WO2023040553A1 - 一种通信设备、通信系统及光模块 - Google Patents

一种通信设备、通信系统及光模块 Download PDF

Info

Publication number
WO2023040553A1
WO2023040553A1 PCT/CN2022/112822 CN2022112822W WO2023040553A1 WO 2023040553 A1 WO2023040553 A1 WO 2023040553A1 CN 2022112822 W CN2022112822 W CN 2022112822W WO 2023040553 A1 WO2023040553 A1 WO 2023040553A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
component
optical signal
control
Prior art date
Application number
PCT/CN2022/112822
Other languages
English (en)
French (fr)
Inventor
张辉
孔凡华
于飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22868929.5A priority Critical patent/EP4366198A1/en
Publication of WO2023040553A1 publication Critical patent/WO2023040553A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication device, a communication system and an optical module.
  • a communication device usually includes a main chip and an optical module for processing services.
  • a main chip and an optical module are connected through a printed circuit board (PCB).
  • PCB printed circuit board
  • Optical digital signal processing (optical digital signal process, oDSP) or clock signal recovery (clock data recovery, CDR) in the optical module is generally used to improve the quality of digital signals or analog signals, so that the signal with improved quality is transmitted to the host through the PCB.
  • the oDSP or CDR in the optical module improves the quality of the digital signal or analog signal, mainly to compensate for the loss of the digital signal or analog signal transmitted on the PCB.
  • the signal transmission loss of the PCB is also increasing, resulting in higher and higher power consumption required by the oDSP or CDR in the optical module to improve the quality of the digital signal or analog signal.
  • the oDSP or CDR occupies about 50% of the volume of the optical module, and the increase in power consumption of the oDSP or CDR also increases the difficulty of heat dissipation of communication equipment.
  • the present application provides a communication device, a communication system and an optical module, capable of transmitting signals at a high rate, with low cost and low heat dissipation requirements.
  • the present application provides a communication device, including a processing module, at least one optical module, and at least one connection device.
  • Each of the at least one optical module is connected to the processing module through a corresponding connection device.
  • the processing module is configured to provide an electrical signal to the optical module or receive an electrical signal provided by the optical module.
  • Each optical module is configured to convert the electrical signal provided by the processing module into an optical signal and then send it, or convert the received optical signal into an electrical signal and provide it to the processing module.
  • the connection device corresponding to each optical module is used to transmit the electrical signal provided by the processing module to each optical module or transmit the electrical signal provided to the processing module by each optical module, wherein the The connecting means include coaxial cables or flexible printed circuits.
  • the transmission signal loss of the connection device including a low-loss transmission medium such as a coaxial cable or a flexible printed circuit is smaller than that of a printed circuit board. Since the signal transmission loss of the connecting device is smaller than the signal transmission loss of the PCB, in the scenario of higher transmission rate, oDSP or CDR with higher signal repair capability in the optical module may not be needed. It can be seen that the communication equipment provided by this application has a lower cost, and lower cooling requirements. And the bit error rate can be guaranteed.
  • the processing module includes a serializer and a deserializer device serdes; each of the optical modules is connected to the serdes through a corresponding connection device; wherein the serdes has a medium-distance transmission capability of electrical signals Or the ability to transmit electrical signals over long distances.
  • the communication system may be applied in a high signal transmission rate scenario
  • the medium-distance transmission capability may refer to the capability of the medium-distance transmission interface discussed in the optical internetworking forum (OIF).
  • the medium-distance transmission capability can refer to the energy or power of the interaction signal between the serdes in the processing module and the optical module, which meets the energy or power of the interaction signal between the main chip and the optical module in the scenario of over 10Gbps in the optical network communication standard, for example, 20dB .
  • the long-distance transmission capability may refer to the capability of the medium-distance transmission interface discussed by the OIF.
  • the long-distance transmission capability can refer to the energy or power of the interaction signal between the serdes in the processing module and the optical module, which meets the energy or power of the interaction signal between the main chip and the optical module in the scenario of over 10Gbps in the optical network communication standard, for example, 28dB.
  • the communication device further includes a PCB; the processing module is arranged on the PCB.
  • the connecting device corresponding to each optical module may include a first connector.
  • the first connector may be connected to the processing module and to the coaxial cable or the flexible printed circuit.
  • the first connector may be located on the processing module, directly connected with the processing module, and transmit electrical signals.
  • the first connector may also be located on the PCB, and be connected to the processing module through the PCB board, and may be electrically connected through the PCB board connected to transmit electrical signals.
  • connection device corresponding to each optical module further includes a second connector; the second connector can be used to connect the corresponding optical module and the coaxial cable or the flexible printed circuit.
  • the second connector can be plugged and connected to the optical module.
  • the optical module may be a pluggable optical module.
  • the second connector may be located on the PCB, directly affixed to the PCB. In some other examples, in order to highly adapt the optical module to the processing module, the second connector may be fixed on the PCB by a fixing device. In this embodiment of the present application, the optical module may be an onboard optical module.
  • each optical module may be arranged close to the processing module.
  • the distance between each optical module and the processing module may be less than or equal to a preset distance threshold.
  • the preset distance threshold does not exceed 40 cm. In some examples, the preset distance threshold may also not exceed 30 centimeters.
  • each optical module includes a first interface device, a second interface device, an optical signal transceiving device, a control device, and a power supply device; wherein the first interface device is connected to the connection device, And connected with the optical signal transceiving device, used to transmit the electrical signal provided by the connecting device to the optical signal transceiving device, or transmit the electrical signal provided by the optical signal transceiving device to the connecting device;
  • the second interface device is connected to the optical signal transceiving device and to an external transmission medium, for transmitting the optical signal provided by the external transmission medium to the optical signal transceiving device, or for transmitting and receiving the optical signal
  • the optical signal provided by the device is transmitted to the external transmission medium; the external transmission medium is used to transmit the optical signal; the optical signal transceiver device is used to convert the optical signal into an electrical signal and output it under the control of the control device to the first interface device, or convert the electrical signal into an optical signal under the control of the control device, and send the optical signal through the second interface device; the power supply
  • the optical module in the communication device may not have a digital signal processing component and a clock signal recovery component.
  • the optical module may not have oDSP or CDR. Reduce the cost of the optical module, reduce the size of the optical module and heat dissipation requirements, and can cooperate with the processing module to ensure the bit error rate.
  • the optical signal transceiving device includes a signal amplification component, a light emitting component and a light receiving component; a driver and a transimpedance amplifier are integrated in the signal amplification component; driving the light-emitting component under control; the transimpedance amplifier is used to amplify the electrical signal output by the light-receiving component and output it to the first interface device; the light-emitting component is used to Driven by the driver, the electrical signal is converted into an optical signal, and the optical signal is sent through the second interface device; the light receiving component is used to convert the optical signal into an electrical signal under the control of the control device.
  • the integration degree of the signal amplification component in the embodiment of the present application is relatively high, and can occupy less space of the optical module.
  • the optical signal transceiving device includes a first component and a second component; the first component includes a driver and a light emitting component; the driver is used to drive the light under the control of the control device A transmitting circuit; the optical transmitting circuit is used to convert an electrical signal into an optical signal under the drive of the driver and output it to the second interface device; the second component is integrated with a transimpedance amplifier and an optical receiving circuit; the The light receiving circuit is used to convert the light signal into an electrical signal under the control of the control device and output it to the transimpedance amplifier; the transimpedance amplifier is used to amplify the electrical signal output by the light receiving component and then output to the first interface device.
  • the second component has a higher degree of integration and may have a smaller volume.
  • the light emitting component includes a light modulator and a light source; and/or, the light receiving component includes a transimpedance amplifier and a photodiode.
  • the optical signal transceiving device includes a driver, a transimpedance amplifier, and an optical transceiver component; the optical transceiver component is used to convert an electrical signal into an optical signal and output it to the The second interface device, or under the control of the control device, converts the optical signal into an electrical signal and then outputs it to the transimpedance amplifier; the driver is used to drive the optical transceiver component under the control of the control device ; The transimpedance amplifier is used to amplify the electrical signal output by the optical transceiver component and then output it to the first interface device.
  • the optical transceiver component in the embodiment of the present application integrates the ability to convert electrical signals into optical signals, and the ability to convert optical signals into electrical signals. Improve the integration of optical modules and reduce the volume of optical modules.
  • the present application provides a communication system, including the communication device according to the first aspect and any design thereof, and a first device, where optical signals are exchanged between the first device and the communication device.
  • the present application provides an optical module applied to communication equipment, including a first interface device, a second interface device, a first signal amplifying device, an optical signal transceiving device, a control device, and a power supply device.
  • the first interface device is connected with the connecting device and connected with the optical signal transceiving device, and is used to transmit the electrical signal provided by the connecting device to the optical signal transceiving device, or provide the optical signal transceiving device with The electrical signal is transmitted to the connection device; wherein the connection device includes a coaxial cable or a flexible printed circuit.
  • the second interface device is connected to the optical signal transceiving device and to an external transmission medium for transmitting the optical signal provided by the external transmission medium to the optical signal transceiving device, or for transmitting the optical signal
  • the optical signal provided by the transceiver device is then transmitted to the external transmission medium; the external transmission medium is used for transmitting the optical signal.
  • the optical signal transceiving device is used to convert an optical signal into an electrical signal under the control of the control device and output it to the first interface device, or convert an electrical signal into an optical signal under the control of the control device , and send an optical signal through the second interface device.
  • the power supply device is used to supply power to the optical signal transceiving device and the control device.
  • the control device is used to control the optical signal transceiving device. Wherein, there is no optical digital signal processing (oDSP) component and clock signal recovery (CDR) component in the optical module.
  • oDSP optical digital signal processing
  • CDR clock signal recovery
  • the first interface device is connected to the connecting device by plugging.
  • the optical signal transceiving device includes a signal amplification component, a light emitting component and a light receiving component; a driver and a transimpedance amplifier are integrated in the signal amplification component; driving the light-emitting component under control; the transimpedance amplifier is used to amplify the electrical signal output by the light-receiving component and output it to the first interface device; the light-emitting component is used to Driven by the driver, the electrical signal is converted into an optical signal, and the optical signal is sent through the second interface device; the light receiving component is used to convert the optical signal into an electrical signal under the control of the control device.
  • the first component and the second component of the optical signal transceiving device includes a driver and a light emitting component; the driver is used to drive the light emitting component under the control of the control device circuit; the light emitting circuit is used to convert an electrical signal into an optical signal under the drive of the driver and output it to the second interface device; a transimpedance amplifier and a light receiving circuit are integrated in the second component; the The light receiving circuit is used to convert the light signal into an electrical signal under the control of the control device and output it to the transimpedance amplifier; the transimpedance amplifier is used to amplify the electrical signal output by the light receiving component output to the first interface device.
  • the light emitting component includes a light modulator and a light source; and/or, the light receiving component includes a transimpedance amplifier and a photodiode.
  • the optical signal transceiving device includes a driver, a transimpedance amplifier, and an optical transceiving component.
  • the optical transceiver component is configured to convert an electrical signal into an optical signal and then output it to the second interface device under the drive of the driver, or convert an optical signal into an electrical signal and output it under the control of the control device to the transimpedance amplifier.
  • the driver is used to drive the optical transceiver assembly under the control of the control device.
  • the transimpedance amplifier is configured to amplify the electrical signal output by the optical transceiver component and then output it to the first interface device.
  • the optical module in a scenario where the optical module is applied to a communication device, the optical module may be arranged at a position close to the processing module.
  • the distance between the optical module and the processing module is less than a preset distance threshold, and the preset distance threshold is usually not more than 40 centimeters.
  • the present application provides a communication device, including an optical module according to any possible design in the third aspect. Because there are no optical digital signal processing (oDSP) components and clock signal recovery (CDR) components in the optical module, it has lower cost, lower heat dissipation requirements, and smaller volume. Therefore, the communication device may not have excessive heat dissipation capability, and the cost of the communication device may be reduced, and the occupied space may be reduced.
  • oDSP optical digital signal processing
  • CDR clock signal recovery
  • FIG. 1 is a schematic structural diagram of an existing communication device
  • FIG. 2 is a schematic structural diagram of a communication device
  • FIG. 3 is a schematic structural diagram of a communication device
  • FIG. 6 is a schematic structural diagram of an optical module
  • FIG. 7 is a schematic structural diagram of an optical module
  • FIG. 8 is a schematic diagram of power consumption of an optical module
  • 9 is a schematic diagram of the relationship between received optical signal energy and bit error rate
  • FIG. 10 is a schematic diagram of the relationship between received optical signal energy and bit error rate.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • the main chip and the optical module are connected through a PCB line.
  • oDSP or CDR is generally used to repair the signal with poor signal quality (or degradation) after optical fiber transmission, so as to ensure that the received digital/analog signal has as few bit errors as possible. Then the restored signal is transmitted to the main chip (main business processing chip) through the pluggable interface of the optical module and the PCB line for protocol processing of switching/routing.
  • the oDSP or CDR in the optical module can be understood as a signal repeater.
  • the signal transmission rate of optical modules also increases, from the current 25GE to 100GE or 400GE, or even 800GE.
  • the PCB loss of the signal exchange between the main chip and the optical module is increasing, and the power consumption of the oDSP in the optical module is getting higher and higher.
  • the power consumption of a single optical module will increase to 20W, and the key oDSP power consumption will account for about 50% of it, which will bring huge difficulty in heat dissipation for communication equipment.
  • the present application provides a communication device capable of transmitting signals at a high rate, with low cost and low heat dissipation requirements.
  • a communication device 100 may include a processing module 10 , at least one optical module 11 and at least one connection device 12 .
  • At least one optical module 11 may have a one-to-one correspondence with at least one connecting device 12 .
  • Each optical module 11 is connected to the processing module 10 through a corresponding connecting device 12 .
  • the processing module 10 can exchange electrical signals with each optical module 11 through the connection device 12 .
  • the processing module 10 can provide an electrical signal to the optical module 11 through the connection device 12 corresponding to the optical module 11 .
  • the optical module 11 can convert the electrical signal into an optical signal and send it to the outside of the optical module 11 .
  • the optical module 11 can also receive an external optical signal, convert the optical signal into an electrical signal, and transmit it to the processing module 10 through the connecting device 12 .
  • connection device 12 may be a low-loss transmission medium such as a coaxial cable (cable) or a flexible printed circuit (flexible printed circuit, FPC). Such as polytetrafluoroethylene (polytetrafluoroethylene, PTFE) circuit board.
  • the connection device may include a coaxial cable or a flexible printed circuit, which can reduce the total signal transmission loss, or reduce the signal transmission loss within a unit distance.
  • the optical module and the processing module are connected by a connection device including a coaxial cable or a flexible printed circuit board, and the total loss of signal transmission can be smaller than when a PCB is used to connect the optical module and the processing module The total loss of signal transmission.
  • the oDSP or CDR with a higher signal repair capability in the optical module 11 may not be required, and the bit error rate may also be guaranteed. It can be seen that the communication device 100 provided by the present application has lower cost and lower heat dissipation requirements.
  • the processing module 10 may include a serializer and deserializer device serdes (serializer deserialize, serdes). In different signal transmission rate scenarios, the serdes in the processing module 10 may have different transmission capabilities.
  • the communication device 100 can be applied to scenarios with a low signal transmission rate (such as not exceeding 10Gbps), and the serdes in the processing module 10 can be serdes with short-distance transmission capabilities for electrical signals, such as short-distance transmission Serdes for the IO interface.
  • the short-distance transmission capability in this application may refer to the capability possessed by the short-distance transmission interface (very short reach interface) discussed by the OIF.
  • the short-distance transmission capability in this application may refer to the energy or power of the interaction signal between the serdes in the processing module 10 and the optical module, which is in line with the optical network communication standard in the scenario where the main chip and the optical module do not exceed 10Gbps
  • the energy or power of the interaction signal for example, 12dB.
  • the communication device 100 can be applied to scenarios with a high signal transmission rate (over 10Gbps, such as 25Gbps, 56Gbps, 100Gbps, 112Gbps, 400Gbps, 800Gbps, etc.), and the serdes in the processing module 10 can be Serdes for medium-distance transmission capabilities in signals.
  • the medium-distance transmission capability in this application may refer to the capability possessed by the medium-reach transmission interface (medium reach interface) discussed by the OIF.
  • the mid-distance transmission capability in this application may refer to the energy or power of the interaction signal between the serdes in the processing module 10 and the optical module, which is consistent with the interaction between the main chip and the optical module in the scenario of exceeding 10Gbps in the optical network communication standard
  • the energy or power of the signal for example, 20dB.
  • the serdes in the processing module 10 may be serdes capable of transmitting electrical signals over long distances.
  • the long-distance transmission capability in this application may refer to the capability possessed by the medium-distance transmission interface (long reach interface) discussed by the OIF.
  • the long-distance transmission capability in this application may refer to the energy or power of the interaction signal between the serdes in the processing module 10 and the optical module, which is consistent with the interaction between the main chip and the optical module in the scenario of exceeding 10Gbps in the optical network communication standard The energy or power of the signal, for example, 28dB.
  • each connection device 12 further includes one or more connectors (connectors).
  • each connecting device 12 may include a first connector 12a.
  • the processing module 10 is connected with the connection device 12 in this application.
  • the processing module 10 can be directly connected to the connection device 12 .
  • the first connector 12 a may be provided on the processing module 10 .
  • the processing module 10 may include a silicon chip (or a bare chip, such as an IC Die) and a packaging substrate.
  • the silicon chip is electrically connected to the packaging substrate, such as soldered to the packaging substrate.
  • the first connector 12a may be disposed on the package substrate, and then be electrically connected to the processing circuit through the package substrate (shown by a dotted line).
  • the processing module 10 may be indirectly connected to the connection device 12 .
  • the communication device 100 also includes a PCB.
  • the processing module 10 may be connected to the PCB.
  • the processing module 10 may be soldered on the PCB, or connected to the PCB through a connector.
  • the processing module 10 may also be electrically connected to the PCB.
  • the connecting device 12 is electrically connected to the PCB, so as to realize the electrical connection between the connecting device 12 and the processing module 10 .
  • the first connector 12a may be disposed on a PCB in the communication system, and the processing module 10 may be electrically connected to the first connector 12a through the PCB (as shown by a dotted line).
  • the packaging substrate in the processing module can be electrically connected to the PCB in the communication system.
  • the processing module 10 can be connected to the coaxial cable 12b (or FPC) through the first connector 12a, and can send and receive signals through the first connector 12a and the coaxial cable 12b (or FPC).
  • each connecting device 12 may further include a second connector 12c.
  • the optical module 11 can be connected to the coaxial cable 12b (or FPC) through the second connector 12c, and can send and receive signals through the second connector 12c and the coaxial cable 12b (or FPC).
  • the second connector 12c arrangement can be fixed directly on the PCB.
  • the second connector 12c arrangement can also be fixed on the PCB by the fixing device 14 .
  • the second connector 12c may include a cage to limit the optical module.
  • the electrical interface connecting the optical module 11 to the second connector 12c may be a golden finger.
  • the optical module 11 can be plugged and unplugged from the second connector 12c. Therefore, it is possible to flexibly remove, replace, or add the optical module 11 from the communication device.
  • the optical module 11 is usually disposed at a position close to the processing module 10, for example, the distance between the optical module 11 and the processing module 10 may be less than or equal to a preset distance threshold.
  • the preset distance threshold is generally not more than 40 centimeters, or in this embodiment of the present application, the length of the coaxial cable 12b may be less than or equal to 40 centimeters. In some examples, the preset distance threshold may be 30 centimeters. In other words, in the embodiment of the present application, the length of the coaxial cable 12b may be less than or equal to 30 centimeters.
  • the communication device 100 also includes at least one fixture 14 .
  • At least one fixing device 14 may have a one-to-one correspondence with the connecting device 12 .
  • Each connecting device 12 can be fixed on the PCB through a corresponding fixing device 14 , so that the height of the optical module 11 and the processing module 10 can be adapted.
  • the optical module 11 can be connected with the connecting device 12 .
  • the connecting device 12 is directly fixed on the PCB, or fixed on the PCB through the fixing device 14, such a structure may be called an on-board optics (OBO).
  • OBO on-board optics
  • the optical module 11 may be arranged at a position relatively close to the processing module 10, and such a structure may be called a near package optical module (near package opitc, NPO).
  • the optical module 11 in the communication device 100 may be any existing optical module, that is, the optical module 11 may include oDSP or CDR.
  • the communication device 100 further includes at least one heat dissipation module.
  • Each optical module 11 may have a corresponding heat dissipation module. Because the transmission signal loss of the connection device 12 is low, the energy or power of the interactive signal between the optical module 11 and the processing module 10 is relatively high, so the optical module 11 does not need to enhance the oDSP or CDR with high signal capability, that is, the oDSP or CDR requires Power consumption will not increase. Therefore, the heat dissipation module in the communication device 100 does not need a strong heat dissipation capability.
  • the optical module 11 in the communication device 100 may also not have oDSP or CDR.
  • the present application also provides an optical module 11, please refer to FIG.
  • the power supply device 205 can supply power to the optical signal transceiving device and the control device 204 .
  • the power supply device 205 may include a power source.
  • the first interface device 201 is connected with the connecting device 12 and connected with the optical signal transceiving device 203 .
  • the first interface device 201 can transmit the electrical signal provided by the connection device 12 to the optical signal transceiving device 203 .
  • the first interface device 201 can also transmit the electrical signal provided by the optical signal transceiving device 203 to the connection device 12 .
  • the second interface device 202 is connected to the optical signal transceiving device 203 and to an external transmission medium (such as an optical cable), and the external transmission medium can transmit optical signals.
  • the external transmission medium may be an optical cable.
  • the second interface device 202 can transmit the optical signal provided by the external transmission medium to the optical signal transceiving device 203 .
  • the second interface device 202 can also transmit the optical signal provided by the optical signal transceiving device 203 to an external transmission medium.
  • the control device 204 can control the optical signal transceiving device 203 .
  • the optical signal transceiving device 203 can convert the optical signal into an electrical signal and output it to the first interface device 201 under the control of the control device 204 .
  • the optical signal transceiver device 203 can also convert the electrical signal into an optical signal under the control of the control device 204, and transmit the optical signal through the second interface device 202, so that the optical module 11 can send the optical signal, or the communication device 100 to which the optical module 11 belongs can send the optical signal. light signal.
  • the control device 204 may include a microcontroller unit (MCU).
  • MCU microcontroller unit
  • the first interface device 201 in the optical module 11 provided in the embodiment of the present application may be adapted to the aforementioned connection device 12 . That is, the first interface device 201 can communicate with a signal transmission medium such as a coaxial cable or FPC (signal transmission loss is smaller than that of a PCB), so that the optical module 11 and the processing module 10 exchange signals. Such a design can make the signal exchanged between the optical module 11 and the processing module 10 have higher energy or power.
  • the optical module 11 does not need oDSP or CDR components to improve signal quality, which reduces the cost of the optical module 11 , reduces the volume of the optical module 11 , and reduces heat dissipation requirements.
  • the optical module 11 provided in this application can be applied not only in low signal transmission rate scenarios, but also in high signal transmission rate scenarios.
  • the optical module provided in the embodiment of the present application may be called an Odsp-less architecture optical module.
  • the optical signal transceiving device 203 may have various forms. The specific structure of the optical signal transceiving device 203 will be introduced below.
  • the optical signal transceiving device 203 may at least include a signal amplifying component 301, an optical transmitting component (transmitter optical sub-assembly, TOSA) 302, and an optical receiving component (receiver optical sub-assembly, ROSA )303.
  • the signal amplifying component 301 may be integrated with a driver (driver) and a trans-impedance amplifier (trans-impedance amplifier, TIA).
  • the signal amplifying component 301 can be connected with the light emitting component 302 and connected with the light receiving component 303 .
  • the signal amplifying component 301 is also connected to the first interface device 201 .
  • the light emitting component 302 is connected to the second interface device 202
  • the light receiving component 303 is connected to the second interface device 202 .
  • the driver can drive the light emitting component 302 under the control of the control device 204 .
  • the light emitting component 302 can convert the electrical signal into an optical signal under the drive of the driver, and send the optical signal through the second interface device 202 .
  • light emitting component 302 can include a light modulator and a light source.
  • the light receiving component 303 can convert the light signal into an electrical signal and output it to the transimpedance amplifier in the signal amplifying component 301 under the control of the control device 204 .
  • the transimpedance amplifier can amplify the electrical signal output by the light receiving component 303 and output it to the first interface device 201 , and then transmit it to the processing module 10 via the first interface device 201 and the connection device 12 .
  • the light receiving component 303 may include a transimpedance amplifier and a photodiode (photo diode, PD).
  • the light receiving component 303 may also include a transimpedance amplifier and an avalanche photodiode (APD).
  • the optical signal transceiving device 203 may include at least a first component and a second component 401 .
  • the first component may include a driver and a light emitting circuit.
  • the driver can drive the light emitting circuit under the control of the control device 204 .
  • the light emitting circuit can convert the electrical signal into an optical signal and output it to the second interface device 202 under the drive of the driver.
  • light transmission circuitry may include a light modulator and a light source.
  • a transimpedance amplifier and a light receiving circuit are integrated in the second component 401 .
  • the light receiving circuit can convert the light signal into an electrical signal and output it to the transimpedance amplifier under the control of the control device 204 .
  • the transimpedance amplifier can amplify the electrical signal output by the light receiving circuit and output it to the first interface device 201 .
  • the light receiving circuit may include a transimpedance amplifier and a PD.
  • the light receiving circuit may also include a transimpedance amplifier and an APD.
  • the optical signal transceiving device 203 may at least include a driver, a transimpedance amplifier, and an optical transceiving component 501 .
  • the driver is connected with the first interface device 201 and with the optical transceiver assembly 501 .
  • the transimpedance amplifier is connected to the first interface device 201 and to the optical transceiver assembly 501 .
  • the optical transceiver component 501 is connected to the second interface device 202 .
  • the optical transceiver component 501 can convert the electrical signal into an optical signal and output it to the second interface device 202 under the drive of the driver, or convert the optical signal into an electrical signal under the control of the control device 204 and output it to the transimpedance amplifier.
  • the driver can drive the optical transceiver component 501 under the control of the control device 204 .
  • the transimpedance amplifier can amplify the electrical signal output by the optical transceiver component 501 and then output it to the first interface device 201 . It can be seen that the optical transceiver component 501 can integrate the functions or capabilities of TOSA and ROSA.
  • each device in the optical module 11 can be integrated into one chip.
  • the driver or the transimpedance amplifier in the optical module 11 may have an equalization compensation capability, and may compensate the electrical signal.
  • the present application also provides a communication device, including any optical module 11 in FIG. 5 to FIG. 7 , a connection device 12 and a processing module 10 .
  • the processing module 10 includes serdes capable of long-distance transmission of electrical signals.
  • the communication device can be applied in high-speed signal transmission scenarios above 25Gbps.
  • the processing module 10 is connected to the optical module 11 through a low-loss cable or a low-loss interconnection medium, replacing the traditional PCB interconnection method, which can effectively reduce the connection loss.
  • the optical module 11 can be implemented without the need for CDR or oDSP. As shown in FIG.
  • the power consumption of the optical module provided by the embodiment of the present application is compared with the power consumption of the existing optical module with a CDR or oDSP structure.
  • the transmission signal rate is 56Gbps, as shown in Figure 9
  • the optical module in the communication device provided by the embodiment of the present application can still guarantee the bit error rate without the structure of CDR or oDSP.
  • the communication device includes multiple optical modules 11, in a scenario where the transmission signal rate is 112 Gbps, the energy and bit error rate of optical signals received by multiple optical modules 11 at the same time are shown in FIG. 10 .
  • the communication device provided by the present application can simultaneously ensure the consistency of the bit error rate of multi-channel optical communication.
  • the present application further provides a communication device, which may include at least one optical module 11 provided in the above embodiment.
  • the optical module 11 may be connected to the processing module through the connection device 12 in the above embodiment, and perform signal interaction with the processing module.
  • the communication device may not have a strong heat dissipation capability, thereby reducing heat dissipation costs.
  • the optical module 11 has a smaller occupied space, which can reduce the occupied space of the communication device.
  • the communication device may include the processing module 10 and the connection device 12 in the foregoing embodiments.
  • the communication device may also include a heat dissipation device for heat dissipation, and the heat dissipation device may be used to dissipate heat from the optical module.
  • the heat dissipation devices may correspond to the optical modules 11 one-to-one.
  • the present application also provides a communication system, which may include one or more communication devices provided in the foregoing embodiments, and the communication devices may communicate optically.
  • the communication system may include at least one communication device provided in the foregoing embodiments, and another electronic device (referred to as the first device), and the first device may be any existing optical communication device.
  • the first device may include an optical module with CDR or oDSP and be connected to the main chip through a PCB link.
  • the first device may be any communication device provided in the embodiments of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供一种通信设备、通信系统及光模块,可具有高速率传输信号能力,并且成本较低,散热需求较低。通信设备包括处理模块、至少一个光模块以及至少一个连接装置;至少一个光模块中的每个光模块通过对应的连接装置与处理模块连接;处理模块用于向每个光模块提供电信号或者接收光模块提供的电信号;每个光模块用于将处理模块提供的电信号转换为光信号后发送,或者将接收的光信号转换为电信号后提供至处理模块;每个光模块对应的连接装置,用于传输处理模块提供给每个光模块的电信号或者传输每个光模块提供给处理模块的电信号,其中,连接装置包括同轴线缆或者柔性印刷电路,每个光模块中无光数字信号处理(oDSP)组件以及时钟信号恢复(CDR)组件。

Description

一种通信设备、通信系统及光模块
相关申请的交叉引用
本申请要求在2021年09月15日提交中华人民共和国专利局、申请号为202111082487.9、申请名称为“一种通信设备、通信系统及光模块”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信设备、通信系统及光模块。
背景技术
目前,通信设备中通常包括处理业务的主芯片和光模块。请参见图1,现有的通信设备中,主芯片和光模块通过印制电路板(printed circuit board,PCB)连接。光模块中的光数字信号处理(optical digital signal process,oDSP)或时钟信号恢复(clock data recovery,CDR),一般用来提升数字信号或者模拟信号的质量,使提升质量的信号通过PCB传输到主芯片处理时,发生误码的情况减少。由于PCB具有较大信号传输损耗,因此光模块中oDSP或者CDR对数字信号或者模拟信号质量进行提升,主要是数字信号或者模拟信号在PCB上传输的损耗进行补偿。
随着通信系统容量和速率的提升,PCB的信号传输损耗也越来越大,导致光模块中oDSP或者CDR对数字信号或者模拟信号质量进行提升所需功耗越来越高。oDSP或者CDR占据光模块体积的50%左右,oDSP或者CDR功耗的增加,也增加通信设备散热难度。
发明内容
本申请提供一种通信设备、通信系统及光模块,可具有高速率传输信号能力,并且成本较低,散热需求较低。
第一方面,本申请提供一种通信设备,包括处理模块、至少一个光模块以及至少一个连接装置。至少一个光模块中的每个光模块通过对应的连接装置与所述处理模块连接。所述处理模块,用于向所述光模块提供电信号或者接收所述光模块提供的电信号。所述每个光模块,用于将所述处理模块提供的电信号转换为光信号后发送,或者将接收的光信号转换为电信号后提供至所述处理模块。所述每个光模块对应的连接装置,用于传输所述处理模块提供给所述每个光模块的电信号或者传输所述每个光模块提供给所述处理模块的电信号,其中,所述连接装置包括同轴线缆或者柔性印刷电路。光模块与处理模块之间距离相同的情况下,包括同轴线缆或者柔性印刷电路等低损耗传输介质的所述连接装置,传输信号损耗小于印制电路板的信号传输损耗。由于连接装置的信号传输损耗小于PCB的信号传输损耗,在较高传输速率场景中,可以不需要光模块中具有较高信号修复能力的oDSP或者CDR,可见本申请提供的通信设备具有较低的成本,并且散热需求较低。并且可以保障误码率。
一种可能的设计中,所述处理模块包括串行器和解串器装置serdes;所述每个光模块 通过对应的连接装置与所述serdes连接;其中,所述serdes具有电信号中距离传输能力或者电信号长距离传输能力。
本申请实施例中,通信系统可以应用于高信号传输速率场景中,中距离传输能力可以指光学网络论坛(optical internetworking forum,OIF)所讨论的中距离传输接口所具备的能力。或者,中距离传输能力可指处理模块中的serdes与光模块之间交互信号的能量或者功率,符合光学网络通信标准中超过10Gbps的场景中主芯片与光模块交互信号的能量或者功率,例如20dB。长距离传输能力可以指OIF所讨论的中距离传输接口所具备的能力。或者长距离传输能力可指处理模块中的serdes与光模块之间交互信号的能量或者功率,符合光学网络通信标准中超过10Gbps的场景中主芯片与光模块交互信号的能量或者功率,例如28dB。
通常,通信设备还包括PCB;所述处理模块设置在所述PCB上。所述每个光模块对应的连接装置可以包括第一连接器。所述第一连接器可以连接所述处理模块以及连接所述同轴线缆或者所述柔性印刷电路。第一连接器可以位于处理模块上,直接与处理模块连接,传输电信号。第一连接器也可以位于PCB上,通过PCB板与处理模块连接,可以通过两者连接的PCB板实现电连接,传输电信号。
一种可能的设计中,所述每个光模块对应的连接装置还包括第二连接器;第二连接器可以用于连接所述对应的光模块以及连接所述同轴线缆或者所述柔性印刷电路。所述第二连接器可以与光模块之间插拔连接。本申请实施例中,光模块可以为可插拔的光模块。
在一些示例中,第二连接器可以位于PCB上,直接固定在PCB上。在另一些示例中,为使光模块与处理模块高度适配,第二连接器可以通过固定装置固定在PCB上。本申请实施例中,光模块可以为板载光模块。
一种可能的设计中,每个光模块可以设置在靠近处理模块的位置。例如每个光模块与处理模块之间的距离可以小于或等于预设距离阈值。通常预设距离阈值不超过40厘米。在一些示例中,预设距离阈值也可以不超过30厘米。
一种可能的设计中,所述每个光模块包括第一接口装置、第二接口装置、光信号收发装置、控制装置及供电装置;其中,所述第一接口装置与所述连接装置连接,以及与所述光信号收发装置连接,用于将所述连接装置提供的电信号传输至所述光信号收发装置,或者将所述光信号收发装置提供的电信号传输至所述连接装置;所述第二接口装置与所述光信号收发装置连接以及与外部传输介质连接,用于将所述外部传输介质提供的光信号传输至所述光信号收发装置,或者用于将所述光信号收发装置提供的光信号传输至所述外部传输介质;所述外部传输介质用于传输光信号;所述光信号收发装置,用于在所述控制装置的控制下将光信号转换为电信号后输出至所述第一接口装置,或者在所述控制装置的控制下将电信号转换为光信号,并通过所述第二接口装置发送光信号;所述供电装置,用于为所述光信号收发装置以及控制装置供电;所述控制装置,用于对所述光信号收发装置进行控制。
基于上述光模块的结构,通信设备中的光模块可以无数字信号处理组件以及时钟信号恢复组件。本申请实施例中,光模块可以不具有oDSP或者CDR。实现降低光模块成本、降低光模块的体积以及散热需求,可以与处理模块协同保障误码率。
一种可能的设计中,所述光信号收发装置包括信号放大组件、光发射组件和光接收组件;所述信号放大组件内集成有驱动器和跨阻放大器;所述驱动器用于在所述控制装置的 控制下驱动所述光发射组件;所述跨阻放大器用于对所述光接收组件输出的电信号进行放大处理后输出至所述第一接口装置;所述光发射组件,用于在所述驱动器的驱动下将电信号转换为光信号,并通过所述第二接口装置发送光信号;所述光接收组件,用于在所述控制装置的控制下将光信号转换为电信号。可见,本申请实施例中信号放大组件的集成度较高,可以占据光模块较少的空间。
一种可能的设计中,所述光信号收发装置包括第一组件和第二组件;所述第一组件包括驱动器和光发射组件;所述驱动器用于在所述控制装置的控制下驱动所述光发射电路;所述光发射电路用于在所述驱动器的驱动下将电信号转换为光信号后输出至所述第二接口装置;所述第二组件内集成有跨阻放大器和光接收电路;所述光接收电路用于在所述控制装置的控制下将光信号转换为电信号后输出至所述跨阻放大器;所述跨阻放大器用于对所述光接收组件输出的电信号进行放大处理后输出至所述第一接口装置。可见,本申请实施例中,第二组件的集成度较高,可以具有较小的体积。
一种可能的设计中,所述光发射组件包括光调制器和光源;和/或,所述光接收组件包括跨阻放大器以及光电二极管。
一种可能的设计中,所述光信号收发装置包括驱动器、跨阻放大器和光收发组件;所述光收发组件,用于在所述驱动器的驱动下将电信号转换为光信号后输出至所述第二接口装置,或者在所述控制装置的控制下将光信号转换为电信号后输出至所述跨阻放大器;所述驱动器,用于在所述控制装置的控制下驱动所述光收发组件;所述跨阻放大器,用于对所述光收发组件输出的电信号进行放大处理后输出至所述第一接口装置。可见,本申请实施例中光收发组件集成有电信号转换为光信号的能力,以及光信号转换为电信号的能力。提升光模块的集成度,减少光模块的体积。
第二方面,本申请提供一种通信系统,包括如第一方面及其任一设计所述通信设备以及第一设备,所述第一设备与所述通信设备之间交互光信号。
第三方面,本申请提供一种光模块,应用于通信设备,包括第一接口装置、第二接口装置、第一信号放大装置、光信号收发装置、控制装置及供电装置。所述第一接口装置与连接装置连接,以及与所述光信号收发装置连接,用于将所述连接装置提供的电信号传输至所述光信号收发装置,或者将所述光信号收发装置提供的电信号传输至所述连接装置;其中,所述连接装置包括同轴线缆或者柔性印刷电路。所述第二接口装置与所述光信号收发装置连接以及与外部传输介质连接,用于将所述外部传输介质提供的光信号传输至所述光信号收发装置,或者用于将所述光信号收发装置提供的光信号后传输至所述外部传输介质;所述外部传输介质用于传输光信号。所述光信号收发装置,用于在所述控制装置的控制下将光信号转换为电信号后输出至所述第一接口装置,或者在所述控制装置的控制下将电信号转换为光信号,并通过所述第二接口装置发送光信号。所述供电装置,用于为所述光信号收发装置以及控制装置供电。所述控制装置,用于对所述光信号收发装置进行控制。其中,所述光模块中无光数字信号处理(oDSP)组件以及时钟信号恢复(CDR)组件。
一种可能的设计中,所述第一接口装置与所述连接装置之间插拔连接。
一种可能的设计中,所述光信号收发装置包括信号放大组件、光发射组件和光接收组件;所述信号放大组件内集成有驱动器和跨阻放大器;所述驱动器用于在所述控制装置的控制下驱动所述光发射组件;所述跨阻放大器用于对所述光接收组件输出的电信号进行放大处理后输出至所述第一接口装置;所述光发射组件,用于在所述驱动器的驱动下将电信 号转换为光信号,并通过所述第二接口装置发送光信号;所述光接收组件,用于在所述控制装置的控制下将光信号转换为电信号。
一种可能的设计中,所述光信号收发装置第一组件和第二组件;所述第一组件包括驱动器和光发射组件;所述驱动器用于在所述控制装置的控制下驱动所述光发射电路;所述光发射电路用于在所述驱动器的驱动下将电信号转换为光信号后输出至所述第二接口装置;所述第二组件内集成有跨阻放大器和光接收电路;所述光接收电路用于在所述控制装置的控制下将光信号转换为电信号后输出至所述跨阻放大器;所述跨阻放大器用于对所述光接收组件输出的电信号进行放大处理后输出至所述第一接口装置。
一种可能的设计中,所述光发射组件包括光调制器和光源;和/或,所述光接收组件包括跨阻放大器以及光电二极管。
一种可能的设计中,所述光信号收发装置包括驱动器、跨阻放大器和光收发组件。所述光收发组件,用于在所述驱动器的驱动下将电信号转换为光信号后输出至所述第二接口装置,或者在所述控制装置的控制下将光信号转换为电信号后输出至所述跨阻放大器。所述驱动器,用于在所述控制装置的控制下驱动所述光收发组件。所述跨阻放大器,用于对所述光收发组件输出的电信号进行放大处理后输出至所述第一接口装置。
一种可能的设计中,在光模块应用于通信设备的场景中,光模块可以设置在靠近处理模块的位置。例如光模块与处理模块之间的距离小于预设距离阈值,预设距离阈值通常不超过40厘米。
第四方面,本申请提供一种通信设备,包括如第三方面中的任一可能设计的光模块。因光模块中无光数字信号处理(oDSP)组件以及时钟信号恢复(CDR)组件,具有较低的成本、较低散热需求,较小的体积。因而通信设备可以不具有过高的散热能力,也可使通信设备成本降低,占据空间减小。
第二方面至第四方面中任一方面中的任一可能设计可以达到的技术效果,请参照上述第一方面中的任一可能设计可以达到的技术效果,这里不再重复赘述。
附图说明
图1为现有通信设备的结构示意图;
图2为一种通信设备的结构示意图;
图3为一种通信设备的结构示意图;
图4为一种光模块的结构示意图;
图5为一种光模块的结构示意图;
图6为一种光模块的结构示意图;
图7为一种光模块的结构示意图;
图8为光模块功耗示意图;
图9为接收光信号能量与误码率关系示意图;
图10为接收光信号能量与误码率关系示意图。
具体实施方式
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申 请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。为了方便理解本申请实施例提供的连接器的优点,下面首先介绍一下其应用场景。
目前,请参见图1,现有的通信设备中,主芯片和光模块通过PCB线路连接。oDSP或者CDR一般用来修复经过光纤传输后信号质量较差(或者劣化)的信号,以确保收到的数字/模拟信号尽可能少出现误码。然后将恢复的信号经过光模块可插拔接口、PCB线路传输到主芯片(主业务处理芯片)进行交换/路由的协议处理。理论上讲光模块中oDSP或者CDR可理解为一个信号中继器。
随着系统容量越来越大,光模块信号传输速率也随之提升,从当前25GE提升至100GE或者400GE,甚至800GE。随着系统容量和速率的提升,主芯片与光模块交互信号的PCB损耗越来越大,光模块中的oDSP功耗越来越高。假设芯片工艺达到5nm水平,单个光模块功耗会增加到20W,而关键oDSP功耗占据其中的50%左右,给通信设备带来巨大的散热难度。
有鉴于此,本申请提供一种通信设备,可具有高速率传输信号能力,并且成本较低,散热需求较低。下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
请参见图2,本申请提供的通信设备100可以包括处理模块10、至少一个光模块11以及至少一个连接装置12。至少一个光模块11可以与至少一个连接装置12一一对应。每个光模块11通过对应的连接装置12与处理模块10连接。
处理模块10可以通过连接装置12与每个光模块11交互电信号。对于每个光模块11,处理模块10可以通过光模块11对应的连接装置12向光模块11提供电信号。光模块11可以将该电信号转换为光信号后发送至光模块11的外部。光模块11也可以接收外部的光信号,并将光信号转换为电信号后通过连接装置12传输至处理模块10。
本申请实施例中,连接装置12可以为同轴线缆(cable)或者柔性印刷电路(flexible printed circuit,FPC)等低损耗传输介质。例如聚四氟乙烯(poly tetra fluoroethylene,PTFE)电路板。连接装置可以包括同轴线缆或者柔性印刷电路,可以降低信号传输总损耗,或者降低单位距离内信号传输损耗。在光模块与处理模块之间距离相同的场景中,采用包括同轴线缆或者柔性印刷电路板的连接装置连接光模块与处理模块,信号传输总损耗可以小于采用PCB连接光模块与处理模块时的信号传输总损耗。在较高传输速率场景中,可以不需要光模块11中具有较高信号修复能力的oDSP或者CDR,也可以保障误码率。可见本申请提供的通信设备100具有较低的成本,并且散热需求较低。
通信设备100中,处理模块10可以包括串行器和解串器装置serdes(serializer deserialize,serdes)。在不同信号传输速率场景中,处理模块10中的serdes具有的传输能力可以不同。
一种可能的设计中,通信设备100可以应用于低信号传输速率(如不超过10Gbps)的场景中,处理模块10中的serdes可以为具有电信号短距离传输能力的serdes,如具有短距离传输IO接口的serdes。在一些示例中,本申请中的短距离传输能力可以指OIF所讨论的短距离传输接口(very short reach interface)所具备的能力。在一些示例中,本申请中的短距离传输能力可指处理模块10中的serdes与光模块之间交互信号的能量或者功率,符合光学网络通信标准中不超过10Gbps的场景中主芯片与光模块交互信号的能量或者功率,例如12dB。
另一种可能的设计中,通信设备100可以应用于高信号传输速率(超过10Gbps,如25Gbps、56Gbps、100Gbps、112Gbps、400Gbps、800Gbps等)的场景中,处理模块10中的serdes可以为具有电信号中距离传输能力的serdes。在一些示例中,本申请中的中距离传输能力可以指OIF所讨论的中距离传输接口(medium reach interface)所具备的能力。在一些示例中,本申请中的中距离传输能力可指处理模块10中的serdes与光模块之间交互信号的能量或者功率,符合光学网络通信标准中超过10Gbps的场景中主芯片与光模块交互信号的能量或者功率,例如20dB。
或者,处理模块10中的serdes可以为具有电信号长距离传输能力的serdes。在一些示例中,本申请中的长距离传输能力可以指OIF所讨论的中距离传输接口(long reach interface)所具备的能力。在一些示例中,本申请中的长距离传输能力可指处理模块10中的serdes与光模块之间交互信号的能量或者功率,符合光学网络通信标准中超过10Gbps的场景中主芯片与光模块交互信号的能量或者功率,例如28dB。
在一种可能的实施方式中,每个连接装置12还包括一个或多个连接器(connector)。请参见图3,每个连接装置12可以包括第一连接器12a。在一些示例中,本申请中处理模块10与连接装置12连接。处理模块10可以与连接装置12直接连接。如图3中的(a)所示,第一连接器12a可以设置在处理模块10上。处理模块10可以包括硅片(或者裸芯片,如IC Die)和封装基板。硅片与封装基板电连接,如焊接到封装基板上。第一连接器12a可以设置在封装基板上,然后通过封装基板与处理电路之间电连接(如虚线所示)。
在另一些示例中,处理模块10可以与连接装置12间接连接。通信设备100还包括PCB。处理模块10可以与PCB连接。例如处理模块10可以焊接在PCB上,或者通过连接器与PCB连接。处理模块10也可以与PCB之间电连接。连接装置12与该PCB电连接,实现连接装置12与处理模块10电连接。如图3中的(b)所示,第一连接器12a可以设置通信系统中的PCB上,处理模块10可以通过PCB与第一连接器12a之间电连接(如虚线所示)。可选地,处理模块中的封装基板可以与通信系统中的PCB电连接。处理模块10可以通过第一连接器12a与同轴线缆12b(或者FPC)连接,可以通过第一连接器12a和同轴线缆12b(或者FPC)收发信号。
一种可能的实施方式中,每个连接装置12还可以包括第二连接器12c。光模块11可以通过第二连接器12c与同轴线缆12b(或者FPC)连接,可以通过第二连接器12c和同轴线缆12b(或者FPC)收发信号。第二连接器12c设置可以直接固定在PCB上。第二连接器12c设置也可以通过固定装置14固定在PCB上。在一些示例中,第二连接器12c可以包括笼子(cage),可以对光模块进行限位。光模块11与第二连接器12c连接的电气接 口可以为金手指。光模块11可以与第二连接器12c之间可进行插拔。从而实现从通信设备中灵活地移除、更换、或者增加光模块11。
光模块11通常设置在靠近处理模块10的位置,例如光模块11与处理模块10之间的距离可以小于或等于预设距离阈值。预设距离阈值一般不超过40厘米,或者说本申请实施例中,同轴线缆12b的长度可以小于或等于40厘米。在一些示例中,预设距离阈值可以为30厘米。或者说本申请实施例中,同轴线缆12b的长度可以小于或等于30厘米。
在一些示例中,通信设备100还包括至少一个固定装置14。至少一个固定装置14可以与连接装置12一一对应。每个连接装置12可以通过对应的固定装置14固定在PCB上,可使光模块11与处理模块10的高度适配。光模块11可以与连接装置12连接。连接装置12直接固定在PCB上,或者通过固定装置14固定在PCB上,这样的结构可以称为板载光模块(on-board optics,OBO)。通信设备100中,光模块11可以设置在处理模块10较为接近的位置,这样的结构可以称为近封装光模块(near package opitc,NPO)。
基于上述任一设计中的处理模块10的结构中,通信设备100中的光模块11可以为现有任意一种光模块,也即光模块11可以包括oDSP或者CDR。在一些示例中,通信设备100中还包括至少一个散热模块。每个光模块11可以具有对应的散热模块。因连接装置12传输信号损耗较低,光模块11与处理模块10之间交互信号的能量或功率较高,因此光模块11不需要提升信号能力较高的oDSP或者CDR,即oDSP或者CDR所需功耗不会增加。因此通信设备100中的散热模块不需要较强的散热能力。
为降低光模块11的成本、体积或者散热需求,通信设备100中的光模块11也可以不具有oDSP或者CDR。本申请还提供一种光模块11,请参见图4,光模块11可以包括第一接口装置201、第二接口装置202、光信号收发装置203、控制装置204及供电装置205。供电装置205可以为光信号收发装置以及控制装置204供电。供电装置205可以包括电源。
第一接口装置201与连接装置12连接,以及与光信号收发装置203连接。第一接口装置201可以将连接装置12提供的电信号传输至光信号收发装置203。第一接口装置201也可以将光信号收发装置203提供的电信号传输至连接装置12。
第二接口装置202与光信号收发装置203连接以及与外部传输介质(如光缆)连接,外部传输介质可以传输光信号。示例性的,外部传输介质可以为光缆。第二接口装置202可以将外部传输介质提供的光信号传输至光信号收发装置203。第二接口装置202也可以将光信号收发装置203提供的光信号传输至外部传输介质。
控制装置204可以对光信号收发装置203进行控制。光信号收发装置203可以在控制装置204的控制下将光信号转换为电信号后输出至第一接口装置201。光信号收发装置203也可以在控制装置204的控制下将电信号转换为光信号,并通过第二接口装置202发送光信号,实现光模块11发送光信号,或者光模块11所属通信设备100发送光信号。在一些示例中,控制装置204可以包括微控制单元(microcontroller unit,MCU)。
本申请实施例提供的光模块11中第一接口装置201可以与前述连接装置12相适配。也即第一接口装置201可以与同轴线缆或者FPC等(信号传输损耗小于PCB的信号传输损耗)信号传输介质连通,以便光模块11与处理模块10交互信号。这样的设计,可使光模块11与处理模块10交互信号具有较高能量或者功率。光模块11中不需要设置提升信号质量的oDSP或者CDR元器件,降低光模块11的成本,减小光模块11体积,以及散热需求。并且本申请提供的光模块11不仅可以应用在低信号传输速率场景中,也可以应用在高 信号传输速率场景中。本申请实施例中提供的光模块可以称为Odsp-less架构光模块。
光信号收发装置203可以具有多种形式。下面对光信号收发装置203的具体结构进行介绍。
一种可能的结构中,请参见图5,光信号收发装置203可以至少包括信号放大组件301,光发射组件(transmitter optical sub-assembly,TOSA)302,光接收组件(receiver optical sub-assembly,ROSA)303。信号放大组件301可以集成有驱动器(driver)和跨阻放大器(trans-impedance amplifier,TIA)。信号放大组件301可以与光发射组件302连接,以及与光接收组件303连接。信号放大组件301还与第一接口装置201连接。光发射组件302与第二接口装置202连接,光接收组件303与第二接口装置202连接。
驱动器可以在控制装置204的控制下驱动光发射组件302。光发射组件302可以在驱动器的驱动下将电信号转换为光信号,并通过第二接口装置202发送光信号。在一些示例中,光发射组件302可以包括光调制器和光源。
光接收组件303可以在控制装置204的控制下将光信号转换为电信号后输出至信号放大组件301中的跨阻放大器。跨阻放大器可以对光接收组件303输出的电信号进行放大处理后输出至第一接口装置201,经由第一接口装置201和连接装置12可以传输至处理模块10。在一些示例中,光接收组件303可以包括跨阻放大器以及光电二极管(photo diode,PD)。光接收组件303也可以包括跨阻放大器以及雪崩光电二极管(avalanche photo diode,APD)。
另一种可能的结构中,请参见图6,光信号收发装置203可以至少包括第一组件和第二组件401。第一组件可以包括驱动器和光发射电路。驱动器可以在控制装置204的控制下驱动光发射电路。光发射电路可以在驱动器的驱动下将电信号转换为光信号后输出至第二接口装置202。在一些示例中,光发射电路可以包括光调制器和光源。
第二组件401内集成有跨阻放大器和光接收电路。光接收电路可以在控制装置204的控制下将光信号转换为电信号后输出至跨阻放大器。跨阻放大器可以对光接收电路输出的电信号进行放大处理后输出至第一接口装置201。在一些示例中,光接收电路可以包括跨阻放大器以及PD。光接收电路也可以包括跨阻放大器以及APD。
又一种可能的结构中,请参见图7,光信号收发装置203可以至少包括驱动器、跨阻放大器和光收发组件501。驱动器与第一接口装置201连接,以及与光收发组件501连接。跨阻放大器与第一接口装置201连接,以及与光收发组件501连接。光收发组件501与第二接口装置202连接。
光收发组件501可以在驱动器的驱动下将电信号转换为光信号后输出至第二接口装置202,或者在控制装置204的控制下将光信号转换为电信号后输出至跨阻放大器。驱动器可以在控制装置204的控制下驱动光收发组件501。跨阻放大器可以对光收发组件501输出的电信号进行放大处理后输出至第一接口装置201。可见,光收发组件501可以集成TOSA和ROSA的功能或能力。
基于上述任意一种可能的结构,光模块11中的各装置可以集成在一个芯片中。此外,在一些场景中,光模块11中的驱动器或者跨阻放大器可以具有均衡补偿能力,可以对电信号进行补偿。
本申请还提供一种通信设备,包括图5至图7中任意一种光模块11、连接装置12以 及处理模块10。其中,处理模块10中包括具有电信号长距离传输能力的serdes。该通信设备可以应用在25Gbps以上的高速信号传输场景。处理模块10通过低损耗的cable或者低损耗互连介质与光模块11连接,替代传统PCB互连方式,可有效降低连接损耗。结合处理模块10中强驱动能力的主芯片serdes,可使实现光模块11不需要CDR或者oDSP。如图8所示,本申请实施例提供的光模块的功耗与现有具有CDR或者oDSP结构的光模块的功耗情况。在传输信号速率为56Gbps场景中,如图9所示,两种仿真条件下,通信设备发出的光信号后,由接收端设备接收的光信号能量与误码率变化情况。可见,本申请实施例提供的通信设备中的光模块在不需要CDR或者oDSP的结构下,仍可以保障误码率。
在通信设备包括多个光模块11情形下,在传输信号速率为112Gbps场景中,多个光模块11同时刻接收光信号能量与误码率情况如图10所示。本申请提供的通信设备可以同时保障多路光通信的误码率的一致性。
基于上述介绍,本申请还提供一种通信设备,可以包括至少一个上述实施例提供的光模块11。光模块11中无提升信号能力较高的oDSP或者CDR,用于补偿信号所需功耗不会增加。例如,光模块11可以通过如上述实施例中的连接装置12与处理模块连接,并与处理模块进行信号交互。这样的设计中,通信设备可以不具有较强的散热能力,降低散热成本。并且光模块11具有占用空间较小,可使通信设备占据空间也变小。在一些示例中,通信设备可以包括上述实施例中的处理模块10以及连接装置12。在一些示例中,通信设备也可以包括用于散热的散热装置,散热装置可以用于对光模块散热。可选地,散热装置可以与光模块11一一对应。
本申请还提供一种通信系统,可以包括一个或多个上述实施例提供的通信设备,通信设备之间可以光通信。通信系统中可以包括至少一个上述实施例提供的通信设备,以及另一电子设备(记为第一设备),第一设备可以为现有任意一种光通信设备。例如,第一设备可以包括具有CDR或者oDSP的光模块并通过PCB链路与主芯片连接。又例如,第一设备可以为本申请实施例提供的任意一种通信设备。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种通信设备,其特征在于,包括:处理模块、至少一个光模块以及至少一个连接装置;至少一个光模块中的每个光模块通过对应的连接装置与所述处理模块连接;
    所述处理模块,用于向所述每个光模块提供电信号或者接收所述光模块提供的电信号;
    所述每个光模块,用于将所述处理模块提供的电信号转换为光信号后发送,或者将接收的光信号转换为电信号后提供至所述处理模块;
    所述每个光模块对应的连接装置,用于传输所述处理模块提供给所述每个光模块的电信号或者传输所述每个光模块提供给所述处理模块的电信号,其中,所述连接装置包括同轴线缆或者柔性印刷电路,所述每个光模块中无光数字信号处理(oDSP)组件以及时钟信号恢复(CDR)组件。
  2. 如权利要求1所述的通信设备,其特征在于,所述处理模块包括串行器和解串器装置serdes;所述每个光模块通过对应的连接装置与所述serdes连接;
    其中,所述serdes具有电信号中距离传输能力(MR)或者电信号长距离传输能力(LR)。
  3. 如权利要求1或2所述的通信设备,其特征在于,所述每个光模块与对应的连接装置之间插拔连接。
  4. 如权利要求1-3任一所述的通信设备,其特征在于,所述每个光模块对应的连接装置还包括第一连接器;
    所述第一连接器,用于连接所述处理模块以及连接所述同轴线缆或者所述柔性印刷电路。
  5. 如权利要求1-4任一所述的通信设备,其特征在于,所述每个光模块对应的连接装置还包括第二连接器;
    所述第二连接器,用于连接对应的光模块以及连接所述同轴线缆或者所述柔性印刷电路。
  6. 如权利要求4或5所述的通信设备,其特征在于,还包括印刷电路板,所述处理模块设置在所述印刷电路板;
    其中,所述第一连接器位于所述处理模块或者所述印刷电路板上;和/或,
    所述第二连接器位于所述印刷电路板上,或者所述第二连接器通过固定装置固定在所述印刷电路板上。
  7. 如权利要求1-6任一所述的通信设备,其特征在于,所述每个光模块与所述处理模块之间的距离小于或等于预设距离阈值,所述预设距离阈值不超过40厘米。
  8. 如权利要求1所述的通信设备,其特征在于,所述每个光模块包括第一接口装置、第二接口装置、光信号收发装置、控制装置及供电装置;
    其中,所述第一接口装置与所述连接装置连接,以及与所述光信号收发装置连接,用于将所述连接装置提供的电信号传输至所述光信号收发装置,或者将所述光信号收发装置提供的电信号传输至所述连接装置;
    所述第二接口装置与所述光信号收发装置连接以及与外部传输介质连接,用于将所述外部传输介质提供的光信号传输至所述光信号收发装置,或者用于将所述光信号收发装置提供的光信号传输至所述外部传输介质;所述外部传输介质用于传输光信号;
    所述光信号收发装置,用于在所述控制装置的控制下将光信号转换为电信号后输出至 所述第一接口装置,或者在所述控制装置的控制下将电信号转换为光信号,并通过所述第二接口装置发送光信号;
    所述供电装置,用于为所述光信号收发装置以及控制装置供电;
    所述控制装置,用于对所述光信号收发装置进行控制。
  9. 如权利要求8所述的通信设备,其特征在于,所述光信号收发装置包括信号放大组件、光发射组件和光接收组件;
    所述信号放大组件内集成有驱动器和跨阻放大器;所述驱动器用于在所述控制装置的控制下驱动所述光发射组件;所述跨阻放大器用于对所述光接收组件输出的电信号进行放大处理后输出至所述第一接口装置;
    所述光发射组件,用于在所述驱动器的驱动下将电信号转换为光信号,并通过所述第二接口装置发送光信号;
    所述光接收组件,用于在所述控制装置的控制下将光信号转换为电信号。
  10. 如权利要求8所述的通信设备,其特征在于,所述光信号收发装置包括第一组件和第二组件;
    所述第一组件包括驱动器和光发射组件;所述驱动器用于在所述控制装置的控制下驱动所述光发射电路;所述光发射电路用于在所述驱动器的驱动下将电信号转换为光信号后输出至所述第二接口装置;
    所述第二组件内集成有跨阻放大器和光接收电路;所述光接收电路用于在所述控制装置的控制下将光信号转换为电信号后输出至所述跨阻放大器;所述跨阻放大器用于对所述光接收组件输出的电信号进行放大处理后输出至所述第一接口装置。
  11. 如权利要求9或10所述的通信设备,其特征在于,所述光发射组件包括光调制器和光源;和/或,所述光接收组件包括跨阻放大器以及光电二极管。
  12. 如权利要求8所述的通信设备,其特征在于,所述光信号收发装置包括驱动器、跨阻放大器和光收发组件;
    所述光收发组件,用于在所述驱动器的驱动下将电信号转换为光信号后输出至所述第二接口装置,或者在所述控制装置的控制下将光信号转换为电信号后输出至所述跨阻放大器;
    所述驱动器,用于在所述控制装置的控制下驱动所述光收发组件;
    所述跨阻放大器,用于对所述光收发组件输出的电信号进行放大处理后输出至所述第一接口装置。
  13. 一种通信系统,其特征在于,包括如权利要求1-12任一所述通信设备以及第一设备,所述第一设备与所述通信设备之间交互光信号。
  14. 一种光模块,其特征在于,应用于通信设备,包括第一接口装置、第二接口装置、第一信号放大装置、光信号收发装置、控制装置及供电装置;
    所述第一接口装置与连接装置连接,以及与所述光信号收发装置连接,用于将所述连接装置提供的电信号传输至所述光信号收发装置,或者将所述光信号收发装置提供的电信号传输至所述连接装置;其中,所述连接装置包括同轴线缆或者柔性印刷电路;
    所述第二接口装置与所述光信号收发装置连接以及与外部传输介质连接,用于将所述 外部传输介质提供的光信号传输至所述光信号收发装置,或者用于将所述光信号收发装置提供的光信号后传输至所述外部传输介质;所述外部传输介质用于传输光信号;
    所述光信号收发装置,用于在所述控制装置的控制下将光信号转换为电信号后输出至所述第一接口装置,或者在所述控制装置的控制下将电信号转换为光信号,并通过所述第二接口装置发送光信号;
    所述供电装置,用于为所述光信号收发装置以及控制装置供电;
    所述控制装置,用于对所述光信号收发装置进行控制;
    其中,所述光模块中无光数字信号处理(oDSP)组件以及时钟信号恢复(CDR)组件。
  15. 如权利要求14所述的光模块,其特征在于,所述第一接口装置与所述连接装置之间插拔连接。
  16. 如权利要求14所述的光模块,其特征在于,所述光信号收发装置包括信号放大组件、光发射组件和光接收组件;
    所述信号放大组件内集成有驱动器和跨阻放大器;所述驱动器用于在所述控制装置的控制下驱动所述光发射组件;所述跨阻放大器用于对所述光接收组件输出的电信号进行放大处理后输出至所述第一接口装置;
    所述光发射组件,用于在所述驱动器的驱动下将电信号转换为光信号,并通过所述第二接口装置发送光信号;
    所述光接收组件,用于在所述控制装置的控制下将光信号转换为电信号。
  17. 如权利要求14所述的光模块,其特征在于,所述光信号收发装置第一组件和第二组件;
    所述第一组件包括驱动器和光发射组件;所述驱动器用于在所述控制装置的控制下驱动所述光发射电路;所述光发射电路用于在所述驱动器的驱动下将电信号转换为光信号后输出至所述第二接口装置;
    所述第二组件内集成有跨阻放大器和光接收电路;所述光接收电路用于在所述控制装置的控制下将光信号转换为电信号后输出至所述跨阻放大器;所述跨阻放大器用于对所述光接收组件输出的电信号进行放大处理后输出至所述第一接口装置。
  18. 如权利要求16或17所述的光模块,其特征在于,所述光发射组件包括光调制器和光源;和/或,所述光接收组件包括跨阻放大器以及光电二极管。
  19. 如权利要求14所述的光模块,其特征在于,所述光信号收发装置包括驱动器、跨阻放大器和光收发组件;
    所述光收发组件,用于在所述驱动器的驱动下将电信号转换为光信号后输出至所述第二接口装置,或者在所述控制装置的控制下将光信号转换为电信号后输出至所述跨阻放大器;
    所述驱动器,用于在所述控制装置的控制下驱动所述光收发组件;
    所述跨阻放大器,用于对所述光收发组件输出的电信号进行放大处理后输出至所述第一接口装置。
  20. 一种通信设备,其特征在于,包括如权利要求14-19任一所述的光模块。
PCT/CN2022/112822 2021-09-15 2022-08-16 一种通信设备、通信系统及光模块 WO2023040553A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22868929.5A EP4366198A1 (en) 2021-09-15 2022-08-16 Communication device, communication system and optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111082487.9 2021-09-15
CN202111082487.9A CN115811362A (zh) 2021-09-15 2021-09-15 一种通信设备、通信系统及光模块

Publications (1)

Publication Number Publication Date
WO2023040553A1 true WO2023040553A1 (zh) 2023-03-23

Family

ID=85481924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112822 WO2023040553A1 (zh) 2021-09-15 2022-08-16 一种通信设备、通信系统及光模块

Country Status (3)

Country Link
EP (1) EP4366198A1 (zh)
CN (1) CN115811362A (zh)
WO (1) WO2023040553A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160094297A1 (en) * 2014-09-29 2016-03-31 Alcatel-Lucent Usa Inc. Symbol timing and clock recovery for variable-bandwidth optical signals
CN106059673A (zh) * 2016-05-18 2016-10-26 青岛海信宽带多媒体技术有限公司 一种光模块及光线路终端设备
CN211557264U (zh) * 2020-03-20 2020-09-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN111740785A (zh) * 2020-08-24 2020-10-02 深圳市迅特通信技术有限公司 Pam4光模块接收输出控制电路、方法及系统
CN216700004U (zh) * 2021-09-15 2022-06-07 华为技术有限公司 一种通信设备、通信系统及光模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160094297A1 (en) * 2014-09-29 2016-03-31 Alcatel-Lucent Usa Inc. Symbol timing and clock recovery for variable-bandwidth optical signals
CN106059673A (zh) * 2016-05-18 2016-10-26 青岛海信宽带多媒体技术有限公司 一种光模块及光线路终端设备
CN211557264U (zh) * 2020-03-20 2020-09-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN111740785A (zh) * 2020-08-24 2020-10-02 深圳市迅特通信技术有限公司 Pam4光模块接收输出控制电路、方法及系统
CN216700004U (zh) * 2021-09-15 2022-06-07 华为技术有限公司 一种通信设备、通信系统及光模块

Also Published As

Publication number Publication date
CN115811362A (zh) 2023-03-17
EP4366198A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
CN216700004U (zh) 一种通信设备、通信系统及光模块
JP5635116B2 (ja) 高速通信
US7380993B2 (en) Optical transceiver for 100 gigabit/second transmission
US6947672B2 (en) High-speed optical data links
US8200097B2 (en) Optoelectronic module form-factor adapter
WO2020042492A1 (zh) 基于pam4调制技术的双向光收发模块
US7970283B2 (en) High speed SFP transceiver
US20040264879A1 (en) Optical cable with integrated electrical connector
WO2021115454A1 (zh) 光电信号转换器、光驱动处理和接收模组及网络交互设备
US9225423B1 (en) Optical engines and optical cable assemblies capable of low-speed and high-speed optical communication
CN105634611A (zh) 光模块及信号处理的方法
US9882651B2 (en) Methods, circuits and optical cable assemblies for optical transmission of high-speed data and low-speed data
CN218732193U (zh) 信号连接器、信号延长器及信号发射和接收装置
US10516490B2 (en) Optical free air transmit and receive interconnect
EP2996267B1 (en) Optical engines and optical cable assemblies having electrical signal conditioning
CN111522103B (zh) 一种光模块
CN111277333B (zh) 一种光模块
WO2017162146A1 (zh) 一种实现板间通信的方法和装置
WO2023040553A1 (zh) 一种通信设备、通信系统及光模块
US20230418006A1 (en) Optical module
US20230421262A1 (en) Optical module
WO2023273759A1 (zh) 光互连系统及通信设备
EP1417786A1 (en) High-speed optical data links
CN216819846U (zh) 一种光模块
CN215420303U (zh) 多路并行高速光引擎、高清传输设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868929

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022868929

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022868929

Country of ref document: EP

Effective date: 20240129

NENP Non-entry into the national phase

Ref country code: DE