CN115190460A - 用于新无线电的控制信道 - Google Patents

用于新无线电的控制信道 Download PDF

Info

Publication number
CN115190460A
CN115190460A CN202210569621.6A CN202210569621A CN115190460A CN 115190460 A CN115190460 A CN 115190460A CN 202210569621 A CN202210569621 A CN 202210569621A CN 115190460 A CN115190460 A CN 115190460A
Authority
CN
China
Prior art keywords
uci
control channel
uplink control
characteristic
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210569621.6A
Other languages
English (en)
Inventor
沙罗克·纳伊卜纳扎尔
奥盖内科梅·奥泰里
马哈茂德·他赫扎德博柔耶尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
IDAC Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDAC Holdings Inc filed Critical IDAC Holdings Inc
Publication of CN115190460A publication Critical patent/CN115190460A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文描述了可用于确定与在同一控制信道中发送第一上行链路控制信息(UCI)和第二UCI相关联的一个或多个控制信道操作参数的系统、方法和手段。所述参数可以包括与所述第一UCI和所述第二UCI相关联的相应重复因子和/或扩展因子。所述参数可以基于所述第一UCI和所述第二UCI的相应特性而被确定。这些特征可以包括可靠性要求和/或使用场景等。可以采用自包含子帧来发送数据和/或控制信息。可以使用与数据不同的数字配置来发送所述控制信息。

Description

用于新无线电的控制信道
本申请为2019年6月28日递交的题为“用于新无线电的控制信道”的中国专利申请No.201780070360.0的分案申请,该申请的内容以其整体并入本文。
相关申请的交叉引用
本申请要求2016年9月28日提交的美国临时专利申请号62/401,057的权益,其公开内容以其整体并入本文。
背景技术
新无线电(NR)技术(例如,在5G无线系统中)可以包括不同的使用场景。这些不同的使用场景可能意味着不同的延时、可靠性、覆盖范围和/或容量要求(例如,对于控制信道)。控制信道设计可以适于满足新无线电技术的不同要求(包括例如增强型移动宽带(eMBB)、大规模机器类型通信(mMTC)以及超可靠和低延时通信(URLLC))。
发明内容
本文描述了可用于确定用于在上行链路控制信道中发送第一上行链路控制信息(UCI)的第一重复因子和用于在上行链路控制信道中发送第二UCI的第二重复因子的系统、方法和手段。可以基于与第一UCI相关联的特性来确定第一重复因子。可以基于与第二UCI相关联的特性来确定第二重复因子。第一UCI和第二UCI的相应特性可以彼此不同,导致第二重复因子不同于第一重复因子。一旦确定了第一和第二重复因子,就可以使用第一重复因子来在上行链路控制信道中发送第一UCI,并且可以使用第二重复因子来在相同上行链路控制信道中发送第二UCI。
在示例中,与第一UCI相关联的特性可以包括与第一UCI相关联的以下至少一者:第一可靠性要求、第一延时要求或第一有效载荷大小。与第二UCI相关联的特性可以包括与第二UCI相关联的以下至少一者:第二可靠性要求、第二延时要求或第二有效载荷大小。在示例中,与第一UCI相关联的特性可以包括用于对第一UCI进行预编码的第一波束成形模式,并且与第二UCI相关联的特性可以包括用于对第二UCI进行预编码的第二波束成形模式。
在示例中,与第一UCI相关联的特性可以包括与第一UCI相关联的第一使用场景,并且与第二UCI相关联的特性可以包括与第二UCI相关联的第二使用场景。第一使用场景和第二使用场景中的每一者可以与超可靠和低延时通信(UR-LLC)、增强型移动宽带(eMBB)或大规模机器类型通信(mMTC)之一相关联。当第一使用场景与比第二使用场景更高的可靠性要求相关联时,第一重复因子可以大于第二重复因子。当第一使用场景与UR-LLC相关联并且第二使用场景与eMBB或mMTC相关联时,第一UCI的至少一部分、第二UCI的至少一部分和参考信号可以在正交频分复用(OFDM)符号内被复用。OFDM符号可以包括多个资源元素。参考信号、第一UCI的所述部分和第二UCI的所述部分可以被映射到OFDM符号的相应第一、第二和第三资源元素子集。在这样的场景中,第二资源元素子集可以比第三资源元素子集更靠近第一资源元素子集。
本文描述的系统、方法和手段还可以与以下相关联:基于与第一UCI相关联的特性,确定用于在上行链路控制信道中发送第一UCI的第一扩展因子,以及基于与第二UCI相关联的特性,确定用于在上行链路控制信道中发送第二UCI的第二扩展因子。当与第一UCI和第二UCI相关联的各个特性彼此不同时,第二扩展因子可以与第一扩展因子不同。一旦确定,第一扩展因子可用于在上行链路控制信道中发送第一UCI,第二扩展因子可用于在上行链路控制信道中发送第二UCI。
附图说明
可以从以下结合附图以示例方式给出的描述中获得更详细的理解,其中:
图1A是示出其中可以实施一个或多个公开的实施例的示例性通信系统的系统图;
图1B是示出了根据实施例的可在图1A中所示的通信系统内使用的示例性无线发射/接收单元(WTRU)的系统图;
图1C是示出了根据实施例的可在图1A中所示的通信系统内使用的示例性无线电接入网络(RAN)和示例性核心网络(CN)的系统图;
图1D是示出了根据实施例的可在图1A中所示的通信系统内使用的另一示例性RAN和另一示例性CN的系统图;
图2是示出了示例性控制信道构建处理的示图;
图3是示出了第一示例性自包含子帧的示图;
图4是示出了第二示例性自包含子帧的示图;
图5是示出了具有用于数据和控制信道的混合数字配置(numerology)的自包含子帧的第一示例的示图;
图6是示出了具有用于数据和控制信道的混合数字配置的自包含子帧的第二示例的示图;
图7是示出了另一示例性控制信道构建处理的示图;
图8是示出了示例性控制信号叠加和后处理操作的示图;
图9是示出了包括2个资源块的灵活新无线电资源元素群组设计的示例的示图;
图10是示出了复用控制信息的示例的示图;
图11是示出了在频域中的两个资源块上进行控制信道和资源符号复用的示例的示图。
具体实施方式
图1A是示出了可以实施所公开的实施例的例示通信系统100的示图。该通信系统100可以是为多个无线用户提供语音、数据、视频、消息传递、广播等内容的多址接入系统。该通信系统100可以通过共享包括无线带宽在内的系统资源而使多个无线用户能够接入此类内容。举例来说,通信系统100可以使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、零尾唯一字DFT扩展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、资源块过滤OFDM以及滤波器组多载波(FBMC)等等。
如图1A所示,通信系统100可以包括无线发射/接收单元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交换电话网络(PSTN)108、因特网110以及其他网络112,然而应该了解,所公开的实施例设想了任意数量的WTRU、基站、网络和/或网络部件。每一个WTRU 102a、102b、102c、102d可以是被配置成在无线环境中工作和/或通信的任何类型的设备。举例来说,任一WTRU 102a、102b、102c、102d都可被称为“站”和/或“STA”,其可以被配置成发射和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动订户单元、基于签约的单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型计算机、上网本、个人计算机、无线传感器、热点或Mi-Fi设备、物联网(IoT)设备、手表或其他可穿戴设备、头戴显示器(HMD)、车辆、无人机、医疗设备和应用(例如远程手术)、工业设备和应用(例如机器人和/或在工业和/或自动处理链环境中工作的其他无线设备)、消费类电子设备、以及在商业和/或工业无线网络上工作的设备等等。WTRU 102a、102b、102c、102d中的任意者可被可交换地称为UE。
通信系统100还可以包括基站114a和/或基站114b。每一个基站114a、114b可以是被配置成通过以无线方式与WTRU 102a、102b、102c、102d中的至少一个无线对接来促使其接入一个或多个通信网络(例如CN 106/115、因特网110、和/或其他网络112)的任何类型的设备。举例来说,基站114a、114b可以是基地收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、gNB、NR节点B、站点控制器、接入点(AP)、以及无线路由器等等。虽然每一个基站114a、114b都被描述成了单个部件,然而应该了解。基站114a、114b可以包括任何数量的互连基站和/或网络部件。
基站114a可以是RAN 104/113的一部分,并且所述RAN还可以包括其他基站和/或网络部件(未显示),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等等。基站114a和/或基站114b可被配置成在名为小区(未显示)的一个或多个载波频率上发射和/或接收无线信号。这些频率可以处于授权频谱、无授权频谱或是授权与无授权频谱的组合之中。小区可以为相对固定或者有可能随时间变化的特定地理区域提供无线服务覆盖。小区可被进一步分成小区扇区。例如,与基站114a相关联的小区可被分为三个扇区。由此,在一个实施例中,基站114a可以包括三个收发信机,也就是说,每一个收发信机都对应于小区的一个扇区。在实施例中,基站114a可以使用多输入多输出(MIMO)技术,并且可以为小区的每一个扇区使用多个收发信机。举例来说,通过使用波束成形,可以在期望的空间方向上发射和/或接收信号。
基站114a、114b可以通过空中接口116来与WTRU 102a、102b、102c、102d中的一者或多者进行通信,其中所述空中接口可以是任何适当的无线通信链路(例如射频(RF)、微波、厘米波、微米波、红外线(IR)、紫外线(UV)、可见光等等)。空中接口116可以使用任何适当的无线电接入技术(RAT)来建立。
更具体地说,如上所述,通信系统100可以是多址接入系统,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基站114a与WTRU 102a、102b、102c可以实施某种无线电技术,例如通用移动电信系统(UMTS)陆地无线电接入(UTRA),其中所述技术可以使用宽带CDMA(WCDMA)来建立空中接口115/116。WCDMA可以包括如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)之类的通信协议。HSPA可以包括高速下行链路(DL)分组接入(HSDPA)和/或高速UL分组接入(HSUPA)。
在实施例中,基站114a和WTRU 102a、102b、102c可以实施某种无线电技术,例如演进型UMTS陆地无线电接入(E-UTRA),其中所述技术可以使用长期演进(LTE)和/或先进LTE(LTE-A)和/或先进LTAPro(LTE-APro)来建立空中接口116。
在实施例中,基站114a和WTRU 102a、102b、102c可以实施某种无线电技术,例如NR无线电接入,其中所述无线电技术可以使用新型无线电(NR)来建立空中接口116。
在实施例中,基站114a和WTRU 102a、102b、102c可以实施多种无线电接入技术。举例来说,基站114a和WTRU 102a、102b、102c可以共同实施LTE无线电接入和NR无线电接入(例如使用双连接(DC)原理)。由此,WTRU 102a、102b、102c使用的空中接口可以通过多种类型的无线电接入技术和/或向/从多种类型的基站(例如eNB和gNB)发送的传输来表征。
在其他实施例中,基站114a和WTRU 102a、102b、102c可以实施以下的无线电技术,例如IEEE 802.11(即无线高保真(WiFi))、IEEE 802.16(全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信系统(GSM)、用于GSM演进的增强数据速率(EDGE)以及GSM EDGE(GERAN)等等。
图1A中的基站114b可以是无线路由器、家庭节点B、家庭e节点B或接入点,并且可以使用任何适当的RAT来促成局部区域中的无线连接,例如营业场所、住宅、车辆、校园、工业设施、空中走廊(例如供无人机使用)以及道路等等。在一个实施例中,基站114b与WTRU102c、102d可以通过实施IEEE 802.11之类的无线电技术来建立无线局域网(WLAN)。在实施例中,基站114b与WTRU 102c、102d可以通过实施IEEE 802.15之类的无线电技术来建立无线个人局域网(WPAN)。在再一实施例中,基站114b和WTRU 102c、102d可通过使用基于蜂窝的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-APro、NR等等)来建立微微小区或毫微微小区。如图1A所示,基站114b可以直连到因特网110。由此,基站114b不需要经由CN 106/115来接入因特网110。
RAN 104/113可以与CN 106/115进行通信,其中所述CN可以是被配置成向一个或多个WTRU 102a、102b、102c、102d提供语音、数据、应用和/或借助网际协议语音(VoIP)服务的任何类型的网络。该数据可以具有不同的服务质量(QoS)需求,例如不同的吞吐量需求、延时需求、容错需求、可靠性需求、数据吞吐量需求、以及移动性需求等等。CN 106/115可以提供呼叫控制、记账服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分发等等,和/或可以执行用户验证之类的高级安全功能。虽然在图1A中没有显示,然而应该了解,RAN104/113和/或CN 106/115可以直接或间接地和其他那些与RAN 104/113使用相同RAT或不同RAT的RAN进行通信。例如,除了与使用NR无线电技术的RAN 104/113相连之外,CN 106/115还可以与使用GSM、UMTS、CDMA2000、WiMAX、E-UTRA或WiFi无线电技术的别的RAN(未显示)通信。
CN 106/115还可以充当供WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可以包括提供简易老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用了公共通信协议(例如TCP/IP网际协议族中的传输控制协议(TCP)、用户数据报协议(UDP)和/或网际协议(IP))的全球性互联计算机网络设备系统。网络112可以包括由其他服务供应商拥有和/或运营的有线和/或无线通信网络。例如,网络112可以包括与一个或多个RAN相连的另一个CN,其中所述一个或多个RAN可以与RAN 104/113使用相同RAT或不同RAT。
通信系统100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如,WTRU 102a、102b、102c、102d可以包括在不同无线链路上与不同无线网络通信的多个收发信机)。例如,图1A所示的WTRU 102c可被配置成与可以使用基于蜂窝的无线电技术的基站114a通信,以及与可以使用IEEE 802无线电技术的基站114b通信。
图1B是示出了例示WTRU 102的系统图示。如图1B所示,WTRU 102可以包括处理器118、收发信机120、发射/接收部件122、扬声器/麦克风124、键盘126、显示器/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位系统(GPS)芯片组136以及其他周边设备138。应该了解的是,在保持符合实施例的同时,WTRU 102还可以包括前述部件的任何子组合。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、其他任何类型的集成电路(IC)以及状态机等等。处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理、和/或其他任何能使WTRU102在无线环境中工作的功能。处理器118可以耦合至收发信机120,收发信机120可以耦合至发射/接收部件122。虽然图1B将处理器118和收发信机120描述成单独组件,然而应该了解,处理器118和收发信机120也可以集成在一个电子组件或芯片中。
发射/接收部件122可被配置成经由空中接口116来发射或接收去往或来自基站(例如基站114a)的信号。举个例子,在一个实施例中,发射/接收部件122可以是被配置成发射和/或接收RF信号的天线。作为示例,在实施例中,发射/接收部件122可以是被配置成发射和/或接收IR、UV或可见光信号的放射器/检测器。在实施例中,发射/接收部件122可被配置成发射和/或接收RF和光信号。应该了解的是,发射/接收部件122可以被配置成发射和/或接收无线信号的任何组合。
虽然在图1B中将发射/接收部件122描述成是单个部件,但是WTRU 102可以包括任何数量的发射/接收部件122。更具体地说,WTRU 102可以使用MIMO技术。由此,在实施例中,WTRU 102可以包括两个或多个通过空中接口116来发射和接收无线电信号的发射/接收部件122(例如多个天线)。
收发信机120可被配置成对发射/接收部件122所要传送的信号进行调制,以及对发射/接收部件122接收的信号进行解调。如上所述,WTRU 102可以具有多模能力。因此,收发信机120可以包括允许WTRU 102借助多种RAT(例如NR和IEEE 802.11)来进行通信的多个收发信机。
WTRU 102的处理器118可以耦合到扬声器/麦克风124、键盘126和/或显示器/触摸板128(例如液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元),并且可以接收来自这些部件的用户输入数据。处理器118还可以向扬声器/麦克风124、键盘126和/或显示器/触摸板128输出用户数据。此外,处理器118可以从诸如不可移除存储器130和/或可移除存储器132之类的任何适当的存储器中存取信息,以及将信息存入这些存储器。不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或是其他任何类型的记忆存储设备。可移除存储器132可以包括订户身份模块(SIM)卡、记忆棒、安全数字(SD)记忆卡等等。在其他实施例中,处理器118可以从那些并非实际位于WTRU 102的存储器存取信息,以及将数据存入这些存储器,作为示例,此类存储器可以位于服务器或家庭计算机(未显示)。
处理器118可以接收来自电源134的电力,并且可被配置分发和/或控制用于WTRU102中的其他组件的电力。电源134可以是为WTRU 102供电的任何适当设备。例如,电源134可以包括一个或多个干电池组(如镍镉(Ni-Cd)、镍锌(Ni-Zn)、镍氢(NiMH)、锂离子(Li-ion)等等)、太阳能电池以及燃料电池等等。
处理器118还可以耦合到GPS芯片组136,该芯片组可被配置成提供与WTRU 102的当前位置相关的位置信息(例如经度和纬度)。作为来自GPS芯片组136的信息的补充或替换,WTRU 102可以经由空中接口116接收来自基站(例如基站114a、114b)的位置信息,和/或根据从两个或更多个附近基站接收的信号定时来确定其位置。应该了解的是,在保持符合实施例的同时,WTRU 102可以借助任何适当的定位方法来获取位置信息。
处理器118还可以耦合到其他周边设备138,其中所述周边设备可以包括提供附加特征、功能和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,周边设备138可以包括加速度计、电子指南针、卫星收发信机、数码相机(用于照片和/或视频)、通用串行总线(USB)端口、振动设备、电视收发信机、免提耳机、
Figure BDA0003659747860000101
模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器、虚拟现实和/或增强现实(VR/AR)设备、以及活动跟踪器等等。周边设备138可以包括一个或多个传感器,所述传感器可以是以下的一个或多个:陀螺仪、加速度计、霍尔效应传感器、磁强计、方位传感器、邻近传感器、温度传感器、时间传感器、地理位置传感器、高度计、光传感器、触摸传感器、磁力计、气压计、手势传感器、生物测定传感器和/或湿度传感器。
WTRU 102可以包括全双工无线电设备,其中对于该无线电设备来说,一些或所有信号(例如与用于UL(例如对传输而言)和下行链路(例如对接收而言)的特定子帧相关联)的接收或传输可以是并发和/或同时的。全双工无线电设备可以包括借助于硬件(例如扼流线圈)或是凭借处理器(例如单独的处理器(未显示)或是凭借处理器118)的信号处理来减小和/或基本消除自干扰的干扰管理单元。在实施例中,WTRU 102可以包括传送和接收一些或所有信号(例如与用于UL(例如对传输而言)或下行链路(例如对接收而言)的特定子帧相关联)的半双工无线电设备。
图1C是示出了根据实施例的RAN 104和CN 106的系统图示。如上所述,RAN 104可以在空中接口116上使用E-UTRA无线电技术来与WTRU 102a、102b、102c进行通信。所述RAN104还可以与CN 106进行通信。
RAN 104可以包括e节点B 160a、160b、160c,然而应该了解,在保持符合实施例的同时,RAN 104可以包括任何数量的e节点B。每一个e节点B 160a、160b、160c都可以包括在空中接口116上与WTRU 102a、102b、102c通信的一个或多个收发信机。在一个实施例中,e节点B 160a、160b、160c可以实施MIMO技术。由此,举例来说,e节点B 160a可以使用多个天线来向WTRU 102a发射无线信号,和/或以及接收来自WTRU 102a的无线信号。
每一个e节点B 160a、160b、160c都可以关联于一个特定小区(未显示),并且可被配置成处理无线电资源管理决策、切换决策、UL和/或DL中的用户调度等等。如图1C所示,e节点B 160a、160b、160c彼此可以通过X2接口进行通信。
图1C所示的CN 106可以包括移动性管理实体(MME)162、服务网关(SGW)164以及分组数据网络(PDN)网关(或PGW)166。虽然前述的每一个部件都被描述成是CN 106的一部分,然而应该了解,这其中的任一部件都可以由CN运营商之外的实体拥有和/或运营。
MME 162可以经由S1接口连接到RAN 104中的每一个e节点B 160a、160b、160c,并且可以充当控制节点。例如,MME 142可以负责验证WTRU 102a、102b、102c的用户,执行承载激活/去激活处理,以及在WTRU 102a、102b、102c的初始附着过程中选择特定的服务网关等等。MME 162还可以提供一个用于在RAN 104与使用其他无线电技术(例如GSM和/或WCDMA)的其他RAN(未显示)之间进行切换的控制平面功能。
SGW 164可以经由S1接口连接到RAN 104中的每一个e节点B 160a、160b、160c。SGW164通常可以路由和转发去往/来自WTRU 102a、102b、102c的用户数据分组。并且,SGW 164还可以执行其他功能,例如在eNB间的切换过程中锚定用户平面,在DL数据可供WTRU 102a、102b、102c使用时触发寻呼处理,以及管理并存储WTRU 102a、102b、102c的上下文等等。
SGW 164可以连接到PGW 166,所述PGW可以为WTRU 102a、102b、102c提供分组交换网络(例如因特网110)接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。
CN 106可以促成与其他网络的通信。例如,CN 106可以为WTRU 102a、102b、102c提供电路交换网络(例如PSTN 108)接入,以便促成WTRU 102a、102b、102c与传统的陆线通信设备之间的通信。例如,CN 106可以包括一个IP网关(例如IP多媒体子系统(IMS)服务器)或与之进行通信,并且该IP网关可以充当CN 106与PSTN 108之间的接口。此外,CN 106可以为WTRU 102a、102b、102c提供针对其他网络112的接入,其中该网络可以包括其他服务供应商拥有和/或运营的其他有线和/或无线网络。
虽然在图1A-1D中将WTRU描述成了无线终端,然而应该想到的是,在某些典型实施例中,此类终端与通信网络可以使用(例如临时或永久性)有线通信接口。
在典型实施例中,所述其他网络112可以是WLAN。
采用基础架构基本服务集(BSS)模式的WLAN可以具有用于所述BSS的接入点(AP)以及与所述AP相关联的一个或多个站(STA)。所述AP可以接入或是对接到分布式系统(DS)或是将业务量送入和/或送出BSS的别的类型的有线/无线网络。源于BSS外部且去往STA的业务量可以通过AP到达并被递送至STA。源自STA且去往BSS外部的目的地的业务量可被发送至AP,以便递送到相应的目的地。处于BSS内部的STA之间的业务量可以通过AP来发送,例如源STA可以向AP发送业务量并且AP可以将业务量递送至目的地STA。处于BSS内部的STA之间的业务量可被认为和/或称为点到点业务量。所述点到点业务量可以在源与目的地STA之间(例如在其间直接)用直接链路建立(DLS)来发送。在某些典型实施例中,DLS可以使用802.11e DLS或802.11z通道化DLS(TDLS)。使用独立BSS(IBSS)模式的WLAN可不具有AP,并且处于所述IBSS内部或是使用所述IBSS的STA(例如所有STA)彼此可以直接通信。在这里,IBSS通信模式有时可被称为“自组织”通信模式。
在使用802.11ac基础设施工作模式或类似的工作模式时,AP可以在固定信道(例如主信道)上传送信标。所述主信道可以具有固定宽度(例如20MHz的带宽)或是借助信令动态设置的宽度。主信道可以是BSS的工作信道,并且可被STA用来与AP建立连接。在某些典型实施例中,所实施的可以是具有冲突避免的载波感测多址接入(CSMA/CA)(例如在802.11系统中)。对于CSMA/CA来说,包括AP在内的STA(例如每一个STA)可以感测主信道。如果特定STA感测到/检测到和/或确定主信道繁忙,那么所述特定STA可以回退。在指定的BSS中,在任何指定时间可有一个STA(例如只有一个站)进行传输。
高吞吐量(HT)STA可以使用宽度为40MHz的信道来进行通信(例如借助于将宽度为20MHz的主信道与宽度为20MHz的相邻或不相邻信道相结合来形成宽度为40MHz的信道)。
甚高吞吐量(VHT)STA可以支持宽度为20MHz、40MHz、80MHz和/或160MHz的信道。40MHz和/或80MHz信道可以通过组合连续的20MHz信道来形成。160MHz信道可以通过组合8个连续的20MHz信道或者通过组合两个不连续的80MHz信道(这种组合可被称为80+80配置)来形成。对于80+80配置来说,在信道编码之后,数据可被传递并经过一个分段解析器,所述分段解析器可以将数据非成两个流。在每一个流上可以单独执行反向快速傅里叶变换(IFFT)处理以及时域处理。所述流可被映射在两个80MHz信道上,并且数据可以由执行传输的STA来传送。在执行接收的STA的接收机上,用于80+80配置的上述操作可以是相反的,并且组合数据可被发送至介质接入控制(MAC)。
802.11af和802.11ah支持1GHz以下的工作模式。与802.11n和802.11ac相比,在802.11af和802.11ah中使用信道工作带宽和载波有所缩减。802.11af在TV白空间(TVWS)频谱中支持5MHz、10MHz和20MHz带宽,并且802.11ah支持使用非TVWS频谱的1MHz、2MHz、4MHz、8MHz和16MHz带宽。根据某些典型实施例,802.11ah可以支持仪表类型控制/机器类型通信(例如宏覆盖区域中的MTC设备)。MTC可以具有某种能力,例如包含了支持(例如只支持)某些和/或有限带宽在内的受限能力。MTC设备可以包括电池,并且该电池的电池寿命高于阈值(例如用于保持很长的电池寿命)。
对于可以支持多个信道和信道带宽的WLAN系统(例如,802.11n、802.11ac、802.11af以及802.11ah)来说,所述WLAN系统包括一个可被指定成主信道的信道。所述主信道的带宽可以等于BSS中的所有STA所支持的最大公共工作带宽。主信道的带宽可以由某一个STA设置和/或限制,其中所述STA源自在支持最小带宽工作模式的BSS中工作的所有STA。在关于802.11ah的示例中,即使BSS中的AP和其他STA支持2MHz、4MHz、8MHz、16MHz和/或其他信道带宽工作模式,但对支持(例如只支持)1MHz模式的STA(例如MTC类型的设备)来说,主信道的宽度可以是1MHz。载波感测和/或网络分配矢量(NAV)设置可以取决于主信道的状态。如果主信道繁忙(例如因为STA(其只支持1MHz工作模式)对AP进行传输),那么即使大多数的频带保持空闲并且可供使用,也可以认为整个可用频带繁忙。
在美国,可供802.11ah使用的可用频带是902MHz到928MHz。在韩国,可用频带是917.5MHz到923.5MHz。在日本,可用频带是916.5MHz到927.5MHz。依照国家码,可用于802.11ah的总带宽是6MHz到26MHz。
图1D是示出了根据实施例的RAN 113和CN 115的系统图示。如上所述,RAN 113可以在空中接口116上使用NR无线电技术来与WTRU 102a、102b、102c进行通信。RAN 113还可以与CN 115进行通信。
RAN 113可以包括gNB 180a、180b、180c,但是应该了解,在保持符合实施例的同时,RAN 113可以包括任何数量的gNB。每一个gNB 180a、180b、180c都可以包括一个或多个收发信机,以便通过空中接口116来与WTRU102a、102b、102c通信。在一个实施例中,gNB180a、180b、180c可以实施MIMO技术。例如,gNB 180a、180b可以使用波束成形处理来向和/或从gNB 180a、180b、180c发射和/或接收信号。由此,举例来说,gNB 180a可以使用多个天线来向WTRU 102a发射无线信号,和/或接收来自WTRU 102a的无线信号。在实施例中,gNB180a、180b、180c可以实施载波聚合技术。例如,gNB 180a可以向WTRU 102a传送多个分量载波(未显示)。这些分量载波的一个子集可以处于无授权频谱上,而剩余分量载波则可以处于授权频谱上。在实施例中,gNB 180a、180b、180c可以实施协作多点(CoMP)技术。例如,WTRU 102a可以接收来自gNB 180a和gNB 180b(和/或gNB180c)的协作传输。
WTRU 102a、102b、102c可以使用与可扩缩数字配置相关联的传输来与gNB 180a、180b、180c进行通信。例如,对于不同的传输、不同的小区和/或不同的无线传输频谱部分来说,OFDM符号间隔和/或OFDM子载波间隔可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可扩缩长度的子帧或传输时间间隔(TTI)(例如包含了不同数量的OFDM符号和/或持续变化的绝对时间长度)来与gNB 180a、180b、180c进行通信。
gNB 180a、180b、180c可被配置成与采用独立配置和/或非独立配置的WTRU 102a、102b、102c进行通信。在独立配置中,WTRU 102a、102b、102c可以在不接入其他RAN(例如e节点B 160a、160b、160c)的情况下与gNB 180a、180b、180c进行通信。在独立配置中,WTRU102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作为移动锚点。在独立配置中,WTRU 102a、102b、102c可以使用无授权频带中的信号来与gNB180a、180b、180c进行通信。在非独立配置中,WTRU 102a、102b、102c会在与别的RAN(例如e节点B 160a、160b、160c)进行通信/相连的同时与gNB 180a、180b、180c进行通信/相连。举例来说,WTRU 102a、102b、102c可以通过实施DC原理而以基本同时的方式与一个或多个gNB 180a、180b、180c以及一个或多个e节点B 160a、160b、160c进行通信。在非独立配置中,e节点B 160a、160b、160c可以充当WTRU 102a、102b、102c的移动锚点,并且gNB 180a、180b、180c可以提供附加的覆盖和/或吞吐量,以便为WTRU 102a、102b、102c提供服务。
每一个gNB 180a、180b、180c都可以关联于特定小区(未显示),并且可以被配置成处理无线电资源管理决策、切换决策、UL和/或DL中的用户调度、支持网络切片、实施双连接性、实施NR与E-UTRA之间的互通处理、路由去往用户平面功能(UPF)184a、184b的用户平面数据、以及路由去往接入和移动性管理功能(AMF)182a、182b的控制平面信息等等。如图1D所示,gNB 180a、180b、180c彼此可以通过X2接口通信。
图1D所示的CN 115可以包括至少一个AMF 182a、182b,至少一个UPF184a、184b,至少一个会话管理功能(SMF)183a、183b,并且有可能包括数据网络(DN)185a、185b。虽然每一个前述部件都被描述了CN 115的一部分,但是应该了解,这其中的任一部件都可以被CN运营商之外的其他实体拥有和/或运营。
AMF 182a、182b可以经由N2接口连接到RAN 113中的一者或多者gNB180a、180b、180c,并且可以充当控制节点。例如,AMF 182a、182b可以负责验证WTRU 102a、102b、102c的用户,支持网络切片(例如处理具有不同需求的不同PDU会话),选择特定的SMF 183a、183b,管理注册区域,终止NAS信令,以及移动性管理等等。AMF 182a、1823b可以使用网络切片处理,以便基于WTRU 102a、102b、102c使用的服务类型来定制为WTRU102a、102b、102c提供的CN支持。举例来说,针对不同的使用情况,可以建立不同的网络切片,所述使用情况例如为依赖于超可靠低延时(URLLC)接入的服务、依赖于增强型大规模移动宽带(eMBB)接入的服务、和/或用于机器类型通信(MTC)接入的服务等等。AMF 162可以提供用于在RAN 113与使用其他无线电技术(例如LTE、LTE-A、LTE-APro和/或诸如WiFi之类的非3GPP接入技术)的其他RAN(未显示)之间切换的控制平面功能。
SMF 183a、183b可以经由N11接口连接到CN 115中的AMF 182a、182b。SMF 183a、183b还可以经由N4接口连接到CN 115中的UPF 184a、184b。SMF 183a、183b可以选择和控制UPF 184a、184b,并且可以通过UPF 184a、184b来配置业务量路由。SMF 183a、183b可以执行其他功能,例如管理和分配UE IP地址,管理PDU会话,控制策略实施和QoS,以及提供下行链路数据通知等等。PDU会话类型可以是基于IP的,不基于IP的,以及基于以太网的等等。
UPF 184a、184b可以经由N3接口连接到RAN 113中的一者或多者gNB180a、180b、180c,这样可以为WTRU 102a、102b、102c提供对分组交换网络(例如因特网110)的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信,UPF 184、184b可以执行其他功能,例如路由和转发分组、实施用户平面策略、支持多宿主PDU会话、处理用户平面QoS、缓冲下行链路分组、以及提供移动性锚定处理等等。
CN 115可以促成与其他网络的通信。例如,CN 115可以包括或者可以与充当CN115与PSTN 108之间的接口的IP网关(例如IP多媒体子系统(IMS)服务器)进行通信。此外,CN 115可以为WTRU 102a、102b、102c提供针对其他网络112的接入,这其中可以包括其他服务供应商拥有和/或运营的其他有线和/或无线网络。在一个实施例中,WTRU 102a、102b、102c可以经由对接到UPF 184a、184b的N3接口以及介于UPF 184a、184b与DN 185a、185b之间的N6接口并通过UPF 184a、184b连接到本地数据网络(DN)185a、185b。
有鉴于图1A-1D以及关于图1A-1D的相应描述,在这里对照以下的一项或多项描述的一个或多个或所有功能可以由一个或多个仿真设备(未显示)来执行:WTRU 102a-d、基站114a-b、e节点B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b和/或这里描述的其他任何设备(一个或多个)。这些仿真设备可以是被配置成模拟这里一个或多个或所有功能的一个或多个设备。举例来说,这些仿真设备可用于测试其他设备和/或模拟网络和/或WTRU功能。
仿真设备可被设计成在实验室环境和/或运营商网络环境中实施关于其他设备的一项或多项测试。例如,所述一个或多个仿真设备可以在被完全或部分作为有线和/或无线通信网络一部分实施和/或部署的同时执行一个或多个或所有功能,以便测试通信网络内部的其他设备。所述一个或多个仿真设备可以在被临时作为有线和/或无线通信网络的一部分实施/部署的同时执行一个或多个或所有功能。所述仿真设备可以直接耦合到别的设备以执行测试,和/或可以使用空中无线通信来执行测试。
所述一个或多个仿真设备可以在未被作为有线和/或无线通信网络一部分实施/部署的同时执行包括所有功能在内的一个或多个功能。例如,所述仿真设备可以在测试实验室和/或未被部署(例如测试)的有线和/或无线通信网络的测试场景中使用,以便实施关于一个或多个组件的测试。所述一个或多个仿真设备可以是测试设备。所述仿真设备可以使用直接的RF耦合和/或借助了RF电路(作为示例,该电路可以包括一个或多个天线)的无线通信来发射和/或接收数据。
可以(例如,在NR中)使用循环前缀正交频分复用(CP-OFDM)用于DL和UL(例如,对于eMBB和URLLC,高达40GHz)。控制信道设计可以跨DL和UL而统一。可以为控制信道提供信号结构,其可以增强UL和DL之间的共性。统一控制信道设计方法可以增强DL和UL控制信道复用(例如,在自包含子帧中)的效率。统一控制信道设计方法可以简化WTRU到WTRU(WTRU-to-WTRU)侧链路收发信机设计。统一控制信道设计方法可以促进基于相互性(reciprocity)的通信技术(例如,可以利用UL和DL之间的共性的技术)。统一控制信道设计方法可以减少标准化工作。
在新无线电中,可以支持多种应用。可以实施支持可伸缩有效载荷的灵活控制信令设计(例如,用于前向兼容性)。该灵活控制信道设计方法可以避免设计分段(例如,因为每个控制信道格式可能不再需要专用的时频资源)。
物理下行链路控制信道(PDCCH)(例如,在LTE中)可以使用LTE子帧中的前三个或四个OFDM符号。该设计可能导致容量有限、缺乏对小区间干扰消除(ICIC)和/或协作多点传输/接收(CoMP)的支持、大开销(例如,每个OFDM符号可能增加大约7%的开销)、有限的有效载荷大小和/或低用户吞吐量(例如,由于高阻塞概率)。
增强型物理下行链路控制信道(EDPCCH)(例如,在高级LTE中)可以在数据和控制之间划分资源(例如,使用频分双工(FDD))。在为控制信道指派的频率频调(tone)中,EDPCCH可以覆盖整个子帧(例如,替代开始的三个或四个OFDM符号)。
在EPDCCH中利用FDD可以导致更高和/或可扩展的容量、支持频域小区间干扰协调、改进的空间重用(例如,MIMO)、支持波束成形和分集、支持频率选择性调度、和/或与传统无线发射/接收单元(WTRU)在同一载波上的共存。
对于URLLC,可以增加控制信道的可靠性(例如,以符合URLLC的低错误率要求)。对延迟可能有严格的要求。对于mMTC,可以放宽可靠性要求(例如,对于控制信道)。对于服务于大量用户的mMTC,控制信道区域的大小可能增加并且阻塞的可能性可能增加。对于eMBB,新无线电可以扩展到较高的频带,这可能对控制信道设计有影响。在较高频带中存在更多衰减的情况下,可以通过波束成形来改善信噪比(SNR)。传输/接收点(TRP)处的天线端口可用于更好的波束成形。
参考符号(例如,诸如复数)可以用作导频。参考符号可以是固定的和/或已知的。参考信号可以表示可以在处理一个或多个参考符号之后生成的时域信号。例如,在OFDM中,参考符号可以用于表示馈送到离散傅里叶逆变换(IDFT)块的复数,而参考信号可以用于表示该IDFT块的输出。
统一控制信道设计可以应用于无线通信系统的上行链路(UL)和下行链路(DL)。例如当采用CP-OFDM作为UL和DL两者的波形时(例如,对于小于40GHz的频率),这种统一设计可能是合适的。
统一控制信道设计可降低复杂性。使用这种设计,基站和WTRU可以使用类似的收发信机结构。图2示出了示例性控制信道构建处理,其可以包括信道编码、调制、扩展、加扰、层映射和/或波束成形、和/或新无线电资源元素群组(NR-REG)映射。
灵活控制信道复用可以应用于自包含时隙(例如自包含子帧)。利用自包含时隙(例如,子帧),可以在一个时隙(例如,一个子帧、一个TTI等)中完成传输(例如,数据传输)和/或应答事务。诸如自包含子帧的自包含时隙可以包括一个或多个参考信号、控制信道信息、和/或数据等。在示例中,在自包含时隙内,可以在数据之前发送一个或多个参考信号和/或控制信道信息。通过使用自包含子帧,可以减少延时(例如,减少到子帧长度的一小部分)。
图3示出了示例性自包含子帧(例如,其可以在下行链路和/或上行链路中使用)。示例性子帧可以包括多个符号(例如,CP-OFDM符号)。该子帧可以用于携带DL和UL信息。例如,第一新无线电物理混合自动重传请求(HARQ)指示符信道(NR-PHICH)可以在子帧的第一个符号中发送(例如,朝向子帧的开始),并且可以携带ACK/NACK响应,该响应对应于来自先前子帧的新无线电物理上行链路共享信道(NR-PUSCH)传输。可以在所述子帧的第二符号中发送携带控制信息的第一NR-PDCCH。可以在所述子帧的第三符号中(例如,朝向子帧的末尾)发送第二NR-PHICH,其可以携带与当前子帧中的NR-PUSCH传输相对应的ACK/NACK响应。所述子帧还可以包括一个或多个参考信号符号、和/或一个或多个间隙。可以在DL和UL之间预算(例如,保留)所述一个或多个间隙,以满足WTRU或基站处的定时要求(例如,提供足够的处理时间)。每个间隙可以等于大约一个OFDM符号持续时间。
图4示出了可以支持各种使用场景(例如,可能是所有使用场景)的另一示例性自包含子帧。
控制信道(例如,NR-PHICH和/或NR-PDCCH)可以是方向不可知的,并且可以在上行链路和/或下行链路中发送。对于下行链路和上行链路,可以采用统一的和/或灵活的设计(例如,用于控制信道结构、子帧结构等)。例如,统一和/或灵活的设计可以跨越整个传输带宽或整个传输带宽的一部分。统一和/或灵活的设计可以允许数据和/或控制信道的频分复用。例如,灵活子帧设计可以允许控制、数据和/或参考符号或信号的时分和/或频分复用。
图4示出了可以支持各种使用场景的另一示例性自包含子帧。
对于新无线电,可以将控制信道(例如,NR-PHICH)设计为携带HARQ ACK/NACK。该HARQ ACK/NACK可以响应于UL NR-PUSCH传输或DL新无线电物理下行链路共享信道(PDSCH)传输。在前一示例情况下,可以在DL中发送所述ACK/NACK以支持UL HARQ操作。在后一种情况下,可以在UL中发送所述ACK/NACK以支持DL HARQ操作。在示例性实施例中,成功传输可以与肯定应答(ACK)相关联(例如,编码为二进制“1”)。非成功传输可以与否定ACK(NACK)相关联(例如,编码为二进制“0”)。如上所示,图3中示出了14-符号(14-symbol)自包含子帧中的NR-PHICH的示例性映射。可以在DL和UL之间或者在UL和DL之间预算(例如,保留)一间隙(例如,等于大约一个OFDM符号持续时间),以满足WTRU或基站处的定时要求(例如,到为所需的处理时间提供足够的时间)。
示例性控制信息可以通过以下而被说明。控制信道(例如,NR-PHICH)可以携带与PDSCH或PUSCH传输相对应的HARQ ACK/NACK响应。可以在发送PDSCH或PUSCH传输的相同子帧中发送HARQ ACK/NACK响应(例如,针对自包含子帧),或者可以在不同子帧中发送HARQACK/NACK响应(例如,针对非自包含子帧)。例如,在图3中,在DL的第一符号(例如,OFDM符号)中发送的NR-PHICH可以携带与来自先前子帧的NR-PUSCH传输相对应的ACK/NACK响应。在UL的第二符号(例如,OFDM符号)上发送的NR-PHICH可以携带与当前子帧中的NR-PDSCH传输相对应的ACK/NACK响应。注意,在UL中发送的NR-PHICH仅在这里作为示例。这里描述的技术也可以应用于其他控制信道,并且NR-PHICH在本文中可以被互换地称为新无线电物理上行链路控制信道(NR-PUCCH)。
作为HARQ ACK/NACK的附加或替代,可以(例如,由WTRU)使用本文描述的NR-PHICH来发送信息(例如,任何控制信息)。例如,NR-PHICH可以用于在UL中发送调度请求(SR)。该调度请求可以包括一个或多个比特的信息。在示例中(例如,在基于波束的设计中),WTRU(例如,每个WTRU)可以向TRP发送保持活动或轮询信息,使得该TRP可以知道是否继续扫描特定波束。
可以利用可缩放的和/或混合的数字配置来发送控制信道。例如,携带控制信息的NR-PHICH和/或NR-PDCCH可以以与携带数据的NR-PDSCH或NR-PUSCH不同的数字配置发送。图5可以示出具有用于数据和控制信道的混合数字配置的示例性自包含子帧。在该示例中,可以以半符号持续时间发送NR-PHICH和NR-PDCCH,而可以使用完整符号持续时间发送NR-PDSCH。NR-PHICH和NR-PDCCH的子载波间隔可以是NR-PDSCH的子载波间隔的两倍。例如,30kHz子载波间隔可以用于NR-PHICH和NR-PDCCH。15kHz子载波间隔可以用于NR-PDSCH。通过这种方法,可以增加数据吞吐量。例如,如图5所示,与图3中所示的示例(其中单个数字配置用于数据和控制信道传输)相比,子帧或时隙内(例如,在每个子帧或时隙内)的两个附加OFDM符号可以用于数据传输(例如,用于NR-PDSCH的传输)。
携带控制信息的NR-PHICH和/或NR-PDCCH传输可以在子帧内以不同的数字配置发送。例如,在子帧的开始处在DL中发送的NR-PHICH可以使用比在该子帧的另一部分中发送的其他控制或数据信道更大的OFDM符号(例如,具有更小的子载波间隔)。例如,这样的NR-PHICH可以携带与NR-PUSCH传输相对应的ACK/NACK。较大的循环前缀(CP)长度可以用于使NR-PHICH传输(例如,在子帧的开始处执行的NR-PHICH传输)对干扰更鲁棒。该干扰可例如由于超出CP长度的过度延迟而产生。在子帧结束时在UL中发送的NR-PHICH(例如,这种NR-PHICH可以携带与NR-PDSCH传输相对应的ACK/NACK)可以使用较小的OFDM符号(例如,具有较大的子载波间隔)。使用这里描述的方法,WTRU和基站周转可以是有效的(例如,对于至少低延时的应用)。
图6显示了另一示例,其示出了在自包含子帧或时隙内对控制信道使用可缩放(例如,灵活)数字配置的概念。在该示例中,在子帧的第一部分中进行的传输可以使用与在子帧的第二部分中进行的传输不同的数字配置。例如,在自包含子帧的末端附近发送的参考信号和/或控制信道传输(诸如NR-PHICH)可以使用与在子帧的开始附近发送的NR-PHICH和/或NR-PDCCH不同的数字配置(例如,在符号持续时间和/或子载波间隔方面)。
统一控制信道(例如,NR-PHICH)设计可以用于UL和DL。示例性NR-PHICH构建处理可以在图7中示出。该结构可以基于图2中所示的示例性处理。在图2和7中所示的示例中的任一个或两个中,可以(例如,出于可靠性目的)使用重复码来实施信道编码。也可以使用其他信道码。
可以通过编码、重复和/或调制等来改善控制信道的可靠性。灵活的重复编码技术可用于基于控制信息的一个或多个特性来编码该控制信息。这些特性可以包括例如与所述控制信息相关联的使用场景(例如,URLLC、eMBB或mMTC)、延时要求或有效载荷大小。例如,控制信息比特(例如,ACK/NACK比特)可以通过重复因子n重复,其中n可以是可配置的和/或基于控制比特的可靠性要求来确定的。例如,在期望较高可靠性的使用场景(例如,URLLC应用)中,可以为DL和UL配置较高的重复因子。用于DL和UL的重复因子可以相同或可以不同。可以例如基于与DL或UL链路相关联的相应最大耦合损耗(MCL)而独立地(例如,单独地)配置所述重复因子。
可以调制比特序列。例如,可以在重复之后执行该调制。可以使用BPSK或其他合适的调制技术来执行所述调制。在要发送多于一个控制信息比特的示例情况下(例如,对应于两个传输块的两个ACK/NACK比特或对应于四个波束的两个控制比特),所述控制信息比特可以被调制(例如,使用QPSK)并之后被重复。可以修改传输链中的某些功能块(例如,图7中所示的重复和调制块)的顺序。例如,当存在对应于四个波束的两个控制比特时,图7中所示的重复块和调制块的相应位置可被交换。
可以通过扩展来(例如,在WTRU处)执行数据和/或控制信息的复用。例如,在重复和调制之后,可以使用大小为m的正交码来扩展调制符号。所述扩展可以使多个WTRU的控制信号(例如,ACK/NACK)能够被复用(例如,以提高资源利用率)。与扩展相关联的参数(例如,正交码的大小m)可以确定系统中的控制信道(例如,NR-PHICH)的最大容量。可以基于传输的一个或多个特性(诸如与所述传输相关联的使用场景(例如,URLLC、eMBB或mMTC)、有效载荷大小和/或延时要求)来配置这些参数。例如,在可能期望许多用户的使用场景(例如,mMTC应用)中,可以增加扩展码长度,例如以允许对可以共享时频资源的大量用户的传输进行复用。
扩展序列可以是实数(real)或复数(complex)。例如,复数扩展序列可以用于BPSK调制控制比特(例如,ACK/NACK比特)。在这样的示例中,可以增加(例如,加倍)可以在共享时频资源上复用的用户传输的数量,因为该用户传输可以在同相和正交分量上被复用。对于某些使用场景(例如,mMTC应用),指派给DL和/或UL的传输块的数量可以限于一个。可以在这些场景中使用具有复数扩展的BPSK调制来增加控制信道(例如,NR-PHICH)的用户复用容量。
重复、调制和/或扩展的功能可被合并(例如,通过利用互补的扩展序列对而被合并到一个功能块中)。对于WTRU,第一扩展序列可以用于发信号通知ACK,第二(例如,另一个)扩展序列可以用于发信号通知NACK。例如,基于传输的使用场景和/或其他特性,与该传输相关联的扩展序列的长度可以是可配置的。例如,可以根据与可靠性和/或用户复用容量相关联的要求来确定扩展序列的长度。较大的序列长度可能导致处理增益和/或较高的用户复用容量。互补序列的示例可以是格雷(Golay)序列,其使用可以降低计算复杂度。通过利用格雷序列,可以通过利用接收机处的一个(例如,仅一个)相关器来检测两个互补扩展序列。在一个示例中,两个互补的最大长度序列(m序列)可以分别应用于信号ACK和NACK。
应注意,互补序列可用于多种目的。例如,互补扩展序列可以用于接收机处的信道估计(例如,除了携带ACK/NACK信息之外,所述序列可以隐式地充当参考符号)。该方法可以减少参考信号开销和/或增加传输吞吐量。
来自多个用户的控制信号(例如,ACK/NACK信号)可以被叠加(例如,在基站处和/或用于DL传输),并且被发送用于后处理。该后处理可以包括对叠加(例如,组合)信号的加扰、层映射、预编码和/或波束成形。图8示出了控制信号叠加和后处理的示例。使用K个正交序列s(k)叠加K个ACK/NACK信号可能导致以下结果:
Figure BDA0003659747860000261
其中c可以是要被映射在一个或多个(例如,三个)资源元素群组(REG)上的(L×1)复合信号矢量。d(k)可以表示第k个用户的BPSK调制的HARQ ACK/NACK符号。
对于重复因子为n且扩展因子为长度为m的系统,复合信号矢量的总长度L可以是L=m×n。等式(1)可以以矩阵矢量形式重写为:
c=Sd 等式(2)
其中S=[s(0),s(1),…,s(K-1)]可以是(L×K)扩展矩阵。d=[d(0),d(1),…,d(K-1)]T可以表示包含在共享时间频率资源上复用的K个ACK/NACK符号的矢量。
在DL中,在形成复合信号c之后,该信号c的n个实例可以被级联和加扰(例如,利用小区特定或波束特定的加扰序列),和/或在该实例被映射到n个NR-REG之前被层映射和预编码。
可以将灵活的资源元素群组设计应用于控制信道。NR-REG(例如,每个NR-REG)可以由OFDM符号的m个连续资源元素(RE)形成。NR-REG可以由OFDM符号的m个非连续RE形成。与NR-REG相关联的参数(诸如NR-REG的长度和每子帧或时隙的NR-REG的数量)可以是可配置的。例如,该配置可以根据预期的应用目的(例如,eMBB、URLLC和/或mMTC)来设置。NR-REG可以在所分配的带宽上被扩展以用于控制信道传输(例如,诸如NR-PHICH传输)。可以使用该方法获取频率分集增益。为控制信道(例如,诸如NR-PHICH)分配的带宽可以是整个传输带宽或该传输带宽的子集。
例如,基于使用场景(例如,eMBB、URLLC、mMTC等),用于子帧中的NR-PHICH传输的OFDM符号的数量可以是可配置的。可以在多个资源块(RB)、多个OFDM符号和/或多个波束上跨频域和/或时域映射NR-REG。
图9示出了用于各种使用场景的灵活NR-REG设计的示例。在该示例中示出了包括两个资源块的NR-REG,每个资源块具有12个子载波。如图所示,对于eMBB应用,重复因子(例如,表示为n)和扩展因子(例如,表示为m)可以等于2。对于mMTC应用(例如,其可具有实现较高用户复用容量的设计目标),重复因子可以是1(例如,n=1)并且扩展因子可以等于4(例如,m=4)。这可能意味着当在给定示例中应用复数扩展序列时,可以在相同的四个RE上复用多达八个用户(例如,这可以是该示例中所示的eMBB应用的双倍)。对于URLLC应用(例如,其可具有较高可靠性的设计目标),重复因子可以增加到四(例如,出于鲁棒性目的),这可以导致针对每个ACK或NACK发送正交码的四个实例。URLLC应用的扩展因子可以保持为2,以减少可能由例如码复用引起的用户间干扰。较大的扩展因子可能导致较高的用户间干扰和较低的可靠性。
专用于控制信息传输的NR-REG可以在相同或不同的频率子带(一个或多个)上、在相同或不同的OFDM符号(一个或多个)上、在相同或不同的资源块(一个或多个)上和/或在相同或不同的波束(一个或多个)上被复用。图10示出了在相同子带和一个OFDM符号上复用控制信息(例如,诸如用于各种应用的HARQ ACK/NACK)的示例。如图所示,可以使用不同的重复因子(例如,表示为n)和/或不同的扩展因子(例如,表示为m)来发送与eMBB、mMTC和URLLC应用相关联的控制信息。所述OFDM符号可以包括多个子载波(例如,24个子载波),并且用于所述各种应用的控制信息可以被映射到OFDM符号的不同子载波。该映射可以基于(例如,作为其函数)与不同控制信息相关联的相应重复因子和/或扩展因子而被执行。例如,可以使用重复因子4和扩展序列长度1来定义第一NR-REG,而可以使用重复因子1和扩展序列长度4来定义第二NR-REG。使用此示例性方法,可以提高专用于控制信息传输的资源的利用效率。
NR-REG可以在频域和/或时域中与参考符号复用。图11示出了频域中的2个资源块上进行控制信道和参考符号复用的示例。注意,在该示例中,两个资源元素专用于每个资源块的参考符号。在其他实施方式中,不同数量的资源元素可以专用于参考符号。
图11中的示例示出了可以使用不同的重复因子(例如,表示为n)和/或不同的扩展因子(例如,表示为m)来发送与eMBB、mMTC或URLLC应用相关联的控制信息。可以复用各种控制信息(例如,在一个OFDM符号上和/或映射到该OFDM符号的不同子载波)。用于发送各种控制信息的资源元素可以位于与用于发送参考信号的资源元素不同的距离(例如,在时域和/或频域中)。例如,与用于发送eMBB或mMTC控制信息的资源元素相比,用于发送URLLC控制信息的资源元素可以更靠近用于发送参考信号的资源元素。使用这种方法,可以改进URLLC应用的传输可靠性(例如,因为可以通过发送接近参考信号的URLLC控制信息来获得更好的信道估计)。
统一控制信道设计可以应用于基于波束的传输。在基于波束的传输中,可以使用一对发射/接收(例如,Tx-Rx对)波束或使用多对发射/接收波束(例如,相对于在小区内进行广播)来执行传输/接收点(TRP)和WTRU之间的控制和/或数据传输。使用单对波束的传输和接收在本文中可称为单波束传输/接收。使用多对波束的传输和接收在本文中可称为多波束传输/接收。假设在发射器和接收器处使用单个波束,则所述Tx-Rx对对于上行链路和下行链路传输可以是相同的(例如,至少在传输信道可以是相互的情况下)。如果传输信道不是相互的(例如,在FDD或非相互TDD中),则不同的Tx-Rx对可以用于上行链路与下行链路。
NR控制信道可以被设计为支持单波束和多波束传输/接收的一个或多个情况(例如,所有情况)。NR控制信道还可以支持可以在发射机处使用一个或多个发射波束并且可以在接收机处使用全向接收机波束的情况。
可以基于与传输和接收相关联的Tx-Rx波束成形模式来定义控制信道参数(例如,除了本文描述的基于重复因子和扩展因子的方法之外)。基于波束成形的控制信道设计的示例可以如下所示。
C~(b1,b2,m,n,p)
其中C可以表示控制信道设计或配置,并且其中m、n、p可以分别表示在传输和接收中使用的扩展因子、重复因子和波束形成模式。
所述波束成形模式可以包括单对发射/接收波束的情况。所述波束成形模式可以包括多对发射/接收波束的情况(例如,其可能还指示在传输/接收中使用的发射波束和接收波束的特定组合)。所述波束成形模式可以包括基于半波束的通信的情况(例如,其中一个或多个发射波束可以与全向接收波束一起使用)。例如,假设p=1表示单对发射和接收波束,则可以基于(b1,b2,m,n,1)中的一个或多个确定C,其中b1和b2可以指示相应的发射和接收波束的索引。在这样的示例中,对于不同的波束对,b1和b2的值可以不同。对于上行链路与下行链路传输,b1和b2的值可以是不同的(例如,至少在非相互信道/波束的情况下)。
对于p的其他值(例如,多波束传输/接收),例如,基于表格,b1和b2的组合可以指示所使用的特定发射和接收波束集。每个链路的p、b1和b2的值可以被静态地、半静态地或动态地设置。在静态情况下,p、b1和b2的值可以由发射设备(例如,WTRU或TRP)识别,例如,基于信道度量的测量(例如,在波束发现和/或波束配对过程期间)从预先选择的值集中识别。
在半静态情况下,b1、b2和p的值可以由较高层信令设置。在动态情况下,b1、b2和p的值可以由发射设备(例如,WTRU或TRP)识别,例如基于在传输期间导出的信道度量识别。例如,可以基于所接收的控制信道的质量和/或波束参考符号来导出这些信道度量。所接收的控制信道的质量可以被隐式地(例如,基于控制信道接收的成功或失败)或显式地(例如,基于来自接收机的关于信道质量的反馈)导出。
对于低延时URLLC,可以基于(例如,链接到)所使用的波束对来确定控制信道参数。例如,低延时传输可能不等待最佳Tx-Rx波束对,并且因此,可以根据所使用的波束对改变编码因子(例如,重复因子)和/或所复用的控制信道的数量。在示例中,如果使用非最佳波束对,则可以增加重复因子,并且可以减少要复用的用户传输的数量。
在示例中,与下行链路控制信道传输相关联的发射波束(Tx波束)可以比与下行链路数据信道传输相关联的发射波束更宽。在示例中,在上行链路和下行链路数据或控制信息的传输中使用的波束和控制参数可以彼此相互或不相互(例如,下行链路数据信道发射波束可以用作上行链路控制信道传输的接收波束(Rx波束))。
可以通告用于基于波束的传输中的控制信道的波束。TRP和/或WTRU可以执行波束发现过程并找到一组发射-接收(Tx-Rx)波束对。例如,如果TRP在下行链路传输中利用波束组合进行发送,则WTRU可以确定合适的接收波束组合(例如,其可以包括全向波束)。在一些情况下,所述合适的接收波束可以是空波束,这可能意味着WTRU可能在该波束上不可达。
在某些使用场景中(例如,为了在保持性能的同时减少传输中的延时),TRP可以通告其打算在将来时间用于传输的波束组合(例如,在自该通告的特定数量的时间实例之后)。该通告可以使得可能对接收所述传输感兴趣的WTRU能够为接收设立合适的波束组合。该通告可以促进一个或多个WTRU在适当的时间发送许可请求。该通告可以使一个或多个WTRU能够从所述TRP接收控制/数据信息。
TRP可以将大波束宽度用于其控制信道。TRP可以通告TRP可以(例如,在数个时间间隔之后和/或针对某一持续时间)使用的子波束(一个或多个)的一个或多个索引。通告帧与波束索引的开始之间的时间间隔可以静态地(例如,基于预先配置的值)、半静态地(例如,使用关于预配置和信令的组合)或动态地(例如,通过较高层信令)被设置。
虽然在上述中描述了采用特定组合的特征和元素,但是本领域普通技术人员将会认识到,每一个特征或元素既可以单独使用,也可以与其他特征和元素进行任何组合。在此所述的方法可以在结合在计算机可读介质中的计算机程序、软件或固件中实施,以由计算机或处理器执行。计算机可读介质的示例包括电子信号(通过有线和/或无线连接传输)和计算机可读存储介质。计算机可读存储介质的示例包括但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓冲存储器、半导体存储器设备、磁介质(例如,内部硬盘和可移除磁盘)、磁光介质和光学介质(例如CD-ROM盘和/或数字通用盘(DVD))。与软件相关联的处理器可用于实施用于WTRU、UE、终端、基站、RNC或任何主计算机的射频收发信机。

Claims (10)

1.一种在无线发射接收单元(WTRU)中实施的方法,该方法包括:
基于与第一上行链路控制信息(UCI)相关联的第一特性,确定用于在上行链路控制信道传输中发送所述第一UCI的第一重复因子;
基于与第二UCI相关联的第二特性,确定用于在所述上行链路控制信道传输中发送所述第二UCI的第二重复因子,其中所述第二特性不同于与所述第一特性,其中所述第二重复因子与所述第一重复因子不同,且其中所述第一UCI和所述第二UCI是相同类型的控制信息;
使用所述第一重复因子在所述上行链路控制信道传输中发送所述第一UCI;以及
使用所述第二重复因子在所述上行链路控制信道传输中发送所述第二UCI。
2.根据权利要求1所述的方法,其中所述相同类型的控制信息是混合自动重复请求HARQ肯定应答ACK或否定应答NACK。
3.根据权利要求1所述的方法,其中所述第一特性包括指示与所述第一UCI相关联的以下任意者的信息:第一可靠性要求、第一延时要求、或第一有效载荷大小,以及
其中所述第二特性包括指示与所述第二UCI相关联的以下任意者的信息:第二可靠性要求、第二延时要求、或第二有效载荷大小。
4.根据权利要求1所述的方法,其中所述第一特性包括指示与所述第一UCI相关联的第一使用场景的信息,
其中所述第二特性包括指示与所述第二UCI相关联的第二使用场景的信息,以及
其中所述第一使用场景和所述第二种使用场景UCI中的每一者与以下之一相关联:超可靠和低延时通信(UR-LLC)、增强型移动宽带(eMBB)或大规模机器类型通信(mMTC)。
5.根据权利要求4所述的方法,其中所述第一使用场景与比所述第二使用场景更高的可靠性要求相关联,并且其中所述第一重复因子大于所述第二重复因子。
6.根据权利要求4所述的方法,其中所述第一使用场景与UR-LLC相关联,并且所述第二使用场景与eMBB或mMTC中的任意者相关联。
7.根据权利要求1所述的方法,还包括:
在正交频分复用OFDM符号中复用所述第一UCI的至少一部分、所述第二UCI的至少一部分和参考信号;
其中所述OFDM符号包括多个资源元素;
其中所述参考信号被映射至所述多个资源元素的第一子集,所述第一UCI的所述部分被映射至所述多个资源元素的第二子集,以及所述第二UCI的所述部分被映射至被映射至所述多个资源元素的第三子集;
其中所述多个资源元素的所述第二子集比所述多个资源元素的所述第三子集更靠近所述多个资源元素的所述第一子集。
8.根据权利要求1所述的方法,其中所述一特性包括指示用于对所述第一UCI进行预编码的第一波束成形模式的信息,并且其中所述二特性包括指示用于对所述第二UCI进行预编码的第二波束成形模式的信息。
9.根据权利要求1所述的方法,还包括:
基于所述第一特性,确定用于在所述上行链路控制信道传输中发送所述第一UCI的第一扩展因子;
基于所述第二特性,确定用于在所述上行链路控制信道传输中发送所述第二UCI的第二扩展因子,其中所述第二扩展因子不同于所述第一扩展因子;
使用所述第一扩展因子在所述上行链路控制信道传输中发送所述第一UCI;以及
使用所述第二扩展因子在所述上行链路控制信道传输中发送所述第二UCI。
10.一种无线发射接收单元(WTRU),包括:
处理器,被配置为:
基于与第一上行链路控制信息(UCI)相关联的第一特性,确定用于在上行链路控制信道传输中发送所述第一UCI的第一重复因子;以及
基于与第二UCI相关联的第二特性,确定用于在所述上行链路控制信道传输中发送第二UCI的第二重复因子,其中所述第二特性不同于所述第一特性,其中所述第二重复因子与所述第一重复因子不同,且其中所述第一UCI和所述第二UCI是相同类型的控制信息;
收发信机,被配置为:
使用所述第一重复因子在所述上行链路控制信道传输中发送所述第一UCI;以及
使用所述第二重复因子在所述上行链路控制信道传输中发送所述第二UCI。
CN202210569621.6A 2016-09-28 2017-09-28 用于新无线电的控制信道 Pending CN115190460A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662401057P 2016-09-28 2016-09-28
US62/401,057 2016-09-28
CN201780070360.0A CN109952728B (zh) 2016-09-28 2017-09-28 用于新无线电的控制信道
PCT/US2017/054020 WO2018064337A2 (en) 2016-09-28 2017-09-28 Control channel for new radio

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780070360.0A Division CN109952728B (zh) 2016-09-28 2017-09-28 用于新无线电的控制信道

Publications (1)

Publication Number Publication Date
CN115190460A true CN115190460A (zh) 2022-10-14

Family

ID=60120145

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201780070360.0A Active CN109952728B (zh) 2016-09-28 2017-09-28 用于新无线电的控制信道
CN202210569621.6A Pending CN115190460A (zh) 2016-09-28 2017-09-28 用于新无线电的控制信道

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201780070360.0A Active CN109952728B (zh) 2016-09-28 2017-09-28 用于新无线电的控制信道

Country Status (4)

Country Link
US (2) US11224033B2 (zh)
EP (1) EP3520262A2 (zh)
CN (2) CN109952728B (zh)
WO (1) WO2018064337A2 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180160405A1 (en) * 2016-12-02 2018-06-07 Qualcomm Incorporated Rate matching and signaling
US10368353B2 (en) * 2017-01-27 2019-07-30 Qualcomm Incorporated Adaptive subcarrier spacing configuration
CN110771105B (zh) * 2017-04-28 2022-11-01 诺基亚技术有限公司 适配于不同子载波间隔配置的频域发射器和接收器
CN109392120B (zh) * 2017-08-10 2023-06-09 株式会社电装 信息指示方法及相关设备
US11382094B2 (en) * 2017-10-18 2022-07-05 Qualcomm Incorporated Optimized self-contained transmission in NR-SS
WO2019199146A1 (ko) * 2018-04-13 2019-10-17 엘지전자 주식회사 무선통신시스템에서 단말 대 단말 통신을 위한 동기식 빔 탐색 신호를 송수신하는 방법
US10945256B2 (en) * 2018-05-22 2021-03-09 Mediatek Singapore Pte. Ltd. Method and apparatus for reporting hybrid automatic repeat request-acknowledgement information for different service types in mobile communications
JP2021532652A (ja) * 2018-07-25 2021-11-25 ソニーグループ株式会社 基地局、ユーザ機器、回線、移動通信システム及び方法
US11201702B2 (en) * 2018-11-13 2021-12-14 At&T Intellectual Property I, L.P. Facilitating hybrid automatic repeat request reliability improvement for advanced networks
US20200367202A1 (en) * 2019-05-17 2020-11-19 Qualcomm Incorporated Broadcast control channel decoding in dedicated carrier
US11240688B2 (en) * 2019-06-12 2022-02-01 Qualcomm Incorporated Over-the-air interference coordination among base stations
EP4140217A4 (en) * 2020-04-21 2023-12-06 Qualcomm Incorporated IMPROVEMENT OF PHYSICAL UPLINK CONTROL CHANNEL FOR INTERIOR COVER HOLES

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006106B2 (ja) * 2007-05-25 2012-08-22 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、基地局装置、ユーザ装置及び方法
EP2351445B1 (en) 2008-10-20 2015-08-26 InterDigital Patent Holdings, Inc. Carrier aggregation
EP3570615B1 (en) * 2008-12-08 2021-03-17 Wireless Future Technologies Inc. Uplink control signaling in cellular telecommunication system
US20130153298A1 (en) 2009-02-19 2013-06-20 Interdigital Patent Holdings, Inc. Method and apparatus for enhancing cell-edge user performance and signaling radio link failure conditions via downlink cooperative component carriers
WO2011100673A1 (en) 2010-02-12 2011-08-18 Interdigital Patent Holdings, Inc. Method and apparatus for enhancing cell-edge user performance and signaling radio link failure conditions via downlink cooperative component carriers
WO2010123893A1 (en) * 2009-04-22 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting uplink control information for carrier aggregated spectrums
US9722735B2 (en) * 2009-06-19 2017-08-01 Interdigital Patent Holdings, Inc. Signaling uplink control information in LTE-A
EP4287538A2 (en) 2009-10-01 2023-12-06 InterDigital Patent Holdings, Inc. Uplink control data transmission
KR101802518B1 (ko) * 2010-03-03 2017-11-29 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
RU2560137C2 (ru) * 2010-03-10 2015-08-20 Эл Джи Электроникс Инк. Способ и устройство для передачи управляющей информации восходящей линии связи в системе беспроводной связи
US8971261B2 (en) 2010-06-02 2015-03-03 Samsung Electronics Co., Ltd. Method and system for transmitting channel state information in wireless communication systems
WO2013000056A1 (en) * 2011-06-27 2013-01-03 Research In Motion Limited System and method for increasing maximum payload size
WO2014060037A1 (en) * 2012-10-18 2014-04-24 Nokia Solutions And Networks Oy Communication of control information and data in frames
US9419750B2 (en) * 2013-06-05 2016-08-16 Texas Instruments Incorporated NLOS wireless backhaul uplink communication
US9955356B2 (en) 2014-09-25 2018-04-24 Intel IP Corporation System and method of handling uplink transmission collision for enhanced coverage mode UEs
US11818717B2 (en) * 2014-12-31 2023-11-14 Texas Instruments Incorporated Method and apparatus for uplink control signaling with massive Carrier Aggregation
JP2017034450A (ja) * 2015-07-31 2017-02-09 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN113556818B (zh) * 2015-08-12 2024-02-20 Lg电子株式会社 用于执行通信的方法和基站
US10129859B2 (en) * 2015-10-15 2018-11-13 Qualcomm Incorporated Uplink control channel for low latency communications
CN107040358A (zh) * 2016-02-04 2017-08-11 株式会社Kt 用于NB‑IoT UE发送和接收上行信号的方法及其装置
CN107040338B (zh) * 2016-02-04 2020-11-06 株式会社Kt 用于配置用于NB-IoT UE发送上行信号的资源单元的方法和设备
US10541785B2 (en) * 2016-07-18 2020-01-21 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations
CN107846373B (zh) * 2016-09-20 2021-02-12 华为技术有限公司 发送或接收物理下行控制信道的方法和设备
CN106714322B (zh) * 2016-11-04 2019-02-15 展讯通信(上海)有限公司 跨子带/载波调度方法、基站及用户设备
WO2018141246A1 (en) * 2017-02-03 2018-08-09 Huawei Technologies Co., Ltd. Downlink control information for network coordination schemes
US11064514B2 (en) * 2018-08-10 2021-07-13 Qualcomm Incorporated Uplink collision handling for wireless communications

Also Published As

Publication number Publication date
EP3520262A2 (en) 2019-08-07
CN109952728A (zh) 2019-06-28
US20190306852A1 (en) 2019-10-03
WO2018064337A2 (en) 2018-04-05
US11224033B2 (en) 2022-01-11
CN109952728B (zh) 2022-06-14
US20220132497A1 (en) 2022-04-28
WO2018064337A3 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
CN109952728B (zh) 用于新无线电的控制信道
JP7395098B2 (ja) 位相トラッキング参照信号送信
KR102617174B1 (ko) 밀리미터파(mmW) 시스템을 위한 다중 채널 설정 메커니즘 및 파형 설계
JP6703187B2 (ja) Mmw wlanシステム中での複数のチャネル送信
CN110637430B (zh) 用于传输上行链路控制信息的方法及设备
CN110100495B (zh) 用于定向传输的增强动态分配的方法和装置
CN110249564B (zh) Urllc/embb复用中的参考符号的干扰减少
WO2020033704A1 (en) Enhanced sidelink control transmission
US20200036470A1 (en) Common control channel and reference symbol for multiple waveform data transmission
US11716746B2 (en) Scheduling and transmission for NOMA
EP3520294B1 (en) Non-orthogonal control channel design for wireless communication systems
CN112088498B (zh) 异构信息类型的非正交上行链路复用的方法
CN112292831A (zh) 用于具有全双工无线电的wlan的干扰发现和消除
CN113475018A (zh) 用于dft扩展ofdm的低papr dmrs和低小区间干扰
KR20210124967A (ko) 신뢰할 수 있는 다중 전송 시스템을 위한 방법 및 장치
KR20220155434A (ko) Wlan 시스템들에서의 다중 ru 다중 ap 송신들
WO2022031934A1 (en) Physical uplink control channel transmission
CN116545600A (zh) 一种控制信息的传输方法和设备
WO2020076939A1 (en) Efficient indication and feedback associated with noma
CN113544989A (zh) 侧链路反馈信道

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20230418

Address after: Delaware

Applicant after: INTERDIGITAL PATENT HOLDINGS, Inc.

Address before: Delaware

Applicant before: IDAC HOLDINGS, Inc.

TA01 Transfer of patent application right