WO2023040472A1 - 应用于4g全频段功率放大器的耦合电路及电子设备 - Google Patents

应用于4g全频段功率放大器的耦合电路及电子设备 Download PDF

Info

Publication number
WO2023040472A1
WO2023040472A1 PCT/CN2022/108111 CN2022108111W WO2023040472A1 WO 2023040472 A1 WO2023040472 A1 WO 2023040472A1 CN 2022108111 W CN2022108111 W CN 2022108111W WO 2023040472 A1 WO2023040472 A1 WO 2023040472A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
coupling
switch
resonant
inductor
Prior art date
Application number
PCT/CN2022/108111
Other languages
English (en)
French (fr)
Inventor
周佳辉
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2023040472A1 publication Critical patent/WO2023040472A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • H03F1/48Modifications of amplifiers to extend the bandwidth of aperiodic amplifiers
    • H03F1/486Modifications of amplifiers to extend the bandwidth of aperiodic amplifiers with IC amplifier blocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/36Indexing scheme relating to amplifiers the amplifier comprising means for increasing the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the technical field of radio frequency power amplifiers, in particular to a coupling circuit and electronic equipment applied to 4G full-band power amplifiers.
  • the RF power amplifier transmitter module plays an increasingly important role in the mobile phone communication system. It has a very high degree of integration. It not only integrates a power amplifier, but also a multi-throw RF switch and a coupler. Among them, the main function of the coupler in the RF power amplifier transmitting module is to receive the power energy of the linear power amplifier through the coupling module, and then feed it back to the mobile phone transceiver system. Power calibration and adjustment to get accurate transmit power.
  • the coupling coefficient of the traditional dual microstrip line coupler changes monotonously with frequency, it is difficult to have a good coupling flatness, and the working bandwidth is narrow, so that the coupler can only work in the low frequency band or the medium and high frequency band.
  • Embodiments of the present invention provide a coupling circuit and electronic equipment applied to low-frequency power amplifiers, which can selectively work in low-frequency bands or medium-high frequency bands, have a wider operating bandwidth, and improve the scope of application.
  • the present invention provides a coupling circuit applied to a 4G full-band power amplifier, including a directional coupler, a coupling signal output port, a low-frequency coupling channel network, a medium-high frequency coupling channel network, a first switch a switch and a second switch;
  • the directional coupler includes a main input end, a main output end, a main transmission line connecting the main input end and the main output end, an isolation end, a coupling end, and a secondary transmission line connecting the coupling end and the isolation end;
  • the main input terminal is used for inputting radio frequency signals
  • the main output terminal is connected to an antenna to output radio frequency signals through the antenna, and the isolation terminal is grounded through a load resistor;
  • the first switching switch is used to selectively connect the coupling end to the input end of the low frequency coupling path network or the input end of the medium and high frequency coupling path network
  • the second switching switch is used to connect the coupling end to the input end of the coupling path network.
  • both the first switch and the second switch are single-ended double-throw switches
  • the moving end of the first switch is connected to the coupling end, one fixed end of the first switch is connected to the input end of the low-frequency coupling path network, and the other fixed end of the first switch is The terminal is connected to the input terminal of the medium and high frequency coupling path network;
  • the moving end of the second switch is connected to the coupling signal output port, one fixed end of the second switch is connected to the output end of the low-frequency coupling path network, and the other end of the second switch is The fixed end is connected with the output end of the medium and high frequency coupling path network.
  • the low-frequency coupling channel network includes a first resonance branch, a second resonance branch, a third resonance branch and a fourth resonance branch;
  • One end of the first resonant branch, one end of the second resonant branch and one end of the third resonant branch are all connected to the one fixed end of the first switch, and the first The other end of the resonant branch and one end of the fourth resonant branch are connected to the one fixed end of the second switch, the other end of the second resonant branch, the third resonant branch The other end and the other end of the fourth resonant branch are grounded;
  • the resonant frequency range of the second resonant branch is 4GHz-4.7GHz
  • the resonant frequency range of the third resonant branch is 2.5GHz-3GHz
  • the resonant frequency range of the fourth resonant branch is 1.9GHz-2GHz .
  • the resonance frequency of the second resonance branch is 4.56 GHz
  • the resonance frequency of the third resonance branch is 2.7 GHz
  • the resonance frequency of the fourth resonance branch is 2.0 GHz.
  • the first resonant branch includes a first capacitor C1 and a first inductor L1 connected in series, and one end of the first capacitor C1 serves as the output end of the low-frequency coupling path network and the connection between the second switching switch.
  • the one fixed end is connected, the other end of the first capacitor C1 is connected to the first inductance L1, and the other end of the first inductance L1 is connected to the one fixed end of the first switch .
  • the second resonance branch includes a second capacitor C2 and a second inductor L2 connected in series, one end of the second capacitor C2 is grounded through the second inductor L2, and the other end of the second capacitor C2 connected to the one fixed end of the first transfer switch;
  • the third resonant branch includes a third capacitor C3 and a third inductor L3 connected in series, one end of the third capacitor C3 is grounded through the third inductor L3, and the other end of the third capacitor C3 is switched to the first said one non-volatile end of the switch is connected;
  • the fourth resonant branch includes a fourth capacitor C4 and a fourth inductor L4 connected in series, one end of the fourth capacitor C4 is grounded through the fourth inductor L4, and the other end of the fourth capacitor C4 is connected to the fourth capacitor C4.
  • the one fixed end of the two changeover switches is connected.
  • a fifth capacitor C5 and a fifth inductor L5 are also included;
  • One end of the fifth capacitor C5 serves as the input end of the low-frequency coupling path network and is connected to the one fixed end of the first switch, and the other end of the fifth capacitor C5 is connected to the first inductor L connected; the second capacitor C2 and the third capacitor C3 are respectively connected to the one fixed end of the first switch through the fifth capacitor C5;
  • the fifth inductor L5 is connected in series between the fifth capacitor C2 and the first inductor L1, the first resonant branch is located between the fifth capacitor C5 and the fifth inductor L5, the The second resonance branch is located between the first inductor L1 and the fifth inductor L5.
  • the resonance frequency of the first resonance branch is 600MHz-1.3GHz.
  • the medium and high frequency coupling channel network includes a bandpass filter, a ⁇ -type filter unit and a resonant unit;
  • One end of the band-pass filter and one end of the resonant unit are both connected to the other fixed end of the first switch, the other ground of the band-pass filter is grounded, and the other end of the resonant unit is grounded.
  • the other end is connected to the input end of the ⁇ -type filter unit, and the output end of the ⁇ -type filter unit is connected to the other non-moving end of the second switch.
  • the bandpass filter includes a sixth capacitor C6, a sixth inductor L6, a seventh capacitor C7, and a seventh inductor L7
  • the sixth capacitor C6 and the sixth inductor L6 form a parallel structure
  • the The seventh capacitor C7 and the seventh inductance L7 form a series structure
  • one end of the parallel structure is connected to the other fixed end of the first switch
  • the other end of the parallel structure is connected to the series structure
  • One end of the series structure is connected, and the other end of the series structure is grounded.
  • the ⁇ -type filtering unit includes an eighth capacitor C8 and an eighth inductor L8 forming a first series branch, a ninth capacitor C9 and a ninth inductor L9 forming a second series branch, and a tenth inductor L10 ;
  • One end of the first series branch is connected to one end of the tenth inductance L10, and the connection node is connected to the resonant unit as the input end of the ⁇ -type filter unit, and the other end of the first series branch grounding; one end of the second series branch is connected to the other end of the tenth inductance L10, and the connection node is used as the output end of the ⁇ -type filter unit and the other end of the second switching switch is not The moving end is connected, and the other end of the second series branch is grounded.
  • the resonant unit includes an eleventh inductor L11 and a tenth capacitor C10 connected in series, and one end of the eleventh inductance L11 serves as the connection between the one end of the resonant unit and the first switch.
  • the other end of the eleventh inductance L11 is connected to one end of the tenth capacitor C10, and the other end of the tenth capacitor C10 is used as the other end of the resonant unit to connect with the The input end of the ⁇ -type filter unit is connected.
  • a twelfth inductance L12 is also included, and the one end of the bandpass filter and the one end of the resonant unit are connected to the other end of the first switching switch through the twelfth inductance L12. A fixed-end connection.
  • a first resistor R1 is further included, and the output end of the ⁇ -type filter unit is connected to the other non-moving end of the second switch through the first resistor R1.
  • an embodiment of the present invention further provides an electronic device, including the coupling circuit applied to a 4G full-band power amplifier described in any one of the above.
  • the coupling circuit applied to the 4G full-band power amplifier of the present invention includes a directional coupler, a coupling signal output port, a low-frequency coupling channel network, a medium-high frequency coupling channel network, a first switch and a second switch;
  • the directional coupler comprises a main input end, a main output end, a main transmission line connecting the main input end and the main output end, an isolation end, a coupling end and a secondary transmission line connecting the coupling end and the isolation end;
  • the main input terminal is used to input radio frequency signal, the main output terminal is connected with antenna, so as to output radio frequency signal through the antenna, and the isolation terminal is grounded through the load resistance;
  • the first switching switch is used to selectively connect the coupling terminal to the The input end of the low-frequency coupling path network or the input end of the medium-high frequency coupling path network is connected, and the second switch is used to make the coupling signal
  • the output port is connected to the output end of the low frequency coupling path network, and when the coup
  • FIG. 1 is a circuit diagram of a coupling circuit applied to a 4G full-band power amplifier provided by an embodiment of the present invention
  • Fig. 2 is the coupling coefficient simulation wave form diagram of the low-frequency coupling path network of the embodiment of the present invention
  • Fig. 3 is a simulation waveform diagram of the coupling coefficient of the medium and high frequency coupling path network according to the embodiment of the present invention.
  • the coupling circuit 100 applied to the 4G full-band power amplifier of the embodiment of the present invention includes a directional coupler 10, a coupled signal output port 11, a low-frequency coupling path network 12, a medium-high frequency coupling path network 13, a first switch switch 14 and a second switching switch 15 .
  • the directional coupler 10 includes a main input port Port1, a main output port Port2, a main transmission line connecting the main input port Port1 and the main output port Port2, an isolation port Port3, a coupling port Port4, and a coupling port connected to the coupling port. Port4 and the secondary transmission line of the isolated port Port3.
  • the directional coupler 10 may be a dual microstrip line coupler, or other such as a coaxial line or a strip line coupler.
  • the main input port Port1 is used to input a radio frequency signal RFin, and the main output port Port2 is connected to an antenna ANT for outputting a radio frequency signal through the antenna ANT.
  • the isolated terminal Port3 is grounded through a load resistor R0, wherein the load resistor R0 may have a resistance value of 50 ⁇ .
  • the coupling port Port4 is used for outputting coupling signals.
  • the first switching switch 14 is used to selectively connect the coupling port Port4 to the input end of the low-frequency coupling path network 12 or the input end of the medium-high frequency coupling path network 13, and the second switching switch 15 is used for When the coupling port Port4 is connected to the input port of the low-frequency coupling path network 12, the coupled signal output port 11 is connected to the output port of the low-frequency coupling path network 12, and the coupling port Port4 is connected to the output port of the low-frequency coupling path network 12. When the input end of the mid-high frequency coupling path network 13 is connected, the coupling signal output port 11 is connected to the output end of the mid-high frequency coupling path network 13 .
  • the coupling port Port4 selects to transmit the coupling signal to the coupling signal output port 11 through the low-frequency coupling channel network 12, so that Output the coupling signal through the coupling signal output port 11, or make the coupling port Port4 select to transmit the coupling signal to the coupling signal output port 11 through the medium and high frequency coupling channel network port 13, thereby passing through the coupling signal output port 11 Output coupled signal.
  • the working frequency band of the coupling circuit 100 can cover all 4G communication frequency bands, have a wider working bandwidth, and improve the scope of application.
  • the coupling circuit 100 may further include a logic control module 16, and the logic control module 16 is used to control the first switch 14 and the second switch 15 to realize the switching function.
  • both the first switch 14 and the second switch 15 are single-ended double-throw switches.
  • the moving end of the first switch 14 is connected to the coupling port Port4
  • a fixed end of the first switch 14 is connected to the input end of the low-frequency coupling path network 12, and the first switching The other fixed end of the switch 14 is connected to the input end of the medium and high frequency coupling path network 13 .
  • the moving end of the second switch 15 is connected to the coupling signal output port 11, and a fixed end of the second switch 15 is connected to the output end of the low-frequency coupling path network 12, and the second switching The other fixed end of the switch 15 is connected to the output end of the medium and high frequency coupling path network 13 .
  • the low frequency coupling path network 12 includes a first resonant branch 121 , a second resonant branch 122 , a third resonant branch 123 and a fourth resonant branch 124 .
  • One end of the first resonant branch 121, one end of the second resonant branch 122 and one end of the third resonant branch 123 are all connected to the one fixed end of the first switch 14,
  • the other end of the first resonant branch 121 and one end of the fourth resonant branch 124 are connected to the one fixed end of the second switch 15, the other end of the second resonant branch 122,
  • the other end of the third resonant branch 123 and the other end of the fourth resonant branch 124 are both grounded.
  • the resonance frequency range of the second resonance branch 122 is 4GHz-4.7GHz
  • the resonance frequency range of the third resonance branch 123 is 2.5GHz-3GHz
  • the resonance frequency range of the fourth resonance branch 124 is 1.9GHz. GHz ⁇ 2GHz. Therefore, in the embodiment of the present invention, through the resonance of the second to fourth resonance branches, the coupling coefficient of the medium and high frequency signals can be suppressed, so that when the coupling port Port4 outputs the coupling signal through the low frequency coupling path network 12 , it can reduce the interference of medium and high frequency signals and improve the judgment accuracy of the transceiver system.
  • the resonant frequency of the second resonant branch 122 is 4.56 GHz
  • the resonant frequency of the third resonant branch 123 is 2.7 GHz
  • the resonant frequency of the fourth resonant branch 124 is The frequency is 2.0GHz.
  • the first to fourth resonant branches may all be LC series resonant branches. More specifically, the first resonance branch 121 includes a first capacitor C1 and a first inductor L1 connected in series, the second resonance branch 122 includes a second capacitor C2 and a second inductor L2 connected in series, and the third resonance branch The circuit 123 includes a third capacitor C3 and a third inductor L3 connected in series, and the fourth resonance branch 124 includes a fourth capacitor C4 and a fourth inductor L4 connected in series. Further, the low frequency coupling path network 12 also includes a fifth capacitor C5 and a fifth inductor L5.
  • One end of the first capacitor C1 serves as the output end of the low frequency coupling path network 12 and is connected to the one fixed end of the second switch 15, and the other end of the first capacitor C1 is connected to the first connected to the inductor L1, and the other end of the first inductor L1 is connected to the one fixed end of the first switch 14 through the fifth inductor L5 and the fifth capacitor C5 in turn, that is, the fifth capacitor C5
  • One end serves as the input end of the low frequency coupling path network 12 and is connected to the one fixed end of the first switch 14 .
  • the fifth capacitor C5 can be used for impedance adjustment and matching.
  • the first resonant branch 121 resonates in the low frequency region, and can be used for impedance adjustment to adjust the flatness of the coupling coefficient.
  • the vibration frequency range of the first resonance branch 11 may be 600MHz-1.3GHz.
  • Fig. 2 is the coupling coefficient simulation waveform diagram of the low-frequency coupling path network of the embodiment of the present invention, in the figure, the ordinate represents the coupling coefficient, and the abscissa represents the frequency, as shown in the figure, the second resonant branch 122 resonates at m16 position, that is, the resonant frequency is 4.56GHz; the third resonant branch 123 resonates at the position of m15, that is, the resonant frequency is 2.7GHz; the fourth resonant branch 124 resonates at the position of m17, that is, the resonant frequency is 2.0GHz, as shown in Fig.
  • the second resonant branch 122, the third resonant branch 123, and the fourth resonant branch 124 have a good suppression of the coupling coefficient of the medium and high frequency signals, reaching a suppression of more than 30dB, while at 600MHz-1.3GHz In the low frequency area, the coupling coefficient is relatively flat, and the fluctuation is only +-0.1dB. Therefore, by suppressing the medium and high frequency models, the accuracy of the power judgment of the transceiver system can be improved, and it has better low frequency performance.
  • the mid-high frequency coupling channel network 13 includes a bandpass filter 131 , a ⁇ -type filter unit 132 and a resonance unit 133 .
  • One end of the band-pass filter 131 and one end of the resonance unit 133 are both connected to the other non-movable end of the first switch 14, and the other ground of the band-pass filter 131 is grounded, so The other end of the resonance unit 133 is connected to the input end of the ⁇ -type filter unit 132 , and the output end of the ⁇ -type filter unit 132 is connected to the other fixed end of the second switch 15 .
  • the bandpass filter 131 includes a sixth capacitor C6, a sixth inductor L6, a seventh capacitor C7, and a seventh inductor L7, the sixth capacitor C6 and the sixth inductor L6 form a parallel structure, the The seventh capacitor C7 and the seventh inductor L7 form a series structure, and one end of the parallel structure is connected to the other fixed end of the first switch 14, more specifically, the sixth capacitor C6 One end of the sixth inductance L6 and one end of the sixth inductance L6 are connected to the other fixed end of the first switch 14 as one end of the parallel structure, and the other end of the parallel structure is connected to the series structure One end of the series structure is connected, and the other end of the series structure is grounded. More specifically, the seventh capacitor C7 and the seventh inductance L7 are connected in series, and one end of the seventh inductance L7 is the The other end is grounded.
  • the sixth capacitor C6 and the sixth inductor L6 resonate at the first harmonic frequency of 640.MHz, which is the position of m1
  • the seventh capacitor C7 and the seventh inductor L7 resonate at the second harmonic frequency 3.15GHz is the location of m7.
  • the impedance Z 112 of the series resonance between the seventh capacitor C7 and the seventh inductor L7 is expressed as:
  • the impedance Z 111 of the parallel structure resonates at ⁇ ⁇ , when ⁇ ⁇ , the impedance Z 111 of the parallel structure is capacitive, and when ⁇ > ⁇ ⁇ , the parallel structure
  • the impedance Z 111 is inductive.
  • the impedance Z 112 of the series structure resonates at ⁇ ⁇ , when ⁇ ⁇ , the impedance Z 112 of the series structure is inductive, and when ⁇ > ⁇ ⁇ , the impedance Z 112 of the series structure is Impedance Z 112 is capacitive.
  • the impedance of the bandpass filter 131 can be expressed as:
  • the medium and high frequency coupling path network 13 further includes a twelfth inductor L12 and a first resistor R1.
  • the ⁇ -type filter unit 132 includes an eighth capacitor C8 and an eighth inductor L8 forming a first series branch, a ninth capacitor C9 and a ninth inductor L9 forming a second series branch, and a tenth inductor L10.
  • One end of the first series branch is connected to one end of the tenth inductance L10, and the connection node is connected to the resonant unit 133 as the input end of the ⁇ -type filter unit 132, and the first series branch
  • the other ground is grounded;
  • one end of the second series branch is connected to the other end of the tenth inductance L10, and the connection node is used as the output end of the ⁇ -type filter unit 132 and the second switch 15
  • the other fixed end is connected, and the other end of the second series branch is grounded.
  • the resonant unit 133 includes an eleventh inductance L11 and a tenth capacitor C10 connected in series, and one end of the eleventh inductance L11 serves as the connection between the one end of the resonant unit 133 and the other end of the first switch 14 .
  • One fixed end is connected, the other end of the eleventh inductance L11 is connected to one end of the tenth capacitor C10, and the other end of the tenth capacitor C10 is used as the other end of the resonant unit 133 to connect to the The input end of the ⁇ -type filtering unit 132 is connected.
  • the one end of the bandpass filter 131 and the one end of the resonant unit 133 are connected to the other fixed end of the first switch 14 through the twelfth inductance L12, namely One end of the twelfth inductor L12 serves as the input end of the medium-high frequency coupling path network 13 and is connected to the other non-moving end of the first switch 14 .
  • the output end of the ⁇ -type filtering unit 132 is connected to the other fixed end of the second changeover switch 15 through the first resistor R1, that is, one end of the first resistor R1 serves as the mid-high frequency coupling
  • the output end of the path network 13 is connected to the other non-moving end of the second changeover switch 15 .
  • the resonant unit 133 resonates in the working frequency range, by adjusting the capacitor C10 and the inductance L11 to cooperate with the bandpass filter 131, adjust the circuit impedance and adjust the resonant unit 133 to achieve the purpose of adjusting the coupling coefficient.
  • the ⁇ -type filtering unit 132 a filtering effect can be performed on the coupling coefficient of the high-frequency part.
  • the resonance of the capacitor C8 and the inductor L8 and the resonance of the capacitor C9 and the inductor L9 can better suppress the signal of the high frequency part.
  • the capacitor C8 and the inductor L8 resonate at the m8 frequency point, and the capacitor C9 and the inductor L9 resonate at the frequency point above 5 GHz, which are used to suppress higher frequency band coupling.
  • the first resistor R1 can be used to adjust the coupling coefficient of the overall mid-high frequency coupling path network 13 . Due to the high coupling frequency, the coupling coefficient in the middle and high frequency bands is often higher than that in the low frequency band. Therefore, by connecting a resistor R1 in series to attenuate the coupling coefficient, the purpose of balancing the coupling coefficient can be achieved, thereby obtaining a flatter full-band coefficient.
  • the coupling coefficient is very flat from 1.3GHz to 2.7GHz, and the fluctuation of the coupling coefficient is less than ⁇ 0.2dB. At the same time, it has a certain suppression effect on frequency bands other than the coupling frequency band.
  • the coupling coefficient of the entire coupling network can be very flat from 600 MHz to 2.7 GHz, and the fluctuation of the coupling coefficient in the whole frequency band is less than ⁇ 0.2 dB.
  • An embodiment of the present invention further provides an electronic device, including the coupling circuit described in any one of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Abstract

本发明实施例公开了一种应用于4G全频段功率放大器的耦合电路,包括定向耦合器、耦合信号输出端口、低频耦合通路网络、中高频耦合通路网络、第一切换开关以及第二切换开关;所述第一切换开关用于使所述定向耦合器的耦合端选择性与所述低频耦合通路网络的输入端或者所述中高频耦合通路网络的输入端连接,所述第二切换开关用于在所述耦合端与所述低频耦合通路网络的输入端连接时,使所述耦合信号输出端口与所述低频耦合通路网络的输出端连接,并在所述耦合端与所述中高频耦合通路网络的输入端连接时,使所述耦合信号输出端口与所述中高频耦合通路网络的输出端连接,由此,可以使得耦合电路选择性工作在低频段或者中高频段。

Description

应用于4G全频段功率放大器的耦合电路及电子设备 技术领域
本发明涉及射频功率放大器技术领域,尤其涉及一种应用于4G全频段功率放大器的耦合电路及电子设备。
背景技术
射频功率放大器发射模组在手机通信系统中承担了越来越重要的角色,其具有极高的集成度,内部不仅集成有功率放大器,还有多掷数射频开关以及耦合器。其中耦合器在射频功率放大器发射模组的主要作用便是通过耦合模组接收的线型功率放大器的功率能量,然后反馈给手机收发系统,手机收发系统通过耦合器反馈信号对手机射频功率放大器进行功率校准和调节,以此来得到准确的发射功率。然而,传统的双微带线耦合器耦合系数随频率变化较单调,很难有较好的耦合平坦度,工作带宽较窄,使得耦合器只能在低频段或者中高频段工作。
发明内容
本发明实施例提供一种应用于低频功率放大器的耦合电路及电子设备,可以选择性工作在低频段或者中高频段,具有较宽的工作带宽,提高适用范围。
为了解决上述技术问题,第一方面,本发明提供一种应用于4G全频段功率放大器的耦合电路,包括定向耦合器、耦合信号输出端口、低频耦合通路网络、中高频耦合通路网络、第一切换开关以及第二切换开关;
所述定向耦合器包括主输入端、主输出端、连接所述主输入端和所述主输出端的主传输线、隔离端、耦合端以及连接所述耦合端和所述隔离端的次传输线;所述主输入端用于输入射频信号,所述主输出端连接有天线,以通过所述天线输出射频信号,所述隔离端通过负载电阻接地;
所述第一切换开关用于使所述耦合端选择性与所述低频耦合通路网络的输入端或者所述中高频耦合通路网络的输入端连接,所述第二切换开关用于在所述耦合端与所述低频耦合通路网络的输入端连接时,使所述耦合信号输出端口与所述低频耦合通路网络的输出端连接,并在所述耦合端与所述中高频耦合通 路网络的输入端连接时,使所述耦合信号输出端口与所述中高频耦合通路网络的输出端连接。
更进一步地,所述第一切换开关和所述第二切换开关均为单端双掷开关;
所述第一切换开关的动端与所述耦合端连接,所述第一切换开关的一个不动端与所述低频耦合通路网络的输入端连接,所述第一切换开关的另一个不动端与所述中高频耦合通路网络的输入端连接;
所述第二切换开关的动端与所述耦合信号输出端口连接,所述第二切换开关的一个不动端与所述低频耦合通路网络的输出端连接,所述第二切换开关的另一个不动端与所述中高频耦合通路网络的输出端连接。
更进一步地,所述低频耦合通路网络包括第一谐振支路、第二谐振支路、第三谐振支路以及第四谐振支路;
所述第一谐振支路的一端、所述第二谐振支路的一端和所述第三谐振支路的一端均与所述第一切换开关的所述一个不动端连接,所述第一谐振支路的另一端、第四谐振支路的一端均与所述第二切换开关的所述一个不动端连接,所述第二谐振支路的另一端、所述第三谐振支路的另一端和第四谐振支路的另一端均接地;
所述第二谐振支路的谐振频率范围为4GHz~4.7GHz,所述第三谐振支路的谐振频率范围为2.5GHz~3GHz,所述第四谐振支路的谐振频率范围为1.9GHz~2GHz。
更进一步地,所述第二谐振支路的谐振频率为4.56GHz,所述第三谐振支路的谐振频率为2.7GHz,所述第四谐振支路的谐振频率为2.0GHz。
更进一步地,所述第一谐振支路包括串联的第一电容C1和第一电感L1,所述第一电容C1的一端作为所述低频耦合通路网络的输出端与所述第二切换开关的所述一个不动端连接,所述第一电容C1的另一端与所述第一电感L1连接,所述第一电感L1的另一端与所述第一切换开关的所述一个不动端连接。
更进一步地,所述第二谐振支路包括串联的第二电容C2和第二电感L2,所述第二电容C2的一端通过所述第二电感L2接地,所述第二电容C2的另一端与所述第一切换开关的所述一个不动端连接;
第三谐振支路包括串联的第三电容C3和第三电感L3,所述第三电容C3 的一端通过所述第三电感L3接地,所述第三电容C3的另一端与所述第一切换开关的所述一个不动端连接;
所述第四谐振支路包括串联的第四电容C4和第四电感L4,所述第四电容C4的一端通过所述第四电感L4接地,所述第四电容C4的另一端与所述第二切换开关的所述一个不动端连接。
更进一步地,还包括第五电容C5和第五电感L5;
所述第五电容C5的一端作为所述低频耦合通路网络的输入端与所述第一切换开关的所述一个不动端连接,所述第五电容C5的另一端与所述第一电感L连接;所述第二电容C2和所述第三电容C3分别通过所述第五电容C5与所述第一切换开关的所述一个不动端连接;
所述第五电感L5串联在所述第五电容C2和所述第一电感L1之间,所述第一谐振支路位于所述第五电容C5和所述第五电感L5之间,所述第二谐振支路位于所述第一电感L1和所述第五电感L5之间。
更进一步地,所述第一谐振支路的谐振频率为600MHz-1.3GHz。
更进一步地,所述中高频耦合通路网络包括带通滤波器、π型滤波单元以及谐振单元;
所述带通滤波器的一端和所述谐振单元的一端均与所述第一切换开关的所述另一个不动端连接,所述带通滤波器的另一地接地,所述谐振单元的另一端与所述π型滤波单元的输入端连接,所述π型滤波单元的输出端与所述第二切换开关的所述另一个不动端连接。
更进一步地,所述带通滤波器包括第六电容C6、第六电感L6、第七电容C7以及第七电感L7,所述第六电容C6和所述第六电感L6形成并联结构,所述第七电容C7和所述第七电感L7形成串联结构,所述并联结构的一端与所述第一切换开关的所述另一个不动端连接,所述并联结构的另一端与所述串联结构的一端连接,所述串联结构的另一端接地。
更进一步地,所述π型滤波单元包括形成第一串联支路的第八电容C8和第八电感L8、形成第二串联支路的第九电容C9和第九电感L9、以及第十电感L10;
所述第一串联支路的一端和所述第十电感L10的一端连接,且连接节点作 为所述π型滤波单元的输入端与所述谐振单元连接,所述第一串联支路的另一地接地;所述第二串联支路的一端和所述第十电感L10的另一端连接,且连接节点作为所述π型滤波单元的输出端与所述第二切换开关的所述另一个不动端连接,所述第二串联支路的另一端接地。
更进一步地,所述谐振单元包括串联的第十一电感L11和第十电容C10,所述第十一电感L11的一端作为所述谐振单元的所述一端与所述第一切换开关的所述另一个不动端连接,所述第十一电感L11的另一端与所述第十电容C10的一端连接,所述第十电容C10的另一端作为所述谐振单元的所述另一端与所述π型滤波单元的输入端连接。
更进一步地,还包括第十二电感L12,所述带通滤波器的所述一端和所述谐振单元的所述一端通过所述第十二电感L12与所述第一切换开关的所述另一个不动端连接。
更进一步地,还包括第一电阻R1,所述π型滤波单元的输出端通过所述第一电阻R1与所述第二切换开关的所述另一个不动端连接。
第二方面,本发明实施例还提供一种电子设备,包括上述任一项所述的应用于4G全频段功率放大器的耦合电路。
有益效果:本发明的应用于4G全频段功率放大器的耦合电路,包括定向耦合器、耦合信号输出端口、低频耦合通路网络、中高频耦合通路网络、第一切换开关以及第二切换开关;所述定向耦合器包括主输入端、主输出端、连接所述主输入端和所述主输出端的主传输线、隔离端、耦合端以及连接所述耦合端和所述隔离端的次传输线;所述主输入端用于输入射频信号,所述主输出端连接有天线,以通过所述天线输出射频信号,所述隔离端通过负载电阻接地;所述第一切换开关用于使所述耦合端选择性与所述低频耦合通路网络的输入端或者所述中高频耦合通路网络的输入端连接,所述第二切换开关用于在所述耦合端与所述低频耦合通路网络连接时,使所述耦合信号输出端口与所述低频耦合通路网络的输出端连接,并在所述耦合端与所述中高频耦合通路网络连接时,使所述耦合信号输出端口与所述中高频耦合通路网络的输出端连接,由此,通过第一切换开关和第二切换开关的作用,可以使得耦合电路选择性使用低频耦合通路网络或者中高频耦合通路网络输出耦合信号,从而使得耦合电路的工作 频段可以覆盖全部4G通信频段,具有较宽的工作带宽,提高适用范围。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其有益效果显而易见。
图1是本发明实施例提供的应用于4G全频段功率放大器的耦合电路的电路图;
图2是本发明实施例的低频耦合通路网络的耦合系数仿真波形图;
图3是本发明实施例的中高频耦合通路网络的耦合系数仿真波形图。
具体实施方式
请参照图式,其中相同的组件符号代表相同的组件,本发明的原理是以实施在一适当的运算环境中来举例说明。以下的说明是基于所例示的本发明具体实施例,其不应被视为限制本发明未在此详述的其它具体实施例。
参阅图1,本发明实施例的应用于4G全频段功率放大器的耦合电路100,其包括定向耦合器10、耦合信号输出端口11、低频耦合通路网络12、中高频耦合通路网络13、第一切换开关14以及第二切换开关15。
其中,所述定向耦合器10包括主输入端Port1、主输出端Port2、连接所述主输入端Port1和所述主输出端Port2的主传输线、隔离端Port3、耦合端Port4以及连接所述耦合端Port4和所述隔离端Port3的次传输线。本发明实施例中,定向耦合器10可以是双微带线耦合器,也可以是其他例如同轴线或带状线耦合器。所述主输入端Port1用于输入射频信号RFin,所述主输出端Port2连接有天线ANT,以通过所述天线ANT输出射频信号。所述隔离端Port3通过负载电阻R0接地,其中负载电阻R0可以是50Ω的阻值。所述耦合端Port4用于输出耦合信号。
所述第一切换开关14用于使所述耦合端Port4选择性与所述低频耦合通路网络12的输入端或者所述中高频耦合通路网络13的输入端连接,所述第二切换开关15用于在所述耦合端Port4与所述低频耦合通路网络12的输入端连接时,使所述耦合信号输出端口11与所述低频耦合通路网络12的输出端连接,并在所述耦合端Port4与所述中高频耦合通路网络13的输入端连接时,使所述耦合信号输出端口11与所述中高频耦合通路网络13的输出端连接。即,本发 明实施例中,通过第一切换开关14和第二切换开关15的作用,使得所述耦合端Port4选择通过所述低频耦合通路网络12将耦合信号传输至耦合信号输出端口11,从而通过所述耦合信号输出端口11输出耦合信号,或者使得所述耦合端Port4选择通过所述中高频耦合通路网口13将耦合信号传输至耦合信号输出端口11,从而通过所述耦合信号输出端口11输出耦合信号。
因此,通过本发明实施例的耦合电路100,可以使得耦合电路100的工作频段能够覆盖全部4G通信频段,具有较宽的工作带宽,提高适用范围。
其中,耦合电路100还可以包括逻辑控制模块16,逻辑控制模块16用于控制第一切换开关14和第二切换开关15实现开关切换功能。
进一步地,本发明的一实施例中,所述第一切换开关14和所述第二切换开关15均为单端双掷开关。其中,所述第一切换开关14的动端与所述耦合端Port4连接,所述第一切换开关14的一个不动端与所述低频耦合通路网络12的输入端连接,所述第一切换开关14的另一个不动端与所述中高频耦合通路网络13的输入端连接。所述第二切换开关15的动端与所述耦合信号输出端口11连接,所述第二切换开关15的一个不动端与所述低频耦合通路网络12的输出端连接,所述第二切换开关15的另一个不动端与所述中高频耦合通路网络13的输出端连接。
其中,所述低频耦合通路网络12包括第一谐振支路121、第二谐振支路122、第三谐振支路123以及第四谐振支路124。所述第一谐振支路121的一端、所述第二谐振支路122的一端和所述第三谐振支路123的一端均与所述第一切换开关14的所述一个不动端连接,所述第一谐振支路121的另一端、第四谐振支路124的一端均与所述第二切换开关15的所述一个不动端连接,所述第二谐振支路122的另一端、所述第三谐振支路123的另一端和第四谐振支路124的另一端均接地。
所述第二谐振支路122的谐振频率范围为4GHz~4.7GHz,所述第三谐振支路123的谐振频率范围为2.5GHz~3GHz,所述第四谐振支路124的谐振频率范围为1.9GHz~2GHz。由此,本发明实施例中,通过第二至第四谐振支路的谐振,可以对中高频信号的耦合系数进行抑制,从而当所述耦合端Port4通过所述低频耦合通路网络12输出耦合信号时,可以减少中高频信号的干扰,提高收发系 统的判断准确性。
进一步地,在一种实现方式中,所述第二谐振支路122的谐振频率为4.56GHz,所述第三谐振支路123的谐振频率为2.7GHz,所述第四谐振支路124的谐振频率为2.0GHz。
其中,所述第一至第四谐振支路可以均为LC串联谐振支路。更具体地,所述第一谐振支路121包括串联的第一电容C1和第一电感L1,所述第二谐振支路122包括串联的第二电容C2和第二电感L2,第三谐振支路123包括串联的第三电容C3和第三电感L3,所述第四谐振支路124包括串联的第四电容C4和第四电感L4。进一步地,所述低频耦合通路网络12还包括第五电容C5和第五电感L5。
所述第一电容C1的一端作为所述低频耦合通路网络12的输出端与所述第二切换开关15的所述一个不动端连接,所述第一电容C1的另一端与所述第一电感L1连接,所述第一电感L1的另一端依次通过第五电感L5和第五电容C5而与所述第一切换开关14的所述一个不动端连接,即所述第五电容C5的一端作为所述低频耦合通路网络12的输入端与所述第一切换开关14的所述一个不动端连接。
所述第二电容C2的一端通过所述第二电感L2接地,所述第二电容C2的另一端连接在所述第五电感L5和所述第五电容C5之间。所述第三电容C3的一端通过所述第三电感L3接地,所述第三电容C3的另一端连接在所述第一电感L1和所述第五电感L5之间。所述第四电容C4的一端通过所述第四电感L4接地,所述第四电容C4的另一端连接作为所述低频耦合通路网络12的输出端的所述第一电容C1的一端。其中,第五电容C5可以用于阻抗调节匹配。所述第一谐振支路121谐振于低频区域,同时可用于阻抗调节,调节耦合系数的平坦度。第一谐振支路11的振频率范围可以为600MHz-1.3GHz。
参阅图2,图2是本发明实施例的低频耦合通路网络的耦合系数仿真波形图,图中纵坐标表示耦合系数,横坐标表示频率,如图所示,第二谐振支路122谐振于m16的位置,即谐振频率为4.56GHz;第三谐振支路123谐振于m15的位置,即谐振频率为2.7GHz;第四谐振支路124谐振于m17的位置,即谐振频率为2.0GHz,由图可看出,第二谐振支路122、第三谐振支路123以及第四 谐振支路124对中高频信号的耦合系数具有较好的抑制,达到了30dB以上的抑制,而在600MHz-1.3GHz的低频区域,耦合系数较为平坦,波动只有+-0.1dB。因此,通过对中高频型号的抑制,可以提高收发系统对功率判断的准确性,具有较好的低频性能。
继续参阅图1,本发明的一实施例中,所述中高频耦合通路网络13包括带通滤波器131、π型滤波单元132以及谐振单元133。所述带通滤波器131的一端和所述谐振单元133的一端均与所述第一切换开关14的所述另一个不动端连接,所述带通滤波器131的另一地接地,所述谐振单元133的另一端与所述π型滤波单元132的输入端连接,所述π型滤波单元132的输出端与所述第二切换开关15的所述另一个不动端连接。
进一步地,所述带通滤波器131包括第六电容C6、第六电感L6、第七电容C7以及第七电感L7,所述第六电容C6和所述第六电感L6形成并联结构,所述第七电容C7和所述第七电感L7形成串联结构,所述并联结构的一端与所述第一切换开关14的所述另一个不动端连接,更具体而言,所述第六电容C6的一端和所述第六电感L6的一端均作为所述并联结构的一端连接至与所述第一切换开关14的所述另一个不动端,所述并联结构的另一端与所述串联结构的一端连接,所述串联结构的另一端接地,更具体而言,所述第七电容C7和所述第七电感L7串联,且所述第七电感L7的一端为所述串联结构的所述另一端接地。
其中,如图3所示,第六电容C6和第六电感L6谐振于第一谐波频率640.MHz,即m1的位置点,第七电容C7和第七电感L7谐振于第二谐波频率3.15GHz即m7的位置点。
其中,所述第六电容C6和所述第六电感L6并联谐振的阻抗Z 111表示为:
Figure PCTCN2022108111-appb-000001
所述第七电容C7和所述第七电感L7串联谐振的阻抗Z 112表示为:
Figure PCTCN2022108111-appb-000002
Figure PCTCN2022108111-appb-000003
Figure PCTCN2022108111-appb-000004
由式(1)可知,所述并联结构的阻抗Z 111谐振于ω α,在ω<ω α时,所述并联结构的阻抗Z 111呈容性,在ω>ω α时,所述并联结构的阻抗Z 111呈感性。由式(2)可知,所述串联结构的阻抗Z 112谐振于ω β,在ω<ω β时,所述串联结构的阻抗Z 112呈感性,在ω>ω β时,所述串联结构的阻抗Z 112呈容性。
所述带通滤波器131的阻抗可以表示为:
Figure PCTCN2022108111-appb-000005
显然,方程ω 4L 6L 7C 6C 72(L 6C 6+L 6C 7+L 6C 7)+1=0存在四个根,该四个根可以分为两对,每对根互为相反数。由此,可以通过合理配置第六电容C6、第六电感L6、第七电容C7和第七电感L7的参数,使得上述两对根分别对应第一谐波频率和第二谐波频率。
本发明实施例中,中高频耦合通路网络13还包括第十二电感L12和第一电阻R1。所述π型滤波单元132包括形成第一串联支路的第八电容C8和第八电感L8、形成第二串联支路的第九电容C9和第九电感L9、以及第十电感L10。所述第一串联支路的一端和所述第十电感L10的一端连接,且连接节点作为所述π型滤波单元132的输入端与所述谐振单元133连接,所述第一串联支路的另一地接地;所述第二串联支路的一端和所述第十电感L10的另一端连接,且连接节点作为所述π型滤波单元132的输出端与所述第二切换开关15的所述另一个不动端连接,所述第二串联支路的另一端接地。
所述谐振单元133包括串联的第十一电感L11和第十电容C10,所述第十一电感L11的一端作为所述谐振单元133的所述一端与所述第一切换开关14的所述另一个不动端连接,所述第十一电感L11的另一端与所述第十电容C10的一端连接,所述第十电容C10的另一端作为所述谐振单元133的所述另一端与所述π型滤波单元132的输入端连接。
其中,所述带通滤波器131的所述一端和所述谐振单元133的所述一端通过所述第十二电感L12与所述第一切换开关14的所述另一个不动端连接,即所述第十二电感L12的一端作为所述中高频耦合通路网络13的输入端与所述第一切换开关14的所述另一个不动端连接。所述π型滤波单元132的输出端通过所述第一电阻R1与所述第二切换开关15的所述另一个不动端连接,即所述第一电阻R1的一端作为所述中高频耦合通路网络13的输出端与所述第二切换开关15的所述另一个不动端连接。
其中,所述谐振单元133谐振于工作频段区间,通过调节电容C10和电感L11与带通滤波器131协同组合,调整电路阻抗的同时对谐振单元133进行调整以达到调节耦合系数的目的。通过π型滤波单元132,可以对高频部分的耦合系数进行滤波效果。其中电容C8、电感L8的谐振和电容C9、电感L9的谐振均可以对高频部分的信号进行较好的抑制。如图3所示,电容C8、电感L8谐振于m8频点,电容C9、电感L9谐振于5GHz以上的频点,用于抑制更高频段耦合。第一电阻R1可以用于调节整体中高频耦合通路网络13的耦合系数。由于耦合频率较高,因此中高频段的耦合系数往往比低频要高,因此通过串联一个电阻R1对耦合系数进行衰减,可以达到平衡耦合系数的目的,从而获得更平坦的全频段系数。从图3中可以看出,耦合系数在1.3GHz-2.7GHz非常平坦,耦合系数波动不到±0.2dB,同时对耦合频段以外的频段有一定的抑制效果。
因此,通过本发明实施例的耦合电路100,可以对整个耦合网络的耦合系数从600MHz-2.7GHz,具有非常平坦的耦合系数,全频段的耦合系数波动不到±0.2dB。
本发明实施例还提供一种电子设备,包括上述任一实施例所描述的耦合电路。
以上对本发明实施例所提供的一种应用于4G全频段功率放大器的耦合电路及电子设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (15)

  1. 一种应用于4G全频段功率放大器的耦合电路,其特征在于,包括定向耦合器、耦合信号输出端口、低频耦合通路网络、中高频耦合通路网络、第一切换开关以及第二切换开关;
    所述定向耦合器包括主输入端、主输出端、连接所述主输入端和所述主输出端的主传输线、隔离端、耦合端以及连接所述耦合端和所述隔离端的次传输线;所述主输入端用于输入射频信号,所述主输出端连接有天线,以通过所述天线输出射频信号,所述隔离端通过负载电阻接地;
    所述第一切换开关用于使所述耦合端选择性与所述低频耦合通路网络的输入端或者所述中高频耦合通路网络的输入端连接,所述第二切换开关用于在所述耦合端与所述低频耦合通路网络的输入端连接时,使所述耦合信号输出端口与所述低频耦合通路网络的输出端连接,并在所述耦合端与所述中高频耦合通路网络的输入端连接时,使所述耦合信号输出端口与所述中高频耦合通路网络的输出端连接。
  2. 根据权利要求1所述的应用于4G全频段功率放大器的耦合电路,其特征在于,所述第一切换开关和所述第二切换开关均为单端双掷开关;
    所述第一切换开关的动端与所述耦合端连接,所述第一切换开关的一个不动端与所述低频耦合通路网络的输入端连接,所述第一切换开关的另一个不动端与所述中高频耦合通路网络的输入端连接;
    所述第二切换开关的动端与所述耦合信号输出端口连接,所述第二切换开关的一个不动端与所述低频耦合通路网络的输出端连接,所述第二切换开关的另一个不动端与所述中高频耦合通路网络的输出端连接。
  3. 根据权利要求2所述的应用于4G全频段功率放大器的耦合电路,其特征在于,所述低频耦合通路网络包括第一谐振支路、第二谐振支路、第三谐振支路以及第四谐振支路;
    所述第一谐振支路的一端、所述第二谐振支路的一端和所述第三谐振支路的一端均与所述第一切换开关的所述一个不动端连接,所述第一谐振支路的另一端、第四谐振支路的一端均与所述第二切换开关的所述一个不动端连接,所述第二谐振支路的另一端、所述第三谐振支路的另一端和第四谐振支路的另一 端均接地;
    所述第二谐振支路的谐振频率范围为4GHz~4.7GHz,所述第三谐振支路的谐振频率范围为2.5GHz~3GHz,所述第四谐振支路的谐振频率范围为1.9GHz~2GHz。
  4. 根据权利要求3所述的应用于4G全频段功率放大器的耦合电路,其特征在于,所述第二谐振支路的谐振频率为4.56GHz,所述第三谐振支路的谐振频率为2.7GHz,所述第四谐振支路的谐振频率为2.0GHz。
  5. 根据权利要求3所述的应用于4G全频段功率放大器的耦合电路,其特征在于,所述第一谐振支路包括串联的第一电容C1和第一电感L1,所述第一电容C1的一端作为所述低频耦合通路网络的输出端与所述第二切换开关的所述一个不动端连接,所述第一电容C1的另一端与所述第一电感L1连接,所述第一电感L1的另一端与所述第一切换开关的所述一个不动端连接。
  6. 根据权利要求5所述的应用于4G全频段功率放大器的耦合电路,其特征在于,所述第二谐振支路包括串联的第二电容C2和第二电感L2,所述第二电容C2的一端通过所述第二电感L2接地,所述第二电容C2的另一端与所述第一切换开关的所述一个不动端连接;
    第三谐振支路包括串联的第三电容C3和第三电感L3,所述第三电容C3的一端通过所述第三电感L3接地,所述第三电容C3的另一端与所述第一切换开关的所述一个不动端连接;
    所述第四谐振支路包括串联的第四电容C4和第四电感L4,所述第四电容C4的一端通过所述第四电感L4接地,所述第四电容C4的另一端与所述第二切换开关的所述一个不动端连接。
  7. 根据权利要求6所述的应用于4G全频段功率放大器的耦合电路,其特征在于,还包括第五电容C5和第五电感L5;
    所述第五电容C5的一端作为所述低频耦合通路网络的输入端与所述第一切换开关的所述一个不动端连接,所述第五电容C5的另一端与所述第一电感L连接;所述第二电容C2和所述第三电容C3分别通过所述第五电容C5与所述第一切换开关的所述一个不动端连接;
    所述第五电感L5串联在所述第五电容C2和所述第一电感L1之间,所述 第一谐振支路位于所述第五电容C5和所述第五电感L5之间,所述第二谐振支路位于所述第一电感L1和所述第五电感L5之间。
  8. 根据权利要求3所述的应用于4G全频段功率放大器的耦合电路,其特征在于,所述第一谐振支路的谐振频率为600MHz-1.3GHz。
  9. 根据权利要求2所述的应用于4G全频段功率放大器的耦合电路,其特征在于,所述中高频耦合通路网络包括带通滤波器、π型滤波单元以及谐振单元;
    所述带通滤波器的一端和所述谐振单元的一端均与所述第一切换开关的所述另一个不动端连接,所述带通滤波器的另一地接地,所述谐振单元的另一端与所述π型滤波单元的输入端连接,所述π型滤波单元的输出端与所述第二切换开关的所述另一个不动端连接。
  10. 根据权利要求9所述的应用于4G全频段功率放大器的耦合电路,其特征在于,所述带通滤波器包括第六电容C6、第六电感L6、第七电容C7以及第七电感L7,所述第六电容C6和所述第六电感L6形成并联结构,所述第七电容C7和所述第七电感L7形成串联结构,所述并联结构的一端与所述第一切换开关的所述另一个不动端连接,所述并联结构的另一端与所述串联结构的一端连接,所述串联结构的另一端接地。
  11. 根据权利要去9所述的应用于4G全频段功率放大器的耦合电路,其特征在于,所述π型滤波单元包括形成第一串联支路的第八电容C8和第八电感L8、形成第二串联支路的第九电容C9和第九电感L9、以及第十电感L10;
    所述第一串联支路的一端和所述第十电感L10的一端连接,且连接节点作为所述π型滤波单元的输入端与所述谐振单元连接,所述第一串联支路的另一地接地;所述第二串联支路的一端和所述第十电感L10的另一端连接,且连接节点作为所述π型滤波单元的输出端与所述第二切换开关的所述另一个不动端连接,所述第二串联支路的另一端接地。
  12. 根据权利要求9所述的应用于4G全频段功率放大器的耦合电路,其特征在于,所述谐振单元包括串联的第十一电感L11和第十电容C10,所述第十一电感L11的一端作为所述谐振单元的所述一端与所述第一切换开关的所述另一个不动端连接,所述第十一电感L11的另一端与所述第十电容C10的一端 连接,所述第十电容C10的另一端作为所述谐振单元的所述另一端与所述π型滤波单元的输入端连接。
  13. 根据权利要求9所述的应用于4G全频段功率放大器的耦合电路,其特征在于,还包括第十二电感L12,所述带通滤波器的所述一端和所述谐振单元的所述一端通过所述第十二电感L12与所述第一切换开关的所述另一个不动端连接。
  14. 根据权利要求9所述的应用于4G全频段功率放大器的耦合电路,其特征在于,还包括第一电阻R1,所述π型滤波单元的输出端通过所述第一电阻R1与所述第二切换开关的所述另一个不动端连接。
  15. 一种电子设备,其特征在于,包括权利要求1-14任一项所述的应用于4G全频段功率放大器的耦合电路。
PCT/CN2022/108111 2021-09-17 2022-07-27 应用于4g全频段功率放大器的耦合电路及电子设备 WO2023040472A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111097323.3 2021-09-17
CN202111097323.3A CN113872532B (zh) 2021-09-17 2021-09-17 应用于4g全频段功率放大器的耦合电路及电子设备

Publications (1)

Publication Number Publication Date
WO2023040472A1 true WO2023040472A1 (zh) 2023-03-23

Family

ID=78992597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108111 WO2023040472A1 (zh) 2021-09-17 2022-07-27 应用于4g全频段功率放大器的耦合电路及电子设备

Country Status (2)

Country Link
CN (1) CN113872532B (zh)
WO (1) WO2023040472A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113904082A (zh) * 2021-09-17 2022-01-07 深圳飞骧科技股份有限公司 双微带线耦合器、功率放大器及相关设备和芯片
CN113872532B (zh) * 2021-09-17 2022-11-11 深圳飞骧科技股份有限公司 应用于4g全频段功率放大器的耦合电路及电子设备
CN113922775B (zh) * 2021-09-17 2023-06-27 深圳飞骧科技股份有限公司 一种应用于低频功率放大器的耦合电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656076A (zh) * 2016-12-31 2017-05-10 唯捷创芯(天津)电子技术股份有限公司 一种支持多模多频的射频功率放大器、芯片及通信终端
CN107210507A (zh) * 2014-12-10 2017-09-26 天工方案公司 可调射频耦合器
CN107404294A (zh) * 2017-08-23 2017-11-28 广州慧智微电子有限公司 一种带有定向耦合器的输出匹配网络电路及放大电路
CN109560360A (zh) * 2018-12-11 2019-04-02 深圳飞骧科技有限公司 一种定向耦合器
CN113162646A (zh) * 2020-01-19 2021-07-23 广东宽普科技有限公司 一种高性能全双工通信电路
CN113872532A (zh) * 2021-09-17 2021-12-31 深圳飞骧科技股份有限公司 应用于4g全频段功率放大器的耦合电路及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062309A (ja) * 2017-09-25 2019-04-18 株式会社村田製作所 方向性結合器及び通信ユニット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210507A (zh) * 2014-12-10 2017-09-26 天工方案公司 可调射频耦合器
CN106656076A (zh) * 2016-12-31 2017-05-10 唯捷创芯(天津)电子技术股份有限公司 一种支持多模多频的射频功率放大器、芯片及通信终端
CN107404294A (zh) * 2017-08-23 2017-11-28 广州慧智微电子有限公司 一种带有定向耦合器的输出匹配网络电路及放大电路
CN109560360A (zh) * 2018-12-11 2019-04-02 深圳飞骧科技有限公司 一种定向耦合器
CN113162646A (zh) * 2020-01-19 2021-07-23 广东宽普科技有限公司 一种高性能全双工通信电路
CN113872532A (zh) * 2021-09-17 2021-12-31 深圳飞骧科技股份有限公司 应用于4g全频段功率放大器的耦合电路及电子设备

Also Published As

Publication number Publication date
CN113872532B (zh) 2022-11-11
CN113872532A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2023040472A1 (zh) 应用于4g全频段功率放大器的耦合电路及电子设备
CN103413995B (zh) 基于ltcc技术的c波段高性能平衡滤波器
Noori et al. Design of a microstrip diplexer with a novel structure for WiMAX and wireless applications
CN103633400B (zh) 一种基于电磁混合耦合的微带双工器
JP2010515331A (ja) デュアルバンド−crlh伝送線路を用いた電力分配器、及び電力合成器
WO2023040475A1 (zh) 双微带线耦合器、功率放大器及相关设备和芯片
CN109755703B (zh) 一种具有高选择性的差分双频带通滤波器
CN109473756B (zh) 一种全可重构差分滤波器
CN105514547A (zh) 一种基于新型频率分离结构的低通-带通五工器
CN110165347A (zh) 一种加载开路枝节的高隔离度微带双工器
WO2023020095A1 (zh) 射频功率放大电路、发射模组、通信设备及通信系统
WO2023040473A1 (zh) 一种应用于低频功率放大器的耦合电路
CN114448357A (zh) 基于双螺旋缺陷地结构的宽带高效率j/f类功率放大器
CN113556118A (zh) 一种大功率谐振开关
WO2023088002A1 (zh) 基板匹配电路、射频功率放大器及射频芯片
CN218387448U (zh) 一种负反馈超宽带低噪声放大器电路
CN114649656A (zh) 一种双通带滤波移相器
Tan et al. Tunable couplers: An overview of recently developed couplers with tunable functions
CN112468105A (zh) 一种双频段lna匹配电路
CN206564308U (zh) 一种小型化微带四工器
CN106711556B (zh) 一种小型化微带四工器
CN220629330U (zh) 一种双收发集成共馈器
CN210403996U (zh) 一种应用于5g室分场景的四端口合路器
KR102567545B1 (ko) 추가적인 접지된 저항을 갖는 비손실 모드 전력 분배기
CN115313011B (zh) 一种具有高功分比的双频Gysel功分滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE