WO2023040580A1 - 用于无线通信的装置和方法 - Google Patents

用于无线通信的装置和方法 Download PDF

Info

Publication number
WO2023040580A1
WO2023040580A1 PCT/CN2022/113622 CN2022113622W WO2023040580A1 WO 2023040580 A1 WO2023040580 A1 WO 2023040580A1 CN 2022113622 W CN2022113622 W CN 2022113622W WO 2023040580 A1 WO2023040580 A1 WO 2023040580A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
doppler
edge region
region
wireless communication
Prior art date
Application number
PCT/CN2022/113622
Other languages
English (en)
French (fr)
Inventor
陈晋辉
吴佳祺
Original Assignee
北京跃线通科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京跃线通科技有限公司 filed Critical 北京跃线通科技有限公司
Publication of WO2023040580A1 publication Critical patent/WO2023040580A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference

Definitions

  • the present application relates to apparatus and methods in a wireless communication system.
  • Orthogonal Time Frequency Space (OTFS) modulation technology puts the quadrature amplitude modulation (Quadrature Amplitude Modulation, QAM) symbol into the delay-Doppler domain composed of delay displacement dimension and Doppler displacement dimension Particles come up to implement multiplexing and obtain diversity gain.
  • QAM Quadrature Amplitude Modulation
  • the OTFS technology can be applied to a multi-user uplink access system, that is, a communication system with multiple sending ends and one receiving end.
  • the inter-user interference caused by delay spread and Doppler spread mainly occurs in the edge area of the delay Doppler area occupied by users. Therefore, artificially setting the power difference in the edge area of adjacent users and using iterative
  • the performance of the multi-user OTFS system can be further improved by serial interference-removing decoding method, which first decodes the relatively less interfered users in the edge area, and then removes the successfully decoded users as interference, and then decodes its adjacent users.
  • the present application provides a device for wireless communication, including: one or more processors configured to take the time-delay Doppler of the first orthogonal time-frequency-space OTFS symbol
  • the resources are divided into M delay Doppler regions, the first delay Doppler region is one of the M delay Doppler regions, M is a natural number not less than 1, and the first delay is multiplied by
  • the Puler area is divided into an edge area and a non-edge area on the time delay displacement dimension and the Doppler shift dimension, and the signal average power of the edge area is set to be different from the signal average power of the non-edge area to generate the A first OTFS symbol; a transceiver unit configured to send the first OTFS symbol.
  • the present application provides a device for wireless communication, including: a transceiver unit configured to receive a first orthogonal time-frequency-space OTFS symbol; one or more processors configured to Demodulate the first OTFS symbol, divide the delay Doppler resources occupied by the first OTFS symbol into M delay Doppler regions, and K times in the M delay Doppler regions
  • the delayed Doppler regions are respectively used by the K transmitting ends to place data or pilot signals, the first delayed Doppler region is one of the K delayed Doppler regions, and the first delayed Doppler region is one of the K delayed Doppler regions.
  • the Le area is used by the first transmitting end to place data or pilot signals, M and K are both natural numbers not less than 1, M is not less than K, and the data signal on the first OTFS symbol is decoded, and the first
  • the delay-Doppler region includes an edge region and a non-edge region on the delay shift dimension and the Doppler shift dimension, and the average signal power of the edge region is different from that of the non-edge region.
  • the present application also provides a method for wireless communication, including: dividing the delay Doppler resource occupied by the first orthogonal time-frequency space OTFS symbol into M delay Doppler resources Le region, the first delay Doppler region is one of the M delay Doppler regions, M is a natural number not less than 1; the first delay Doppler region in the delay displacement dimension and The Doppler shift dimension is divided into an edge area and a non-edge area, and the signal average power of the edge area is set to be different from the signal average power of the non-edge area; the first OTFS symbol is generated; the first OTFS symbol is sent; An OTFS symbol.
  • the present application also provides a method for wireless communication, including: receiving a first orthogonal time-frequency-space OTFS symbol; demodulating the first OTFS symbol; the first OTFS symbol
  • the occupied delay Doppler resources are divided into M delay Doppler areas, and K delay Doppler areas in the M delay Doppler areas are respectively used by K senders to place data Or a pilot signal, the first delay Doppler region is one of the K delay Doppler regions, and the first delay Doppler region is used by the first transmitting end to place data or pilot signals , both M and K are natural numbers not less than 1, and M is not less than K;
  • the data signal on the first OTFS symbol is decoded, and the first delay Doppler region includes the delay displacement dimension and Doppler An edge area and a non-edge area in the le shift dimension, the average signal power of the edge area is different from the average signal power of the non-edge area.
  • the user transmitting end in the multi-user OTFS system can be in the allocated time delay Doppler region in the two dimensions of time delay displacement and Doppler displacement
  • the average signal power assigned to the edge area is different from that of the non-edge area, which is more conducive to the multi-user receiving end to use an iterative serial de-interference receiver to decode the OTFS symbols multiplexed by multiple users, and improve the decoding efficiency.
  • FIG. 1 is a structural block diagram of a device for wireless communication according to an embodiment of the present application
  • FIG. 2 is a structural block diagram of a specific implementation of a device for wireless communication according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a first OTFS symbol, a first delay Doppler region, an edge region and a non-edge region according to an embodiment of the present application;
  • FIG. 4 is a structural block diagram of a device for wireless communication according to an embodiment of the present application.
  • Fig. 5 is a structural block diagram of a specific implementation of a device for wireless communication according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a plurality of sending ends multiplexing a first OTFS symbol according to an embodiment of the present application
  • FIG. 7 is a flowchart of a method for wireless communication according to an embodiment of the present application.
  • FIG. 8 is a flowchart of a method for wireless communication according to an embodiment of the present application.
  • FIG. 9 is a block diagram showing a first example of a schematic configuration of a base station
  • FIG. 10 is a block diagram showing a second example of a schematic configuration of a base station
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a first application example of a user equipment
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a second application example of a user equipment.
  • FIG. 13 is a block diagram of an exemplary structure of a general-purpose personal computer in which methods and/or apparatuses and/or systems according to embodiments of the present invention can be implemented.
  • Embodiments of the present application can be applied to multi-user systems in various communication systems as follows, for example: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, wideband code Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE- A) system, new air interface (New Radio, NR), evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum (NR-U) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), next-generation communication systems or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the embodiment of the present application does not limit the applied frequency spectrum.
  • the embodiments of the present application may be applied to licensed spectrum, and may also be applied to unlicensed spectrum.
  • Fig. 1 is a structural block diagram showing a device 100 for wireless communication according to an embodiment of the present application
  • the device 100 includes: one or more processors 101 configured to convert a first orthogonal time-frequency-space OTFS
  • the delay Doppler resources occupied by symbols are divided into M delay Doppler regions, the first delay Doppler region is one of the M delay Doppler regions, and M is a natural number not less than 1 , divide the first time-delay Doppler area into an edge area and a non-edge area on the time delay displacement dimension and the Doppler shift dimension, and divide the signal average power of the edge area into the signal of the non-edge area
  • the average power is set to be different, and the first OTFS symbol is generated; the transceiver unit 102 is configured to send the first OTFS symbol.
  • the wireless communication system where the device 100 is located adopts a multi-user Orthogonal Time Frequency Space (OTFS) modulation technology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • PSK Phase Shift Key
  • QAM Quadrature Amplitude Modulation
  • each grid is a resource element (Resource Element, RE), corresponding to a set of two-dimensional time-frequency domain displacement coordinates
  • RE Resource Element
  • the phase shift Keying (Phase Shift Key, PSK) or Quadrature Amplitude Modulation (Quadrature Amplitude Modulation, QAM) symbols are placed in a grid on the delay Doppler domain, and each grid of the delay Doppler domain is a Delay-Doppler resource granules correspond to a set of two-dimensional delay-Doppler
  • An OTFS symbol includes N t N f two-dimensional time-delay Doppler domain particles composed of continuous N t Doppler shifts and continuous N f time -delay shifts.
  • SFT Sympletic Fourier Transform
  • the modulation symbols on each delay Doppler particle in an OTFS symbol are spread to the N f subcarriers and N t OFDM symbols corresponding to the OTFS symbol
  • N f subcarriers the modulation symbols on each delay Doppler particle in an OTFS symbol
  • N t OFDM symbols corresponding to the OTFS symbol
  • more time-frequency diversity gain can be obtained compared with the OFDM system.
  • multiple senders multiplex an OTFS symbol, and different senders occupy different delay-Doppler domains within the OTFS symbol to transmit information.
  • the apparatus 100 may be a user equipment, such as a mobile terminal served by a base station (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog-type mobile router and digital camera) or a vehicle-mounted terminal (such as a car navigation device), etc.
  • the user equipment can also be implemented as a terminal performing machine-to-machine (M2M) communication (also called a machine-type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine-type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned terminals.
  • the processor 101 may be, for example, a central processing unit (CPU) capable of data processing, a microprocessor, an integrated circuit module, and the like.
  • CPU central processing unit
  • FIG. 2 is a structural block diagram showing a specific implementation of the device 100 (identified as device 200 in FIG. 2 ), and the function and structure of the device 200 will be described in detail below with reference to the block diagram.
  • the apparatus 200 includes: a resource allocation module 201 configured to divide the delay Doppler resource occupied by the first orthogonal time-frequency-space OTFS symbol into M delay-Doppler regions, the first The delay Doppler area is one of the M delay Doppler areas, and M is a natural number not less than 1;
  • the power setting module 202 is configured to set the first delay Doppler area in the time delay Displacement dimension and Doppler displacement dimension are divided into edge area and non-edge area, the signal average power of described edge area and the signal average power of described non-edge area are set to be different;
  • OTFS symbol generation module 203 are configured as Generate the first OTFS symbol;
  • the transceiver module 204 is configured to send the first OTFS symbol.
  • the apparatus 200 may further include a message parsing module 205 .
  • the transceiving module 204 is configured to receive a first message; the message parsing module 205 is configured to parse the first message, and the first message is used by the apparatus 200 to determine the edge area and the non-edge area.
  • the first message is used to determine a proportional relationship between the time delay displacement and the Doppler shift occupied by the edge area and the non-edge area.
  • the apparatus 200 may further include a message parsing module 205 .
  • the transceiver module 204 is configured to receive a second message; the message parsing module 205 is configured to parse the second message, and the second message is used to determine the average power of the signal in the edge area and the signal in the non-edge area The difference between the average power.
  • the apparatus 200 first determines the average signal power in the first delay-Doppler region, and then determines the The average signal power of the edge area and the average signal power of the non-edge area.
  • the power setting module 202 is configured such that the average signal power of the edge area is set to be smaller than the average signal power of the non-edge area.
  • the apparatus 200 is assumed to be a sending device that is preferentially decoded by the receiving end.
  • the power setting module 202 is configured such that the average signal power of the edge area is set to be greater than the average signal power of the non-edge area.
  • the apparatus 200 is assumed to be the sending device that is decoded later by the receiving end. After successfully decoding other sending devices that are decoded first, the receiving end calculates the interference estimates of other sending devices, de-interferences the received signal, and then decodes the data signal sent by the apparatus 200 .
  • the power setting module 202 is configured to set the average signal power of the edge region on the time delay displacement dimension and the signal average power of the edge region on the Doppler shift dimension to be the same.
  • the power setting module 202 is configured such that the average signal power of the edge region on the time delay displacement dimension is set to be different from the signal average power of the edge region on the Doppler shift dimension.
  • the resource allocation module 201 is configured to be set to No data or pilot signal is placed, and M is a natural number greater than 1.
  • the devices 100 and 200 can allocate different powers to the edge area and non-edge area on the delay Doppler area occupied by the transmitting end, thereby enhancing the multiplexing of the same OTFS symbol and delay Doppler resources
  • the anti-interference ability of one of the two adjacent users is to improve the decoding success rate of the receiving end to the priority decoding user, and then remove the interference caused by the successfully decoded user through an iterative serial de-interference receiver, and the other users Perform decoding to improve system performance.
  • Fig. 3 is a schematic diagram of a first OTFS symbol, a first delay-Doppler region, an edge region and a non-edge region according to an embodiment of the present application.
  • the first OTFS symbol occupies 8 delay displacements in the delay dimension and 8 Doppler displacements in the Doppler dimension, including 64 delay Doppler displacements in total.
  • the first delay-Doppler region is a region where the delay shift ranges from 0 to 3 and the Doppler shift ranges from 4 to 7.
  • the dark gray squares are delay-Doppler resource particles on the edge area in the first delay-Doppler area.
  • the light gray squares are the delay-Doppler resource particles on the non-edge area in the first delay-Doppler area.
  • the first transmitting end sets the average signal power of the edge area and the average signal power of the non-edge area to be different, and places the data symbols and pilot symbols after quadrature amplitude modulation (Quadrature Amplitude Modulation, QAM) modulation in On the delay-Doppler resource particles in the first delay-Doppler area, adjust the average signal power of the edge area and the average signal power of the non-edge area based on different average signal power settings, and generate the the first OTFS symbol and send it.
  • QAM Quadrature Amplitude Modulation
  • the average signal power of the edge area is set to be smaller than the average signal power of the non-edge area.
  • the average signal power of the edge area is set to be greater than the average signal power of the non-edge area.
  • the average signal power of the edge region on the delay displacement dimension and the signal average power of the edge region on the Doppler shift dimension are set to be the same
  • the average signal power of the edge region on the time delay displacement dimension is set to be different from the signal average power of the edge region on the Doppler shift dimension.
  • it is set not to place data or pilot signals in the delay-Doppler regions other than the first delay-Doppler region.
  • Fig. 4 is a structural block diagram showing a device 300 for wireless communication according to an embodiment of the present application
  • the device 300 includes: a transceiver unit configured to receive a first orthogonal time-frequency space OTFS symbol; one or more A processor configured to demodulate the first OTFS symbol, the delay Doppler resource occupied by the first OTFS symbol is divided into M delay Doppler regions, and the M delays are more than
  • the K delay Doppler areas in the Puller area are respectively used by the K transmitting ends to place data or pilot signals, and the first delay Doppler area is one of the K delay Doppler areas,
  • the first delay Doppler area is used by the first transmitting end to place data or pilot signals, M and K are both natural numbers not less than 1, and M is not less than K, for the data on the first OTFS symbol
  • the signal is decoded, and the first time-delay Doppler area includes an edge area and a non-edge area on the delay displacement dimension and the Doppler shift dimension, and
  • the apparatus 300 may be implemented as a base station.
  • a base station may include: a main body (also referred to as a base station module) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at a different location from the main body.
  • RRHs remote radio heads
  • various types of terminal equipment can work as a base station by temporarily or semi-permanently performing the base station function.
  • the apparatus 300 can also be implemented as any type of server, such as a tower server, a rack server, and a blade server.
  • the device 300 may be a control module (such as an integrated circuit module including a single chip, and a card or blade inserted into a slot of a blade server) installed on a server.
  • the communication system where the device 300 is located applies C-RAN technology
  • the device 300 can be implemented as a server set in the core network or the baseband cloud, and the device 300 processes the signals received by the antenna or antenna array of the RRH within its management range
  • the RRH within its managed range includes a transceiver unit 302
  • the server where the device 300 is located includes a processor 301 .
  • the transceiving unit 302 is configured to receive a first orthogonal time-frequency-space OTFS symbol.
  • the processor 301 is configured to demodulate the first OTFS symbol, the delay Doppler resource occupied by the first OTFS symbol is divided into M delay Doppler regions, and the M delay Doppler regions
  • the K delay Doppler areas in the Le area are respectively used by K transmitting ends to place data or pilot signals
  • the first delay Doppler area is one of the K delay Doppler areas, so
  • the first delay Doppler area is used by the first transmitting end to place data or pilot signals
  • M and K are both natural numbers not less than 1
  • M is not less than K
  • the first delay Doppler region includes an edge region and a non-edge region on the delay displacement dimension and the Doppler displacement dimension, and the signal average power of the edge region is different from the signal in the non-edge region The average power is different.
  • the apparatus 300 is implemented as a base station as an example for illustration, and it can be understood that the scope of the present application is not limited thereto.
  • the communication device served by the base station may be implemented as user equipment, such as a mobile terminal served by the base station, such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and digital camera) or a vehicle-mounted terminal (such as a car navigation device), etc.
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine-type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine-type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned terminals.
  • the communication equipment served/managed by the base station may be implemented as infrastructure such as a relay base station and a small eNB that need to communicate with the base station through a wireless interface and perform channel measurement.
  • infrastructure such as a relay base station and a small eNB that need to communicate with the base station through a wireless interface and perform channel measurement.
  • user equipment is mainly used as an example for illustration, and it can be understood that the scope disclosed in this application is not limited thereto.
  • the processor 301 may be, for example, a central processing unit (CPU), a microprocessor, an integrated circuit module, etc. with data processing capability.
  • CPU central processing unit
  • microprocessor microprocessor
  • integrated circuit module etc. with data processing capability.
  • FIG. 5 is a structural block diagram showing a specific implementation of the device 400 (identified as device 400 in FIG. 5 ), and the function and structure of the device 400 will be described in detail below with reference to the block diagram.
  • the device 400 includes: a transceiver module 401 configured to receive a first orthogonal time-frequency-space OTFS symbol; an OTFS symbol demodulation module 402 configured to demodulate the first OTFS symbol;
  • the Doppler region dividing module 403 is configured to divide the delay Doppler resources occupied by the first OTFS symbol into M delay Doppler regions, and K of the M delay Doppler regions
  • the delay Doppler areas are respectively used by the K transmitting ends to place data or pilot signals, the first delay Doppler area is one of the K delay Doppler areas, and the first delay is more than
  • the Puler area is used by the first transmitting end to place data or pilot signals, M and K are both natural numbers not less than 1, and M is not less than K; the decoding module 401
  • the decoding module 404 is configured to use an iterative serial de-jamming receiver on the delay shift dimension and the Doppler shift dimension to analyze the data of the K transmitters on the first OTFS symbol to decode.
  • the apparatus 400 includes a message generation module 405 configured to be used by the first sending end to determine the edge area and the non-edge area; the transceiver module 401 is configured to send the first news.
  • the apparatus 400 includes a message generating module 405 configured to generate a second message, and the second message is used by the first sending end to determine the difference between the average signal power of the edge area and the non- The difference between the average powers of signals in edge areas; the transceiver module 401 is configured to send the second message.
  • a message generating module 405 configured to generate a second message, and the second message is used by the first sending end to determine the difference between the average signal power of the edge area and the non- The difference between the average powers of signals in edge areas; the transceiver module 401 is configured to send the second message.
  • devices 300 and 400 can use the difference in power between the edge area and the non-edge area on the delay Doppler area occupied by the transmitting end to preferentially decode users who are relatively less interfered, and then use iterative serial
  • the line deinterference receiver removes the interference caused by the successfully decoded users, and decodes the remaining users to improve system performance.
  • Fig. 6 is a schematic diagram of multiplexing the first OTFS symbol by multiple sending ends according to an embodiment of the present application.
  • the first OTFS symbol occupies 8 delay displacements in the delay dimension, and 8 Doppler displacements in the Doppler dimension, including 64 delay Doppler displacements in total.
  • Le resource particles wherein the first delay Doppler region is assigned to the first sending end to send data and pilot signals, and the second delay Doppler region is assigned to the second sending end to send data and pilot signals, The third delay-Doppler region is assigned to the third sending end to send data and pilot signals, and the fourth delay-Doppler region is assigned to the fourth sending end to send data and pilot signals.
  • the first delay-Doppler region is a region where the delay shift ranges from 0 to 3 and the Doppler shift ranges from 4 to 7.
  • the second delay-Doppler region is a region with a delay shift of 4 to 7 and a Doppler shift of 4 to 7.
  • the third delay-Doppler region is a region where the delay shift ranges from 0 to 3 and the Doppler shift ranges from 0 to 3.
  • the fourth delay-Doppler region is a region with a delay shift of 4 to 7 and a Doppler shift of 0 to 7.
  • the dark gray squares in the first delay-Doppler area and the fourth delay-Doppler area are delay-Doppler resource particles on the respective edge areas.
  • the light gray squares in the first delay-Doppler area and the fourth delay-Doppler area are delay-Doppler resource particles in the respective non-edge areas.
  • the average signal transmission power allocated to the edge area by the first transmitting end and the fourth transmitting end is different from the average signal transmission power allocated to the non-edge area.
  • the average signal transmission power allocated to the edge area by the second transmitting end and the third transmitting end respectively is the same as the average signal transmission power allocated to the non-edge area.
  • the average signal transmission power allocated by the first transmitting end and the fourth transmitting end in the edge area is higher than the average signal transmitting power allocated in the non-edge area and the average transmission power of the signal allocated by the second transmitting end and the The average sending power of the signal at the third sending end.
  • the receiving end uses an iterative serial de-jamming receiver to first decode the data of the first sending end and the fourth sending end, and if the decoding of the data of the first sending end and the fourth sending end is successful, then Based on the result of successful decoding, the interference caused by the first sending end and the fourth sending end is removed from the received signal, and then the second sending end and the third sending end are decoded.
  • the average signal transmission power allocated by the first transmitting end and the fourth transmitting end in the edge area is lower than the average signal transmitting power allocated in the non-edge area and the average transmission power of the signal allocated by the second transmitting end and the The average sending power of the signal at the third sending end.
  • the receiving end adopts an iterative serial de-jamming receiver, and first decodes the data of the second sending end and the third sending end, and if the decoding of the data of the second sending end and the third sending end is successful, then Based on the result of successful decoding, the interference caused by the second sending end and the third sending end is removed from the received signal, and then the first sending end and the fourth sending end are decoded.
  • FIG. 7 is a flow chart of a method for wireless communication according to an embodiment of the present application, including the following steps: dividing the time-delay Doppler resource occupied by the first orthogonal time-frequency-space OTFS symbol into M time delays Doppler region, the first delay Doppler region is one of the M delay Doppler regions, M is a natural number not less than 1 (S13); The time delay displacement dimension and the Doppler shift dimension are divided into edge area and non-edge area, and the signal average power of the edge area is set to be different from the signal average power of the non-edge area (S14); generate the first An OTFS symbol (S15); sending the first OTFS symbol (S16).
  • the method further includes receiving and parsing a first message (S11) indicated by a dotted line box, where the first message is used to determine the edge area and the non-edge area.
  • it also includes receiving and parsing a second message (S12) shown in a dotted line box, and the second message is used to determine the difference between the average signal power of the edge area and the average signal power of the non-edge area difference.
  • S12 a second message
  • step S13 the M-1 delay-Doppler areas except the first delay-Doppler area among the M delay-Doppler areas are set to not place data or pilot signal, M is a natural number greater than 1.
  • step S14 the average signal power of the edge area is set to be smaller than the average signal power of the non-edge area.
  • step S14 the average signal power of the edge area is set to be greater than the average signal power of the non-edge area.
  • step S14 the average signal power of the edge region on the time delay displacement dimension is set to be the same as the signal average power of the edge region on the Doppler shift dimension.
  • step S14 the average signal power of the edge region on the time delay displacement dimension is set to be different from the signal average power of the edge region on the Doppler shift dimension.
  • FIG. 8 is a flowchart of a method for wireless communication according to another embodiment of the present application, comprising the steps of: receiving a first orthogonal time-frequency space OTFS symbol (S23); demodulating the first OTFS symbol (S24 );
  • the delay Doppler resource occupied by the first OTFS symbol is divided into M delay Doppler regions, and K delay Doppler regions in the M delay Doppler regions are respectively divided into K sending ends are used to place data or pilot signals, the first delay Doppler region is one of the K delay Doppler regions, and the first delay Doppler region is used by the first sending end
  • both M and K are natural numbers not less than 1, and M is not less than K (S25); decoding the data signal on the first OTFS symbol, the first delay Doppler
  • the Le region includes an edge region and a non-edge region on the time delay displacement dimension and the Doppler shift dimension, and the average signal power of the edge region is different from that of the non-edge region (S26).
  • step S26 the data of the K transmitting ends on the first OTFS symbol is decoded by using iterative serial de-interference decoding in the dimension of delay shift and the dimension of Doppler shift.
  • the method further includes generating and sending a first message indicated by a dotted line box, and the first message is used by the first sending end to determine the edge area and the non-edge area.
  • it also includes generating and sending a second message shown in a dotted line box, the second message is used by the first sending end to determine the average signal power of the edge area and the average signal power of the non-edge area The difference between the power;
  • FIG. 9 is a block diagram showing a first example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • the base station 800 includes one or more antennas 810 and a base station module 820 .
  • the base station module 820 and each antenna 810 may be linked to each other via RF cables.
  • Each of the antennas 810 includes a single or multiple antenna elements, such as multiple antenna elements included in a Multiple Input Multiple Output (MIMO) antenna, and is used for the base station module 820 to transmit and receive wireless signals.
  • base station 800 includes multiple antennas 810 .
  • multiple antennas 810 may be compatible with multiple frequency bands used by base station 800 .
  • FIG. 9 shows an example in which the base station 800 includes a plurality of antennas 810 , the base station 800 may include a single antenna 810 as well.
  • the base station module 820 includes a controller 821 , a memory 822 , a network interface 823 and a wireless communication interface 825 .
  • the controller 821 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station module 820 .
  • the controller 821 generates data packets from data in signals processed by the wireless communication interface 825 and communicates the generated packets via the network interface 823 .
  • the controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 821 may have logical functions for controlling the following: such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control can be performed in conjunction with nearby base stations or core network nodes.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface for connecting the base station module 820 to the core network 824 .
  • the controller 821 may communicate with a core network node or another base station via a network interface 823 .
  • base station 800 and core network nodes or other base stations may be connected to each other through logical interfaces (such as S1 interface and X2 interface).
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than that used by the wireless communication interface 825 .
  • the wireless communication interface 825 supports any cellular communication scheme such as Long Term Evolution (LTE), LTE-Advanced, and 5G, and provides a wireless connection to a terminal located in a cell of the base station 800 via the antenna 810 .
  • Wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and RF circuitry 827 .
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and execute layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol ( Various types of signal processing for PDCP)).
  • L1 Medium Access Control
  • RLC Radio Link Control
  • Packet Data Convergence Protocol Various types of signal processing for PDCP
  • the BB processor 826 may have part or all of the logic functions described above.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor configured to execute a program and related circuits.
  • the update program may cause the function of the BB processor 826 to change.
  • the module may be a card or blade that plugs into a slot in the base station module 820 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810 .
  • the wireless communication interface 825 may include multiple BB processors 826 .
  • multiple BB processors 826 may be compatible with multiple frequency bands used by base station 800 .
  • the wireless communication interface 825 may include multiple RF circuits 827.
  • the multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 5 shows an example in which the wireless communication interface 826 includes multiple BB processors 826 and multiple RF circuits 827 , the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827 .
  • Fig. 10 is a block diagram showing a second example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • Base station 830 includes one or more antennas 840, base station module 850 and RRH 860.
  • the RRH 860 and each antenna 840 may be linked to each other via RF cables.
  • Base station module 850 and RRH 860 may be connected to each other via high-speed lines such as fiber optic cables.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 860 to transmit and receive wireless signals.
  • base station 830 may include multiple antennas 840 .
  • multiple antennas 840 may be compatible with multiple frequency bands used by base station 830 .
  • FIG. 10 shows an example in which the base station 830 includes multiple antennas 840 , the base station 830 may also include a single antenna 840 .
  • the base station module 850 includes a controller 851 , a memory 852 , a network interface 853 , a wireless communication interface 855 and a connection interface 857 .
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG. 5 .
  • the wireless communication interface 855 supports any cellular communication scheme such as Long Term Evolution (LTE), LTE-Advanced, and 5G, and provides wireless communication to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may generally include, for example, a BB processor 856.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 5 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856 .
  • multiple BB processors may be compatible with multiple frequency bands used by base station 830 .
  • FIG. 6 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856 , the wireless communication interface 855 may also include a single BB processor 856 .
  • connection interface 857 is an interface for connecting the base station module 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 can also be a communication module used to connect the base station module 850 (wireless communication interface 855) to the communication in the above-mentioned high-speed line of the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station module 850.
  • the connection interface 861 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840 .
  • Wireless communication interface 863 may generally include RF circuitry 864, for example.
  • the RF circuit 864 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 840 .
  • the wireless communication interface 863 may include a plurality of RF circuits 864 .
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 10 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864 , the wireless communication interface 863 may also include a single RF circuit 864 .
  • the transceiver unit 301 and the transceiver module 404 described in FIG. At least part of the functions can also be realized by the controller 821 and the controller 851 .
  • the controller 821 and the controller 851 can demodulate the first OTFS symbol, divide In the delay Doppler area, decoding is performed based on different average signal powers of the edge area and the non-edge area, and the first or second message is generated.
  • FIG. 11 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the technology of the present disclosure can be applied.
  • the smart phone 900 includes a processor 901, a memory 902, a storage device 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more Antenna switch 915 , one or more antennas 916 , bus 917 , battery 918 , and auxiliary controller 919 .
  • the processor 901 may be, for example, a CPU or a system on chip (SoC), and controls functions of application layers and other layers of the smartphone 900 .
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901 .
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 900 .
  • USB universal serial bus
  • the imaging device 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 907 may include a set of sensors such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 910 , a keypad, a keyboard, buttons, or switches, and accepts operations or information input from the user.
  • the display device 910 includes a screen such as a Liquid Crystal Display (LCD) and an Organic Light Emitting Diode (OLED) display, and displays an output image of the smartphone 900 .
  • the speaker 911 converts an audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme such as LTE, LTE-Advanced, and 5G, and performs wireless communication.
  • the wireless communication interface 912 may generally include, for example, a BB processor 913 and an RF circuit 914 .
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 915 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 916 .
  • the wireless communication interface 912 may be a chip module on which a BB processor 913 and an RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 may include multiple BB processors 913 and multiple RF circuits 914.
  • FIG. 11 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914
  • the wireless communication interface 912 may include a single BB processor 913 or a single RF circuit 914 .
  • the wireless communication interface 912 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme, in addition to a cellular communication scheme.
  • the wireless communication interface 912 may include a BB processor 913 and an RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements, such as multiple antenna elements included in a MIMO antenna, and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • smartphone 900 may include multiple antennas 916 .
  • FIG. 11 shows an example in which the smartphone 900 includes multiple antennas 916
  • the smartphone 900 may include a single antenna 916 as well.
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900 .
  • the bus 917 connects the processor 901, memory 902, storage device 903, external connection interface 904, camera device 906, sensor 907, microphone 908, input device 909, display device 901, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other. connect.
  • the battery 918 provides power to the various blocks of the smartphone 900 shown in FIG. 11 via feed lines, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 919 operates minimum necessary functions of the smartphone 900, for example, in a sleep mode.
  • the transceiver unit 102 and the transceiver module 204 described in FIGS. 1 and 2 can be implemented with a wireless communication interface 912 . At least a portion of the functionality may also be implemented by the processor 901 or the auxiliary controller 919 .
  • the processor 901 or the auxiliary controller 919 can divide the time-delay Doppler region through the functions of the resource allocation module 201, the power setting module 202, the OTFS symbol generation module 203, the transceiver module 204 and the message analysis module 205, and provide Setting different average signal powers in the edge area and the non-edge area of the first delay Doppler area, generating the first OTFS symbol, and parsing the first message or the second message.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a car navigation device 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, a wireless communication interface 933 , one or more antenna switches 936 , one or more antennas 937 , and battery 938 .
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or a system on a chip (SoC), and controls a navigation function and other functions of the car navigation device 920 .
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921 .
  • the GPS module 924 measures the location (such as latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • Sensors 925 may include a set of sensors such as gyroscopic sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 926 is connected to, for example, an in-vehicle network 941 via a terminal not shown, and acquires data generated by the vehicle such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 928 .
  • the input device 929 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 930, a button, or a switch, and accepts an operation or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs sound of a navigation function or reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE, LTE-Advanced, and 5G, and performs wireless communication.
  • Wireless communication interface 912 may generally include, for example, a BB processor 934 and RF circuitry 935 .
  • the BB processor 934 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 937 .
  • the wireless communication interface 933 can be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include multiple BB processors 934 and multiple RF circuits 935 .
  • FIG. 8 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935
  • the wireless communication interface 933 may include a single BB processor 934 or a single RF circuit 935 .
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme, in addition to the cellular communication scheme.
  • the wireless communication interface 933 may include a BB processor 934 and an RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 , such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or a plurality of antenna elements such as a plurality of antenna elements included in a MIMO antenna, and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include multiple antennas 937 .
  • FIG. 8 shows an example in which the smartphone 920 includes multiple antennas 937 , the smartphone 920 may also include a single antenna 937 .
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 can be omitted from the configuration of the car navigation device 920 .
  • the battery 938 supplies power to the various blocks of the car navigation device 920 shown in FIG. 12 via feeder lines, which are partially shown as dotted lines in the figure.
  • the battery 938 accumulates electric power supplied from the vehicle.
  • the transceiver unit 102 and the transceiver module 204 described in FIGS. 1 and 2 can be implemented with a wireless communication interface 933 .
  • At least part of the functions can also be implemented by the processor 921 .
  • the processor 921 may execute the functions of the resource allocation module 201, the power setting module 202, the OTFS symbol generation module 203, the transceiver module 204, and the message parsing module 205 to perform division of the delay Doppler region, for the first time Different average signal powers are set for the edge area and the non-edge area of the extended Doppler area, the first OTFS symbol is generated, and the first message or the second message is parsed.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 940 including one or more blocks in a car navigation device 920 , an in-vehicle network 941 , and a vehicle module 942 .
  • the vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 941 .
  • the present invention also proposes a program product storing instruction codes readable by a machine.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiment of the present invention can be executed.
  • a storage medium for carrying the above-mentioned program product storing machine-readable instruction codes is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware configuration (for example, a general-purpose computer 1900 shown in FIG. 13 ), where various programs are installed. , various functions and the like can be performed.
  • a central processing unit (CPU) 1901 executes various processes according to programs stored in a read only memory (ROM) 1902 or loaded from a storage section 1908 to a random access memory (RAM) 1903 .
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1901 executes various processing and the like is also stored as necessary.
  • the CPU 1901, ROM 1902, and RAM 1903 are connected to each other via a bus 1904.
  • the input/output interface 1905 is also connected to the bus 1904 .
  • the following components are connected to the input/output interface 1905: an input section 1906 (including a keyboard, a mouse, etc.), an output section 1907 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.), Storage section 1908 (including hard disk, etc.), communication section 1909 (including network interface card such as LAN card, modem, etc.).
  • the communication section 1909 performs communication processing via a network such as the Internet.
  • a driver 1910 may also be connected to the input/output interface 1905 as needed.
  • a removable medium 1911 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, or the like is mounted on the drive 1910 as necessary, so that a computer program read therefrom is installed into the storage section 1908 as necessary.
  • programs constituting the software are installed from a network such as the Internet or a storage medium such as the removable medium 1911 .
  • a storage medium is not limited to the removable medium 1911 shown in FIG. 13 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable media 1911 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM)) and digital versatile disks (DVD), magneto-optical disks (including trademark)) and semiconductor memory.
  • the storage medium may be a ROM 1902, a hard disk contained in the storage section 1908, or the like, in which the programs are stored and distributed to users together with devices containing them.
  • each component or step can be decomposed and/or reassembled. These decompositions and/or recombinations should be considered equivalents of the present invention. Also, the steps for executing the series of processes described above may naturally be executed in chronological order in the order described, but need not necessarily be executed in chronological order. Certain steps may be performed in parallel or independently of each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种用于无线通信的装置和方法,该方法包括:将第一正交时频空OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,第一时延多普勒区域为所述M个时延多普勒区域之一,M是不小于1的自然数,将所述第一时延多普勒区域在时延位移维度和多普勒位移维度上划分为边缘区域和非边缘区域,将所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率设置为不同。

Description

用于无线通信的装置和方法 技术领域
本申请涉及无线通信系统中的装置和方法。
背景技术
正交时频空(Orthogonal Time Frequency Space,OTFS)调制技术通过将正交幅度调制(Quadrature Amplitude Modulation,QAM)符号放置到以时延位移维度和多普勒位移维度构成的时延多普勒域颗粒上来实现多路传输并取得分集增益。该OTFS技术可以应用于多用户上行接入系统中,即多个发送端和一个接收端的通信系统中。
发明内容
在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
发明人通过研究发现:在多用户OTFS系统中,由于时延扩散和多普勒扩散会带来多用户间的干扰,造成多用户OTFS系统的性能下降。时延扩散和多普勒扩散带来的用户间干扰主要发生在用户所占时延多普勒区域中的边缘区域,因此,人为设置相邻用户边缘区域的功率差值并在接收端采用迭代串行去干扰解码方法先解出边缘区域相对受干扰较少的用户、再将成功解码用户作为干扰去除后再解其相邻用户可以进一步提高多用户OTFS系统的性能。
根据本申请的一个方面,本申请提供了一种用于无线通信的装置,包括:一个或多个处理器,被配置为将第一正交时频空OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,第一时延多普勒区域为所述M个时延多普勒区域之一,M是不小于1的自然数,将所述第一时延多普勒区域在时延位移维度和多普勒位移维度上划分为边缘区域和非边缘区域,将所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率设置为不同,生成所述第一OTFS符号;收发单元,被配置为发送所述第一OTFS符号。
根据本申请的另一个方面,本申请提供了一种用于无线通信的装置,包括:收发单元,被配置为接收第一正交时频空OTFS符号;一个或多个处理器,被配置为解调所述第一OTFS符号,所述第一OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,所述M个时延多普勒区域中的K个时延多普勒区域分别被K个发送端用于放置数据或导频信号,第一时延多普勒区域为所述K个时延多普勒区域之一,所述第一时延多普勒区域被第一发送端用于放置数据或导频信号,M与K都是不小于1的自然数,M不小于K,对所述第一OTFS符号上的数据信号进行解码,所述第一时延多普勒区域包括时延位移维度上和多普勒位移维度上的边缘区域和非边缘区域,所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率不同。
根据本申请的一个方面,本申请还提供了一种用于无线通信的方法,包括:将第一正交时频空OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,第一时延多普勒区域为所述M个时延多普勒区域之一,M是不小于1的自然数;将所述第一时延多普勒区域在时延位移维度和多普勒位移维度上划分为边缘区域和非边缘区域,将所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率设置为不同;生成所述第一OTFS符号;发送所述第一OTFS符号。
根据本申请的另一个方面,本申请还提供了一种用于无线通信的方法,包括:接收第一正交时频空OTFS符号;解调所述第一OTFS符号;所述第一OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,所述M个时延多普勒区域中的K个时延多普勒区域分别被K个发送端用于放置数据或导频信号,第一时延多普勒区域为所述K个时延多普勒区域之一,所述第一时延多普勒区域被第一发送端用于放置数 据或导频信号,M与K都是不小于1的自然数,M不小于K;对所述第一OTFS符号上的数据信号进行解码,所述第一时延多普勒区域包括时延位移维度上和多普勒位移维度上的边缘区域和非边缘区域,所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率不同。
根据本申请的其他方面,还提供了用于实现上述无线通信的方法的计算机程序代码和计算机程序产品以及其上记录有该用于实现上述用于基站侧和用户设备测的无线通信的方法的计算机程序代码的计算机可读存储介质。
根据本申请的用于无线通信的装置和方法,多用户OTFS系统中的用户发送端可以在分配到的时延多普勒区域中为在时延位移和多普勒位移这两个维度上的边缘区域分配不同于非边缘区域的信号平均功率,从而更有利于多用户接收端采用迭代串行去干扰接收机对多用户复用的OTFS符号进行解码,提高解码效率。
通过以下结合附图对本发明的优选实施例的详细说明,本发明的上述以及其他优点将更加明显。
附图说明:
为了进一步阐述本发明的以上和其他优点和特征,下面结合附图对本发明的具体实施方式作进一步详细的说明。所述附图连同下面的详细说明一起包含在本说明书中并且形成说明书的一部分。具有相同的功能和结构的元件用相同的参标信号表示。应当理解,这些附图仅描述本发明的典型示例,而不应看作是对本发明的范围的限定。在附图中:
图1是根据本申请的一个实施例的用于无线通信的装置的结构框图;
图2是根据本申请的一个实施例的用于无线通信的装置的一种具体实现方式的结构框图;
图3是根据本申请的一个实施例的第一OTFS符号、第一时延多普勒区域、边缘区域和非边缘区域的示意图;
图4是根据本申请的一个实施例的用于无线通信的装置的结构框图;
图5是根据本申请的一个实施例的用于无线通信的装置的一种具体实现方式的结构框图;
图6是根据本申请的一个实施例的多个发送端复用第一OTFS符号的示意图;
图7是根据本申请的一个实施例的用于无线通信的方法的流程图;
图8是根据本申请的一个实施例的用于无线通信的方法的流程图;
图9是示出了基站的示意性配置的第一示例的框图;
图10是示出了基站的示意性配置的第二示例的框图;
图11是示出了用户设备的第一应用示例的示意性配置的示例的框图;
图12是示出了用户设备的第二应用示例的示意性配置的示例的框图;以及
图13是其中可以实现根据本发明的实施例的方法和/或装置和/或系统的通用个人计算机的示例性结构的框图。
具体实施方式:
在下文中将结合附图对本发明的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实际实施方式的所有特征。然而,应该了解,在开发任何这种实际实施例的过程中必须做出很多特定于实施方式的决定,以便实现开发人员的具体目标,例如,符合与系统及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还需要说明一点的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的设备结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
<第一实施例>
本申请实施例可以应用于如下各种通信系统中的多用户系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
图1是示出了根据本申请的一个实施例的用于无线通信的装置100的结构框图,该装置100包括:一个或多个处理器101,被配置为将第一正交时频空OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,第一时延多普勒区域为所述M个时延多普勒区域之一,M是不小于1的自然数,将所述第一时延多普勒区域在时延位移维度和多普勒位移维度上划分为边缘区域和非边缘区域,将所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率设置为不同,生成所述第一OTFS符号;收发单元102,被配置为发送所述第一OTFS符号。
装置100所在的无线通信系统采用多用户正交时频空(Orthogonal Time Frequency Space,OTFS)调制技术。在正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中,经过星座调制的相移键控(Phase Shift Key,PSK)或正交幅度调制(Quadrature Amplitude Modulation,QAM)符号被放置在时频域上的网格中,在3GPP 5G物理层协议中,每个网格是一个资源颗粒(Resource Element,RE),对应一组二维时频域位移坐标;而在OTFS系统中,相移键控(Phase Shift Key,PSK)或正交幅度调制(Quadrature Amplitude Modulation,QAM)符号被放置在时延多普勒域上的网格中,每个时延多普勒域的网格是一个时延多普勒资源颗粒,对应一组二维时延多普勒域位移坐标。一个OTFS符号包括由连续N t个多普勒位移和连续N f个时延位移构成的N tN f个二维时延多普勒域颗粒。在经过辛傅立叶变换(Sympletic Fourier Transform,SFT)后,一个OTFS符号中每个时延多普勒颗粒上的调制符号都扩散至该OTFS符号所对应的由N f个子载波和N t个OFDM符号所构成的时频域资源上,从而相对于OFDM系统取得更多的时频分集增益。在多用户OTFS系统中,多个发送端复用一个OTFS符号,不同的发送端占用该OTFS符号内的不同的时延多普勒域传输信息。在多用户OTFS系统中,即使多个发送端占用同一个OTFS符号中的不重叠的时延多普勒域,也会存在由于多普勒扩散和时延扩散带来的用户间干扰,可以通过有利于迭代串行去干扰接收机的信号功率分配方案解决这个问题。
在本实施例以及以下的实施例中,装置100可以为用户设备,用户设备例如是基站服务的移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)等,用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
此外,当其他通信设备比如中继基站或小基站等需要与主基站进行通信时,也可以视为这里所述的用户设备。在以下的描述中,主要以用户设备为例进行说明,可以理解,本申请公开的范围不限于此。
处理器101例如可以为具有数据处理能力的中央处理单元(CPU)、微处理器、集成电路模块等。
相应地,图2是示出了装置100(在图2中标识为装置200)的一种具体实现方式的结构框图,并且在下文中将参照该框图对装置200的功能和结构进行详细描述。如图2所示,装置200包括:资源分配模块201,被配置为将第一正交时频空OTFS符号所占的时延多普勒资源划分为M个时延多 普勒区域,第一时延多普勒区域为所述M个时延多普勒区域之一,M是不小于1的自然数;功率设置模块202,被配置为将所述第一时延多普勒区域在时延位移维度和多普勒位移维度上划分为边缘区域和非边缘区域,将所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率设置为不同;OTFS符号生成模块203,被配置为生成所述第一OTFS符号;收发模块204,被配置为发送所述第一OTFS符号。
在一个示例中,装置200还可以包括消息解析模块205。收发模块204被配置为接收第一消息;消息解析模块205被配置为解析所述第一消息,所述第一消息被装置200用于确定所述边缘区域和所述非边缘区域。
示例性的,所述第一消息被用于确定所述边缘区域与非边缘区域之间所占时延位移和多普勒位移的比例关系。
在一个示例中,装置200还可以包括消息解析模块205。收发模块204被配置为接收第二消息;消息解析模块205被配置为解析所述第二消息,所述第二消息被用于确定所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率之间的差值。
示例性的,装置200先确定所述第一时延多普勒区域的信号平均功率,而后根据所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率之间的差值确定所述边缘区域的信号平均功率和所述非边缘区域的信号平均功率。
在一个示例中,功率设置模块202被配置为所述边缘区域的信号平均功率被设置为小于所述非边缘区域的信号平均功率。
示例性的,装置200被假设为被接收端优先解码的发送设备。
在一个示例中,功率设置模块202被配置为所述边缘区域的信号平均功率被设置为大于所述非边缘区域的信号平均功率。
示例性的,装置200被假设为被接收端较后解码的发送设备。接收端在对优先解码的其他发送设备成功解码后,计算其他发送设备的干扰估计,对接收信号进行去干扰,而后再对装置200发送的数据信号进行解码。
在一个示例中,功率设置模块202被配置为所述时延位移维度上的边缘区域的信号平均功率与所述多普勒位移维度上的边缘区域的信号平均功率被设置为相同。
在一个示例中,功率设置模块202被配置为所述时延位移维度上的边缘区域的信号平均功率与所述多普勒位移维度上的边缘区域的信号平均功率被设置为不同。
在一个示例中,资源分配模块201被配置为所述M个时延多普勒区域中除所述第一时延多普勒区域以外的M-1个时延多普勒区域上被设置为不放置数据或导频信号,M是大于1的自然数。
综上所述,装置100和200可以为发送端所占的时延多普勒区域上的边缘区域和非边缘区域分配不同的功率,从而增强复用同一个OTFS符号且时延多普勒资源相邻的两个用户中的一个用户的抗干扰能力,以便提高接收端对优先解码用户的解码成功率,而后通过迭代串行去干扰接收机去除已成功解码的用户造成的干扰,对其余用户进行解码,提高系统性能。
<第二实施例>
图3是根据本申请的一个实施例的第一OTFS符号、第一时延多普勒区域、边缘区域和非边缘区域的示意图。在该实施例中,如图3所示,所述第一OTFS符号在时延维度占8个时延位移,在多普勒维度占8个多普勒位移,一共包括64个时延多普勒资源颗粒。所述第一时延多普勒区域为时延位移在0到3、多普勒位移在4到7的区域。深灰色的方格为所述第一时延多普勒区域中的边缘区域上的时延多普勒资源颗粒。浅灰色的方格为所述第一时延多普勒区域中的非边缘区域上的时延多普勒资源颗粒。
第一发送端将所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率设置为不同,将正交幅度调制(Quadrature Amplitude Modulation,QAM)调制后的数据符号和导频符号放置在所述第一时延多普勒区域中的时延多普勒资源颗粒上,基于不同的信号平均功率设置调整所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率,生成所述第一OTFS符号并发送。
示例性的,所述边缘区域的信号平均功率被设置为小于所述非边缘区域的信号平均功率。
示例性的,所述边缘区域的信号平均功率被设置为大于所述非边缘区域的信号平均功率。
示例性的,所述时延位移维度上的边缘区域的信号平均功率与所述多普勒位移维度上的边缘区域的信号平均功率被设置为相同
示例性的,所述时延位移维度上的边缘区域的信号平均功率与所述多普勒位移维度上的边缘区域的信号平均功率被设置为不同。
示例性的,除所述第一时延多普勒区域以外的时延多普勒区域上被设置为不放置数据或导频信号。
<第三实施例>
图4是示出了根据本申请的一个实施例的用于无线通信的装置300的结构框图,该装置300包括:收发单元,被配置为接收第一正交时频空OTFS符号;一个或多个处理器,被配置为解调所述第一OTFS符号,所述第一OTFS符号所占的时延多普勒资源被划分为M个时延多普勒区域,所述M个时延多普勒区域中的K个时延多普勒区域分别被K个发送端用于放置数据或导频信号,第一时延多普勒区域为所述K个时延多普勒区域之一,所述第一时延多普勒区域被第一发送端用于放置数据或导频信号,M与K都是不小于1的自然数,M不小于K,对所述第一OTFS符号上的数据信号进行解码,所述第一时延多普勒区域包括时延位移维度上和多普勒位移维度上的边缘区域和非边缘区域,所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率不同。
在本实施例以及以下的实施例中,装置300可以被实现为基站。基站可以包括:被配置为控制无线通信的主体(也称为基站模组);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,各种类型的终端设备均可以通过暂时地或半持久性地执行基站功能而作为基站工作。此外,装置300也可以被实现为任何类型的服务器,诸如塔式服务器、机架式服务器以及刀片式服务器。装置300可以为安装在服务器上的控制模块(诸如包括单个晶片的集成电路模块,以及插入到刀片式服务器的槽中的卡或刀片(blade))。例如,装置300所在的通信系统应用C-RAN技术,装置300可以被实现为核心网中或基带云端设置的服务器,装置300基于其管理范围内的RRH的天线或天线阵列接收到信号进行处理,其所管理范围内的RRH包括收发单元302,装置300所在的服务器包括处理器301。收发单元302被配置为接收第一正交时频空OTFS符号。处理器301被配置为解调所述第一OTFS符号,所述第一OTFS符号所占的时延多普勒资源被划分为M个时延多普勒区域,所述M个时延多普勒区域中的K个时延多普勒区域分别被K个发送端用于放置数据或导频信号,第一时延多普勒区域为所述K个时延多普勒区域之一,所述第一时延多普勒区域被第一发送端用于放置数据或导频信号,M与K都是不小于1的自然数,M不小于K,对所述第一OTFS符号上的数据信号进行解码,所述第一时延多普勒区域包括时延位移维度上和多普勒位移维度上的边缘区域和非边缘区域,所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率不同。在以下的描述中,主要以装置300被实现为基站为例进行说明,可以理解,本申请公开的范围不限于此。
基站所服务的通信设备可以被实现为用户设备,用户设备例如是基站服务的移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)等,用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
此外,在一些可选例子中,基站所服务/管理的通信设备可以被实现为例如中继基站、小eNB等需要通过无线接口与基站通信并进行信道测量的基础设施。在以下的描述中,主要以用户设备为例进行说明,可以理解,本申请公开的范围不限于此。
处理器301例如可以为具有数据处理能力的中央处理单元(CPU)、微处理器、集成电路模块等。
相应地,图5是示出了装置400(在图5中标识为装置400)的一种具体实现方式的结构框图,并且在下文中将参照该框图对装置400的功能和结构进行详细描述。如图5所示,装置400包括:收发模块401,被配置为接收第一正交时频空OTFS符号;OTFS符号解调模块402,被配置为解调所 述第一OTFS符号;时延多普勒区域划分模块403,被配置为所述第一OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,所述M个时延多普勒区域中的K个时延多普勒区域分别被K个发送端用于放置数据或导频信号,第一时延多普勒区域为所述K个时延多普勒区域之一,所述第一时延多普勒区域被第一发送端用于放置数据或导频信号,M与K都是不小于1的自然数,M不小于K;解码模块404,被配置为对所述第一OTFS符号上的数据信号进行解码,所述第一时延多普勒区域包括时延位移维度上和多普勒位移维度上的边缘区域和非边缘区域,所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率不同。
在一个示例中,所述解码模块404被配置为采用时延位移维度上和多普勒位移维度上的迭代串行去干扰接收机对所述第一OTFS符号上的所述K个发送端的数据进行解码。
在一个示例中,所述装置400包括消息生成模块405,被配置为被所述第一发送端用于确定所述边缘区域和所述非边缘区域;所述收发模块401被配置为发送所述第一消息。
在一个示例中,所述装置400包括消息生成模块405,被配置为生成第二消息,所述第二消息被所述第一发送端用于确定所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率之间的差值;所述收发模块401被配置为发送所述第二消息。
综上所述,装置300和400可以利用发送端所占的时延多普勒区域上的边缘区域和非边缘区域的功率不同,对受干扰相对较小的用户进行优先解码,而后通过迭代串行去干扰接收机去除已成功解码的用户造成的干扰,对其余用户进行解码,提高系统性能。
<第四实施例>
图6是根据本申请的一个实施例的多个发送端复用第一OTFS符号的示意图。在该实施例中,如图6所示,所述第一OTFS符号在时延维度占8个时延位移,在多普勒维度占8个多普勒位移,一共包括64个时延多普勒资源颗粒,其中,第一时延多普勒区域被分配给第一发送端发送数据和导频信号,第二时延多普勒区域被分配给第二发送端发送数据和导频信号,第三时延多普勒区域被分配给第三发送端发送数据和导频信号,第四时延多普勒区域被分配给第四发送端发送数据和导频信号。所述第一时延多普勒区域为时延位移在0到3、多普勒位移在4到7的区域。所述第二时延多普勒区域为时延位移在4到7、多普勒位移在4到7的区域。所述第三时延多普勒区域为时延位移在0到3、多普勒位移在0到3的区域。所述第四时延多普勒区域为时延位移在4到7、多普勒位移在0到7的区域。所述第一时延多普勒区域和所述第四时延多普勒区域中深灰色的方格为各自边缘区域上的时延多普勒资源颗粒。所述第一时延多普勒区域和所述第四时延多普勒区域中浅灰色的方格为各自非边缘区域上的时延多普勒资源颗粒。
所述第一发送端和所述第四发送端各自在边缘区域上分配的信号平均发送功率与非边缘区域上分配的信号平均发送功率不同。所述第二发送端和所述第三发送端各自在边缘区域上分配的信号平均发送功率与非边缘区域上分配的信号平均发送功率相同。
示例性的,所述第一发送端和所述第四发送端各自在边缘区域上分配的信号平均发送功率高于非边缘区域上分配的信号平均发送功率及所述第二发送端和所述第三发送端的信号平均发送功率。接收端采用迭代串行去干扰接收机,先对所述第一发送端和所述第四发送端的数据进行解码,如果对所述第一发送端和所述第四发送端的数据解码成功,则基于成功解码的结果在接收信号中去除所述第一发送端和所述第四发送端所造成的干扰,再对所述第二发送端和所述第三发送端进行解码。
示例性的,所述第一发送端和所述第四发送端各自在边缘区域上分配的信号平均发送功率低于非边缘区域上分配的信号平均发送功率及所述第二发送端和所述第三发送端的信号平均发送功率。接收端采用迭代串行去干扰接收机,先对所述第二发送端和所述第三发送端的数据进行解码,如果对所述第二发送端和所述第三发送端的数据解码成功,则基于成功解码的结果在接收信号中去除所述第二发送端和所述第三发送端所造成的干扰,再对所述第一发送端和所述第四发送端进行解码。
<第五实施例>
在上文的实施方式中描述用于无线通信的装置的过程中,显然还公开了一些处理或方法。下文中,在不重复上文中以讨论的一些细节的情况下给出这些方法的概要,但是应当注意,虽然这些方法在 描述用于无线通信的装置的过程中公开,但是这些方法不一定采用所描述的那些部件或不一定由那些部件执行。例如,用于无线通信的装置的实施方式可以部分地或完全地使用硬件和/或固件来实现,而下面讨论的用于无线通信的方法可以完全由计算机可执行的程序来实现,尽管这些方法也可以采用用于无线通信的装置的硬件和/或固件。
图7是根据本申请的一个实施例的用于无线通信的方法的流程图,包括如下步骤:将第一正交时频空OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,第一时延多普勒区域为所述M个时延多普勒区域之一,M是不小于1的自然数(S13);将所述第一时延多普勒区域在时延位移维度和多普勒位移维度上划分为边缘区域和非边缘区域,将所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率设置为不同(S14);生成所述第一OTFS符号(S15);发送所述第一OTFS符号(S16)。
示例性的,还包括虚线框所示的接收和解析第一消息(S11),所述第一消息被用于确定所述边缘区域和所述非边缘区域。
示例性的,还包括虚线框所示的接收和解析第二消息(S12),所述第二消息被用于确定所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率之间的差值。
示例性的,在步骤S13中,所述M个时延多普勒区域中除所述第一时延多普勒区域以外的M-1个时延多普勒区域上被设置为不放置数据或导频信号,M是大于1的自然数。
示例性的,在步骤S14中,所述边缘区域的信号平均功率被设置为小于所述非边缘区域的信号平均功率。
示例性的,在步骤S14中,所述边缘区域的信号平均功率被设置为大于所述非边缘区域的信号平均功率。
示例性的,在步骤S14中,所述时延位移维度上的边缘区域的信号平均功率与所述多普勒位移维度上的边缘区域的信号平均功率被设置为相同。
示例性的,在步骤S14中,所述时延位移维度上的边缘区域的信号平均功率与所述多普勒位移维度上的边缘区域的信号平均功率被设置为不同。
图8是根据本申请的另一个实施例的用于无线通信的方法的流程图,包括如下步骤:接收第一正交时频空OTFS符号(S23);解调所述第一OTFS符号(S24);所述第一OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,所述M个时延多普勒区域中的K个时延多普勒区域分别被K个发送端用于放置数据或导频信号,第一时延多普勒区域为所述K个时延多普勒区域之一,所述第一时延多普勒区域被第一发送端用于放置数据或导频信号,M与K都是不小于1的自然数,M不小于K(S25);对所述第一OTFS符号上的数据信号进行解码,所述第一时延多普勒区域包括时延位移维度上和多普勒位移维度上的边缘区域和非边缘区域,所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率不同(S26)。
示例性的,在步骤S26中,采用时延位移维度上和多普勒位移维度上的迭代串行去干扰解码对所述第一OTFS符号上的所述K个发送端的数据进行解码。
示例性的,还包括虚线框所示的生成和发送第一消息,所述第一消息被所述第一发送端用于确定所述边缘区域和所述非边缘区域。
示例性的,还包括虚线框所示的生成和发送第二消息,所述第二消息被所述第一发送端用于确定所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率之间的差值;
注意,上述各个方法可以结合或单独使用,其细节在第一、第二、第三和第四实施例中已经进行了详细叙述,在此不再重复。
<第六实施例>
在该实施例中将给出应用本公开的技术的基站的示例。
(第一应用示例)
图9是示出可以应用本公开内容的技术的基站的示意性配置的第一示例的框图。基站800包括一个或多个天线810以及基站模组820。基站模组820和每个天线810可以经由RF线缆彼此链接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站模组820发送和接收无线信号。如图9所示,基站800包括多个天线810。例如,多个天线810可以与基站800使用的多个频带兼容。虽然图9示出其中基站800包括多个天线810的示例,但是基站800也可以包括单个天线810。
基站模组820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站模组820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有知性如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的基站或核心网节点来执行。存储器822包括RAM和ROM,并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站模组820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的基站进行通信。在此情况下,基站800与核心网节点或其他基站可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如长期演进(LTE),LTE-先进和5G),并且经由天线810来提供到位于基站800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站模组820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并经由天线810来传送和接收无线信号。
如图9所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与基站800使用的多个频带兼容。如图5所示,无线通信接口825可以包括多个RF电路827.例如,多个RF电路827可以与多个天线元件兼容。虽然图5示出其中无线通信接口826包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
(第二应用示例)
图10是示出可以应用本公开内容的技术的基站的示意性配置的第二示例的框图。基站830包括一个或多个天线840、基站模组850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此链接。基站模组850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图10所示,基站830可以包括多个天线840.例如,多个天线840可以与基站830使用的多个频带兼容。虽然图10示出其中基站830包括多个天线840的示例,但是基站830也可以包括单个天线840。
基站模组850包括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图5描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如长期演进(LTE),LTE-先进和5G),并且经由RRH860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可 以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图5描述的BB处理器826相同。如图10所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器可以与基站830使用的多个频带兼容。虽然图6示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站模组850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站模组850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861和为用于将RRH 860(无线通信接口863)连接至基站模组850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图10所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图10示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图9和图10所示的基站800和基站830中,例如图4和5所描述的收发单元301、收发模块404可以有无线通信接口825以及无线通信接口855和/或无线通信接口863实现。功能的至少一部分也可以由控制器821和控制器851实现。例如,控制器821和控制器851可以通过执行OTFS符号解调模块402、时延多普勒区域划分模块403、解码模块404和消息生成模块405功能来执行解调所述第一OTFS符号、划分时延多普勒区域、基于边缘区域和非边缘区域不同的信号平均功率进行解码、生成第一或第二消息。
<第七实施例>
在该实施例中将给出应用本公开的技术的用户设备的示例。
(第一应用示例)
图11是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接受从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE、LTE先进和5G),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解服用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路915可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图11所示,无线通信接口912可以包括多个BB处理 器913和多个RF电路914。虽然图11示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图11所示,智能电话900可以包括多个天线916。虽然图11示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置901、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图11所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图11所示的智能电话900中,例如图1和2所描述的收发单元102、收发模块204可以有无线通信接口912实现。功能的至少一部分也可以由处理器901或辅助控制器919实现。例如,处理器901或辅助控制器919可以通过资源分配模块201、功率设置模块202、OTFS符号生成模块203、收发模块204和消息解析模块205的功能来执行划分时延多普勒区域、为所述第一时延多普勒区域的边缘区域和非边缘区域设置不同的信号平均功率、生成所述第一OTFS符号和解析所述第一消息或第二消息。
(第二应用示例)
图12是示出了可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或片上系统(SoC),并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接受从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何任何蜂窝通信方案(诸如LTE、LTE先进和5G),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解服用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933可以为其上集成有BB处理器934和RF电路935的一个芯片模块。如图12所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图8示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无 线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口933可以包括针对每种无线通信方案的BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图8所示,汽车导航设备920可以包括多个天线937.虽然图8示出其中智能电话920包括多个天线937的示例,但是智能电话920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图12所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累计从车辆提供的电力。
在图12所示的汽车导航设备920中,例如图1和2所描述的收发单元102、收发模块204可以有无线通信接口933实现。功能的至少一部分也可以由处理器921实现。例如,处理器921可以通过执行资源分配模块201、功率设置模块202、OTFS符号生成模块203、收发模块204和消息解析模块205的功能来执行划分时延多普勒区域、为所述第一时延多普勒区域的边缘区域和非边缘区域设置不同的信号平均功率、生成所述第一OTFS符号和解析所述第一消息或第二消息。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本发明的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本发明的描述的情况下利用其基本电路设计知识或者编程技能就能实现的。
而且,本发明还提出了一种存储由机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等。
在通过软件或固件实现本发明的情况下,从存储介质或网络向具有专用硬件结构的计算机(例如图13所示的通用计算1900)安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
在图13中,中央处理单元(CPU)1901根据只读存储器(ROM)1902中存储的程序或从存储部分1908加载到随机存取存储器(RAM)1903的程序执行各种处理。在RAM 1903中,也根据需要存储当CPU 1901执行各种处理等等时所需的数据。CPU 1901、ROM 1902和RAM 1903经由总线1904彼此连接。输入/输出接口1905也连接到总线1904。
下述部件连接到输入/输出接口1905:输入部分1906(包括键盘、鼠标等等)、输出部分1907(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分1908(包括硬盘等)、通信部分1909(包括网络接口卡比如LAN卡、调制解调器等)。通信部分1909经由网络比如因特网执行通信处理。根据需要,驱动器1910也可连接到输入/输出接口1905。可移除介质1911比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1910上,使得从中读出的计算机程序根据需要被安装到存储部分1908中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质,比如可移除介质1911安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图13所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可移除介质1911。可移除介质1911的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM))和数字通用盘(DVD)、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1902、存储部分1908中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
还需要指出的是,在本发明的装置、方法和系统中,各部件或个步骤是可以分解和/或重新组合的。这些分解和/或重新组合应该视为本发明的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按时间顺序执行。某些步骤可以并行或彼此独立地执行。
最后,还需要说明的是,术语“包括”、“包含”或者其任何其他辩题意在涵盖非排他性的包含,从而使得包括一些列要素的过程、方法、物品或者设备不仅包括哪些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,在没有更多限制的情况下,由词句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上虽然结合附图详细描述了本发明的实施例,但是应当明白,上面所描述的实施方式只是用于说明本发明,而并不构成对本发明的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本发明的实质和范围。因此,本发明的范围仅由所附的权利要求及其等效含义来限定。

Claims (14)

  1. 一种用于无线通信的装置,包括:
    一个或多个处理器,被配置为
    将第一正交时频空OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,第一时延多普勒区域为所述M个时延多普勒区域之一,M是不小于1的自然数,
    将所述第一时延多普勒区域在时延位移维度和多普勒位移维度上划分为边缘区域和非边缘区域,将所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率设置为不同,
    生成所述第一OTFS符号;
    收发单元,被配置为发送所述第一OTFS符号。
  2. 根据权利要求1所述的装置,其中,
    所述收发单元被用于接收第一消息;
    所述一个或多个处理器被配置为解析所述第一消息,所述第一消息被用于确定所述边缘区域和所述非边缘区域。
  3. 根据权利要求1或2所述的装置,其中,
    所述收发单元被用于接收第二消息;
    所述一个或多个处理器被配置为解析所述第二消息,所述第二消息被用于确定所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率之间的差值。
  4. 根据权利要求1至3中的任意一项所述的装置,其中,所述边缘区域的信号平均功率被设置为小于所述非边缘区域的信号平均功率。
  5. 根据权利要求1至3中的任意一项所述的装置,其中,所述边缘区域的信号平均功率被设置为大于所述非边缘区域的信号平均功率。
  6. 根据权利要求1至5中的任意一项所述的装置,其中,所述时延位移维度上的边缘区域的信号平均功率与所述多普勒位移维度上的边缘区域的信号平均功率被设置为相同。
  7. 根据权利要求1至5中的任意一项所述的装置,其中,所述时延位移维度上的边缘区域的信号平均功率与所述多普勒位移维度上的边缘区域的信号平均功率被设置为不同。
  8. 根据权利要求1至7中的任意一项所述的装置,其中,所述M个时延多普勒区域中除所述第一时延多普勒区域以外的M-1个时延多普勒区域上被设置为不放置数据或导频信号,M是大于1的自然数。
  9. 一种用于无线通信的装置,包括:
    收发单元,被配置为接收第一正交时频空OTFS符号;
    一个或多个处理器,被配置为
    解调所述第一OTFS符号,
    所述第一OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,所述M个时延多普勒区域中的K个时延多普勒区域分别被K个发送端用于放置数据或导频信号,第一时延多普勒区域为所述K个时延多普勒区域之一,所述第一时延多普勒区域被第一发送端用于放置数据或导频信号,M与K都是不小于1的自然数,M不小于K,
    对所述第一OTFS符号上的数据信号进行解码,所述第一时延多普勒区域包括时延位移维度上和多普勒位移维度上的边缘区域和非边缘区域,所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率不同。
  10. 根据权利要求9所述的装置,其中,所述一个或多个处理器,被配置为采用时延位移维度上和多普勒位移维度上的迭代串行去干扰接收机对所述第一OTFS符号上的所述K个发送端的数据进行解码。
  11. 根据权利要求10所述的装置,其中,
    所述一个或多个处理器被配置为生成第一消息,所述第一消息被所述第一发送端用于确定所述边缘区 域和所述非边缘区域;
    所述收发单元被配置为发送所述第一消息。
  12. 根据权利要求9至11中的任意一项所述的装置,其中,
    所述一个或多个处理器被配置为生成第二消息,所述第二消息被所述第一发送端用于确定所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率之间的差值;
    所述收发单元被配置为发送所述第二消息。
  13. 一种用于无线通信的方法,包括:
    将第一正交时频空OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,第一时延多普勒区域为所述M个时延多普勒区域之一,M是不小于1的自然数;
    将所述第一时延多普勒区域在时延位移维度和多普勒位移维度上划分为边缘区域和非边缘区域,将所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率设置为不同;
    生成所述第一OTFS符号;
    发送所述第一OTFS符号。
  14. 一种用于无线通信的方法,包括:
    接收第一正交时频空OTFS符号;
    解调所述第一OTFS符号;
    所述第一OTFS符号所占的时延多普勒资源划分为M个时延多普勒区域,所述M个时延多普勒区域中的K个时延多普勒区域分别被K个发送端用于放置数据或导频信号,第一时延多普勒区域为所述K个时延多普勒区域之一,所述第一时延多普勒区域被第一发送端用于放置数据或导频信号,M与K都是不小于1的自然数,M不小于K;
    对所述第一OTFS符号上的数据信号进行解码,所述第一时延多普勒区域包括时延位移维度上和多普勒位移维度上的边缘区域和非边缘区域,所述边缘区域的信号平均功率与所述非边缘区域的信号平均功率不同。
PCT/CN2022/113622 2021-09-19 2022-08-19 用于无线通信的装置和方法 WO2023040580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111011388.1 2021-09-19
CN202111011388.1A CN113726715B (zh) 2021-09-19 2021-09-19 用于无线通信的装置和方法

Publications (1)

Publication Number Publication Date
WO2023040580A1 true WO2023040580A1 (zh) 2023-03-23

Family

ID=78679659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113622 WO2023040580A1 (zh) 2021-09-19 2022-08-19 用于无线通信的装置和方法

Country Status (2)

Country Link
CN (1) CN113726715B (zh)
WO (1) WO2023040580A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113726715B (zh) * 2021-09-19 2023-05-19 北京跃线通科技有限公司 用于无线通信的装置和方法
CN114422004B (zh) * 2022-01-24 2022-11-11 中国电子科技集团公司第五十四研究所 一种基于导航信号辅助的otfs卫星通信系统预编码方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016176642A1 (en) * 2015-04-30 2016-11-03 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the internet of things
CN111786763A (zh) * 2020-06-23 2020-10-16 Oppo广东移动通信有限公司 信号传输方法及装置、发射端、接收端、存储介质
CN113193935A (zh) * 2021-04-26 2021-07-30 北京信息科技大学 用于无线通信的装置和方法
US20210250138A1 (en) * 2018-06-14 2021-08-12 Cohere Technologies, Inc. Co-existence of orthogonal time frequency space and long term evolution systems
CN113726715A (zh) * 2021-09-19 2021-11-30 珠海跃线科技有限公司 用于无线通信的装置和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677359A (zh) * 2019-09-03 2020-01-10 北京邮电大学 正交时频空系统的信号接收方法、接收装置及存储介质
CN112929316B (zh) * 2021-01-25 2022-08-12 南京邮电大学 基于otfs调制的交错式时频多址方式调制解调方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016176642A1 (en) * 2015-04-30 2016-11-03 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the internet of things
US20210250138A1 (en) * 2018-06-14 2021-08-12 Cohere Technologies, Inc. Co-existence of orthogonal time frequency space and long term evolution systems
CN111786763A (zh) * 2020-06-23 2020-10-16 Oppo广东移动通信有限公司 信号传输方法及装置、发射端、接收端、存储介质
CN113193935A (zh) * 2021-04-26 2021-07-30 北京信息科技大学 用于无线通信的装置和方法
CN113726715A (zh) * 2021-09-19 2021-11-30 珠海跃线科技有限公司 用于无线通信的装置和方法

Also Published As

Publication number Publication date
CN113726715B (zh) 2023-05-19
CN113726715A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
US11909688B2 (en) Apparatus and method in wireless communication system, and computer-readable storage medium
CN110547031B (zh) 通信装置、基站装置、方法和记录介质
JP6380071B2 (ja) 通信制御装置、無線通信装置、通信制御方法及び無線通信方法
WO2023040580A1 (zh) 用于无线通信的装置和方法
US20230023099A1 (en) Electronic device, radio communication method, and computer readable storage medium
WO2014175923A1 (en) Hybrid reference signals for wireless communication
WO2022228587A1 (zh) 用于无线通信的装置和方法
CN115190460A (zh) 用于新无线电的控制信道
JP6586762B2 (ja) 受信装置、送信装置、受信方法、送信方法及びプログラム
JP2020188468A (ja) IEEE 802.11axにおける低レートモードのためのダイバーシティ繰り返し
WO2019096239A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN107211450B (zh) 使用批准帧进行动态分配的装置、系统和方法
EP3879891A1 (en) Electronic device, wireless communication method, and computer readable medium
JP2019154037A (ja) 無線通信装置及び無線通信方法
EP4068885A1 (en) Terminal device, base station device, and communication method
JP2016536880A (ja) 混合フォーマットを使用するワイヤレス通信のための方法および装置
EP4138331A1 (en) Electronic device, radio communication method, and computer readable storage medium
JPWO2016067693A1 (ja) 通信装置および通信方法
CN108809599B (zh) 一种通信方法、相关设备和系统
EP3627873A1 (en) Frequency spectrum management apparatus and method, frequency spectrum coordination apparatus and method, and electronic device
EP3240216A1 (en) Device and method
CN110557350A (zh) 电子设备和通信方法
WO2017047210A1 (ja) 装置及び方法
US10771134B2 (en) Electronic device and wireless communication method
CN112713984B (zh) 控制信息发送方法、接收方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE