WO2023040473A1 - 一种应用于低频功率放大器的耦合电路 - Google Patents
一种应用于低频功率放大器的耦合电路 Download PDFInfo
- Publication number
- WO2023040473A1 WO2023040473A1 PCT/CN2022/108113 CN2022108113W WO2023040473A1 WO 2023040473 A1 WO2023040473 A1 WO 2023040473A1 CN 2022108113 W CN2022108113 W CN 2022108113W WO 2023040473 A1 WO2023040473 A1 WO 2023040473A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- branch
- resonant
- coupling
- resonant branch
- capacitor
- Prior art date
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 91
- 238000010168 coupling process Methods 0.000 title claims abstract description 91
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 91
- 239000003990 capacitor Substances 0.000 claims description 50
- 238000002955 isolation Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 5
- 208000032370 Secondary transmission Diseases 0.000 claims description 4
- 238000000034 method Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
- H03F3/245—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
- H01P5/183—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers at least one of the guides being a coaxial line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
- H01P5/184—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/181—Low-frequency amplifiers, e.g. audio preamplifiers
- H03F3/183—Low-frequency amplifiers, e.g. audio preamplifiers with semiconductor devices only
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the invention relates to the technical field of radio frequency power amplifiers, in particular to a coupling circuit applied to low frequency power amplifiers.
- the RF power amplifier transmitter module plays an increasingly important role in the mobile phone communication system. It has a very high degree of integration. It not only integrates a power amplifier, but also a multi-throw RF switch and a coupler. Among them, the main function of the coupler in the RF power amplifier transmitting module is to receive the power energy of the linear power amplifier through the coupling module, and then feed it back to the mobile phone transceiver system. Power calibration and adjustment to get accurate transmit power. However, the coupling coefficient of the traditional dual microstrip line coupler changes monotonously with frequency, and the coupling frequency band is wide. For the transmitting module of the low-frequency power amplifier, it is easy to couple clutter in other frequency bands, so as to interfere with the judgment of the mobile phone transceiver system. .
- An embodiment of the present invention provides a coupling circuit applied to a low-frequency power amplifier, which can have a certain suppression effect on medium-high frequency signals and reduce interference of medium-high frequency signals.
- the present invention provides a coupling circuit applied to low-frequency power amplifiers, including a directional coupler, a first resonant branch, a second resonant branch, a third resonant branch and a fourth resonant branch;
- the directional coupler includes a main input port, a main output port, a main transmission line connecting the main input port and the main output port, an isolation port, a coupling port, and a secondary transmission line connecting the coupling port and the isolation port;
- the main input port is used to input a radio frequency signal
- the main output port is connected to an antenna to output a radio frequency signal through the antenna, and the isolated port is grounded through a load resistor;
- the coupling port is connected to one end of the first resonant branch to output a coupling signal through the first resonant branch, and the other end of the first resonant branch is a coupling signal output end;
- the second resonant Both ends of the branch and the third resonant branch are connected to the coupling port, and the other ends of the second resonant branch and the third resonant branch are grounded;
- one end of the fourth resonant branch is connected to the The coupling signal output end is connected, and the other end of the fourth resonant branch is grounded;
- the resonance frequency range of the second resonance branch is 4GHz-5GHz
- the resonance frequency range of the third resonance branch is 2GHz-3GHz
- the resonance frequency range of the fourth resonance branch is 1.5GHz-2GHz.
- the resonance frequency of the second resonance branch is 4.56 GHz
- the resonance frequency of the third resonance branch is 2.25 GHz
- the resonance frequency of the fourth resonance branch is 1.91 GHz.
- first to fourth resonant branches are all LC series resonant branches.
- the first resonance branch includes a first capacitor C1 and a first inductor L1 connected in series, one end of the first capacitor C1 is the coupling signal output end, and the other end of the first capacitor C1 is connected to the The first inductor L1 is connected, and the other end of the first inductor L1 is connected to the coupling port.
- the second resonance branch includes a second capacitor C2 and a second inductor L2 connected in series, one end of the second capacitor C2 is grounded through the second inductor L2, and the other end of the second capacitor C2 is connected to said coupling port;
- the third resonant branch includes a third capacitor C3 and a third inductor L3 connected in series, one end of the third capacitor C3 is grounded through the third inductor L3, and the other end of the third capacitor C3 is connected to the coupling port.
- the fourth resonance branch includes a fourth capacitor C4 and a fourth inductor L4 connected in series, one end of the fourth capacitor C4 is grounded through the fourth inductor L4, and the other end of the fourth capacitor C4 is connected to The coupled signal output.
- a fifth capacitor C5 is also included.
- the second resonant branch, the third resonant branch and the first resonant branch are arranged in sequence along the output direction of the coupling port, and the coupling port passes through the fifth capacitor C5 and the first resonant branch Road, the second resonant branch, and the third resonant branch are connected.
- a fifth inductance L5 is also included; the fifth inductance L5 is located between the second resonant branch and the third resonant branch, and the coupling port passes through the fifth capacitor C5 and the The fifth inductor L5 is connected to the first resonant branch.
- the resonance frequency of the first resonance branch is 600MHz-1.2GHz.
- the directional coupler is a double microstrip line coupler.
- the coupling circuit includes a directional coupler, a first resonant branch, a second resonant branch, a third resonant branch and a fourth resonant branch;
- the directional coupler includes a main input port, a main output port, a main transmission line connecting the main input port and the main output port, a coupling port, an isolation port, and a secondary transmission line connecting the coupling port and the isolation port;
- the main input port is used to input a radio frequency signal
- the main output port is connected to an antenna to output a radio frequency signal through the antenna, the isolation port is grounded through a load resistor;
- the coupling port is connected to one end of the first resonant branch connected to output the coupling signal through the first resonant branch, the other end of the first resonant branch is the coupling signal output end; one end of the second resonant branch and the third resonant branch are both connected to The coupling port
- FIG. 1 is a circuit diagram of a coupling circuit applied to a low-frequency power amplifier provided by an embodiment of the present invention
- FIG. 2 is a simulation curve of the coupling coefficient of the coupling circuit provided by the embodiment of the present invention.
- a coupling circuit 100 applied to a low-frequency power amplifier includes a directional coupler 10, a first resonant branch 11, a second resonant branch 12, a third resonant branch 13 and a fourth resonant branch 14.
- the directional coupler 10 includes a main input port Port1, a main output port Port2, a main transmission line connecting the main input port Port1 and the main output port Port2, an isolation port Port3, a coupling port Port4, and a main transmission line connecting the coupling port Port4 and the secondary transmission line of the isolated port Port3.
- the directional coupler 10 may be a double microstrip line coupler, or other such as coaxial line or strip line coupler.
- the main input port Port1 is used for inputting radio frequency signals, and the main output port Port2 is connected to an antenna ANT for outputting radio frequency signals through the antenna ANT.
- the isolated port Port3 is grounded through the load resistor R0.
- the coupling port Port4 is connected to one end of the first resonant branch 11 to output a coupling signal through the first resonant branch 11, and the other end of the first resonant branch 11 is a coupling signal output terminal Coupler Out , that is, the coupling signal output from the coupling port Port4 is output from the coupling signal output terminal Coupler Out after passing through the first resonant branch 11.
- Both ends of the second resonant branch 12 and the third resonant branch 13 are connected to the coupling port Port4, and the other ends of the second resonant branch 12 and the third resonant branch 13 are both grounded.
- One end of the fourth resonant branch 14 is connected to the coupling signal output terminal Coupler Out, and the other end of the fourth resonant branch 14 is grounded.
- the resonant frequency range of the second resonant branch 12 is 4 GHz to 5 GHz
- the resonant frequency range of the third resonant branch 13 is 2 GHz to 3 GHz
- the resonant frequency range of the fourth resonant branch 14 is 1.5 GHz. GHz ⁇ 2GHz. Therefore, in the embodiment of the present invention, through the resonance of the second to fourth resonant branches, the coupling coefficient of the medium and high frequency signals can be suppressed, thereby reducing the interference of the medium and high frequency signals, and improving the judgment accuracy of the transceiver system.
- the resonant frequency of the second resonant branch 12 is 4.56 GHz
- the resonant frequency of the third resonant branch 13 is 2.25 GHz
- the resonant frequency of the fourth resonant branch 14 is The frequency is 1.91GHz.
- the first to fourth resonant branches may all be LC series resonant branches. More specifically, the first resonance branch 11 includes a first capacitor C1 and a first inductor L1 connected in series, the second resonance branch 12 includes a second capacitor C2 and a second inductor L2 connected in series, and the third resonance branch The circuit 13 includes a third capacitor C3 and a third inductor L3 connected in series, and the fourth resonance branch 14 includes a fourth capacitor C4 and a fourth inductor L4 connected in series. Further, the coupling circuit 100 further includes a fifth capacitor C5 and a fifth inductor L5.
- One end of the first capacitor C1 is the coupling signal output terminal Coupler Out
- the other end of the first capacitor C1 is connected to the first inductance L1
- the other end of the first inductance L1 passes through the fifth inductance in turn L5 and the fifth capacitor C5 are connected to the coupling port Port4, that is, the coupling port Port4 is connected in series with the fifth capacitor C5, the fifth inductor L5, the first inductor L1 and the first capacitor C1, and the coupling signal is sequentially connected. After passing through the fifth capacitor C5, the fifth inductor L5, the first inductor L1 and the first capacitor C1, it is output from the coupling signal output terminal Coupler Out.
- One end of the second capacitor C2 is grounded through the second inductor L2, and the other end of the second capacitor C2 is connected between the fifth inductor L5 and the fifth capacitor C5.
- One end of the third capacitor C3 is grounded through the third inductor L3, and the other end of the third capacitor C3 is connected between the first inductor L1 and the fifth inductor L5.
- One end of the fourth capacitor C4 is grounded through the fourth inductor L4, and the other end of the fourth capacitor C4 is connected to the coupling signal output terminal Coupler Out.
- the fifth capacitor C5 can be used for impedance adjustment and matching.
- the first resonant branch 11 resonates in the low frequency region, and can be used for impedance adjustment to adjust the flatness of the coupling coefficient.
- the vibration frequency range of the first resonance branch 11 may be 600MHz-1.2GHz.
- Fig. 2 is the simulation curve of the coupling coefficient applied to the coupling circuit of the low-frequency power amplifier of the embodiment of the present invention, in the figure the ordinate represents the coupling coefficient, and the abscissa represents the frequency, as shown in the figure, the second resonant branch 12 Resonate at the position of m6, that is, the resonance frequency is 4.56GHz; the third resonance branch 13 resonates at the position of m5, that is, the resonance frequency is 2.25GHz; the fourth resonance branch 14 resonates at the position of m4, that is, the resonance frequency is 1.91GHz , it can be seen from the figure that the second resonant branch 12, the third resonant branch 13 and the fourth resonant branch 14 have a good suppression of the coupling coefficient of the medium and high frequency signals, reaching a suppression of more than 30dB, while at 600MHz In the low frequency region of -1.2GHz, the coupling coefficient is relatively flat, and the fluctuation is only +-0.1dB. Therefore, by suppressing the medium
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Multimedia (AREA)
- Amplifiers (AREA)
Abstract
本发明实施例公开了一种应用于低频功率放大器的耦合电路,包括定向耦合器、第一谐振支路、第二谐振支路、第三谐振支路以及第四谐振支路;所述定向耦合的耦合端口与所述第一谐振支路的一端连接,所述第一谐振支路的另一端为耦合信号输出端;所述第二谐振支路和所述第三谐振支路的一端均与所述耦合端口连接,所述第二谐振支路和所述第三谐振支路的另一端均接地;第四谐振支路的一端与所述耦合信号输出端连接,第四谐振支路的另一端接地;所述第二谐振支路的谐振频率范围为4GHz~5GHz,所述第三谐振支路的谐振频率范围为2GHz~3GHz,所述第四谐振支路的谐振频率范围为1.5GHz~2GHz,通过上述方式,可以对中高频信号的耦合系数进行有效抑制。
Description
本发明涉及射频功率放大器技术领域,尤其涉及一种应用于低频功率放大器的耦合电路。
射频功率放大器发射模组在手机通信系统中承担了越来越重要的角色,其具有极高的集成度,内部不仅集成有功率放大器,还有多掷数射频开关以及耦合器。其中耦合器在射频功率放大器发射模组的主要作用便是通过耦合模组接收的线型功率放大器的功率能量,然后反馈给手机收发系统,手机收发系统通过耦合器反馈信号对手机射频功率放大器进行功率校准和调节,以此来得到准确的发射功率。然而,传统的双微带线耦合器耦合系数随频率变化较单调,而且耦合频段较宽,对于低频功率放大器的发射模组而已,容易耦合其他频段的杂波,以至于干扰手机收发系统的判断。
发明内容
本发明实施例提供一种应用于低频功率放大器的耦合电路,能够对中高频信号具有一定的抑制效果,减少中高频信号的干扰。
为了解决上述技术问题,本发明提供一种应用于低频功率放大器的耦合电路,包括定向耦合器、第一谐振支路、第二谐振支路、第三谐振支路以及第四谐振支路;
所述定向耦合器包括主输入端口、主输出端口、连接所述主输入端口和所述主输出端口的主传输线、隔离端口、耦合端口以及连接所述耦合端口和所述隔离端口的次传输线;所述主输入端口用于输入射频信号,所述主输出端口连接有天线,以通过所述天线输出射频信号,所述隔离端口通过负载电阻接地;
所述耦合端口与所述第一谐振支路的一端连接,以通过所述第一谐振支路输出耦合信号,所述第一谐振支路的另一端为耦合信号输出端;所述第二谐振支路和所述第三谐振支路的一端均与所述耦合端口连接,所述第二谐振支路和所述第三谐振支路的另一端均接地;第四谐振支路的一端与所述耦合信号输出 端连接,第四谐振支路的另一端接地;
所述第二谐振支路的谐振频率范围为4GHz~5GHz,所述第三谐振支路的谐振频率范围为2GHz~3GHz,所述第四谐振支路的谐振频率范围为1.5GHz~2GHz。
进一步地,所述第二谐振支路的谐振频率为4.56GHz,所述第三谐振支路的谐振频率为2.25GHz,所述第四谐振支路的谐振频率为1.91GHz。
进一步地,所述第一至第四谐振支路均为LC串联谐振支路。
进一步地,所述第一谐振支路包括串联的第一电容C1和第一电感L1,所述第一电容C1的一端为所述耦合信号输出端,所述第一电容C1的另一端与所述第一电感L1连接,所述第一电感L1的另一端与所述耦合端口连接。
进一步地,所述第二谐振支路包括串联的第二电容C2和第二电感L2,所述第二电容C2的一端通过所述第二电感L2接地,所述第二电容C2的另一端连接所述耦合端口;
第三谐振支路包括串联的第三电容C3和第三电感L3,所述第三电容C3的一端通过所述第三电感L3接地,所述第三电容C3的另一端连接所述耦合端口。
进一步地,所述第四谐振支路包括串联的第四电容C4和第四电感L4,所述第四电容C4的一端通过所述第四电感L4接地,所述第四电容C4的另一端连接所述耦合信号输出端。
进一步地,还包括第五电容C5;
所述第二谐振支路、所述第三谐振支路以及第一谐振支路沿所述耦合端口的输出方向依次排列,所述耦合端口通过所述第五电容C5和所述第一谐振支路、第二谐振支路、第三谐振支路连接。
进一步地,还包括第五电感L5;所述第五电感L5位于所述第二谐振支路和所述第三谐振支路之间,所述耦合端口依次通过所述第五电容C5和所述第五电感L5与所述第一谐振支路连接。
进一步地,所述第一谐振支路的谐振频率为600MHz-1.2GHz。
进一步地,所述定向耦合器为双微带线耦合器。
有益效果:本发明的应用于低频功率放大器的耦合电路中,该耦合电路包 括定向耦合器、第一谐振支路、第二谐振支路、第三谐振支路以及第四谐振支路;所述定向耦合器包括主输入端口、主输出端口、连接所述主输入端口和所述主输出端口的主传输线、耦合端口、隔离端口以及连接所述耦合端口和所述隔离端口的次传输线;所述主输入端口用于输入射频信号,所述主输出端口连接有天线,以通过所述天线输出射频信号,所述隔离端口通过负载电阻接地;所述耦合端口与所述第一谐振支路的一端连接,以通过所述第一谐振支路输出耦合信号,所述第一谐振支路的另一端为耦合信号输出端;所述第二谐振支路和所述第三谐振支路的一端均与所述耦合端口连接,所述第二谐振支路和所述第三谐振支路的另一端均接地;第四谐振支路的一端与所述耦合信号输出端连接,第四谐振支路的另一端接地;所述第二谐振支路的谐振频率范围为4GHz~5GHz,所述第三谐振支路的谐振频率范围为2GHz~3GHz,所述第四谐振支路的谐振频率范围为1.5GHz~2GHz,由此,通过第二至第四谐振支路的作用,可以对中高频信号的耦合系数进行抑制,从而减少中高频信号的干扰。
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其有益效果显而易见。
图1是本发明实施例提供的应用于低频功率放大器的耦合电路的电路图;
图2是本发明实施例提供的耦合电路的耦合系数仿真曲线。
请参照图式,其中相同的组件符号代表相同的组件,本发明的原理是以实施在一适当的运算环境中来举例说明。以下的说明是基于所例示的本发明具体实施例,其不应被视为限制本发明未在此详述的其它具体实施例。
参阅图1,本发明实施例的应用于低频功率放大器的耦合电路100,其包括定向耦合器10、第一谐振支路11、第二谐振支路12、第三谐振支路13以及第四谐振支路14。
其中,所述定向耦合器10包括主输入端口Port1、主输出端口Port2、连接所述主输入端口Port1和所述主输出端口Port2的主传输线、隔离端口Port3、耦合端口Port4以及连接所述耦合端口Port4和所述隔离端口Port3的次传输线。本发明实施例中,定向耦合器10可以是双微带线耦合器,也可以是其他例如同 轴线或带状线耦合器。
所述主输入端口Port1用于输入射频信号,所述主输出端口Port2连接有天线ANT,以通过所述天线ANT输出射频信号。所述隔离端口Port3通过负载电阻R0接地。所述耦合端口Port4与所述第一谐振支路11的一端连接,以通过所述第一谐振支路11输出耦合信号,所述第一谐振支路11的另一端为耦合信号输出端Coupler Out,即耦合端口Port4输出的耦合信号经过第一谐振支路11后从耦合信号输出端Coupler Out输出。所述第二谐振支路12和所述第三谐振支路13的一端均与所述耦合端口Port4连接,所述第二谐振支路12和所述第三谐振支路13的另一端均接地;第四谐振支路14的一端与所述耦合信号输出端Coupler Out连接,第四谐振支14路的另一端接地。
其中,所述第二谐振支路12的谐振频率范围为4GHz~5GHz,所述第三谐振支路13的谐振频率范围为2GHz~3GHz,所述第四谐振支路14的谐振频率范围为1.5GHz~2GHz。由此,本发明实施例中,通过第二至第四谐振支路的谐振,可以对中高频信号的耦合系数进行抑制,从而减少中高频信号的干扰,提高收发系统的判断准确性。
进一步地,在一种实现方式中,所述第二谐振支路12的谐振频率为4.56GHz,所述第三谐振支路13的谐振频率为2.25GHz,所述第四谐振支路14的谐振频率为1.91GHz。
其中,所述第一至第四谐振支路可以均为LC串联谐振支路。更具体地,所述第一谐振支路11包括串联的第一电容C1和第一电感L1,所述第二谐振支路12包括串联的第二电容C2和第二电感L2,第三谐振支路13包括串联的第三电容C3和第三电感L3,所述第四谐振支路14包括串联的第四电容C4和第四电感L4。进一步地,耦合电路100还包括第五电容C5和第五电感L5。
所述第一电容C1的一端为所述耦合信号输出端Coupler Out,所述第一电容C1的另一端与所述第一电感L1连接,所述第一电感L1的另一端依次通过第五电感L5和第五电容C5而与耦合端口Port4连接,即耦合端口Port4依次串联所述第五电容C5、所述第五电感L5、所述第一电感L1和所述第一电容C1,耦合信号依次经过所述第五电容C5、所述第五电感L5、所述第一电感L1和所述第一电容C1后从耦合信号输出端Coupler Out输出。
所述第二电容C2的一端通过所述第二电感L2接地,所述第二电容C2的另一端连接在所述第五电感L5和所述第五电容C5之间。所述第三电容C3的一端通过所述第三电感L3接地,所述第三电容C3的另一端连接在所述第一电感L1和所述第五电感L5之间。所述第四电容C4的一端通过所述第四电感L4接地,所述第四电容C4的另一端连接所述耦合信号输出端Coupler Out。
其中,第五电容C5可以用于阻抗调节匹配。所述第一谐振支路11谐振于低频区域,同时可用于阻抗调节,调节耦合系数的平坦度。第一谐振支路11的振频率范围可以为600MHz-1.2GHz。
参阅图2,图2是本发明实施例的应用于低频功率放大器的耦合电路的耦合系数仿真曲线,图中纵坐标表示耦合系数,横坐标表示频率,如图所示,第二谐振支路12谐振于m6的位置,即谐振频率为4.56GHz;第三谐振支路13谐振于m5的位置,即谐振频率为2.25GHz;第四谐振支路14谐振于m4的位置,即谐振频率为1.91GHz,由图可看出,第二谐振支路12、第三谐振支路13以及第四谐振支路14对中高频信号的耦合系数具有较好的抑制,达到了30dB以上的抑制,而在600MHz-1.2GHz的低频区域,耦合系数较为平坦,波动只有+-0.1dB。因此,通过对中高频型号的抑制,可以提高收发系统对功率判断的准确性,具有较好的低频性能。
以上对本发明实施例所提供的一种应用于低频功率放大器的耦合电路进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
Claims (10)
- 一种应用于低频功率放大器的耦合电路,其特征在于,包括定向耦合器、第一谐振支路、第二谐振支路、第三谐振支路以及第四谐振支路;所述定向耦合器包括主输入端口、主输出端口、连接所述主输入端口和所述主输出端口的主传输线、隔离端口、耦合端口以及连接所述耦合端口和所述隔离端口的次传输线;所述主输入端口用于输入射频信号,所述主输出端口连接有天线,以通过所述天线输出射频信号,所述隔离端口通过负载电阻接地;所述耦合端口与所述第一谐振支路的一端连接,以通过所述第一谐振支路输出耦合信号,所述第一谐振支路的另一端为耦合信号输出端;所述第二谐振支路和所述第三谐振支路的一端均与所述耦合端口连接,所述第二谐振支路和所述第三谐振支路的另一端均接地;第四谐振支路的一端与所述耦合信号输出端连接,第四谐振支路的另一端接地;所述第二谐振支路的谐振频率范围为4GHz~5GHz,所述第三谐振支路的谐振频率范围为2GHz~3GHz,所述第四谐振支路的谐振频率范围为1.5GHz~2GHz。
- 根据权利要求1所述的应用于低频功率放大器的耦合电路,其特征在于,所述第二谐振支路的谐振频率为4.56GHz,所述第三谐振支路的谐振频率为2.25GHz,所述第四谐振支路的谐振频率为1.91GHz。
- 根据权利要求1所述的应用于低频功率放大器的耦合电路,其特征在于,所述第一至第四谐振支路均为LC串联谐振支路。
- 根据权利要求3所述的应用于低频功率放大器的耦合电路,其特征在于,所述第一谐振支路包括串联的第一电容C1和第一电感L1,所述第一电容C1的一端为所述耦合信号输出端,所述第一电容C1的另一端与所述第一电感L1连接,所述第一电感L1的另一端与所述耦合端口连接。
- 根据权利要求4所述的应用于低频功率放大器的耦合电路,其特征在于,所述第二谐振支路包括串联的第二电容C2和第二电感L2,所述第二电容C2的一端通过所述第二电感L2接地,所述第二电容C2的另一端连接所述耦合端口;第三谐振支路包括串联的第三电容C3和第三电感L3,所述第三电容C3 的一端通过所述第三电感L3接地,所述第三电容C3的另一端连接所述耦合端口。
- 根据权利要求4所述的应用于低频功率放大器的耦合电路,其特征在于,所述第四谐振支路包括串联的第四电容C4和第四电感L4,所述第四电容C4的一端通过所述第四电感L4接地,所述第四电容C4的另一端连接所述耦合信号输出端。
- 根据权利要求5所述的应用于低频功率放大器的耦合电路,其特征在于,还包括第五电容C5;所述第二谐振支路、所述第三谐振支路以及第一谐振支路沿所述耦合端口的输出方向依次排列,所述耦合端口通过所述第五电容C5和所述第一谐振支路、第二谐振支路、第三谐振支路连接。
- 根据权利要求7所述的应用于低频功率放大器的耦合电路,其特征在于,还包括第五电感L5;所述第五电感L5位于所述第二谐振支路和所述第三谐振支路之间,所述耦合端口依次通过所述第五电容C5和所述第五电感L5与所述第一谐振支路连接。
- 根据权利要求1所述的应用于低频功率放大器的耦合电路,其特征在于,所述第一谐振支路的谐振频率为600MHz-1.2GHz。
- 根据权利要求1所述的应用于低频功率放大器的耦合电路,其特征在于,所述定向耦合器为双微带线耦合器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111096655.XA CN113922775B (zh) | 2021-09-17 | 2021-09-17 | 一种应用于低频功率放大器的耦合电路 |
CN202111096655.X | 2021-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023040473A1 true WO2023040473A1 (zh) | 2023-03-23 |
Family
ID=79235511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/108113 WO2023040473A1 (zh) | 2021-09-17 | 2022-07-27 | 一种应用于低频功率放大器的耦合电路 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113922775B (zh) |
WO (1) | WO2023040473A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113922775B (zh) * | 2021-09-17 | 2023-06-27 | 深圳飞骧科技股份有限公司 | 一种应用于低频功率放大器的耦合电路 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140248837A1 (en) * | 2013-03-04 | 2014-09-04 | Applied Wireless Identifications Group, Inc. | Isolation tuners for directional couplers |
CN109560359A (zh) * | 2017-09-25 | 2019-04-02 | 株式会社村田制作所 | 定向耦合器以及通信单元 |
CN109560360A (zh) * | 2018-12-11 | 2019-04-02 | 深圳飞骧科技有限公司 | 一种定向耦合器 |
CN113872532A (zh) * | 2021-09-17 | 2021-12-31 | 深圳飞骧科技股份有限公司 | 应用于4g全频段功率放大器的耦合电路及电子设备 |
CN113922775A (zh) * | 2021-09-17 | 2022-01-11 | 深圳飞骧科技股份有限公司 | 一种应用于低频功率放大器的耦合电路 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3475037B2 (ja) * | 1997-03-14 | 2003-12-08 | 株式会社東芝 | 無線機 |
WO2017151321A1 (en) * | 2016-02-29 | 2017-09-08 | Skyworks Solutions, Inc. | Integrated filter and directional coupler assemblies |
CN109845029B (zh) * | 2016-10-27 | 2021-03-09 | 株式会社村田制作所 | 定向耦合器内置基板、高频前端电路以及通信装置 |
CN109714011A (zh) * | 2018-12-20 | 2019-05-03 | 佛山臻智微芯科技有限公司 | 一种应用在第五代移动通信28GHz的GaAs射频功率放大器 |
-
2021
- 2021-09-17 CN CN202111096655.XA patent/CN113922775B/zh active Active
-
2022
- 2022-07-27 WO PCT/CN2022/108113 patent/WO2023040473A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140248837A1 (en) * | 2013-03-04 | 2014-09-04 | Applied Wireless Identifications Group, Inc. | Isolation tuners for directional couplers |
CN109560359A (zh) * | 2017-09-25 | 2019-04-02 | 株式会社村田制作所 | 定向耦合器以及通信单元 |
CN109560360A (zh) * | 2018-12-11 | 2019-04-02 | 深圳飞骧科技有限公司 | 一种定向耦合器 |
CN113872532A (zh) * | 2021-09-17 | 2021-12-31 | 深圳飞骧科技股份有限公司 | 应用于4g全频段功率放大器的耦合电路及电子设备 |
CN113922775A (zh) * | 2021-09-17 | 2022-01-11 | 深圳飞骧科技股份有限公司 | 一种应用于低频功率放大器的耦合电路 |
Also Published As
Publication number | Publication date |
---|---|
CN113922775B (zh) | 2023-06-27 |
CN113922775A (zh) | 2022-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023040472A1 (zh) | 应用于4g全频段功率放大器的耦合电路及电子设备 | |
CN112204890B (zh) | 用于多带毫米波5g通信的发送和接收开关和宽带功率放大器匹配网络 | |
CN219457995U (zh) | 双向耦合器及射频芯片 | |
WO2023040473A1 (zh) | 一种应用于低频功率放大器的耦合电路 | |
CN113228417B (zh) | 一种多频段射频前端器件,多频段接收机及多频段发射机 | |
WO2023040475A1 (zh) | 双微带线耦合器、功率放大器及相关设备和芯片 | |
CN110739922A (zh) | 一种超宽带固态功放合成电路 | |
CN104242980B (zh) | 一种基于RF能量检测的Sub-1G射频前端电路设计及参数调整方法 | |
CN110719078A (zh) | 一种用于汽车雷达收发机的毫米波功率放大器 | |
CN110048737A (zh) | 一种雷达射频前端有源环形收发系统 | |
CN220341493U (zh) | 具有改善方向性功能的耦合器及射频芯片 | |
CN111030607B (zh) | 一种二维行波高增益宽带cmos功率放大器 | |
WO2023088002A1 (zh) | 基板匹配电路、射频功率放大器及射频芯片 | |
CN111293992A (zh) | 基于复数阻抗匹配网络的低噪声放大器 | |
US20220271409A1 (en) | Smart bidirectional coupler with switchable inductors | |
Lee et al. | A frequency tunable circulator with 70-dB isolation using reflection coefficient controller for arbitrary load impedance | |
CN105811063A (zh) | 功率处理电路、二路放大电路及多路放大电路 | |
CN213585715U (zh) | 一种并发双波段功率放大器 | |
CN110837722B (zh) | 一种大功率微波收发前端电路的设计方法 | |
WO2021147040A1 (zh) | 一种集成电路 | |
CN112464605A (zh) | 毫米波低噪声放大器与移相器组合系统优化方法 | |
US12119534B2 (en) | Wilkinson power divider, Wilkinson power combiner, and amplifier | |
CN216531250U (zh) | 一种推挽放大电路与推挽功率放大器 | |
CN220896661U (zh) | 射频功率放大器频率和阻抗切换电路及装置 | |
CN217824901U (zh) | 短波宽带超低噪声放大器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22868850 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22868850 Country of ref document: EP Kind code of ref document: A1 |