WO2023040507A1 - 无线充电接收端电路、系统以及芯片 - Google Patents

无线充电接收端电路、系统以及芯片 Download PDF

Info

Publication number
WO2023040507A1
WO2023040507A1 PCT/CN2022/110550 CN2022110550W WO2023040507A1 WO 2023040507 A1 WO2023040507 A1 WO 2023040507A1 CN 2022110550 W CN2022110550 W CN 2022110550W WO 2023040507 A1 WO2023040507 A1 WO 2023040507A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
nmos switch
wireless charging
switch
circuit
Prior art date
Application number
PCT/CN2022/110550
Other languages
English (en)
French (fr)
Inventor
�田�浩
陈锐
郑毅成
张俊
徐鑫勇
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023040507A1 publication Critical patent/WO2023040507A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of wireless charging, in particular to a wireless charging receiving end circuit, system and chip.
  • FIG. 1 it is a schematic diagram of a wireless charging receiving end circuit in an implementation manner.
  • the receiving end circuit includes a receiving coil, a compensation capacitor, a synchronous rectifier tube and a voltage-stabilizing linear regulator (MLDO) tube, and the rear end is connected to a charger to charge the battery.
  • the wireless charging integrated circuit Integrated Circuit Card, IC
  • IC includes rectification and LDO voltage regulation output parts, which are generally integrated.
  • the structure of the wireless charging IC can realize the setting of the working voltage to control the working state, but cannot set the working current to control the working state.
  • the embodiment of the present application provides a wireless charging receiver circuit, system and chip, which are used to set a constant working current and control the working state through a constant current module.
  • the first aspect of the present application provides a wireless charging receiving end circuit, which may include: a resonant coil module, a rectification and filtering module, a constant voltage module, and a constant current module;
  • the rectification and filtering module is respectively connected to the resonant coil module and the constant voltage module, and the constant voltage module is connected to the constant current module;
  • the constant current module is used to output a constant current.
  • the second aspect of the present application provides a wireless charging system, which may include the wireless charging receiving end circuit described in the first aspect.
  • the third aspect of the present application provides a wireless charging chip, which may include the wireless charging receiving end circuit described in the first aspect.
  • the wireless charging receiving end circuit may include: a resonant coil module, a rectification and filtering module, a constant voltage module, and a constant current module; the rectification and filtering module is connected to the resonant coil module and the constant voltage module respectively , the constant voltage module is connected to the constant current module; the constant current module is used to output a constant current. That is, the constant current module can be used to set a constant working current and control the working state.
  • FIG. 1 is a schematic diagram of a wireless charging receiving end circuit in an implementation manner
  • FIG. 2A is a schematic diagram of a wireless charging receiving end circuit in an embodiment of the present application.
  • FIG. 2B is another schematic diagram of the wireless charging receiver circuit in the embodiment of the present application.
  • FIG. 2C is another schematic diagram of the wireless charging receiver circuit in the embodiment of the present application.
  • FIG. 2D is another schematic diagram of the wireless charging receiver circuit in the embodiment of the present application.
  • FIG. 2E is another schematic diagram of the wireless charging receiver circuit in the embodiment of the present application.
  • FIG. 2F is another schematic diagram of the wireless charging receiver circuit in the embodiment of the present application.
  • FIG. 2G is another schematic diagram of the wireless charging receiver circuit in the embodiment of the present application.
  • FIG. 3A is a schematic diagram of a wireless charging receiver circuit in an embodiment of the present application.
  • FIG. 3B is another schematic diagram of the wireless charging receiving end circuit in the embodiment of the present application.
  • FIG. 3C is another schematic diagram of the wireless charging receiver circuit in the embodiment of the present application.
  • FIG. 3D is another schematic diagram of the wireless charging receiver circuit in the embodiment of the present application.
  • FIG. 3E is another schematic diagram of the wireless charging receiving end circuit in the embodiment of the present application.
  • FIG. 3F is a schematic diagram of the rectification and filtering module in the wireless charging receiving end circuit in the embodiment of the present application.
  • FIG. 3G is another schematic diagram of the rectification and filtering module in the wireless charging receiving end circuit in the embodiment of the present application.
  • Fig. 4A is a schematic diagram of an embodiment of the wireless charging system in the embodiment of the present application.
  • FIG. 4B is a schematic diagram of another embodiment of the wireless charging system in the embodiment of the present application.
  • the embodiment of the present application provides a wireless charging receiver circuit, system and chip, which are used to set a constant working current and control the working state through a constant current module.
  • the wireless charging IC includes a rectification and filtering function based on adding a constant current (constant current, CC) function.
  • over current protection (OCP) and (over voltage protection) can also be added , OVP) is an overvoltage protection function, because wireless charging is compared with wired charging, and the movement of the mobile terminal will cause the charging power to change. Adding these additional functions can ensure stable charging.
  • FIG. 2A is a schematic diagram of a wireless charging receiving end circuit in the embodiment of the present application.
  • the wireless charging receiving end circuit may include: a resonant coil module 21, a rectification and filtering module 22, a constant voltage module 23, and a constant current module 24;
  • the rectifying and filtering module 22 is connected to the resonant coil module 21 and the constant voltage module 23 respectively, and the constant voltage module 23 is connected to the constant current module 24;
  • the constant current module 24 is used to output a constant current.
  • the wireless charging receiving end circuit may include: a resonant coil module 21, a rectification and filtering module 22, a constant voltage module 23, and a constant current module 24; compared with the prior art, the constant current module 24 is added, that is, Through the constant current module 24, a constant working current is set to control the working state. Realize that the wireless charging receiver circuit directly charges the battery or supplies power to other devices.
  • the constant current module 24 includes a switch circuit 241 and a control module 242;
  • the control module 242 is configured to control the switch circuit 241 to output the constant current.
  • the constant current module 24 may include a switch circuit 241 and a control module 242; the switch circuit 241 is controlled by the control module 242 so as to output the constant current. Realize that the wireless charging receiver circuit directly charges the battery or supplies power to other devices.
  • the switch circuit 241 includes:
  • the first NMOS switch Q1 and the second NMOS switch Q2, the source of the first NMOS switch Q1 is connected to the source of the second NMOS switch Q1; or,
  • GaN switch Q7 GaN switch Q7.
  • first NMOS switch Q1 and the second NMOS switch Q2 can be two B2B NMOS switches, in order to connect the left and right ends of Q1 and Q2, or they can be a GaN to realize the charging process.
  • the switch circuit 241 includes: a first NMOS switch Q1 and a second NMOS switch Q2 . It can be understood that, the first NMOS switch Q1 and the second NMOS switch Q2 are isolation NMOS switches, so as to keep connected when charging, and keep disconnected when not charging.
  • the switch circuit 241 includes: a GaN switch Q7. It can be understood that the isolated NMOS switch formed by the first NMOS switch Q1 and the second NMOS switch Q2 can also be replaced by a GaN switch.
  • control module 242 is also configured to perform at least one of the following:
  • control the switch circuit 241 According to the second control signal, control the switch circuit 241 to perform overvoltage protection
  • the switch circuit 241 is controlled to perform over-current protection.
  • the first control signal, the second control signal and the third control signal are generated by the same controller, or generated by different controllers.
  • control module 242 may further include at least one of a current limiting feedback module 2421 , an overvoltage protection module 2422 and an overcurrent protection module 2423 .
  • the current limiting feedback module 2421 is connected to the gates of the first NMOS switch Q1 and the second NMOS switch Q2;
  • the first end of the overvoltage protection module 2422 is connected to the drain of the first NMOS switch Q1, and the second end of the overvoltage protection module 2422 is connected to the gate of the first NMOS switch Q1;
  • a first terminal of the overcurrent protection module 2423 is connected to the drain of the second NMOS switch Q2, and a second terminal of the overcurrent protection module 2423 is connected to the gate of the second NMOS switch Q2.
  • FIG. 2E , FIG. 2F and FIG. 2G it is another schematic diagram of the wireless charging receiving end circuit in the embodiment of the present application.
  • the current limiting feedback (feedback, FB) module 2421, the overvoltage protection module 2422, and the overcurrent protection module 2423 can be realized by generating different control signals through the same controller, or through different controllers The control signals generated respectively are implemented, and the details are not limited here.
  • Current-limited feedback can also be called current-sensing feedback.
  • an optional implementation of the constant current module 24 is provided, which may include the first NMOS switch Q1, the second NMOS switch Q2 and the control module 242; or, the gallium nitride switch Q7 and the control module 242 Module 242.
  • the control module 242 may further include at least one of a current limiting feedback module 2421 , an overvoltage protection module 2422 , and an overcurrent protection module 2423 .
  • the current-limiting feedback (feedback, FB) module 2421 can output a stable current, and the current will not fluctuate when the wireless charging receiving end changes dynamically, providing a constant current (constant current, CC) function; the overvoltage protection module 2422 can provide an overvoltage protection function, and the overcurrent protection module 2423 can provide an overcurrent protection function.
  • Q1 and Q2 current sampling feedback, and OCP/OVP functions are added to the IC side, and these functions or similar protection functions can also be added at any position inside the IC.
  • the transmitter When stepping up/down, the transmitter also needs to cooperate.
  • the current-limiting feedback module 2421 is adjusted in the variable resistance area by controlling the first NMOS switch Q1 and the second NMOS switch Q2.
  • the control output voltage is the sum of the load (battery) and the voltage on Q1&Q2, which is realized by changing the impedance of Q1&Q2
  • the voltage division changes, so as to control the voltage to the load (battery), so as to realize the desired working current.
  • the voltage sampling, current sampling, and calculation can all be written in the control core (Digital Core) of the control module 242.
  • the overvoltage protection module 2422 if it is hardware protection, can compare the standard voltage with the sampling voltage through the hardware voltage comparator, and when the overvoltage value is reached, the voltage comparator will flip over to protect; if it is software protection, it is the sampling voltage, through digital IC protection is controlled after the core calculation.
  • the overcurrent protection module 2423 if it is hardware protection, can compare the standard current with the sampling current through the hardware current comparator, and when the overcurrent value is reached, the current comparator flips over to protect; if it is software protection, it is the sampling current, through the digital IC protection is controlled after the core calculation.
  • the current limiting feedback module 2421 , the overvoltage protection module 2422 and the overcurrent protection module 2423 can all realize their corresponding functions through digital core control.
  • the digital core here can be understood as a controller.
  • the resonant coil module 21, the rectification and filtering module 22 and the constant voltage module 23 are integrated in the first chip.
  • the switch circuit 241 is integrated in the first chip or the second chip.
  • control module 242 is integrated in the first chip, the second chip, or the third chip.
  • FIG. 3A it is another schematic diagram of the wireless charging receiving end circuit in the embodiment of the present application.
  • the resonant coil module 21 , the rectification and filtering module 22 , the constant voltage module 23 and the constant current module 24 are all integrated in the first chip.
  • FIG. 3B it is another schematic diagram of the wireless charging receiving end circuit in the embodiment of the present application.
  • the resonant coil module 21, the rectification and filtering module 22, the constant voltage module 23 and the switch circuit 241 in the constant current module 24 are integrated on the first chip (such as IC-1), and the constant current module 24
  • the control module 242 is integrated on the second chip.
  • FIG. 3C it is another schematic diagram of the wireless charging receiving end circuit in the embodiment of the present application.
  • the resonant coil module 21, the rectification and filtering module 22, the constant voltage module 23 and the control module 242 in the constant current module 24 are integrated on the first chip (such as IC-1), and the constant current module 24
  • the switch circuit 241 is integrated on a second chip (eg, IC-2).
  • FIG. 3D it is another schematic diagram of the wireless charging receiving end circuit in the embodiment of the present application.
  • the resonant coil module 21, the rectification and filtering module 22 and the constant voltage module 23 are integrated on the first chip (such as IC-1), and the constant current module 24 is integrated on the second chip (such as IC-2). .
  • FIG. 3E it is another schematic diagram of the wireless charging receiving end circuit in the embodiment of the present application.
  • the resonant coil module 21, the rectification and filtering module 22 and the constant voltage module 23 are integrated on the first chip (such as IC-1), and the switch circuit 241 in the constant current module 24 is integrated on the second chip (such as On IC-2), the control module 242 in the constant current module 24 is integrated on the third chip (such as IC-3).
  • control module 242 can control the switch circuit 241 to perform current limiting feedback according to the first control signal; or, control the switch circuit 241 to perform overvoltage protection according to the second control signal; or, control the switch circuit 241 according to the third control signal.
  • the switch circuit 241 performs overcurrent protection.
  • the first control signal, the second control signal and the third control signal may be generated by the same controller, or may be generated by different controllers. If it is generated by different controllers, these different controllers can be integrated on the same chip, or can be integrated on different chips, which is not specifically limited here. If the space on the same chip is limited, different chips can be used to cooperate with each other to realize the corresponding functions.
  • the rectification and filtering module 22 includes a full-bridge rectification and filtering circuit or a half-bridge rectification and filtering circuit.
  • the rectification and filtering module 22 includes a full-bridge rectification and filtering circuit.
  • the full-bridge rectification and filtering circuit includes a third NMOS switch Q3, a fourth NMOS switch Q4, a fifth NMOS switch Q5, and a sixth NMOS switch Q6.
  • the third NMOS The switch Q3, the fourth NMOS switch Q4, the fifth NMOS switch Q5 and the sixth NMOS switch Q6 respectively include diodes;
  • the source of the third NMOS switch Q3 is connected to the drain of the fifth NMOS switch Q5;
  • the source of the fourth NMOS switch Q4 is connected to the drain of the sixth NMOS switch Q6;
  • the drain of the third NMOS switch Q3 and the drain of the fourth NMOS switch Q4 are connected to the constant voltage module 23;
  • the source of the fifth NMOS switch Q5 and the source of the sixth NMOS switch Q6 are grounded.
  • the resonant coil module 21 includes a receiving end coil and a capacitor connected to one end of the receiving end coil; the capacitor is connected to the source of the first NMOS switch Q1 and the drain of the third NMOS switch Q3; the other end of the receiving end coil is connected to the second The source of the NMOS switch Q2 and the drain of the fourth NMOS switch Q4.
  • the rectification and filtering module is a full-bridge rectification and filtering circuit.
  • the full-bridge rectifier filter circuit converts AC power into DC power, and transmits power outward through the positive voltage output terminal Vrect. If the user's requirement is voltage-stabilized charging, the constant-voltage module 23 can output a stable voltage; or, if the user's requirement is steady-current charging, the constant-current module 24 can output a stable current.
  • the rectification and filtering module 22 includes a half-bridge rectification and filtering circuit, and the half-bridge rectification and filtering circuit includes:
  • the fourth NMOS switch Q4 is deleted and the sixth NMOS switch Q6 is short-circuited.
  • the rectification and filtering part can be made into a half-bridge solution.
  • Q3 as shown in FIG. 2D can be deleted and shorted to Q5, as shown in FIG. 3F , which is a schematic diagram of the rectification and filtering module in the wireless charging receiving end circuit in the embodiment of the present application.
  • FIG. 3G is another schematic diagram of the rectification and filtering module in the wireless charging receiving end circuit in the embodiment of the present application.
  • the half-bridge scheme can increase the output voltage and increase the output gain.
  • the CC current limiting function is added to the wireless charging system, which can be used to directly charge the battery, and has OCP/OVP protection functions, and a series of protection methods are used to realize wireless charging and directly charge the battery or supply power to other devices. .
  • FIG 4A it is a schematic diagram of an embodiment of the wireless charging system in the embodiment of the present application, which may include: wireless charging as described in any of the above-mentioned Figures 2A-2G, or any of Figures 3A-3G receiver circuit.
  • FIG 4B it is a schematic diagram of another embodiment of the wireless charging system in the embodiment of the present application, which may include: a wireless charging transmitter circuit, and any of the above-mentioned Figure 2A- Figure 2G, or Figure 3A- Figure 3G A wireless charging receiver circuit as shown in the figure.
  • the embodiment of the present application also provides a wireless charging chip, which may include the wireless charging receiving end circuit described in any one of the above-mentioned FIG. 2A-FIG. 2G, or FIG. 3A-FIG. 3G.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • wired eg, coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless eg, infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a Solid State Disk (SSD)).
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Abstract

本申请实施例公开了一种无线充电接收端电路、系统以及芯片,用于通过恒流模块,设定恒定的工作电流,控制工作状态。本申请实施例方法包括:谐振线圈模块、整流滤波模块、恒压模块、恒流模块;所述整流滤波模块与所述谐振线圈模块和所述恒压模块分别连接,所述恒压模块与所述恒流模块连接;所述恒流模块,用于输出恒定电流。

Description

无线充电接收端电路、系统以及芯片
本申请要求于2021年09月18日提交中国专利局、申请号为2021110985283、申请名称为“无线充电接收端电路、系统以及芯片”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线充电领域,尤其涉及一种无线充电接收端电路、系统以及芯片。
背景技术
如图1所示,为一种实现方式中无线充电接收端电路的一个示意图。接收端电路包括接收线圈、补偿电容,同步整流管以及可以稳压的线性稳压电路(MLDO)管,后端接充电器(charger)对电池充电。其中,无线充电集成电路(Integrated Circuit Card,IC)包括整流和LDO稳压输出部分,一般是集成一体的。但无线充电IC的结构,可以实现设定工作电压来控制工作状态,无法设定工作电流,来控制工作状态。
发明内容
本申请实施例提供了一种无线充电接收端电路、系统以及芯片,用于通过恒流模块,设定恒定的工作电流,控制工作状态。
本申请第一方面提供一种无线充电接收端电路,可以包括:谐振线圈模块、整流滤波模块、恒压模块、恒流模块;
所述整流滤波模块与所述谐振线圈模块和所述恒压模块分别连接,所述恒压模块与所述恒流模块连接;
所述恒流模块,用于输出恒定电流。
本申请第二方面提供一种无线充电系统,可以包括第一方面所述的无线充电接收端电路。
本申请第三方面提供一种无线充电芯片,可以包括第一方面所述的无线充电接收端电路。
从以上技术方案可以看出,本申请实施例具有以下优点:
在本申请实施例中,无线充电接收端电路可以包括:谐振线圈模块、整流滤波模块、恒压模块、恒流模块;所述整流滤波模块与所述谐振线圈模块和所述恒压模块分别连接,所述恒压模块与所述恒流模块连接;所述恒流模块,用于输出恒定电流。即可以通过恒流模块,设定恒定的工作电流,控制工作状态。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,还可以根据这些附图获得其它的附图。
图1为一种实现方式中无线充电接收端电路的一个示意图;
图2A为本申请实施例中无线充电接收端电路的一个示意图;
图2B为本申请实施例中无线充电接收端电路的另一个示意图;
图2C为本申请实施例中无线充电接收端电路的另一个示意图;
图2D为本申请实施例中无线充电接收端电路的另一个示意图;
图2E为本申请实施例中无线充电接收端电路的另一个示意图;
图2F为本申请实施例中无线充电接收端电路的另一个示意图;
图2G为本申请实施例中无线充电接收端电路的另一个示意图;
图3A为本申请实施例中无线充电接收端电路的一个示意图;
图3B为本申请实施例中无线充电接收端电路的另一个示意图;
图3C为本申请实施例中无线充电接收端电路的另一个示意图;
图3D为本申请实施例中无线充电接收端电路的另一个示意图;
图3E为本申请实施例中无线充电接收端电路的另一个示意图;
图3F为本申请实施例中无线充电接收端电路中整流滤波模块的一个示意图;
图3G为本申请实施例中无线充电接收端电路中整流滤波模块的另一个示意图;
图4A为本申请实施例中无线充电系统的一个实施例示意图;
图4B为本申请实施例中无线充电系统的另一个实施例示意图。
具体实施方式
本申请实施例提供了一种无线充电接收端电路、系统以及芯片,用于通过恒流模块,设定恒定的工作电流,控制工作状态。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,都应当属于本申请保护的范围。
在本申请实施例中,无线充电IC中包含整流滤波功能的基础上增加恒定电流(constant current,CC)功能,进一步的,还可以增加过流保护(over current protection,OCP)和(over voltage protection,OVP)是过压保护功能,因为无线充电对比有线充电,移动终端移动会导致充电功率改变,增加额外的这些功能,可以保证充电稳定,这些功能在整个充电回路里面的各个位置都属于本申请的保护范围。
下面以实施例的方式,对本申请技术方案作进一步的说明,如图2A所示,为本申请实施例中无线充电接收端电路的一个示意图。无线充电接收端电路,可以包括:谐振线圈模块21、整流滤波模块22、恒压模块23、恒流模块24;
整流滤波模块22与谐振线圈模块21和恒压模块23分别连接,恒压模块23与恒流模块24连接;
恒流模块24,用于输出恒定电流。
在本申请实施例中,无线充电接收端电路可以包括:谐振线圈模块21、整流滤波模块22、恒压模块23、恒流模块24;相对于现有技术,增加了恒流模块24,即可以通过恒流模块24,设定恒定的工作电流,控制工作状态。实现无线充电接收端电路直接对电池充电或者其他设备供电。
可选的,恒流模块24包括开关电路241和控制模块242;
控制模块242,用于控制开关电路241,输出所述恒定电流。
示例性的,如图2B所示,为本申请实施例中无线充电接收端电路的另一 个示意图。在本申请实施例中,恒流模块24可以包括开关电路241和控制模块242;再通过控制模块242,控制开关电路241,从而输出所述恒定电流。实现无线充电接收端电路直接对电池充电或者其他设备供电。
可选的,开关电路241包括:
第一NMOS开关Q1和第二NMOS开关Q2,第一NMOS开关Q1的源极与第二NMOS开关Q1的源极连接;或,
氮化镓开关Q7。
需要说明的是第一NMOS开关Q1和第二NMOS开关Q2可以是两个B2B的NMOS开关,为了让Q1和Q2左右两端连接;也可以是一个GaN来实现充电流程。
示例性的,如图2C所示,为本申请实施例中无线充电接收端电路的另一个示意图。在图2C所示中,开关电路241包括:第一NMOS开关Q1和第二NMOS开关Q2。可以理解的是,第一NMOS开关Q1和第二NMOS开关Q2为隔离NMOS开关,为了在充电的时候,保持连接,不充电的时候,保持断开。
示例性的,如图2D所示,为本申请实施例中无线充电接收端电路的另一个示意图。在图2D所示中,开关电路241包括:氮化镓开关Q7。可以理解的是,第一NMOS开关Q1和第二NMOS开关Q2形成的隔离NMOS开关,也可以用一个氮化镓开关替换。
可选的,控制模块242,还用于执行以下中的至少一项:
根据第一控制信号,控制开关电路241进行限流反馈;
根据第二控制信号,控制开关电路241进行过压保护;
根据第三控制信号,控制开关电路241进行过流保护。
可选的,所述第一控制信号、所述第二控制信号以及所述第三控制信号通过同一个控制器生成,或,通过不同的控制器生成。
可选的,控制模块242还可以包括限流反馈模块2421、过压保护模块2422以及过流保护模块2423中的至少一项。
可选的,限流反馈模块2421与第一NMOS开关Q1和第二NMOS开关Q2的栅极连接;
过压保护模块2422的第一端与第一NMOS开关Q1的漏极连接,过压保护模块2422的第二端与第一NMOS开关Q1的栅极连接;
过流保护模块2423的第一端与第二NMOS开关Q2的漏极连接,过流保护模块2423的第二端与第二NMOS开关Q2的栅极连接。
示例性的,如图2E、图2F和图2G所示,为本申请实施例中无线充电接收端电路的另一个示意图。可以理解的是,限流反馈(feedback,FB)模块2421、过压保护模块2422,以及过流保护模块2423,可以通过同一个控制器生成不同的控制信号来实现,也可以通过不同的控制器各自生成的控制信号来实现,具体此处不做限定。限流反馈也可以称为电流采样反馈。
在本申请实施例中,提供的是对于恒流模块24的一个可选的实现方式,可以包括第一NMOS开关Q1、第二NMOS开关Q2和控制模块242;或,氮化镓开关Q7和控制模块242。其中,控制模块242又可以包括限流反馈模块2421、过压保护模块2422,以及过流保护模块2423中的至少一项。通过对第一NMOS开关Q1和第二NMOS开关Q2的开关控制,限流反馈(feedback,FB)模块2421可以输出稳定电流,在无线充电接收端动态变化时电流不会波动,提供恒定电流(constant current,CC)功能;过压保护模块2422可以提供过压保护功能,过流保护模块2423可以提供过流保护功能。
即IC端增加Q1和Q2、电流采样反馈及OCP/OVP功能,也可以在IC内部任意位置增加这些功能或类似的保护功能。在进行升压/降压时,也需要发射端进行配合。
限流反馈模块2421,通过控制第一NMOS开关Q1和第二NMOS开关Q2在可变电阻区调节,此时的控制输出电压是负载(电池)和Q1&Q2上电压之和,通过改变Q1&Q2的阻抗实现分压变化,这样控制给到负载(电池)的电压,从而实现希望工作的电流,这个电压采样、电流采样,以及计算等都可以写在控制模块242的控制核心(Digital Core)里面。
过压保护模块2422,如果为硬件保护,可以通过硬件电压比较器将标准电压和采样电压作比较,当达到过压值时电压比较器翻转从而保护;如果为软件保护,就是采样电压,通过数字核心计算后再控制IC保护。
过流保护模块2423,如果为硬件保护,可以通过硬件电流比较器将标准 电流和采样电流作比较,当达到过流值时电流比较器翻转从而保护;如果为软件保护,就是采样电流,通过数字核心计算后再控制IC保护。
即可以理解的是,限流反馈模块2421、过压保护模块2422和过流保护模块2423,都可以通过数字核心控制来实现各自对应的功能。这里的数字核心可以理解为控制器。
可选的,谐振线圈模块21、整流滤波模块22和恒压模块23集成在第一芯片。
可选的,开关电路241集成在所述第一芯片或第二芯片。
可选的,控制模块242集成在所述第一芯片、所述第二芯片,或第三芯片。
示例性的,如图3A所示,为本申请实施例中无线充电接收端电路的另一个示意图。在图3A所示中,谐振线圈模块21、整流滤波模块22和恒压模块23以及恒流模块24都集成在第一芯片中。
如图3B所示,为本申请实施例中无线充电接收端电路的另一个示意图。在图3B所示中,谐振线圈模块21、整流滤波模块22和恒压模块23以及恒流模块24中的开关电路241集成在第一芯片(例如IC-1)上,恒流模块24中的控制模块242集成在第二芯片上。
如图3C所示,为本申请实施例中无线充电接收端电路的另一个示意图。在图3C所示中,谐振线圈模块21、整流滤波模块22和恒压模块23以及恒流模块24中的控制模块242集成在第一芯片(例如IC-1)上,恒流模块24中的开关电路241集成在第二芯片(例如IC-2)上。
如图3D所示,为本申请实施例中无线充电接收端电路的另一个示意图。在图3D所示中,谐振线圈模块21、整流滤波模块22和恒压模块23集成在第一芯片(例如IC-1)上,恒流模块24集成在第二芯片(例如IC-2)上。
如图3E所示,为本申请实施例中无线充电接收端电路的另一个示意图。在图3E所示中,谐振线圈模块21、整流滤波模块22和恒压模块23集成在第一芯片(例如IC-1)上,恒流模块24中的开关电路241集成在第二芯片(例如IC-2)上,恒流模块24中的控制模块242集成在第三芯片(例如IC-3)上。
需要说明的是,控制模块242可以根据第一控制信号,控制开关电路241进行限流反馈;或,根据第二控制信号,控制开关电路241进行过压保护;或, 根据第三控制信号,控制开关电路241进行过流保护。而第一控制信号、第二控制信号以及第三控制信号可以通过同一个控制器来生成,也可以通过不同的控制器来生成。如果通过不同的控制器来生成的话,那这几个不同的控制器都可以集成在同一个芯片上,也可以集成在不同的芯片上,此处不做具体限定。如果同一个芯片上的空间有限,那么可以用不同芯片相互配合来实现相应的功能。
可选的,整流滤波模块22包括全桥式整流滤波电路或半桥式整流滤波电路。
可选的,整流滤波模块22包括全桥式整流滤波电路,全桥式整流滤波电路包括第三NMOS开关Q3、第四NMOS开关Q4、第五NMOS开关Q5和第六NMOS开关Q6,第三NMOS开关Q3、第四NMOS开关Q4、第五NMOS开关Q5和第六NMOS开关Q6分别包括二极管;
第三NMOS开关Q3的源极与第五NMOS开关Q5的漏极连接;
第四NMOS开关Q4的源极与第六NMOS开关Q6的漏极连接;
第三NMOS开关Q3的漏极和第四NMOS开关Q4的漏极,与恒压模块23连接;
第五NMOS开关Q5的源极和第六NMOS开关Q6的源极接地。
可选的,谐振线圈模块21包括接收端线圈和与接收端线圈一端连接的电容;电容连接第一NMOS开关Q1的源极和第三NMOS开关Q3的漏极;接收端线圈另一端连接第二NMOS开关Q2的源极和第四NMOS开关Q4的漏极。
示例性的,在图2E、2F和2G所示中,整流滤波模块是全桥式整流滤波电路。谐振线圈模块21中的接收端线圈通过磁场耦合从无线充电发射端获取电能后,全桥式整流滤波电路将交流电转换为直流电,通过正向电压输出端Vrect向外传输电能。如果用户的需求是稳压充电,可以通过恒压模块23输出稳定的电压;或,如果用户的需求是稳流充电,可以通过恒流模块24输出稳定的电流。
可选的,整流滤波模块22包括半桥式整流滤波电路,半桥式整流滤波电路包括:
全桥式整流滤波电路中删除第三NMOS开关Q3、短路第五NMOS开关Q5的电路;或,
全桥式整流滤波电路中删除第四NMOS开关Q4、短路第六NMOS开关Q6的电路。
可以理解的是,整流滤波部分可以做成半桥式方案。示例性的,可以删去如图2D所示中的Q3短路Q5,如图3F所示,为本申请实施例中无线充电接收端电路中整流滤波模块的一个示意图。或者,删去如图2D所示中的Q4短路Q6,如图3G所示,为本申请实施例中无线充电接收端电路中整流滤波模块的另一个示意图。对比全桥式方案,半桥式方案可以提高输出电压,提高输出增益。
在本申请实施例中,无线充电系统中增加了CC限流功能可以用于对电池直充,并有OCP/OVP保护功能,用一系列保护的方式实现无线充电直接对电池充电或者其他设备供电。
如图4A所示,为本申请实施例中无线充电系统的一个实施例示意图,可以包括:如上述图2A-图2G中,或,图3A-图3G中任一图示所述的无线充电接收端电路。
如图4B所示,为本申请实施例中无线充电系统的另一个实施例示意图,可以包括:无线充电发射端电路,以及如上述图2A-图2G中,或,图3A-图3G中任一图示所述的无线充电接收端电路。
本申请实施例中还提供一种无线充电芯片,可以包括如上述图2A-图2G中,或,图3A-图3G中任一图示所述的无线充电接收端电路。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以 从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储 介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种无线充电接收端电路,其特征在于,包括:
    谐振线圈模块、整流滤波模块、恒压模块、恒流模块;
    所述整流滤波模块与所述谐振线圈模块和所述恒压模块分别连接,所述恒压模块与所述恒流模块连接;
    所述恒流模块,用于输出恒定电流。
  2. 根据权利要求1所述的无线充电接收端电路,其特征在于,所述恒流模块包括开关电路和控制模块;
    所述控制模块,用于控制所述开关电路,输出所述恒定电流。
  3. 根据权利要求2所述的无线充电接收端电路,其特征在于,所述开关电路包括:
    第一NMOS开关和第二NMOS开关,所述第一NMOS开关的源极与所述第二NMOS开关的源极连接;或,
    氮化镓开关。
  4. 根据权利要求1-3中任一项所述的无线充电接收端电路,其特征在于,所述控制模块,还用于执行以下中的至少一项:
    根据第一控制信号,控制所述开关电路进行限流反馈;
    根据第二控制信号,控制所述开关电路进行过压保护;
    根据第三控制信号,控制所述开关电路进行过流保护。
  5. 根据权利要求4所述的无线充电接收端电路,其特征在于,所述第一控制信号、所述第二控制信号以及所述第三控制信号通过同一个控制器生成,或,通过不同的控制器生成。
  6. 根据权利要求5所述的无线充电接收端电路,其特征在于,所述谐振线圈模块、所述整流滤波模块和所述恒压模块集成在第一芯片。
  7. 根据权利要求6所述的无线充电接收端电路,其特征在于,所述开关电路集成在所述第一芯片或第二芯片。
  8. 根据权利要求7所述的无线充电接收端电路,其特征在于,所述控制模块集成在所述第一芯片、所述第二芯片,或第三芯片。
  9. 根据权利要求1-3中任一项所述的无线充电接收端电路,其特征在于, 所述控制模块还包括限流反馈模块、过压保护模块以及过流保护模块中的至少一项。
  10. 根据权利要求9所述的无线充电接收端电路,其特征在于,
    所述限流反馈模块与第一NMOS开关Q1和第二NMOS开关Q2的栅极连接;
    所述过压保护模块的第一端与所述第一NMOS开关Q1的漏极连接,所述过压保护模块的第二端与所述第一NMOS开关Q1的栅极连接;
    所述过流保护模块的第一端与所述第二NMOS开关Q2的漏极连接,所述过流保护模块的第二端与所述第二NMOS开关Q2的栅极连接。
  11. 根据权利要求1-3中任一项所述的无线充电接收端电路,其特征在于,所述整流滤波模块包括全桥式整流滤波电路或半桥式整流滤波电路。
  12. 根据权利要求11所述的无线充电接收端电路,其特征在于,所述全桥式整流滤波电路包括第三NMOS开关Q3、第四NMOS开关Q4、第五NMOS开关Q5和第六NMOS开关Q6;所述第三NMOS开关Q3、所述第四NMOS开关Q4、所述第五NMOS开关Q5和所述第六NMOS开关Q6分别包括二极管;
    所述第三NMOS开关Q3的源极与所述第五NMOS开关Q5的漏极连接;
    所述第四NMOS开关Q4的源极与所述第六NMOS开关Q6的漏极连接;
    所述第三NMOS开关Q3的漏极和所述第四NMOS开关Q4的漏极,与所述恒压模块连接;
    所述第五NMOS开关Q5的源极和所述第六NMOS开关Q6的源极接地。
  13. 根据权利要求12所述的无线充电接收端电路,其特征在于,所述谐振线圈模块包括接收端线圈和与接收端线圈一端连接的电容;
    所述电容连接第一NMOS开关Q1的源极和所述第三NMOS开关Q3的漏极;
    所述接收端线圈另一端连接第二NMOS开关Q2的源极和所述第四NMOS开关Q4的漏极。
  14. 根据权利要求11所述的无线充电接收端电路,其特征在于,所述半桥式整流滤波电路包括:
    所述全桥式整流滤波电路中删除第三NMOS开关Q3、短路第五NMOS开关Q5的电路;或,
    所述全桥式整流滤波电路中删除第四NMOS开关Q4、短路第六NMOS开关Q6的电路。
  15. 一种无线充电系统,其特征在于,包括如权利要求1-14任一项所述的无线充电接收端电路。
  16. 一种无线充电芯片,其特征在于,包括如权利要求1-14任一项所述的无线充电接收端电路。
PCT/CN2022/110550 2021-09-18 2022-08-05 无线充电接收端电路、系统以及芯片 WO2023040507A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111098528.3A CN115842419A (zh) 2021-09-18 2021-09-18 无线充电接收端电路、系统以及芯片
CN202111098528.3 2021-09-18

Publications (1)

Publication Number Publication Date
WO2023040507A1 true WO2023040507A1 (zh) 2023-03-23

Family

ID=85574233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110550 WO2023040507A1 (zh) 2021-09-18 2022-08-05 无线充电接收端电路、系统以及芯片

Country Status (2)

Country Link
CN (1) CN115842419A (zh)
WO (1) WO2023040507A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017093181A (ja) * 2015-11-11 2017-05-25 株式会社ダイヘン 非接触電力伝送システム、および、送電装置
CN106849374A (zh) * 2017-04-05 2017-06-13 西南交通大学 一种变次级结构的感应式无线充电系统
CN208423946U (zh) * 2018-08-22 2019-01-22 南宁职业技术学院 无线恒流充电装置
CN110224497A (zh) * 2019-05-06 2019-09-10 南京睿赫电子有限公司 一种高集成线性充电稳压电路及其应用
CN110350635A (zh) * 2019-07-16 2019-10-18 中国计量大学 一种人工心脏无线供电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017093181A (ja) * 2015-11-11 2017-05-25 株式会社ダイヘン 非接触電力伝送システム、および、送電装置
CN106849374A (zh) * 2017-04-05 2017-06-13 西南交通大学 一种变次级结构的感应式无线充电系统
CN208423946U (zh) * 2018-08-22 2019-01-22 南宁职业技术学院 无线恒流充电装置
CN110224497A (zh) * 2019-05-06 2019-09-10 南京睿赫电子有限公司 一种高集成线性充电稳压电路及其应用
CN110350635A (zh) * 2019-07-16 2019-10-18 中国计量大学 一种人工心脏无线供电装置

Also Published As

Publication number Publication date
CN115842419A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
US9787120B2 (en) Usb charger, mobile terminal and charging method thereof
US20180278068A1 (en) Electronic device and power adapter therefor
KR102259113B1 (ko) 충전 회로, 단말 및 충전 시스템
RU2724645C1 (ru) Беспроводное зарядное устройство, заряжаемое устройство и способ управления ими
US9923396B2 (en) USB charger, mobile terminal and charging method thereof
US10554067B2 (en) Power adapter, electronic equipment, battery charging system and method
US10044204B2 (en) Power source adaptor for charging directly
US10050466B2 (en) DC-charging power source adaptor and mobile terminal
EP3841653B1 (en) In-band communication during wireless battery charging
US20180138724A1 (en) Mobile terminal, dc-charging power source adaptor, and charging method
US10056779B2 (en) Power source adaptor for charging directly and mobile terminal
US20170040817A1 (en) Mobile terminal and charging method
CN104718700B (zh) 在包括多个充电端口的电子设备中的功率路径切换
WO2009070730A2 (en) Method and apparatus for high efficiency scalable near-field wireless power transfer
CN111886775B (zh) 充电方法和充电装置
WO2019223003A1 (zh) 无线充电接收装置及移动终端
JP7197608B2 (ja) 無線充電受信装置及び移動端末
CN203827167U (zh) 一种新型输出电压电流可变式开关电源电路
KR102471450B1 (ko) 충전 방법 및 충전 장치
CN103502649A (zh) 一种远程连接和断开用于在冷却系统中采用的可变容量压缩机的频率变换器的辅助电源的系统和方法
KR101931256B1 (ko) 무선 전력 수신 장치 및 방법
KR101902228B1 (ko) 무선 전력 전송 장치 및 방법
CN103944424B (zh) 供用于功率转换器中的接收电路
US20160049808A1 (en) Battery charging and discharging of single switch and control method therefor
KR20220114647A (ko) 전자 디바이스, 무선 충전 수신 장치, 제어 방법 및 무선 충전 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868884

Country of ref document: EP

Kind code of ref document: A1