WO2023040369A1 - 一种高耐蚀易焊接热压零部件的热浴成形工艺 - Google Patents

一种高耐蚀易焊接热压零部件的热浴成形工艺 Download PDF

Info

Publication number
WO2023040369A1
WO2023040369A1 PCT/CN2022/097757 CN2022097757W WO2023040369A1 WO 2023040369 A1 WO2023040369 A1 WO 2023040369A1 CN 2022097757 W CN2022097757 W CN 2022097757W WO 2023040369 A1 WO2023040369 A1 WO 2023040369A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
boiling water
corrosion
forming process
easy
Prior art date
Application number
PCT/CN2022/097757
Other languages
English (en)
French (fr)
Inventor
刘培星
陈钢
金光宇
郝亮
高兴昌
高鹏
侯晓英
汤化胜
孙卫华
Original Assignee
山东钢铁集团日照有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东钢铁集团日照有限公司 filed Critical 山东钢铁集团日照有限公司
Priority to KR1020237038798A priority Critical patent/KR20230170043A/ko
Priority to DE112022001581.0T priority patent/DE112022001581T5/de
Priority to GB2318204.1A priority patent/GB2621778A/en
Publication of WO2023040369A1 publication Critical patent/WO2023040369A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/106Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by boiling the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • C23C8/18Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/24Cleaning or pickling metallic material with solutions or molten salts with neutral solutions

Definitions

  • the invention relates to the field of hot stamping of thin plates and the manufacture of sheet metal parts, in particular to a hot-bath forming process for high-corrosion-resistant and easy-to-weld hot-pressed parts.
  • Hot stamping technology has been widely used due to the advantages of small forming force, small part springback and high strength after forming. Edges will corrode ahead of time, especially lower body parts such as sill beams.
  • the austenitization temperature of the base material is high (850-900°C); and in the direct thermoforming process, the lower the coating temperature, the better (650°C below), and the higher the substrate temperature, the better (above 750°C).
  • Deformation without tensile stress such as pre-forming process
  • the main process is: first cold stamping forming parts - parts heating austenitization - holding pressure quenching - shot blasting.
  • the parts of this process have been deformed in advance, and the heated parts are transferred to the mold and only quenched without tensile stress deformation; therefore, the phenomenon of liquefied metal induced embrittlement (LMIE) does not occur; but the parts in this process need to be cold stamped in advance , the parts are heated in the furnace, the cost is high and the automation is complicated.
  • LMIE liquefied metal induced embrittlement
  • the main process is: the heated sheet is cooled first (using medium gas, dry ice, etc.) - forming - pressure quenching; however, this method is difficult to automatically control, and the cooling process and temperature of the sheet It is difficult to control; and it is difficult to evenly remove the oxide layer on the surface of parts.
  • Chinese patent CN106795578A discloses a "method for intermediate cooling of steel plates".
  • "dry ice, dry snow or air flow containing dry ice particles” is used to spray the surface, thereby realizing the cleaning of the oxide layer on the surface of galvanized steel plates and the removal of the sheet metal.
  • This method is difficult to achieve uniform cleaning of the surface oxide layer and uniform control of the sheet forming temperature; automatic control is difficult; and prefabrication of "dry ice, dry snow and other particles” is required, and the production cost is relatively high.
  • Chinese patent CN101821429A discloses a "Method and Equipment for Secondary Dephosphorization of Metal Strips by Low-pressure Water Jetting", which describes the “rough rolling process” and “finish rolling process” in the rolling process of hot-rolled billets. "Using high-pressure water to spray the surface of the billet to remove the oxide layer on the surface of the billet; the thickness of the billet in this link is generally 80-200mm, which is relatively large, and the thickness of the oxide layer is generally 100 ⁇ m-1mm; it is not suitable for an ultra-thin galvanized oxide layer of about 1 ⁇ m. It is easy to clean the coating as a whole, and room temperature water will cool the sheet to room temperature (the cooling rate of a 1.5mm thick hot steel plate in room temperature water is 500-1000°C/s), and the temperature of the sheet is difficult to control.
  • Chinese patent CN107922988A discloses a "non-contact cooling steel plate method and equipment used in the method".
  • matrix tubes are used for air cooling, which is likely to cause uneven cooling temperature of the sheet metal, and automatic control is difficult and impossible. Clean the oxide layer on the surface of the material after heating;
  • Chinese patent CN107127238 A discloses a kind of " hot stamping forming method of zinc-based coated steel sheet or steel strip ", in this method, the forming temperature of the plated sheet is reduced through the trimming process of the hot sheet material; however, the trimming process is difficult to guarantee The temperature of the material is uniformly cooled, the cooling rate at the trimming position is low, and the temperature at other positions is high; the automation control is difficult.
  • thermoforming process with low cost, high corrosion resistance, easy welding, uniform and controllable removal of oxide layer, and uniform and controllable cooling temperature.
  • the purpose of the present invention is to overcome the deficiencies in the prior art, especially the problems such as the difficulty in uniform and controllable cleaning of the extremely thin surface oxide layer and the difficulty in controlling the pre-cooling temperature, and provide a hot bath forming process for high corrosion resistance and easy welding of hot-pressed parts , Balance the forming temperature of the coating and the forming temperature of the substrate, immerse the sheet in boiling water, use the air bubbles generated between the boiling water and the hot sheet to remove the oxide layer on the surface of the steel plate evenly and controllably, and control the forming temperature of the sheet evenly and accurately.
  • the invention provides a hot-bath forming process for high-corrosion-resistant and easy-to-weld hot-pressed parts, which includes the following steps:
  • the coated hot-formed steel sheet is heated in a heating furnace until it is fully austenitized;
  • the coating of the coating thermoformed steel sheet includes: any one of GI type galvanized coating, GA type galvanized coating, and Zn-Al-Mg alloy coating;
  • the coated hot-formed steel sheet is formed under the joint action of boiling water and the upper and lower molds, kept under pressure and quenched to obtain parts;
  • the oxygen content (volume percentage) of the atmosphere in the heating furnace is 5-20%.
  • the surface of the coating is oxidized, and the aluminum element between the coating and the substrate diffuses to the surface of the coating and forms a dense layer of Al 2 O 3 , which suppresses the thickness of ZnO; but if the oxygen content is too low, the oxide layer cannot be formed on the surface, causing most of the zinc to volatilize , The corrosion-resistant layer on the surface of the coated hot-formed steel sheet is lost; the oxygen content is too high and the ZnO layer is too thick to affect the welding performance.
  • the heated coated thermoformed steel sheet can also be laser tailor welding, patch plate welding and unequal thickness rolled plate; under the premise of ensuring that the base material is fully austenitized, the heating time should be shortened as much as possible to prevent the gap between the coating and the base. Over-diffusion will lead to low corrosion resistance elements such as Zn in the coating, and the cathodic protection effect will be reduced.
  • the heating temperature is: 850-900°C, and the plate is kept warm for 0.5-4 minutes after reaching the holding temperature.
  • the temperature of the boiling water is 80-100° C.
  • the pressure of the boiling water on the surface of the oxide layer is 0-0.1 bar.
  • the depth of the coated thermoformed steel sheet in boiling water is 3-1000 mm.
  • the cooling rate of the 1.5mm thick sheet in the vertical state is only 30-50°C/s; the depth is When the thickness is 3-1000mm, the internal pressure of the heat insulation layer is greater than the hydrostatic pressure of the steel plate in the water, thus forming air bubbles; when the heat insulation layer is damaged, the surface will be cleaned during the formation of air bubbles to remove ZnO and Al 2 O 3 on the surface and MnO and other oxides; "insulation layer bubbles" will continue to form, and will continue to form a cleaning effect on the surface of the steel plate.
  • the time of the sheet in the boiling water is 2-20s, the cooling rate in the boiling water is uniform and controllable, and it is easy to implement automatically. It is only necessary to control the time, posture and position of the sheet in the boiling water.
  • the boiling water in step S2 further includes a dissolving agent with a mass fraction of 0-10%, and the dissolving agent includes NaOH.
  • the time of the sheet in boiling water, the boiling water temperature and other parameters are determined according to the thickness of the oxide layer and the formability of the parts; a certain concentration of NaOH can be added to the boiling water as needed to speed up the dissolution of the oxide layer. NaOH was washed away.
  • the forming temperature is 400-650°C.
  • the lower mold of the mold is in the boiling water bath, and the blank is placed above the lower mold.
  • the upper mold is driven downward, and the coated thermoformed steel material is formed, pressure-holding and quenched under the joint action of boiling water and the upper and lower molds; forming and pressure-holding
  • the mold destroys the heat insulation layer on the surface of the steel plate, the mold is in direct contact with the sheet, and the rapid heat exchange between the sheet and the mold realizes the quenching of the sheet.
  • the method also includes: before taking out the parts for blowing or drying in a drying oven, the parts Remove from the boiling water tank and transfer to anaerobic room temperature water for ultrasonic cleaning.
  • the ultrasonic cleaning time is 0.5-5 minutes.
  • the raw material components of the coated thermoformed steel sheet include, by mass percentage: C 0.05-0.35wt%, Si 0.05-0.2wt%, Mn 0.5-2.5wt%, Cr 0-0.3wt%, Mo 0 ⁇ 0.25wt%, Ti 0.02 ⁇ 0.04wt%, Nb 0 ⁇ 0.2wt%, V 0 ⁇ 0.2wt%, B 0.002 ⁇ 0.006wt%, P 0 ⁇ 0.020wt%, S 0 ⁇ 0.003wt%, Al 0.02 ⁇ 0.06wt%, N 0 ⁇ 0.006wt%, and the rest elements are Fe.
  • the thickness of the coating is 5-30 ⁇ m.
  • the technology provided by the present invention can uniformly control the oxidation layer removal process and the sheet metal temperature cooling process at the same time; the automatic control of the whole control process is easy to implement, and only needs to control the boiling water flow pressure (flow velocity) in the water tank, the position and attitude of the steel plate in the water and time.
  • the power to remove the oxide layer on the surface of the steel plate comes from the heat release between the steel plate and the boiling water, the impact force generated by the vaporization and rupture of the boiling water on the surface of the steel plate, and the formation of bubbles; the surrounding water flows quickly and quickly takes away the oxides ;
  • the cleaning power is weak, very suitable for the surface oxide layer of about 1 ⁇ m; the surface pressure is too large to remove the entire coating, and the removal of the oxide layer is uneven. .
  • the process provided by the present invention is convenient for actual production. It only needs to place the mold in boiling water and delay the mold closing time; and in the process of mass production, the temperature of the sheet metal will be continuously transferred to the water, and the energy consumption of the boiling water bath in the continuous production process
  • the mold will be greatly reduced; the mold is placed in boiling water, and the lower mold does not need to be equipped with a cooling channel, which greatly reduces the processing and manufacturing cost of the mold; and the mold temperature is constant, reducing the thermal fatigue of the mold and reducing mold damage; and the coating has solidified and no longer sticks when forming Mold, the heat absorbed by the mold is reduced, which is beneficial to improve the life of the mold; it can realize the functions of cleaning and cooling before the sheet forming; during the mold holding process, the quenching and cooling rate of the sheet can be reduced, and the structure and performance of the sheet can be improved; it can also effectively improve The problem of cracking when the surface oxide layer of the low-melting point corrosion-resistant coating is formed.
  • the mold will not rust in the boiling water, because the oxygen content in the boiling water is 0, and the Fe element in the mold material cannot contact with oxygen, which will not cause the mold to rust.
  • the stamping process of this process is completed in a boiling water bath, which isolates the contact between the sheet and oxygen, and avoids the oxidation of the sheet during the transfer and forming process.
  • Fig. 1 is the schematic flow chart of the hot bath forming process of a kind of highly corrosion-resistant and easy-to-weld hot-pressed parts provided by the present invention
  • Fig. 2 is the cooling process of the sheet metal in boiling water in Example 1 of the present invention; wherein, A and B are the actual cooling curves of the two-point sheet metal center and edge of the sheet material respectively, and the cooling process is very uniform;
  • Fig. 3 is the part coating surface morphology of boiling water bath treatment in the embodiment of the present invention 1;
  • Fig. 4 is the appearance of coating on the outside corner of parts treated in boiling water bath in Example 1 of the present invention.
  • Fig. 5 is the surface morphology of the coating of traditional air-cooled components in Comparative Example 1;
  • Fig. 6 is the cracking morphology of the coating on the outer corner of the direct hot stamping part in Comparative Example 2.
  • a hot bath forming process for highly corrosion-resistant and easy-to-weld hot-pressed parts includes the following steps:
  • Galvanized hot-formed steel sheet with a thickness of 1.5mm matrix components include C 0.18-0.21wt%, Si 0.05-0.2wt%, Mn 1.5-2.2wt%, Cr 0-0.3wt%, Mo 0-0.25wt% , Ti 0.02 ⁇ 0.04wt%, Nb 0 ⁇ 0.1wt%, B 0.002 ⁇ 0.006wt%, P 0 ⁇ 0.020wt%, S 0 ⁇ 0.003wt%, Al 0.02 ⁇ 0.06wt%, N 0 ⁇ 0.006wt%; Double GI surface galvanized 150g/m 2 , one side thickness 11 ⁇ m) transferred to 890 °C box-type heating furnace, heat preservation 5min, complete austenitization; the oxygen content (volume fraction) of the atmosphere in the heating furnace is 20% .
  • the plate is transferred to the boiling water tank, immersed in boiling water for even cleaning and cooling, the depth is 3-1000mm, and the boiling water temperature is 100°C; the residence time of the steel plate in the boiling water is 6s.
  • a hot bath forming process for highly corrosion-resistant and easy-to-weld hot-pressed parts comprising the following steps:
  • Galvanized hot-formed steel sheet with a thickness of 1.5mm matrix components include C 0.05-0.35wt%, Si 0.05-0.2wt%, Mn 0.5-2.5wt%, Cr 0-0.3wt%, Mo 0-0.25wt% , Ti 0.02 ⁇ 0.04wt%, Nb 0 ⁇ 0.2wt%, V 0 ⁇ 0.2wt%, B 0.002 ⁇ 0.006wt%, P 0 ⁇ 0.020wt%, S 0 ⁇ 0.003wt%, Al 0.02 ⁇ 0.06wt%, N 0 ⁇ 0.006wt%, the remaining elements are Fe; the double GA surface is galvanized 150g/m 2 , and the thickness of one side is 11 ⁇ m) transferred to a 900°C box-type heating furnace and kept for 5min to complete austenitization; in the heating furnace The oxygen content (volume fraction) of the medium atmosphere was 20%.
  • the plate is transferred to the boiling water tank, immersed in boiling water to wash evenly and cool down.
  • the depth of the plate is 3-1000mm, and the boiling water temperature is 80°C; the residence time of the steel plate in the boiling water is 6s.
  • the parts are transferred to anaerobic room temperature water for ultrasonic cleaning, and the oxide layer on the surface of the parts is cleaned by ultrasonic vibration.
  • the cleaning time is 0.5 to 5 minutes. Take it out and dry it with air to remove the water on the surface of the parts.
  • the parts are produced using traditional air-cooling technology (see CN107922988A for details of the process).
  • the surface morphology is shown in Figure 5.
  • the surface morphology is uneven and there are large-scale continuous oxide layers.
  • the cooling water system in the mold maintains the surface temperature of the mold at 50-100°C, and forms a full martensitic structure through the heat conduction quenching of the mold while stamping and forming. Finally, after the assembly of the parts is completed, the body-in-white is painted and baked, and kept at 150-180°C for 10-20 minutes.

Abstract

本发明提供一种高耐蚀易焊接热压零部件的热浴成形工艺,涉及薄板热冲压、钣金零部件制造领域。其工艺包括以下步骤:S1、镀层热成形钢板料在加热炉中加热,加热至完全奥氏体化状态;S2、加热后的镀层热成形钢板料转移至沸水箱中,浸没在沸水中,清洗氧化层;S3、镀层热成形钢板料在沸水和上下模具的共同作用下成形、保压并淬火,得到零部件;S4、取出零部件进行吹风或在干燥炉中干燥处理,去除零部件镀层中的水分。本发明提供的工艺将板料浸没在沸水中,借助沸水与热板料之间产生的气泡均匀可控清除表面氧化层,并均匀准确控制板料的成形温度,同时在沸水中进行成形和淬火,可提高零部件的生产质量,提升模具的使用寿命,节约生产成本。

Description

一种高耐蚀易焊接热压零部件的热浴成形工艺
本申请要求于2021年09月14日提交中国专利局、申请号为202111073382.7、发明名称为“一种高耐蚀易焊接热压零部件的热浴成形工艺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及薄板热冲压、钣金零部件制造领域,具体涉及一种高耐蚀易焊接热压零部件的热浴成形工艺。
背景技术
热冲压成形工艺过程中主要工序为:坯料加热—冲压成形并淬火—激光修边—抛丸。热冲压成形技术由于成形力小、零件回弹小、成形后零件强度高等优点,而获得广泛应用;然而裸板和Al-Si镀层板热成形零部件因缺少阴极保护,零部件服役过程中切边位置会提前腐蚀,尤其是下车体零部件,如门槛梁等。
由于镀锌层熔点低(纯Zn的熔点仅有400℃左右),基体材料奥氏体化温度高(850~900℃);而在直接热成形过程中,镀层温度越低越好(650℃以下),而基体温度越高越好(750℃以上)。对于传统22MnB5型基体材料,成形温度降低(650℃以上)会产生铁素体,导致强度不够;对于镀锌层材料成形温度高(如,780℃)会导致拉应力变形过程中镀层中液化相侵入奥氏体晶界导致基体开裂,即液化金属诱导脆性(LMIE)现象。因此,对于镀锌热成形钢,镀层和基体是一个矛盾。目前解决的途径主要是两种工艺路线,无拉应力变形和降低成形温度。
无拉应力变形,如预成型工艺,主要工序为:先冷冲压成形为零部件—零部件加热奥氏体化—保压淬火—抛丸。该种工艺零部件已经提前发生形变,加热后的零部转移至模具中只淬火,无拉应力变形;故不发生液化金属诱导脆性(LMIE)现象;但该工艺中零部件需要提前冷冲压成形,零部件在炉膛内加热,成本高、自动化复杂。
降低成形温度,如提前冷却,主要工序为:加热后的板料先进行冷却(采用介质气体、干冰等)—成形—保压淬火;然而该种方法自动化控制难 度大,板料降温过程及温度控制难度大;且均匀清除零部件表面氧化层难度较大。
中国专利CN106795578A公开了一种《用于中间冷却钢板的方法》,该方法中采用“干冰、干雪或含有干冰颗粒的气流”对表面进行喷射,从而实现镀锌钢板表面氧化层清理和板料温度的降低;钢板表面氧化层的清洗力量来源于外力高压“喷射”冲击力。该方法难以实现均匀清洗表面氧化层,并均匀控制板料成形温度;自动化控制难度大;且需要预制“干冰、干雪等颗粒”,生产成本较高。
中国专利CN101821429A公开了一种《通过低水压水喷射进行金属带二次除磷的方法及设备》,该方法中描述热轧钢坯在轧制过程中,“粗轧工序”和“精轧工序”之间采用高压水喷射钢坯表面,清除钢坯表面的氧化层;此环节钢坯厚度常规为80~200mm,厚度比较大,氧化层厚度常规100μm~1mm;不适合1μm左右超薄镀锌氧化层,容易将镀层整体清洗,室温水会将薄板将至室温(1.5mm厚热钢板在室温水中的冷却速率是500~1000℃/s),板料温度难以控制。
中国专利CN107922988A公开了一种《非接触式冷却钢板的方法以及用于该方法的设备》,该方法中采用矩阵管进行气冷,容易造成板料冷却温度不均匀,自动化控制难度大,且无法对加热后材料表面氧化层进行清洗;
中国专利CN107127238 A公开了一种《一种锌系镀覆钢板或钢带的热冲压成型方法》,该方法中通过热板料切边工序降低镀层板料的成形温度;然而切边工序难以保证材料的温度均匀冷却,切边位置冷速速率较低,其它位置温度高;自动化控制难度大。
因此开发一种成本低、高耐蚀、易焊接、均匀可控清除氧化层、均匀可控冷却温度的热成形工艺极其重要。
发明内容
本发明的目的是克服现有技术中的不足,尤其极薄表面氧化层难以均匀可控清洗、预冷温度难以控制等问题,提供一种高耐蚀易焊接热压零部件的热浴成形工艺,平衡镀层的成形温度和基体的成形温度,将板料浸没在沸水中,借助沸水与热板料之间产生的气泡均匀可控清除钢板表面氧化 层,并均匀准确控制板料的成形温度。
本发明提供一种高耐蚀易焊接热压零部件的热浴成形工艺,包括以下步骤:
S1、镀层热成形钢板料在加热炉中加热,加热至完全奥氏体化状态;
所述镀层热成形钢板料的镀层包括:GI型镀锌镀层,GA型镀锌镀层、Zn-Al-Mg合金镀层中的任意一种;
S2、加热后的镀层热成形钢板料转移至沸水箱中,浸没在沸水中,清洗氧化层;
S3、镀层热成形钢板料在沸水和上下模具的共同作用下成形、保压并淬火,得到零部件;
S4、取出零部件进行吹风或在干燥炉中干燥处理,去除零部件镀层中的水分。
优选地,步骤S1中,所述加热炉中的气氛氧含量(体积百分比)为5~20%。加热过程中镀层表面氧化,镀层与基体之间的铝元素向镀层表面扩散并形成Al 2O 3致密层,抑制ZnO厚度;但氧含量过低会导致表层无法形成氧化层,导致锌大部分挥发,镀层热成形钢板料表面耐蚀层丢失;氧含量过高ZnO层过厚影响焊接性能。
加热的镀层热成形钢板料也可以是激光拼焊、补丁板焊接及不等厚轧制板;在保证基体材料充分奥氏体化的前提下,加热时间尽量缩短,防止镀层与基体之间进行过扩散,导致镀层中Zn等耐蚀性元素过低,阴极保护作用降低。加热温度为:850~900℃,板料达到保温温度后保温0.5~4min。
优选地,步骤S2中,所述沸水温度为80~100℃,所述沸水在所述氧化层表面的压力为0~0.1bar。
优选地,所述镀层热成形钢板料在沸水中的深度为3~1000mm。板料浸没在沸水中,其表面会形成蒸气隔热层,板料温度与水之间的传递速度极大降低,1.5mm厚板料竖直状态冷却速度只有30~50℃/s;深度为3~1000mm时,隔热层内压大于钢板在水中的位置所受静水压,从而形成气泡;隔热层破坏,气泡形成过程中会对表面进行清洗,清除表层的ZnO、Al 2O 3和MnO等氧化物;“隔热层气泡”会不断形成、不断对钢板表面形 成清洗效果。板料在沸水中的时间为2~20s,在沸水中的冷却速率均匀可控,容易自动化实施,只需控制板料在沸水中的时间、姿态、位置即可。
进一步地,步骤S2所述沸水中还包括质量分数为0~10%的溶解剂,所述溶解剂包括NaOH。板料在沸水中时间、沸水温度等参数依据氧化层的厚度和零部件的成形性能确定;沸水中可以根据需要添加一定浓度的NaOH等可以加快溶解氧化层的溶解液,零部件干燥处理前要将NaOH清洗掉。
优选地,步骤S3中,所述成形的温度为400~650℃。模具下模在沸水浴中,料片放置在下模上方,压力机下行时带动上模下行,镀层热成形钢板料在沸水和上下模具的共同作用下成形、保压并实现淬火;成形和保压过程中,模具将钢板表面的隔热层破坏,模具与板料直接接触,板料与模具之间快速换热实现板料淬火。
优选地,若板料经过加热阶段和沸水浴中清洗阶段后,镀层表面状态不满足后续焊接等工艺,所述方法还包括:在取出零部件进行吹风或在干燥炉中干燥处理之前,零部件移出沸水箱转移至无氧室温水中进行超声波清洗。
进一步地,所述超声波清洗的时间为0.5~5min。
优选地,所述镀层热成形钢板料的原料组分,按质量百分比计,包括:C 0.05~0.35wt%,Si 0.05~0.2wt%,Mn 0.5~2.5wt%,Cr 0~0.3wt%,Mo 0~0.25wt%,Ti 0.02~0.04wt%,Nb 0~0.2wt%,V 0~0.2wt%,B 0.002~0.006wt%,P 0~0.020wt%,S 0~0.003wt%,Al 0.02~0.06wt%,N 0~0.006wt%,其余元素为Fe。
优选地,镀层的厚度为5~30μm。
本发明技术方案,具有如下优点:
1、本发明提供的工艺可同时均匀控制氧化层清除过程和板料温度冷却过程;整个控制过程自动化控制容易实施,只需要控制水箱中沸水流动压力(流动速度)、钢板在水中的位置、姿态和时间即可。
2、本发明提供的工艺中钢板表层清除氧化层的力量来源于钢板与沸水之间热量释放,钢板表层沸水汽化并破裂、形成气泡产生的冲击力;周边水流快速移动,快速将氧化物带走;该清洗力量微弱,非常适合1μm 左右表面氧化层;表面压力过大会将镀层整体清除掉,且氧化层清除不均匀,本发明可以实现“长时间”、“低清洗力气泡方式”清除氧化层。
3、本发明提供的工艺便于实际生产,只需将模具置于沸水中,延迟合模时间即可;并且量产过程中,板料温度会不断传递至水中,连续生产过程中沸水浴能耗会大大降低;模具置于沸水中,下模具无需打冷却水道,极大降低了模具的加工制造成本;且模具温度恒定,减低模具热疲劳,减少模具损伤;且成形时镀层已经凝固不再粘模具,模具吸收热量减少,有利于提升模具寿命;可实现板料成型前的清洗,降温等功能;在模具保压过程中实现板料淬火冷却速率降低,改善板料组织性能;还能有效改善低熔点耐蚀涂层的表面氧化层成形时开裂的问题。
4、本工艺中模具在沸水中不会导致模具生锈,因为沸水中氧含量为0,模具材料中Fe元素无法与氧气接触,不会造成模具锈蚀。
5、本工艺的冲压过程在沸水浴中完成,隔绝了板料与氧气之间的接触,避免板料在转移和成形过程中氧化。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的一种高耐蚀易焊接热压零部件的热浴成形工艺的流程示意图;
图2是本发明实施例1中板料在沸水中的冷却过程;其中,A、B分别是板料中心与边部的两点板料冷却实际曲线,冷却过程非常均匀;
图3是本发明实施例1中沸水浴处理的零部件镀层表面形貌;
图4是本发明实施例1中沸水浴处理零部件拐角外侧镀层形貌;
图5是对比例1中传统气冷零部件镀层表面形貌;
图6是对比例2中直接热冲压零部件拐角外侧镀层开裂形貌。
具体实施方式
实施例1
一种高耐蚀易焊接热压零部件的热浴成形工艺,如图1所示,包括以下步骤:
S1、板厚1.5mm镀锌热成形钢板料(基体成分包括C 0.18~0.21wt%,Si 0.05~0.2wt%,Mn 1.5~2.2wt%,Cr 0~0.3wt%,Mo 0~0.25wt%,Ti 0.02~0.04wt%,Nb 0~0.1wt%,B 0.002~0.006wt%,P 0~0.020wt%,S 0~0.003wt%,Al 0.02~0.06wt%,N 0~0.006wt%;双GI型面镀锌150g/m 2,单侧厚度11μm)转移至890℃箱式加热炉中,保温5min,完成奥氏体化;加热炉中中气氛的氧含量(体积分数)为20%。
S2、加热完成后的板料转移至沸水箱中,浸没在沸水中均匀清洗并降温,深度为3~1000mm,沸水温度100℃;钢板在沸水中的停留时间为6s。
S3、由于模具在沸水浴中,只控制液压机合模时间延迟6s,液压机合模(压机合模所需时间为3s)成形并保压淬火;其中,成形前板料在沸水中总时间为9s左右,故成形前板料温度为520~560℃(见图2)。保压时间10s;合模保压力100T(零部件投影面积压强20MPa)。
S4、出水后零部件进行吹风干燥,清除零部件表面的水;即得。
成形后零部件的力学性能(测试标准:GB/T 228.1-2010《金属材料拉伸试验第1部分:室温试验方法》):抗拉强度1420~1600MPa,断后延伸率5~9%;零部件表面形貌见图3,经沸水浴处理的表面形貌颗粒状,非常均匀,几乎无大面连片氧化层;最终零部件焊接工艺电流窗口为1.1~1.4KA,完全满足目前焊接工艺要求。且镀层无液化开裂现象(图4);成形淬火后镀锌层中Zn含量32~55%,具有较好的阴极保护作用。
实施例2
一种高耐蚀易焊接热压零部件的热浴成形工艺,包括以下步骤:
S1、板厚1.5mm镀锌热成形钢板料(基体成分包括C 0.05~0.35wt%,Si 0.05~0.2wt%,Mn 0.5~2.5wt%,Cr 0~0.3wt%,Mo 0~0.25wt%,Ti 0.02~0.04wt%,Nb 0~0.2wt%,V 0~0.2wt%,B 0.002~0.006wt%,P 0~0.020wt%,S 0~0.003wt%,Al 0.02~0.06wt%,N 0~0.006wt%,其余元素为Fe;双GA型面镀锌150g/m 2,单侧厚度11μm)转移至900℃箱式加热炉中,保温5min,完成奥氏体化;加热炉中中气氛的氧含量(体积分数) 为20%。
S2、加热完成后的板料转移至沸水箱中,浸没在沸水中均匀清洗并降温,板料深度为3~1000mm,沸水温度80℃;钢板在沸水中的停留时间为6s。
S3、由于模具在沸水浴中,只控制液压机合模时间延迟6s,液压机合模成形并保压淬火;其中,成形前板料在沸水中总时间为9s左右,故成形前板料温度为500~600℃。保压时间10s;合模保压力100T。
S4、出水后零部件转移至无氧室温水中进行超声波清洗,对零部件表面氧化层进行超声波振动清洗,清洗时间0.5~5min,取出进行吹风干燥,清除零部件表面的水,即得。
成形后零部件的力学性能、焊接性能、镀层液化开裂效果与实施例1中相同。
对比例1
采用传统气冷技术(其工艺具体见CN107922988A)生产零部件,其表面形貌如图5所示,表面形貌不均匀,存在大面连片氧化层。
对比例2
采用直接热成形工艺,参见“易红亮,常智渊,才贺龙,等.热冲压成形钢的强度与塑性及断裂应变[J].金属学报,2020,v.56(04):51-65.”,具体工艺:零件板坯首先在加热炉中加热至约930℃形成均匀的全奥氏体组织,机械手将其转移至压机,合模冲压时其温度为700~800℃,冲压成形时为全奥氏体状态,抗拉强度约200MPa、延伸率高于40%。模具中的冷却水系统维持模具表面温度为50~100℃,冲压成形的同时通过模具导热淬火形成全马氏体组织。最后零件装配完成后白车身进行涂装烘烤,在150~180℃保温10~20min,该工艺获得的镀层,液化锌侵入基体40μm以上,如图6所示,无法满足服役性能,尤其是疲劳。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (15)

  1. 一种高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,包括以下步骤:
    S1、镀层热成形钢板料在加热炉中加热,加热至完全奥氏体化状态;
    所述镀层热成形钢板料的镀层包括:GI型镀锌镀层、GA型镀锌镀层、Zn-Al-Mg合金镀层中的任意一种;
    S2、加热后的镀层热成形钢板料转移至沸水箱中,浸没在沸水中,清洗氧化层;
    S3、镀层热成形钢板料在沸水和上下模具的共同作用下成形、保压并淬火,得到零部件;
    S4、取出零部件进行吹风或在干燥炉中干燥处理,去除零部件镀层中的水分。
  2. 根据权利要求1所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,步骤S1中,所述加热炉中的气氛氧含量为5~20%。
  3. 根据权利要求1所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,步骤S1中,所述加热的温度为850~900℃,板料达到保温温度后保温0.5~4min。
  4. 根据权利要求1所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,步骤S2中,所述沸水温度为80~100℃,所述沸水在所述氧化层表面的压力为0~0.1bar。
  5. 根据权利要求4所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,所述镀层热成形钢板料在沸水中的深度为3~1000mm。
  6. 根据权利要求1、4或5所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,所述沸水在所述镀层热成形钢板料的氧化层表面的压力为0~0.1bar。
  7. 根据权利要求1、4或5所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,所述镀层热成形钢板料在沸水中的停留时间为2~20s。
  8. 根据权利要求4所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,所述沸水中还包括质量分数为0~10%的溶解剂,所述溶解 剂包括NaOH。
  9. 根据权利要求1所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,步骤S3中,所述成形的温度为400-650℃。
  10. 根据权利要求1所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,步骤S3中,所述下模具在沸水浴中,镀层热成形钢板料放置在下模具上方。
  11. 根据权利要求1所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,所述工艺还包括:在取出零部件进行吹风或在干燥炉中干燥处理之前,零部件移出沸水箱转移至无氧室温水中进行超声波清洗。
  12. 根据权利要求11所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,所述超声波清洗的时间为0.5~5min。
  13. 根据权利要求1所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,所述镀层热成形钢板料的原料组分,按质量百分比计,包括:C 0.05~0.35wt%,Si 0.05~0.2wt%,Mn 0.5~2.5wt%,Cr 0~0.3wt%,Mo 0~0.25wt%,Ti 0.02~0.04wt%,Nb 0~0.2wt%,V 0~0.2wt%,B 0.002~0.006wt%,P 0~0.020wt%,S 0~0.003wt%,Al 0.02~0.06wt%,N 0~0.006wt%,其余元素为Fe。
  14. 根据权利要求1所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,所述镀层的厚度为5~30μm。
  15. 根据权利要求1所述的高耐蚀易焊接热压零部件的热浴成形工艺,其特征在于,将所述镀层热成形钢板料替换为激光拼焊板、补丁板焊接板或不等厚轧制板。
PCT/CN2022/097757 2021-09-14 2022-06-09 一种高耐蚀易焊接热压零部件的热浴成形工艺 WO2023040369A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237038798A KR20230170043A (ko) 2021-09-14 2022-06-09 내식성이 높고 용접이 용이한 열압 부품의 열욕 성형 공정
DE112022001581.0T DE112022001581T5 (de) 2021-09-14 2022-06-09 Warmbad-Umformverfahren für hochkorrosionsbeständige und leicht zu schweißende Warmpressteile
GB2318204.1A GB2621778A (en) 2021-09-14 2022-06-09 Hot bath forming process for high-corrosion-resistance easy-to-weld hot-pressed parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111073382.7A CN113751410B (zh) 2021-09-14 2021-09-14 一种高耐蚀易焊接热压零部件的热浴成形工艺
CN202111073382.7 2021-09-14

Publications (1)

Publication Number Publication Date
WO2023040369A1 true WO2023040369A1 (zh) 2023-03-23

Family

ID=78795359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097757 WO2023040369A1 (zh) 2021-09-14 2022-06-09 一种高耐蚀易焊接热压零部件的热浴成形工艺

Country Status (5)

Country Link
KR (1) KR20230170043A (zh)
CN (1) CN113751410B (zh)
DE (1) DE112022001581T5 (zh)
GB (1) GB2621778A (zh)
WO (1) WO2023040369A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113751410B (zh) * 2021-09-14 2022-07-22 山东钢铁集团日照有限公司 一种高耐蚀易焊接热压零部件的热浴成形工艺
CN114045382B (zh) * 2021-11-22 2023-02-28 沈阳睿科自动化设备有限公司 一种汽车零部件自动淬火生产线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060283530A1 (en) * 2005-06-16 2006-12-21 Benteler Automobiltechnik Gmbh Hot-shaping and hardening a workpiece
CN105328047A (zh) * 2015-11-05 2016-02-17 福州大学 一种具有新型冷却系统的超高强度钢板热冲压装置及其方法
US20170335418A1 (en) * 2016-05-20 2017-11-23 Gary M. Cola, JR. High strength iron-based alloys, processes for making same, and articles resulting therefrom
CN108411086A (zh) * 2018-04-04 2018-08-17 华北理工大学 一种低成本高性能中碳钢的生产工艺
CN112139335A (zh) * 2020-09-09 2020-12-29 山东钢铁集团日照有限公司 一种高耐蚀易焊接热压零部件的制备方法
CN113751410A (zh) * 2021-09-14 2021-12-07 山东钢铁集团日照有限公司 一种高耐蚀易焊接热压零部件的热浴成形工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2028290A1 (fr) 2007-08-21 2009-02-25 ArcelorMittal France Procédé et équipement de décalaminage secondaire des bandes métalliques par projection d'eau à basse pression hydraulique
DE102014114394B3 (de) 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Verfahren zum Erzeugen eines gehärteten Stahlblechs
CN108136464B (zh) 2015-05-29 2020-08-28 奥钢联钢铁有限责任公司 待控温的非无尽表面的均匀非接触温度控制方法及其装置
CN107127238B (zh) 2016-02-26 2019-12-27 宝山钢铁股份有限公司 一种锌系镀覆钢板或钢带的热冲压成型方法
JP6633445B2 (ja) * 2016-04-25 2020-01-22 アイシン・エィ・ダブリュ工業株式会社 金型、金型装置およびワークの冷却方法
CN210305391U (zh) * 2019-08-19 2020-04-14 林志杭 一种汽车配件生产用冷却装置
KR102147609B1 (ko) * 2019-12-12 2020-08-24 박성룡 프레스 금형용 철강 제조 공정을 위한 제어 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060283530A1 (en) * 2005-06-16 2006-12-21 Benteler Automobiltechnik Gmbh Hot-shaping and hardening a workpiece
CN105328047A (zh) * 2015-11-05 2016-02-17 福州大学 一种具有新型冷却系统的超高强度钢板热冲压装置及其方法
US20170335418A1 (en) * 2016-05-20 2017-11-23 Gary M. Cola, JR. High strength iron-based alloys, processes for making same, and articles resulting therefrom
CN108411086A (zh) * 2018-04-04 2018-08-17 华北理工大学 一种低成本高性能中碳钢的生产工艺
CN112139335A (zh) * 2020-09-09 2020-12-29 山东钢铁集团日照有限公司 一种高耐蚀易焊接热压零部件的制备方法
CN113751410A (zh) * 2021-09-14 2021-12-07 山东钢铁集团日照有限公司 一种高耐蚀易焊接热压零部件的热浴成形工艺

Also Published As

Publication number Publication date
GB202318204D0 (en) 2024-01-10
DE112022001581T5 (de) 2024-01-25
GB2621778A8 (en) 2024-02-28
GB2621778A (en) 2024-02-21
CN113751410A (zh) 2021-12-07
KR20230170043A (ko) 2023-12-18
CN113751410B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
US11441200B2 (en) Method and device for preparing corrosion-resistant hot stamping part
WO2023040369A1 (zh) 一种高耐蚀易焊接热压零部件的热浴成形工艺
WO2020108594A1 (zh) 一种冷弯性能优良的锌系镀覆热成型钢板或钢带及其制造方法
KR102301116B1 (ko) 부식에 대한 보호를 제공하는 금속성 코팅이 제공된 강 부품의 제조 방법, 및 강 부품
WO2020108593A1 (zh) 一种耐腐蚀性优良的锌系镀层钢板或钢带的成形方法
CN101643828B (zh) 一种耐时效镀锡原板的生产方法
JP6483709B2 (ja) 金属防食被覆を備える鋼部品の製造方法
CN109504930B (zh) 抗拉强度大于1300MPa的热镀锌钢板及其生产方法
CN111618146A (zh) 一种锌基镀层涂覆钢材热冲压方法及热冲压成型构件
JP2013142198A (ja) めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法
CN113403462B (zh) 一种屈服强度700~1000MPa级青皮钢的制备方法
WO2018095085A1 (zh) 耐海洋大气、海水飞溅腐蚀的 210mm 厚易焊接 F690 钢板
EP4353860A1 (en) Pre-coated steel plate for hot forming and preparation method therefor, and hot-formed steel member and application thereof
KR100988491B1 (ko) 용융 알루미늄 도금 스테인레스 강판의 제조방법
CN113832403A (zh) 一种低碳门板钢的罩退退火方法
JPH0322272B2 (zh)
CN112139335B (zh) 一种高耐蚀易焊接热压零部件的制备方法
JPS5945757B2 (ja) 片面被覆亜鉛メツキ鋼板の製造法
CN115029632A (zh) 高耐蚀镀锌热成形硬化钢及其零部件以及制备方法
KR100988490B1 (ko) 용융 알루미늄-아연 도금 스테인레스 강판의 제조방법
CN216989559U (zh) 一种抗氢致延迟开裂的油浴成形装置
CN114850271B (zh) 镀层热成形钢去除表面氧化层的方法以及热成形方法
CN115125439B (zh) 一种锌基镀层1800Mpa级热冲压成型钢及制备方法
CN116751935A (zh) 一种锌基镀层热成形钢构件的成形工艺
CN115255016A (zh) 一种高温成型抗液态金属脆的gi复合镀层钢板的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868746

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023565621

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237038798

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237038798

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 112022001581

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 202318204

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220609