应产物中加入乙酸酐发生乙酰化反应生成相应的酰胺化合物,所述酰胺化合物在三溴化硼的作用下发生脱甲基反应,生成化合物Ic18;
    特别地,具体化合物Ic20的合成路线如下:
    Figure PCTCN2022117692-appb-100044
    化合物Ic1的甲基化产物在碳酸钾,Xphos,氟化钾和醋酸钯的存在下脱碘,生成脱碘产物,所述脱碘产物在BBr 3的作用下脱甲基获得化合物Ic20;
    路线四
    以下示出通式I中R 1和R 2中至少一者不为H,R 3为甲基的化合物的合成路线:
    Figure PCTCN2022117692-appb-100045
    将通式Id’化合物溶于有机溶剂,在碱的作用下分别与带有权利要求1-7中定义的R 1/R 2的相应非氢基团的反应物反应得到通式Id化合物,在以上反应式中,R 1、R 2、R 4-R 8的定义分别如权利要求1-7中所定义,并且R 1和R 2中至少一者不为H,
    优选地,在所述路线四中,所述有机溶剂选自乙腈、丙酮、N,N-二甲基甲酰胺(DMF)、二氯甲烷(DCM)、四氢呋喃(THF)和N-甲基吡咯烷酮(NMP);所述碱选自三乙胺、碳酸钾、N,N-二异丙基乙胺以及吡啶;所述带有R 1/R 2相应非氢基团的反应物选自异氰酰乙酰酸乙酯、异氰酰乙酸异丙酯、3-甲基丁酸乙酯-2-异氰酸酯、3-甲基丁酸异丙酯-2-异氰酸酯、丙酸异丙酯-2-异氰酸酯、异氰酰乙酸环己酯、异氰酰乙酸环戊酯、4-氯甲基-5-甲基-1,3-二氧杂环戊烯-2-酮、氯甲基碳酸异丙酯、溴乙腈、氯磺酸、异丁酸酐、2-甲氧基乙氧基甲基氯、N,N’-二甲氨基甲酰氯、异氰酸乙酯和甲胺基甲酰氯;
    特别地,具体化合物Id8和Id9的合成过程如以下反应式所示:
    Figure PCTCN2022117692-appb-100046
    将Id’化合物首先与乙酸酐反应,后与溴化苄反应以便保护羟基,接着在Pd(OH) 2/C存在下,用H 2还原,继而使反应产物与乙酰基溴-α-D-葡萄糖醛酸甲基酯或乙酰溴-α-D-葡萄糖反应,再用碱水解化合物中的酯基即得,在以上反应式中,R 4-R 8的定义分别如权利要求1-7中所定义。
  9. 一种药物组合物,其包含药学上有效量的选自权利要求1-7中任一项所述的黄芩素衍生物、其立体异构体、以及药学上可接受的盐中的一种或多种作为药物活性成分,以及任选地药学上可接受的辅料。
  10. 权利要求1-7中任一项所述的黄芩素衍生物、其立体异构体或其药学上可接受的盐,或者权利要求9所述的药物组合物在制备药物中的用途,所述药物具有抑制冠状病毒主蛋白酶的活性,或者所述药物具有抗新型冠状病毒及其变异株(如WIV04株或南非株B.1.351)、SARS病毒、MERS病毒的活性,或者所述药物具有抗肠道病毒EV71、柯萨奇病毒和诺如病毒的活性。
PCT/CN2022/117692 2021-09-17 2022-09-08 一类黄芩素衍生物、其制备方法和用途 WO2023040733A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111092424.1 2021-09-17
CN202111092424 2021-09-17
CN202210271409.1 2022-03-18
CN202210271409.1A CN115819391A (zh) 2021-09-17 2022-03-18 一类黄芩素衍生物、其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2023040733A1 true WO2023040733A1 (zh) 2023-03-23

Family

ID=85522445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117692 WO2023040733A1 (zh) 2021-09-17 2022-09-08 一类黄芩素衍生物、其制备方法和用途

Country Status (2)

Country Link
CN (1) CN115819391A (zh)
WO (1) WO2023040733A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11963967B2 (en) 2020-10-16 2024-04-23 Gilead Sciences, Inc. Phospholipid compounds and uses thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003681A2 (en) * 1999-07-08 2001-01-18 Prendergast Patrick T Use of flavones, coumarins and related compounds to treat infections
CN1594308A (zh) * 2003-05-15 2005-03-16 成都迪康药物研究所 鸢尾苷元的异黄酮类衍生物及其制备方法和以其为有效药用成分的抗病毒药物
CN1901921A (zh) * 2003-11-10 2007-01-24 香港大学 用于治疗sars冠状病毒感染或其它相关感染的黄芩苷和其衍生物
WO2009026166A2 (en) * 2007-08-17 2009-02-26 Herbalscience Group Llc Antiinfective flavonol compounds and methods of use thereof
US20140194500A1 (en) * 2013-01-08 2014-07-10 Kookmin University Industry Academic Cooperation Foundation Methods For Treating of SARS
US20150329515A1 (en) * 2014-05-13 2015-11-19 National Defense Medical Center Composition and method for treating or preventing influenza virus infection
WO2016153432A1 (en) * 2015-03-23 2016-09-29 Nanyang Polytechnic Drugs from substituted phenyl cinnamyl ketones
CN110950828A (zh) * 2019-11-05 2020-04-03 中国人民解放军第二军医大学 一种黄芩素或其衍生物、制备方法与应用
CN112110889A (zh) * 2020-08-19 2020-12-22 昆明龙津药业股份有限公司 灯盏花乙素苷元衍生物、其制备方法与应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003681A2 (en) * 1999-07-08 2001-01-18 Prendergast Patrick T Use of flavones, coumarins and related compounds to treat infections
CN1594308A (zh) * 2003-05-15 2005-03-16 成都迪康药物研究所 鸢尾苷元的异黄酮类衍生物及其制备方法和以其为有效药用成分的抗病毒药物
CN1901921A (zh) * 2003-11-10 2007-01-24 香港大学 用于治疗sars冠状病毒感染或其它相关感染的黄芩苷和其衍生物
WO2009026166A2 (en) * 2007-08-17 2009-02-26 Herbalscience Group Llc Antiinfective flavonol compounds and methods of use thereof
US20140194500A1 (en) * 2013-01-08 2014-07-10 Kookmin University Industry Academic Cooperation Foundation Methods For Treating of SARS
US20150329515A1 (en) * 2014-05-13 2015-11-19 National Defense Medical Center Composition and method for treating or preventing influenza virus infection
WO2016153432A1 (en) * 2015-03-23 2016-09-29 Nanyang Polytechnic Drugs from substituted phenyl cinnamyl ketones
CN110950828A (zh) * 2019-11-05 2020-04-03 中国人民解放军第二军医大学 一种黄芩素或其衍生物、制备方法与应用
CN112110889A (zh) * 2020-08-19 2020-12-22 昆明龙津药业股份有限公司 灯盏花乙素苷元衍生物、其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO, HONG ET AL.: "Structure-activity Relationships for α-Glucosidase Inhibition of Baicalein, 5, 6, 7-Trihydroxyflavone: the Effect of A-Ring Substitution", BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, vol. 68, no. 2, 1 January 2004 (2004-01-01), XP009099477, ISSN: 0916-8451, DOI: 10.1271/bbb.68.369 *
LIU XIN-YU; LV XIA; WANG PING; AI CHUN-ZHI; ZHOU QI-HANG; FINEL MOSHE; FAN BIN; CAO YUN-FENG; TANG HUI; GE GUANG-BO: "Inhibition of UGT1A1 by natural and synthetic flavonoids", INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, ELSEVIER BV, NL, vol. 126, 1 January 1900 (1900-01-01), NL , pages 653 - 661, XP085602143, ISSN: 0141-8130, DOI: 10.1016/j.ijbiomac.2018.12.171 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11963967B2 (en) 2020-10-16 2024-04-23 Gilead Sciences, Inc. Phospholipid compounds and uses thereof

Also Published As

Publication number Publication date
CN115819391A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
EP3070089B1 (en) Aminomethyl tryptanthrin derivative, preparation method and application thereof
CN110072866A (zh) 作为bet蛋白降解剂的稠合的1,4-二氮杂*
JP2016535788A5 (zh)
WO2023040733A1 (zh) 一类黄芩素衍生物、其制备方法和用途
TWI482622B (zh) Shrinkage pyridine compounds
JPWO2009060835A1 (ja) 新規ユビキリン結合性小分子
CN108863976B (zh) 用作ido调节剂的化合物及其应用
CN114057692A (zh) 一种杂环类化合物、其制备方法及用途
WO1999042442A1 (fr) Derives d'aminoguanidine hydrazone, procedes de production, et medicaments a base de ces derives
BRPI0808378A2 (pt) Composto de 6-benzil-2,3,4,7-treta-hidro-indolo[2,3-c] quinolina úteis como inibidores de pde5
KR102238012B1 (ko) 브로모도메인 억제제인 카르볼린 유도체
JP2012092083A (ja) アルキンカップリングによる抗がん活性三環式化合物の新規製法
US20210053995A1 (en) Method for preparing crisaborole
CN116171153A (zh) 用于调节剪接的组合物
CN106946775B (zh) 一种化合物及其在制备抗丙肝病毒药物中的应用
WO2020200284A1 (zh) 三环类化合物制备方法及其在医药领域的应用
KR20240025659A (ko) 프라노프로펜의 제조 방법 및 프라노프로펜과 불순물을 포함하는 조성물
Wang et al. Michael acceptor in gambogic acid—Its role and application for potent antitumor agents
CN111171041B (zh) 20位取代的喜树碱衍生物及其制备方法和应用
CN115427407A (zh) 一种新型n-杂环bet溴结构域抑制剂、其制备方法及医药用途
CN108484574B (zh) 四氢异喹啉衍生物的制备及应用
CN112724066A (zh) 一种盐酸齐拉西酮中间体中的二卤杂质及其制备方法
CN115667269A (zh) 含吡啶酮稠环类衍生物抑制剂、其制备方法和应用
TWI811428B (zh) 雙環雜芳香環衍生物
JPH05208959A (ja) ベンゾ[cフェナンスリジニューム誘導体の製造法及びその新規化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE